Update app.py
Browse files
app.py
CHANGED
@@ -1,77 +1,114 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
from transformers import MBartForConditionalGeneration,
|
|
|
4 |
from diffusers import StableDiffusionPipeline
|
|
|
5 |
from PIL import Image
|
6 |
import tempfile
|
|
|
7 |
import time
|
8 |
-
import streamlit as st
|
9 |
|
10 |
-
# Use
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
# Load translation model
|
14 |
-
translator_tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
15 |
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
|
|
|
16 |
translator_tokenizer.src_lang = "ta_IN"
|
17 |
|
18 |
-
# Load text generation
|
19 |
-
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
20 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
|
|
21 |
|
22 |
-
# Load image generation model
|
23 |
pipe = StableDiffusionPipeline.from_pretrained(
|
24 |
-
"
|
25 |
torch_dtype=torch.float32,
|
26 |
-
|
27 |
).to(device)
|
|
|
28 |
|
29 |
-
|
|
|
|
|
30 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
31 |
-
|
32 |
**inputs,
|
33 |
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
|
34 |
)
|
35 |
-
translated = translator_tokenizer.batch_decode(
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
38 |
def generate_creative_text(prompt, max_length=100):
|
|
|
39 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
40 |
-
output = gen_model.generate(
|
41 |
-
|
42 |
-
)
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
|
|
45 |
def generate_image(prompt):
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# Streamlit UI
|
52 |
-
st.set_page_config(page_title="Tamil β English + AI", layout="centered")
|
53 |
-
st.title("
|
54 |
|
55 |
-
tamil_input = st.text_area("βοΈ Enter Tamil
|
|
|
56 |
|
57 |
-
if st.button("π Generate"):
|
58 |
if not tamil_input.strip():
|
59 |
st.warning("Please enter Tamil text.")
|
60 |
else:
|
61 |
-
with st.spinner("Translating..."):
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
with st.spinner("Generating creative text..."):
|
67 |
-
|
68 |
-
st.success("β
Creative text generated!")
|
69 |
-
st.markdown(f"**Creative Prompt:** `{creative_text}`")
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
st.image(Image.open(image_path), caption="πΌοΈ AI Generated Image", use_column_width=True)
|
75 |
|
76 |
st.markdown("---")
|
77 |
-
st.
|
|
|
1 |
+
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
+
from rouge_score import rouge_scorer
|
7 |
from PIL import Image
|
8 |
import tempfile
|
9 |
+
import os
|
10 |
import time
|
|
|
11 |
|
12 |
+
# Use CUDA if available
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
# Load translation model (Tamil to English)
|
|
|
16 |
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
|
17 |
+
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
18 |
translator_tokenizer.src_lang = "ta_IN"
|
19 |
|
20 |
+
# Load GPT-2 for creative text generation
|
|
|
21 |
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
22 |
+
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
23 |
|
24 |
+
# Load a lightweight image generation model (for CPU)
|
25 |
pipe = StableDiffusionPipeline.from_pretrained(
|
26 |
+
"OFA-Sys/small-stable-diffusion-v0",
|
27 |
torch_dtype=torch.float32,
|
28 |
+
use_auth_token=os.getenv("HF_TOKEN") # Set this in Hugging Face Space secrets
|
29 |
).to(device)
|
30 |
+
pipe.safety_checker = None # Optional: disable safety checker for speed
|
31 |
|
32 |
+
# Translation Function
|
33 |
+
def translate_tamil_to_english(text, reference=None):
|
34 |
+
start = time.time()
|
35 |
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
|
36 |
+
outputs = translator_model.generate(
|
37 |
**inputs,
|
38 |
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
|
39 |
)
|
40 |
+
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
41 |
+
duration = round(time.time() - start, 2)
|
42 |
+
|
43 |
+
rouge_l = None
|
44 |
+
if reference:
|
45 |
+
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
|
46 |
+
score = scorer.score(reference.lower(), translated.lower())
|
47 |
+
rouge_l = round(score["rougeL"].fmeasure, 4)
|
48 |
|
49 |
+
return translated, duration, rouge_l
|
50 |
+
|
51 |
+
# Creative Text Generator
|
52 |
def generate_creative_text(prompt, max_length=100):
|
53 |
+
start = time.time()
|
54 |
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
|
55 |
+
output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
|
56 |
+
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
+
duration = round(time.time() - start, 2)
|
58 |
+
|
59 |
+
tokens = text.split()
|
60 |
+
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
|
61 |
+
|
62 |
+
return text, duration, len(tokens), round(repetition_rate, 4)
|
63 |
|
64 |
+
# AI Image Generator
|
65 |
def generate_image(prompt):
|
66 |
+
try:
|
67 |
+
start = time.time()
|
68 |
+
result = pipe(prompt)
|
69 |
+
image = result.images[0].resize((256, 256))
|
70 |
+
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
71 |
+
image.save(tmp_file.name)
|
72 |
+
return tmp_file.name, round(time.time() - start, 2)
|
73 |
+
except Exception as e:
|
74 |
+
return None, f"Image generation failed: {str(e)}"
|
75 |
|
76 |
# Streamlit UI
|
77 |
+
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
|
78 |
+
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
|
79 |
|
80 |
+
tamil_input = st.text_area("βοΈ Enter Tamil text here", height=150)
|
81 |
+
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
|
82 |
|
83 |
+
if st.button("π Generate Output"):
|
84 |
if not tamil_input.strip():
|
85 |
st.warning("Please enter Tamil text.")
|
86 |
else:
|
87 |
+
with st.spinner("π Translating Tamil to English..."):
|
88 |
+
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
|
89 |
+
|
90 |
+
st.success(f"β
Translated in {t_time} seconds")
|
91 |
+
st.markdown(f"**π English Translation:** `{english_text}`")
|
92 |
+
if rouge_l is not None:
|
93 |
+
st.markdown(f"π **ROUGE-L Score:** `{rouge_l}`")
|
94 |
+
else:
|
95 |
+
st.info("βΉοΈ ROUGE-L not calculated. Reference not provided.")
|
96 |
+
|
97 |
+
with st.spinner("π¨ Generating image..."):
|
98 |
+
image_path, img_time = generate_image(english_text)
|
99 |
+
|
100 |
+
if image_path:
|
101 |
+
st.success(f"πΌοΈ Image generated in {img_time} seconds")
|
102 |
+
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
|
103 |
+
else:
|
104 |
+
st.error(image_path)
|
105 |
|
106 |
+
with st.spinner("π‘ Generating creative text..."):
|
107 |
+
creative, c_time, tokens, rep_rate = generate_creative_text(english_text)
|
|
|
|
|
108 |
|
109 |
+
st.success(f"β¨ Creative text generated in {c_time} seconds")
|
110 |
+
st.markdown(f"**π§ Creative Output:** `{creative}`")
|
111 |
+
st.markdown(f"π Tokens: `{tokens}`, Repetition Rate: `{rep_rate}`")
|
|
|
112 |
|
113 |
st.markdown("---")
|
114 |
+
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")
|