Spaces:
Sleeping
Sleeping
""" | |
app.py | |
This script provides the Gradio web interface to run the evaluation. | |
This version has been corrected to be "file-aware" by checking for a 'file_url' | |
in the task data and appending it to the agent's prompt. | |
""" | |
import os | |
import re | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from agent import create_agent_executor | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Helper function to parse the agent's output (This is correct) --- | |
def parse_final_answer(agent_response: str) -> str: | |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL) | |
if match: return match.group(1).strip() | |
lines = [line for line in agent_response.split('\n') if line.strip()] | |
if lines: return lines[-1].strip() | |
return "Could not parse a final answer." | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the agent on them, submits all answers, | |
and displays the results. | |
""" | |
if not profile: | |
return "Please log in to Hugging Face with the button above to submit.", None | |
username = profile.username | |
print(f"User logged in: {username}") | |
space_id = os.getenv("SPACE_ID") | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
# 1. Instantiate Agent | |
print("Initializing your custom agent...") | |
try: | |
agent_executor = create_agent_executor(provider="groq") # Using Google for better tool use | |
except Exception as e: | |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=20) | |
response.raise_for_status() | |
questions_data = response.json() | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", pd.DataFrame() | |
# 3. Run your Agent | |
results_log, answers_payload = [], [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: continue | |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---") | |
# --- THIS IS THE CRITICAL FIX --- | |
# 1. Check if a 'file_url' key exists in the task data. | |
file_url = item.get("file_url") | |
full_question_text = question_text | |
# 2. If a URL exists, append it to the question text. | |
if file_url: | |
print(f"File found for this task: {file_url}") | |
# This gives the agent the context it needs to call the right tool. | |
full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]" | |
print(f"Full Prompt for Agent:\n{full_question_text}") | |
# --- END CRITICAL FIX --- | |
try: | |
# 3. Pass the full, potentially enriched, question text to the agent. | |
result = agent_executor.invoke({"messages": [("user", full_question_text)]}) | |
raw_answer = result['messages'][-1].content | |
submitted_answer = parse_final_answer(raw_answer) | |
print(f"Raw LLM Response: '{raw_answer}'") | |
print(f"PARSED FINAL ANSWER: '{submitted_answer}'") | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"!! AGENT ERROR on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare and 5. Submit | |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%") | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
status_message = f"Submission Failed: {e}" | |
print(status_message) | |
return status_message, pd.DataFrame(results_log) | |
# --- Gradio UI (This part is correct) --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Agent Evaluation Runner") | |
# ... (rest of the Gradio code is fine) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
demo.launch() |