Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,26 +5,13 @@ import whisper
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from transformers import pipeline
|
|
|
8 |
from youtube_transcript_api import YouTubeTranscriptApi
|
9 |
import torch
|
10 |
import openai
|
11 |
import json
|
12 |
from urllib.parse import urlparse, parse_qs
|
13 |
import os
|
14 |
-
import gradio as gr
|
15 |
-
|
16 |
-
# Set up API keys (ensure these are provided as environment variables)
|
17 |
-
youtube_api_key = os.getenv("YOUTUBE_API_KEY")
|
18 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
19 |
-
openai.api_key = openai_api_key
|
20 |
-
|
21 |
-
# Validate API keys
|
22 |
-
if not youtube_api_key:
|
23 |
-
raise ValueError("YOUTUBE_API_KEY is not set. Please set it as an environment variable.")
|
24 |
-
|
25 |
-
if not openai_api_key:
|
26 |
-
raise ValueError("OPENAI_API_KEY is not set. Please set it as an environment variable.")
|
27 |
-
|
28 |
|
29 |
def extract_video_id(url):
|
30 |
"""Extracts the video ID from a YouTube URL."""
|
@@ -36,12 +23,12 @@ def extract_video_id(url):
|
|
36 |
elif "youtu.be" in parsed_url.netloc:
|
37 |
return parsed_url.path.strip("/")
|
38 |
else:
|
|
|
39 |
return None
|
40 |
except Exception as e:
|
41 |
print(f"Error parsing URL: {e}")
|
42 |
return None
|
43 |
|
44 |
-
|
45 |
def get_video_duration(video_id, api_key):
|
46 |
"""Fetches the video duration in minutes."""
|
47 |
try:
|
@@ -56,14 +43,13 @@ def get_video_duration(video_id, api_key):
|
|
56 |
seconds = int(match.group(3)) if match.group(3) else 0
|
57 |
return hours * 60 + minutes + seconds / 60
|
58 |
else:
|
|
|
59 |
return None
|
60 |
except Exception as e:
|
61 |
print(f"Error fetching video duration: {e}")
|
62 |
return None
|
63 |
|
64 |
-
|
65 |
def download_and_transcribe_with_whisper(youtube_url):
|
66 |
-
"""Downloads audio from YouTube and transcribes it using Whisper."""
|
67 |
try:
|
68 |
with tempfile.TemporaryDirectory() as temp_dir:
|
69 |
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
|
@@ -71,63 +57,73 @@ def download_and_transcribe_with_whisper(youtube_url):
|
|
71 |
ydl_opts = {
|
72 |
'format': 'bestaudio/best',
|
73 |
'outtmpl': temp_audio_file,
|
74 |
-
'
|
75 |
-
|
76 |
-
'preferredcodec': 'mp3',
|
77 |
-
'preferredquality': '192',
|
78 |
-
}],
|
79 |
}
|
80 |
-
|
|
|
81 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
82 |
ydl.download([youtube_url])
|
83 |
-
|
|
|
84 |
audio = AudioSegment.from_file(temp_audio_file)
|
85 |
wav_file = os.path.join(temp_dir, "audio.wav")
|
86 |
audio.export(wav_file, format="wav")
|
87 |
-
|
|
|
88 |
model = whisper.load_model("large")
|
89 |
result = model.transcribe(wav_file)
|
90 |
-
|
|
|
|
|
91 |
except Exception as e:
|
92 |
print(f"Error during transcription: {e}")
|
93 |
return None
|
94 |
|
95 |
-
|
96 |
def get_transcript_from_youtube_api(video_id, video_length):
|
97 |
"""Fetches transcript using YouTube API if available."""
|
98 |
try:
|
99 |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
|
|
100 |
for transcript in transcript_list:
|
101 |
if not transcript.is_generated:
|
102 |
segments = transcript.fetch()
|
103 |
return " ".join(segment['text'] for segment in segments)
|
104 |
-
|
|
|
105 |
auto_transcript = transcript_list.find_generated_transcript(['en'])
|
106 |
if auto_transcript:
|
107 |
segments = auto_transcript.fetch()
|
108 |
return " ".join(segment['text'] for segment in segments)
|
|
|
|
|
109 |
return None
|
|
|
110 |
except Exception as e:
|
111 |
print(f"Error fetching transcript: {e}")
|
112 |
return None
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
"""Gets transcript using YouTube API or Whisper."""
|
117 |
video_id = extract_video_id(youtube_url)
|
118 |
if not video_id:
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
if video_length is not None:
|
|
|
122 |
transcript = get_transcript_from_youtube_api(video_id, video_length)
|
123 |
if transcript:
|
124 |
return transcript
|
|
|
125 |
return download_and_transcribe_with_whisper(youtube_url)
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
-
def
|
130 |
-
"""Summarizes text using Hugging Face
|
131 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
|
132 |
max_input_length = 1024
|
133 |
chunk_overlap = 100
|
@@ -141,9 +137,9 @@ def summarize_text(text):
|
|
141 |
]
|
142 |
return " ".join(summaries)
|
143 |
|
|
|
|
|
144 |
|
145 |
-
def generate_optimized_content(summary):
|
146 |
-
"""Generates optimized content using OpenAI GPT."""
|
147 |
prompt = f"""
|
148 |
Analyze the following summarized YouTube video transcript and:
|
149 |
1. Extract the top 10 keywords.
|
@@ -152,9 +148,9 @@ def generate_optimized_content(summary):
|
|
152 |
4. Generate related tags for the video.
|
153 |
|
154 |
Summarized Transcript:
|
155 |
-
{
|
156 |
|
157 |
-
Provide the results in JSON format:
|
158 |
{{
|
159 |
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
|
160 |
"title": "Generated Title",
|
@@ -162,7 +158,9 @@ def generate_optimized_content(summary):
|
|
162 |
"tags": ["tag1", "tag2", ..., "tag10"]
|
163 |
}}
|
164 |
"""
|
|
|
165 |
try:
|
|
|
166 |
response = openai.ChatCompletion.create(
|
167 |
model="gpt-3.5-turbo",
|
168 |
messages=[
|
@@ -170,28 +168,39 @@ def generate_optimized_content(summary):
|
|
170 |
{"role": "user", "content": prompt}
|
171 |
]
|
172 |
)
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
except Exception as e:
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
|
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
"""Processes video and returns optimized metadata."""
|
180 |
-
transcript = get_transcript(youtube_url)
|
181 |
if not transcript:
|
182 |
-
|
183 |
-
|
184 |
-
return generate_optimized_content(summary)
|
185 |
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
description="Enter a YouTube URL to generate SEO-optimized titles, descriptions, and tags."
|
194 |
-
)
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
-
|
|
|
5 |
from pydub import AudioSegment
|
6 |
import tempfile
|
7 |
from transformers import pipeline
|
8 |
+
from pytrends.request import TrendReq
|
9 |
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
import torch
|
11 |
import openai
|
12 |
import json
|
13 |
from urllib.parse import urlparse, parse_qs
|
14 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def extract_video_id(url):
|
17 |
"""Extracts the video ID from a YouTube URL."""
|
|
|
23 |
elif "youtu.be" in parsed_url.netloc:
|
24 |
return parsed_url.path.strip("/")
|
25 |
else:
|
26 |
+
print("Invalid YouTube URL.")
|
27 |
return None
|
28 |
except Exception as e:
|
29 |
print(f"Error parsing URL: {e}")
|
30 |
return None
|
31 |
|
|
|
32 |
def get_video_duration(video_id, api_key):
|
33 |
"""Fetches the video duration in minutes."""
|
34 |
try:
|
|
|
43 |
seconds = int(match.group(3)) if match.group(3) else 0
|
44 |
return hours * 60 + minutes + seconds / 60
|
45 |
else:
|
46 |
+
print("No video details found.")
|
47 |
return None
|
48 |
except Exception as e:
|
49 |
print(f"Error fetching video duration: {e}")
|
50 |
return None
|
51 |
|
|
|
52 |
def download_and_transcribe_with_whisper(youtube_url):
|
|
|
53 |
try:
|
54 |
with tempfile.TemporaryDirectory() as temp_dir:
|
55 |
temp_audio_file = os.path.join(temp_dir, "audio.mp3")
|
|
|
57 |
ydl_opts = {
|
58 |
'format': 'bestaudio/best',
|
59 |
'outtmpl': temp_audio_file,
|
60 |
+
'extractaudio': True,
|
61 |
+
'audioquality': 1,
|
|
|
|
|
|
|
62 |
}
|
63 |
+
|
64 |
+
# Download audio using yt-dlp
|
65 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
66 |
ydl.download([youtube_url])
|
67 |
+
|
68 |
+
# Convert to wav for Whisper
|
69 |
audio = AudioSegment.from_file(temp_audio_file)
|
70 |
wav_file = os.path.join(temp_dir, "audio.wav")
|
71 |
audio.export(wav_file, format="wav")
|
72 |
+
|
73 |
+
# Run Whisper transcription
|
74 |
model = whisper.load_model("large")
|
75 |
result = model.transcribe(wav_file)
|
76 |
+
transcript = result['text']
|
77 |
+
return transcript
|
78 |
+
|
79 |
except Exception as e:
|
80 |
print(f"Error during transcription: {e}")
|
81 |
return None
|
82 |
|
|
|
83 |
def get_transcript_from_youtube_api(video_id, video_length):
|
84 |
"""Fetches transcript using YouTube API if available."""
|
85 |
try:
|
86 |
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
87 |
+
|
88 |
for transcript in transcript_list:
|
89 |
if not transcript.is_generated:
|
90 |
segments = transcript.fetch()
|
91 |
return " ".join(segment['text'] for segment in segments)
|
92 |
+
|
93 |
+
if video_length > 15:
|
94 |
auto_transcript = transcript_list.find_generated_transcript(['en'])
|
95 |
if auto_transcript:
|
96 |
segments = auto_transcript.fetch()
|
97 |
return " ".join(segment['text'] for segment in segments)
|
98 |
+
|
99 |
+
print("Manual transcript not available, and video is too short for auto-transcript.")
|
100 |
return None
|
101 |
+
|
102 |
except Exception as e:
|
103 |
print(f"Error fetching transcript: {e}")
|
104 |
return None
|
105 |
|
106 |
+
def get_transcript(youtube_url, api_key):
|
107 |
+
"""Gets transcript from YouTube API or Whisper if unavailable."""
|
|
|
108 |
video_id = extract_video_id(youtube_url)
|
109 |
if not video_id:
|
110 |
+
print("Invalid or unsupported YouTube URL.")
|
111 |
+
return None
|
112 |
+
|
113 |
+
video_length = get_video_duration(video_id, api_key)
|
114 |
if video_length is not None:
|
115 |
+
print(f"Video length: {video_length:.2f} minutes.")
|
116 |
transcript = get_transcript_from_youtube_api(video_id, video_length)
|
117 |
if transcript:
|
118 |
return transcript
|
119 |
+
print("Using Whisper for transcription.")
|
120 |
return download_and_transcribe_with_whisper(youtube_url)
|
121 |
+
else:
|
122 |
+
print("Error fetching video duration.")
|
123 |
+
return None
|
124 |
|
125 |
+
def summarize_text_huggingface(text):
|
126 |
+
"""Summarizes text using a Hugging Face summarization model."""
|
127 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
|
128 |
max_input_length = 1024
|
129 |
chunk_overlap = 100
|
|
|
137 |
]
|
138 |
return " ".join(summaries)
|
139 |
|
140 |
+
def generate_optimized_content(api_key, summarized_transcript):
|
141 |
+
openai.api_key = api_key
|
142 |
|
|
|
|
|
143 |
prompt = f"""
|
144 |
Analyze the following summarized YouTube video transcript and:
|
145 |
1. Extract the top 10 keywords.
|
|
|
148 |
4. Generate related tags for the video.
|
149 |
|
150 |
Summarized Transcript:
|
151 |
+
{summarized_transcript}
|
152 |
|
153 |
+
Provide the results in the following JSON format:
|
154 |
{{
|
155 |
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
|
156 |
"title": "Generated Title",
|
|
|
158 |
"tags": ["tag1", "tag2", ..., "tag10"]
|
159 |
}}
|
160 |
"""
|
161 |
+
|
162 |
try:
|
163 |
+
# Use the updated OpenAI API format for chat completions
|
164 |
response = openai.ChatCompletion.create(
|
165 |
model="gpt-3.5-turbo",
|
166 |
messages=[
|
|
|
168 |
{"role": "user", "content": prompt}
|
169 |
]
|
170 |
)
|
171 |
+
# Extract and parse the response
|
172 |
+
response_content = response['choices'][0]['message']['content']
|
173 |
+
content = json.loads(response_content)
|
174 |
+
return content
|
175 |
+
|
176 |
except Exception as e:
|
177 |
+
print(f"Error generating content: {e}")
|
178 |
+
return None
|
179 |
+
|
180 |
+
|
181 |
+
def main():
|
182 |
+
youtube_url = input("Enter a YouTube video URL: ").strip()
|
183 |
+
youtube_api_key = "AIzaSyDzvaQzykj94MWl5fmY3wIBQchqXiCClUc" # Set your YouTube API key as an environment variable
|
184 |
+
openai_api_key = "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" # Set your OpenAI API key as an environment variable
|
185 |
|
186 |
+
if not youtube_api_key or not openai_api_key:
|
187 |
+
print("Missing API keys. Please set your YOUTUBE_API_KEY and OPENAI_API_KEY environment variables.")
|
188 |
+
return
|
189 |
|
190 |
+
transcript = get_transcript(youtube_url, youtube_api_key)
|
|
|
|
|
191 |
if not transcript:
|
192 |
+
print("Could not fetch the transcript. Please try another video.")
|
193 |
+
return
|
|
|
194 |
|
195 |
+
summary = summarize_text_huggingface(transcript)
|
196 |
+
print("\nSummarized Transcript:\n", summary)
|
197 |
|
198 |
+
optimized_content = generate_optimized_content(openai_api_key, summary)
|
199 |
+
if optimized_content:
|
200 |
+
print("\nOptimized Content:")
|
201 |
+
print(json.dumps(optimized_content, indent=4))
|
202 |
+
else:
|
203 |
+
print("Error generating optimized content.")
|
|
|
|
|
204 |
|
205 |
if __name__ == "__main__":
|
206 |
+
main()
|