Spaces:
Sleeping
Sleeping
File size: 7,798 Bytes
10e9b7d eccf8e4 3c4371f 1e6b873 17d0a1c e80aab9 3db6293 c7c39df 1e6b873 35e5165 1e6b873 9d23fdb 1e6b873 9d23fdb 1e6b873 35e5165 e80aab9 7f66248 17d0a1c 3bf290c 35e5165 7dda9e1 7f66248 4021bf3 3bf290c 17d0a1c 7f66248 17d0a1c 3c4371f 7e4a06b 7f66248 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 7f66248 37d3429 17d0a1c 31243f4 7f66248 36ed51a 3c4371f 7f66248 eccf8e4 31243f4 7d65c66 31243f4 17d0a1c 31243f4 7d65c66 7f66248 e80aab9 7f66248 7d65c66 7f66248 31243f4 7d65c66 31243f4 7f66248 31243f4 7f66248 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 7f66248 e80aab9 7f66248 e80aab9 35e5165 17d0a1c 7f66248 35e5165 17d0a1c e80aab9 7e4a06b 03f1283 17d0a1c e80aab9 31243f4 ab98516 e80aab9 7f66248 7dda9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Create our own model wrapper that handles the chat template properly
class CustomTransformersModel:
def __init__(self, model_id="EleutherAI/gpt-neo-125m"):
self.model_id = model_id
# Create the tokenizer and explicitly set the chat template
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
# Set the chat template directly on the tokenizer
simple_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\nUser: {{ message['content'] }}\n{% elif message['role'] == 'assistant' %}\nAssistant: {{ message['content'] }}\n{% elif message['role'] == 'system' %}\nSystem: {{ message['content'] }}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt %}\nAssistant: {% endif %}"
self.tokenizer.chat_template = simple_template
# Load the model
self.model = AutoModelForCausalLM.from_pretrained(model_id)
def __call__(self, prompt, **kwargs):
# Extract and handle stop_sequences if present
stop_sequences = kwargs.pop('stop_sequences', None)
# Format the prompt using our chat template
messages = [{"role": "user", "content": prompt}]
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False)
# Tokenize the prompt
inputs = self.tokenizer(formatted_prompt, return_tensors="pt")
# Generate the response
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
**kwargs
)
# Decode the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Apply stop sequences manually if provided
if stop_sequences:
for stop_seq in stop_sequences:
if stop_seq in response:
response = response.split(stop_seq)[0]
# Extract just the assistant's response
try:
assistant_response = response.split("Assistant: ")[-1]
except:
assistant_response = response
return assistant_response
# Add generate method to match the interface expected by CodeAgent
def generate(self, prompt, **kwargs):
return self(prompt, **kwargs)
def __call__(self, prompt, **kwargs):
# Format the prompt using our chat template
messages = [{"role": "user", "content": prompt}]
formatted_prompt = self.tokenizer.apply_chat_template(messages, tokenize=False)
# Tokenize the prompt
inputs = self.tokenizer(formatted_prompt, return_tensors="pt")
# Generate the response
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
**kwargs
)
# Decode the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the assistant's response
try:
assistant_response = response.split("Assistant: ")[-1]
except:
assistant_response = response
return assistant_response
# --- Define Agent ---
class SmolAgentWrapper:
def __init__(self):
# Use our custom model wrapper with GPT-Neo
self.model = CustomTransformersModel(model_id="EleutherAI/gpt-neo-125m")
self.tools = [DuckDuckGoSearchTool()]
self.agent = CodeAgent(model=self.model, tools=self.tools)
def __call__(self, question: str) -> str:
return self.agent.run(question)
# --- Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Create the agent
try:
agent = SmolAgentWrapper()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submit answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent Evaluation Runner (GPT-Neo Implementation)")
gr.Markdown(
"""
**Instructions:**
1. Log in to Hugging Face with the button below.
2. Click the button to run all GAIA questions through the SmolAgent.
3. Results will be submitted automatically and your score will be shown.
**Note:** Using GPT-Neo 125M with custom chat template implementation.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("-" * 60)
print("Launching SmolAgent Space...")
print("-" * 60)
demo.launch(debug=True, share=False) |