File size: 4,400 Bytes
46a8d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import sys
import numpy as np
import h5py
import scipy.io as spio
import nibabel as nib

import torch
import torchvision
import torchvision.models as tvmodels
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import torchvision.transforms as T
from PIL import Image
import clip

import skimage.io as sio
from skimage import data, img_as_float
from skimage.transform import resize as imresize
from skimage.metrics import structural_similarity as ssim
import scipy as sp

import argparse
parser = argparse.ArgumentParser(description='Argument Parser')
parser.add_argument("-sub", "--sub", help="Subject Number", default=1)
args = parser.parse_args()
sub = int(args.sub)
assert sub in [0, 1, 2, 5, 7]

images_dir = 'data/nsddata_stimuli/test_images'
feats_dir = 'data/eval_features/test_images'

if sub in [1, 2, 5, 7]:
    feats_dir = f'data/eval_features/subj{sub:02d}'
    images_dir = f'results/versatile_diffusion/subj{sub:02d}'

if not os.path.exists(feats_dir):
    os.makedirs(feats_dir)

class batch_generator_external_images(Dataset):
    def __init__(self, data_path='', prefix='', net_name='clip'):
        self.data_path = data_path
        self.prefix = prefix
        self.net_name = net_name

        if self.net_name == 'clip':
            self.normalize = transforms.Normalize(
                mean=[0.48145466, 0.4578275, 0.40821073],
                std=[0.26862954, 0.26130258, 0.27577711]
            )
        else:
            self.normalize = transforms.Normalize(
                mean=[0.485, 0.456, 0.406],
                std=[0.229, 0.224, 0.225]
            )
        self.num_test = 982

    def __getitem__(self, idx):
        img = Image.open(f'{self.data_path}/{self.prefix}{idx}.png')
        img = T.functional.resize(img, (224, 224))
        img = T.functional.to_tensor(img).float()
        img = self.normalize(img)
        return img

    def __len__(self):
        return self.num_test

# Set device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

global feat_list
feat_list = []

def fn(module, inputs, outputs):
    feat_list.append(outputs.cpu().numpy())

net_list = [
    ('inceptionv3', 'avgpool'),
    ('clip', 'final'),
    ('alexnet', 2),
    ('alexnet', 5),
    ('efficientnet', 'avgpool'),
    ('swav', 'avgpool')
]

batchsize = 64

for (net_name, layer) in net_list:
    feat_list = []
    print(net_name, layer)

    dataset = batch_generator_external_images(data_path=images_dir, net_name=net_name, prefix='')
    loader = DataLoader(dataset, batchsize, shuffle=False)

    if net_name == 'inceptionv3':
        net = tvmodels.inception_v3(pretrained=True)
        if layer == 'avgpool':
            net.avgpool.register_forward_hook(fn)
        elif layer == 'lastconv':
            net.Mixed_7c.register_forward_hook(fn)

    elif net_name == 'alexnet':
        net = tvmodels.alexnet(pretrained=True)
        if layer == 2:
            net.features[4].register_forward_hook(fn)
        elif layer == 5:
            net.features[11].register_forward_hook(fn)
        elif layer == 7:
            net.classifier[5].register_forward_hook(fn)

    elif net_name == 'clip':
        model, _ = clip.load("ViT-L/14", device=device)
        net = model.visual.to(torch.float32)
        if layer == 7:
            net.transformer.resblocks[7].register_forward_hook(fn)
        elif layer == 12:
            net.transformer.resblocks[12].register_forward_hook(fn)
        elif layer == 'final':
            net.register_forward_hook(fn)

    elif net_name == 'efficientnet':
        net = tvmodels.efficientnet_b1(weights='IMAGENET1K_V1')
        net.avgpool.register_forward_hook(fn)

    elif net_name == 'swav':
        net = torch.hub.load('facebookresearch/swav:main', 'resnet50')
        net.avgpool.register_forward_hook(fn)

    net.eval()
    net = net.to(device)

    with torch.no_grad():
        for i, x in enumerate(loader):
            print(i * batchsize)
            x = x.to(device)
            _ = net(x)

    if net_name == 'clip':
        if layer == 7 or layer == 12:
            feat_list = np.concatenate(feat_list, axis=1).transpose((1, 0, 2))
        else:
            feat_list = np.concatenate(feat_list)
    else:
        feat_list = np.concatenate(feat_list)

    file_name = f'{feats_dir}/{net_name}_{layer}.npy'
    np.save(file_name, feat_list)