Spaces:
Sleeping
Sleeping
File size: 11,776 Bytes
e5bb694 6a1d4f7 e5bb694 d5ef142 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 e5bb694 d5ef142 e5bb694 d5ef142 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 e5bb694 6a1d4f7 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 6a1d4f7 e5bb694 6a1d4f7 7502786 d5ef142 7502786 d5ef142 7502786 d5ef142 7502786 997896a 6a1d4f7 e5bb694 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 e5bb694 d5ef142 6a1d4f7 d5ef142 6a1d4f7 d5ef142 e5bb694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# ----------------------------------------------------------
# Section 0: Imports
# ----------------------------------------------------------
import json
import os
import pickle
import re
import subprocess
import textwrap
import base64
import functools # Used to pre-fill arguments for our tool functions
from io import BytesIO
from pathlib import Path
# Third-party libraries
import requests
from cachetools import TTLCache
from PIL import Image
# LangChain and associated libraries
from langchain.schema import Document
from langchain.tools.retriever import create_retriever_tool
from langchain_community.vectorstores import FAISS
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import Tool, tool # Import Tool for manual tool creation
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint, ChatHuggingFace
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
# Environment variable loading
from dotenv import load_dotenv
load_dotenv()
# ----------------------------------------------------------
# Section 1: Constants and Configuration
# ----------------------------------------------------------
JSONL_PATH = Path("metadata.jsonl")
FAISS_CACHE = Path("faiss_index.pkl")
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"
RETRIEVER_K = 5
CACHE_TTL = 600
API_CACHE = TTLCache(maxsize=256, ttl=CACHE_TTL)
# Global helper for caching API calls
def cached_get(key: str, fetch_fn):
if key in API_CACHE: return API_CACHE[key]
val = fetch_fn()
API_CACHE[key] = val
return val
# ----------------------------------------------------------
# Section 2: Standalone Tool Functions (No 'self' parameter)
# ----------------------------------------------------------
@tool
def python_repl(code: str) -> str:
"""Executes a string of Python code and returns the stdout/stderr."""
code = textwrap.dedent(code).strip()
try:
result = subprocess.run(["python", "-c", code], capture_output=True, text=True, timeout=10, check=False)
if result.returncode == 0: return f"Execution successful.\nSTDOUT:\n```\n{result.stdout}\n```"
else: return f"Execution failed.\nSTDOUT:\n```\n{result.stdout}\n```\nSTDERR:\n```\n{result.stderr}\n```"
except subprocess.TimeoutExpired: return "Execution timed out (>10s)."
# These functions now accept their dependencies (like an llm instance or a cache function) as arguments.
@tool
def describe_image_func(image_source: str, vision_llm_instance) -> str:
"""Describes an image from a local file path or a URL using a provided vision LLM."""
try:
if image_source.startswith("http"): img = Image.open(BytesIO(requests.get(image_source, timeout=10).content))
else: img = Image.open(image_source)
buffered = BytesIO()
img.convert("RGB").save(buffered, format="JPEG")
b64_string = base64.b64encode(buffered.getvalue()).decode()
msg = HumanMessage(content=[{"type": "text", "text": "Describe this image in detail."}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_string}"}}])
return vision_llm_instance.invoke([msg]).content
except Exception as e: return f"Error processing image: {e}"
@tool
def web_search_func(query: str, cache_func) -> str:
"""Performs a web search using Tavily and returns a compilation of results."""
key = f"web:{query}"
results = cache_func(key, lambda: TavilySearchResults(max_results=5).invoke(query))
return "\n\n---\n\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in results])
@tool
def wiki_search_func(query: str, cache_func) -> str:
"""Searches Wikipedia and returns the top 2 results."""
key = f"wiki:{query}"
docs = cache_func(key, lambda: WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=2000).load())
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\n\n{d.page_content}" for d in docs])
@tool
def arxiv_search_func(query: str, cache_func) -> str:
"""Searches Arxiv for scientific papers and returns the top 2 results."""
key = f"arxiv:{query}"
docs = cache_func(key, lambda: ArxivLoader(query=query, load_max_docs=2).load())
return "\n\n---\n\n".join([f"Source: {d.metadata['source']}\nPublished: {d.metadata['Published']}\nTitle: {d.metadata['Title']}\n\nSummary:\n{d.page_content}" for d in docs])
# ----------------------------------------------------------
# Section 3: System Prompt
# ----------------------------------------------------------
SYSTEM_PROMPT = (
"""You are an expert-level research assistant designed to answer questions accurately.
**Your Reasoning Process:**
1. **Think Step-by-Step:** Break down the user's question into logical steps. Plan which tools you need.
2. **Use Your Tools:** Execute your plan by calling one tool at a time. Analyze the results.
3. **Iterate:** If needed, use more tools until you have enough information.
4. **Synthesize:** Formulate a concise final answer based on the information.
**Output Format:**
- Your final response MUST strictly follow this format:
`FINAL ANSWER: [Your concise and accurate answer here]`
**Crucial Instructions:**
- If your tools **cannot possibly answer the question** (e.g., it requires watching a video or listening to audio), you MUST respond by stating the limitation.
- In case of a limitation, your response should be:
`FINAL ANSWER: I am unable to answer this question because it requires a capability I do not possess, such as [describe the missing capability].`
"""
)
# ----------------------------------------------------------
# Section 4: Factory Function for Agent Executor
# ----------------------------------------------------------
def create_agent_executor(provider: str = "groq"):
"""
Factory function to create and compile the LangGraph agent executor.
This version creates tools from standalone functions to ensure model compatibility.
"""
print(f"Initializing agent with provider: {provider}")
# Step 1: Build LLMs
if provider == "google": main_llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
elif provider == "groq": main_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
elif provider == "huggingface": main_llm = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1))
else: raise ValueError("Invalid provider selected")
vision_llm = ChatGroq(model_name="meta-llama/llama-4-maverick-17b-128e-instruct", temperature=0)
# Step 2: Build Retriever
embeddings = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
if FAISS_CACHE.exists():
with open(FAISS_CACHE, "rb") as f: vector_store = pickle.load(f)
else:
docs = [Document(page_content=f"Question: {rec['Question']}\n\nFinal answer: {rec['Final answer']}", metadata={"source": rec["task_id"]}) for rec in (json.loads(line) for line in open(JSONL_PATH, "rt", encoding="utf-8"))]
vector_store = FAISS.from_documents(docs, embeddings)
with open(FAISS_CACHE, "wb") as f: pickle.dump(vector_store, f)
retriever = vector_store.as_retriever(search_kwargs={"k": RETRIEVER_K})
# Step 3: Create the final list of tools
# We use functools.partial to "bake in" the dependencies (like the LLM or cache) into our standalone functions.
# This creates new functions with a simpler signature that the agent can easily call.
tools_list = [
python_repl,
Tool(name="describe_image", func=functools.partial(describe_image_func, vision_llm_instance=vision_llm), description="Describes an image from a local file path or a URL."),
Tool(name="web_search", func=functools.partial(web_search_func, cache_func=cached_get), description="Performs a web search using Tavily."),
Tool(name="wiki_search", func=functools.partial(wiki_search_func, cache_func=cached_get), description="Searches Wikipedia."),
Tool(name="arxiv_search", func=functools.partial(arxiv_search_func, cache_func=cached_get), description="Searches Arxiv for scientific papers."),
create_retriever_tool(retriever=retriever, name="retrieve_examples", description="Retrieve solved questions similar to the user's query."),
]
llm_with_tools = main_llm.bind_tools(tools_list)
# Step 4: Define Graph Nodes
def retriever_node(state: MessagesState):
user_query = state["messages"][-1].content
docs = retriever.invoke(user_query)
messages = [SystemMessage(content=SYSTEM_PROMPT)]
if docs:
example_text = "\n\n---\n\n".join(d.page_content for d in docs)
messages.append(AIMessage(content=f"I have found {len(docs)} similar solved examples:\n\n{example_text}", name="ExampleRetriever"))
messages.extend(state["messages"])
return {"messages": messages}
def assistant_node(state: MessagesState):
result = llm_with_tools.invoke(state["messages"])
return {"messages": [result]}
# Step 5: Build Graph
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever_node)
builder.add_node("assistant", assistant_node)
builder.add_node("tools", ToolNode(tools_list))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges("assistant", tools_condition, {"tools": "tools", "__end__": "__end__"})
builder.add_edge("tools", "assistant")
agent_executor = builder.compile()
print("Agent Executor created successfully.")
return agent_executor
# ----------------------------------------------------------
# Section 5: Pre-flight check and Direct Execution Block
# ----------------------------------------------------------
def test_llm_connection(provider: str = "google"):
"""Performs a quick test to see if the LLM provider is accessible."""
print(f"--- Performing pre-flight check for LLM provider: {provider} ---")
try:
if provider == "google": llm, name = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest"), "Google Gemini"
elif provider == "groq": llm, name = ChatGroq(model_name="llama3-70b-8192"), "Groq"
elif provider == "huggingface": llm, name = ChatHuggingFace(llm=HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1")), "Hugging Face"
else: return "❌ **LLM Status:** Invalid provider configured."
llm.invoke("hello")
success_message = f"✅ **LLM Status:** Connection to {name} is successful."
print(success_message)
return success_message
except Exception as e:
error_message = f"❌ **LLM Status:** FAILED to connect. Check API keys/credits. Details: {e}"
print(error_message)
return error_message
if __name__ == "__main__":
"""Allows for direct testing of the agent's logic."""
print("--- Running Agent in Test Mode ---")
agent = create_agent_executor(provider="google")
question = "According to wikipedia, what is the main difference between a lama and an alpaca?"
print(f"\nTest Question: {question}\n\n--- Agent Thinking... ---\n")
for chunk in agent.stream({"messages": [("user", question)]}):
for key, value in chunk.items():
if value['messages']:
message = value['messages'][-1]
if message.content: print(f"--- Node: {key} ---\n{message.content}\n") |