Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from smolagents import CodeAgent, DuckDuckGoSearchTool | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# Create our own model wrapper that handles the chat template properly | |
class CustomTransformersModel: | |
def __init__(self, model_id="EleutherAI/gpt-neo-125m"): | |
self.model_id = model_id | |
# Create the tokenizer and explicitly set the chat template | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Set the chat template directly on the tokenizer | |
simple_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\nUser: {{ message['content'] }}\n{% elif message['role'] == 'assistant' %}\nAssistant: {{ message['content'] }}\n{% elif message['role'] == 'system' %}\nSystem: {{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\nAssistant: {% endif %}" | |
self.tokenizer.chat_template = simple_template | |
# Load the model | |
self.model = AutoModelForCausalLM.from_pretrained(model_id) | |
def __call__(self, prompt, **kwargs): | |
# Extract and handle stop_sequences if present | |
stop_sequences = kwargs.pop('stop_sequences', None) | |
# Format the prompt using our chat template | |
messages = [{"role": "user", "content": prompt}] | |
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False) | |
# Tokenize the prompt | |
inputs = self.tokenizer(formatted_prompt, return_tensors="pt") | |
# Generate the response | |
outputs = self.model.generate( | |
inputs.input_ids, | |
max_new_tokens=256, | |
do_sample=True, | |
temperature=0.7, | |
**kwargs | |
) | |
# Decode the response | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Apply stop sequences manually if provided | |
if stop_sequences: | |
for stop_seq in stop_sequences: | |
if stop_seq in response: | |
response = response.split(stop_seq)[0] | |
# Extract just the assistant's response | |
try: | |
assistant_response = response.split("Assistant: ")[-1] | |
except: | |
assistant_response = response | |
return assistant_response | |
# Add generate method to match the interface expected by CodeAgent | |
def generate(self, prompt, **kwargs): | |
return self(prompt, **kwargs) | |
def __call__(self, prompt, **kwargs): | |
# Format the prompt using our chat template | |
messages = [{"role": "user", "content": prompt}] | |
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False) | |
# Tokenize the prompt | |
inputs = self.tokenizer(formatted_prompt, return_tensors="pt") | |
# Generate the response | |
outputs = self.model.generate( | |
inputs.input_ids, | |
max_new_tokens=256, | |
do_sample=True, | |
temperature=0.7, | |
**kwargs | |
) | |
# Decode the response | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract just the assistant's response | |
try: | |
assistant_response = response.split("Assistant: ")[-1] | |
except: | |
assistant_response = response | |
return assistant_response | |
# --- Define Agent --- | |
class SmolAgentWrapper: | |
def __init__(self): | |
# Use our custom model wrapper with GPT-Neo | |
self.model = CustomTransformersModel(model_id="EleutherAI/gpt-neo-125m") | |
self.tools = [DuckDuckGoSearchTool()] | |
self.agent = CodeAgent(model=self.model, tools=self.tools) | |
def __call__(self, question: str) -> str: | |
return self.agent.run(question) | |
# --- Evaluation Logic --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Create the agent | |
try: | |
agent = SmolAgentWrapper() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
# Fetch questions | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Run agent | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Submit answers | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except Exception as e: | |
return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# SmolAgent Evaluation Runner (GPT-Neo Implementation)") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to Hugging Face with the button below. | |
2. Click the button to run all GAIA questions through the SmolAgent. | |
3. Results will be submitted automatically and your score will be shown. | |
**Note:** Using GPT-Neo 125M with custom chat template implementation. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("-" * 60) | |
print("Launching SmolAgent Space...") | |
print("-" * 60) | |
demo.launch(debug=True, share=False) |