File size: 5,809 Bytes
cbc840b b88f708 f20a187 cbc840b b88f708 f20a187 f837ee9 f20a187 39c8921 f20a187 f837ee9 b88f708 39c8921 b88f708 39c8921 f837ee9 96b6780 39c8921 b88f708 39c8921 f837ee9 cbc840b b88f708 39c8921 f67d206 b88f708 39c8921 cbc840b 39c8921 cbc840b b88f708 cbc840b b88f708 cbc840b 39c8921 b88f708 cbc840b 39c8921 c3b581c f837ee9 c3b581c cbc840b f837ee9 cbc840b f67d206 39c8921 f67d206 f837ee9 f67d206 f837ee9 b88f708 39c8921 b88f708 cbc840b f20a187 cbc840b f20a187 f837ee9 f67d206 f20a187 f837ee9 f67d206 f837ee9 f67d206 c3b581c cbc840b f837ee9 b88f708 96b6780 cbc840b f837ee9 b88f708 f837ee9 c3b581c b88f708 cbc840b b88f708 f837ee9 cbc840b f837ee9 cbc840b f837ee9 cbc840b c3b581c f837ee9 cbc840b f837ee9 f20a187 cbc840b f837ee9 cbc840b f837ee9 b88f708 cbc840b f837ee9 b88f708 f837ee9 c3b581c f837ee9 b88f708 f20a187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import streamlit as st
import torch
import openai
import os
import time
from PIL import Image
import tempfile
import clip # from OpenAI CLIP repo
import torch.nn.functional as F
import requests
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from rouge_score import rouge_scorer
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
# Set device
openai.api_key = os.getenv("OPENAI_API_KEY")
# Load MBart
translator_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt",
device_map="auto",
low_cpu_mem_usage=True
)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"
# Load GPT-2
gen_model = AutoModelForCausalLM.from_pretrained("gpt2", device_map="auto", low_cpu_mem_usage=True)
gen_model.eval()
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Load CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
# ---- Translation ----
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt")
inputs = {k: v.to(translator_model.device) for k, v in inputs.items()}
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# ---- Creative Text ----
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt")
input_ids = input_ids.to(gen_model.device)
output = gen_model.generate(
input_ids,
max_length=max_length,
do_sample=True,
top_k=50,
temperature=0.9
)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
rep_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(gen_model.device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(rep_rate, 4), round(perplexity, 4)
# ---- Image Generation ----
def generate_image(prompt):
try:
start = time.time()
response = openai.images.generate(
model="dall-e-3",
prompt=prompt,
size="512x512",
quality="standard",
n=1
)
image_url = response.data[0].url
image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image_data.save(tmp_file.name)
duration = round(time.time() - start, 2)
# CLIP similarity
image_input = clip_preprocess(image_data).unsqueeze(0).to(device)
text_input = clip.tokenize([prompt]).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_input)
similarity = F.cosine_similarity(image_features, text_features).item()
return tmp_file.name, duration, round(similarity, 4)
except Exception as e:
return None, None, f"Image generation failed: {str(e)}"
# ---- Streamlit UI ----
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
st.title("π§ Tamil β English + π¨ Creative Text + πΌοΈ AI Image")
tamil_input = st.text_area("βοΈ Enter Tamil text", height=150)
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
if st.button("π Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("π Translating..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"β
Translated in {t_time}s")
st.markdown(f"**π English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"π ROUGE-L Score: `{rouge_l}`")
with st.spinner("πΌοΈ Generating image..."):
image_path, img_time, clip_score = generate_image(english_text)
if image_path:
st.success(f"πΌοΈ Image generated in {img_time}s using OpenAI DALLΒ·E 3")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
st.markdown(f"π **CLIP Text-Image Similarity:** `{clip_score}`")
else:
st.error(clip_score)
with st.spinner("π‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"β¨ Creative text in {c_time}s")
st.markdown(f"**π§ Creative Output:** `{creative}`")
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`, π Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + OpenAI DALLΒ·E 3")
|