File size: 5,809 Bytes
cbc840b
b88f708
f20a187
cbc840b
b88f708
f20a187
 
f837ee9
f20a187
39c8921
 
 
f20a187
f837ee9
b88f708
39c8921
 
b88f708
39c8921
f837ee9
96b6780
 
 
 
39c8921
b88f708
 
39c8921
 
f837ee9
cbc840b
b88f708
39c8921
 
f67d206
b88f708
39c8921
cbc840b
 
39c8921
 
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
39c8921
b88f708
cbc840b
39c8921
 
 
c3b581c
f837ee9
 
 
 
 
c3b581c
cbc840b
 
 
 
f837ee9
cbc840b
f67d206
39c8921
f67d206
 
f837ee9
f67d206
f837ee9
b88f708
39c8921
b88f708
cbc840b
 
f20a187
 
 
 
 
 
 
 
 
 
cbc840b
f20a187
f837ee9
f67d206
f20a187
 
f837ee9
f67d206
 
 
f837ee9
f67d206
c3b581c
cbc840b
f837ee9
b88f708
96b6780
cbc840b
f837ee9
b88f708
f837ee9
c3b581c
b88f708
cbc840b
b88f708
 
 
f837ee9
cbc840b
 
f837ee9
cbc840b
 
f837ee9
cbc840b
c3b581c
f837ee9
cbc840b
f837ee9
f20a187
cbc840b
f837ee9
cbc840b
f837ee9
b88f708
cbc840b
f837ee9
b88f708
f837ee9
c3b581c
f837ee9
b88f708
 
f20a187
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import streamlit as st
import torch
import openai
import os
import time
from PIL import Image
import tempfile
import clip  # from OpenAI CLIP repo
import torch.nn.functional as F
import requests
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from rouge_score import rouge_scorer
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize

# Set device
openai.api_key = os.getenv("OPENAI_API_KEY")

# Load MBart
translator_model = MBartForConditionalGeneration.from_pretrained(
    "facebook/mbart-large-50-many-to-many-mmt",
    device_map="auto",
    low_cpu_mem_usage=True
)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"

# Load GPT-2
gen_model = AutoModelForCausalLM.from_pretrained("gpt2", device_map="auto", low_cpu_mem_usage=True)
gen_model.eval()
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")

# Load CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)

# ---- Translation ----
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt")
    inputs = {k: v.to(translator_model.device) for k, v in inputs.items()}
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# ---- Creative Text ----
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt")
    input_ids = input_ids.to(gen_model.device)

    output = gen_model.generate(
        input_ids,
        max_length=max_length,
        do_sample=True,
        top_k=50,
        temperature=0.9
    )
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    rep_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0

    with torch.no_grad():
        input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(gen_model.device)
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    return text, duration, len(tokens), round(rep_rate, 4), round(perplexity, 4)

# ---- Image Generation ----
def generate_image(prompt):
    try:
        start = time.time()
        response = openai.images.generate(
            model="dall-e-3",
            prompt=prompt,
            size="512x512",
            quality="standard",
            n=1
        )
        image_url = response.data[0].url
        image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))

        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image_data.save(tmp_file.name)
        duration = round(time.time() - start, 2)

        # CLIP similarity
        image_input = clip_preprocess(image_data).unsqueeze(0).to(device)
        text_input = clip.tokenize([prompt]).to(device)
        with torch.no_grad():
            image_features = clip_model.encode_image(image_input)
            text_features = clip_model.encode_text(text_input)
            similarity = F.cosine_similarity(image_features, text_features).item()

        return tmp_file.name, duration, round(similarity, 4)
    except Exception as e:
        return None, None, f"Image generation failed: {str(e)}"

# ---- Streamlit UI ----
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + πŸ–ΌοΈ AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time}s")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")

        with st.spinner("πŸ–ΌοΈ Generating image..."):
            image_path, img_time, clip_score = generate_image(english_text)

        if image_path:
            st.success(f"πŸ–ΌοΈ Image generated in {img_time}s using OpenAI DALLΒ·E 3")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
            st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
        else:
            st.error(clip_score)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)

        st.success(f"✨ Creative text in {c_time}s")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")

st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + OpenAI DALLΒ·E 3")