File size: 5,812 Bytes
cbc840b b88f708 831a7b4 f20a187 831a7b4 f20a187 b88f708 39c8921 396e877 831a7b4 f837ee9 396e877 831a7b4 396e877 96b6780 b88f708 831a7b4 cbc840b 831a7b4 396e877 b88f708 831a7b4 b88f708 831a7b4 cbc840b 396e877 cbc840b b88f708 cbc840b b88f708 cbc840b 831a7b4 b88f708 cbc840b 396e877 831a7b4 cbc840b 831a7b4 cbc840b 831a7b4 f67d206 396e877 f67d206 f837ee9 f67d206 831a7b4 b88f708 831a7b4 b88f708 cbc840b 831a7b4 cbc840b 831a7b4 f837ee9 831a7b4 cbc840b 831a7b4 b88f708 831a7b4 cbc840b 831a7b4 b88f708 f837ee9 c3b581c b88f708 cbc840b b88f708 f837ee9 cbc840b f837ee9 cbc840b f837ee9 cbc840b 831a7b4 cbc840b 831a7b4 cbc840b 831a7b4 cbc840b 831a7b4 b88f708 cbc840b f837ee9 b88f708 831a7b4 c3b581c f837ee9 b88f708 831a7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time
from transformers import CLIPProcessor, CLIPModel
import torch.nn.functional as F
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load translation model
translator_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
).to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer.src_lang = "ta_IN"
# Load GPT-2 for creative text
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_model.eval()
# Load Stable Diffusion 1.5
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-1-5",
torch_dtype=torch.float32,
).to(device)
pipe.safety_checker = None # Optional: disable safety filter
# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# --- Translation ---
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# --- GPT-2 Creative Generation ---
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
# Perplexity
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)
# --- Stable Diffusion Image Generation ---
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
duration = round(time.time() - start, 2)
return tmp_file.name, duration, image
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
# --- CLIP Similarity ---
def evaluate_clip_similarity(text, image):
inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
outputs = clip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = F.softmax(logits_per_image, dim=1)
similarity_score = logits_per_image[0][0].item()
return round(similarity_score, 4)
# --- Streamlit UI ---
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
tamil_input = st.text_area("βοΈ Enter Tamil text", height=150)
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
if st.button("π Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("π Translating..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"β
Translated in {t_time}s")
st.markdown(f"**π English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
with st.spinner("π¨ Generating image..."):
image_path, img_time, image_obj = generate_image(english_text)
if isinstance(image_obj, Image.Image):
st.success(f"πΌοΈ Image generated in {img_time}s")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
with st.spinner("π Evaluating CLIP similarity..."):
clip_score = evaluate_clip_similarity(english_text, image_obj)
st.markdown(f"π CLIP Text-Image Similarity: `{clip_score}`")
else:
st.error(image_obj)
with st.spinner("π‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"β¨ Creative text generated in {c_time}s")
st.markdown(f"**π§ Creative Output:** `{creative}`")
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2, Stable Diffusion 1.5, and CLIP (Open Source)")
|