seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
# Output bias:
self.b_out = tf.get_variable('b_out', [N_out], initializer=b_out_initializer,
trainable=self.b_out_train)
# ------------------------------------------------
# Non-trainable variables:
# Overall connectivity and Dale's law matrices
# ------------------------------------------------
# Recurrent Dale's law weight matrix:
self.Dale_rec = tf.get_variable('Dale_rec', [N_rec, N_rec],
initializer=tf.constant_initializer(self.dale_rec),
trainable=False)
# Output Dale's law weight matrix:
self.Dale_out = tf.get_variable('Dale_out', [N_rec, N_rec],
initializer=tf.constant_initializer(self.dale_out),
trainable=False)
# Connectivity weight matrices:
self.input_Connectivity = tf.get_variable('input_Connectivity', [N_rec, N_in],
initializer=tf.constant_initializer(
self.input_connectivity_mask),
| tensorflow.constant_initializer | 7,900 |
import tensorflow as tf
mode = session.run(
global_mode(),
feed_dict={tf.global_mode(): tf.estimator.ModeKeys.PREDICT})
# mode == tf.estimator.ModeKeys.PREDICT
"""
mode = tf.get_collection_ref(_GLOBAL_MODE_KEY)
if len(mode) < 1:
# mode_tensor = tf.placeholder(tf.string, name="global_mode")
mode_tensor = tf.placeholder_with_default(
input=tf.estimator.ModeKeys.TRAIN,
| tensorflow.get_collection_ref | 7,901 |
import tensorflow as tf
class_predictions_with_background,
tf.stack([combined_feature_map_shape[0],
| tensorflow.stack | 7,902 |
import tensorflow as tf
optimizer = tf.train.AdamOptimizer(rl_learning_rate)
| tensorflow.train.AdamOptimizer | 7,903 |
import tensorflow as tf
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
| tensorflow.FixedLenFeature | 7,904 |
import tensorflow as tf
self._train_meta = list(np.array(self._metadata)[train_indices])
self._test_meta = list(np.array(self._metadata)[test_indices])
self.test_steps = len(self._test_meta) // hparams.wavenet_batch_size
if hparams.wavenet_test_size is None:
assert hparams.wavenet_test_batches == self.test_steps
#Get conditioning status
self.local_condition, self.global_condition = self._check_conditions()
with tf.device('/cpu:0'):
# Create placeholders for inputs and targets. Don't specify batch size because we want
# to be able to feed different batch sizes at eval time.
if is_scalar_input(hparams.input_type):
input_placeholder = tf.placeholder(tf.float32, shape=(None, 1, None), name='audio_inputs')
target_placeholder = tf.placeholder(tf.float32, shape=(None, None, 1), name='audio_targets')
target_type = tf.float32
else:
input_placeholder = tf.placeholder(tf.float32, shape=(None, hparams.quantize_channels, None), name='audio_inputs')
target_placeholder = tf.placeholder(tf.int32, shape=(None, None, 1), name='audio_targets')
target_type = tf.int32
| tensorflow.device | 7,905 |
import tensorflow as tf
return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, 8, classes)
return tf.nn.seq2seq.model_with_buckets(
enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
softmax_loss_function=SampledLoss)
# Now we construct the copy model.
batch_size = 8
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
with tf.variable_scope("root"):
_, losses = SampleGRUSeq2Seq(inp, out, weights)
updates = []
params = tf.global_variables()
optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5)
for i in range(len(buckets)):
full_grads = tf.gradients(losses[i], params)
grads, _ = tf.clip_by_global_norm(full_grads, 30.0)
update = optimizer.apply_gradients(zip(grads, params))
updates.append(update)
sess.run([tf.global_variables_initializer()])
steps = 6
for _ in range(steps):
bucket = random.choice(np.arange(len(buckets)))
length = buckets[bucket][0]
i = [np.array([np.random.randint(9) + 1 for _ in range(batch_size)],
| tensorflow.global_variables | 7,906 |
import tensorflow as tf
y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a')
if encoder.position_bias and input_length is not None and time is not None:
src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1])
trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps])
src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1
pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
pos_feats = tf.log(1 + pos_feats)
y += dense(pos_feats, encoder.attn_size, use_bias=False, name='P_a')
if encoder.attn_filters:
filter_shape = [encoder.attn_filter_length * 2 + 1, 1, 1, encoder.attn_filters]
filter_ = get_variable('filter', filter_shape)
prev_weights = tf.reshape(prev_weights, tf.stack([batch_size, time_steps, 1, 1]))
conv = tf.nn.conv2d(prev_weights, filter_, [1, 1, 1, 1], 'SAME')
conv = tf.squeeze(conv, axis=2)
y += dense(conv, encoder.attn_size, use_bias=False, name='C_a')
v = get_variable('v_a', [encoder.attn_size])
return tf.reduce_sum(v * tf.tanh(y), axis=2)
def global_attention(state, hidden_states, encoder, encoder_input_length, scope=None, context=None, **kwargs):
with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)):
if context is not None and encoder.use_context:
state = tf.concat([state, context], axis=1)
e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs)
| tensorflow.nn.conv2d | 7,907 |
import tensorflow as tf
scaler = g / tf.sqrt(tf.reduce_sum(tf.square(V), [0]))
x = tf.reshape(scaler, [1, num_units]) * x + tf.reshape(b, [1, num_units])
| tensorflow.reshape | 7,908 |
import tensorflow as tf
# (weight/bias or contractive)
self.regularizers += list(chain.from_iterable([self.custom_regularizers[r]
for r in self._opts["regularizers"].keys()
if len(self.custom_regularizers[r]) > 0]))
self.update_ops += tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# ac_train_regularizers = tf.get_collection(get_ac_collection_name("train"))
# ac_validation_regularizers = tf.get_collection(get_ac_collection_name("validation"))
# ac_test_regularizers = tf.get_collection(get_ac_collection_name("test"))
| tensorflow.get_collection | 7,909 |
import tensorflow as tf
self.assertEqual(2, len(res[0]))
self.assertEqual((2, 2), res[0][0].c.shape)
self.assertEqual((2, 2), res[0][0].h.shape)
self.assertEqual((2, 2), res[0][1].c.shape)
self.assertEqual((2, 2), res[0][1].h.shape)
def testEmbeddingAttentionDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
cell = tf.nn.rnn_cell.GRUCell(2)
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)]
dec, mem = tf.nn.seq2seq.embedding_attention_decoder(
dec_inp, enc_state, attn_states, cell, num_symbols=4,
embedding_size=2, output_size=3)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
| tensorflow.nn.rnn_cell.GRUCell | 7,910 |
import tensorflow as tf
# Also, we can limit the size of GPU memory used, with the following option
config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)
| tensorflow.Session | 7,911 |
import tensorflow as tf
indices = tf.stack((batch_nums, step_nums, passage_word_idx), axis=2) # shape (batch_size, passage_length, 3)
indices = tf.reshape(indices, [-1, 3]) #[batch_size * passage_length, 3]
indices = tf.cast(indices, tf.int64)
shape = [batch_size, passage_length, extended_vsize]
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
return vocab_dist # [batch_size, extended_vsize]
def linear(args, output_size, bias=True, bias_start=0.0, scope=None):
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
if not isinstance(args, (list, tuple)):
args = [args]
| tensorflow.sparse_reduce_sum | 7,912 |
import tensorflow as tf
self.fetch_datasets()
if FLAGS.model == AUTOENCODER:
self.build_ae_model()
elif FLAGS.model == PREDICTIVE:
self.build_predictive_model()
else:
self.build_denoising_model()
self._init_optimizer()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self._on_training_start(sess)
try:
for current_epoch in range(FLAGS.max_epochs):
start = time.time()
full_set_blur = len(self.train_set) < 50000
ds = self._get_blurred_dataset() if full_set_blur else self.train_set
if FLAGS.model == AUTOENCODER:
| tensorflow.global_variables_initializer | 7,913 |
import tensorflow as tf
def SampledLoss(labels, inputs):
labels = tf.reshape(labels, [-1, 1])
return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, 8, classes)
return tf.nn.seq2seq.model_with_buckets(
enc_inp, dec_inp, targets, weights, buckets, GRUSeq2Seq,
softmax_loss_function=SampledLoss)
# Now we construct the copy model.
batch_size = 8
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)]
with tf.variable_scope("root"):
_, losses = SampleGRUSeq2Seq(inp, out, weights)
updates = []
params = tf.global_variables()
optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5)
for i in range(len(buckets)):
full_grads = tf.gradients(losses[i], params)
grads, _ = tf.clip_by_global_norm(full_grads, 30.0)
| tensorflow.placeholder | 7,914 |
import tensorflow as tf
output = state[:, -cell_output_size:]
if decoder.conditional_rnn:
with tf.variable_scope('conditional_1'):
output, state = update(state, input_)
elif decoder.update_first:
output, state = update(state, input_, None, ids)
elif decoder.generate_first:
output, state = tf.cond(tf.equal(time, 0),
lambda: (output, state),
lambda: update(state, input_, context, ids))
context, new_weights = look(time, output, input_, pos=pos, prev_weights=prev_weights, context=context)
if decoder.conditional_rnn:
with tf.variable_scope('conditional_2'):
| tensorflow.equal | 7,915 |
import tensorflow as tf
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
| tensorflow.reshape | 7,916 |
import tensorflow as tf
c_hot_flat = tf.reshape(
c_hot, shape=[-1, self.hparams.num_blocks, self.hparams.block_v_size])
h1 = tf.matmul(tf.transpose(c_hot_flat, perm=[1, 0, 2]), self.means)
h1 = tf.transpose(h1, perm=[1, 0, 2])
h1 = tf.reshape(h1, shape=h1_shape)
h1_shape[0] = self.hparams.batch_size
| tensorflow.transpose | 7,917 |
import tensorflow as tf
with tf.name_scope(name, "click_loglikelihood"):
ob_prob=tf.nn.softmax(propensity)
rel_prob=tf.nn.softmax(train_output)
click_prob=ob_prob*rel_prob
click_prob_norm=click_prob/tf.reduce_sum(click_prob,axis=1,keep_dims=True)
label_dis = labels/ tf.reduce_sum(labels, 1, keep_dims=True)
entropy = tf.reduce_sum(tf.math.log(click_prob_norm)*label_dis,1)
return tf.reduce_mean(entropy)
| tensorflow.reduce_sum | 7,918 |
import tensorflow as tf
tf.shape(images)[1:3],
scales_to_logits_reversed[MERGED_LOGITS_SCOPE].dtype)
outputs_to_predictions[output].append(
tf.expand_dims(tf.nn.softmax(logits_reversed), 4))
for output in sorted(outputs_to_predictions):
predictions = outputs_to_predictions[output]
# Compute average prediction across different scales and flipped images.
predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
outputs_to_predictions[output] = tf.argmax(predictions, 3, output_type=tf.dtypes.int32)
outputs_to_predictions[output + PROB_SUFFIX] = tf.nn.softmax(predictions)
return outputs_to_predictions
def predict_labels(images, model_options):
| tensorflow.concat | 7,919 |
import tensorflow as tf
# NOTE: this is RELU specific
def dOmega_dWrec(self):
# states in shape timesteps, batch, n_rec
states = self.states
dxt_list = tf.gradients(self.error, states)
#dxt_list[0] = tf.Print(dxt_list[0], [dxt_list[0]], "dxt 0: ")
test = tf.gradients(states[0], states[-1])
dxt = tf.stack(dxt_list)
xt = tf.stack(states)
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
| tensorflow.stack | 7,920 |
import tensorflow as tf
return (loss, per_example_loss, log_probs)
def get_next_sentence_output(bert_config, input_tensor, labels):
"""Get loss and log probs for the next sentence prediction."""
# Simple binary classification. Note that 0 is "next sentence" and 1 is
# "random sentence". This weight matrix is not used after pre-training.
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
| tensorflow.zeros_initializer | 7,921 |
import tensorflow as tf
`session.run`) with these TensorFlow objects as the input.
"""
# Split the fetches to two structures.
py_fetches, tf_fetches = [], []
placeholder_empty_tuple = ()
assert isinstance(fetches, list), 'fetches should be a list.'
for fetch in fetches:
if isinstance(fetch, dict):
d_py, d_tf = py_utils.split_dict_py_tf(fetch)
py_fetches.append(d_py)
tf_fetches.append(d_tf)
elif tf.is_tensor(fetch):
py_fetches.append(None)
tf_fetches.append(fetch)
else:
py_fetches.append(fetch)
# This empty tuple is here as a marker to retain the value from
# py_fetches, while keeping the list length same for simplicity of
# reconstruction. This is effectively None, but self.evaluate does not
# accept None as an input argument.
tf_fetches.append(placeholder_empty_tuple)
| tensorflow.is_tensor | 7,922 |
import tensorflow as tf
img_batch=img,
boxes=outputs[0],
scores=outputs[1],
labels=outputs[2],
method=1,
is_csl=True)
tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img)
loss_dict = outputs[-1]
total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu)
if i == num_gpu - 1:
regularization_losses = tf.get_collection(
tf.GraphKeys.REGULARIZATION_LOSSES)
# weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
total_losses = total_losses + tf.add_n(regularization_losses)
tf.get_variable_scope().reuse_variables()
grads = optimizer.compute_gradients(total_losses)
if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
tower_grads.append(grads)
self.log_printer(r3det_dcl, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph)
if __name__ == '__main__':
trainer = TrainR3DetDCL(cfgs)
trainer.main() | tensorflow.add_n | 7,923 |
import tensorflow as tf
with tf.name_scope('AccumGradOptimizer'):
ops = []
for s, gv in zip(slots, grads_and_vars):
g, v = gv
ops.append(s.assign_add(g))
update_counter = tf.assign_add(counter, 1, name='update_counter')
update_slot_op = tf.group(update_counter, *ops, name='update_slot')
def update_grad():
update_op = self._opt.apply_gradients(slots_and_vars)
with tf.control_dependencies([update_op]):
clear_ops = [tf.assign(s, tf.zeros_like(s)) for s in slots]
return tf.group(*clear_ops, name='update_grad')
pred = tf.equal(tf.mod(counter, self._niter), 0)
with tf.control_dependencies([update_slot_op]):
if name is None:
name = 'cond_update_grad'
op = tf.cond(pred, update_grad, tf.no_op, name=name).op
return op
if __name__ == '__main__':
| tensorflow.zeros_like | 7,924 |
import tensorflow as tf
tf.summary.histogram('advantage', adv)
tf.summary.histogram('action_probability', self.mu_ph)
if tf_util.is_image(self.observation_space):
tf.summary.image('observation', train_model.obs_ph)
else:
tf.summary.histogram('observation', train_model.obs_ph)
trainer = tf.train.RMSPropOptimizer(learning_rate=self.learning_rate_ph, decay=self.rprop_alpha,
epsilon=self.rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
| tensorflow.summary.histogram | 7,925 |
from tensorflow.contrib.learn.python.learn.datasets import base
base.shrink_csv(train_path, 1000)
base.shrink_csv(test_path, 1000)
train_path = train_path.replace('train.csv', 'train_small.csv')
test_path = test_path.replace('test.csv', 'test_small.csv')
else:
module_path = os.path.dirname(__file__)
train_path = os.path.join(module_path, 'data', 'text_train.csv')
test_path = os.path.join(module_path, 'data', 'text_test.csv')
train = base.load_csv_without_header(
train_path, target_dtype=np.int32, features_dtype=np.str, target_column=0)
test = base.load_csv_without_header(
test_path, target_dtype=np.int32, features_dtype=np.str, target_column=0)
return base.Datasets(train=train, validation=None, test=test)
| tensorflow.contrib.learn.python.learn.datasets.base.Datasets | 7,926 |
import tensorflow as tf
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, FLAGS.num_classes), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
| tensorflow.cast | 7,927 |
import tensorflow as tf
Z = tf.layers.dense(Z, n_basis//2)
# Define variational parameters
alpha_mean = tf.get_variable('alpha_mean_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_logstd = tf.get_variable('alpha_logstd_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_std = tf.exp(alpha_logstd)
# Compute epsilon from {n_samples} standard Gaussian
# epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out])
epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out])
hyp_params = tf.get_variable('hyp_params_layer'+str(h),
shape=[2],
initializer=tf.random_normal_initializer())
l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1])
epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2
# Compute A_{h+1}
A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1])
# Compute z_{h}A_{h+1}
Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5)
Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5)
# Compute u_{h+1} and v_{h+1}
U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2)
Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.)
KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2.
# Output layer
else:
| tensorflow.random_normal_initializer | 7,928 |
import tensorflow as tf
def get_xavier_weights(filter_shape, poolsize=(2, 2), name=None):
fan_in = np.prod(filter_shape[1:])
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) //
np.prod(poolsize))
low = -4*np.sqrt(6.0/(fan_in + fan_out)) # use 4 for sigmoid, 1 for tanh activation
high = 4*np.sqrt(6.0/(fan_in + fan_out))
weights = np.random.uniform(low=low, high=high, size=filter_shape)
return safe_get(name, filter_shape, initializer=tf.constant_initializer(weights))
def get_he_weights(filter_shape, name=None):
fan_in = np.prod(filter_shape[1:])
stddev = np.sqrt(2.6/fan_in)
weights = stddev * np.random.randn(filter_shape[0], filter_shape[1], filter_shape[2], filter_shape[3])
return safe_get(name, filter_shape, initializer=tf.constant_initializer(weights))
| tensorflow.constant_initializer | 7,929 |
import tensorflow as tf
sample["targets"].append(text_encoder.EOS_ID)
sample["dist_targets"] = vocab.encode(sample["dist_targets"])
sample["dist_targets"].append(text_encoder.EOS_ID)
yield sample
def generate_samples(self, data_dir, tmp_dir, dataset_split):
data_path = self.source_data_files(dataset_split)
assert tf.gfile.Exists(data_path)
return text_problems.text2text_distill_iterator(data_path + "inputs",
data_path + "gold",
data_path + "prediction")
| tensorflow.gfile.Exists | 7,930 |
import tensorflow as tf
itms = input_training_masks_split[i]
total_loss, model_loss = tower_loss(iis, isms, igms, itms, reuse_variables)
batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
reuse_variables = True
grads = opt.compute_gradients(total_loss)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
summary_op = tf.summary.merge_all()
# save moving average
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# batch norm updates
with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
train_op = tf.no_op(name='train_op')
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph())
| tensorflow.summary.merge_all | 7,931 |
import tensorflow as tf
def minibatch_discrimination(x, n_kernels, dim_per_kernel, name):
with tf.variable_scope(name):
batch_size, nf = x.get_shape().as_list()
h = linear(x, [nf, n_kernels*dim_per_kernel], 'h1')
activation = tf.reshape(h, (batch_size, n_kernels, dim_per_kernel))
big = tf.eye(batch_size)
big = tf.expand_dims(big, 1)
abs_dif = tf.reduce_sum(tf.abs(tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)), 2)
mask = 1. - big
masked = tf.exp(-abs_dif) * mask
def half(tens, second):
m, n, _ = tens.get_shape().as_list()
return tf.slice(tens, [0, 0, second*(batch_size/2)], [m, n, batch_size/2])
f1 = tf.reduce_sum(half(masked, 0), 2) / tf.reduce_sum(half(mask, 0))
| tensorflow.transpose | 7,932 |
import tensorflow as tf
# Load the model
input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
facenet.load_model(args.model, input_map=input_map)
# Get output tensor
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
#
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord, sess=sess)
evaluate(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
embeddings, label_batch, paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, args.distance_metric, args.subtract_mean,
args.use_flipped_images, args.use_fixed_image_standardization, args.warmup_steps, args.max_steps)
| tensorflow.train.Coordinator | 7,933 |
import tensorflow as tf
assert (len(input_dims) == 4) # batch_size, height, width, num_channels_in
assert (len(filter_dims) == 3) # height, width and num_channels out
assert (len(stride_dims) == 2) # stride height and width
num_channels_in = input_dims[-1]
filter_h, filter_w, num_channels_out = filter_dims
stride_h, stride_w = stride_dims
with tf.variable_scope(scope):
conv_weight = tf.Variable(
tf.truncated_normal([filter_h, filter_w, num_channels_in, num_channels_out], stddev=0.1, dtype=tf.float32))
conv_bias = tf.Variable(tf.zeros([num_channels_out], dtype=tf.float32))
map = tf.nn.conv2d(input, conv_weight, strides=[1, stride_h, stride_w, 1], padding=padding, dilations=dilation)
if bias is True:
map = tf.nn.bias_add(map, conv_bias)
if non_linear_fn is not None:
activation = non_linear_fn(map)
else:
activation = map
| tensorflow.zeros | 7,934 |
import tensorflow as tf
return 196.0 * 21.0 / 4096.0
else:
rec = tf.cast(kw * kh, tf.float32)
n_max = 7 + tf.math.ceil(tf.math.log(rec) / tf.math.log(2.))
ns = tf.range(0., n_max)
ns_pow = tf.pow(2., ns)
ks = tf.round(ns_pow / rec)
diffs = tf.math.abs(ks / ns_pow - 1 / rec)
n = tf.argmin(diffs)
k = ks[n]
scale = k / tf.pow(2., tf.cast(n, tf.float32))
scale *= rec
| tensorflow.round | 7,935 |
from tensorflow.python.ops import math_ops
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), self.dtype), self.alpha,
message="mean not defined for components of self.alpha <= 1"),
], mean)
@distribution_util.AppendDocstring(
"""Variance for inverse gamma is defined only for `alpha > 2`. If
`self.allow_nan_stats` is `False`, an exception will be raised rather
than returning `NaN`.""")
def _variance(self):
var = (math_ops.square(self.beta) /
(math_ops.square(self.alpha - 1.) * (self.alpha - 2.)))
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
self.alpha > 2., var,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
constant_op.constant(2., dtype=self.dtype), self.alpha,
message="variance not defined for components of alpha <= 2"),
], var)
| tensorflow.python.ops.math_ops.square | 7,936 |
import tensorflow as tf
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 3), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
| tensorflow.nn.seq2seq.embedding_tied_rnn_seq2seq | 7,937 |
import tensorflow as tf
[int(feature.is_real_example)])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
| tensorflow.FixedLenFeature | 7,938 |
import tensorflow as tf
_debug(self.conv4)
self.conv4 = self._residual_block('conv4_2', self.conv4, 256)
_debug(self.conv4)
with tf.variable_scope('conv5_x'):
self.conv5 = self._residual_block('conv5_1', self.conv4, 512, pool_first=True, strides=2)
_debug(self.conv5)
self.conv5 = self._residual_block('conv5_2', self.conv5, 512)
_debug(self.conv5)
if self.test_classification:
with tf.variable_scope('logits'):
print('Building unit: logits')
self.score = tf.reduce_mean(self.conv5, axis=[1, 2])
self.score = self._fc('logits_dense', self.score, output_dim=self.num_classes, l2_strength=self.wd)
print('logits-shape: ' + str(self.score.shape.as_list()))
self.feed1 = self.conv4
self.feed2 = self.conv3
self.encoder_1 = self.conv2
self.encoder_2 = self.conv3
self.encoder_3 = self.conv4
self.encoder_4 = self.conv5
print("\nEncoder RESNET is built successfully\n\n")
| tensorflow.reduce_mean | 7,939 |
import tensorflow as tf
num_examples = len(features)
# This is for demo purposes and does NOT scale to large data sets. We do
# not use Dataset.from_generator() because that uses tf.py_func which is
# not TPU compatible. The right way to load data is with TFRecordReader.
d = tf.data.Dataset.from_tensor_slices({
"input_ids":
tf.constant(
all_input_ids, shape=[num_examples, seq_length],
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
| tensorflow.constant | 7,940 |
import tensorflow as tf
false_fn=lambda: (
tf.concat([vz_keys, tf.reshape(u, (-1, 1))], axis=0), tf.constant(1, dtype=tf.int64))
)
vz.insert(u, r)
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])),
false_fn=lambda: tf.constant(0, dtype=tf.int64)
)
kk = tf.math.add(kk, to_add)
| tensorflow.size | 7,941 |
import tensorflow as tf
# visualization
fig = vis.get_figure()
fig.canvas.draw()
self.vis_placeholder = tf.placeholder(tf.uint8, ut.fig2rgb_array(fig).shape)
self.vis_summary = tf.summary.image('visualization', self.vis_placeholder)
# embedding
dists = l2(self.embedding_test[:-1] - self.embedding_test[1:])
self.dist = dists
metrics = []
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
| tensorflow.placeholder | 7,942 |
import tensorflow as tf
if start >= self.train_data_len:
start = 0
new_epoch_flag = True
yield x_batch, y_batch
def init_summaries(self):
"""
Create the summary part of the graph
:return:
"""
with tf.variable_scope('train-summary-per-epoch'):
for tag in self.scalar_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag)
self.summary_ops[tag] = tf.summary.scalar(tag, self.summary_placeholders[tag])
for tag, shape in self.images_summary_tags:
self.summary_tags += tag
self.summary_placeholders[tag] = tf.placeholder('float32', shape, name=tag)
self.summary_ops[tag] = tf.summary.image(tag, self.summary_placeholders[tag], max_outputs=10)
def add_summary(self, step, summaries_dict=None, summaries_merged=None):
"""
Add the summaries to tensorboard
:param step:
:param summaries_dict:
:param summaries_merged:
:return:
"""
if summaries_dict is not None:
| tensorflow.summary.scalar | 7,943 |
import tensorflow as tf
"""
n_bits_x = self.hparams.n_bits_x
n_bins = 2**n_bits_x
x = tf.cast(x, dtype=tf.float32)
if n_bits_x < 8:
x = tf.floor(x / 2 ** (8 - n_bits_x))
| tensorflow.cast | 7,944 |
import tensorflow as tf
self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0]
self.a_bound = (env.action_space.high - env.action_space.low) / 2
self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action')
self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
| tensorflow.placeholder | 7,945 |
import tensorflow as tf
return out
def simple_model_w_feat_eng(img_in, num_actions, scope, reuse=False):
with tf.variable_scope(scope, reuse=reuse):
out = img_in
out = layers.flatten(out)
# stddev = 1/n, where n = number of inputs
gauss_initializer = initializers.xavier_initializer(uniform=False)
with tf.variable_scope("action_value"):
out = layers.fully_connected(
out,
num_outputs=num_actions,
activation_fn=tf.nn.relu,
biases_initializer=None,
weights_initializer=gauss_initializer,
weights_regularizer=None)
return out
| tensorflow.variable_scope | 7,946 |
import tensorflow as tf
vdict = {}
pi = tf.constant(np.pi, dtype=tf.float64, name="pi")
sqrt2pi = tf.constant(np.sqrt(2 * np.pi), dtype=tf.float64, name="sqrt2pi")
two = tf.constant(2, dtype=tf.float64, name="two")
one = tf.constant(1, dtype=tf.float64, name="one")
zero = tf.constant(0, dtype=tf.float64, name="zero")
| tensorflow.constant | 7,947 |
import tensorflow as tf
activation=tf.nn.relu,
# initializer=tf.truncated_normal_initializer(stddev=0.1),
# initializer=tf.random_uniform_initializer(-0.003, 0.003),
initializer=tf.contrib.layers.xavier_initializer(),
state_is_tuple=True)
if not forward_only:
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(cell=lstm_cell, output_keep_prob=self.dropout_output)
# lstm_cell = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell] * 4, state_is_tuple=True)
if not forward_only:
embed_inputs = tf.nn.dropout(embed_inputs, keep_prob=self.dropout_input)
rnn_outputs, output_states = tf.nn.dynamic_rnn(
cell=lstm_cell,
inputs=embed_inputs,
dtype=tf.float32,
sequence_length=self.seq_len,
) ## (batch_size, seq_len, num_hidden)
# rnn_outputs = tf.transpose(rnn_outputs, perm=[1,0,2]) ## (seq_len, batch_size, num_hidden) NOT NEEDED ANY MORE
| tensorflow.nn.dropout | 7,948 |
import tensorflow as tf
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
| tensorflow.concat | 7,949 |
import tensorflow as tf
loss = 0.0
def while_exit_cond(result, logits, loss): # pylint: disable=unused-argument
"""Exit the loop either if reach decode_length or EOS."""
length = common_layers.shape_list(result)[1]
not_overflow = length < decode_length
if self._problem_hparams.stop_at_eos:
def fn_not_eos():
return tf.not_equal( # Check if the last predicted element is a EOS
tf.squeeze(result[:, -1, :, :]), text_encoder.EOS_ID)
not_eos = tf.cond(
# We only check for early stoping if there is at least 1 element (
# otherwise not_eos will crash)
tf.not_equal(length, 0),
fn_not_eos,
lambda: True,
)
return tf.cond(
tf.equal(batch_size, 1),
| tensorflow.squeeze | 7,950 |
import tensorflow as tf
Returns:
* masks: list of masks for weight sparsification
* prune_op: pruning operation
"""
masks, prune_ops = [], []
with tf.variable_scope(self.mask_scope):
for var, var_name_n_prune_ratio in zip(self.maskable_vars, self.var_names_n_prune_ratios):
# obtain the dynamic pruning ratio
assert var.name == var_name_n_prune_ratio[0], \
'unmatched variable names: %s vs. %s' % (var.name, var_name_n_prune_ratio[0])
prune_ratio = self.__calc_prune_ratio_dyn(var_name_n_prune_ratio[1])
# create a mask and non-masked backup for each variable
name = var.name.replace(':0', '_mask')
mask = tf.get_variable(name, initializer=tf.ones(var.shape), trainable=False)
name = var.name.replace(':0', '_var_bkup')
var_bkup = tf.get_variable(name, initializer=var.initialized_value(), trainable=False)
# create update operations
var_bkup_update_op = var_bkup.assign(tf.where(mask > 0.5, var, var_bkup))
with tf.control_dependencies([var_bkup_update_op]):
mask_thres = tf.contrib.distributions.percentile(tf.abs(var_bkup), prune_ratio * 100)
mask_update_op = mask.assign(tf.cast(tf.abs(var_bkup) > mask_thres, tf.float32))
with tf.control_dependencies([mask_update_op]):
prune_op = var.assign(var_bkup * mask)
# record pruning masks & operations
masks += [mask]
prune_ops += [prune_op]
| tensorflow.ones | 7,951 |
from tensorflow.contrib.eager.python.examples.linear_regression import linear_regression
for _ in range(num_epochs):
linear_regression.fit(model, dataset, optimizer)
| tensorflow.contrib.eager.python.examples.linear_regression.linear_regression.fit | 7,952 |
import tensorflow as tf
val_summaries.append(tf.summary.scalar(key, var))
for key, var in self._score_summaries.items(): #self._score_summaries.update(self._anchor_targets) self._score_summaries.update(self._proposal_targets)
self._add_score_summary(key, var)
for var in self._act_summaries: # 添加head网络和rpn层
self._add_act_summary(var)
'''
for var in tf.trainable_variables():
self._train_summaries.append(var)
'''
for var in self._train_summaries: #添加tf.trainable_variables(),显示张量分布监控数据随着迭代轮数的变化趋势
self._add_train_summary(var)
self._summary_op = tf.summary.merge_all() # tf.summary.merge_all()函数来整理所有的日志生成操作
if not testing:
self._summary_op_val = tf.summary.merge(val_summaries)
return layers_to_output
def get_variables_to_restore(self, variables, var_keep_dic):
raise NotImplementedError
def fix_variables(self, sess, pretrained_model):
raise NotImplementedError
# Extract the head feature maps, for example for vgg16 it is conv5_3
# only useful during testing mode
def extract_head(self, sess, image):
feed_dict = {self._image: image}
| tensorflow.summary.merge | 7,953 |
import tensorflow as tf
def build_no_ops():
return (tf.no_op(), tf.no_op())
| tensorflow.no_op | 7,954 |
import tensorflow as tf
initial_state = get_variable(shape=[cell_state_size], name='initial_state')
initial_state = tf.tile(tf.expand_dims(initial_state, axis=0), [batch_size, 1])
| tensorflow.expand_dims | 7,955 |
import tensorflow as tf
indices_input = tf.reshape(indices_input, [2, -1])
indices_input = tf.transpose(indices_input)
res = tf.sparse_to_dense(
indices_input, [n_elem, n_indices], 1., 0., name="flat_one_hot")
| tensorflow.sparse_to_dense | 7,956 |
import tensorflow as tf
"""Run cnn in benchmark mode. When forward_only on, it forwards CNN."""
(enqueue_ops, fetches) = self._build_model()
main_fetch_group = tf.group(*fetches)
execution_barrier = None
if self.job_name and not FLAGS.cross_replica_sync:
execution_barrier = self.add_sync_queues_and_barrier(
'execution_barrier_', [])
global_step = tf.contrib.framework.get_global_step()
with tf.device(self.global_step_device):
with tf.control_dependencies([main_fetch_group]):
inc_global_step = global_step.assign_add(1)
fetches.append(inc_global_step)
if self.job_name and FLAGS.cross_replica_sync:
# Block all replicas until all replicas are ready for next step.
fetches.append(self.add_sync_queues_and_barrier(
'sync_queues_step_end_', [main_fetch_group]))
| tensorflow.device | 7,957 |
import tensorflow as tf
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2])] * 3
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp2, cell, num_symbols=5, embedding_size=2,
feed_previous=tf.constant(True))
sess.run([tf.global_variables_initializer()])
tf.get_variable_scope().reuse_variables()
d1, _ = tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_symbols=5, embedding_size=2,
| tensorflow.constant | 7,958 |
from tensorflow.python.ops import math_ops
loss_unweighted = self._loss_fn(logits, target)
weight_tensor = self.get_weight_tensor(features)
if weight_tensor is None:
return math_ops.reduce_mean(loss_unweighted, name=name)
loss_weighted = self._weighted_loss(loss_unweighted, weight_tensor)
return math_ops.reduce_mean(loss_weighted, name=name)
| tensorflow.python.ops.math_ops.reduce_mean | 7,959 |
import tensorflow as tf
import tensorflow as tf
import numpy as np
class BaseModel(object):
"""Holds code shared between all the different model variants."""
def __init__(self, batch_size, max_sequence_len, out_vocab_size, c2v,
dropout_keep_prob=0.0):
self._batch_size = batch_size
self._dropout_keep_prob = dropout_keep_prob
self._out_vocab_size = out_vocab_size
self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len],
name='x')
self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size],
name='y')
# The bidirectional rnn code requires seq_lens as int64
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
embeddings = c2v.GetEmbeddings(self.x)
self._inputs = [tf.squeeze(input_, [1]) for input_ in
tf.split(1, max_sequence_len, embeddings)]
# Need to prepare a mask to zero out the padding symbols.
# Make a batch_size x max_sequence_len matrix where each
# row contains the length repeated max_sequence_len times.
| tensorflow.placeholder | 7,960 |
import tensorflow as tf
'biases', [num_out_channels], self.data_type,
tf.constant_initializer(0.0))
biased = tf.reshape(
tf.nn.bias_add(
conv, biases, data_format=self.data_format),
conv.get_shape())
else:
self.top_layer = conv
self.top_size = num_out_channels
biased = self.batch_norm(**self.batch_norm_config)
if activation == 'relu':
conv1 = tf.nn.relu(biased)
elif activation == 'linear' or activation is None:
conv1 = biased
elif activation == 'tanh':
conv1 = tf.nn.tanh(biased)
else:
raise KeyError('Invalid activation type \'%s\'' % activation)
self.top_layer = conv1
self.top_size = num_out_channels
return conv1
def mpool(self,
k_height,
k_width,
d_height=2,
d_width=2,
mode='VALID',
input_layer=None,
num_channels_in=None):
| tensorflow.nn.tanh | 7,961 |
import tensorflow as tf
with self.test_session() as sess:
# Build a graph with 2 parameter nodes, and Save and
# Restore nodes for them.
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(20.0, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, restore_sequentially=True)
tf.initialize_all_variables().run()
# Check that the parameter nodes have been initialized.
self.assertEqual(10.0, v0.eval())
| tensorflow.train.Saver | 7,962 |
import tensorflow as tf
# Check that the parameter nodes have been initialized.
self.assertEqual(10.0, v0.eval())
self.assertEqual(20.0, v1.eval())
# Save the initialized values in the file at "save_path"
val = save.save(sess, save_path)
self.assertTrue(isinstance(val, six.string_types))
self.assertEqual(save_path, val)
# Start a second session. In that session the variables
# have not been initialized either.
with self.test_session(graph=tf.Graph()) as sess:
v0 = tf.Variable(-1.0, name="v0")
v1 = tf.Variable(-1.0, name="v1")
save = tf.train.Saver([v0, v1])
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v0" in e.message):
sess.run(v0)
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v1" in e.message):
sess.run(v1)
# Restore the saved values in the parameter nodes.
save.restore(sess, save_path)
| tensorflow.Variable | 7,963 |
from tensorflow.contrib.slim.python.slim import queues
width = 280
with self.cached_session():
test_dataset = _create_tfrecord_dataset(dataset_dir)
provider = dataset_data_provider.DatasetDataProvider(test_dataset)
key, image, label = provider.get(['record_key', 'image', 'label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
key, image, label = sess.run([key, image, label])
split_key = key.decode('utf-8').split(':')
self.assertEqual(2, len(split_key))
self.assertEqual(test_dataset.data_sources[0], split_key[0])
self.assertTrue(split_key[1].isdigit())
self.assertListEqual([height, width, 3], list(image.shape))
self.assertListEqual([1], list(label.shape))
| tensorflow.contrib.slim.python.slim.queues.QueueRunners | 7,964 |
import tensorflow as tf
to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
return to_tf
def _softmax_layer(self, bottom, name):
if name == 'rpn_cls_prob_reshape':
input_shape = tf.shape(bottom)
# tf.reshape()中-1的应用,-1表示不知道该填什么数字合适的情况下,可以选择,由python通过原数组和其他的值推测出来
# 每一行是1个anchor的前景、背景得分,先显示所有点产生的第一种anchor,然后是所有点产生的第二种anchor,........
bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]])
reshaped_score = tf.nn.softmax(bottom_reshaped, name=name)
return tf.reshape(reshaped_score, input_shape) # [1,none,none,2]
return tf.nn.softmax(bottom, name=name)
def _proposal_top_layer(self, rpn_cls_prob, rpn_bbox_pred, name):
with tf.variable_scope(name):
rois, rpn_scores = tf.py_func(proposal_top_layer,
[rpn_cls_prob, rpn_bbox_pred, self._im_info,
self._feat_stride, self._anchors, self._num_anchors],
[tf.float32, tf.float32])
| tensorflow.nn.softmax | 7,965 |
import tensorflow as tf
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
| tensorflow.train.Saver | 7,966 |
from tensorflow.contrib.layers.python.layers import feature_column_ops
def _get_linear_feature_columns(self):
if not self._linear_feature_columns:
return None
feature_column_ops.check_feature_columns(self._linear_feature_columns)
return sorted(set(self._linear_feature_columns), key=lambda x: x.key)
def _get_dnn_feature_columns(self):
if not self._dnn_feature_columns:
return None
feature_column_ops.check_feature_columns(self._dnn_feature_columns)
return sorted(set(self._dnn_feature_columns), key=lambda x: x.key)
def _dnn_logits(self, features, is_training):
return self._dnn_model.build_model(
features, self._dnn_feature_columns, is_training)
def _linear_logits(self, features, is_training):
return self._linear_model.build_model(
features, self._linear_feature_columns, is_training)
| tensorflow.contrib.layers.python.layers.feature_column_ops.check_feature_columns | 7,967 |
import tensorflow as tf
ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6)
ratio = tf.clip_by_value(ratio, 0, 10)
surr1 = batch['advantage'] * ratio
surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay)
loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2))
loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf))
loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy())
loss = loss_pg + loss_vf + loss_entropy
opt = tf.train.AdamOptimizer(self.LR)
self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params)
| tensorflow.square | 7,968 |
import tensorflow as tf
return loss
def compute_error_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
| tensorflow.where | 7,969 |
import tensorflow as tf
state_is_tuple=True)
inp = tf.constant(0.5, shape=[2, 2, 2])
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
for e in enc_outputs])
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
dec, mem = tf.nn.seq2seq.attention_decoder(
dec_inp, enc_state,
attn_states, cell, output_size=4)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual(2, len(res[0]))
self.assertEqual((2, 2), res[0][0].c.shape)
self.assertEqual((2, 2), res[0][0].h.shape)
| tensorflow.global_variables_initializer | 7,970 |
import tensorflow as tf
model = p.cls(p)
model._task.CreateChild('a',
layers.BatchNormLayer.Params().Set(name='a', dim=1))
model._task._train_op = tf.no_op()
model._task.ApplyExponentialMovingAverage(model.ema)
with tf.variable_scope('', reuse=True):
beta = tf.get_variable('a/beta/var')
mean = tf.get_variable('a/moving_mean/var')
self.assertIsNotNone(model.ema.average(beta))
self.assertIsNone(model.ema.average(mean))
class MultiTaskModelTest(tf.test.TestCase):
| tensorflow.get_variable | 7,971 |
import tensorflow as tf
pr_trainable = calc_prune_ratio(self.trainable_vars)
pr_maskable = calc_prune_ratio(self.maskable_vars)
tf.summary.scalar('pr_trainable', pr_trainable)
tf.summary.scalar('pr_maskable', pr_maskable)
| tensorflow.summary.scalar | 7,972 |
import tensorflow as tf
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
| tensorflow.train.Scaffold | 7,973 |
import tensorflow as tf
Returns
-------
act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
with tf.variable_scope(scope, reuse=reuse):
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
# Unmodified Q.
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
# Perturbable Q used for the actual rollout.
q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
# We have to wrap this code into a function due to the way tf.cond() works. See
# https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for
# a more detailed discussion.
| tensorflow.placeholder | 7,974 |
import tensorflow as tf
self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy())
self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy())
self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
def test_instance_non_maximum_suppression_1d_scores_empty_inputs(self):
masks = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32)
scores = tf.constant([], dtype=tf.float32)
classes = tf.constant([], dtype=tf.int32)
(nms_masks1,
nms_scores1,
nms_classes1,
_) = isu.instance_non_maximum_suppression_1d_scores(
masks,
scores,
classes,
min_score_thresh=0.65,
| tensorflow.constant | 7,975 |
import tensorflow as tf
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions={"probabilities": probabilities},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
| tensorflow.contrib.tpu.TPUEstimatorSpec | 7,976 |
import tensorflow as tf
# and due to the fact that the rightmost boundary is essentially ignored.
boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001
bucket_indices = tf_utils.assign_buckets(
tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries))
bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices))
counts = tf_utils.reorder_histogram(bucket_vocab, counts,
tf.size(boundaries) - 1)
| tensorflow.cast | 7,977 |
import tensorflow as tf
pmm1 = x * (2.0 * tf.cast(m, dtype=x.dtype) + 1.0) * pmm
# if, l == m + 1 return pmm1, otherwise lift to the next band.
res = tf.where(
tf.equal(l, m + 1), pmm1,
_evaluate_legendre_polynomial_loop(x, m, l, pmm, pmm1))
return res
def evaluate_legendre_polynomial(degree_l: TensorLike,
order_m: TensorLike,
x: TensorLike) -> TensorLike:
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
x = tf.convert_to_tensor(value=x)
pmm = _evaluate_legendre_polynomial_pmm_eval(order_m, x)
return tf.where(
tf.equal(degree_l, order_m), pmm,
_evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm))
def _spherical_harmonics_normalization(l, m, var_type=tf.float64):
l = tf.cast(l, dtype=var_type)
m = tf.cast(m, dtype=var_type)
| tensorflow.convert_to_tensor | 7,978 |
import tensorflow as tf
mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3))
image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image))
return image
def _add_drop_path(self, X, keep_prob):
with tf.variable_scope('drop_path'):
batch_size = tf.shape(X)[0]
noise_shape = (batch_size, 1, 1, 1)
random_tensor = keep_prob + tf.random_uniform(noise_shape, dtype=tf.float32)
binary_tensor = tf.floor(random_tensor)
X = (X / keep_prob) * binary_tensor
return X
| tensorflow.shape | 7,979 |
import tensorflow as tf
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
eval_metrics = (metric_fn,
[per_example_loss, label_ids, logits, is_real_example])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
| tensorflow.metrics.mean | 7,980 |
import tensorflow as tf
def maybe_avg(v):
if ema is not None and not init:
v = tf.cond(training, lambda: v, lambda: ema.average(v))
return v
if init:
x = tf.nn.conv2d(x, tf.nn.l2_normalize(V.initialized_value(), [0, 1, 2]), [1] + list(stride) + [1], pad)
init_scale=.01
m_init, v_init = tf.nn.moments(x, [0,1,2])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
with tf.control_dependencies([g.assign(g * scale_init), b.assign_add(-m_init * scale_init)]):
x = tf.reshape(scale_init, [1, 1, 1, num_filters]) * (x - tf.reshape(m_init, [1, 1, 1, num_filters]))
else:
V = maybe_avg(V)
g = maybe_avg(g)
b = maybe_avg(b)
# use weight normalization (Salimans & Kingma, 2016)
W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2])
| tensorflow.sqrt | 7,981 |
import tensorflow as tf
tf.train.get_or_create_global_step()
def model_loss(labels, chars, sequence_length):
predictions = model((chars, sequence_length), training=True)
loss_value = loss(labels, predictions)
tf.contrib.summary.scalar("loss", loss_value)
return loss_value
for (batch, (labels, chars, sequence_length)) in enumerate(
tfe.Iterator(train_data)):
with tf.contrib.summary.record_summaries_every_n_global_steps(log_interval):
batch_model_loss = functools.partial(model_loss, labels, chars,
sequence_length)
optimizer.minimize(
batch_model_loss, global_step=tf.train.get_global_step())
if log_interval and batch % log_interval == 0:
print("train/batch #%d\tloss: %.6f" % (batch, batch_model_loss()))
SOURCE_TRAIN_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/train.csv"
SOURCE_TEST_URL = "https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/archive/extras/colorbot/data/test.csv"
| tensorflow.contrib.summary.record_summaries_every_n_global_steps | 7,982 |
import tensorflow as tf
layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
else:
layer = tf.contrib.layers.batch_norm(layer, is_training=False, center=True,
scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None
elif norm_type == 'layer_norm': # layer_norm
| tensorflow.contrib.layers.batch_norm | 7,983 |
import tensorflow as tf
original_tensor_shape = tf.shape(tensor)
in_dim = int(tensor.get_shape()[-1])
rank = _rank(tensor)
if rank > 2:
# -- time distributed dense
tensor = tf.reshape(tensor, shape=(-1, in_dim))
name = opts.get("name", "")
if weight is None:
initializer = tf.contrib.layers.xavier_initializer(uniform=True)
weight = tf.get_variable("{}_dense_W".format(name), initializer=initializer(shape=(in_dim, hidden_dims)))
if bias is None:
bias = tf.get_variable("{}_dense_b".format(name), initializer=tf.zeros(shape=hidden_dims))
out = tf.add(tf.matmul(tensor, weight), bias)
if rank > 2:
# reshape back to time dimension
out = tf.reshape(out, shape=original_tensor_shape)
| tensorflow.contrib.layers.xavier_initializer | 7,984 |
import tensorflow as tf
import ultra.utils as utils
def sigmoid_prob(logits):
return tf.sigmoid(logits - tf.reduce_mean(logits, -1, keep_dims=True))
class DLA_atten(BaseAlgorithm):
"""The Dual Learning Algorithm for unbiased learning to rank.
| tensorflow.reduce_mean | 7,985 |
from tensorflow.python.training import saver as saver_lib
use_deprecated_input_fn=self._use_deprecated_input_fn)
except RuntimeError:
# Currently we are not syncronized with saving checkpoints, which leads to
# runtime errors when we are calling export on the same global step.
# Exports depend on saved checkpoints for constructing the graph and
# getting the global step from the graph instance saved in the checkpoint.
# If the checkpoint is stale with respect to current step, the global step
# is taken to be the last saved checkpoint's global step and exporter
# doesn't export the same checkpoint again with the following error.
logging.info("Skipping exporting because the existing checkpoint has "
"already been exported. "
"Consider exporting less frequently.")
def end(self, session=None):
super(ExportMonitor, self).end(session=session)
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.info("Skipping export at the end since model has not been saved "
"yet.")
return
try:
self._last_export_dir = self._estimator.export(
self.export_dir,
exports_to_keep=self.exports_to_keep,
signature_fn=self.signature_fn,
input_fn=self._input_fn,
default_batch_size=self._default_batch_size,
input_feature_key=self._input_feature_key,
use_deprecated_input_fn=self._use_deprecated_input_fn)
except RuntimeError:
| tensorflow.python.training.saver.latest_checkpoint | 7,986 |
import tensorflow as tf
name: Optional scope/name for op_scope.
Returns:
the l1+L2 loss op.
"""
with tf.name_scope(name):
weight_l1_t = tf.convert_to_tensor(weight_l1, dtype=var.dtype.base_dtype, name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2, dtype=var.dtype.base_dtype, name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(var)), name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(var), name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
def l1_regularizer(scale, name='l1_regularizer'):
"""Returns a function that can be used to apply L1 regularization to weights.
L1 regularization encourages sparsity.
| tensorflow.abs | 7,987 |
import tensorflow as tf
output_vars1 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="task_dependent")
output_vars2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="task_independent/Variable_1")
var_list = [output_vars1, output_vars2]
train_op = tf.train.AdamOptimizer(
# learning_rate=self.params["learning_rate"]
# **self.params.get("optimizer_params", {})
# learning_rate=learning_rate
| tensorflow.train.AdamOptimizer | 7,988 |
import tensorflow as tf
# set up weights for projection
if use_proj:
assert n_filters > projection_dim
with tf.variable_scope('CNN_proj') as scope:
W_proj_cnn = tf.get_variable(
"W_proj", [n_filters, projection_dim],
initializer=tf.random_normal_initializer(
mean=0.0, stddev=np.sqrt(1.0 / n_filters)),
dtype=DTYPE)
b_proj_cnn = tf.get_variable(
"b_proj", [projection_dim],
initializer=tf.constant_initializer(0.0),
dtype=DTYPE)
# apply highways layers
def high(x, ww_carry, bb_carry, ww_tr, bb_tr):
carry_gate = tf.nn.sigmoid(tf.matmul(x, ww_carry) + bb_carry)
transform_gate = tf.nn.relu(tf.matmul(x, ww_tr) + bb_tr)
return carry_gate * transform_gate + (1.0 - carry_gate) * x
if use_highway:
highway_dim = n_filters
| tensorflow.constant_initializer | 7,989 |
from tensorflow.python.ops import math_ops
return {}
def get_eval_ops(self, features, logits, labels, metrics=None):
loss = self.loss(logits, labels, features)
result = {"loss": metric_ops.streaming_mean(loss)}
# Adds default metrics.
if metrics is None:
# TODO(b/29366811): This currently results in both an "accuracy" and an
# "accuracy/threshold_0.500000_mean" metric for binary classification.
metrics = {("accuracy", "classes"): metric_ops.streaming_accuracy}
predictions = math_ops.sigmoid(logits)
labels_float = math_ops.to_float(labels)
default_metrics = self._default_eval_metrics()
for metric_name, metric_op in default_metrics.items():
result[metric_name] = metric_op(predictions, labels_float)
class_metrics = {}
proba_metrics = {}
for name, metric_op in six.iteritems(metrics):
if isinstance(name, tuple):
if len(name) != 2:
raise ValueError("Ignoring metric {}. It returned a tuple with "
"len {}, expected 2.".format(name, len(name)))
| tensorflow.python.ops.math_ops.to_float | 7,990 |
import tensorflow as tf
full_video, time_axis=1)
latent = common_video.get_gaussian_tensor(latent_mean, latent_std)
latent = tf.layers.flatten(latent)
latent = tf.expand_dims(latent, axis=1)
latent = tf.expand_dims(latent, axis=1)
latent_mask = tf.layers.dense(latent, filters, name="latent_mask")
zeros_mask = tf.zeros(
common_layers.shape_list(layer)[:-1] + [filters], dtype=tf.float32)
layer = tf.concat([layer, latent_mask + zeros_mask], axis=-1)
extra_loss = self.get_extra_loss(latent_mean, latent_std)
return layer, extra_loss
@registry.register_model
class NextFrameBasicStochasticDiscrete(
basic_deterministic.NextFrameBasicDeterministic):
| tensorflow.concat | 7,991 |
import tensorflow as tf
weights = tf.get_variable('weights', [prev_node, output_node],
initializer=tf.truncated_normal_initializer(stddev=0.1))
self.nnweights.append(weights)
biases = tf.get_variable('biases', [output_node],
initializer=tf.constant_initializer(0.0))
layer_out = tf.matmul(prev_x, weights) + biases
# Output of Network
y = layer_out
# Global step
with tf.variable_scope('training_step', reuse=tf.AUTO_REUSE):
global_step = tf.get_variable("global_step", [],
dtype=tf.int32,
initializer=tf.constant_initializer(0),
trainable=False)
# Loss value
reg_item = tf.contrib.layers.l1_l2_regularizer(L1_reg,
L2_reg)
reg_term = tf.contrib.layers.apply_regularization(reg_item, self.nnweights)
loss_fun = self._negative_log_likelihood(y_, y)
loss = loss_fun + reg_term
# SGD Optimizer
if optimizer == 'sgd':
lr = tf.train.exponential_decay(
learning_rate,
global_step,
1,
| tensorflow.constant_initializer | 7,992 |
import tensorflow as tf
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
| tensorflow.losses.sparse_softmax_cross_entropy | 7,993 |
import tensorflow as tf
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.compat.v1.Session() as sess:
# Run the initializer
sess.run(init)
# Add the fault injection code here to instrument the graph
# We start injecting the fault right away here unlike earlier
fi = ti.TensorFI(sess, name="NearestNeighbor", logLevel=50)
# loop over test data
| tensorflow.compat.v1.Session | 7,994 |
import tensorflow as tf
if b_init is None:
b_init = tf.constant_initializer()
w = tf.get_variable('W', filter_shape, initializer=w_init)
b = None
if use_bias:
b = tf.get_variable('b', [out_dims], initializer=b_init)
conv = tf.nn.atrous_conv2d(value=input_tensor, filters=w, rate=rate,
padding=padding, name='dilation_conv')
if use_bias:
ret = tf.add(conv, b)
else:
ret = conv
return ret
| tensorflow.nn.atrous_conv2d | 7,995 |
import tensorflow as tf
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = modeling.BertModel(
| tensorflow.logging.info | 7,996 |
import tensorflow as tf
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
| tensorflow.cast | 7,997 |
import tensorflow as tf
mask = tf.ones(shape=[1, h, w, 1])
update_mask = tf.layers.conv2d(mask, filters=1, dilation_rate=(dilation, dilation), name='mask' + id,
kernel_size=size, kernel_initializer=tf.constant_initializer(1.0),
strides=stride, padding="SAME", use_bias=False, trainable=False)
mask_ratio = slide_window / (update_mask + 1e-8)
update_mask = tf.clip_by_value(update_mask, 0.0, 1.0)
mask_ratio = mask_ratio * update_mask
with tf.variable_scope('parconv'):
x = tf.layers.conv2d(input, filters=channels, name='conv' + id, kernel_size=size, kernel_initializer=init,
strides=stride, padding="SAME", use_bias=False)
x = x * mask_ratio
if use_bias:
bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
return x * update_mask
| tensorflow.variable_scope | 7,998 |
from tensorflow.contrib.learn.python.learn.estimators import composable_model
model_dir=model_dir, config=config)
num_ps_replicas = config.num_ps_replicas if config else 0
self._linear_model = composable_model.LinearComposableModel(
num_label_columns=target_column.num_label_columns,
optimizer=linear_optimizer,
gradient_clip_norm=gradient_clip_norm,
num_ps_replicas=num_ps_replicas)
self._dnn_model = composable_model.DNNComposableModel(
num_label_columns=target_column.num_label_columns,
hidden_units=dnn_hidden_units,
optimizer=dnn_optimizer,
activation_fn=dnn_activation_fn,
dropout=dnn_dropout,
gradient_clip_norm=gradient_clip_norm,
num_ps_replicas=num_ps_replicas) if dnn_hidden_units else None
self._linear_feature_columns = linear_feature_columns
| tensorflow.contrib.learn.python.learn.estimators.composable_model.DNNComposableModel | 7,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.