""" app.py This script provides the Gradio web interface to run the evaluation. This version has been corrected to be "file-aware" by checking for a 'file_url' in the task data and appending it to the agent's prompt. """ import os import re import gradio as gr import requests import pandas as pd from agent import create_agent_executor # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Helper function to parse the agent's output (This is correct) --- def parse_final_answer(agent_response: str) -> str: match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL) if match: return match.group(1).strip() lines = [line for line in agent_response.split('\n') if line.strip()] if lines: return lines[-1].strip() return "Could not parse a final answer." def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the agent on them, submits all answers, and displays the results. """ if not profile: return "Please log in to Hugging Face with the button above to submit.", None username = profile.username print(f"User logged in: {username}") space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" # 1. Instantiate Agent print("Initializing your custom agent...") try: agent_executor = create_agent_executor(provider="groq") # Using Google for better tool use except Exception as e: return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=20) response.raise_for_status() questions_data = response.json() print(f"Fetched {len(questions_data)} questions.") except Exception as e: return f"Error fetching questions: {e}", pd.DataFrame() # 3. Run your Agent results_log, answers_payload = [], [] print(f"Running agent on {len(questions_data)} questions...") for i, item in enumerate(questions_data): task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---") # --- THIS IS THE CRITICAL FIX --- # 1. Check if a 'file_url' key exists in the task data. file_url = item.get("file_url") full_question_text = question_text # 2. If a URL exists, append it to the question text. if file_url: print(f"File found for this task: {file_url}") # This gives the agent the context it needs to call the right tool. full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]" print(f"Full Prompt for Agent:\n{full_question_text}") # --- END CRITICAL FIX --- try: # 3. Pass the full, potentially enriched, question text to the agent. result = agent_executor.invoke({"messages": [("user", full_question_text)]}) raw_answer = result['messages'][-1].content submitted_answer = parse_final_answer(raw_answer) print(f"Raw LLM Response: '{raw_answer}'") print(f"PARSED FINAL ANSWER: '{submitted_answer}'") answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"!! AGENT ERROR on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare and 5. Submit submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%") return final_status, pd.DataFrame(results_log) except Exception as e: status_message = f"Submission Failed: {e}" print(status_message) return status_message, pd.DataFrame(results_log) # --- Gradio UI (This part is correct) --- with gr.Blocks() as demo: gr.Markdown("# Agent Evaluation Runner") # ... (rest of the Gradio code is fine) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) demo.launch()