File size: 11,776 Bytes
e5bb694
 
 
6a1d4f7
 
 
 
e5bb694
 
 
d5ef142
6a1d4f7
 
 
e5bb694
6a1d4f7
 
e5bb694
 
 
6a1d4f7
e5bb694
6a1d4f7
e5bb694
d5ef142
e5bb694
d5ef142
6a1d4f7
e5bb694
 
6a1d4f7
 
 
e5bb694
 
6a1d4f7
 
 
e5bb694
6a1d4f7
 
 
 
d5ef142
 
e5bb694
 
d5ef142
 
 
 
 
 
 
e5bb694
d5ef142
e5bb694
 
d5ef142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1d4f7
 
e5bb694
6a1d4f7
 
7502786
 
 
d5ef142
 
 
 
7502786
 
d5ef142
7502786
 
 
d5ef142
7502786
 
997896a
6a1d4f7
 
 
e5bb694
 
d5ef142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5bb694
d5ef142
e5bb694
 
d5ef142
e5bb694
 
 
d5ef142
e5bb694
 
 
 
 
 
 
d5ef142
e5bb694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ef142
6a1d4f7
d5ef142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1d4f7
d5ef142
e5bb694
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# ----------------------------------------------------------
# Section 0: Imports
# ----------------------------------------------------------
import json
import os
import pickle
import re
import subprocess
import textwrap
import base64
import functools # Used to pre-fill arguments for our tool functions
from io import BytesIO
from pathlib import Path

# Third-party libraries
import requests
from cachetools import TTLCache
from PIL import Image

# LangChain and associated libraries
from langchain.schema import Document
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import Tool, tool # Import Tool for manual tool creation
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition

# Environment variable loading
from dotenv import load_dotenv
load_dotenv()

# ----------------------------------------------------------
# Section 1: Constants and Configuration
# ----------------------------------------------------------
JSONL_PATH   = Path("metadata.jsonl")
FAISS_CACHE  = Path("faiss_index.pkl")
EMBED_MODEL  = "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K  = 5
CACHE_TTL    = 600
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)

# Global helper for caching API calls
def cached_get(key: str, fetch_fn):
    if key in API_CACHE: return API_CACHE[key]
    val = fetch_fn()
    API_CACHE[key] = val
    return val

# ----------------------------------------------------------
# Section 2: Standalone Tool Functions (No 'self' parameter)
# ----------------------------------------------------------

@tool
def python_repl(code: str) -> str:
    """Executes a string of Python code and returns the stdout/stderr."""
    code = textwrap.dedent(code).strip()
    try:
        result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
        if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
        else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
    except subprocess.TimeoutExpired: return "Execution timed out (>10s)."

# These functions now accept their dependencies (like an llm instance or a cache function) as arguments.
@tool
def describe_image_func(image_source: str, vision_llm_instance) -> str:
    """Describes an image from a local file path or a URL using a provided vision LLM."""
    try:
        if image_source.startswith("http"): img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
        else: img = Image.open(image_source)
        buffered = BytesIO()
        img.convert("RGB").save(buffered, format="JPEG")
        b64_string = base64.b64encode(buffered.getvalue()).decode()
        msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
        return vision_llm_instance.invoke([msg]).content
    except Exception as e: return f"Error processing image: {e}"
@tool
def web_search_func(query: str, cache_func) -> str:
    """Performs a web search using Tavily and returns a compilation of results."""
    key = f"web:{query}"
    results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
    return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
@tool
def wiki_search_func(query: str, cache_func) -> str:
    """Searches Wikipedia and returns the top 2 results."""
    key = f"wiki:{query}"
    docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
@tool
def arxiv_search_func(query: str, cache_func) -> str:
    """Searches Arxiv for scientific papers and returns the top 2 results."""
    key = f"arxiv:{query}"
    docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
    return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])

# ----------------------------------------------------------
# Section 3: System Prompt
# ----------------------------------------------------------
SYSTEM_PROMPT = (
    """You are an expert-level research assistant designed to answer questions accurately.

**Your Reasoning Process:**
1.  **Think Step-by-Step:** Break down the user's question into logical steps. Plan which tools you need.
2.  **Use Your Tools:** Execute your plan by calling one tool at a time. Analyze the results.
3.  **Iterate:** If needed, use more tools until you have enough information.
4.  **Synthesize:** Formulate a concise final answer based on the information.

**Output Format:**
- Your final response MUST strictly follow this format:
  `FINAL ANSWER: [Your concise and accurate answer here]`

**Crucial Instructions:**
- If your tools **cannot possibly answer the question** (e.g., it requires watching a video or listening to audio), you MUST respond by stating the limitation.
- In case of a limitation, your response should be:
  `FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as [describe the missing capability].`
"""
)

# ----------------------------------------------------------
# Section 4: Factory Function for Agent Executor
# ----------------------------------------------------------
def create_agent_executor(provider: str = "groq"):
    """
    Factory function to create and compile the LangGraph agent executor.
    This version creates tools from standalone functions to ensure model compatibility.
    """
    print(f"Initializing agent with provider: {provider}")

    # Step 1: Build LLMs
    if provider == "google": main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
    elif provider == "groq": main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
    elif provider == "huggingface": main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
    else: raise ValueError("Invalid provider selected")
    vision_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)

    # Step 2: Build Retriever
    embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
    if FAISS_CACHE.exists():
        with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
    else:
        docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
        vector_store = FAISS.from_documents(docs, embeddings)
        with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
    retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
    
    # Step 3: Create the final list of tools
    # We use functools.partial to "bake in" the dependencies (like the LLM or cache) into our standalone functions.
    # This creates new functions with a simpler signature that the agent can easily call.
    tools_list = [
        python_repl,
        Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
        Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
        Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
        Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
        create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
    ]
    
    llm_with_tools = main_llm.bind_tools(tools_list)

    # Step 4: Define Graph Nodes
    def retriever_node(state: MessagesState):
        user_query = state["messages"][-1].content
        docs = retriever.invoke(user_query)
        messages = [SystemMessage(content=SYSTEM_PROMPT)]
        if docs:
            example_text = "\n\n---\n\n".join(d.page_content for d in docs)
            messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
        messages.extend(state["messages"])
        return {"messages": messages}

    def assistant_node(state: MessagesState):
        result = llm_with_tools.invoke(state["messages"])
        return {"messages": [result]}

    # Step 5: Build Graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever_node)
    builder.add_node("assistant", assistant_node)
    builder.add_node("tools", ToolNode(tools_list))
    
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
    builder.add_edge("tools", "assistant")

    agent_executor = builder.compile()
    print("Agent Executor created successfully.")
    return agent_executor

# ----------------------------------------------------------
# Section 5: Pre-flight check and Direct Execution Block
# ----------------------------------------------------------
def test_llm_connection(provider: str = "google"):
    """Performs a quick test to see if the LLM provider is accessible."""
    print(f"--- Performing pre-flight check for LLM provider: {provider} ---")
    try:
        if provider == "google": llm, name = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest"), "Google Gemini"
        elif provider == "groq": llm, name = ChatGroq(model_name="llama3-70b-8192"), "Groq"
        elif provider == "huggingface": llm, name = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1")), "Hugging Face"
        else: return "❌ **LLM Status:** Invalid provider configured."
        llm.invoke("hello")
        success_message = f"✅ **LLM Status:** Connection to {name} is successful."
        print(success_message)
        return success_message
    except Exception as e:
        error_message = f"❌ **LLM Status:** FAILED to connect. Check API keys/credits. Details: {e}"
        print(error_message)
        return error_message

if __name__ == "__main__":
    """Allows for direct testing of the agent's logic."""
    print("--- Running Agent in Test Mode ---")
    agent = create_agent_executor(provider="google")
    question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
    print(f"\nTest Question: {question}\n\n--- Agent Thinking... ---\n")
    
    for chunk in agent.stream({"messages": [("user", question)]}):
        for key, value in chunk.items():
            if value['messages']:
                message = value['messages'][-1]
                if message.content: print(f"--- Node: {key} ---\n{message.content}\n")