seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
enc_inp, dec_inp_fp_true, feed_previous=True)
_, update_fp_false, variables_fp_false = ForwardBackward(
enc_inp, dec_inp_holder_fp_false, feed_previous=False)
sess.run(tf.global_variables_initializer())
# We only check consistencies between the variables existing in both
# the models with True and False feed_previous. Variables created by
# the loop_function in the model with True feed_previous are ignored.
v_false_name_dict = {v.name.split("/", 1)[-1]: v
for v in variables_fp_false}
matched_variables = [(v, v_false_name_dict[v.name.split("/", 1)[-1]])
for v in variables_fp_true]
for v_true, v_false in matched_variables:
sess.run(tf.assign(v_false, v_true))
# Take the symbols generated by the decoder with feed_previous=True as
# the true input symbols for the decoder with feed_previous=False.
dec_fp_true = sess.run(dec_op_fp_true)
output_symbols_fp_true = np.argmax(dec_fp_true, axis=2)
dec_inp_fp_false = np.vstack((dec_inp_fp_true[0].eval(),
output_symbols_fp_true[:-1]))
sess.run(update_fp_true)
sess.run(update_fp_false,
{holder: inp for holder, inp in zip(dec_inp_holder_fp_false,
dec_inp_fp_false)})
for v_true, v_false in matched_variables:
| tensorflow.assign | 6,900 |
import tensorflow as tf
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
# add sequence mask for:
# 1. random shuffle lm modeling---xlnet with random shuffled input
# 2. left2right and right2left language modeling
# 3. conditional generation
def generate_seq2seq_mask(attention_mask, mask_sequence, seq_type, **kargs):
if seq_type == 'seq2seq':
if mask_sequence is not None:
seq_shape = get_shape_list(mask_sequence, expected_rank=2)
seq_len = seq_shape[1]
ones = tf.ones((1, seq_len, seq_len))
a_mask = tf.matrix_band_part(ones, -1, 0)
s_ex12 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 2)
s_ex13 = tf.expand_dims(tf.expand_dims(mask_sequence, 1), 3)
a_mask = (1 - s_ex13) * (1 - s_ex12) + s_ex13 * a_mask
# generate mask of batch x seq_len x seq_len
a_mask = tf.reshape(a_mask, (-1, seq_len, seq_len))
out_mask = attention_mask * a_mask
else:
ones = tf.ones_like(attention_mask[:1])
mask = (tf.matrix_band_part(ones, -1, 0))
out_mask = attention_mask * mask
else:
out_mask = attention_mask
return out_mask | tensorflow.matrix_band_part | 6,901 |
import tensorflow as tf
y_w_diff = y[:, :, 1:] - y[:, :, :-1]
h_diff = tf.abs(tf.abs(x_h_diff) - tf.abs(y_h_diff))
w_diff = tf.abs(tf.abs(x_w_diff) - tf.abs(y_w_diff))
return h_diff + tf.transpose(w_diff)
def leaky_relu(x, leak=0.2, name='leaky_relu'):
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def linear(x, shape, name, bias=False):
with tf.variable_scope(name):
W = weight_variable(shape)
h = tf.matmul(x, W)
if bias:
b = bias_variable([shape[-1]])
h = h + b
return h
def conv2d(x, shape, name, bias=False, stride=2, padding='SAME'):
with tf.variable_scope(name):
W = weight_variable(shape)
h = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding)
| tensorflow.variable_scope | 6,902 |
import tensorflow as tf
anchors = anchors.astype(np.float32)
grid_shape = x_shape[1:3]
# print(grid_shape)
grid_h, grid_w = grid_shape[0], grid_shape[1]
# print(grid_h,tf.range(grid_h))
grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h))
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2]
box_xy = (box_xy + tf.cast(grid, dtype)) * stride
box_wh = tf.exp(box_wh) * anchors
box_x1y1 = box_xy - box_wh / 2.
box_x2y2 = box_xy + box_wh / 2.
box = tf.concat([box_x1y1, box_x2y2], axis=-1)
| tensorflow.stack | 6,903 |
import tensorflow as tf
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 64, (4, 4), strides=(2, 2), name="conv2",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 128, (4, 4), strides=(2, 2), name="conv3",
activation=common_layers.belu, padding="SAME")
| tensorflow.nn.dropout | 6,904 |
import tensorflow as tf
# function.
# Test case 1, 2.
x = tf.placeholder_with_default(input=1, shape=[])
# None would fire an exception were it actually executed.
self.assertTrue(normal._is_scalar_helper(x.shape, lambda: None))
self.assertTrue(
normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x)))
x = tf.placeholder_with_default(input=[1], shape=[1])
# None would fire an exception were it actually executed.
self.assertFalse(normal._is_scalar_helper(x.shape, lambda: None))
self.assertFalse(
normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x)))
# There's no notion of partially known shapes in eager mode, so exit
# early.
if tf.executing_eagerly():
return
# Test case 3.
x = tf.placeholder_with_default(input=1, shape=None)
is_scalar = normal._is_scalar_helper(x.shape, lambda: tf.shape(x))
self.assertTrue(self.evaluate(is_scalar))
x = tf.placeholder_with_default(input=[1], shape=None)
| tensorflow.shape | 6,905 |
import tensorflow as tf
def data_format():
return "channels_first" if tfe.num_gpus() else "channels_last"
def random_dataset():
batch_size = 64
images = tf.random_normal([batch_size, 784])
labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32)
return tf.data.Dataset.from_tensors((images, labels))
def train(defun=False):
| tensorflow.random_normal | 6,906 |
import tensorflow as tf
epoch, total_epochs, step, iteration, batch_loss, batch_acc))
train_loss += batch_loss
train_acc += batch_acc
if step % 30 == 0 :
summary_str = sess.run(summary_op, feed_dict=train_feed_dict)
summary_writer.add_summary(summary=summary_str, global_step=epoch)
summary_writer.flush()
train_loss /= iteration # average loss
train_acc /= iteration # average accuracy
train_summary = tf.Summary(value=[tf.Summary.Value(tag='train_loss', simple_value=train_loss),
tf.Summary.Value(tag='train_accuracy', simple_value=train_acc)])
# test_acc, test_loss, test_summary = Evaluate(sess)
summary_writer.add_summary(summary=train_summary, global_step=epoch)
# summary_writer.add_summary(summary=test_summary, global_step=epoch)
summary_writer.flush()
# line = "epoch: %d/%d, train_loss: %.4f, train_acc: %.4f, test_loss: %.4f, test_acc: %.4f \n" % (
# epoch, total_epochs, train_loss, train_acc, test_loss, test_acc)
line = "epoch: %d/%d, train_loss: %.4f, train_acc: %.4f \n" % (
epoch, total_epochs, train_loss, train_acc)
print(line)
with open('./logs_pretrain/logs.txt', 'a') as f:
| tensorflow.Summary.Value | 6,907 |
import tensorflow as tf
n_units=100,
act=tf.identity,
W_init=tf.truncated_normal_initializer(stddev=0.1),
b_init=tf.constant_initializer(value=0.0),
| tensorflow.truncated_normal_initializer | 6,908 |
import tensorflow as tf
self._SaveAndLoad("var0", 0.0, 1.0, save_path)
for use_tensor in [True, False]:
with self.test_session() as sess:
var = tf.Variable(1.0, name="var0")
save = tf.train.Saver({var.op.name: var})
var.initializer.run()
if use_tensor:
global_step = tf.constant(global_step_int)
| tensorflow.train.Saver | 6,909 |
import tensorflow as tf
"""
def test_rnn_layer(test_data_x,test_data_y, g, checkpoint, input_prob, output_prob, state_prob, num_test, num_layers):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
| tensorflow.Session | 6,910 |
import tensorflow as tf
should be the inputs and targets, respectively.
seq_lengths: An int Tensor of shape [batch_size] containing the length
of each sequence in observations.
"""
inputs, targets = observations
self.seq_lengths = seq_lengths
self.max_seq_len = tf.reduce_max(seq_lengths)
self.inputs_ta = base.ta_for_tensor(inputs, clear_after_read=False)
self.targets_ta = base.ta_for_tensor(targets, clear_after_read=False)
targets_encoded = base.encode_all(targets, self.data_encoder)
self.targets_encoded_ta = base.ta_for_tensor(targets_encoded,
clear_after_read=False)
| tensorflow.reduce_max | 6,911 |
import tensorflow as tf
def build_ae_model(self):
self.input = tf.placeholder(tf.uint8, self.batch_shape, name='input')
self.target = tf.placeholder(tf.uint8, self.batch_shape, name='target')
| tensorflow.placeholder | 6,912 |
import tensorflow as tf
self.logger.info("applying l2 loss")
variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
l2_loss = tf.contrib.layers.apply_regularization(regularizer, variables)
self.loss += l2_loss
if self.config.decay is not None:
self.var_ema = tf.train.ExponentialMovingAverage(self.config.decay)
ema_op = self.var_ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
self.shadow_vars = []
| tensorflow.train.ExponentialMovingAverage | 6,913 |
import tensorflow as tf
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
features.append(feature)
return features
# add by wangxiao
# define the inputs of signature
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids,
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids,
})()
return input_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"cola": ColaProcessor,
| tensorflow.placeholder | 6,914 |
import tensorflow as tf
else:
model_outputs = _model_outputs()
# First check if it is in PREDICT mode.
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {}
predictions['detections'] = model_outputs['detections']
predictions['image_info'] = features['image_info']
if params['include_mask']:
predictions['mask_outputs'] = tf.nn.sigmoid(model_outputs['mask_outputs'])
if params['use_tpu']:
return tf.contrib.tpu.TPUEstimatorSpec(mode=mode, predictions=predictions)
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Set up training loss and learning rate.
global_step = tf.train.get_or_create_global_step()
learning_rate = learning_rates.step_learning_rate_with_linear_warmup(
global_step,
params['init_learning_rate'],
params['warmup_learning_rate'],
params['warmup_steps'],
params['learning_rate_levels'],
params['learning_rate_steps'])
| tensorflow.contrib.tpu.TPUEstimatorSpec | 6,915 |
from tensorflow.python.ops import control_flow_ops
assert global_step
loss = self._loss(
self._logits(features), targets, self._get_weight_tensor(features))
logging_ops.scalar_summary("loss", loss)
linear_vars = self._get_linear_vars()
dnn_vars = self._get_dnn_vars()
grads = gradients.gradients(loss, dnn_vars + linear_vars)
dnn_grads = grads[0:len(dnn_vars)]
linear_grads = grads[len(dnn_vars):]
train_ops = self._get_linear_training_ops(
linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
dnn_vars)
train_step = control_flow_ops.group(*train_ops, name="combined_training_op")
with ops.control_dependencies([train_step]):
with ops.get_default_graph().colocate_with(global_step):
return state_ops.assign_add(global_step, 1).op, loss
def _run_metrics(self, predictions, targets, metrics, weights):
result = {}
targets = math_ops.cast(targets, predictions.dtype)
for name, metric in six.iteritems(metrics or {}):
if "weights" in inspect.getargspec(metric)[0]:
result[name] = metric(predictions, targets, weights=weights)
else:
result[name] = metric(predictions, targets)
return result
| tensorflow.python.ops.control_flow_ops.group | 6,916 |
import tensorflow as tf
prev_c, prev_h = next_c, next_h
query = anchors_w_1.gather(indices)
query = tf.reshape(query, [layer_id, self.lstm_size])
query = tf.tanh(query + tf.matmul(next_h[-1], self.w_attn_2))
query = tf.matmul(query, self.v_attn)
logits = tf.reshape(query, [1, layer_id])
if self.temperature is not None:
logits /= self.temperature
if self.tanh_constant is not None:
logits = self.tanh_constant * tf.tanh(logits)
index = tf.multinomial(logits, 1)
index = tf.to_int32(index)
index = tf.reshape(index, [1])
arc_seq = arc_seq.write(start_id + 2 * i, index)
curr_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=index)
log_prob += curr_log_prob
curr_ent = tf.stop_gradient(tf.nn.softmax_cross_entropy_with_logits(
| tensorflow.tanh | 6,917 |
import tensorflow as tf
u = tf.contrib.layers.conv2d_transpose(layer_input,filters,f_size,stride=stride,padding=padding)
if dropout_rate:
u = tf.contrib.layers.dropout(u,keep_prob=dropout_rate)
u = tf.contrib.layers.batch_norm(u)
u = tf.nn.relu(u)
# u = tf.contrib.keras.layers.concatenate([skip_input,u])
return u
| tensorflow.contrib.layers.batch_norm | 6,918 |
import tensorflow as tf
:param q_sqrt: None or R x M x M (lower triangular)
:param white: bool
:return: N x R or R x N x N
"""
logger.debug("base conditional")
# compute kernel stuff
num_func = tf.shape(f)[1] # R
Lm = tf.cholesky(Kmm)
# Compute the projection matrix A
A = tf.matrix_triangular_solve(Lm, Kmn, lower=True)
# compute the covariance due to the conditioning
if full_cov:
fvar = Knn - tf.matmul(A, A, transpose_a=True)
fvar = tf.tile(fvar[None, :, :], [num_func, 1, 1]) # R x N x N
else:
fvar = Knn - tf.reduce_sum(tf.square(A), 0)
fvar = tf.tile(fvar[None, :], [num_func, 1]) # R x N
# another backsubstitution in the unwhitened case
if not white:
A = tf.matrix_triangular_solve(tf.transpose(Lm), A, lower=False)
# construct the conditional mean
fmean = tf.matmul(A, f, transpose_a=True)
if q_sqrt is not None:
if q_sqrt.get_shape().ndims == 2:
LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # R x M x N
| tensorflow.tile | 6,919 |
import tensorflow as tf
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
]
| tensorflow.constant | 6,920 |
import tensorflow as tf
input_shape = bottom.get_shape().as_list()
input_channels = input_shape[-1]
output_shape = [input_shape[0], input_shape[1]*stride, input_shape[2]*stride, output_channels]
with tf.variable_scope(name) as scope:
kernel = self.variable('weights', [kernel_size, kernel_size, output_channels, input_channels], initializer, regularizer=tf.contrib.layers.l2_regularizer(0.0005))
deconv = tf.nn.conv2d_transpose(bottom, kernel, output_shape, [1, stride, stride, 1], padding='SAME')
biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0))
deconv_layer = tf.nn.bias_add(deconv, biases)
| tensorflow.contrib.layers.l2_regularizer | 6,921 |
import tensorflow as tf
if FLAGS.no_gpu or tfe.num_gpus() <= 0:
print(tfe.num_gpus())
device = "/cpu:0"
else:
device = "/gpu:0"
print("Using device %s." % device)
log_dir = os.path.join(FLAGS.dir, "summaries")
tf.gfile.MakeDirs(log_dir)
train_summary_writer = tf.contrib.summary.create_file_writer(
os.path.join(log_dir, "train"), flush_millis=10000)
test_summary_writer = tf.contrib.summary.create_file_writer(
os.path.join(log_dir, "eval"), flush_millis=10000, name="eval")
with tf.device(device):
for epoch in range(FLAGS.num_epochs):
| tensorflow.gfile.MakeDirs | 6,922 |
import tensorflow as tf
def _add_max_pool_3x3_op(self, X, input_idx, ni, w, h, ch, is_reduction, is_dynamic, is_train):
filter_size = 3
stride = 2 if is_reduction else 1
with tf.variable_scope('max_pool_3x3_op'):
X = tf.nn.max_pool(X, ksize=(1, filter_size, filter_size, 1), strides=[1, stride, stride, 1], padding='SAME')
X = tf.reshape(X, (-1, w // stride, h // stride, ch)) # Sanity shape check
return X
def _add_separable_conv_3x3_op(self, *args, **kwargs):
return self._add_separable_conv_op(*args, **kwargs, filter_size=3)
| tensorflow.reshape | 6,923 |
import tensorflow as tf
self.predictions = tf.argmax(self.fc3, 1, name="predictions")
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y)
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
self.loss = tf.reduce_mean(losses) + sum(regularization_losses)
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
| tensorflow.cast | 6,924 |
import tensorflow as tf
def dot_attention(inputs, memory, mask, hidden, keep_prob=1.0, is_train=None, scope="dot_attention"):
with tf.variable_scope(scope):
| tensorflow.variable_scope | 6,925 |
from tensorflow.python.framework import ops
| tensorflow.python.framework.ops.reset_default_graph | 6,926 |
import tensorflow as tf
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
# This tells the estimator to run through the entire set.
eval_steps = None
# However, if running eval on the TPU, you will need to specify the
# number of steps.
if FLAGS.use_tpu:
assert len(eval_examples) % FLAGS.eval_batch_size == 0
| tensorflow.logging.info | 6,927 |
import tensorflow as tf
else:
logprob = heads[name](features).log_prob(target[name])
objectives.append(Objective(name, logprob, max, include, exclude))
objectives = [o._replace(value=tf.reduce_mean(o.value)) for o in objectives]
return objectives, cstr_pct
def contra_step_lossV1(pred, tgt, temp=10.0):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
tgt1, tgt2 = tf.split(tgt, 2, axis=0)
soft_sign = tf.tanh((tgt1 - tgt2) * temp)
loss = tf.maximum(0.0, soft_sign * ((tgt1 - tgt2) - (pred1 - pred2)))
loss = tf.reduce_mean(loss)
return loss
def contra_step_lossV2(pred, tgt):
# Step-wise contrastive loss
pred1, pred2 = tf.split(pred, 2, axis=0)
| tensorflow.split | 6,928 |
import tensorflow as tf
all_losses.append(regularization_loss)
if all_losses:
sum_loss = tf.add_n(all_losses)
# Add the summaries out of the clone device block.
if clone_loss is not None:
tf.summary.scalar('clone_loss', clone_loss)
# tf.summary.scalar(clone.scope + '/clone_loss', clone_loss)
if regularization_loss is not None:
tf.summary.scalar('regularization_loss', regularization_loss)
return sum_loss
def _optimize_clone(optimizer, clone, num_clones, regularization_losses,
**kwargs):
"""Compute losses and gradients for a single clone.
| tensorflow.summary.scalar | 6,929 |
import tensorflow as tf
a = 1
values = interpolated
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 0].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, 0])
values = tf.math.sign(tf.nn.relu(interpolated + self.tol))
| tensorflow.reduce_max | 6,930 |
import tensorflow as tf
for idx, (x, m) in enumerate(zip(xs, ms)):
c = c*(1-m)
h = h*(1-m)
z = _ln(tf.matmul(x, wx), gx, bx) + _ln(tf.matmul(h, wh), gh, bh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
| tensorflow.split | 6,931 |
import tensorflow as tf
if self.config.decay is not None:
self.var_ema = tf.train.ExponentialMovingAverage(self.config.decay)
ema_op = self.var_ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
| tensorflow.trainable_variables | 6,932 |
from tensorflow.python.ops import control_flow_ops
"""Note: when `rate` is an integer, there are actually two modes: `rate`
and `rate - 1`. In this case we return the larger, i.e., `rate`.""")
def _mode(self):
return math_ops.floor(self.rate)
def _assert_valid_sample(self, x, check_integer=True):
if not self.validate_args:
return x
dependencies = [check_ops.assert_non_negative(x)]
if check_integer:
dependencies += [distribution_util.assert_integer_form(
x, message="x has non-integer components.")]
return control_flow_ops.with_dependencies(dependencies, x)
| tensorflow.python.ops.control_flow_ops.with_dependencies | 6,933 |
import tensorflow as tf
"""
with tf.name_scope("cross_entropy_sequence_loss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)
loss_mask = tf.sequence_mask(tf.to_int32(sequence_length), tf.to_int32(tf.shape(targets)[0]))
losses = losses * tf.transpose(tf.to_float(loss_mask), [1, 0])
return losses
def dice_loss(predictions, targets, weights=1., name='dice_loss'):
with tf.name_scope(name):
# predictions = tf.to_float(predictions)
targets = tf.to_float(targets)
intersection = 2 * tf.reduce_sum(predictions * targets) + weights
union = weights + tf.reduce_sum(predictions) + tf.reduce_sum(targets)
loss = -(intersection / (union))
return loss
def precision_recall_auc_loss(labels,
logits,
precision_range=(0.0, 1.0),
num_anchors=20,
weights=1.0,
dual_rate_factor=0.1,
label_priors=None,
surrogate_type='xent',
lambdas_initializer=tf.constant_initializer(1.0),
| tensorflow.reduce_sum | 6,934 |
import tensorflow as tf
if cell_type == 'LSTM':
if activation == 'linear':
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.identity, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, activation = tf.nn.relu, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
else: #tanh by default
lstm=tf.nn.rnn_cell.LSTMCell(num_units=state_size, state_is_tuple=True)
cell_drop=tf.contrib.rnn.DropoutWrapper(lstm,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif cell_type == 'GRU':
if activation == 'linear':
gru=tf.nn.rnn_cell.GRUCell(state_size, activation = tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(gru,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
elif activation == 'relu':
| tensorflow.contrib.rnn.DropoutWrapper | 6,935 |
import tensorflow as tf
import time
import numpy as np
import tensorflow as tf
import random
from tensorflow.contrib import slim
from npu_bridge.estimator import npu_ops
from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
tf.app.flags.DEFINE_integer('input_size', 512, '')
tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '')
tf.app.flags.DEFINE_integer('num_readers', 16, '')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, '')
tf.app.flags.DEFINE_integer('max_steps', 100000, '')
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision')
tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune')
tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data')
tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets')
import model
import icdar
| tensorflow.app.flags.DEFINE_integer | 6,936 |
import tensorflow as tf
# pred1, pred2 = tf.split(horizon_pred, 2, axis=0)
# tgt1, tgt2 = tf.split(horizon_tgt, 2, axis=0)
even = [2 * i for i in range(25)]
odd = [2 * i + 1 for i in range(25)]
pred1 = tf.gather(horizon_pred, even)
pred2 = tf.gather(horizon_pred, odd)
tgt1 = tf.gather(horizon_tgt, even)
tgt2 = tf.gather(horizon_tgt, odd)
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0.0, ((tgt_larg - tgt_small) - (pred_larg - pred_small)))
loss = tf.reduce_mean(loss)
return loss
def apply_optimizers(objectives, trainer, config):
# Make sure all losses are computed and apply loss scales.
processed = []
values = [ob.value for ob in objectives]
for ob in objectives:
| tensorflow.where | 6,937 |
import tensorflow.contrib.layers as layers
def atari_model(img_in, num_actions, scope, reuse=False):
# as described in https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
with tf.variable_scope(scope, reuse=reuse):
out = img_in
with tf.variable_scope("convnet"):
# original architecture
out = layers.convolution2d(out, num_outputs=32, kernel_size=8, stride=4, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=4, stride=2, activation_fn=tf.nn.relu)
out = layers.convolution2d(out, num_outputs=64, kernel_size=3, stride=1, activation_fn=tf.nn.relu)
out = layers.flatten(out)
with tf.variable_scope("action_value"):
out = layers.fully_connected(out, num_outputs=512, activation_fn=tf.nn.relu)
out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
return out
def atari_learn(env,
| tensorflow.contrib.layers.convolution2d | 6,938 |
import tensorflow as tf
if FLAGS.do_predict:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
if FLAGS.use_tpu:
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
predict_examples.append(PaddingInputExample())
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
if not tf.gfile.Exists(predict_file) or not FLAGS.data_converted:
file_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_drop_remainder = True if FLAGS.use_tpu else False
| tensorflow.gfile.Exists | 6,939 |
import tensorflow as tf
import TensorflowUtils as utils
import read_MITSceneParsingDataParis as scene_parsing
import datetime
import BatchDatsetReader as dataset
from six.moves import xrange
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer("batch_size", "50", "batch size for training")
tf.flags.DEFINE_string("logs_dir", "/scratch1/ram095/nips20/logs_mnist128/", "path to logs directory")
tf.flags.DEFINE_string("data_dir", "/scratch1/ram095/nips20/paris_street", "path to dataset")
tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", "Model_zoo/", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
MAX_ITERATION = int(1e5 + 1)
| tensorflow.flags.DEFINE_string | 6,940 |
import tensorflow as tf
return (images_batch, classes_batch, dataset_init_op)
def _get_drop_path_keep_prob(self, layers_ratio, step, is_train=False, **knobs):
batch_size = knobs['batch_size']
drop_path_keep_prob = knobs['drop_path_keep_prob'] # Base keep prob for drop path
drop_path_decay_epochs = knobs['drop_path_decay_epochs']
N = self._train_params['N']
# Only drop path during training
keep_prob = tf.constant(1, dtype=tf.float32)
if is_train:
# Decrease keep prob deeper into network
keep_prob = 1 - layers_ratio * (1 - drop_path_keep_prob)
# Decrease keep prob with increasing steps
steps_per_epoch = math.ceil(N / batch_size)
steps_ratio = tf.minimum(((step + 1) / steps_per_epoch) / drop_path_decay_epochs, 1)
keep_prob = 1 - steps_ratio * (1 - keep_prob)
keep_prob = tf.cast(keep_prob, tf.float32)
| tensorflow.constant | 6,941 |
import tensorflow as tf
# where m(x) is the mean_function and \mu(x) is fmean
e_mean_mean = expectation(pXnew, mean_function, mean_function) # N x D x D
Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True)
e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M
# einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor:
e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind])
e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D
e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean
if full_output_cov:
fvar = (
tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) +
tf.matrix_diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) +
# tf.matrix_diag(tf.trace(tf.matmul(Li_eKuffu_Lit, cov))) +
tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu) -
# tf.matmul(q_mu, tf.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) -
fmean[:, :, None] * fmean[:, None, :] +
e_related_to_mean
)
else:
fvar = (
(eKff - tf.trace(Li_eKuffu_Lit))[:, None] +
tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov) +
tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu) -
| tensorflow.einsum | 6,942 |
from tensorflow.python.framework import ops
Must be the same type as `value` unless `value` is a quantized type,
in which case a different quantized type may be used.
data_format: A string. 'NHWC' and 'NCHW" are supported.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `value`.
"""
with ops.op_scope([value, bias], name, "BiasAdd") as name:
value = ops.convert_to_tensor(value, name="input")
bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
return gen_nn_ops._bias_add(value, bias, data_format=data_format, name=name)
ops.RegisterShape("BiasAdd")(common_shapes.bias_add_shape)
ops.RegisterShape("BiasAddGrad")(common_shapes.bias_add_grad_shape)
# pylint: disable=protected-access
def bias_add_v1(value, bias, name=None):
"""Adds `bias` to `value`.
This is a deprecated version of bias_add and will soon to be removed.
This is (mostly) a special case of `tf.add` where `bias` is restricted to 1-D.
| tensorflow.python.framework.ops.RegisterShape | 6,943 |
import tensorflow as tf
# mse_loss = tf.multiply(params['mse_weight'] / params['num_stacks'], tf.add_n(bce_loss_list), name='mse_loss')
# tf.summary.scalar('mse', mse_loss)
# tf.losses.add_loss(mse_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
tf.summary.scalar('loss', total_loss)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics)
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['warmup_learning_rate']] + [base_learning_rate * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[params['warmup_steps']] + [int(float(ep)*params['steps_per_epoch']) for ep in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
tf.summary.scalar('lr', truncated_learning_rate)
| tensorflow.estimator.EstimatorSpec | 6,944 |
import tensorflow as tf
print(tgtimg_z.get_shape())
self.out = output_h4
self.out2 = truthoutput_h4
print(self.out.get_shape())
self.recon1 = tf.nn.l2_loss(tgtimg - self.out)
self.recon2 = tf.nn.l2_loss(tgtimg - self.out2)
self.loss = self.recon1 + self.recon2 + self.simloss
if ablation_type == "None":
self.loss = self.recon1 + self.recon2 + self.simloss
elif ablation_type == "L2":
| tensorflow.nn.l2_loss | 6,945 |
import tensorflow as tf
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 2), res[0].shape)
def testTiedRNNSeq2Seq(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
cell = tf.nn.rnn_cell.OutputProjectionWrapper(
tf.nn.rnn_cell.GRUCell(2), 4)
dec, mem = tf.nn.seq2seq.tied_rnn_seq2seq(inp, dec_inp, cell)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 4), res[0].shape)
res = sess.run([mem])
self.assertEqual(1, len(res))
self.assertEqual((2, 2), res[0].shape)
def testEmbeddingRNNDecoder(self):
with self.test_session() as sess:
with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)):
inp = [tf.constant(0.5, shape=[2, 2])] * 2
| tensorflow.global_variables_initializer | 6,946 |
from tensorflow.python.framework import ops
value_tensor = array_ops.identity(count)
update_op = state_ops.assign_add(count, math_ops.reduce_sum(values))
if metrics_collections:
ops.add_to_collections(metrics_collections, value_tensor)
if updates_collections:
ops.add_to_collections(updates_collections, update_op)
| tensorflow.python.framework.ops.add_to_collections | 6,947 |
import tensorflow as tf
'Diameter of epsilon sphere comparing to distance to a neighbour. <= 0.5')
tf.app.flags.DEFINE_float('gamma', 50., 'Loss weight for large distances')
tf.app.flags.DEFINE_float('distance', 0.01, 'Maximum allowed interpoint distance')
tf.app.flags.DEFINE_float('delta', 1., 'Loss weight for stacked objective')
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set')
tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs')
tf.app.flags.DEFINE_integer('save_every', 250, 'Save model state every INT epochs')
tf.app.flags.DEFINE_integer('eval_every', 25, 'Save encoding and visualizations every')
tf.app.flags.DEFINE_integer('visualiza_max', 10, 'Max pairs to show on visualization')
tf.app.flags.DEFINE_boolean('load_state', True, 'Load state if possible ')
tf.app.flags.DEFINE_boolean('kill_depth', False, 'Ignore depth information')
tf.app.flags.DEFINE_boolean('dev', False, 'Indicate development mode')
tf.app.flags.DEFINE_integer('batch_size', 128, 'Batch size')
tf.app.flags.DEFINE_float('learning_rate', 0.0001, 'Create visualization of ')
tf.app.flags.DEFINE_float('blur', 5.0, 'Max sigma value for Gaussian blur applied to training set')
tf.app.flags.DEFINE_boolean('new_blur', False, 'Use data augmentation as blur info')
tf.app.flags.DEFINE_integer('blur_decrease', 10000, 'Decrease image blur every X steps')
FLAGS = tf.app.flags.FLAGS
slim = tf.contrib.slim
AUTOENCODER = 'ae'
| tensorflow.app.flags.DEFINE_boolean | 6,948 |
import tensorflow as tf
# Applying fully connected layer with non-linear activation to each of the B*T timestamps;
# the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size
tmp1 = tf.tensordot(facts, w1, axes=1)
tmp2 = tf.tensordot(query, w2, axes=1)
tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]])
tmp = tf.tanh((tmp1 + tmp2) + b)
# For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector
v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
key_masks = mask # [B, 1, T]
| tensorflow.tanh | 6,949 |
import tensorflow as tf
tail_init = tf.truncated_normal([tail_cnt, self.embedding_size], stddev=init_sd)
if self.maxnorm is not None:
# Ensure maxnorm constraints are initially satisfied
head_init = dense_maxnorm(head_init, self.maxnorm)
rel_init = dense_maxnorm(rel_init, self.maxnorm)
tail_init = dense_maxnorm(tail_init, self.maxnorm)
self.head_embedding_vars = tf.Variable(head_init)
self.rel_embedding_vars = tf.Variable(rel_init)
self.tail_embedding_vars = tf.Variable(tail_init)
# Embedding layer for each (head, rel, tail) triple being fed in as input
head_embed = tf.nn.embedding_lookup(self.head_embedding_vars, self.head_input)
rel_embed = tf.nn.embedding_lookup(self.rel_embedding_vars, self.rel_input)
tail_embed = tf.nn.embedding_lookup(self.tail_embedding_vars, self.tail_input)
# Model output
raw_output = tf.reduce_sum(tf.mul(tf.mul(head_embed, rel_embed), tail_embed), 1)
self.output, self.loss = self._create_output_and_loss(raw_output)
# Optimization
self.train_step = self.opt.minimize(self.loss)
if self.maxnorm is not None:
# Post-processing to limit embedding vars to L2 ball
head_constraint = self._norm_constraint_op(self.head_embedding_vars,
tf.unique(self.head_input)[0],
| tensorflow.nn.embedding_lookup | 6,950 |
import tensorflow as tf
with tf.name_scope(name, "click_loglikelihood"):
ob_prob=tf.nn.softmax(propensity)
rel_prob=tf.nn.softmax(train_output)
click_prob=ob_prob*rel_prob
click_prob_norm=click_prob/tf.reduce_sum(click_prob,axis=1,keep_dims=True)
label_dis = labels/ tf.reduce_sum(labels, 1, keep_dims=True)
entropy = tf.reduce_sum(tf.math.log(click_prob_norm)*label_dis,1)
return tf.reduce_mean(entropy)
def click_weighted_pairwise_loss(self, output, labels, propensity_weights, name=None):
"""Computes pairwise entropy loss with propensity weighting.
| tensorflow.reduce_sum | 6,951 |
import tensorflow as tf
else:
if activation == 'linear':
cell_basic = tf.contrib.rnn.BasicRNNCell(state_size,activation=tf.identity)
cell_drop=tf.contrib.rnn.DropoutWrapper(cell_basic,variational_recurrent=True,dtype=tf.float32, input_size=num_input,input_keep_prob=input_prob,state_keep_prob=state_prob)
| tensorflow.contrib.rnn.BasicRNNCell | 6,952 |
import tensorflow as tf
batch_size = tf.shape(observations_ph.get())[0]
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])),
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_threshold_expr,
]
_act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph],
outputs=output_actions,
givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False},
updates=updates)
def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1):
| tensorflow.group | 6,953 |
import tensorflow as tf
diff_vec = tail_embed - (head_embed + rel_embed)
# negative dist so higher scores are better (important for pairwise loss)
if self.dist == 'manhattan':
raw_output = -tf.reduce_sum(tf.abs(diff_vec), 1)
elif self.dist == 'euclidean':
# +eps because gradients can misbehave for small values in sqrt
raw_output = -tf.sqrt(tf.reduce_sum(tf.square(diff_vec), 1) + self.EPS)
elif self.dist == 'sqeuclidean':
raw_output = -tf.reduce_sum(tf.square(diff_vec), 1)
else:
raise Exception('Unknown distance type')
# Model output
self.output, self.loss = ranking_margin_objective(raw_output, self.margin)
# Optimization with postprocessing to limit embedding vars to L2 ball
self.train_step = self.opt.minimize(self.loss)
unique_ent_indices = tf.unique(tf.concat(0, [self.head_input, self.tail_input]))[0]
self.post_step = self._norm_constraint_op(self.entity_embedding_vars,
unique_ent_indices,
self.maxnorm) | tensorflow.concat | 6,954 |
import tensorflow as tf
tf.summary.scalar('importance weight',tf.reduce_mean(self.weight_ph))
if ent_coef_loss is not None:
tf.summary.scalar('ent_coef_loss', ent_coef_loss)
tf.summary.scalar('ent_coef', self.ent_coef)
| tensorflow.summary.scalar | 6,955 |
import tensorflow as tf
for i in range(n_highway):
with tf.variable_scope('CNN_high_%s' % i) as scope:
W_carry = tf.get_variable(
| tensorflow.variable_scope | 6,956 |
import tensorflow as tf
ids_ta.size() + tf.size(encoded_ids)), encoded_ids)
return i + 1, words, ids_ta
_, _, ids_ta = tf.while_loop(
lambda i, *_: i < num_words,
_WordsToIds,
loop_vars=(tf.constant(0, tf.int32), words, ids_ta),
parallel_iterations=30,
back_prop=False)
ids = ids_ta.stack()
return ids, self._TokenToString(ids)
| tensorflow.constant | 6,957 |
import tensorflow as tf
def train(loss_val, var_list):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
utils.add_gradient_summary(grad, var)
return optimizer.apply_gradients(grads)
def train_z(loss,Z):
return tf.gradients(ys = loss, xs = Z)
def main(argv=None):
keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
annotation = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="annotation")
z = tf.placeholder(tf.float32, shape=[None, 4, 4, 128], name="z")
# pred_annotation, logits = inference(image, keep_probability,z)
# tf.summary.image("input_image", image, max_outputs=2)
# tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2)
# tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
# loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
# labels=tf.squeeze(annotation, squeeze_dims=[3]),
# name="entropy")))
| tensorflow.placeholder | 6,958 |
import tensorflow as tf
params = self.parameterizer(x1)
mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2]
# compute softplus activation
z2, ldj = log_gaussianize(x2, mus, log_sigmas)
z2 = tf.where(x2 > self.epsilon, z2, x2)
ldj = tf.where(x2 > self.epsilon, ldj, tf.zeros_like(ldj))
return z2, tf.math.reduce_sum(ldj, axis=[1,2,3])
def _inverse(self, x1, z2, **kwargs):
params = self.parameterizer(x1)
mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2]
x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True))
x2 = tf.where(z2 > self.epsilon, x2, z2)
ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj))
return x2, tf.math.reduce_sum(ldj, axis=[1,2,3])
def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)):
if inverse:
z = tf.math.exp(log_sigmas)*x
ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3])
else:
z = x*tf.math.exp(-log_sigmas)
ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3])
return z, ldj
class HalfGaussianize(Parameterize):
"""
Implementation of parameterize for a half-Gaussian prior.
| tensorflow.math.reduce_sum | 6,959 |
import tensorflow as tf
def multi_box_loss(y_true, y_pred):
num_batch = tf.shape(y_true)[0]
| tensorflow.shape | 6,960 |
from tensorflow.python.framework import tensor_util
def testIsScalar(self):
with self.test_session():
mu = 1.
sigma = 2.
normal = dists.Normal(mu, sigma,
validate_args=True)
self.assertTrue(tensor_util.constant_value(normal.is_scalar_event))
self.assertTrue(tensor_util.constant_value(normal.is_scalar_batch))
normal = dists.Normal([mu], [sigma],
validate_args=True)
self.assertTrue(tensor_util.constant_value(normal.is_scalar_event))
self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch))
| tensorflow.python.framework.tensor_util.constant_value | 6,961 |
import tensorflow as tf
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
def load_image_test(datapoint):
input_image = tf.image.resize(datapoint['image'], (512, 512))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
input_image, input_mask = normalize(input_image, input_mask)
return input_image, input_mask
def main(_):
train_examples = info.splits['train'].num_examples
batch_size = 8
steps_per_epoch = train_examples // batch_size
| tensorflow.image.resize | 6,962 |
import tensorflow as tf
# specific to FeUdal
self.prev_g = tf.placeholder(tf.float32, (None, None, self.g_dim))
self.ri = tf.placeholder(tf.float32, (None,))
self.s_diff = tf.placeholder(tf.float32, (None, self.g_dim))
def build_perception(self):
self._obs = tf.expand_dims(self.obs, -1) # !
| tensorflow.placeholder | 6,963 |
import tensorflow as tf
def baseline_loss(rewards, weights, average_across_timesteps=False, average_across_batch=True):
"""
:param rewards: tensor of shape (batch_size, time_steps)
:param weights: tensor of shape (batch_size, time_steps)
"""
batch_size = tf.shape(rewards)[0]
cost = rewards ** 2
cost = tf.reduce_sum(cost * weights, axis=1)
if average_across_timesteps:
total_size = tf.reduce_sum(weights, axis=1)
total_size += 1e-12 # just to avoid division by 0 for all-0 weights
cost /= total_size
cost = tf.reduce_sum(cost)
if average_across_batch:
cost /= tf.to_float(batch_size)
return cost
| tensorflow.reduce_sum | 6,964 |
from tensorflow.python.client import graph_util
def _calc_conv_flops(graph, node):
"""Calculates the compute resources needed for Conv2D."""
input_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0])
input_shape.assert_is_fully_defined()
| tensorflow.python.client.graph_util.tensor_shape_from_node_def_name | 6,965 |
import tensorflow as tf
logits[None], num_samples=self._sample_batch_size))
mask = tf.cast(mask, tf.float32)[:, None]
relabelled_tasks = mask * orig_tasks + (1 - mask) * relabelled_tasks
states_and_tasks = self._task_distribution.combine(states, relabelled_tasks)
next_states_and_tasks = self._task_distribution.combine(
next_states, relabelled_tasks)
new_observation = tf.concat(
[states_and_tasks[:, None], next_states_and_tasks[:, None]], axis=1)
assert new_observation.shape == experience.observation.shape
experience = experience.replace(observation=new_observation)
return experience
| tensorflow.concat | 6,966 |
import tensorflow as tf
if not phase_train:
if FLAGS.forward_only:
all_logits = tf.concat(all_logits, 0)
fetches = [all_logits] + enqueue_ops
else:
all_top_1_ops = tf.reduce_sum(all_top_1_ops)
all_top_5_ops = tf.reduce_sum(all_top_5_ops)
fetches = [all_top_1_ops, all_top_5_ops] + enqueue_ops
return (enqueue_ops, fetches)
extra_nccl_ops = []
apply_gradient_devices, gradient_state = (
self.variable_mgr.preprocess_device_grads(device_grads))
training_ops = []
for d, device in enumerate(apply_gradient_devices):
with tf.device(device):
total_loss = tf.reduce_mean(losses)
avg_grads = self.variable_mgr.get_gradients_to_apply(d, gradient_state)
gradient_clip = FLAGS.gradient_clip
learning_rate = self.model_conf.get_learning_rate()
if self.dataset and FLAGS.num_epochs_per_decay > 0:
num_batches_per_epoch = (
self.dataset.num_examples_per_epoch() / self.batch_size)
decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay)
# Decay the learning rate exponentially based on the number of steps.
learning_rate = tf.train.exponential_decay(
FLAGS.learning_rate, global_step,
decay_steps, FLAGS.learning_rate_decay_factor, staircase=True)
| tensorflow.device | 6,967 |
import tensorflow as tf
# random flip on a batch of images
def batch_random_flip(input_):
"""Simultaneous horizontal random flip."""
if isinstance(input_, (float, int)):
return input_
shape = input_.get_shape().as_list()
batch_size = shape[0]
height = shape[1]
width = shape[2]
channels = shape[3]
res = tf.split(axis=0, num_or_size_splits=batch_size, value=input_)
res = [elem[0, :, :, :] for elem in res]
res = [tf.image.random_flip_left_right(elem) for elem in res]
res = [tf.reshape(elem, [1, height, width, channels]) for elem in res]
res = tf.concat(axis=0, values=res)
return res
# build a one hot representation corresponding to the integer tensor
# the one-hot dimension is appended to the integer tensor shape
def as_one_hot(input_, n_indices):
| tensorflow.split | 6,968 |
import tensorflow as tf
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_std = tf.exp(alpha_logstd)
# Compute epsilon from {n_samples} standard Gaussian
| tensorflow.exp | 6,969 |
import tensorflow as tf
predictions: A Tensor of size [batch_size, 4].
labels: A Tensor of size [batch_size, 4].
params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.
Returns:
A Tensor of size [batch_size], denoting the error between the quaternions.
"""
assertions = []
assertions.append(
tf.Assert(
tf.reduce_all(tf.less(tf.abs(tf.reduce_sum(tf.square(predictions), [1]) - 1), 1e-4)),
['The l2 norm of each prediction quaternion vector should be 1.']))
assertions.append(
tf.Assert(
tf.reduce_all(tf.less(tf.abs(tf.reduce_sum(tf.square(labels), [1]) - 1), 1e-4)),
['The l2 norm of each label quaternion vector should be 1.']))
with tf.name_scope(name):
with tf.control_dependencies(assertions):
product = tf.multiply(predictions, labels)
internal_dot_products = tf.reduce_sum(product, [1])
logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
return logcost
def log_quaternion_loss(predictions, labels, batch_size, name='log_quaternion_loss'):
"""A helper function to compute the mean error between batches of
quaternions.
| tensorflow.square | 6,970 |
import tensorflow as tf
self.assertAllEqual([[3, 5]], result)
self.assertAllEqual([1], batch_size)
def test_two(self):
with self.test_session() as session:
@dynamic_batching.batch_fn
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
output0 = f(tf.constant([1]), tf.constant([2]))
output1 = f(tf.constant([2]), tf.constant([3]))
tp = pool.ThreadPool(2)
| tensorflow.shape | 6,971 |
import tensorflow as tf
epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=0)
ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6)
ratio = tf.clip_by_value(ratio, 0, 10)
surr1 = batch['advantage'] * ratio
| tensorflow.clip_by_value | 6,972 |
import tensorflow as tf
or the images are smaller than the crop dimensions.
"""
if not image_list:
raise ValueError('Empty image_list.')
# Compute the rank assertions.
rank_assertions = []
for i in range(len(image_list)):
image_rank = tf.rank(image_list[i])
rank_assert = tf.Assert(
tf.equal(image_rank, 3),
['Wrong rank for tensor %s [expected] [actual]',
image_list[i].name, 3, image_rank])
rank_assertions.append(rank_assert)
image_shape = control_flow_ops.with_dependencies(
[rank_assertions[0]],
tf.shape(image_list[0]))
image_height = image_shape[0]
image_width = image_shape[1]
| tensorflow.equal | 6,973 |
import tensorflow as tf
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None)
q_emb = highway(q_emb, size = d, scope = "highway", dropout = self.dropout, reuse = True)
with tf.variable_scope("Embedding_Encoder_Layer"):
c = residual_block(c_emb,
num_blocks = 1,
num_conv_layers = 4,
kernel_size = 7,
mask = self.c_mask,
num_filters = d,
num_heads = nh,
seq_len = self.c_len,
scope = "Encoder_Residual_Block",
| tensorflow.variable_scope | 6,974 |
import tensorflow as tf
self._batch_size = batch_size
self._dropout_keep_prob = dropout_keep_prob
self._out_vocab_size = out_vocab_size
self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len],
name='x')
self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size],
name='y')
# The bidirectional rnn code requires seq_lens as int64
self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens')
self.example_weights = tf.placeholder(tf.float32, [batch_size],
name='example_weights')
embeddings = c2v.GetEmbeddings(self.x)
self._inputs = [tf.squeeze(input_, [1]) for input_ in
tf.split(1, max_sequence_len, embeddings)]
# Need to prepare a mask to zero out the padding symbols.
# Make a batch_size x max_sequence_len matrix where each
# row contains the length repeated max_sequence_len times.
lengths_transposed = tf.expand_dims(tf.to_int32(self.seq_lens), 1)
lengths_tiled = tf.tile(lengths_transposed, [1, max_sequence_len])
# Make a matrix where each row contains [0, 1, ..., max_sequence_len]
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
range_tiled = tf.tile(range_row, [batch_size, 1])
| tensorflow.squeeze | 6,975 |
import tensorflow as tf
}
features = {
key: tf.expand_dims(tensor, -1)
for key, tensor in feature_placeholders.items()
}
features[TIMESERIES_COL] = tf.squeeze(features[TIMESERIES_COL], axis = [2])
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
# Create custom estimator's train and evaluate function
def train_and_evaluate(output_dir, use_keras):
| tensorflow.squeeze | 6,976 |
import tensorflow as tf
mem_name = "mems"
mems = mems.get(mem_name, None)
inp_k = tf.transpose(features["input_k"], [1, 0])
inp_q = tf.transpose(features["input_q"], [1, 0])
seg_id = tf.transpose(features["seg_id"], [1, 0])
inp_mask = None
perm_mask = tf.transpose(features["perm_mask"], [1, 2, 0])
if FLAGS.num_predict is not None:
# [num_predict x tgt_len x bsz]
target_mapping = tf.transpose(features["target_mapping"], [1, 2, 0])
else:
target_mapping = None
# target for LM loss
| tensorflow.transpose | 6,977 |
import tensorflow as tf
metrics = []
metrics.append(tf.summary.histogram('point_distance', dists))
metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists)))
self.blur_ph = tf.placeholder(dtype=tf.float32)
metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph))
pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2]
pred_error = l2(pred - self.embedding_test[2:])
mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
improvement = (mean_dist-mean_pred_error)/mean_dist
pairwise_improvement = tf.nn.relu(dists[1:] - pred_error)
pairwise_improvement_bool = tf.cast(pairwise_improvement > 0, pairwise_improvement.dtype)
self.pairwise_improvement_bool = pairwise_improvement_bool
metrics.append(tf.summary.scalar('training/avg_dist', mean_dist))
metrics.append(tf.summary.scalar('training/pred_dist', mean_pred_error))
metrics.append(tf.summary.scalar('training/improvement', improvement))
| tensorflow.reduce_mean | 6,978 |
import tensorflow as tf
if self.options.add_first_word_prob_for_phrase: # add prob of the first word to each phrase
attn_dist = add_first_word_prob_to_atten_dists(self.in_passage_words, self.phrase_starts,
vocab_dist, attn_dist)
# match attn_dist[batch_size, passage_length] to sparse one-hot representation [batch_size, passage_length, extended_vsize]
batch_nums = tf.range(0, limit=batch_size) # shape (batch_size)
batch_nums = tf.expand_dims(batch_nums, axis=1) # shape (batch_size, 1)
batch_nums = tf.tile(batch_nums, [1, passage_length]) # shape (batch_size, passage_length)
step_nums = tf.range(0, limit=passage_length) # [passage_length]
step_nums = tf.expand_dims(step_nums, axis=0) # shape (1, passage_length)
| tensorflow.range | 6,979 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('num_iter_per_epoch', 400, "the number of updates per epoch")
tf.app.flags.DEFINE_float('learning_rate', 0.001, "initial leanring rate")
| tensorflow.app.flags.DEFINE_float | 6,980 |
import tensorflow as tf
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
| tensorflow.tile | 6,981 |
from tensorflow.python.ops import init_ops
padding='SAME',
data_format=None,
rate=1,
activation_fn=nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
use_spectral_norm=False,
is_training=False,
| tensorflow.python.ops.init_ops.zeros_initializer | 6,982 |
import tensorflow as tf
tf.summary.histogram(v.name[:-2] + '_hist', v)
tf.summary.histogram(v.name[:-2] + '_grad_hist', g)
with tf.control_dependencies([train_op]), tf.name_scope('ema'):
ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step)
train_op = ema.apply(tf.trainable_variables())
return tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op)
| tensorflow.trainable_variables | 6,983 |
from tensorflow.python.ops import check_ops
self.event_ndims):
ndims = tensor_util.constant_value(ndims)
sample_ndims = (ndims - self._batch_ndims_static -
self._event_ndims_static)
if sample_ndims < 0:
raise ValueError(
"expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" %
(self._batch_ndims_static, self._event_ndims_static, ndims))
return ops.convert_to_tensor(sample_ndims, name="sample_ndims")
else:
with ops.name_scope(name="sample_ndims"):
sample_ndims = ndims - self.batch_ndims - self.event_ndims
if self.validate_args:
sample_ndims = control_flow_ops.with_dependencies(
[check_ops.assert_non_negative(sample_ndims)], sample_ndims)
return sample_ndims
def get_dims(self, x, name="get_dims"):
"""Returns dimensions indexing `sample_shape`, `batch_shape`, `event_shape`.
Example:
```python
x = ... # Tensor with shape [4, 3, 2, 1]
sample_dims, batch_dims, event_dims = _DistributionShape(
batch_ndims=2, event_ndims=1).get_dims(x)
# sample_dims == [0]
# batch_dims == [1, 2]
| tensorflow.python.ops.check_ops.assert_non_negative | 6,984 |
import tensorflow as tf
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
def input_fn_builder(features, seq_length, max_predictions_per_seq):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
all_input_ids = []
| tensorflow.gather | 6,985 |
from tensorflow.python.training import server_lib
cs = server_lib.ClusterSpec({
"worker": ["localhost:%s" % port1],
"ps": ["localhost:%s" % port2]
})
worker = server_lib.Server(cs, job_name="worker", start=True)
ps = server_lib.Server(cs, job_name="ps", start=True)
return worker, ps
@contextlib.contextmanager
def _maybeWithDevice(self, device):
| tensorflow.python.training.server_lib.Server | 6,986 |
import tensorflow as tf
"output_weights", [num_labels, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias", [num_labels], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
if task_name != "sts-b":
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
else:
probabilities = logits
| tensorflow.matmul | 6,987 |
import tensorflow as tf
def compute_gradients(self, loss, var_list=None, *args, **kwargs):
if var_list is None:
var_list = (
tf.trainable_variables() +
tf.get_collection(tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
replaced_list = var_list
if self._scale != 1.0:
loss = tf.scalar_mul(self._scale, loss)
gradvar = self._optimizer.compute_gradients(loss, replaced_list, *args, **kwargs)
final_gradvar = []
for orig_var, (grad, var) in zip(var_list, gradvar):
if var is not orig_var:
grad = tf.cast(grad, orig_var.dtype)
if self._scale != 1.0:
| tensorflow.scalar_mul | 6,988 |
from tensorflow.contrib.eager.python.examples.spinn import data
vocab = data.load_vocabulary(self._temp_data_dir)
| tensorflow.contrib.eager.python.examples.spinn.data.load_vocabulary | 6,989 |
import tensorflow as tf
self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy())
self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
self.assertAllEqual(nms_masks2.numpy(), nms_masks_expected2.numpy())
self.assertAllClose(nms_scores2.numpy(), nms_scores_expected2.numpy())
self.assertAllEqual(nms_classes2.numpy(), nms_classes_expected2.numpy())
def test_points_mask_iou(self):
masks1 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0]], dtype=tf.int32)
masks2 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1]], dtype=tf.int32)
iou = isu.points_mask_iou(masks1=masks1, masks2=masks2)
expected_iou = tf.constant([[0, 0, 0],
[0, 1, 0.6],
[0, 0.6, 1.0],
[0, 0.4, 0]], dtype=tf.float32)
self.assertAllClose(iou.numpy(), expected_iou.numpy())
def test_points_mask_pairwise_iou(self):
masks1 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 1, 0, 1],
[0, 1, 0, 1, 0]], dtype=tf.int32)
masks2 = tf.constant([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 0],
[1, 0, 1, 1, 1]], dtype=tf.int32)
| tensorflow.constant | 6,990 |
import tensorflow as tf
# Circuit output receives recurrent input h1
c2, g2 = self.circuit_output(
h1=h1,
layer=layer,
var_scope=var_scope,
layer_idx=layer_idx)
with tf.variable_scope(
'%s/c2_bn' % var_scope,
reuse=self.scope_reuse) as scope:
c2 = tf.contrib.layers.batch_norm(
inputs=c2,
scale=True,
center=False,
fused=True,
renorm=False,
param_initializers=self.param_initializer,
updates_collections=None,
scope=scope,
reuse=self.reuse,
is_training=self.train)
| tensorflow.contrib.layers.batch_norm | 6,991 |
import tensorflow as tf
from collections import deque
def sample(logits):
noise = tf.random_uniform(tf.shape(logits))
return tf.argmax(logits - tf.log(-tf.log(noise)), 1)
| tensorflow.shape | 6,992 |
import tensorflow as tf
int.
num_bits: Number of bits in the representation.
base: Base of the representation.
Returns:
Integer representation of this number.
"""
x_l = tf.stop_gradient(tf.to_int32(tf.reshape(x_bit, [-1, num_bits])))
x_labels = []
for i in range(num_bits):
x_labels.append(x_l[:, i] * tf.to_int32(base)**tf.to_int32(i))
res = sum(x_labels)
return tf.to_int32(tf.reshape(res, common_layers.shape_list(x_bit)[:-1]))
def int_to_bit(self, x_int, num_bits, base=2):
"""Turn x_int representing numbers into a bitwise (lower-endian) tensor.
Args:
x_int: Tensor containing integer to be converted into base
notation.
| tensorflow.to_int32 | 6,993 |
from tensorflow.contrib.framework import deprecated
label_name=label_name,
weight_column_name=weight_column_name)
@deprecated(
"2016-11-12", "This file will be removed after the deprecation date."
"Please switch to "
"third_party/tensorflow/contrib/learn/python/learn/estimators/head.py")
| tensorflow.contrib.framework.deprecated | 6,994 |
import tensorflow as tf
FLAGS.max_seq_length, tokenizer)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d", len(predict_examples))
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
if FLAGS.use_tpu:
# Warning: According to tpu_estimator.py Prediction on TPU is an
| tensorflow.logging.info | 6,995 |
import tensorflow as tf
# If the input is a string, then convert each string to the
# equivalent float value.
if tf_input_dtype == tf.string:
in0 = tf.strings.to_number(in0, tf.int32)
in1 = tf.strings.to_number(in1, tf.int32)
add = tf.add(in0, in1, "ADD")
sub = tf.subtract(in0, in1, "SUB")
# Cast or convert result to the output dtype.
if tf_output0_dtype == tf.string:
cast0 = tf.dtypes.as_string(add if not swap else sub, name="TOSTR0")
else:
cast0 = tf.cast(add if not swap else sub, tf_output0_dtype, "CAST0")
| tensorflow.subtract | 6,996 |
import tensorflow as tf
print('\nB-B=')
print(sess.run(B - B))
print('\nB*I=')
BI = tf.matmul(B, identity_matrix)
print(sess.run(BI))
print('\ntranspose(C)=')
print(sess.run(tf.transpose(C)))
print('\ntranspose(D)=')
print(sess.run(tf.transpose(D)))
print('\ninverse(D)=')
print(sess.run(tf.matrix_inverse(D)))
print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D))))
print('\ncholesky(D):')
print(sess.run(tf.cholesky(identity_matrix)))
print('\nselfAdjointEig(D):')
print(sess.run(tf.self_adjoint_eig(D)))
| tensorflow.transpose | 6,997 |
import tensorflow as tf
return ret
else:
return tf.nn.bias_add(ret*self.gamma,
self.beta,data_format=self.data_format)
| tensorflow.nn.bias_add | 6,998 |
import tensorflow as tf
used_mean, used_var = tf.nn.moments(input_, axes, name="batch_norm")
cur_mean, cur_var = used_mean, used_var
if bn_lag > 0.:
used_mean -= (1. - bn_lag) * (used_mean - tf.stop_gradient(mean))
used_var -= (1 - bn_lag) * (used_var - tf.stop_gradient(var))
used_mean /= (1. - bn_lag**(step + 1))
| tensorflow.stop_gradient | 6,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.