|
import os |
|
import sys |
|
import numpy as np |
|
import h5py |
|
import scipy.io as spio |
|
import nibabel as nib |
|
|
|
import torch |
|
import torchvision |
|
import torchvision.models as tvmodels |
|
import torchvision.transforms as transforms |
|
from torch.utils.data import DataLoader, Dataset |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import clip |
|
|
|
import skimage.io as sio |
|
from skimage import data, img_as_float |
|
from skimage.transform import resize as imresize |
|
from skimage.metrics import structural_similarity as ssim |
|
import scipy as sp |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser(description='Argument Parser') |
|
parser.add_argument("-sub", "--sub", help="Subject Number", default=1) |
|
args = parser.parse_args() |
|
sub = int(args.sub) |
|
assert sub in [0, 1, 2, 5, 7] |
|
|
|
images_dir = 'data/nsddata_stimuli/test_images' |
|
feats_dir = 'data/eval_features/test_images' |
|
|
|
if sub in [1, 2, 5, 7]: |
|
feats_dir = f'data/eval_features/subj{sub:02d}' |
|
images_dir = f'results/versatile_diffusion/subj{sub:02d}' |
|
|
|
if not os.path.exists(feats_dir): |
|
os.makedirs(feats_dir) |
|
|
|
class batch_generator_external_images(Dataset): |
|
def __init__(self, data_path='', prefix='', net_name='clip'): |
|
self.data_path = data_path |
|
self.prefix = prefix |
|
self.net_name = net_name |
|
|
|
if self.net_name == 'clip': |
|
self.normalize = transforms.Normalize( |
|
mean=[0.48145466, 0.4578275, 0.40821073], |
|
std=[0.26862954, 0.26130258, 0.27577711] |
|
) |
|
else: |
|
self.normalize = transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225] |
|
) |
|
self.num_test = 982 |
|
|
|
def __getitem__(self, idx): |
|
img = Image.open(f'{self.data_path}/{self.prefix}{idx}.png') |
|
img = T.functional.resize(img, (224, 224)) |
|
img = T.functional.to_tensor(img).float() |
|
img = self.normalize(img) |
|
return img |
|
|
|
def __len__(self): |
|
return self.num_test |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
global feat_list |
|
feat_list = [] |
|
|
|
def fn(module, inputs, outputs): |
|
feat_list.append(outputs.cpu().numpy()) |
|
|
|
net_list = [ |
|
('inceptionv3', 'avgpool'), |
|
('clip', 'final'), |
|
('alexnet', 2), |
|
('alexnet', 5), |
|
('efficientnet', 'avgpool'), |
|
('swav', 'avgpool') |
|
] |
|
|
|
batchsize = 64 |
|
|
|
for (net_name, layer) in net_list: |
|
feat_list = [] |
|
print(net_name, layer) |
|
|
|
dataset = batch_generator_external_images(data_path=images_dir, net_name=net_name, prefix='') |
|
loader = DataLoader(dataset, batchsize, shuffle=False) |
|
|
|
if net_name == 'inceptionv3': |
|
net = tvmodels.inception_v3(pretrained=True) |
|
if layer == 'avgpool': |
|
net.avgpool.register_forward_hook(fn) |
|
elif layer == 'lastconv': |
|
net.Mixed_7c.register_forward_hook(fn) |
|
|
|
elif net_name == 'alexnet': |
|
net = tvmodels.alexnet(pretrained=True) |
|
if layer == 2: |
|
net.features[4].register_forward_hook(fn) |
|
elif layer == 5: |
|
net.features[11].register_forward_hook(fn) |
|
elif layer == 7: |
|
net.classifier[5].register_forward_hook(fn) |
|
|
|
elif net_name == 'clip': |
|
model, _ = clip.load("ViT-L/14", device=device) |
|
net = model.visual.to(torch.float32) |
|
if layer == 7: |
|
net.transformer.resblocks[7].register_forward_hook(fn) |
|
elif layer == 12: |
|
net.transformer.resblocks[12].register_forward_hook(fn) |
|
elif layer == 'final': |
|
net.register_forward_hook(fn) |
|
|
|
elif net_name == 'efficientnet': |
|
net = tvmodels.efficientnet_b1(weights='IMAGENET1K_V1') |
|
net.avgpool.register_forward_hook(fn) |
|
|
|
elif net_name == 'swav': |
|
net = torch.hub.load('facebookresearch/swav:main', 'resnet50') |
|
net.avgpool.register_forward_hook(fn) |
|
|
|
net.eval() |
|
net = net.to(device) |
|
|
|
with torch.no_grad(): |
|
for i, x in enumerate(loader): |
|
print(i * batchsize) |
|
x = x.to(device) |
|
_ = net(x) |
|
|
|
if net_name == 'clip': |
|
if layer == 7 or layer == 12: |
|
feat_list = np.concatenate(feat_list, axis=1).transpose((1, 0, 2)) |
|
else: |
|
feat_list = np.concatenate(feat_list) |
|
else: |
|
feat_list = np.concatenate(feat_list) |
|
|
|
file_name = f'{feats_dir}/{net_name}_{layer}.npy' |
|
np.save(file_name, feat_list) |
|
|