File size: 6,270 Bytes
f8db1f8
3a5780a
1d133a1
 
 
c277c70
 
1d133a1
c277c70
 
1d133a1
 
3a5780a
93d65a4
1d133a1
c277c70
b248ec3
c277c70
 
 
 
 
 
 
b248ec3
 
 
9823a49
655b975
c277c70
 
b248ec3
 
c277c70
b248ec3
c277c70
 
 
 
 
 
 
 
 
b248ec3
 
 
9823a49
b248ec3
c277c70
 
 
 
 
6070eee
 
 
 
 
 
b248ec3
6070eee
 
 
21fd183
6070eee
c277c70
 
 
21fd183
b248ec3
93d65a4
c277c70
93d65a4
b248ec3
9823a49
b248ec3
783f341
 
b248ec3
 
93d65a4
 
 
 
b248ec3
3833cc4
b248ec3
3833cc4
93d65a4
 
 
 
 
 
b248ec3
 
783f341
655b975
b248ec3
 
b30bead
 
 
b248ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c277c70
 
 
 
 
 
 
 
b248ec3
c277c70
21fd183
c277c70
 
 
 
 
 
 
b248ec3
c277c70
655b975
c277c70
 
655b975
04621a9
 
 
93d65a4
b248ec3
 
 
b30bead
b248ec3
93d65a4
 
 
 
b248ec3
 
 
 
 
2ad1620
b248ec3
c277c70
93d65a4
 
b248ec3
 
b6af88c
93d65a4
2c84b32
93d65a4
1d133a1
b248ec3
 
 
 
93d65a4
783f341
9823a49
 
93d65a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import tempfile
import gradio as gr  
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import openai
import json
import os
from urllib.parse import urlparse, parse_qs
import torch

def extract_video_id(url):
    """Extracts the video ID from a YouTube URL."""
    try:
        parsed_url = urlparse(url)
        if "youtube.com" in parsed_url.netloc:
            query_params = parse_qs(parsed_url.query)
            return query_params.get('v', [None])[0]
        elif "youtu.be" in parsed_url.netloc:
            return parsed_url.path.strip("/")
        else:
            print("Invalid YouTube URL.")
            return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None

def get_video_duration(video_id, api_key):
    """Fetches the video duration in minutes."""
    try:
        youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
        request = youtube.videos().list(part="contentDetails", id=video_id)
        response = request.execute()
        if response["items"]:
            duration = response["items"][0]["contentDetails"]["duration"]
            match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
            hours = int(match.group(1)) if match.group(1) else 0
            minutes = int(match.group(2)) if match.group(2) else 0
            seconds = int(match.group(3)) if match.group(3) else 0
            return hours * 60 + minutes + seconds / 60
        else:
            print("No video details found.")
            return None
    except Exception as e:
        print(f"Error fetching video duration: {e}")
        return None

def download_and_transcribe_with_whisper(youtube_url):
    try:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_audio_file = os.path.join(temp_dir, "audio.mp3")
            
            ydl_opts = {
                'format': 'bestaudio/best',
                'outtmpl': temp_audio_file,
            }

            # Download audio using yt-dlp
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([youtube_url])

            # Convert to wav for Whisper
            audio = AudioSegment.from_file(temp_audio_file)
            wav_file = os.path.join(temp_dir, "audio.wav")
            audio.export(wav_file, format="wav")

            # Run Whisper transcription
            model = whisper.load_model("Turbo",weights_only=True)
            result = model.transcribe(wav_file)
            return result['text']

    except Exception as e:
        print(f"Error during transcription: {e}")
        return None

def get_transcript(youtube_url, api_key):
    """Gets transcript from YouTube API or Whisper if unavailable."""
    video_id = extract_video_id(youtube_url)
    if not video_id:
        return None

    video_length = get_video_duration(video_id, api_key)

    if video_length is not None:
        print(f"Video length: {video_length} minutes.")
        try:
            transcript = YouTubeTranscriptApi.get_transcript(video_id)
            return " ".join([segment['text'] for segment in transcript])
        except Exception as e:
            print(f"No transcript found via YouTube API: {e}")
            return download_and_transcribe_with_whisper(youtube_url)
    else:
        print("Error fetching video duration.")
        return None

def summarize_text_huggingface(text):
    """Summarizes text using a Hugging Face summarization model."""
    device = 0 if torch.cuda.is_available() else -1
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=device)

    max_input_length = 1024
    chunk_overlap = 100
    text_chunks = [
        text[i:i + max_input_length]
        for i in range(0, len(text), max_input_length - chunk_overlap)
    ]
    summaries = [
        summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
        for chunk in text_chunks
    ]
    return " ".join(summaries)

def generate_optimized_content(api_key, summarized_transcript):
    openai.api_key = api_key

    prompt = f"""
    Analyze the following summarized YouTube video transcript and:
    1. Extract the top 10 keywords.
    2. Generate an optimized title (less than 65 characters).
    3. Create an engaging description.
    4. Generate related tags for the video.

    Summarized Transcript:
    {summarized_transcript}

    Provide the results in the following JSON format:
    {{
        "keywords": ["keyword1", "keyword2", ..., "keyword10"],
        "title": "Generated Title",
        "description": "Generated Description",
        "tags": ["tag1", "tag2", ..., "tag10"]
    }}
    """

    try:
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are an SEO expert."},
                {"role": "user", "content": prompt}
            ]
        )
        return json.loads(response['choices'][0]['message']['content'])
    except Exception as e:
        print(f"Error generating content: {e}")
        return None

def youtube_seo_pipeline(youtube_url):
    YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
    OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

    if not YOUTUBE_API_KEY or not OPENAI_API_KEY:
        return "API keys missing! Please check environment variables."
    
    video_id = extract_video_id(youtube_url)
    if not video_id:
        return "Invalid YouTube URL."

    transcript = get_transcript(youtube_url, YOUTUBE_API_KEY)
    if not transcript:
        return "Failed to fetch transcript."

    summarized_text = summarize_text_huggingface(transcript)
    optimized_content = generate_optimized_content(OPENAI_API_KEY, summarized_text)
    
    return json.dumps(optimized_content, indent=4) if optimized_content else "Failed to generate SEO content."

# Gradio Interface
iface = gr.Interface(
    fn=youtube_seo_pipeline,
    inputs="text",
    outputs="text",
    title="YouTube SEO Optimizer",
    description="Enter a YouTube video URL to fetch and optimize SEO content."
)

if __name__ == "__main__":
    iface.launch()