File size: 22,254 Bytes
66992f6
 
af81629
640dd0e
af81629
640dd0e
af81629
 
640dd0e
66992f6
640dd0e
88f78ff
 
66992f6
640dd0e
 
 
 
 
 
af81629
640dd0e
 
 
 
 
 
af81629
 
 
 
640dd0e
 
 
 
af81629
640dd0e
 
66992f6
640dd0e
66992f6
640dd0e
 
 
 
 
 
 
 
 
 
66992f6
 
af81629
640dd0e
 
af81629
 
 
88f78ff
 
 
af81629
640dd0e
66992f6
 
640dd0e
 
 
 
 
 
af81629
640dd0e
 
 
 
 
 
 
 
 
 
 
88f78ff
640dd0e
 
88f78ff
640dd0e
af81629
 
640dd0e
 
 
 
66992f6
 
640dd0e
af81629
640dd0e
66992f6
af81629
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
88f78ff
640dd0e
88f78ff
 
 
 
 
66992f6
88f78ff
640dd0e
 
66992f6
88f78ff
640dd0e
88f78ff
66992f6
640dd0e
 
66992f6
af81629
 
640dd0e
 
af81629
 
 
66992f6
af81629
 
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
640dd0e
af81629
 
 
 
 
 
66992f6
af81629
 
66992f6
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
640dd0e
af81629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
 
 
 
66992f6
 
 
af81629
 
 
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
 
 
66992f6
af81629
88f78ff
66992f6
640dd0e
 
 
 
 
88f78ff
640dd0e
 
 
 
 
66992f6
640dd0e
 
 
88f78ff
640dd0e
 
 
 
 
 
 
 
 
 
88f78ff
640dd0e
 
 
88f78ff
640dd0e
 
 
 
88f78ff
 
 
 
 
 
 
640dd0e
66992f6
88f78ff
 
 
 
 
 
 
66992f6
88f78ff
 
 
66992f6
88f78ff
 
 
66992f6
88f78ff
 
66992f6
88f78ff
 
66992f6
88f78ff
 
 
 
 
 
 
66992f6
 
88f78ff
 
af81629
640dd0e
 
 
 
 
 
 
 
 
 
 
af81629
88f78ff
af81629
640dd0e
 
 
 
af81629
640dd0e
 
 
66992f6
88f78ff
 
640dd0e
 
 
 
88f78ff
 
 
640dd0e
 
 
 
 
 
88f78ff
640dd0e
 
 
 
 
 
 
 
88f78ff
640dd0e
 
 
af81629
 
 
640dd0e
 
 
 
 
 
 
 
 
 
 
88f78ff
640dd0e
 
 
 
 
 
 
 
 
 
 
 
af81629
 
 
88f78ff
66992f6
 
640dd0e
 
 
 
88f78ff
640dd0e
88f78ff
af81629
640dd0e
88f78ff
 
 
af81629
 
 
 
640dd0e
 
 
 
 
 
 
af81629
640dd0e
66992f6
88f78ff
 
 
66992f6
 
640dd0e
88f78ff
640dd0e
88f78ff
 
 
 
 
 
 
 
 
 
 
66992f6
88f78ff
 
 
 
 
 
 
 
 
640dd0e
88f78ff
 
 
640dd0e
 
88f78ff
 
 
 
 
 
 
 
 
640dd0e
af81629
640dd0e
 
af81629
 
66992f6
640dd0e
66992f6
640dd0e
 
88f78ff
66992f6
 
af81629
 
 
 
640dd0e
 
af81629
66992f6
88f78ff
 
 
 
 
 
 
 
 
af81629
 
640dd0e
 
88f78ff
 
af81629
88f78ff
66992f6
 
640dd0e
88f78ff
 
640dd0e
 
88f78ff
 
 
 
640dd0e
 
88f78ff
 
 
 
66992f6
 
af81629
640dd0e
88f78ff
640dd0e
 
 
 
 
88f78ff
66992f6
 
640dd0e
66992f6
af81629
66992f6
640dd0e
 
66992f6
9e0d933
66992f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
import json
import io
import wave

# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10

# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1

# Speaker colors
SPEAKER_COLORS = [
    "#FFFF00",  # Yellow
    "#FF0000",  # Red
    "#00FF00",  # Green
    "#00FFFF",  # Cyan
    "#FF00FF",  # Magenta
    "#0000FF",  # Blue
    "#FF8000",  # Orange
    "#00FF80",  # Spring Green
    "#8000FF",  # Purple
    "#FFFFFF",  # White
]

SPEAKER_COLOR_NAMES = [
    "Yellow", "Red", "Green", "Cyan", "Magenta", 
    "Blue", "Orange", "Spring Green", "Purple", "White"
]





class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            from speechbrain.pretrained import EncoderClassifier
            
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            print("ECAPA-TDNN model loaded successfully!")
            return True
        except Exception as e:
            print(f"SpeechBrain not available: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            print(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
    
    def extract_embedding(self, audio_data, sample_rate=16000):
        try:
            # Ensure audio is float32 and normalized
            if audio_data.dtype == np.int16:
                float_audio = audio_data.astype(np.float32) / 32768.0
            else:
                float_audio = audio_data.astype(np.float32)
            
            # Normalize if needed
            if np.abs(float_audio).max() > 1.0:
                float_audio = float_audio / np.abs(float_audio).max()
            
            embedding = self.encoder.embed_utterance(float_audio, sample_rate)
            return embedding
            
        except Exception as e:
            print(f"Embedding extraction error: {e}")
            return np.zeros(self.encoder.embedding_dim)


class SpeakerChangeDetector:
    """Speaker change detector that supports a configurable number of speakers"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.previous_embeddings = []
        self.last_change_time = time.time()
        self.mean_embeddings = [None] * self.max_speakers
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.last_similarity = 0.0
        self.active_speakers = set([0])
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        if new_max > self.max_speakers:
            self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
        else:
            self.mean_embeddings = self.mean_embeddings[:new_max]
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.99))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and check if there's a speaker change"""
        current_time = timestamp or time.time()
        
        if not self.previous_embeddings:
            self.previous_embeddings.append(embedding)
            self.speaker_embeddings[self.current_speaker].append(embedding)
            if self.mean_embeddings[self.current_speaker] is None:
                self.mean_embeddings[self.current_speaker] = embedding.copy()
            return self.current_speaker, 1.0
        
        current_mean = self.mean_embeddings[self.current_speaker]
        if current_mean is not None:
            similarity = 1.0 - cosine(embedding, current_mean)
        else:
            similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
        
        self.last_similarity = similarity
        
        time_since_last_change = current_time - self.last_change_time
        is_speaker_change = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION:
            if similarity < self.change_threshold:
                best_speaker = self.current_speaker
                best_similarity = similarity
                
                for speaker_id in range(self.max_speakers):
                    if speaker_id == self.current_speaker:
                        continue
                        
                    speaker_mean = self.mean_embeddings[speaker_id]
                    
                    if speaker_mean is not None:
                        speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
                        
                        if speaker_similarity > best_similarity:
                            best_similarity = speaker_similarity
                            best_speaker = speaker_id
                
                if best_speaker != self.current_speaker:
                    is_speaker_change = True
                    self.current_speaker = best_speaker
                elif len(self.active_speakers) < self.max_speakers:
                    for new_id in range(self.max_speakers):
                        if new_id not in self.active_speakers:
                            is_speaker_change = True
                            self.current_speaker = new_id
                            self.active_speakers.add(new_id)
                            break
        
        if is_speaker_change:
            self.last_change_time = current_time
        
        self.previous_embeddings.append(embedding)
        if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
            self.previous_embeddings.pop(0)
        
        self.speaker_embeddings[self.current_speaker].append(embedding)
        self.active_speakers.add(self.current_speaker)
        
        if len(self.speaker_embeddings[self.current_speaker]) > 30:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
            
        if self.speaker_embeddings[self.current_speaker]:
            self.mean_embeddings[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"
    
    def get_status_info(self):
        """Return status information about the speaker change detector"""
        speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
        
        return {
            "current_speaker": self.current_speaker,
            "speaker_counts": speaker_counts,
            "active_speakers": len(self.active_speakers),
            "max_speakers": self.max_speakers,
            "last_similarity": self.last_similarity,
            "threshold": self.change_threshold
        }


class GradioSpeakerDiarization:
    def __init__(self):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.full_sentences = []
        self.sentence_speakers = []
        self.is_initialized = False
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS
        
    def initialize_models(self):
        """Initialize the speaker encoder model"""
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device_str}")
            
            # Load SpeechBrain encoder
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if success:
                self.audio_processor = AudioProcessor(self.encoder)
                self.speaker_detector = SpeakerChangeDetector(
                    embedding_dim=self.encoder.embedding_dim,
                    change_threshold=self.change_threshold,
                    max_speakers=self.max_speakers
                )
                self.is_initialized = True
                return True
            else:
                return False
                
        except Exception as e:
            print(f"Model initialization error: {e}")
            return False
    
    def transcribe_audio(self, audio_input):
        """Process audio input and perform transcription with speaker diarization"""
        if not self.is_initialized:
            return "❌ Please initialize the system first!", self.get_formatted_conversation(), self.get_status_info()
        
        if audio_input is None:
            return "No audio received", self.get_formatted_conversation(), self.get_status_info()
        
        try:
            # Handle different audio input formats
            if isinstance(audio_input, tuple):
                sample_rate, audio_data = audio_input
            else:
                # Assume it's a file path
                import librosa
                audio_data, sample_rate = librosa.load(audio_input, sr=16000)
            
            # Ensure audio is in the right format
            if len(audio_data.shape) > 1:
                audio_data = audio_data.mean(axis=1)  # Convert to mono
            
            # Perform simple transcription (placeholder - you'd want to integrate with Whisper or similar)
            # For now, we'll just do speaker diarization
            transcription = f"Audio segment {len(self.full_sentences) + 1} (duration: {len(audio_data)/sample_rate:.1f}s)"
            
            # Extract speaker embedding
            speaker_embedding = self.audio_processor.extract_embedding(audio_data, sample_rate)
            
            # Store sentence and embedding
            self.full_sentences.append((transcription, speaker_embedding))
            
            # Detect speaker changes
            speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
            self.sentence_speakers.append(speaker_id)
            
            status_msg = f"βœ… Processed audio segment. Detected as Speaker {speaker_id + 1} (similarity: {similarity:.3f})"
            
            return status_msg, self.get_formatted_conversation(), self.get_status_info()
            
        except Exception as e:
            error_msg = f"❌ Error processing audio: {str(e)}"
            return error_msg, self.get_formatted_conversation(), self.get_status_info()
    
    def clear_conversation(self):
        """Clear all conversation data"""
        self.full_sentences = []
        self.sentence_speakers = []
        
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )
        
        return "Conversation cleared!", self.get_formatted_conversation(), self.get_status_info()
    
    def update_settings(self, threshold, max_speakers):
        """Update speaker detection settings"""
        self.change_threshold = threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
        
        status_msg = f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
        return status_msg, self.get_formatted_conversation(), self.get_status_info()
    
    def get_formatted_conversation(self):
        """Get the formatted conversation with speaker colors"""
        try:
            if not self.full_sentences:
                return "No audio processed yet. Upload an audio file or record using the microphone."
            
            sentences_with_style = []
            
            for i, sentence in enumerate(self.full_sentences):
                sentence_text, _ = sentence
                if i >= len(self.sentence_speakers):
                    color = "#FFFFFF"
                    speaker_name = "Unknown"
                else:
                    speaker_id = self.sentence_speakers[i]
                    color = self.speaker_detector.get_color_for_speaker(speaker_id)
                    speaker_name = f"Speaker {speaker_id + 1}"
                    
                sentences_with_style.append(
                    f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
            
            return "<br><br>".join(sentences_with_style)
                
        except Exception as e:
            return f"Error formatting conversation: {e}"
    
    def get_status_info(self):
        """Get current status information"""
        if not self.speaker_detector:
            return "Speaker detector not initialized"
        
        try:
            status = self.speaker_detector.get_status_info()
            
            status_lines = [
                f"**Current Speaker:** {status['current_speaker'] + 1}",
                f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
                f"**Last Similarity:** {status['last_similarity']:.3f}",
                f"**Change Threshold:** {status['threshold']:.2f}",
                f"**Total Segments:** {len(self.full_sentences)}",
                "",
                "**Speaker Segment Counts:**"
            ]
            
            for i in range(status['max_speakers']):
                color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
                status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
            
            return "\n".join(status_lines)
            
        except Exception as e:
            return f"Error getting status: {e}"


# Global instance
diarization_system = GradioSpeakerDiarization()


def initialize_system():
    """Initialize the diarization system"""
    success = diarization_system.initialize_models()
    if success:
        return "βœ… System initialized successfully! Models loaded.", "", ""
    else:
        return "❌ Failed to initialize system. Please check the logs.", "", ""


def process_audio(audio):
    """Process uploaded or recorded audio"""
    return diarization_system.transcribe_audio(audio)


def clear_conversation():
    """Clear the conversation"""
    return diarization_system.clear_conversation()


def update_settings(threshold, max_speakers):
    """Update system settings"""
    return diarization_system.update_settings(threshold, max_speakers)


# Create Gradio interface
def create_interface():
    with gr.Blocks(title="Speaker Diarization", theme=gr.themes.Soft()) as app:
        gr.Markdown("# 🎀 Audio Speaker Diarization")
        gr.Markdown("Upload audio files or record directly to identify different speakers using voice characteristics.")
        
        with gr.Row():
            with gr.Column(scale=2):
                # Initialize button
                with gr.Row():
                    init_btn = gr.Button("πŸ”§ Initialize System", variant="primary", size="lg")
                
                # Audio input options
                gr.Markdown("### πŸ“ Audio Input")
                with gr.Tab("Upload Audio File"):
                    audio_file = gr.Audio(
                        label="Upload Audio File",
                        type="filepath",
                        sources=["upload"]
                    )
                    process_file_btn = gr.Button("Process Audio File", variant="secondary")
                
                with gr.Tab("Record Audio"):
                    audio_mic = gr.Audio(
                        label="Record Audio",
                        type="numpy",
                        sources=["microphone"]
                    )
                    process_mic_btn = gr.Button("Process Recording", variant="secondary")
                
                # Results display
                status_output = gr.Textbox(
                    label="Status",
                    value="Click 'Initialize System' to start...",
                    lines=2,
                    interactive=False
                )
                
                conversation_output = gr.HTML(
                    value="<i>System not initialized...</i>",
                    label="Speaker Analysis Results"
                )
                
                # Control buttons
                with gr.Row():
                    clear_btn = gr.Button("πŸ—‘οΈ Clear Results", variant="stop")
            
            with gr.Column(scale=1):
                # Settings panel
                gr.Markdown("## βš™οΈ Settings")
                
                threshold_slider = gr.Slider(
                    minimum=0.1,
                    maximum=0.95,
                    step=0.05,
                    value=DEFAULT_CHANGE_THRESHOLD,
                    label="Speaker Change Sensitivity",
                    info="Lower = more sensitive to speaker changes"
                )
                
                max_speakers_slider = gr.Slider(
                    minimum=2,
                    maximum=ABSOLUTE_MAX_SPEAKERS,
                    step=1,
                    value=DEFAULT_MAX_SPEAKERS,
                    label="Maximum Number of Speakers"
                )
                
                update_settings_btn = gr.Button("Update Settings", variant="secondary")
                
                # System status
                system_status = gr.Textbox(
                    label="System Status",
                    value="System not initialized",
                    lines=12,
                    interactive=False
                )
                
                # Speaker color legend
                gr.Markdown("## 🎨 Speaker Colors")
                color_info = []
                for i, (color, name) in enumerate(zip(SPEAKER_COLORS[:DEFAULT_MAX_SPEAKERS], SPEAKER_COLOR_NAMES[:DEFAULT_MAX_SPEAKERS])):
                    color_info.append(f'<span style="color:{color};">●</span> Speaker {i+1} ({name})')
                
                gr.HTML("<br>".join(color_info))
        
        # Event handlers
        init_btn.click(
            initialize_system,
            outputs=[status_output, conversation_output, system_status]
        )
        
        process_file_btn.click(
            process_audio,
            inputs=[audio_file],
            outputs=[status_output, conversation_output, system_status]
        )
        
        process_mic_btn.click(
            process_audio,
            inputs=[audio_mic],
            outputs=[status_output, conversation_output, system_status]
        )
        
        clear_btn.click(
            clear_conversation,
            outputs=[status_output, conversation_output, system_status]
        )
        
        update_settings_btn.click(
            update_settings,
            inputs=[threshold_slider, max_speakers_slider],
            outputs=[status_output, conversation_output, system_status]
        )
    
    return app


if __name__ == "__main__":
    app = create_interface()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860
    )