Spaces:
Build error
Build error
File size: 6,270 Bytes
f8db1f8 3a5780a 1d133a1 c277c70 1d133a1 c277c70 1d133a1 3a5780a 93d65a4 1d133a1 c277c70 b248ec3 c277c70 b248ec3 9823a49 655b975 c277c70 b248ec3 c277c70 b248ec3 c277c70 b248ec3 9823a49 b248ec3 c277c70 6070eee b248ec3 6070eee 21fd183 6070eee c277c70 21fd183 b248ec3 93d65a4 c277c70 93d65a4 b248ec3 9823a49 b248ec3 783f341 b248ec3 93d65a4 b248ec3 3833cc4 b248ec3 3833cc4 93d65a4 b248ec3 783f341 655b975 b248ec3 b30bead b248ec3 c277c70 b248ec3 c277c70 21fd183 c277c70 b248ec3 c277c70 655b975 c277c70 655b975 04621a9 93d65a4 b248ec3 b30bead b248ec3 93d65a4 b248ec3 2ad1620 b248ec3 c277c70 93d65a4 b248ec3 b6af88c 93d65a4 2c84b32 93d65a4 1d133a1 b248ec3 93d65a4 783f341 9823a49 93d65a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import tempfile
import gradio as gr
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import openai
import json
import os
from urllib.parse import urlparse, parse_qs
import torch
def extract_video_id(url):
"""Extracts the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
else:
print("Invalid YouTube URL.")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
def get_video_duration(video_id, api_key):
"""Fetches the video duration in minutes."""
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
else:
print("No video details found.")
return None
except Exception as e:
print(f"Error fetching video duration: {e}")
return None
def download_and_transcribe_with_whisper(youtube_url):
try:
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': temp_audio_file,
}
# Download audio using yt-dlp
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
# Convert to wav for Whisper
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
# Run Whisper transcription
model = whisper.load_model("Turbo",weights_only=True)
result = model.transcribe(wav_file)
return result['text']
except Exception as e:
print(f"Error during transcription: {e}")
return None
def get_transcript(youtube_url, api_key):
"""Gets transcript from YouTube API or Whisper if unavailable."""
video_id = extract_video_id(youtube_url)
if not video_id:
return None
video_length = get_video_duration(video_id, api_key)
if video_length is not None:
print(f"Video length: {video_length} minutes.")
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
return " ".join([segment['text'] for segment in transcript])
except Exception as e:
print(f"No transcript found via YouTube API: {e}")
return download_and_transcribe_with_whisper(youtube_url)
else:
print("Error fetching video duration.")
return None
def summarize_text_huggingface(text):
"""Summarizes text using a Hugging Face summarization model."""
device = 0 if torch.cuda.is_available() else -1
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=device)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
def generate_optimized_content(api_key, summarized_transcript):
openai.api_key = api_key
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_transcript}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an SEO expert."},
{"role": "user", "content": prompt}
]
)
return json.loads(response['choices'][0]['message']['content'])
except Exception as e:
print(f"Error generating content: {e}")
return None
def youtube_seo_pipeline(youtube_url):
YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not YOUTUBE_API_KEY or not OPENAI_API_KEY:
return "API keys missing! Please check environment variables."
video_id = extract_video_id(youtube_url)
if not video_id:
return "Invalid YouTube URL."
transcript = get_transcript(youtube_url, YOUTUBE_API_KEY)
if not transcript:
return "Failed to fetch transcript."
summarized_text = summarize_text_huggingface(transcript)
optimized_content = generate_optimized_content(OPENAI_API_KEY, summarized_text)
return json.dumps(optimized_content, indent=4) if optimized_content else "Failed to generate SEO content."
# Gradio Interface
iface = gr.Interface(
fn=youtube_seo_pipeline,
inputs="text",
outputs="text",
title="YouTube SEO Optimizer",
description="Enter a YouTube video URL to fetch and optimize SEO content."
)
if __name__ == "__main__":
iface.launch()
|