seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
self.max_p_len = config.max_p_len
self.max_q_len = config.max_q_len
self.max_a_len = config.max_a_len
# the vocab
self.vocab = vocab
# session info
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = False
self.sess = tf.Session(config=sess_config)
self._build_graph()
# save info
self.saver = tf.train.Saver()
# initialize the model
self.sess.run(tf.global_variables_initializer())
def _build_graph(self):
| tensorflow.Session | 7,800 |
import tensorflow as tf
def build_cnet(self, state_in, name, reuse=False, batch_size=64):
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg)
lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256)
lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob)
state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32)
lstm_cin = tf.expand_dims(layer_c2, axis=1)
out_c, state_final_c = tf.nn.dynamic_rnn(cell=lstm_c, inputs=lstm_cin, initial_state=state_init_c)
cell_out_c = tf.reshape(out_c, [-1, 256])
vf = tf.layers.dense(cell_out_c, 1, kernel_regularizer=reg)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return vf, params, state_init_c, state_final_c
# Update the network
def train(self, rollout):
start = time()
self.sess.run([self.pi_new_params, self.vf_new_params])
for _ in range(self.EPOCHS):
np.random.shuffle(rollout)
for s, a, r, adv in rollout:
self.sess.run(self.data_iter.initializer, feed_dict={self.state: s, self.actions: a, self.rewards: r, self.advantage: adv})
state_a, state_c = self.sess.run([self.pi_state_init, self.vf_state_init])
| tensorflow.get_collection | 7,801 |
import tensorflow as tf
probs: matrix of probabilities for the minibatch
eps: value to clip the probabilities at
class_weights: vector of relative weights to be assigned to each class
sumd: dimensions along which to sum the x-ent matrix
Returns:
cross entropy loss for each example in the minibatch
"""
adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps)
xent_mat = -y * tf.log(adjusted_probs)
if class_weights is not None:
xent_mat *= class_weights
return tf.reduce_sum(xent_mat, sumd)
def _SafeNegEntropy(probs, batch_size, eps=0.0001):
"""Computes negative entropy in a way that will not overflow."""
adjusted_probs = tf.clip_by_value(probs, eps, 1.0 - eps)
entropy = tf.mul(probs, tf.log(adjusted_probs))
return tf.reduce_sum(entropy) / batch_size
| tensorflow.reduce_sum | 7,802 |
import tensorflow as tf
a = np.array([1, 2, 3], dtype=np.float32)
tf_v = tf.Variable(5, dtype=tf.float32)
sess.run(tf.global_variables_initializer())
print(f'a * tf_v = {sess.run(a * tf_v)}')
weights = tf.constant([[1.0, -2], [-3, 4]]);
regular_l1 = tf.contrib.layers.l1_regularizer(0.5)(weights)
regular_l2 = tf.contrib.layers.l2_regularizer(0.5)(weights)
print(f'\nregular_l1={sess.run(regular_l1)} regular_l2={sess.run(regular_l2)}')
val_val = sess.run(val)
print('\nval=' + str(val_val))
print(f'\nargmax_0={val_val.argmax(0)} argmax_1={val_val.argmax(1)}')
print('\ntf.argmax(val, 0)=' + str(sess.run(tf.argmax(val, 0))))
print('tf.argmax(val, 1)=' + str(sess.run(tf.argmax(val, 1))))
| tensorflow.contrib.layers.l1_regularizer | 7,803 |
import tensorflow as tf
labels.set_shape([cfg.FLAGS.batch_size, 1])
bbox_targets.set_shape([cfg.FLAGS.batch_size, self._num_classes * 4])
bbox_inside_weights.set_shape([cfg.FLAGS.batch_size, self._num_classes * 4])
bbox_outside_weights.set_shape([cfg.FLAGS.batch_size, self._num_classes * 4])
self._proposal_targets['rois'] = rois
self._proposal_targets['labels'] = tf.to_int32(labels, name="to_int32")
self._proposal_targets['bbox_targets'] = bbox_targets
self._proposal_targets['bbox_inside_weights'] = bbox_inside_weights
self._proposal_targets['bbox_outside_weights'] = bbox_outside_weights
self._score_summaries.update(self._proposal_targets) #self._score_summaries.update(self._anchor_targets)
| tensorflow.to_int32 | 7,804 |
import tensorflow as tf
vocab_filename: The name of the vocabulary.
unfiltered_vocabulary_size: A tf.int64 tensor containing the unfiltered
vocab size.
filtered_vocabulary_size: A tf.int64 tensor containing the filtered vocab
size.
"""
if not common.IS_ANNOTATIONS_PB_AVAILABLE:
return
from tensorflow_transform import annotations_pb2 # pylint: disable=g-import-not-at-top
message_type = annotations_pb2.VocabularyMetadata.DESCRIPTOR.full_name
unfiltered_vocabulary_size = tf.expand_dims(unfiltered_vocabulary_size, 0)
filtered_vocabulary_size = tf.expand_dims(filtered_vocabulary_size, 0)
file_name = tf.convert_to_tensor([vocab_filename])
descriptor_source = descriptor_pb2.FileDescriptorSet()
annotations_pb2.VocabularyMetadata.DESCRIPTOR.file.CopyToProto(
descriptor_source.file.add())
descriptor_source_str = b'bytes://' + descriptor_source.SerializeToString()
message_proto = tf_utils._encode_proto( # pylint: disable=protected-access
{
'unfiltered_vocabulary_size': unfiltered_vocabulary_size,
'filtered_vocabulary_size': filtered_vocabulary_size,
'file_name': file_name,
}, message_type, descriptor_source=descriptor_source_str)
assert message_proto.shape == [1]
message_proto = message_proto[0]
| tensorflow.convert_to_tensor | 7,805 |
import tensorflow as tf
# 定义一个卷积层,命名空间为name,输入为x,卷积核为W,步长为stride,偏差为bias,激活函数默认为relu
def conv2d(self,name, x, W, stride, bias):
with tf.variable_scope(name) as scope:
conv = tf.nn.conv2d(x, W, [1, stride, stride, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, bias)
output = tf.nn.relu(pre_activation, name=scope.name)
| tensorflow.nn.conv2d | 7,806 |
import tensorflow as tf
if init_constant is not None:
initializer = tf.constant_initializer(init_constant, dtype=tf.float32)
else:
initializer = tf.contrib.keras.initializers.he_normal()
# Ensure that name is unique by shape too
name += '-shape-{}'.format('x'.join([str(x) for x in shape]))
var = tf.get_variable(name, shape=shape, dtype=dtype, initializer=initializer, trainable=trainable)
# Add L2 regularization node for trainable var
if trainable and not no_reg:
l2_loss = tf.nn.l2_loss(var)
tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, l2_loss)
return var
class TimedRepeatCondition():
def __init__(self, every_secs=60):
self._every_secs = every_secs
self._last_trigger_time = datetime.now()
def check(self) -> bool:
if (datetime.now() - self._last_trigger_time).total_seconds() >= self._every_secs:
self._last_trigger_time = datetime.now()
return True
| tensorflow.add_to_collection | 7,807 |
import tensorflow as tf
# 定义一个weight,其中命名空间为name,形状为shape
def weight_variable(self,name, shape):
with tf.variable_scope(name) as scope:
weights = tf.get_variable('weights',
shape=shape,
| tensorflow.variable_scope | 7,808 |
import tensorflow as tf
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop1 = tf.layers.dropout(self.conv1, self.config.cifar10_cnn["keep_prob"], training=self.train)
self.pool1 = tf.layers.max_pooling2d(self.drop1, 2, 2)
self.conv2 = tf.layers.conv2d(self.pool1,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.drop2 = tf.layers.dropout(self.conv2, self.config.cifar10_cnn["keep_prob"], training=self.train)
self.pool2 = tf.layers.max_pooling2d(self.drop2, 2, 2)
self.conv3 = tf.layers.conv2d(self.pool2,
self.config.cifar10_cnn["num_filters"],
self.config.cifar10_cnn["filter_size"],
padding='same', activation=tf.nn.relu)
self.pool3 = tf.layers.max_pooling2d(self.conv3, 2, 2)
| tensorflow.layers.dropout | 7,809 |
import tensorflow as tf
| tensorflow.Session | 7,810 |
from tensorflow.python.framework import ops
cur_mean, cur_var = used_mean, used_var
# update variables
if train:
with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]):
with ops.colocate_with(mean):
new_mean = tf.assign_sub(
mean,
tf.check_numerics(
decay * (mean - cur_mean), "NaN in moving mean."))
| tensorflow.python.framework.ops.colocate_with | 7,811 |
import tensorflow as tf
def input_layer(self):
# data = np.loadtxt(self.params['vocab'], dtype=np.unicode, encoding=None)
data = self.params["vocab_data"]
mapping_strings = tf.Variable(data)
vocab_words = tf.contrib.lookup.index_table_from_tensor(
mapping_strings, num_oov_buckets=1
| tensorflow.Variable | 7,812 |
import tensorflow as tf
v0_2 = tf.Variable(543.21)
save = tf.train.Saver({"v0": v0_2})
tf.initialize_all_variables().run()
self.assertAllClose(543.21, v0_2.eval())
save.restore(sess, save_path)
self.assertAllClose(123.45, v0_2.eval())
def testVariables(self):
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(1.0)
twos = tf.Variable([2.0, 2.0, 2.0])
init = tf.initialize_all_variables()
save = tf.train.Saver(tf.all_variables())
init.run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(0.0)
twos = tf.Variable([0.0, 0.0, 0.0])
# Saver with no arg, defaults to 'all variables'.
save = tf.train.Saver()
save.restore(sess, save_path)
self.assertAllClose(1.0, one.eval())
self.assertAllClose([2.0, 2.0, 2.0], twos.eval())
| tensorflow.all_variables | 7,813 |
import tensorflow as tf
tf.summary.scalar("after_loss", model.after_loss)
if hparams.predict_linear:
tf.summary.scalar("linear_loss", model.linear_loss)
for i in range(hparams.tacotron_num_gpus):
tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
| tensorflow.summary.scalar | 7,814 |
import tensorflow as tf
1.0 / model_options.decoder_output_stride)
decoder_width = scale_dimension(model_options.crop_size[1],
1.0 / model_options.decoder_output_stride)
else:
decoder_height = scale_dimension(tf.shape(images)[1],
1.0 / model_options.decoder_output_stride)
decoder_width = scale_dimension(tf.shape(images)[2],
1.0 / model_options.decoder_output_stride)
features = refine_by_decoder(
features,
end_points,
decoder_height=decoder_height,
| tensorflow.shape | 7,815 |
import tensorflow as tf
def kd(x, y):
x_prob = tf.nn.softmax(x)
print(x_prob.get_shape(), y.get_shape(), tf.reduce_sum(x_prob * y, axis=-1).get_shape())
return -tf.reduce_sum(x_prob * y, axis=-1) # higher the better
def mse(x, y):
x = x - tf.reduce_mean(x, axis=-1, keepdims=True)
y = y - tf.reduce_mean(y, axis=-1, keepdims=True)
return tf.reduce_sum((x-y)**2, axis=-1) # lower the better
def kd_distance(x, y, dist_type):
if dist_type == "person":
return correlation(x,y)
elif dist_type == "kd":
return kd(x, y)
| tensorflow.reduce_mean | 7,816 |
import tensorflow as tf
weights = np.reshape(tmp[0:q**2+q], (q+1,q))
self.IRK_alpha = weights[0:-1,:]
self.IRK_beta = weights[-1:,:]
self.IRK_times = tmp[q**2+q:]
# tf placeholders and graph
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))
self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))
self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
self.u1_tf = tf.placeholder(tf.float32, shape=(None, self.u1.shape[1]))
self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradients
self.U0_pred = self.net_U0(self.x0_tf) # N0 x q
self.U1_pred = self.net_U1(self.x1_tf) # N1 x q
self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \
tf.reduce_sum(tf.square(self.u1_tf - self.U1_pred))
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,
method = 'L-BFGS-B',
options = {'maxiter': 50000,
'maxfun': 50000,
'maxcor': 50,
'maxls': 50,
| tensorflow.placeholder | 7,817 |
import tensorflow as tf
use_hvd=True):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
def input_fn(params):
"""The actual input function."""
# batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
| tensorflow.FixedLenFeature | 7,818 |
import tensorflow as tf
if config.PRED_DEBUG:
pred_indices_ = tf.squeeze(pred_indices)
| tensorflow.squeeze | 7,819 |
import tensorflow as tf
tf.range(start=0, limit=proposals_shape[0]), 1)
return tf.reshape(ones_mat * multiplier, [-1])
| tensorflow.reshape | 7,820 |
import tensorflow as tf
| tensorflow.executing_eagerly | 7,821 |
import tensorflow as tf
last_layer = tf.nn.relu(projected)
else:
raise NotImplementedError()
if mode == 'train' and dnn_keep_prob < 1.0:
last_layer = tf.nn.dropout(last_layer, dnn_keep_prob)
last_layer_size = layer_size
print('{}: {}'.format(layer_name, last_layer.get_shape()))
export_feat_tensors[layer_name] = last_layer
dnn_output = last_layer
dnn_output_size = last_layer_size
# Logistic regression
with tf.variable_scope('logit') as scope:
logit_w = tf.get_variable('W', shape=[dnn_output_size, 1], initializer=tf.truncated_normal_initializer(stddev=1.0 / dnn_output_size, dtype=dtype), dtype=dtype)
logit_b = tf.get_variable('b', shape=[1], initializer=tf.constant_initializer(0.0), dtype=dtype)
logits = tf.squeeze(tf.nn.bias_add(tf.matmul(dnn_output, logit_w), logit_b), squeeze_dims=[1])
prediction = tf.nn.sigmoid(logits)
prediction_inspect = tf.reshape(prediction, [batch_size, rnn_nunroll])
prediction_final = tf.squeeze(tf.slice(prediction_inspect, [0, rnn_nunroll - 1], [-1, 1]), squeeze_dims=[1])
print('logit: {}'.format(logits.get_shape()))
# Compute loss
if mode != 'gen':
neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
if target_weight_strategy == 'rect':
avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
| tensorflow.variable_scope | 7,822 |
import tensorflow as tf
s_w2, s_w4, s_w8, s_w16 = \
int(s_w/2), int(s_w/4), int(s_w/8), int(s_w/16)
output_z_ = lrelu(linear(trans_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
output_h0 = tf.reshape(output_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
output_h1 = lrelu(deconv2d(tf.concat([output_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
output_h2 = lrelu(deconv2d(tf.concat([output_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
output_h3 = lrelu(deconv2d(tf.concat([output_h2, tgtctx_h1], 3),
[self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3'))
output_h4 = deconv2d(tf.concat([output_h3, tgtctx_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4')
scope.reuse_variables()
truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin'))
truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8])
truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3),
[self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1'))
truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3),
[self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2'))
| tensorflow.concat | 7,823 |
import tensorflow as tf
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
rnn_params = tf.get_collection_ref("rnn_params")
if self._cell and rnn_params:
params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(
self._cell,
| tensorflow.get_collection_ref | 7,824 |
import tensorflow as tf
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
predict_examples.append(PaddingInputExample())
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
if not tf.gfile.Exists(predict_file) or not FLAGS.data_converted:
file_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
| tensorflow.logging.info | 7,825 |
import tensorflow as tf
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
if return_alphas:
return output, scores
return output
def self_attention(facts, ATTENTION_SIZE, mask, stag='null'):
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
def cond(batch, output, i):
return tf.less(i, tf.shape(batch)[1])
def body(batch, output, i):
| tensorflow.shape | 7,826 |
from tensorflow.python.framework import ops
`float32`, `float64`, `qint8`, `quint8`, or `qint32`.
ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.
strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.
padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
data_format: A string. 'NHWC' and 'NCHW" are supported.
name: Optional name for the operation.
Returns:
A `Tensor` with the same type as `value`. The average pooled output tensor.
"""
with ops.op_scope([value], name, "AvgPool") as name:
value = ops.convert_to_tensor(value, name="input")
return gen_nn_ops._avg_pool(value, ksize=ksize, strides=strides,
padding=padding,
data_format=data_format,
name=name)
def max_pool(value, ksize, strides, padding, data_format="NHWC", name=None):
"""Performs the max pooling on the input.
Args:
value: A 4-D `Tensor` with shape `[batch, height, width, channels]` and
| tensorflow.python.framework.ops.op_scope | 7,827 |
import tensorflow as tf
test = ContextAEReach()
elif args.experiment_type == "push":
test = ContextAEPush()
elif args.experiment_type == "pushreal":
test = ContextAEPushReal()
elif args.experiment_type == "sweep":
test = ContextAESweep()
test.build(tfinput, args.ablation_type)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
learning_rate = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(test.loss)
sess.run(tf.global_variables_initializer())
allloss = []
validloss = []
itr = 0
saver = tf.train.Saver()
n = vdata.shape[1]
nlen = vdata.shape[0]
ntrain = int(0.8*n)
nvalid = n - ntrain
validdata = vdata[:, ntrain:]
traindata = vdata[:, :ntrain]
while True:
choicesrc = np.random.choice(ntrain, batch_size)
| tensorflow.train.AdamOptimizer | 7,828 |
from tensorflow.python.ops import array_ops
return math_ops.igammac(math_ops.floor(x + 1), self.rate)
def _log_normalization(self):
return self.rate
def _log_unnormalized_prob(self, x):
x = self._assert_valid_sample(x, check_integer=True)
return x * math_ops.log(self.rate) - math_ops.lgamma(x + 1)
def _mean(self):
return array_ops.identity(self.rate)
def _variance(self):
return array_ops.identity(self.rate)
@distribution_util.AppendDocstring(
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
| tensorflow.python.ops.array_ops.identity | 7,829 |
import tensorflow as tf
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
# optimizer related configuration
tf.app.flags.DEFINE_integer(
'tf_random_seed', 20180417, 'Random seed for TensorFlow initializers.')
tf.app.flags.DEFINE_float(
'weight_decay', 1e-5, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'mse_weight', 1., 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('learning_rate', 1e-4, 'Initial learning rate.')#1e-3
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.000001,
'The minimal end learning rate used by a polynomial decay learning rate.')
tf.app.flags.DEFINE_float(
'warmup_learning_rate', 0.00001,
'The start warm-up learning rate to avoid NAN.')
tf.app.flags.DEFINE_integer(
| tensorflow.app.flags.DEFINE_float | 7,830 |
import tensorflow as tf
b_c = tf.get_variable('b_c', [self.H], initializer=self.const_initializer)
c = tf.nn.tanh(tf.matmul(features_mean, w_c) + b_c)
return c, h
def _word_embedding(self, inputs, reuse=False):
with tf.variable_scope('word_embedding', reuse=reuse):
w = tf.get_variable('w', [self.V, self.M], initializer=self.emb_initializer)
x = tf.nn.embedding_lookup(w, inputs, name='word_vector') # (N, T, M) or (N, M)
return x
def _project_features(self, features):
with tf.variable_scope('project_features'):
| tensorflow.get_variable | 7,831 |
import tensorflow as tf
# Bellman training error
if double_q:
q_max = gather_2d(q_target,tf.argmax(q_online_tp1,axis=1,output_type=tf.int32))
else:
q_max = tf.reduce_max(q_target,axis=1)
target = rew_t_ph + gamma * q_max * (1.0 - done_mask_ph)
q_t_act = gather_2d(q_online_t,act_t_ph)
total_error = tf.reduce_mean(huber_loss(target - q_t_act))
######
# construct optimization op (with gradient clipping)
learning_rate = tf.placeholder(tf.float32, (), name="learning_rate")
optimizer = optimizer_spec.constructor(learning_rate=learning_rate, **optimizer_spec.kwargs)
train_fn = minimize_and_clip(optimizer, total_error,
var_list=q_func_vars, clip_val=grad_norm_clipping)
# update_target_fn will be called periodically to copy Q network to target Q network
update_target_fn = []
for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
sorted(target_q_func_vars, key=lambda v: v.name)):
update_target_fn.append(var_target.assign(var))
update_target_fn = tf.group(*update_target_fn)
| tensorflow.placeholder | 7,832 |
import tensorflow as tf
indices_batch = np.random.randint(
batch_size, size=num_elements, dtype=np.int64)
indices_value = np.arange(num_elements, dtype=np.int64)
indices = np.asarray(
sorted(zip(indices_batch, indices_value)), dtype=np.int64)
values = ["feature_value_for_embedding_lookup"] * num_elements
shape = np.asarray([batch_size, num_elements], dtype=np.int64)
with tf.Session() as sess:
with tf.device("/cpu:0"):
indices = tf.Variable(indices)
values = tf.Variable(values)
shape = tf.Variable(shape)
st = tf.SparseTensor(indices, values, shape)
st_handles = add_many_sparse_to_tensors_map(st)
st_roundtrip = take_many_sparse_from_tensors_map(
sparse_map_op=st_handles.op, sparse_handles=st_handles)
st_roundtrip_op = st_roundtrip.values.op
st_serialized = tf.serialize_many_sparse(st)
| tensorflow.Variable | 7,833 |
import tensorflow as tf
shape=[num_examples, seq_length],
dtype=tf.int32),
"masked_lm_positions":
tf.constant(
all_masked_lm_positions,
shape=[num_examples, max_predictions_per_seq],
| tensorflow.constant | 7,834 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# Block 3
conv3a = Conv2D(padding="same", filters=RNN_SIZE//2, kernel_size=[3, 3], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=tf.nn.relu)(pool2)
| tensorflow.keras.layers.Conv2D | 7,835 |
import tensorflow as tf
lambda_max=None))
for support in supports:
self._supports.append(self._build_sparse_matrix(support))
@staticmethod
def _build_sparse_matrix(L):
L = L.tocoo()
indices = np.column_stack((L.row, L.col))
L = tf.SparseTensor(indices, L.data, L.shape)
return tf.sparse_reorder(L)
@property
def output_size(self):
output_size = self._num_nodes * self._num_units
if self._num_proj is not None:
output_size = self._num_nodes * self._num_proj
return output_size
| tensorflow.sparse_reorder | 7,836 |
import tensorflow as tf
name: The name scope of this layer.
Returns:
float logits Tensor.
"""
input_shape = get_shape_list(input_tensor)
num_attention_heads= input_shape[2]
with tf.variable_scope(name):
w = tf.get_variable(
name="kernel",
shape=[num_attention_heads * head_size, hidden_size],
initializer=initializer)
w = tf.reshape(w, [num_attention_heads, head_size, hidden_size])
b = tf.get_variable(
name="bias", shape=[hidden_size], initializer=tf.zeros_initializer)
ret = tf.einsum("BFND,NDH->BFH", input_tensor, w)
ret += b
if activation is not None:
return activation(ret)
else:
return ret
def dense_layer_2d(input_tensor,
| tensorflow.reshape | 7,837 |
import tensorflow as tf
attn_result = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: self_attention_for_selected_head(
head_selection, head_org_idx, sl_head, rep_head_mask,
dep_selection, dep_org_idx, sl_dep, rep_dep_mask,
rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec
)
)
if keep_unselected:
input_idx = tf.tile(tf.expand_dims(tf.range(sl), 0), [bs, 1])
pooling_result = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: mean_pooling_for_unselected_head(
unhead_org_idx, sl_unhead, rep_unhead_mask,
input_idx, sl, rep_mask, rep_map, None) # todo: point !
)
with tf.variable_scope('output'):
if keep_unselected:
range_head = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_head])
scatter_attn = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
| tensorflow.equal | 7,838 |
import tensorflow as tf
def body(batch, output, i):
self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :],
ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag,
mode='LIST')
self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1)
output = output.write(i, self_attention_tmp)
return batch, output, i + 1
| tensorflow.reduce_sum | 7,839 |
import tensorflow as tf
"""Inject a deterministic latent based on the target frame."""
del filters
hparams = self.hparams
final_filters = common_layers.shape_list(layer)[-1]
filters = hparams.hidden_size
kernel = (4, 4)
if hparams.mode == tf.estimator.ModeKeys.PREDICT:
layer_shape = common_layers.shape_list(layer)
if hparams.full_latent_tower:
rand = tf.random_uniform(layer_shape[:-1] + [hparams.bottleneck_bits])
else:
rand = tf.random_uniform(layer_shape[:-3] + [
1, 1, hparams.bottleneck_bits])
d = 2.0 * tf.to_float(tf.less(0.5, rand)) - 1.0
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
# Embed.
x = tf.layers.dense(
features["cur_target_frame"], filters, name="latent_embed",
bias_initializer=tf.random_normal_initializer(stddev=0.01))
x = common_attention.add_timing_signal_nd(x)
if hparams.full_latent_tower:
for i in range(hparams.num_compress_steps):
with tf.variable_scope("latent_downstride%d" % i):
x = common_layers.make_even_size(x)
if i < hparams.filter_double_steps:
filters *= 2
| tensorflow.layers.dense | 7,840 |
import tensorflow as tf
import tensorflow as tf
import numpy as np
import random
import math
class Simulator():
def __init__(self, type) -> None:
if type == 'D':
# deuteranope
self.color_matrix = tf.convert_to_tensor([[1, 0, 0], [0.494207, 0, 1.24827], [0, 0, 1]])
elif type == 'P':
# protanope
self.color_matrix = tf.convert_to_tensor([[0, 2.02344, -2.52581], [0, 1, 0], [0, 0, 1]])
elif type == 'T':
# tritanope
self.color_matrix = tf.convert_to_tensor([[1, 0, 0], [0, 1, 0], [-0.395913, 0.801109, 0]])
else:
raise("ERROR: invalid type passed into Simulator class (only accepts 'D', 'P', or 'T')")
self.rgb2lms = tf.convert_to_tensor([[17.8824, 43.5161, 4.11935], [3.45565, 27.1554, 3.86714], [0.0299566, 0.184309, 1.46709]])
def simulate_image(self, image):
# passes an image through the color-blindness simulator
inverted_rgb2lms = tf.linalg.inv(self.rgb2lms)
product1 = tf.matmul(inverted_rgb2lms, self.color_matrix)
product2 = tf.matmul(product1, self.rgb2lms)
original_image_shape = image.shape
| tensorflow.convert_to_tensor | 7,841 |
import tensorflow as tf
strides=stride, padding="SAME", use_bias=False)
x = x * mask_ratio
if use_bias:
bias = tf.get_variable("bias" + id, [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
return x * update_mask
if padding == "REFLECT":
| tensorflow.nn.bias_add | 7,842 |
import tensorflow as tf
# Compute loss
if mode != 'gen':
neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
if target_weight_strategy == 'rect':
avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
else:
neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
# be careful to have at least one weight be nonzero
# should we be taking the mean elem-wise by batch? i think this is a big bug
avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
neg_log_lhoods_inspect = tf.reshape(neg_log_lhoods, [batch_size, rnn_nunroll])
# Train op
if mode == 'train':
lr = tf.Variable(0.0, trainable=False)
self._lr = lr
self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
tvars = tf.trainable_variables()
grads = tf.gradients(avg_neg_log_lhood, tvars)
if grad_clip > 0.0:
grads, _ = tf.clip_by_global_norm(grads, grad_clip)
if opt == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(lr)
else:
raise NotImplementedError()
| tensorflow.Variable | 7,843 |
import tensorflow as tf
self.names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k',
'avg_norm_g', 'avg_norm_k_dot_g', 'avg_norm_adj']
self.train_model = train_model
self.step_model = step_model
self.step = step_model.step
self.proba_step = step_model.proba_step
self.initial_state = step_model.initial_state
tf.global_variables_initializer().run(session=self.sess)
self.summary = tf.summary.merge_all()
def _train_step(self, obs, actions, rewards, dones, mus, states, masks, steps, writer=None):
"""
applies a training step to the model
:param obs: ([float]) The input observations
| tensorflow.global_variables_initializer | 7,844 |
import tensorflow as tf
name: A string used as the name for this variable scope.
Returns:
(tf.Tensor) A single value tensor containing the loss.
"""
# loss = None
with tf.name_scope(name, "click_loglikelihood"):
ob_prob=tf.nn.softmax(propensity)
rel_prob=tf.nn.softmax(train_output)
click_prob=ob_prob*rel_prob
click_prob_norm=click_prob/tf.reduce_sum(click_prob,axis=1,keep_dims=True)
label_dis = labels/ tf.reduce_sum(labels, 1, keep_dims=True)
entropy = tf.reduce_sum(tf.math.log(click_prob_norm)*label_dis,1)
return tf.reduce_mean(entropy)
def click_weighted_pairwise_loss(self, output, labels, propensity_weights, name=None):
"""Computes pairwise entropy loss with propensity weighting.
Args:
output: (tf.Tensor) A tensor with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
labels: (tf.Tensor) A tensor of the same shape as `output`. A value >= 1 means a
relevant example.
propensity_weights: (tf.Tensor) A tensor of the same shape as `output` containing the weight of each element.
name: A string used as the name for this variable scope.
Returns:
(tf.Tensor) A single value tensor containing the loss.
| tensorflow.reduce_mean | 7,845 |
import tensorflow as tf
return merge_states(tf.transpose(x, [0, 2, 1, 3]))
def conv1d(x, scope, nf, rf, w_init=tf.random_normal_initializer(stddev=0.02), b_init=tf.constant_initializer(0), pad='VALID', train=False):
with tf.variable_scope(scope):
#x = [-1,n_ctx,512]
nx = shape_list(x)[-1]
| tensorflow.variable_scope | 7,846 |
import tensorflow as tf
cutoff_vf_worker = tf.reshape(tf.stop_gradient(self.worker_vf), [-1])
log_p = tf.reduce_sum(self.log_pi * self.ac, [1])
worker_loss = (self.r + self.alpha * self.ri - cutoff_vf_worker) * log_p
worker_loss = -tf.reduce_sum(worker_loss, axis=0)
Am = self.r - self.manager_vf
manager_vf_loss = .5 * tf.reduce_sum(tf.square(Am))
Aw = (self.r + self.alpha * self.ri) - self.worker_vf
worker_vf_loss = .5 * tf.reduce_sum(tf.square(Aw))
entropy = -tf.reduce_sum(self.pi * self.log_pi)
beta = tf.train.polynomial_decay(beta_start, self.global_step,
end_learning_rate=beta_end,
decay_steps=decay_steps,
power=1)
# worker_loss = tf.Print(worker_loss,[manager_loss,worker_loss,manager_vf_loss,worker_vf_loss,entropy])
self.loss = worker_loss + manager_loss + \
worker_vf_loss + manager_vf_loss - \
entropy * beta
| tensorflow.reduce_sum | 7,847 |
import tensorflow as tf
while len(initial_output.get_shape().as_list()) < 4:
initial_output = tf.expand_dims(initial_output, 2)
batch_size = common_layers.shape_list(initial_output)[0]
else:
batch_size = common_layers.shape_list(features["inputs"])[0]
initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64)
# Hack: foldl complains when the output shape is less specified than the
# input shape, so we confuse it about the input shape.
initial_output = tf.slice(initial_output, [0, 0, 0, 0],
common_layers.shape_list(initial_output))
| tensorflow.zeros | 7,848 |
import tensorflow as tf
dtype=tf.int32),
"input_mask":
tf.constant(
all_input_mask,
shape=[num_examples, seq_length],
dtype=tf.int32),
"segment_ids":
tf.constant(
all_segment_ids,
shape=[num_examples, seq_length],
dtype=tf.int32),
"label_ids":
tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32),
})
| tensorflow.constant | 7,849 |
import tensorflow as tf
'train_epochs', None,
'The number of epochs to use for training.')
tf.app.flags.DEFINE_integer(
'batch_size', 12,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_string(
'data_format', 'channels_first', # 'channels_first' or 'channels_last'
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
| tensorflow.app.flags.DEFINE_string | 7,850 |
import tensorflow as tf
strides=[1, 1, 1, 1, 1],
symmetric_weights=self.symmetric_gate_weights,
dilations=self.hgru_dilations[layer_idx])
with tf.variable_scope(
'%s/g1_bn' % var_scope,
reuse=self.scope_reuse) as scope:
g1_intermediate = tf.contrib.layers.batch_norm(
inputs=g1_intermediate + gain_bias,
scale=True,
center=False,
fused=True,
renorm=False,
| tensorflow.contrib.layers.batch_norm | 7,851 |
import tensorflow as tf
location_pred = tf.transpose(location_pred, [0, 2, 3, 1])
bboxes_pred = labels['decode_fn'](location_pred)#(tf.reshape(location_pred, tf.shape(location_pred).as_list()[0:-1] + [-1, 4]))
cls_pred = tf.reshape(cls_pred, [-1, params['num_classes']])
location_pred = tf.reshape(location_pred, [-1, 4])
glabels = tf.reshape(glabels, [-1])
gscores = tf.reshape(gscores, [-1])
gtargets = tf.reshape(gtargets, [-1, 4])
# raw mask for positive > 0.5, and for negetive < 0.3
# each positive examples has one label
| tensorflow.reshape | 7,852 |
import tensorflow as tf
# Autoencoder loss
autoencoder_loss = tf.reduce_mean(tf.square(x_target - decoder_output))
# Gaussian Discriminator Loss
dc_g_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_real), logits=d_g_real))
dc_g_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_g_fake), logits=d_g_fake))
dc_g_loss = dc_g_loss_fake + dc_g_loss_real
# Categorical Discrimminator Loss
dc_c_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_real), logits=d_c_real))
dc_c_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_c_fake), logits=d_c_fake))
| tensorflow.zeros_like | 7,853 |
import tensorflow as tf
# finally project down if needed
if use_proj:
embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn
# reshape back to (batch_size, tokens, dim)
if use_highway or use_proj:
shp = tf.concat([batch_size_n_tokens, [projection_dim]], axis=0)
embedding = tf.reshape(embedding, shp)
# at last assign attributes for remainder of the model
self.embedding = embedding
def _build_word_embeddings(self):
projection_dim = self.options['lstm']['projection_dim']
| tensorflow.reshape | 7,854 |
from tensorflow.contrib import layers
pass
def inference_graph(self, data):
with ops.device(self.device_assigner):
# Compute activations for the neural network.
nn_activations = layers.fully_connected(data, self.params.layer_size)
for _ in range(1, self.params.num_layers):
# pylint: disable=W0106
nn_activations = layers.fully_connected(nn_activations,
| tensorflow.contrib.layers.fully_connected | 7,855 |
import tensorflow as tf
def validateMoments(self, shape, mean, stddev, minval, maxval, seed=1618):
try:
# TruncatedNormalMoments requires scipy.stats.
# Give up early if we are unable to import it.
import scipy.stats # pylint: disable=g-import-not-at-top,unused-variable
tf.set_random_seed(seed)
with self.test_session(use_gpu=self._use_gpu):
samples = random_ops.parameterized_truncated_normal(shape, mean, stddev,
minval,
maxval).eval()
| tensorflow.set_random_seed | 7,856 |
import tensorflow as tf
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True)
scalar_prod = tf.matmul(
tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1]))
scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2])
| tensorflow.transpose | 7,857 |
import tensorflow as tf
print((sess.run(custom_polynomial(tf, 11))))
alpha = 0.1
val = tf.constant([[2, 3], [1, 4]], dtype=tf.float32)
l1 = tf.contrib.layers.l1_regularizer(alpha)(val)
l2 = tf.contrib.layers.l2_regularizer(alpha)(val)
A = [[0.8, 0.6, 0.3], [0.1, 0.6, 0.4]]
| tensorflow.contrib.layers.l1_regularizer | 7,858 |
import tensorflow as tf
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits
def get_qa_outputs(FLAGS, features, is_training):
"""Loss for downstream span-extraction QA tasks such as SQuAD."""
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
cls_index = tf.reshape(features["cls_index"], [-1])
seq_len = tf.shape(inp)[0]
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
output = xlnet_model.get_sequence_output()
initializer = xlnet_model.get_initializer()
| tensorflow.shape | 7,859 |
import tensorflow as tf
with tf.variable_scope(scope_name):
dec_op, _ = seq2seq(enc_inp, dec_inp, feed_previous=feed_previous)
net_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope_name)
optimizer = tf.train.AdamOptimizer(0.03, epsilon=1e-5)
update_op = optimizer.minimize(
tf.nn.seq2seq.sequence_loss(dec_op, targets, weights),
var_list=net_variables)
return dec_op, update_op, net_variables
dec_op_fp_true, update_fp_true, variables_fp_true = ForwardBackward(
enc_inp, dec_inp_fp_true, feed_previous=True)
| tensorflow.nn.seq2seq.sequence_loss | 7,860 |
import tensorflow as tf
#########################
print("Hello yes I am in build_act without noise")
print(f"Obs space: {ob_space}")
print(f"policy.obs_ph: {policy.obs_ph}")
print(f"policy.processed_obs: {policy.processed_obs}")
print(f"Obs_phs space: {obs_phs}")
#assert 5 == 1
#######################
for var in tf.all_variables():
print(var)
batch_size = tf.shape(policy.obs_ph)[0]
n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
| tensorflow.all_variables | 7,861 |
import tensorflow as tf
"lr": learning_rate
},
every_n_iter=1
),
tf.train.CheckpointSaverHook(
checkpoint_dir=params.output,
save_secs=params.save_checkpoint_secs or None,
save_steps=params.save_checkpoint_steps or None,
saver=tf.train.Saver(
max_to_keep=params.keep_checkpoint_max,
sharded=False
)
)
]
config = session_config(params)
| tensorflow.train.Saver | 7,862 |
import tensorflow as tf
# Build a graph with 2 parameter nodes on different devices.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v0 = tf.Variable(10, name="v0")
with sess.graph.device("/cpu:1"):
v1 = tf.Variable(20, name="v1")
save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True)
tf.initialize_all_variables().run()
val = save.save(sess, save_path)
self.assertEqual(save_path + "-?????-of-00002", val)
meta_graph_filename = save._MetaGraphFilename(val)
self.assertEqual(save_path + ".meta", meta_graph_filename)
# Restore a different "v0" from shard 0 of the saved files.
with tf.Session(
target="",
| tensorflow.initialize_all_variables | 7,863 |
import tensorflow as tf
shifted_sum_x2,
shift,
name="normalize_moments")
return mean, variance
def build_moving_stats():
return (
tf.identity(self._moving_mean),
tf.identity(self._moving_variance),
)
mean, variance = utils.smart_cond(
use_batch_stats,
build_batch_stats,
build_moving_stats,
| tensorflow.identity | 7,864 |
import tensorflow as tf
validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
# create two summary writers to show training loss and validation loss in the same graph
# need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
train_writer = tf.summary.FileWriter(osp.join(FLAGS.logs_dir , 'train'), sess.graph)
| tensorflow.train.Saver | 7,865 |
import tensorflow as tf
in_size: size of the hidden state vectors
mats: list of hidden state vectors
"""
pred_mat = tf.get_variable('pred_mat',
[in_size, self._out_vocab_size])
pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size])
# Make a prediction on every word.
def GetWordPred(o_):
logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
return tf.nn.softmax(logits)
#self.preds_by_word1 = tf.pack([GetWordPred(o_) for o_ in mats])
#self.preds_by_word = tf.reshape(self.preds_by_word1, self.y.get_shape())
#self.probs = tf.mul(tf.expand_dims(self._mask,2), self.preds_by_word)
self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats])
self.preds_by_instance = tf.pack([self.preds_by_word[:,i,:] for i in range(self.preds_by_word.get_shape()[1])])
self.probs = tf.mul(tf.expand_dims(self._mask,2), self.preds_by_instance)
| tensorflow.nn.softmax | 7,866 |
import tensorflow as tf
def contra_traj_lossV6(pred, tgt, horizon=12):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1])
tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1])
tgt_dif = tgt_flat1 - tgt_flat2
pred_dif = pred_flat1 - pred_flat2
geq = tf.cast(tgt_dif > 0, tf.bool)
tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif)
pred_posi_dif = tf.where(geq, pred_dif, -pred_dif)
loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif)
cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
final_loss = tf.reduce_mean(loss)
return final_loss, cstr_pct
def contra_traj_lossV7(pred, tgt, horizon=12, temp=100):
horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon)
# horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon)
| tensorflow.where | 7,867 |
import tensorflow as tf
y0 = tf.to_int32(tf.floor(y))
y1 = y0 + 1
z0 = tf.to_int32(tf.floor(z))
z1 = z0 + 1
x0_clip = tf.clip_by_value(x0, zero, max_x)
x1_clip = tf.clip_by_value(x1, zero, max_x)
y0_clip = tf.clip_by_value(y0, zero, max_y)
y1_clip = tf.clip_by_value(y1, zero, max_y)
z0_clip = tf.clip_by_value(z0, zero, max_z)
z1_clip = tf.clip_by_value(z1, zero, max_z)
dim3 = width
dim2 = width * height
dim1 = width * height * depth
| tensorflow.clip_by_value | 7,868 |
import tensorflow as tf
# Compute average prediction across different scales and flipped images.
predictions = tf.reduce_mean(tf.concat(predictions, 4), axis=4)
| tensorflow.concat | 7,869 |
import tensorflow as tf
else:
out = tf.pow(subsamp_sum, 1/pnorm)
return out
def mpool(inpOp, kH, kW, dH, dW, padding, name):
with tf.variable_scope(name):
maxpool = tf.nn.max_pool(inpOp,
ksize=[1, kH, kW, 1],
strides=[1, dH, dW, 1],
padding=padding)
return maxpool
def apool(inpOp, kH, kW, dH, dW, padding, name):
| tensorflow.nn.max_pool | 7,870 |
import tensorflow as tf
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
scores = tf.where(key_masks, scores, paddings) # [B, 1, T]
# Scale
# scores = scores / (facts.get_shape().as_list()[-1] ** 0.5)
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
return output
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
| tensorflow.shape | 7,871 |
import tensorflow as tf
Args:
boxlist1: Nx4 floatbox
boxlist2: Mx4
Returns:
a tensor with shape [N, M] representing pairwise intersections
"""
x_min1, y_min1, x_max1, y_max1 = tf.split(boxlist1, 4, axis=1)
x_min2, y_min2, x_max2, y_max2 = tf.split(boxlist2, 4, axis=1)
all_pairs_min_ymax = tf.minimum(y_max1, tf.transpose(y_max2))
all_pairs_max_ymin = tf.maximum(y_min1, tf.transpose(y_min2))
intersect_heights = tf.maximum(0.0, all_pairs_min_ymax - all_pairs_max_ymin)
all_pairs_min_xmax = tf.minimum(x_max1, tf.transpose(x_max2))
all_pairs_max_xmin = tf.maximum(x_min1, tf.transpose(x_min2))
intersect_widths = tf.maximum(0.0, all_pairs_min_xmax - all_pairs_max_xmin)
return intersect_heights * intersect_widths
@under_name_scope()
def pairwise_iou(boxlist1, boxlist2):
"""Computes pairwise intersection-over-union between box collections.
| tensorflow.maximum | 7,872 |
import tensorflow as tf
if norm == 'I':
X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse, epsilon=0.001)
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=True)
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if nonlin:
X = tf.nn.leaky_relu(X, 0.2)
return X
| tensorflow.contrib.layers.group_norm | 7,873 |
from tensorflow.python.ops import math_ops
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor * std)
return max_norms, mean
def adaptive_clipping_fn(std_factor=2.,
decay=0.95,
static_max_norm=None,
global_step=None,
report_summary=False,
epsilon=1e-8,
name=None):
| tensorflow.python.ops.math_ops.square | 7,874 |
import tensorflow as tf
value=input_,
filter=weights,
output_shape=[batch_size, height * 2, width * 2, channels],
strides=[1, 2, 2, 1],
padding="SAME",
name="unsqueeze_2x2")
else:
res = tf.nn.conv2d(
input=input_,
filter=weights,
strides=[1, 2, 2, 1],
padding="SAME",
name="squeeze_2x2")
| tensorflow.nn.conv2d | 7,875 |
import tensorflow as tf
if extra_inputs is None:
extra_inputs = tuple()
last_loss = f_loss(*(tuple(inputs) + extra_inputs))
start_time = time.time()
dataset = BatchDataset(inputs,
self._batch_size,
extra_inputs=extra_inputs)
sess = tf.compat.v1.get_default_session()
for epoch in range(self._max_epochs):
if self._verbose:
logger.log('Epoch {}'.format(epoch))
progbar = pyprind.ProgBar(len(inputs[0]))
for batch in dataset.iterate(update=True):
sess.run(self._train_op,
dict(list(zip(self._input_vars, batch))))
if self._verbose:
| tensorflow.compat.v1.get_default_session | 7,876 |
import tensorflow as tf
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, label_ids, logits, is_real_example):
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=predictions, weights=is_real_example)
loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example)
return {
"eval_accuracy": accuracy,
"eval_loss": loss,
| tensorflow.metrics.accuracy | 7,877 |
import tensorflow as tf
padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
.shape.as_list(), [3, 4])
self.assertAllEqual(
padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
.shape.as_list(), [3, 3])
def test_clip_boxes_and_classes(self):
input_tensor_dict = {
fields.InputDataFields.groundtruth_boxes:
tf.placeholder(tf.float32, [None, 4]),
fields.InputDataFields.groundtruth_classes:
tf.placeholder(tf.int32, [None, 3]),
fields.InputDataFields.num_groundtruth_boxes:
tf.placeholder(tf.int32, [])
}
padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensor_dict=input_tensor_dict,
max_num_boxes=3,
| tensorflow.placeholder | 7,878 |
import tensorflow as tf
import gin
import numpy as np
import random
import tensorflow as tf
FLAGS = flags.FLAGS
# augmentation functions
# augment
def random_crop_and_resize(images, ratio=0.8):
b, h, w, c = images.get_shape().as_list()
ch, cw = map(lambda x: int(x * ratio), (h, w))
crop = tf.random_crop(images, size=[b, ch, cw, 3])
crop = tf.image.resize(crop, [h, w])
return crop
def random_apply(fn, image, prob=1.):
b, *_ = image.get_shape().as_list()
chance = tf.less(tf.random_uniform([b], 0, 1.0), prob)
return tf.where(chance, fn(image), tf.identity(image))
def color_distortion(image, s=1.0):
lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image
x = tf.image.random_brightness(x, max_delta=0.8*s)
x = tf.image.random_contrast(x, lower=lower, upper=upper)
x = tf.image.random_saturation(x, lower=lower, upper=upper)
x = tf.image.random_hue(x, max_delta=0.2*s)
x = tf.clip_by_value(x, 0, 1)
| tensorflow.image.resize | 7,879 |
import tensorflow as tf
name="dense2",
)
outputs = H * T + inputs * (1.0 - T)
return outputs
def conv1d_banks(inputs, K=16, is_training=True, scope="conv1d_banks"):
with tf.variable_scope(scope):
outputs = tf.layers.conv1d(inputs, embed_size // 2, 1, padding="SAME")
for k in range(2, K + 1):
with tf.variable_scope("num_{}".format(k)):
output = tf.layers.conv1d(inputs, embed_size // 2, k, padding="SAME")
outputs = tf.concat((outputs, output), -1)
outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=is_training))
return outputs
| tensorflow.layers.conv1d | 7,880 |
import tensorflow as tf
logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)
flat_observations = tf.reshape(observations, [
tf.shape(observations)[0], tf.shape(observations)[1],
functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])
with tf.variable_scope("network_parameters"):
with tf.variable_scope("policy"):
x = flat_observations
for size in config.policy_layers:
x = tf.layers.dense(x, size, activation=tf.nn.relu)
mean = tf.layers.dense(
x, action_space.shape[0], activation=tf.tanh,
kernel_initializer=mean_weights_initializer)
| tensorflow.variable_scope | 7,881 |
import tensorflow as tf
correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
| tensorflow.square | 7,882 |
import tensorflow as tf
prediction_dict['class_predictions_with_background'], batch_cls_targets,
weights=weights)
loss_dict = {
'localization_loss': tf.reduce_sum(location_losses),
'classification_loss': tf.reduce_sum(cls_losses),
}
return loss_dict
def restore_map(self, from_detection_checkpoint=True):
| tensorflow.reduce_sum | 7,883 |
import tensorflow as tf
def _add_image_summary(self, image, boxes):
# add back mean
'''
tf.stack()这是一个矩阵拼接的函数,tf.unstack()则是一个矩阵分解的函数
'''
image += cfg.FLAGS2["pixel_means"]
# bgr to rgb (opencv uses bgr)
channels = tf.unstack(image, axis=-1)
image = tf.stack([channels[2], channels[1], channels[0]], axis=-1)
# dims for normalization
width = tf.to_float(tf.shape(image)[2])
height = tf.to_float(tf.shape(image)[1])
# from [x1, y1, x2, y2, cls] to normalized [y1, x1, y1, x1]
cols = tf.unstack(boxes, axis=1)
boxes = tf.stack([cols[1] / height,
cols[0] / width,
cols[3] / height,
cols[2] / width], axis=1)
# add batch dimension (assume batch_size==1)
#assert image.get_shape()[0] == 1
boxes = tf.expand_dims(boxes, dim=0)
image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth
| tensorflow.shape | 7,884 |
import tensorflow as tf
assert len(segment_ids) == max_seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("id: %s" % (example.unique_id))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in input_tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
| tensorflow.logging.info | 7,885 |
import tensorflow as tf
gstack = tf.concat([self.prev_g, cut_g], axis=1)
self.last_c_g = gstack[:, 1:]
# print self.last_c_g
gsum = tf.reduce_sum(gstack, axis=1)
phi = tf.get_variable("phi", (self.g_dim, self.k))
w = tf.matmul(gsum, phi)
w = tf.expand_dims(w, [2])
| tensorflow.reduce_sum | 7,886 |
import tensorflow as tf
tf.add_to_collection(name, op)
self._initial_state_name = util.with_prefix(self._name, "initial")
self._final_state_name = util.with_prefix(self._name, "final")
util.export_state_tuples(self._initial_state, self._initial_state_name)
util.export_state_tuples(self._final_state, self._final_state_name)
def import_ops(self):
"""Imports ops from collections."""
if self._is_training:
self._train_op = tf.get_collection_ref("train_op")[0]
self._lr = tf.get_collection_ref("lr")[0]
self._new_lr = tf.get_collection_ref("new_lr")[0]
self._lr_update = tf.get_collection_ref("lr_update")[0]
rnn_params = tf.get_collection_ref("rnn_params")
if self._cell and rnn_params:
params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable(
self._cell,
self._cell.params_to_canonical,
self._cell.canonical_to_params,
rnn_params,
base_variable_scope="Model/RNN")
tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable)
| tensorflow.get_collection_ref | 7,887 |
import tensorflow as tf
print('Conv layer {0} -> {1}'.format(bottom.get_shape().as_list(),conv_layer.get_shape().as_list()))
return conv_layer
def batch_norm_layer(self, name, input_tensor,training):
with tf.variable_scope(name) as scope:
return tf.contrib.layers.batch_norm(input_tensor,scope=scope,is_training=training,decay=0.99)
def deconv_bn_relu(self, bottom, name, kernel_size, output_channels, initializer, stride = 1, bn=False, training=False, relu=True):
input_shape = bottom.get_shape().as_list()
input_channels = input_shape[-1]
output_shape = [input_shape[0], input_shape[1]*stride, input_shape[2]*stride, output_channels]
with tf.variable_scope(name) as scope:
kernel = self.variable('weights', [kernel_size, kernel_size, output_channels, input_channels], initializer, regularizer=tf.contrib.layers.l2_regularizer(0.0005))
deconv = tf.nn.conv2d_transpose(bottom, kernel, output_shape, [1, stride, stride, 1], padding='SAME')
biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0))
deconv_layer = tf.nn.bias_add(deconv, biases)
if bn:
deconv_layer = self.batch_norm_layer('batch_norm_layer',deconv_layer,training)
if relu:
deconv_layer = tf.nn.relu(deconv_layer, name=scope.name)
print('Deconv layer {0} -> {1}'.format(bottom.get_shape().as_list(),deconv_layer.get_shape().as_list()))
return deconv_layer
| tensorflow.variable_scope | 7,888 |
import tensorflow as tf
s_h, s_w = self.output_height, self.output_width
s_h0, s_h1, s_h2, s_h3 = \
int(s_h/ns0), int(s_h/ns0/ns1), int(s_h/ns0/ns1/ns2), int(s_h/ns0/ns1/ns2/ns3)
s_w0, s_w1, s_w2, s_w3 = \
int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3)
def decode(z, skip_h3, skip_h2, skip_h1, skip_h0):
z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin'))
h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob)
h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3),
[self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3))
h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3),
[self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2))
h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3),
[self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1))
| tensorflow.nn.dropout | 7,889 |
import tensorflow as tf
w_z1_y1_x0 = tf.expand_dims(((x1_f - x) * (y - y0_f) *
(z - z0_f) * x1_valid * y0_valid * z0_valid),
1)
w_z1_y1_x1 = tf.expand_dims(((x - x0_f) * (y - y0_f) *
(z - z0_f) * x0_valid * y0_valid * z0_valid),
1)
output = tf.add_n([
w_z0_y0_x0 * i_z0_y0_x0, w_z0_y0_x1 * i_z0_y0_x1,
w_z0_y1_x0 * i_z0_y1_x0, w_z0_y1_x1 * i_z0_y1_x1,
w_z1_y0_x0 * i_z1_y0_x0, w_z1_y0_x1 * i_z1_y0_x1,
w_z1_y1_x0 * i_z1_y1_x0, w_z1_y1_x1 * i_z1_y1_x1
])
return output
| tensorflow.add_n | 7,890 |
import tensorflow as tf
def affine(inpOp, nIn, nOut, name, weight_decay=0.0):
with tf.variable_scope(name):
l2_regularizer = lambda t: l2_loss(t, weight=weight_decay)
weights = tf.get_variable("weights", [nIn, nOut],
initializer=tf.truncated_normal_initializer(stddev=1e-1),
regularizer=l2_regularizer, dtype=inpOp.dtype)
biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype)
affine1 = tf.nn.relu_layer(inpOp, weights, biases)
return affine1
| tensorflow.truncated_normal_initializer | 7,891 |
import tensorflow as tf
filter_class_true = tf.boolean_mask(tf.cast(mask_pos, tf.float32),
loss_class_mask)
filter_class_pred = tf.boolean_mask(class_pred, loss_class_mask_b)
filter_class_pred = tf.reshape(filter_class_pred, [-1, num_class])
loss_class = tf.keras.losses.sparse_categorical_crossentropy(
y_true=filter_class_true, y_pred=filter_class_pred)
loss_class = tf.reduce_mean(loss_class)
| tensorflow.keras.losses.sparse_categorical_crossentropy | 7,892 |
import tensorflow as tf
def main(_):
data_dir = os.path.join(FLAGS.dir, "data")
train_data = load_dataset(
data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size)
eval_data = load_dataset(
data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size)
model = RNNColorbot(
rnn_cell_sizes=FLAGS.rnn_cell_sizes,
label_dimension=3,
keep_prob=FLAGS.keep_probability)
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
if FLAGS.no_gpu or tfe.num_gpus() <= 0:
print(tfe.num_gpus())
device = "/cpu:0"
else:
device = "/gpu:0"
print("Using device %s." % device)
log_dir = os.path.join(FLAGS.dir, "summaries")
tf.gfile.MakeDirs(log_dir)
| tensorflow.train.AdamOptimizer | 7,893 |
import tensorflow as tf
optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
| tensorflow.train.MomentumOptimizer | 7,894 |
import tensorflow as tf
# initializer=tf.random_uniform_initializer(-0.003, 0.003))
initializer=tf.contrib.layers.xavier_initializer())
# initializer=tf.truncated_normal_initializer(stddev=0.1))
b = tf.get_variable('b', [self.num_classes], initializer=tf.constant_initializer(0.1))
logits = tf.matmul(last_outputs, W) + b
self.embed_inputs = embed_inputs
return logits
def loss(self, logits, forward_only=None):
cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self.y, tf.float32))
mean_cost = tf.reduce_mean(cost)
y_pred = tf.argmax(logits, 1)
correct_pred = tf.equal(y_pred, tf.argmax(self.y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
if forward_only:
str_summary_type = 'eval'
loss_summ = tf.summary.scalar("{0}_loss".format(str_summary_type), mean_cost)
acc_summ = tf.summary.scalar("{0}_accuracy".format(str_summary_type), accuracy)
merged = tf.summary.merge([loss_summ, acc_summ])
return mean_cost, accuracy, y_pred, merged
else:
return mean_cost, accuracy, y_pred
| tensorflow.argmax | 7,895 |
import tensorflow as tf
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
| tensorflow.flags.DEFINE_string | 7,896 |
import tensorflow as tf
use_one_hot_embeddings):
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
| tensorflow.logging.info | 7,897 |
import tensorflow as tf
negative_idx = tf.logical_and(negative_idx, indicator)
# Sample positive and negative samples separately
if sample_size is None:
max_num_pos = tf.reduce_sum(tf.cast(positive_idx, dtype=tf.int32))
else:
max_num_pos = int(positive_fraction * sample_size)
sampled_pos_idx = subsample_indicator(positive_idx, max_num_pos)
| tensorflow.cast | 7,898 |
import tensorflow as tf
# y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# print("----y_conv-----")
# print(y_conv)
# exit()
# Exchange dim 1 and dim 0
# Start at: [0,1,2] = [batch_size, 128, 9] => [batch_size, 32, 36]
feature_mat = tf.transpose(feature_mat, [1, 0, 2])
# New feature_mat's shape: [time_steps, batch_size, n_inputs] [128, batch_size, 9]
print("----feature_mat-----")
print(feature_mat)
# exit()
# Temporarily crush the feature_mat's dimensions
| tensorflow.transpose | 7,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.