quickmt-zh-en / README.md
radinplaid's picture
Update README.md
d8d6087 verified
---
language:
- zh
- en
tags:
- translation
license: cc-by-4.0
datasets:
- quickmt/quickmt-train.zh-en
model-index:
- name: quickmt-zh-en
results:
- task:
name: Translation zho-eng
type: translation
args: zho-eng
dataset:
name: flores101-devtest
type: flores_101
args: zho_Hans eng_Latn devtest
metrics:
- name: BLEU
type: bleu
value: 29.36
- name: CHRF
type: chrf
value: 58.10
---
# `quickmt-zh-en` Neural Machine Translation Model
`quickmt-zh-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `zh` into `en`.
## Model Information
* Trained using [`eole`](https://github.com/eole-nlp/eole)
* 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
* Separate source and target Sentencepiece tokenizers
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
See the `eole` model configuration in this repository for further details.
## Usage with `quickmt`
First, install `quickmt` and download the model
```bash
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en
```
```python
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-zh-en/", device="auto")
# Translate - set beam size to 5 for higher quality (but slower speed)
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1)
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
```
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
## Metrics
BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("zho_Hans"->"eng_Latn"). COMET22 with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32.
| Model | bleu | chrf2 | comet22 | Time (s) |
| -------------------------------- | ----- | ----- | ---- | ---- |
| quickmt/quickmt-zh-en | 29.36 | 58.10 | 0.8655 | 0.88 |
| Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.8426 | 3.78 |
| facebook/m2m100_418M | 15.99 | 50.13 | 0.7881 | 16.61 |
| facebook/nllb-200-distilled-600M | 26.22 | 55.18 | 0.8507 | 20.89 |
| facebook/m2m100_1.2B | 20.30 | 54.23 | 0.8206 | 33.12 |
| facebook/nllb-200-distilled-1.3B | 28.56 | 57.35 | 0.8620 | 36.64 |
`quickmt-zh-en` is the fastest *and* highest quality.