YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Brain-Diffuser

Implementation and improvements to paper "Brain-Diffuser: Natural scene reconstruction from fMRI signals using generative latent diffusion" by Furkan Ozcelik and Rufin VanRullen.

Instructions

Requirements

  • Create conda environment using environment.yml in the main directory by entering conda env create -f environment.yml . It is an extensive environment and may include redundant libraries. You may also create environment by checking requirements yourself.

Data Acquisition and Processing

  1. Download NSD data from NSD AWS Server:
    cd data
    python download_nsddata.py
    
  2. Download "COCO_73k_annots_curated.npy" file from HuggingFace NSD
  3. Prepare NSD data for the Reconstruction Task:
    cd data
    python prepare_nsddata.py -sub 1
    python prepare_nsddata.py -sub 2
    python prepare_nsddata.py -sub 5
    python prepare_nsddata.py -sub 7
    

First Stage Reconstruction with VDVAE

  1. Download pretrained VDVAE model files and put them in vdvae/model/ folder
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-log.jsonl
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-model.th
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-model-ema.th
wget https://openaipublic.blob.core.windows.net/very-deep-vaes-assets/vdvae-assets-2/imagenet64-iter-1600000-opt.th
  1. Extract VDVAE latent features of stimuli images for any subject 'x' using python scripts/vdvae_extract_features.py -sub x
  2. Train regression models from fMRI to VDVAE latent features and save test predictions using python scripts/vdvae_regression.py -sub x
  3. Reconstruct images from predicted test features using python scripts/vdvae_reconstruct_images.py -sub x

Second Stage Reconstruction with Versatile Diffusion

  1. Download pretrained Versatile Diffusion model "vd-four-flow-v1-0-fp16-deprecated.pth", "kl-f8.pth" and "optimus-vae.pth" from HuggingFace and put them in versatile_diffusion/pretrained/ folder
  2. Extract CLIP-Vision features of stimuli images for any subject 'x' using python scripts/clipvision_extract_features.py -sub x -->
  3. Train regression models from fMRI to CLIP-Vision features and save test predictions using python scripts/clipvision_regression.py -sub x
  4. Reconstruct images from predicted test features using python scripts/versatilediffusion_reconstruct_images.py -sub x . This code is written as you are using two 12GB GPUs but you may edit according to your setup.

References

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support