File size: 7,036 Bytes
d6fbb7e
 
 
 
 
 
 
 
10e9b7d
d6fbb7e
10e9b7d
eccf8e4
3c4371f
10e9b7d
d6fbb7e
 
 
e80aab9
3db6293
e80aab9
d6fbb7e
 
 
 
31243f4
d6fbb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
d6fbb7e
3c4371f
d6fbb7e
 
 
 
 
 
 
 
 
e80aab9
d6fbb7e
 
 
 
31243f4
da30486
31243f4
3c4371f
d6fbb7e
3c4371f
d6fbb7e
31243f4
eccf8e4
d6fbb7e
7d65c66
31243f4
 
7d65c66
d6fbb7e
e80aab9
d6fbb7e
7d65c66
 
3c4371f
d6fbb7e
31243f4
 
d6fbb7e
31243f4
d6fbb7e
31243f4
d6fbb7e
 
 
 
31243f4
d6fbb7e
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
 
31243f4
d6fbb7e
 
 
31243f4
 
 
 
d6fbb7e
 
 
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
d6fbb7e
e80aab9
 
d6fbb7e
7d65c66
d6fbb7e
31243f4
d6fbb7e
e80aab9
 
d6fbb7e
e80aab9
d6fbb7e
 
7e4a06b
d6fbb7e
 
 
 
e80aab9
 
3c4371f
d6fbb7e
 
 
7d65c66
 
 
d6fbb7e
3c4371f
d6fbb7e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
app.py

This script provides the Gradio web interface to run the evaluation for the
Hugging Face Agents course. It fetches questions from a server, runs the
agent defined in agent.py on them, and submits the answers for scoring.
"""

import os
import re # <-- 1. ADDED IMPORT for Regular Expressions
import gradio as gr
import requests
import pandas as pd

# --- Import your agent's factory function ---
from agent import create_agent_executor # <-- 2. ADDED IMPORT for your agent

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- DELETED BasicAgent class as it's no longer needed ---

# --- 3. ADDED HELPER FUNCTION TO PARSE THE AGENT'S OUTPUT ---
def parse_final_answer(agent_response: str) -> str:
    """
    Extracts the final answer from the agent's full response string.
    The agent is prompted to return 'FINAL ANSWER: [answer]'.
    This function isolates and returns '[answer]'.
    """
    # Use a regular expression to find the text after "FINAL ANSWER:"
    match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
    if match:
        # If a match is found, return the captured group, stripped of whitespace
        return match.group(1).strip()
    
    # As a fallback, if the specific format is not found, return the last non-empty line
    lines = [line for line in agent_response.split('\n') if line.strip()]
    if lines:
        return lines[-1].strip()
        
    # If all else fails, return a default message
    return "Could not parse a final answer."


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    if not profile:
        print("User not logged in.")
        return "Please log in to Hugging Face with the button above to submit.", None
    
    username = profile.username
    print(f"User logged in: {username}")
    
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    # --- 4. MODIFIED AGENT INSTANTIATION AND EXECUTION ---
    
    # 1. Instantiate Agent (using your factory function from agent.py)
    print("Initializing your custom agent...")
    try:
        agent_executor = create_agent_executor(provider="google") # or "groq"
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None

    # 2. Fetch Questions (this part is correct)
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # 3. Run your Agent (THIS IS THE MOST IMPORTANTLY CORRECTED SECTION)
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing data: {item}")
            continue
        
        print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
        print(f"Question: {question_text}")
        
        try:
            # CORRECT INVOCATION: Use the agent_executor with the .invoke() method
            # The input must be a dictionary with a "messages" key
            result = agent_executor.invoke({"messages": [("user", question_text)]})
            
            # The agent's final response is in the 'messages' list of the output
            raw_answer = result['messages'][-1].content
            
            # Use our helper function to extract the clean answer
            submitted_answer = parse_final_answer(raw_answer)
            
            print(f"Raw LLM Response: '{raw_answer}'")
            print(f"PARSED FINAL ANSWER: '{submitted_answer}'")

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"!! AGENT ERROR on task {task_id}: {e}")
             # It's important to log errors so you can see them in the UI
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare and 5. Submit (these parts are correct)
    submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
    print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)"
        )
        print("Submission successful.")
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)


# --- Build Gradio Interface using Blocks (This part is correct) ---
with gr.Blocks() as demo:
    gr.Markdown("# Agent Evaluation Runner")
    gr.Markdown("Run your custom agent against the evaluation questions and submit for a score.")
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, max_rows=10)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # The startup info logs are helpful, so we keep them.
    space_id_startup = os.getenv("SPACE_ID")
    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
    else:
        print("ℹ️  SPACE_ID environment variable not found (likely running locally).")
    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface...")
    demo.launch()