Spaces:
Sleeping
Sleeping
File size: 22,254 Bytes
66992f6 af81629 640dd0e af81629 640dd0e af81629 640dd0e 66992f6 640dd0e 88f78ff 66992f6 640dd0e af81629 640dd0e af81629 640dd0e af81629 640dd0e 66992f6 640dd0e 66992f6 640dd0e 66992f6 af81629 640dd0e af81629 88f78ff af81629 640dd0e 66992f6 640dd0e af81629 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e af81629 640dd0e 66992f6 640dd0e af81629 640dd0e 66992f6 af81629 640dd0e 88f78ff 640dd0e 88f78ff 66992f6 88f78ff 640dd0e 66992f6 88f78ff 640dd0e 88f78ff 66992f6 640dd0e 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 66992f6 af81629 640dd0e af81629 66992f6 af81629 66992f6 af81629 640dd0e 66992f6 af81629 88f78ff 66992f6 640dd0e 88f78ff 640dd0e 66992f6 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e 66992f6 88f78ff 66992f6 88f78ff 66992f6 88f78ff 66992f6 88f78ff 66992f6 88f78ff 66992f6 88f78ff 66992f6 88f78ff af81629 640dd0e af81629 88f78ff af81629 640dd0e af81629 640dd0e 66992f6 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e af81629 640dd0e 88f78ff 640dd0e af81629 88f78ff 66992f6 640dd0e 88f78ff 640dd0e 88f78ff af81629 640dd0e 88f78ff af81629 640dd0e af81629 640dd0e 66992f6 88f78ff 66992f6 640dd0e 88f78ff 640dd0e 88f78ff 66992f6 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e af81629 640dd0e af81629 66992f6 640dd0e 66992f6 640dd0e 88f78ff 66992f6 af81629 640dd0e af81629 66992f6 88f78ff af81629 640dd0e 88f78ff af81629 88f78ff 66992f6 640dd0e 88f78ff 640dd0e 88f78ff 640dd0e 88f78ff 66992f6 af81629 640dd0e 88f78ff 640dd0e 88f78ff 66992f6 640dd0e 66992f6 af81629 66992f6 640dd0e 66992f6 9e0d933 66992f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import gradio as gr
import numpy as np
import queue
import torch
import time
import threading
import os
import urllib.request
import torchaudio
from scipy.spatial.distance import cosine
import json
import io
import wave
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.7
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.0
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 10
# Global variables
FAST_SENTENCE_END = True
SAMPLE_RATE = 16000
BUFFER_SIZE = 512
CHANNELS = 1
# Speaker colors
SPEAKER_COLORS = [
"#FFFF00", # Yellow
"#FF0000", # Red
"#00FF00", # Green
"#00FFFF", # Cyan
"#FF00FF", # Magenta
"#0000FF", # Blue
"#FF8000", # Orange
"#00FF80", # Spring Green
"#8000FF", # Purple
"#FFFFFF", # White
]
SPEAKER_COLOR_NAMES = [
"Yellow", "Red", "Green", "Cyan", "Magenta",
"Blue", "Orange", "Spring Green", "Purple", "White"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
from speechbrain.pretrained import EncoderClassifier
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
print("ECAPA-TDNN model loaded successfully!")
return True
except Exception as e:
print(f"SpeechBrain not available: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
print(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
def extract_embedding(self, audio_data, sample_rate=16000):
try:
# Ensure audio is float32 and normalized
if audio_data.dtype == np.int16:
float_audio = audio_data.astype(np.float32) / 32768.0
else:
float_audio = audio_data.astype(np.float32)
# Normalize if needed
if np.abs(float_audio).max() > 1.0:
float_audio = float_audio / np.abs(float_audio).max()
embedding = self.encoder.embed_utterance(float_audio, sample_rate)
return embedding
except Exception as e:
print(f"Embedding extraction error: {e}")
return np.zeros(self.encoder.embedding_dim)
class SpeakerChangeDetector:
"""Speaker change detector that supports a configurable number of speakers"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.previous_embeddings = []
self.last_change_time = time.time()
self.mean_embeddings = [None] * self.max_speakers
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.last_similarity = 0.0
self.active_speakers = set([0])
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
if new_max > self.max_speakers:
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
else:
self.mean_embeddings = self.mean_embeddings[:new_max]
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.99))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and check if there's a speaker change"""
current_time = timestamp or time.time()
if not self.previous_embeddings:
self.previous_embeddings.append(embedding)
self.speaker_embeddings[self.current_speaker].append(embedding)
if self.mean_embeddings[self.current_speaker] is None:
self.mean_embeddings[self.current_speaker] = embedding.copy()
return self.current_speaker, 1.0
current_mean = self.mean_embeddings[self.current_speaker]
if current_mean is not None:
similarity = 1.0 - cosine(embedding, current_mean)
else:
similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1])
self.last_similarity = similarity
time_since_last_change = current_time - self.last_change_time
is_speaker_change = False
if time_since_last_change >= MIN_SEGMENT_DURATION:
if similarity < self.change_threshold:
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in range(self.max_speakers):
if speaker_id == self.current_speaker:
continue
speaker_mean = self.mean_embeddings[speaker_id]
if speaker_mean is not None:
speaker_similarity = 1.0 - cosine(embedding, speaker_mean)
if speaker_similarity > best_similarity:
best_similarity = speaker_similarity
best_speaker = speaker_id
if best_speaker != self.current_speaker:
is_speaker_change = True
self.current_speaker = best_speaker
elif len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
is_speaker_change = True
self.current_speaker = new_id
self.active_speakers.add(new_id)
break
if is_speaker_change:
self.last_change_time = current_time
self.previous_embeddings.append(embedding)
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
self.previous_embeddings.pop(0)
self.speaker_embeddings[self.current_speaker].append(embedding)
self.active_speakers.add(self.current_speaker)
if len(self.speaker_embeddings[self.current_speaker]) > 30:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:]
if self.speaker_embeddings[self.current_speaker]:
self.mean_embeddings[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information about the speaker change detector"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold
}
class GradioSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.full_sentences = []
self.sentence_speakers = []
self.is_initialized = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device_str}")
# Load SpeechBrain encoder
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
self.is_initialized = True
return True
else:
return False
except Exception as e:
print(f"Model initialization error: {e}")
return False
def transcribe_audio(self, audio_input):
"""Process audio input and perform transcription with speaker diarization"""
if not self.is_initialized:
return "β Please initialize the system first!", self.get_formatted_conversation(), self.get_status_info()
if audio_input is None:
return "No audio received", self.get_formatted_conversation(), self.get_status_info()
try:
# Handle different audio input formats
if isinstance(audio_input, tuple):
sample_rate, audio_data = audio_input
else:
# Assume it's a file path
import librosa
audio_data, sample_rate = librosa.load(audio_input, sr=16000)
# Ensure audio is in the right format
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1) # Convert to mono
# Perform simple transcription (placeholder - you'd want to integrate with Whisper or similar)
# For now, we'll just do speaker diarization
transcription = f"Audio segment {len(self.full_sentences) + 1} (duration: {len(audio_data)/sample_rate:.1f}s)"
# Extract speaker embedding
speaker_embedding = self.audio_processor.extract_embedding(audio_data, sample_rate)
# Store sentence and embedding
self.full_sentences.append((transcription, speaker_embedding))
# Detect speaker changes
speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
self.sentence_speakers.append(speaker_id)
status_msg = f"β
Processed audio segment. Detected as Speaker {speaker_id + 1} (similarity: {similarity:.3f})"
return status_msg, self.get_formatted_conversation(), self.get_status_info()
except Exception as e:
error_msg = f"β Error processing audio: {str(e)}"
return error_msg, self.get_formatted_conversation(), self.get_status_info()
def clear_conversation(self):
"""Clear all conversation data"""
self.full_sentences = []
self.sentence_speakers = []
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!", self.get_formatted_conversation(), self.get_status_info()
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
status_msg = f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
return status_msg, self.get_formatted_conversation(), self.get_status_info()
def get_formatted_conversation(self):
"""Get the formatted conversation with speaker colors"""
try:
if not self.full_sentences:
return "No audio processed yet. Upload an audio file or record using the microphone."
sentences_with_style = []
for i, sentence in enumerate(self.full_sentences):
sentence_text, _ = sentence
if i >= len(self.sentence_speakers):
color = "#FFFFFF"
speaker_name = "Unknown"
else:
speaker_id = self.sentence_speakers[i]
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
return "<br><br>".join(sentences_with_style)
except Exception as e:
return f"Error formatting conversation: {e}"
def get_status_info(self):
"""Get current status information"""
if not self.speaker_detector:
return "Speaker detector not initialized"
try:
status = self.speaker_detector.get_status_info()
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['threshold']:.2f}",
f"**Total Segments:** {len(self.full_sentences)}",
"",
"**Speaker Segment Counts:**"
]
for i in range(status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}")
return "\n".join(status_lines)
except Exception as e:
return f"Error getting status: {e}"
# Global instance
diarization_system = GradioSpeakerDiarization()
def initialize_system():
"""Initialize the diarization system"""
success = diarization_system.initialize_models()
if success:
return "β
System initialized successfully! Models loaded.", "", ""
else:
return "β Failed to initialize system. Please check the logs.", "", ""
def process_audio(audio):
"""Process uploaded or recorded audio"""
return diarization_system.transcribe_audio(audio)
def clear_conversation():
"""Clear the conversation"""
return diarization_system.clear_conversation()
def update_settings(threshold, max_speakers):
"""Update system settings"""
return diarization_system.update_settings(threshold, max_speakers)
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Speaker Diarization", theme=gr.themes.Soft()) as app:
gr.Markdown("# π€ Audio Speaker Diarization")
gr.Markdown("Upload audio files or record directly to identify different speakers using voice characteristics.")
with gr.Row():
with gr.Column(scale=2):
# Initialize button
with gr.Row():
init_btn = gr.Button("π§ Initialize System", variant="primary", size="lg")
# Audio input options
gr.Markdown("### π Audio Input")
with gr.Tab("Upload Audio File"):
audio_file = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload"]
)
process_file_btn = gr.Button("Process Audio File", variant="secondary")
with gr.Tab("Record Audio"):
audio_mic = gr.Audio(
label="Record Audio",
type="numpy",
sources=["microphone"]
)
process_mic_btn = gr.Button("Process Recording", variant="secondary")
# Results display
status_output = gr.Textbox(
label="Status",
value="Click 'Initialize System' to start...",
lines=2,
interactive=False
)
conversation_output = gr.HTML(
value="<i>System not initialized...</i>",
label="Speaker Analysis Results"
)
# Control buttons
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Results", variant="stop")
with gr.Column(scale=1):
# Settings panel
gr.Markdown("## βοΈ Settings")
threshold_slider = gr.Slider(
minimum=0.1,
maximum=0.95,
step=0.05,
value=DEFAULT_CHANGE_THRESHOLD,
label="Speaker Change Sensitivity",
info="Lower = more sensitive to speaker changes"
)
max_speakers_slider = gr.Slider(
minimum=2,
maximum=ABSOLUTE_MAX_SPEAKERS,
step=1,
value=DEFAULT_MAX_SPEAKERS,
label="Maximum Number of Speakers"
)
update_settings_btn = gr.Button("Update Settings", variant="secondary")
# System status
system_status = gr.Textbox(
label="System Status",
value="System not initialized",
lines=12,
interactive=False
)
# Speaker color legend
gr.Markdown("## π¨ Speaker Colors")
color_info = []
for i, (color, name) in enumerate(zip(SPEAKER_COLORS[:DEFAULT_MAX_SPEAKERS], SPEAKER_COLOR_NAMES[:DEFAULT_MAX_SPEAKERS])):
color_info.append(f'<span style="color:{color};">β</span> Speaker {i+1} ({name})')
gr.HTML("<br>".join(color_info))
# Event handlers
init_btn.click(
initialize_system,
outputs=[status_output, conversation_output, system_status]
)
process_file_btn.click(
process_audio,
inputs=[audio_file],
outputs=[status_output, conversation_output, system_status]
)
process_mic_btn.click(
process_audio,
inputs=[audio_mic],
outputs=[status_output, conversation_output, system_status]
)
clear_btn.click(
clear_conversation,
outputs=[status_output, conversation_output, system_status]
)
update_settings_btn.click(
update_settings,
inputs=[threshold_slider, max_speakers_slider],
outputs=[status_output, conversation_output, system_status]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860
)
|