File size: 5,498 Bytes
d6fbb7e
 
 
08f3bff
 
 
d6fbb7e
 
10e9b7d
08f3bff
10e9b7d
eccf8e4
3c4371f
10e9b7d
08f3bff
d6fbb7e
e80aab9
3db6293
e80aab9
08f3bff
d6fbb7e
 
08f3bff
d6fbb7e
08f3bff
d6fbb7e
 
 
 
 
 
31243f4
 
d6fbb7e
 
 
 
 
 
 
 
 
 
 
08f3bff
d6fbb7e
31243f4
c442836
31243f4
d6fbb7e
3c4371f
08f3bff
31243f4
eccf8e4
d6fbb7e
7d65c66
31243f4
 
7d65c66
08f3bff
e80aab9
08f3bff
 
3c4371f
d6fbb7e
31243f4
 
08f3bff
d6fbb7e
 
 
08f3bff
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
08f3bff
 
d6fbb7e
 
 
 
 
 
 
7d65c66
 
31243f4
d6fbb7e
 
31243f4
 
 
 
08f3bff
d6fbb7e
 
e80aab9
7d65c66
e80aab9
 
08f3bff
d6fbb7e
7d65c66
d6fbb7e
31243f4
d6fbb7e
e80aab9
08f3bff
e80aab9
d6fbb7e
08f3bff
7e4a06b
d6fbb7e
 
a640e6e
d6fbb7e
e80aab9
 
3c4371f
d6fbb7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
app.py

This script provides the Gradio web interface to run the evaluation.
This version has been corrected to be "file-aware" by checking for a 'file_url'
in the task data and appending it to the agent's prompt.
"""

import os
import re
import gradio as gr
import requests
import pandas as pd

from agent import create_agent_executor

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Helper function to parse the agent's output (This is correct) ---
def parse_final_answer(agent_response: str) -> str:
    match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
    if match: return match.group(1).strip()
    lines = [line for line in agent_response.split('\n') if line.strip()]
    if lines: return lines[-1].strip()
    return "Could not parse a final answer."


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    if not profile:
        return "Please log in to Hugging Face with the button above to submit.", None
    
    username = profile.username
    print(f"User logged in: {username}")
    
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"
    
    # 1. Instantiate Agent
    print("Initializing your custom agent...")
    try:
        agent_executor = create_agent_executor(provider="groq") # Using Google for better tool use
    except Exception as e:
        return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", pd.DataFrame()

    # 3. Run your Agent
    results_log, answers_payload = [], []
    print(f"Running agent on {len(questions_data)} questions...")
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None: continue
        
        print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
        
        # --- THIS IS THE CRITICAL FIX ---
        # 1. Check if a 'file_url' key exists in the task data.
        file_url = item.get("file_url")
        full_question_text = question_text

        # 2. If a URL exists, append it to the question text.
        if file_url:
            print(f"File found for this task: {file_url}")
            # This gives the agent the context it needs to call the right tool.
            full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]"
        
        print(f"Full Prompt for Agent:\n{full_question_text}")
        # --- END CRITICAL FIX ---

        try:
            # 3. Pass the full, potentially enriched, question text to the agent.
            result = agent_executor.invoke({"messages": [("user", full_question_text)]})
            
            raw_answer = result['messages'][-1].content
            submitted_answer = parse_final_answer(raw_answer)
            
            print(f"Raw LLM Response: '{raw_answer}'")
            print(f"PARSED FINAL ANSWER: '{submitted_answer}'")

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"!! AGENT ERROR on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare and 5. Submit
    submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
    print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%")
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)

# --- Gradio UI (This part is correct) ---
with gr.Blocks() as demo:
    gr.Markdown("# Agent Evaluation Runner")
    # ... (rest of the Gradio code is fine)
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    demo.launch()