--- language: - zh - en tags: - translation license: cc-by-4.0 datasets: - quickmt/quickmt-train.zh-en model-index: - name: quickmt-zh-en results: - task: name: Translation zho-eng type: translation args: zho-eng dataset: name: flores101-devtest type: flores_101 args: zho_Hans eng_Latn devtest metrics: - name: BLEU type: bleu value: 29.36 - name: CHRF type: chrf value: 58.10 --- # `quickmt-zh-en` Neural Machine Translation Model `quickmt-zh-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `zh` into `en`. ## Model Information * Trained using [`eole`](https://github.com/eole-nlp/eole) * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers * Separate source and target Sentencepiece tokenizers * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main See the `eole` model configuration in this repository for further details. ## Usage with `quickmt` First, install `quickmt` and download the model ```bash git clone https://github.com/quickmt/quickmt.git pip install ./quickmt/ quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en ``` ```python from quickmt import Translator # Auto-detects GPU, set to "cpu" to force CPU inference t = Translator("./quickmt-zh-en/", device="auto") # Translate - set beam size to 5 for higher quality (but slower speed) t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1) # Get alternative translations by sampling # You can pass any cTranslate2 `translate_batch` arguments t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9) ``` The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. ## Metrics BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("zho_Hans"->"eng_Latn"). COMET22 with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32. | Model | bleu | chrf2 | comet22 | Time (s) | | -------------------------------- | ----- | ----- | ---- | ---- | | quickmt/quickmt-zh-en | 29.36 | 58.10 | 0.8655 | 0.88 | | Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.8426 | 3.78 | | facebook/m2m100_418M | 15.99 | 50.13 | 0.7881 | 16.61 | | facebook/nllb-200-distilled-600M | 26.22 | 55.18 | 0.8507 | 20.89 | | facebook/m2m100_1.2B | 20.30 | 54.23 | 0.8206 | 33.12 | | facebook/nllb-200-distilled-1.3B | 28.56 | 57.35 | 0.8620 | 36.64 | `quickmt-zh-en` is the fastest *and* highest quality.