Spaces:
Sleeping
Sleeping
File size: 5,500 Bytes
d6fbb7e 08f3bff d6fbb7e 10e9b7d 08f3bff 10e9b7d eccf8e4 3c4371f 10e9b7d 08f3bff d6fbb7e e80aab9 3db6293 e80aab9 08f3bff d6fbb7e 08f3bff d6fbb7e 08f3bff d6fbb7e 31243f4 d6fbb7e 08f3bff d6fbb7e 31243f4 08f3bff 31243f4 d6fbb7e 3c4371f 08f3bff 31243f4 eccf8e4 d6fbb7e 7d65c66 31243f4 7d65c66 08f3bff e80aab9 08f3bff 3c4371f d6fbb7e 31243f4 08f3bff d6fbb7e 08f3bff 31243f4 08f3bff d6fbb7e 7d65c66 31243f4 d6fbb7e 31243f4 08f3bff d6fbb7e e80aab9 7d65c66 e80aab9 08f3bff d6fbb7e 7d65c66 d6fbb7e 31243f4 d6fbb7e e80aab9 08f3bff e80aab9 d6fbb7e 08f3bff 7e4a06b d6fbb7e a640e6e d6fbb7e e80aab9 3c4371f d6fbb7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""
app.py
This script provides the Gradio web interface to run the evaluation.
This version has been corrected to be "file-aware" by checking for a 'file_url'
in the task data and appending it to the agent's prompt.
"""
import os
import re
import gradio as gr
import requests
import pandas as pd
from agent import create_agent_executor
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Helper function to parse the agent's output (This is correct) ---
def parse_final_answer(agent_response: str) -> str:
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
if match: return match.group(1).strip()
lines = [line for line in agent_response.split('\n') if line.strip()]
if lines: return lines[-1].strip()
return "Could not parse a final answer."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
if not profile:
return "Please log in to Hugging Face with the button above to submit.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
# 1. Instantiate Agent
print("Initializing your custom agent...")
try:
agent_executor = create_agent_executor(provider="google") # Using Google for better tool use
except Exception as e:
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", pd.DataFrame()
# 3. Run your Agent
results_log, answers_payload = [], []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None: continue
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
# --- THIS IS THE CRITICAL FIX ---
# 1. Check if a 'file_url' key exists in the task data.
file_url = item.get("file_url")
full_question_text = question_text
# 2. If a URL exists, append it to the question text.
if file_url:
print(f"File found for this task: {file_url}")
# This gives the agent the context it needs to call the right tool.
full_question_text = f"{question_text}\n\n[Attachment URL: {file_url}]"
print(f"Full Prompt for Agent:\n{full_question_text}")
# --- END CRITICAL FIX ---
try:
# 3. Pass the full, potentially enriched, question text to the agent.
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
raw_answer = result['messages'][-1].content
submitted_answer = parse_final_answer(raw_answer)
print(f"Raw LLM Response: '{raw_answer}'")
print(f"PARSED FINAL ANSWER: '{submitted_answer}'")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"!! AGENT ERROR on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT RUNTIME ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare and 5. Submit
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}%")
return final_status, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
# --- Gradio UI (This part is correct) ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
# ... (rest of the Gradio code is fine)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, row_count=10)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
demo.launch() |