Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,50 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
import openai
|
4 |
import os
|
5 |
import time
|
|
|
6 |
from PIL import Image
|
7 |
import tempfile
|
8 |
import clip # from OpenAI CLIP repo
|
9 |
import torch.nn.functional as F
|
10 |
-
from transformers import
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
from rouge_score import rouge_scorer
|
13 |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
openai.api_key = os.getenv("OPENAI_API_KEY") #
|
17 |
|
18 |
-
# Load MBart
|
19 |
translator_model = MBartForConditionalGeneration.from_pretrained(
|
20 |
-
"facebook/mbart-large-50-many-to-many-mmt"
|
21 |
-
|
|
|
|
|
22 |
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
|
23 |
"facebook/mbart-large-50-many-to-many-mmt"
|
24 |
)
|
25 |
translator_tokenizer.src_lang = "ta_IN"
|
26 |
|
27 |
-
# GPT-2
|
28 |
-
gen_model =
|
|
|
|
|
|
|
|
|
29 |
gen_model.eval()
|
30 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
31 |
|
32 |
-
# CLIP
|
33 |
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
34 |
|
35 |
-
# ---- Translation ----
|
36 |
def translate_tamil_to_english(text, reference=None):
|
37 |
start = time.time()
|
38 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
@@ -51,7 +63,7 @@ def translate_tamil_to_english(text, reference=None):
|
|
51 |
|
52 |
return translated, duration, rouge_l
|
53 |
|
54 |
-
# ---- Creative Text ----
|
55 |
def generate_creative_text(prompt, max_length=100):
|
56 |
start = time.time()
|
57 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
@@ -88,10 +100,9 @@ def generate_image(prompt):
|
|
88 |
n=1
|
89 |
)
|
90 |
image_url = response.data[0].url
|
91 |
-
image_data = Image.open(tempfile.NamedTemporaryFile(delete=False, suffix=".png"))
|
92 |
image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))
|
93 |
|
94 |
-
# Save
|
95 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
96 |
image_data.save(tmp_file.name)
|
97 |
duration = round(time.time() - start, 2)
|
@@ -108,7 +119,7 @@ def generate_image(prompt):
|
|
108 |
except Exception as e:
|
109 |
return None, None, f"Image generation failed: {str(e)}"
|
110 |
|
111 |
-
# ---- UI ----
|
112 |
st.set_page_config(page_title="Tamil → English + AI Art", layout="centered")
|
113 |
st.title("🧠 Tamil → English + 🎨 Creative Text + 🖼️ AI Image")
|
114 |
|
|
|
1 |
+
# app.py
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
import openai
|
5 |
import os
|
6 |
import time
|
7 |
+
import requests
|
8 |
from PIL import Image
|
9 |
import tempfile
|
10 |
import clip # from OpenAI CLIP repo
|
11 |
import torch.nn.functional as F
|
12 |
+
from transformers import (
|
13 |
+
MBartForConditionalGeneration,
|
14 |
+
MBart50TokenizerFast,
|
15 |
+
AutoTokenizer,
|
16 |
+
AutoModelForCausalLM,
|
17 |
+
)
|
18 |
from rouge_score import rouge_scorer
|
19 |
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
openai.api_key = os.getenv("OPENAI_API_KEY") # Make sure this is set in your environment
|
23 |
|
24 |
+
# Load MBart model
|
25 |
translator_model = MBartForConditionalGeneration.from_pretrained(
|
26 |
+
"facebook/mbart-large-50-many-to-many-mmt",
|
27 |
+
device_map="auto",
|
28 |
+
low_cpu_mem_usage=True
|
29 |
+
)
|
30 |
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
|
31 |
"facebook/mbart-large-50-many-to-many-mmt"
|
32 |
)
|
33 |
translator_tokenizer.src_lang = "ta_IN"
|
34 |
|
35 |
+
# Load GPT-2 model
|
36 |
+
gen_model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
"gpt2",
|
38 |
+
device_map="auto",
|
39 |
+
low_cpu_mem_usage=True
|
40 |
+
)
|
41 |
gen_model.eval()
|
42 |
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
43 |
|
44 |
+
# Load CLIP model
|
45 |
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
|
46 |
|
47 |
+
# ---- Translation Function ----
|
48 |
def translate_tamil_to_english(text, reference=None):
|
49 |
start = time.time()
|
50 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
|
|
63 |
|
64 |
return translated, duration, rouge_l
|
65 |
|
66 |
+
# ---- Creative Text Generation ----
|
67 |
def generate_creative_text(prompt, max_length=100):
|
68 |
start = time.time()
|
69 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
|
|
100 |
n=1
|
101 |
)
|
102 |
image_url = response.data[0].url
|
|
|
103 |
image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))
|
104 |
|
105 |
+
# Save to temporary file
|
106 |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
107 |
image_data.save(tmp_file.name)
|
108 |
duration = round(time.time() - start, 2)
|
|
|
119 |
except Exception as e:
|
120 |
return None, None, f"Image generation failed: {str(e)}"
|
121 |
|
122 |
+
# ---- Streamlit UI ----
|
123 |
st.set_page_config(page_title="Tamil → English + AI Art", layout="centered")
|
124 |
st.title("🧠 Tamil → English + 🎨 Creative Text + 🖼️ AI Image")
|
125 |
|