import gradio as gr import numpy as np import queue import torch import time import threading import os import urllib.request import torchaudio from scipy.spatial.distance import cosine import json import io import wave # Simplified configuration parameters SILENCE_THRESHS = [0, 0.4] FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" FINAL_BEAM_SIZE = 5 REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" REALTIME_BEAM_SIZE = 5 TRANSCRIPTION_LANGUAGE = "en" SILERO_SENSITIVITY = 0.4 WEBRTC_SENSITIVITY = 3 MIN_LENGTH_OF_RECORDING = 0.7 PRE_RECORDING_BUFFER_DURATION = 0.35 # Speaker change detection parameters DEFAULT_CHANGE_THRESHOLD = 0.7 EMBEDDING_HISTORY_SIZE = 5 MIN_SEGMENT_DURATION = 1.0 DEFAULT_MAX_SPEAKERS = 4 ABSOLUTE_MAX_SPEAKERS = 10 # Global variables FAST_SENTENCE_END = True SAMPLE_RATE = 16000 BUFFER_SIZE = 512 CHANNELS = 1 # Speaker colors SPEAKER_COLORS = [ "#FFFF00", # Yellow "#FF0000", # Red "#00FF00", # Green "#00FFFF", # Cyan "#FF00FF", # Magenta "#0000FF", # Blue "#FF8000", # Orange "#00FF80", # Spring Green "#8000FF", # Purple "#FFFFFF", # White ] SPEAKER_COLOR_NAMES = [ "Yellow", "Red", "Green", "Cyan", "Magenta", "Blue", "Orange", "Spring Green", "Purple", "White" ] class SpeechBrainEncoder: """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" def __init__(self, device="cpu"): self.device = device self.model = None self.embedding_dim = 192 self.model_loaded = False self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") os.makedirs(self.cache_dir, exist_ok=True) def load_model(self): """Load the ECAPA-TDNN model""" try: from speechbrain.pretrained import EncoderClassifier self.model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-ecapa-voxceleb", savedir=self.cache_dir, run_opts={"device": self.device} ) self.model_loaded = True print("ECAPA-TDNN model loaded successfully!") return True except Exception as e: print(f"SpeechBrain not available: {e}") return False def embed_utterance(self, audio, sr=16000): """Extract speaker embedding from audio""" if not self.model_loaded: raise ValueError("Model not loaded. Call load_model() first.") try: if isinstance(audio, np.ndarray): waveform = torch.tensor(audio, dtype=torch.float32).unsqueeze(0) else: waveform = audio.unsqueeze(0) if sr != 16000: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) with torch.no_grad(): embedding = self.model.encode_batch(waveform) return embedding.squeeze().cpu().numpy() except Exception as e: print(f"Error extracting embedding: {e}") return np.zeros(self.embedding_dim) class AudioProcessor: """Processes audio data to extract speaker embeddings""" def __init__(self, encoder): self.encoder = encoder def extract_embedding(self, audio_data, sample_rate=16000): try: # Ensure audio is float32 and normalized if audio_data.dtype == np.int16: float_audio = audio_data.astype(np.float32) / 32768.0 else: float_audio = audio_data.astype(np.float32) # Normalize if needed if np.abs(float_audio).max() > 1.0: float_audio = float_audio / np.abs(float_audio).max() embedding = self.encoder.embed_utterance(float_audio, sample_rate) return embedding except Exception as e: print(f"Embedding extraction error: {e}") return np.zeros(self.encoder.embedding_dim) class SpeakerChangeDetector: """Speaker change detector that supports a configurable number of speakers""" def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): self.embedding_dim = embedding_dim self.change_threshold = change_threshold self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) self.current_speaker = 0 self.previous_embeddings = [] self.last_change_time = time.time() self.mean_embeddings = [None] * self.max_speakers self.speaker_embeddings = [[] for _ in range(self.max_speakers)] self.last_similarity = 0.0 self.active_speakers = set([0]) def set_max_speakers(self, max_speakers): """Update the maximum number of speakers""" new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) if new_max < self.max_speakers: for speaker_id in list(self.active_speakers): if speaker_id >= new_max: self.active_speakers.discard(speaker_id) if self.current_speaker >= new_max: self.current_speaker = 0 if new_max > self.max_speakers: self.mean_embeddings.extend([None] * (new_max - self.max_speakers)) self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) else: self.mean_embeddings = self.mean_embeddings[:new_max] self.speaker_embeddings = self.speaker_embeddings[:new_max] self.max_speakers = new_max def set_change_threshold(self, threshold): """Update the threshold for detecting speaker changes""" self.change_threshold = max(0.1, min(threshold, 0.99)) def add_embedding(self, embedding, timestamp=None): """Add a new embedding and check if there's a speaker change""" current_time = timestamp or time.time() if not self.previous_embeddings: self.previous_embeddings.append(embedding) self.speaker_embeddings[self.current_speaker].append(embedding) if self.mean_embeddings[self.current_speaker] is None: self.mean_embeddings[self.current_speaker] = embedding.copy() return self.current_speaker, 1.0 current_mean = self.mean_embeddings[self.current_speaker] if current_mean is not None: similarity = 1.0 - cosine(embedding, current_mean) else: similarity = 1.0 - cosine(embedding, self.previous_embeddings[-1]) self.last_similarity = similarity time_since_last_change = current_time - self.last_change_time is_speaker_change = False if time_since_last_change >= MIN_SEGMENT_DURATION: if similarity < self.change_threshold: best_speaker = self.current_speaker best_similarity = similarity for speaker_id in range(self.max_speakers): if speaker_id == self.current_speaker: continue speaker_mean = self.mean_embeddings[speaker_id] if speaker_mean is not None: speaker_similarity = 1.0 - cosine(embedding, speaker_mean) if speaker_similarity > best_similarity: best_similarity = speaker_similarity best_speaker = speaker_id if best_speaker != self.current_speaker: is_speaker_change = True self.current_speaker = best_speaker elif len(self.active_speakers) < self.max_speakers: for new_id in range(self.max_speakers): if new_id not in self.active_speakers: is_speaker_change = True self.current_speaker = new_id self.active_speakers.add(new_id) break if is_speaker_change: self.last_change_time = current_time self.previous_embeddings.append(embedding) if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE: self.previous_embeddings.pop(0) self.speaker_embeddings[self.current_speaker].append(embedding) self.active_speakers.add(self.current_speaker) if len(self.speaker_embeddings[self.current_speaker]) > 30: self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-30:] if self.speaker_embeddings[self.current_speaker]: self.mean_embeddings[self.current_speaker] = np.mean( self.speaker_embeddings[self.current_speaker], axis=0 ) return self.current_speaker, similarity def get_color_for_speaker(self, speaker_id): """Return color for speaker ID""" if 0 <= speaker_id < len(SPEAKER_COLORS): return SPEAKER_COLORS[speaker_id] return "#FFFFFF" def get_status_info(self): """Return status information about the speaker change detector""" speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] return { "current_speaker": self.current_speaker, "speaker_counts": speaker_counts, "active_speakers": len(self.active_speakers), "max_speakers": self.max_speakers, "last_similarity": self.last_similarity, "threshold": self.change_threshold } class GradioSpeakerDiarization: def __init__(self): self.encoder = None self.audio_processor = None self.speaker_detector = None self.full_sentences = [] self.sentence_speakers = [] self.is_initialized = False self.change_threshold = DEFAULT_CHANGE_THRESHOLD self.max_speakers = DEFAULT_MAX_SPEAKERS def initialize_models(self): """Initialize the speaker encoder model""" try: device_str = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device_str}") # Load SpeechBrain encoder self.encoder = SpeechBrainEncoder(device=device_str) success = self.encoder.load_model() if success: self.audio_processor = AudioProcessor(self.encoder) self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) self.is_initialized = True return True else: return False except Exception as e: print(f"Model initialization error: {e}") return False def transcribe_audio(self, audio_input): """Process audio input and perform transcription with speaker diarization""" if not self.is_initialized: return "❌ Please initialize the system first!", self.get_formatted_conversation(), self.get_status_info() if audio_input is None: return "No audio received", self.get_formatted_conversation(), self.get_status_info() try: # Handle different audio input formats if isinstance(audio_input, tuple): sample_rate, audio_data = audio_input else: # Assume it's a file path import librosa audio_data, sample_rate = librosa.load(audio_input, sr=16000) # Ensure audio is in the right format if len(audio_data.shape) > 1: audio_data = audio_data.mean(axis=1) # Convert to mono # Perform simple transcription (placeholder - you'd want to integrate with Whisper or similar) # For now, we'll just do speaker diarization transcription = f"Audio segment {len(self.full_sentences) + 1} (duration: {len(audio_data)/sample_rate:.1f}s)" # Extract speaker embedding speaker_embedding = self.audio_processor.extract_embedding(audio_data, sample_rate) # Store sentence and embedding self.full_sentences.append((transcription, speaker_embedding)) # Detect speaker changes speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding) self.sentence_speakers.append(speaker_id) status_msg = f"✅ Processed audio segment. Detected as Speaker {speaker_id + 1} (similarity: {similarity:.3f})" return status_msg, self.get_formatted_conversation(), self.get_status_info() except Exception as e: error_msg = f"❌ Error processing audio: {str(e)}" return error_msg, self.get_formatted_conversation(), self.get_status_info() def clear_conversation(self): """Clear all conversation data""" self.full_sentences = [] self.sentence_speakers = [] if self.speaker_detector: self.speaker_detector = SpeakerChangeDetector( embedding_dim=self.encoder.embedding_dim, change_threshold=self.change_threshold, max_speakers=self.max_speakers ) return "Conversation cleared!", self.get_formatted_conversation(), self.get_status_info() def update_settings(self, threshold, max_speakers): """Update speaker detection settings""" self.change_threshold = threshold self.max_speakers = max_speakers if self.speaker_detector: self.speaker_detector.set_change_threshold(threshold) self.speaker_detector.set_max_speakers(max_speakers) status_msg = f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" return status_msg, self.get_formatted_conversation(), self.get_status_info() def get_formatted_conversation(self): """Get the formatted conversation with speaker colors""" try: if not self.full_sentences: return "No audio processed yet. Upload an audio file or record using the microphone." sentences_with_style = [] for i, sentence in enumerate(self.full_sentences): sentence_text, _ = sentence if i >= len(self.sentence_speakers): color = "#FFFFFF" speaker_name = "Unknown" else: speaker_id = self.sentence_speakers[i] color = self.speaker_detector.get_color_for_speaker(speaker_id) speaker_name = f"Speaker {speaker_id + 1}" sentences_with_style.append( f'{speaker_name}: {sentence_text}') return "

".join(sentences_with_style) except Exception as e: return f"Error formatting conversation: {e}" def get_status_info(self): """Get current status information""" if not self.speaker_detector: return "Speaker detector not initialized" try: status = self.speaker_detector.get_status_info() status_lines = [ f"**Current Speaker:** {status['current_speaker'] + 1}", f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", f"**Last Similarity:** {status['last_similarity']:.3f}", f"**Change Threshold:** {status['threshold']:.2f}", f"**Total Segments:** {len(self.full_sentences)}", "", "**Speaker Segment Counts:**" ] for i in range(status['max_speakers']): color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" status_lines.append(f"Speaker {i+1} ({color_name}): {status['speaker_counts'][i]}") return "\n".join(status_lines) except Exception as e: return f"Error getting status: {e}" # Global instance diarization_system = GradioSpeakerDiarization() def initialize_system(): """Initialize the diarization system""" success = diarization_system.initialize_models() if success: return "✅ System initialized successfully! Models loaded.", "", "" else: return "❌ Failed to initialize system. Please check the logs.", "", "" def process_audio(audio): """Process uploaded or recorded audio""" return diarization_system.transcribe_audio(audio) def clear_conversation(): """Clear the conversation""" return diarization_system.clear_conversation() def update_settings(threshold, max_speakers): """Update system settings""" return diarization_system.update_settings(threshold, max_speakers) # Create Gradio interface def create_interface(): with gr.Blocks(title="Speaker Diarization", theme=gr.themes.Soft()) as app: gr.Markdown("# 🎤 Audio Speaker Diarization") gr.Markdown("Upload audio files or record directly to identify different speakers using voice characteristics.") with gr.Row(): with gr.Column(scale=2): # Initialize button with gr.Row(): init_btn = gr.Button("🔧 Initialize System", variant="primary", size="lg") # Audio input options gr.Markdown("### 📁 Audio Input") with gr.Tab("Upload Audio File"): audio_file = gr.Audio( label="Upload Audio File", type="filepath", sources=["upload"] ) process_file_btn = gr.Button("Process Audio File", variant="secondary") with gr.Tab("Record Audio"): audio_mic = gr.Audio( label="Record Audio", type="numpy", sources=["microphone"] ) process_mic_btn = gr.Button("Process Recording", variant="secondary") # Results display status_output = gr.Textbox( label="Status", value="Click 'Initialize System' to start...", lines=2, interactive=False ) conversation_output = gr.HTML( value="System not initialized...", label="Speaker Analysis Results" ) # Control buttons with gr.Row(): clear_btn = gr.Button("🗑️ Clear Results", variant="stop") with gr.Column(scale=1): # Settings panel gr.Markdown("## ⚙️ Settings") threshold_slider = gr.Slider( minimum=0.1, maximum=0.95, step=0.05, value=DEFAULT_CHANGE_THRESHOLD, label="Speaker Change Sensitivity", info="Lower = more sensitive to speaker changes" ) max_speakers_slider = gr.Slider( minimum=2, maximum=ABSOLUTE_MAX_SPEAKERS, step=1, value=DEFAULT_MAX_SPEAKERS, label="Maximum Number of Speakers" ) update_settings_btn = gr.Button("Update Settings", variant="secondary") # System status system_status = gr.Textbox( label="System Status", value="System not initialized", lines=12, interactive=False ) # Speaker color legend gr.Markdown("## 🎨 Speaker Colors") color_info = [] for i, (color, name) in enumerate(zip(SPEAKER_COLORS[:DEFAULT_MAX_SPEAKERS], SPEAKER_COLOR_NAMES[:DEFAULT_MAX_SPEAKERS])): color_info.append(f' Speaker {i+1} ({name})') gr.HTML("
".join(color_info)) # Event handlers init_btn.click( initialize_system, outputs=[status_output, conversation_output, system_status] ) process_file_btn.click( process_audio, inputs=[audio_file], outputs=[status_output, conversation_output, system_status] ) process_mic_btn.click( process_audio, inputs=[audio_mic], outputs=[status_output, conversation_output, system_status] ) clear_btn.click( clear_conversation, outputs=[status_output, conversation_output, system_status] ) update_settings_btn.click( update_settings, inputs=[threshold_slider, max_speakers_slider], outputs=[status_output, conversation_output, system_status] ) return app if __name__ == "__main__": app = create_interface() app.launch( server_name="0.0.0.0", server_port=7860 )