Spaces:
Sleeping
Sleeping
File size: 9,497 Bytes
f8db1f8 3a5780a 1d133a1 c277c70 1d133a1 c277c70 1d133a1 e3eb307 3a5780a d2670ed 1d133a1 c277c70 b248ec3 c277c70 b248ec3 9823a49 655b975 c277c70 b248ec3 c277c70 b248ec3 c277c70 b248ec3 9823a49 b248ec3 c277c70 e3eb307 c277c70 e3eb307 b248ec3 e3eb307 21fd183 e3eb307 c277c70 21fd183 b248ec3 edf287a c277c70 b248ec3 9823a49 b248ec3 783f341 1d133a1 b248ec3 9823a49 3833cc4 9823a49 b248ec3 3833cc4 9823a49 3833cc4 1d133a1 3833cc4 1d133a1 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 9823a49 655b975 9823a49 3833cc4 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 3833cc4 b248ec3 783f341 655b975 b248ec3 c277c70 b248ec3 c277c70 21fd183 c277c70 b248ec3 c277c70 b248ec3 655b975 c277c70 655b975 04621a9 b248ec3 21fd183 b248ec3 b6af88c b248ec3 b6af88c b248ec3 b6af88c b248ec3 b6af88c 2ad1620 b6af88c b248ec3 1214759 c277c70 b248ec3 b6af88c b248ec3 b6af88c b248ec3 b6af88c b248ec3 b6af88c 1d133a1 b248ec3 783f341 9823a49 b6af88c 9823a49 b6af88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import tempfile
import gradio as gr
import googleapiclient.discovery
import re
import yt_dlp
import whisper
from pydub import AudioSegment
from transformers import pipeline
from youtube_transcript_api import YouTubeTranscriptApi
import openai
import json
import os
from pytube import YouTube
from pytrends.request import TrendReq
import torch
from urllib.parse import urlparse, parse_qs
def extract_video_id(url):
"""Extracts the video ID from a YouTube URL."""
try:
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
query_params = parse_qs(parsed_url.query)
return query_params.get('v', [None])[0]
elif "youtu.be" in parsed_url.netloc:
return parsed_url.path.strip("/")
else:
print("Invalid YouTube URL.")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
def get_video_duration(video_id, api_key):
"""Fetches the video duration in minutes."""
try:
youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=api_key)
request = youtube.videos().list(part="contentDetails", id=video_id)
response = request.execute()
if response["items"]:
duration = response["items"][0]["contentDetails"]["duration"]
match = re.match(r'PT(?:(\d+)H)?(?:(\d+)M)?(?:(\d+)S)?', duration)
hours = int(match.group(1)) if match.group(1) else 0
minutes = int(match.group(2)) if match.group(2) else 0
seconds = int(match.group(3)) if match.group(3) else 0
return hours * 60 + minutes + seconds / 60
else:
print("No video details found.")
return None
except Exception as e:
print(f"Error fetching video duration: {e}")
return None
def download_and_transcribe_with_whisper(youtube_url):
try:
# Temporary directory for storing the downloaded audio
with tempfile.TemporaryDirectory() as temp_dir:
temp_audio_file = os.path.join(temp_dir, "audio.mp4") # Pytube downloads in mp4 format
# Download audio using pytube
yt = YouTube(youtube_url)
audio_stream = yt.streams.filter(only_audio=True).first() # Get the first available audio stream
audio_stream.download(output_path=temp_dir, filename="audio.mp4") # Download audio to temp dir
# Convert the downloaded audio (mp4) to wav for Whisper
audio = AudioSegment.from_file(temp_audio_file)
wav_file = os.path.join(temp_dir, "audio.wav")
audio.export(wav_file, format="wav")
# Run Whisper transcription
model = whisper.load_model("turbo")
result = model.transcribe(wav_file)
transcript = result['text']
return transcript
except Exception as e:
print(f"Error during transcription: {e}")
return None
def get_transcript_from_youtube_api(video_id, video_length):
"""Fetches transcript using YouTube API if available."""
try:
# Fetch available transcripts
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
# Look for manually created transcripts first
for transcript in transcript_list:
if not transcript.is_generated: # This checks for manually created transcripts
manual_transcript = transcript.fetch()
# Check if manual_transcript is iterable (should be a list)
if isinstance(manual_transcript, list):
full_transcript = " ".join([segment['text'] for segment in manual_transcript])
return full_transcript # Return manual transcript immediately
else:
print("Manual transcript is not iterable.")
return None
# If no manual transcript found, proceed to auto-generated transcript
if video_length > 15:
# Video is longer than 15 minutes, so use auto-generated transcript
print("Video is longer than 15 minutes, using auto-generated transcript.")
auto_transcript = transcript_list.find_generated_transcript(['en'])
if auto_transcript:
# Extract the text from the auto-generated transcript
full_transcript = " ".join([segment['text'] for segment in auto_transcript.fetch()])
return full_transcript # Return auto-generated transcript
else:
print("No auto-generated transcript available.")
return None
else:
# Video is shorter than 15 minutes, use Whisper for transcription
print("Video is shorter than 15 minutes, using Whisper for transcription.")
return None # This will be handled by Whisper in your main function
except Exception as e:
print(f"Error fetching transcript: {e}")
return None
def get_transcript(youtube_url, api_key):
"""Gets transcript from YouTube API or Whisper if unavailable."""
video_id = youtube_url.split("v=")[-1] # Extract the video ID from URL
video_length = get_video_duration(video_id, api_key)
if video_length is not None:
print(f"Video length: {video_length} minutes.")
# Fetch transcript using YouTube API
transcript = get_transcript_from_youtube_api(video_id, video_length)
# If a transcript is found from YouTube, use it
if transcript:
print("Transcript found.")
return transcript
else:
# No transcript found from YouTube API, proceed with Whisper
print("No transcript found on YouTube, using Whisper for transcription.")
return download_and_transcribe_with_whisper(youtube_url) # Use Whisper for short videos
else:
print("Error fetching video duration.")
return None
def summarize_text_huggingface(text):
"""Summarizes text using a Hugging Face summarization model."""
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
max_input_length = 1024
chunk_overlap = 100
text_chunks = [
text[i:i + max_input_length]
for i in range(0, len(text), max_input_length - chunk_overlap)
]
summaries = [
summarizer(chunk, max_length=100, min_length=50, do_sample=False)[0]['summary_text']
for chunk in text_chunks
]
return " ".join(summaries)
def generate_optimized_content(api_key, summarized_transcript):
openai.api_key = api_key
prompt = f"""
Analyze the following summarized YouTube video transcript and:
1. Extract the top 10 keywords.
2. Generate an optimized title (less than 65 characters).
3. Create an engaging description.
4. Generate related tags for the video.
Summarized Transcript:
{summarized_transcript}
Provide the results in the following JSON format:
{{
"keywords": ["keyword1", "keyword2", ..., "keyword10"],
"title": "Generated Title",
"description": "Generated Description",
"tags": ["tag1", "tag2", ..., "tag10"]
}}
"""
try:
# Use the updated OpenAI API format for chat completions
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an SEO expert."},
{"role": "user", "content": prompt}
]
)
# Extract and parse the response
response_content = response['choices'][0]['message']['content']
content = json.loads(response_content)
return content
except Exception as e:
print(f"Error generating content: {e}")
return None
YOUTUBE_API_KEY = os.getenv("YOUTUBE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Add all your functions like `extract_video_id()`, `get_transcript()`, etc.
# Gradio Function for YouTube SEO
def youtube_seo_pipeline(youtube_url):
print("Starting the SEO pipeline...") # Debugging line
if not YOUTUBE_API_KEY or not OPENAI_API_KEY:
return "API keys missing! Please check environment variables."
print("Extracting video ID...")
video_id = extract_video_id(youtube_url)
if not video_id:
return "Invalid YouTube URL."
print(f"Video ID: {video_id}")
print("Fetching transcript...")
transcript = get_transcript(youtube_url, YOUTUBE_API_KEY)
print(transcript)
if not transcript:
return "Failed to fetch transcript. Try another video."
print("Summarizing transcript...")
summarized_text = summarize_text_huggingface(transcript)
print(f"Summarized Text: {summarized_text[:200]}...") # Show only the first 200 chars
print("Generating optimized content...")
optimized_content = generate_optimized_content(OPENAI_API_KEY, summarized_text)
if optimized_content:
return json.dumps(optimized_content, indent=4)
else:
return "Failed to generate SEO content."
# Define Gradio Interface
iface = gr.Interface(
fn=youtube_seo_pipeline,
inputs="text",
outputs="text",
title="YouTube SEO Optimizer",
description="Enter a YouTube video URL to fetch and optimize SEO content (title, description, tags, and keywords)."
)
# Launch Gradio App
if __name__ == "__main__":
iface.launch() |