File size: 9,497 Bytes
f8db1f8
3a5780a
1d133a1
 
 
c277c70
 
1d133a1
c277c70
 
1d133a1
 
e3eb307
3a5780a
 
 
d2670ed
 
1d133a1
c277c70
b248ec3
c277c70
 
 
 
 
 
 
b248ec3
 
 
9823a49
655b975
c277c70
 
b248ec3
 
c277c70
b248ec3
c277c70
 
 
 
 
 
 
 
 
b248ec3
 
 
9823a49
b248ec3
c277c70
 
 
 
e3eb307
c277c70
e3eb307
b248ec3
e3eb307
 
 
 
21fd183
e3eb307
c277c70
 
 
21fd183
b248ec3
edf287a
c277c70
b248ec3
 
 
9823a49
b248ec3
783f341
 
1d133a1
b248ec3
9823a49
3833cc4
9823a49
b248ec3
3833cc4
9823a49
3833cc4
 
 
 
 
 
 
 
 
 
 
1d133a1
3833cc4
 
1d133a1
b248ec3
3833cc4
 
 
 
 
 
b248ec3
3833cc4
 
 
 
b248ec3
9823a49
655b975
9823a49
 
3833cc4
b248ec3
 
3833cc4
b248ec3
3833cc4
b248ec3
3833cc4
 
 
b248ec3
3833cc4
 
b248ec3
3833cc4
b248ec3
3833cc4
 
 
 
b248ec3
 
783f341
655b975
b248ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c277c70
 
 
 
 
 
 
 
b248ec3
c277c70
21fd183
c277c70
 
 
 
 
 
 
b248ec3
c277c70
b248ec3
655b975
c277c70
 
655b975
04621a9
 
 
b248ec3
 
 
 
21fd183
b248ec3
 
 
b6af88c
 
 
 
 
 
b248ec3
b6af88c
 
b248ec3
 
 
b6af88c
b248ec3
 
 
 
b6af88c
2ad1620
b6af88c
b248ec3
1214759
c277c70
b248ec3
 
b6af88c
b248ec3
b6af88c
 
 
b248ec3
b6af88c
b248ec3
 
 
 
 
b6af88c
1d133a1
b248ec3
 
 
 
 
783f341
9823a49
b6af88c
9823a49
b6af88c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import tempfile
import gradio as gr  
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import openai
import json
import os
from pytube import YouTube
from pytrends.request import TrendReq
import torch
from urllib.parse import urlparse, parse_qs



def extract_video_id(url):
    """Extracts the video ID from a YouTube URL."""
    try:
        parsed_url = urlparse(url)
        if "youtube.com" in parsed_url.netloc:
            query_params = parse_qs(parsed_url.query)
            return query_params.get('v', [None])[0]
        elif "youtu.be" in parsed_url.netloc:
            return parsed_url.path.strip("/")
        else:
            print("Invalid YouTube URL.")
            return None
    except Exception as e:
        print(f"Error parsing URL: {e}")
        return None

def get_video_duration(video_id, api_key):
    """Fetches the video duration in minutes."""
    try:
        youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
        request = youtube.videos().list(part="contentDetails", id=video_id)
        response = request.execute()
        if response["items"]:
            duration = response["items"][0]["contentDetails"]["duration"]
            match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
            hours = int(match.group(1)) if match.group(1) else 0
            minutes = int(match.group(2)) if match.group(2) else 0
            seconds = int(match.group(3)) if match.group(3) else 0
            return hours * 60 + minutes + seconds / 60
        else:
            print("No video details found.")
            return None
    except Exception as e:
        print(f"Error fetching video duration: {e}")
        return None

def download_and_transcribe_with_whisper(youtube_url):
    try:
        # Temporary directory for storing the downloaded audio
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_audio_file = os.path.join(temp_dir, "audio.mp4")  # Pytube downloads in mp4 format

            # Download audio using pytube
            yt = YouTube(youtube_url)
            audio_stream = yt.streams.filter(only_audio=True).first()  # Get the first available audio stream
            audio_stream.download(output_path=temp_dir, filename="audio.mp4")  # Download audio to temp dir

            # Convert the downloaded audio (mp4) to wav for Whisper
            audio = AudioSegment.from_file(temp_audio_file)
            wav_file = os.path.join(temp_dir, "audio.wav")
            audio.export(wav_file, format="wav")

            # Run Whisper transcription
            model = whisper.load_model("turbo")
            result = model.transcribe(wav_file)
            transcript = result['text']
            return transcript

    except Exception as e:
        print(f"Error during transcription: {e}")
        return None

def get_transcript_from_youtube_api(video_id, video_length):
    """Fetches transcript using YouTube API if available."""
    try:
        # Fetch available transcripts
        transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)

        # Look for manually created transcripts first
        for transcript in transcript_list:
            if not transcript.is_generated:  # This checks for manually created transcripts
                manual_transcript = transcript.fetch()
                # Check if manual_transcript is iterable (should be a list)
                if isinstance(manual_transcript, list):
                    full_transcript = " ".join([segment['text'] for segment in manual_transcript])
                    return full_transcript  # Return manual transcript immediately
                else:
                    print("Manual transcript is not iterable.")
                    return None

        # If no manual transcript found, proceed to auto-generated transcript
        if video_length > 15:
            # Video is longer than 15 minutes, so use auto-generated transcript
            print("Video is longer than 15 minutes, using auto-generated transcript.")
            auto_transcript = transcript_list.find_generated_transcript(['en'])
            if auto_transcript:
                # Extract the text from the auto-generated transcript
                full_transcript = " ".join([segment['text'] for segment in auto_transcript.fetch()])
                return full_transcript  # Return auto-generated transcript
            else:
                print("No auto-generated transcript available.")
                return None

        else:
            # Video is shorter than 15 minutes, use Whisper for transcription
            print("Video is shorter than 15 minutes, using Whisper for transcription.")
            return None  # This will be handled by Whisper in your main function

    except Exception as e:
        print(f"Error fetching transcript: {e}")
        return None


def get_transcript(youtube_url, api_key):
    """Gets transcript from YouTube API or Whisper if unavailable."""
    video_id = youtube_url.split("v=")[-1]  # Extract the video ID from URL
    video_length = get_video_duration(video_id, api_key)

    if video_length is not None:
        print(f"Video length: {video_length} minutes.")

        # Fetch transcript using YouTube API
        transcript = get_transcript_from_youtube_api(video_id, video_length)

        # If a transcript is found from YouTube, use it
        if transcript:
            print("Transcript found.")
            return transcript
        else:
            # No transcript found from YouTube API, proceed with Whisper
            print("No transcript found on YouTube, using Whisper for transcription.")
            return download_and_transcribe_with_whisper(youtube_url)  # Use Whisper for short videos
    else:
        print("Error fetching video duration.")
        return None

def summarize_text_huggingface(text):
    """Summarizes text using a Hugging Face summarization model."""
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
    max_input_length = 1024
    chunk_overlap = 100
    text_chunks = [
        text[i:i + max_input_length]
        for i in range(0, len(text), max_input_length - chunk_overlap)
    ]
    summaries = [
        summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
        for chunk in text_chunks
    ]
    return " ".join(summaries)

def generate_optimized_content(api_key, summarized_transcript):
    openai.api_key = api_key

    prompt = f"""
    Analyze the following summarized YouTube video transcript and:
    1. Extract the top 10 keywords.
    2. Generate an optimized title (less than 65 characters).
    3. Create an engaging description.
    4. Generate related tags for the video.

    Summarized Transcript:
    {summarized_transcript}

    Provide the results in the following JSON format:
    {{
        "keywords": ["keyword1", "keyword2", ..., "keyword10"],
        "title": "Generated Title",
        "description": "Generated Description",
        "tags": ["tag1", "tag2", ..., "tag10"]
    }}
    """

    try:
        # Use the updated OpenAI API format for chat completions
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are an SEO expert."},
                {"role": "user", "content": prompt}
            ]
        )
        # Extract and parse the response
        response_content = response['choices'][0]['message']['content']
        content = json.loads(response_content)
        return content

    except Exception as e:
        print(f"Error generating content: {e}")
        return None
YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# Add all your functions like `extract_video_id()`, `get_transcript()`, etc.

# Gradio Function for YouTube SEO
def youtube_seo_pipeline(youtube_url):
    print("Starting the SEO pipeline...")  # Debugging line
    
    if not YOUTUBE_API_KEY or not OPENAI_API_KEY:
        return "API keys missing! Please check environment variables."
    
    print("Extracting video ID...")
    video_id = extract_video_id(youtube_url)
    if not video_id:
        return "Invalid YouTube URL."
    
    print(f"Video ID: {video_id}")

    print("Fetching transcript...")
    transcript = get_transcript(youtube_url, YOUTUBE_API_KEY)
    print(transcript)
    if not transcript:
        return "Failed to fetch transcript. Try another video."
    
    print("Summarizing transcript...")
    summarized_text = summarize_text_huggingface(transcript)
    print(f"Summarized Text: {summarized_text[:200]}...")  # Show only the first 200 chars
    
    print("Generating optimized content...")
    optimized_content = generate_optimized_content(OPENAI_API_KEY, summarized_text)
    
    if optimized_content:
        return json.dumps(optimized_content, indent=4)
    else:
        return "Failed to generate SEO content."

# Define Gradio Interface
iface = gr.Interface(
    fn=youtube_seo_pipeline,
    inputs="text",
    outputs="text",
    title="YouTube SEO Optimizer",
    description="Enter a YouTube video URL to fetch and optimize SEO content (title, description, tags, and keywords)."
)

# Launch Gradio App
if __name__ == "__main__":
    iface.launch()