Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,29 +5,16 @@ import whisper
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from transformers import pipeline
|
|
|
8 |
from youtube_transcript_api import YouTubeTranscriptApi
|
9 |
import torch
|
10 |
import openai
|
11 |
import json
|
12 |
from urllib.parse import urlparse, parse_qs
|
13 |
import os
|
14 |
-
import gradio as gr
|
15 |
|
16 |
-
# API Keys setup
|
17 |
-
youtube_api_key = os.getenv("YOUTUBE_API_KEY") # Set these as environment variables
|
18 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
19 |
-
openai.api_key = openai_api_key
|
20 |
-
|
21 |
-
# Validation for missing API keys
|
22 |
-
if not youtube_api_key:
|
23 |
-
raise ValueError("YOUTUBE_API_KEY is not set. Please set it as an environment variable.")
|
24 |
-
|
25 |
-
if not openai_api_key:
|
26 |
-
raise ValueError("OPENAI_API_KEY is not set. Please set it as an environment variable.")
|
27 |
-
|
28 |
-
# Utility Functions
|
29 |
def extract_video_id(url):
|
30 |
-
"""
|
31 |
try:
|
32 |
parsed_url = urlparse(url)
|
33 |
if "youtube.com" in parsed_url.netloc:
|
@@ -35,15 +22,17 @@ def extract_video_id(url):
|
|
35 |
return query_params.get('v', [None])[0]
|
36 |
elif "youtu.be" in parsed_url.netloc:
|
37 |
return parsed_url.path.strip("/")
|
38 |
-
|
|
|
|
|
39 |
except Exception as e:
|
40 |
print(f"Error parsing URL: {e}")
|
41 |
return None
|
42 |
|
43 |
-
def get_video_duration(video_id):
|
44 |
-
"""
|
45 |
try:
|
46 |
-
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=
|
47 |
request = youtube.videos().list(part="contentDetails", id=video_id)
|
48 |
response = request.execute()
|
49 |
if response["items"]:
|
@@ -53,86 +42,104 @@ def get_video_duration(video_id):
|
|
53 |
minutes = int(match.group(2)) if match.group(2) else 0
|
54 |
seconds = int(match.group(3)) if match.group(3) else 0
|
55 |
return hours * 60 + minutes + seconds / 60
|
56 |
-
|
|
|
|
|
57 |
except Exception as e:
|
58 |
-
print(f"Error fetching duration: {e}")
|
59 |
return None
|
60 |
|
61 |
def download_and_transcribe_with_whisper(youtube_url):
|
62 |
-
"""Download audio and transcribe using Whisper."""
|
63 |
try:
|
64 |
with tempfile.TemporaryDirectory() as temp_dir:
|
65 |
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
|
|
|
66 |
ydl_opts = {
|
67 |
'format': 'bestaudio/best',
|
68 |
'outtmpl': temp_audio_file,
|
69 |
-
'
|
70 |
-
|
71 |
-
'preferredcodec': 'mp3',
|
72 |
-
'preferredquality': '192',
|
73 |
-
}],
|
74 |
}
|
|
|
|
|
75 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
76 |
ydl.download([youtube_url])
|
77 |
|
|
|
78 |
audio = AudioSegment.from_file(temp_audio_file)
|
79 |
wav_file = os.path.join(temp_dir, "audio.wav")
|
80 |
audio.export(wav_file, format="wav")
|
81 |
|
|
|
82 |
model = whisper.load_model("large")
|
83 |
result = model.transcribe(wav_file)
|
84 |
-
|
|
|
|
|
85 |
except Exception as e:
|
86 |
-
print(f"Error during
|
87 |
return None
|
88 |
|
89 |
def get_transcript_from_youtube_api(video_id, video_length):
|
90 |
-
"""
|
91 |
try:
|
92 |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
|
|
93 |
for transcript in transcript_list:
|
94 |
if not transcript.is_generated:
|
95 |
-
|
|
|
|
|
96 |
if video_length > 15:
|
97 |
auto_transcript = transcript_list.find_generated_transcript(['en'])
|
98 |
-
|
|
|
|
|
|
|
|
|
99 |
return None
|
|
|
100 |
except Exception as e:
|
101 |
print(f"Error fetching transcript: {e}")
|
102 |
return None
|
103 |
|
104 |
-
def get_transcript(youtube_url):
|
105 |
-
"""
|
106 |
video_id = extract_video_id(youtube_url)
|
107 |
if not video_id:
|
108 |
-
|
109 |
-
|
110 |
-
if video_length:
|
111 |
-
transcript = get_transcript_from_youtube_api(video_id, video_length)
|
112 |
-
return transcript if transcript else download_and_transcribe_with_whisper(youtube_url)
|
113 |
-
return "Error fetching video details."
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
summaries = [
|
126 |
-
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
|
127 |
-
for chunk in text_chunks
|
128 |
-
]
|
129 |
-
return " ".join(summaries)
|
130 |
-
except Exception as e:
|
131 |
-
print(f"Error during summarization: {e}")
|
132 |
return None
|
133 |
|
134 |
-
def
|
135 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
prompt = f"""
|
137 |
Analyze the following summarized YouTube video transcript and:
|
138 |
1. Extract the top 10 keywords.
|
@@ -141,7 +148,7 @@ def generate_optimized_content(summarized_text):
|
|
141 |
4. Generate related tags for the video.
|
142 |
|
143 |
Summarized Transcript:
|
144 |
-
{
|
145 |
|
146 |
Provide the results in the following JSON format:
|
147 |
{{
|
@@ -151,7 +158,9 @@ def generate_optimized_content(summarized_text):
|
|
151 |
"tags": ["tag1", "tag2", ..., "tag10"]
|
152 |
}}
|
153 |
"""
|
|
|
154 |
try:
|
|
|
155 |
response = openai.ChatCompletion.create(
|
156 |
model="gpt-3.5-turbo",
|
157 |
messages=[
|
@@ -159,28 +168,43 @@ def generate_optimized_content(summarized_text):
|
|
159 |
{"role": "user", "content": prompt}
|
160 |
]
|
161 |
)
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
return
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
if not transcript:
|
172 |
-
return
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
177 |
iface = gr.Interface(
|
178 |
-
fn=
|
179 |
-
inputs=
|
180 |
-
outputs=
|
181 |
-
title="YouTube
|
182 |
-
description="
|
183 |
)
|
184 |
|
|
|
185 |
if __name__ == "__main__":
|
186 |
-
iface.launch()
|
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from transformers import pipeline
|
8 |
+
from pytrends.request import TrendReq
|
9 |
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
import torch
|
11 |
import openai
|
12 |
import json
|
13 |
from urllib.parse import urlparse, parse_qs
|
14 |
import os
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def extract_video_id(url):
|
17 |
+
"""Extracts the video ID from a YouTube URL."""
|
18 |
try:
|
19 |
parsed_url = urlparse(url)
|
20 |
if "youtube.com" in parsed_url.netloc:
|
|
|
22 |
return query_params.get('v', [None])[0]
|
23 |
elif "youtu.be" in parsed_url.netloc:
|
24 |
return parsed_url.path.strip("/")
|
25 |
+
else:
|
26 |
+
print("Invalid YouTube URL.")
|
27 |
+
return None
|
28 |
except Exception as e:
|
29 |
print(f"Error parsing URL: {e}")
|
30 |
return None
|
31 |
|
32 |
+
def get_video_duration(video_id, api_key):
|
33 |
+
"""Fetches the video duration in minutes."""
|
34 |
try:
|
35 |
+
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
|
36 |
request = youtube.videos().list(part="contentDetails", id=video_id)
|
37 |
response = request.execute()
|
38 |
if response["items"]:
|
|
|
42 |
minutes = int(match.group(2)) if match.group(2) else 0
|
43 |
seconds = int(match.group(3)) if match.group(3) else 0
|
44 |
return hours * 60 + minutes + seconds / 60
|
45 |
+
else:
|
46 |
+
print("No video details found.")
|
47 |
+
return None
|
48 |
except Exception as e:
|
49 |
+
print(f"Error fetching video duration: {e}")
|
50 |
return None
|
51 |
|
52 |
def download_and_transcribe_with_whisper(youtube_url):
|
|
|
53 |
try:
|
54 |
with tempfile.TemporaryDirectory() as temp_dir:
|
55 |
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
|
56 |
+
|
57 |
ydl_opts = {
|
58 |
'format': 'bestaudio/best',
|
59 |
'outtmpl': temp_audio_file,
|
60 |
+
'extractaudio': True,
|
61 |
+
'audioquality': 1,
|
|
|
|
|
|
|
62 |
}
|
63 |
+
|
64 |
+
# Download audio using yt-dlp
|
65 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
66 |
ydl.download([youtube_url])
|
67 |
|
68 |
+
# Convert to wav for Whisper
|
69 |
audio = AudioSegment.from_file(temp_audio_file)
|
70 |
wav_file = os.path.join(temp_dir, "audio.wav")
|
71 |
audio.export(wav_file, format="wav")
|
72 |
|
73 |
+
# Run Whisper transcription
|
74 |
model = whisper.load_model("large")
|
75 |
result = model.transcribe(wav_file)
|
76 |
+
transcript = result['text']
|
77 |
+
return transcript
|
78 |
+
|
79 |
except Exception as e:
|
80 |
+
print(f"Error during transcription: {e}")
|
81 |
return None
|
82 |
|
83 |
def get_transcript_from_youtube_api(video_id, video_length):
|
84 |
+
"""Fetches transcript using YouTube API if available."""
|
85 |
try:
|
86 |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
87 |
+
|
88 |
for transcript in transcript_list:
|
89 |
if not transcript.is_generated:
|
90 |
+
segments = transcript.fetch()
|
91 |
+
return " ".join(segment['text'] for segment in segments)
|
92 |
+
|
93 |
if video_length > 15:
|
94 |
auto_transcript = transcript_list.find_generated_transcript(['en'])
|
95 |
+
if auto_transcript:
|
96 |
+
segments = auto_transcript.fetch()
|
97 |
+
return " ".join(segment['text'] for segment in segments)
|
98 |
+
|
99 |
+
print("Manual transcript not available, and video is too short for auto-transcript.")
|
100 |
return None
|
101 |
+
|
102 |
except Exception as e:
|
103 |
print(f"Error fetching transcript: {e}")
|
104 |
return None
|
105 |
|
106 |
+
def get_transcript(youtube_url, api_key):
|
107 |
+
"""Gets transcript from YouTube API or Whisper if unavailable."""
|
108 |
video_id = extract_video_id(youtube_url)
|
109 |
if not video_id:
|
110 |
+
print("Invalid or unsupported YouTube URL.")
|
111 |
+
return None
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
video_length = get_video_duration(video_id, api_key)
|
114 |
+
if video_length is not None:
|
115 |
+
print(f"Video length: {video_length:.2f} minutes.")
|
116 |
+
transcript = get_transcript_from_youtube_api(video_id, video_length)
|
117 |
+
if transcript:
|
118 |
+
return transcript
|
119 |
+
print("Using Whisper for transcription.")
|
120 |
+
return download_and_transcribe_with_whisper(youtube_url)
|
121 |
+
else:
|
122 |
+
print("Error fetching video duration.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
return None
|
124 |
|
125 |
+
def summarize_text_huggingface(text):
|
126 |
+
"""Summarizes text using a Hugging Face summarization model."""
|
127 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
|
128 |
+
max_input_length = 1024
|
129 |
+
chunk_overlap = 100
|
130 |
+
text_chunks = [
|
131 |
+
text[i:i + max_input_length]
|
132 |
+
for i in range(0, len(text), max_input_length - chunk_overlap)
|
133 |
+
]
|
134 |
+
summaries = [
|
135 |
+
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
|
136 |
+
for chunk in text_chunks
|
137 |
+
]
|
138 |
+
return " ".join(summaries)
|
139 |
+
|
140 |
+
def generate_optimized_content(api_key, summarized_transcript):
|
141 |
+
openai.api_key = api_key
|
142 |
+
|
143 |
prompt = f"""
|
144 |
Analyze the following summarized YouTube video transcript and:
|
145 |
1. Extract the top 10 keywords.
|
|
|
148 |
4. Generate related tags for the video.
|
149 |
|
150 |
Summarized Transcript:
|
151 |
+
{summarized_transcript}
|
152 |
|
153 |
Provide the results in the following JSON format:
|
154 |
{{
|
|
|
158 |
"tags": ["tag1", "tag2", ..., "tag10"]
|
159 |
}}
|
160 |
"""
|
161 |
+
|
162 |
try:
|
163 |
+
# Use the updated OpenAI API format for chat completions
|
164 |
response = openai.ChatCompletion.create(
|
165 |
model="gpt-3.5-turbo",
|
166 |
messages=[
|
|
|
168 |
{"role": "user", "content": prompt}
|
169 |
]
|
170 |
)
|
171 |
+
# Extract and parse the response
|
172 |
+
response_content = response['choices'][0]['message']['content']
|
173 |
+
content = json.loads(response_content)
|
174 |
+
return content
|
175 |
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error generating content: {e}")
|
178 |
+
return None
|
179 |
+
def youtube_seo_pipeline(youtube_url):
|
180 |
+
openai.api_key = OPENAI_API_KEY
|
181 |
+
if not YOUTUBE_API_KEY or not OPENAI_API_KEY:
|
182 |
+
return "API keys missing! Please check environment variables."
|
183 |
+
|
184 |
+
video_id = extract_video_id(youtube_url)
|
185 |
+
if not video_id:
|
186 |
+
return "Invalid YouTube URL."
|
187 |
+
|
188 |
+
transcript = get_transcript(youtube_url, YOUTUBE_API_KEY)
|
189 |
if not transcript:
|
190 |
+
return "Failed to fetch transcript. Try another video."
|
191 |
+
|
192 |
+
summarized_text = summarize_text_huggingface(transcript)
|
193 |
+
optimized_content = generate_optimized_content(OPENAI_API_KEY, summarized_text)
|
194 |
+
if optimized_content:
|
195 |
+
return json.dumps(optimized_content, indent=4)
|
196 |
+
else:
|
197 |
+
return "Failed to generate SEO content."
|
198 |
+
|
199 |
+
# Define the Gradio Interface
|
200 |
iface = gr.Interface(
|
201 |
+
fn=youtube_seo_pipeline,
|
202 |
+
inputs="text",
|
203 |
+
outputs="text",
|
204 |
+
title="YouTube SEO Optimizer",
|
205 |
+
description="Enter a YouTube video URL to fetch and optimize SEO content (title, description, tags, and keywords)."
|
206 |
)
|
207 |
|
208 |
+
# Run the Gradio app
|
209 |
if __name__ == "__main__":
|
210 |
+
iface.launch()
|