Spaces:
Sleeping
Sleeping
""" | |
app.py | |
This script provides the Gradio web interface to run the evaluation for the | |
Hugging Face Agents course. It fetches questions from a server, runs the | |
agent defined in agent.py on them, and submits the answers for scoring. | |
""" | |
import os | |
import re # <-- 1. ADDED IMPORT for Regular Expressions | |
import gradio as gr | |
import requests | |
import pandas as pd | |
# --- Import your agent's factory function --- | |
from agent import create_agent_executor # <-- 2. ADDED IMPORT for your agent | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- DELETED BasicAgent class as it's no longer needed --- | |
# --- 3. ADDED HELPER FUNCTION TO PARSE THE AGENT'S OUTPUT --- | |
def parse_final_answer(agent_response: str) -> str: | |
""" | |
Extracts the final answer from the agent's full response string. | |
The agent is prompted to return 'FINAL ANSWER: [answer]'. | |
This function isolates and returns '[answer]'. | |
""" | |
# Use a regular expression to find the text after "FINAL ANSWER:" | |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL) | |
if match: | |
# If a match is found, return the captured group, stripped of whitespace | |
return match.group(1).strip() | |
# As a fallback, if the specific format is not found, return the last non-empty line | |
lines = [line for line in agent_response.split('\n') if line.strip()] | |
if lines: | |
return lines[-1].strip() | |
# If all else fails, return a default message | |
return "Could not parse a final answer." | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the agent on them, submits all answers, | |
and displays the results. | |
""" | |
if not profile: | |
print("User not logged in.") | |
return "Please log in to Hugging Face with the button above to submit.", None | |
username = profile.username | |
print(f"User logged in: {username}") | |
space_id = os.getenv("SPACE_ID") | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
# --- 4. MODIFIED AGENT INSTANTIATION AND EXECUTION --- | |
# 1. Instantiate Agent (using your factory function from agent.py) | |
print("Initializing your custom agent...") | |
try: | |
agent_executor = create_agent_executor(provider="google") # or "groq" | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None | |
# 2. Fetch Questions (this part is correct) | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=20) | |
response.raise_for_status() | |
questions_data = response.json() | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# 3. Run your Agent (THIS IS THE MOST IMPORTANTLY CORRECTED SECTION) | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing data: {item}") | |
continue | |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---") | |
print(f"Question: {question_text}") | |
try: | |
# CORRECT INVOCATION: Use the agent_executor with the .invoke() method | |
# The input must be a dictionary with a "messages" key | |
result = agent_executor.invoke({"messages": [("user", question_text)]}) | |
# The agent's final response is in the 'messages' list of the output | |
raw_answer = result['messages'][-1].content | |
# Use our helper function to extract the clean answer | |
submitted_answer = parse_final_answer(raw_answer) | |
print(f"Raw LLM Response: '{raw_answer}'") | |
print(f"PARSED FINAL ANSWER: '{submitted_answer}'") | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"!! AGENT ERROR on task {task_id}: {e}") | |
# It's important to log errors so you can see them in the UI | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare and 5. Submit (these parts are correct) | |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)" | |
) | |
print("Submission successful.") | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
return status_message, pd.DataFrame(results_log) | |
# --- Build Gradio Interface using Blocks (This part is correct) --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Agent Evaluation Runner") | |
gr.Markdown("Run your custom agent against the evaluation questions and submit for a score.") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, max_rows=10) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# The startup info logs are helpful, so we keep them. | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_id_startup: | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (likely running locally).") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface...") | |
demo.launch() |