--- tags: - sklearn - regression - automotive - mpg --- # Auto MPG Predictor This model predicts a vehicle's fuel efficiency (miles per gallon) based on its characteristics. ## Model Details - Model type: Linear Regression - Input features: cylinders, displacement, horsepower, weight, acceleration, model_year, origin_Japan, origin_USA - Target: mpg (miles per gallon) ## How to Use ```python from huggingface_hub import hf_hub_download import joblib # Download model and scaler model_path = hf_hub_download(repo_id="your-username/auto-mpg-regressor", filename="auto_mpg_regressor.joblib") scaler_path = hf_hub_download(repo_id="your-username/auto-mpg-regressor", filename="scaler.joblib") model = joblib.load(model_path) scaler = joblib.load(scaler_path) # Prepare input data (same order as features in config) import numpy as np sample_input = np.array([[6, 225, 100, 3233, 15.4, 76, 0, 1]]) # Example input # Preprocess scaled_input = scaler.transform(sample_input) # Predict prediction = model.predict(scaled_input) print(f"Predicted MPG: {prediction[0]}")