File size: 5,812 Bytes
cbc840b
b88f708
831a7b4
 
 
 
f20a187
 
831a7b4
 
 
f20a187
b88f708
39c8921
396e877
 
831a7b4
f837ee9
396e877
831a7b4
396e877
 
96b6780
b88f708
 
831a7b4
cbc840b
831a7b4
396e877
b88f708
831a7b4
 
 
 
 
 
 
 
 
 
b88f708
831a7b4
cbc840b
 
396e877
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
831a7b4
b88f708
cbc840b
396e877
831a7b4
cbc840b
 
 
 
831a7b4
cbc840b
831a7b4
f67d206
396e877
f67d206
 
f837ee9
f67d206
831a7b4
b88f708
831a7b4
b88f708
cbc840b
 
831a7b4
 
cbc840b
831a7b4
f837ee9
831a7b4
cbc840b
831a7b4
 
 
 
 
 
 
 
 
 
 
b88f708
831a7b4
cbc840b
831a7b4
b88f708
f837ee9
c3b581c
b88f708
cbc840b
b88f708
 
 
f837ee9
cbc840b
 
f837ee9
cbc840b
 
f837ee9
cbc840b
831a7b4
 
cbc840b
831a7b4
 
cbc840b
831a7b4
 
 
 
cbc840b
831a7b4
b88f708
cbc840b
f837ee9
b88f708
831a7b4
c3b581c
f837ee9
b88f708
 
831a7b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time
from transformers import CLIPProcessor, CLIPModel
import torch.nn.functional as F

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load translation model
translator_model = MBartForConditionalGeneration.from_pretrained(
    "facebook/mbart-large-50-many-to-many-mmt"
).to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
    "facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer.src_lang = "ta_IN"

# Load GPT-2 for creative text
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()

# Load Stable Diffusion 1.5
pipe = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-1-5",
    torch_dtype=torch.float32,
).to(device)
pipe.safety_checker = None  # Optional: disable safety filter

# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# --- Translation ---
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# --- GPT-2 Creative Generation ---
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)

    # Perplexity
    with torch.no_grad():
        input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)

# --- Stable Diffusion Image Generation ---
def generate_image(prompt):
    try:
        start = time.time()
        result = pipe(prompt)
        image = result.images[0].resize((256, 256))
        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image.save(tmp_file.name)
        duration = round(time.time() - start, 2)
        return tmp_file.name, duration, image
    except Exception as e:
        return None, 0, f"Image generation failed: {str(e)}"

# --- CLIP Similarity ---
def evaluate_clip_similarity(text, image):
    inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
    with torch.no_grad():
        outputs = clip_model(**inputs)
        logits_per_image = outputs.logits_per_image
        probs = F.softmax(logits_per_image, dim=1)
        similarity_score = logits_per_image[0][0].item()
    return round(similarity_score, 4)

# --- Streamlit UI ---
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time}s")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")

        with st.spinner("🎨 Generating image..."):
            image_path, img_time, image_obj = generate_image(english_text)

        if isinstance(image_obj, Image.Image):
            st.success(f"πŸ–ΌοΈ Image generated in {img_time}s")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)

            with st.spinner("πŸ”Ž Evaluating CLIP similarity..."):
                clip_score = evaluate_clip_similarity(english_text, image_obj)
                st.markdown(f"πŸ” CLIP Text-Image Similarity: `{clip_score}`")
        else:
            st.error(image_obj)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)

        st.success(f"✨ Creative text generated in {c_time}s")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")

st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2, Stable Diffusion 1.5, and CLIP (Open Source)")