Abbasid's picture
Update app.py
c442836 verified
raw
history blame
5.5 kB
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version has been corrected to be "file-aware" by checking for a 'file_url'
in the task data and appending it to the agent's prompt.
"""
import os
import re
import gradio as gr
import requests
import pandas as pd
from agent import create_agent_executor
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Helper function to parse the agent's output (This is correct) ---
def parse_final_answer(agent_response: str) -> str:
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
if match: return match.group(1).strip()
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines: return lines[-1].strip()
return "Could not parse a final answer."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# 1. Instantiate Agent
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="groq") # Using Google for better tool use
except Exception as e:
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", pd.DataFrame()
# 3. Run your Agent
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None: continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
# --- THIS IS THE CRITICAL FIX ---
# 1. Check if a 'file_url' key exists in the task data.
file_url = item.get("file_url")
full_question_text = question_text
# 2. If a URL exists, append it to the question text.
if file_url:
print(f"File found for this task: {file_url}")
# This gives the agent the context it needs to call the right tool.
full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]"
print(f"Full Prompt for Agent:\n{full_question_text}")
# --- END CRITICAL FIX ---
try:
# 3. Pass the full, potentially enriched, question text to the agent.
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
raw_answer = result['messages'][-1].content
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Gradio UI (This part is correct) ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
# ... (rest of the Gradio code is fine)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch()