Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,9 @@ class CustomTransformersModel:
|
|
24 |
self.model = AutoModelForCausalLM.from_pretrained(model_id)
|
25 |
|
26 |
def __call__(self, prompt, **kwargs):
|
|
|
|
|
|
|
27 |
# Format the prompt using our chat template
|
28 |
messages = [{"role": "user", "content": prompt}]
|
29 |
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False)
|
@@ -43,6 +46,12 @@ class CustomTransformersModel:
|
|
43 |
# Decode the response
|
44 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Extract just the assistant's response
|
47 |
try:
|
48 |
assistant_response = response.split("Assistant: ")[-1]
|
|
|
24 |
self.model = AutoModelForCausalLM.from_pretrained(model_id)
|
25 |
|
26 |
def __call__(self, prompt, **kwargs):
|
27 |
+
# Extract and handle stop_sequences if present
|
28 |
+
stop_sequences = kwargs.pop('stop_sequences', None)
|
29 |
+
|
30 |
# Format the prompt using our chat template
|
31 |
messages = [{"role": "user", "content": prompt}]
|
32 |
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False)
|
|
|
46 |
# Decode the response
|
47 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
|
49 |
+
# Apply stop sequences manually if provided
|
50 |
+
if stop_sequences:
|
51 |
+
for stop_seq in stop_sequences:
|
52 |
+
if stop_seq in response:
|
53 |
+
response = response.split(stop_seq)[0]
|
54 |
+
|
55 |
# Extract just the assistant's response
|
56 |
try:
|
57 |
assistant_response = response.split("Assistant: ")[-1]
|