|
--- |
|
tags: |
|
- sklearn |
|
- regression |
|
- automotive |
|
- mpg |
|
--- |
|
|
|
# Auto MPG Predictor |
|
|
|
This model predicts a vehicle's fuel efficiency (miles per gallon) based on its characteristics. |
|
|
|
## Model Details |
|
|
|
- Model type: Linear Regression |
|
- Input features: cylinders, displacement, horsepower, weight, acceleration, model_year, origin_Japan, origin_USA |
|
- Target: mpg (miles per gallon) |
|
|
|
## How to Use |
|
|
|
```python |
|
from huggingface_hub import hf_hub_download |
|
import joblib |
|
|
|
# Download model and scaler |
|
model_path = hf_hub_download(repo_id="your-username/auto-mpg-regressor", filename="auto_mpg_regressor.joblib") |
|
scaler_path = hf_hub_download(repo_id="your-username/auto-mpg-regressor", filename="scaler.joblib") |
|
|
|
model = joblib.load(model_path) |
|
scaler = joblib.load(scaler_path) |
|
|
|
# Prepare input data (same order as features in config) |
|
import numpy as np |
|
sample_input = np.array([[6, 225, 100, 3233, 15.4, 76, 0, 1]]) # Example input |
|
|
|
# Preprocess |
|
scaled_input = scaler.transform(sample_input) |
|
|
|
# Predict |
|
prediction = model.predict(scaled_input) |
|
print(f"Predicted MPG: {prediction[0]}") |