seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs)
mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1], dtype=tf.float32)
e *= mask
if encoder.attn_norm_fun == 'none':
weights = e
elif encoder.attn_norm_fun == 'sigmoid':
weights = tf.nn.sigmoid(e)
elif encoder.attn_norm_fun == 'max':
weights = tf.one_hot(tf.argmax(e, -1), depth=tf.shape(e)[1])
else:
e -= tf.reduce_max(e, axis=1, keep_dims=True)
T = encoder.attn_temperature or 1.0
exp = tf.exp(e / T) * mask
weights = exp / tf.reduce_sum(exp, axis=-1, keep_dims=True)
weighted_average = tf.reduce_sum(tf.expand_dims(weights, 2) * hidden_states, axis=1)
return weighted_average, weights
| tensorflow.shape | 6,800 |
import tensorflow as tf
initializer = tf.random_uniform_initializer(minval=-weight_scale, maxval=weight_scale)
else:
initializer = tf.random_normal_initializer(stddev=weight_scale)
with tf.device('/cpu:0'): # embeddings can take a very large amount of memory, so
# storing them in GPU memory can be impractical
if encoder.binary:
embeddings = None # inputs are token ids, which need to be mapped to vectors (embeddings)
| tensorflow.device | 6,801 |
import tensorflow as tf
dtype=tf.float32)
start_features = tf.einsum("lbh,bl->bh", output, start_index)
start_features = tf.tile(start_features[None], [seq_len, 1, 1])
end_logits = tf.layers.dense(
tf.concat([output, start_features], axis=-1), xlnet_config.d_model,
kernel_initializer=initializer, activation=tf.tanh, name="dense_0")
end_logits = tf.contrib.layers.layer_norm(
end_logits, begin_norm_axis=-1)
| tensorflow.concat | 6,802 |
import tensorflow as tf
"""
:description: Placeholders
"""
def _setup_placeholders(self):
if self.demo:
self.c = tf.placeholder(tf.int32, [None, self.config.max_p_len], "context")
self.q = tf.placeholder(tf.int32, [None, self.config.max_q_len], "question")
self.ch = tf.placeholder(tf.int32, [None, self.config.max_p_len, self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [None, self.config.max_q_len, self.config.max_ch_len], "question_char")
self.start_label = tf.placeholder(tf.int32, [None], "answer_label1")
self.end_label = tf.placeholder(tf.int32, [None], "answer_label2")
else:
self.c = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len],
"context")
self.q = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len],
"question")
self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len,
self.config.max_ch_len], "context_char")
self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len,
self.config.max_ch_len], "question_char")
self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1")
| tensorflow.placeholder | 6,803 |
import tensorflow as tf
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
| tensorflow.nn.seq2seq.embedding_tied_rnn_seq2seq | 6,804 |
import tensorflow as tf
S = optimized_trilinear_for_attention([c, q], self.c_maxlen, self.q_maxlen, input_keep_prob = 1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
| tensorflow.expand_dims | 6,805 |
import tensorflow as tf
if bias is None:
bias = tf.get_variable("{}_dense_b".format(name), initializer=tf.zeros(shape=hidden_dims))
| tensorflow.zeros | 6,806 |
import tensorflow as tf
tf.app.flags.DEFINE_string('comment', '', 'Comment to leave by the model')
tf.app.flags.DEFINE_float('test_max', 10000, 'max number of examples in the test set')
tf.app.flags.DEFINE_integer('max_epochs', 0, 'Train for at most this number of epochs')
| tensorflow.app.flags.DEFINE_float | 6,807 |
from tensorflow.python.platform import tf_logging as logging
input_feature_key=self._input_feature_key,
use_deprecated_input_fn=self._use_deprecated_input_fn)
except RuntimeError:
# Currently we are not syncronized with saving checkpoints, which leads to
# runtime errors when we are calling export on the same global step.
# Exports depend on saved checkpoints for constructing the graph and
# getting the global step from the graph instance saved in the checkpoint.
# If the checkpoint is stale with respect to current step, the global step
# is taken to be the last saved checkpoint's global step and exporter
# doesn't export the same checkpoint again with the following error.
logging.info("Skipping exporting because the existing checkpoint has "
"already been exported. "
"Consider exporting less frequently.")
def end(self, session=None):
super(ExportMonitor, self).end(session=session)
latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir)
if latest_path is None:
logging.info("Skipping export at the end since model has not been saved "
"yet.")
| tensorflow.python.platform.tf_logging.info | 6,808 |
import tensorflow as tf
lang1_fname = filename + ".lang1"
lang2_fname = filename + ".lang2"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
| tensorflow.gfile.Exists | 6,809 |
import tensorflow as tf
lambda: 0.) # On the first step, prev_log_r = 0.
log_r = tf.cond(
tf.less(t + 1, self.max_seq_len),
lambda: self.tilt(rnn_out, latent_encoded, self.targets_ta.read(t+1)),
| tensorflow.less | 6,810 |
import tensorflow as tf
filename = os.path.join(test_dir, "metafile")
saver0_ckpt = os.path.join(test_dir, "saver0.ckpt")
saver1_ckpt = os.path.join(test_dir, "saver1.ckpt")
with self.test_session(graph=tf.Graph()) as sess:
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
v1 = tf.Variable(11.0, name="v1")
# Creates 2 savers.
saver0 = tf.train.Saver({"v0": v0}, name="saver0")
saver1 = tf.train.Saver({"v1": v1}, name="saver1")
tf.add_to_collection("savers", saver0)
tf.add_to_collection("savers", saver1)
tf.initialize_all_variables().run()
# Saves to different checkpoints.
saver0.save(sess, saver0_ckpt)
saver1.save(sess, saver1_ckpt)
# Generates MetaGraphDef.
meta_graph_def = tf.train.export_meta_graph(filename)
meta_graph_def0 = saver0.export_meta_graph()
meta_graph_def1 = saver1.export_meta_graph()
# Verifies that there is no saver_def in meta_graph_def.
self.assertFalse(meta_graph_def.HasField("saver_def"))
# Verifies that there is saver_def in meta_graph_def0 and 1.
| tensorflow.initialize_all_variables | 6,811 |
import tensorflow as tf
if is_fm_loss:
global_pool_head = self.end_points_D['global_pool']
real_data_features = tf.slice(global_pool_head, [0, 0], [batch_size_train, num_classes])
fake_data_features = tf.slice(global_pool_head, [batch_size_train, 0],
[batch_size_train, num_classes])
| tensorflow.slice | 6,812 |
import tensorflow as tf
#from keras import backend as K
def din_attention(query, facts, attention_size, mask=None, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
print ("query_size mismatch")
query = tf.concat(values = [
query,
query,
], axis=1)
if time_major:
# (T,B,D) => (B,T,D)
| tensorflow.concat | 6,813 |
import tensorflow as tf
'omega_%s' % layer,
tf.constant(0.))
if self.lesion_kappa:
setattr(
self,
'kappa_%s' % layer,
tf.constant(0.))
if self.reuse:
# Make the batchnorm variables
scopes = ['g1_bn', 'g2_bn', 'c1_bn', 'c2_bn']
bn_vars = ['moving_mean', 'moving_variance', 'gamma']
for s in scopes:
with tf.variable_scope(s):
for v in bn_vars:
tf.get_variable(
trainable=self.param_trainable[v],
name=v,
dtype=self.dtype,
shape=[self.hgru_k[idx]],
collections=self.param_collections[v],
initializer=self.param_initializer[v])
self.param_initializer = None
def resize_x_to_y(
self,
x,
y,
kernel,
| tensorflow.get_variable | 6,814 |
import tensorflow as tf
def batch_norm(x, train, name, decay=0.99, epsilon=1e-5):
shape = x.get_shape().as_list()
with tf.variable_scope(name):
beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.))
gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02))
pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False)
pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False)
if pop_mean not in tf.moving_average_variables():
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean)
tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var)
def func1():
# execute at training time
batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1))
update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean))
update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var))
| tensorflow.moving_average_variables | 6,815 |
import tensorflow as tf
weight_l2: an optional weight to modulate the l2 loss.
name: Optional scope/name for op_scope.
Returns:
the l1+L2 loss op.
"""
with tf.name_scope(name):
weight_l1_t = tf.convert_to_tensor(weight_l1, dtype=var.dtype.base_dtype, name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2, dtype=var.dtype.base_dtype, name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(var)), name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(var), name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
| tensorflow.convert_to_tensor | 6,816 |
import tensorflow as tf
filename = os.path.join(tmp_dir, filename)
lang1_fname = filename + ".lang1"
lang2_fname = filename + ".lang2"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
return filename
with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
| tensorflow.logging.info | 6,817 |
import tensorflow as tf
# add batch dimension (assume batch_size==1)
#assert image.get_shape()[0] == 1
boxes = tf.expand_dims(boxes, dim=0)
image = tf.image.draw_bounding_boxes(image, boxes) # 在image上画gt_truth
return tf.summary.image('ground_truth', image)
def _add_act_summary(self, tensor):
tf.summary.histogram('ACT/' + tensor.op.name + '/activations', tensor)
tf.summary.scalar('ACT/' + tensor.op.name + '/zero_fraction',
tf.nn.zero_fraction(tensor))
def _add_score_summary(self, key, tensor):
tf.summary.histogram('SCORE/' + tensor.op.name + '/' + key + '/scores', tensor)
def _add_train_summary(self, var):
| tensorflow.summary.histogram | 6,818 |
import tensorflow as tf
bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
# If TPU is not available, this will fall back to normal Estimator on CPU
# or GPU.
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
file_based_convert_examples_to_features(
| tensorflow.contrib.tpu.TPUEstimator | 6,819 |
import tensorflow as tf
# the word embeddings
with tf.device("/cpu:0"):
self.embedding_weights = tf.get_variable(
"embedding", [self._n_tokens_vocab, projection_dim],
dtype=DTYPE,
)
self.embedding = tf.nn.embedding_lookup(self.embedding_weights,
self.ids_placeholder)
def _build_lstms(self):
# now the LSTMs
# these will collect the initial states for the forward
| tensorflow.nn.embedding_lookup | 6,820 |
from tensorflow.python.platform import gfile
s2 = save.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s3, s2], save.last_checkpoints)
self.assertFalse(gfile.Exists(s1))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s1)))
self.assertTrue(gfile.Exists(s3))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
# Adding s1 (s3 should now be deleted as oldest in list)
s1 = save.save(sess, os.path.join(save_dir, "s1"))
self.assertEqual([s2, s1], save.last_checkpoints)
self.assertFalse(gfile.Exists(s3))
self.assertFalse(gfile.Exists(save._MetaGraphFilename(s3)))
self.assertTrue(gfile.Exists(s2))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s2)))
self.assertTrue(gfile.Exists(s1))
self.assertTrue(gfile.Exists(save._MetaGraphFilename(s1)))
# Exercise the second helper.
# Adding s2 again (old s2 is removed first, then new s2 appended)
s2 = save2.save(sess, os.path.join(save_dir, "s2"))
self.assertEqual([s3, s2], save2.last_checkpoints)
| tensorflow.python.platform.gfile.Exists | 6,821 |
import tensorflow as tf
kl = tfd.kl_divergence(a, b)
kl_ = self.evaluate(kl)
self.assertAllEqual(np.inf, kl_)
if __name__ == "__main__":
tf.test.main()
| tensorflow.test.main | 6,822 |
import tensorflow as tf
op = tf.assign(perturbed_var, var)
perturb_ops.append(op)
assert len(perturb_ops) == len(all_vars)
return tf.group(*perturb_ops)
# Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy
# of the network and measures the effect of that perturbation in action space. If the perturbation
# is too big, reduce scale of perturbation, otherwise increase.
q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func")
perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func")
kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1)
mean_kl = tf.reduce_mean(kl)
def update_scale():
with tf.control_dependencies([perturb_for_adaption]):
update_scale_expr = tf.cond(mean_kl < param_noise_threshold,
lambda: param_noise_scale.assign(param_noise_scale * 1.01),
lambda: param_noise_scale.assign(param_noise_scale / 1.01),
)
return update_scale_expr
# Functionality to update the threshold for parameter space noise.
update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
| tensorflow.reduce_mean | 6,823 |
import tensorflow as tf
train_losses_slbo = deque(maxlen=slbo_n_model_iters // FLAGS.model.validation_freq)
val_losses_warmup = deque(maxlen=warmup_n_model_iters // FLAGS.model.validation_freq)
val_losses_slbo = deque(maxlen=slbo_n_model_iters // FLAGS.model.validation_freq)
# NOTE: For each test task, we should reset model to the loaded one, and randomly initialize policy and vfn
#if test:
# saver.load_state_dict(np.load(model_load, allow_pickle=True)[()])
# logger.warning('Load model from %s', model_load)
if test:
logger.info("################################################## TESTING TASK %d ################################################", TEST_TASK_NUM)
logger.info(f'TEST_TASK_NUM={TEST_TASK_NUM}, TASK_NUM={TASK_NUM}')
logger.warning('Revert model and normalizers')
tf.get_default_session().run(sync_model_from_lazymodel)
tf.get_default_session().run(revert_normalizers)
else:
logger.info("################################################## TRAINING TASK %d ################################################", TASK_NUM)
if test:
test_returns = []
test_summary['warmupprocess'].append([])
test_summary['slbo'].append([])
if not test: #and FLAGS.task.method == 'random':
if inittask != 'none' and TASK_NUM == 1:
if 'HClinearstate' in taskname:
task.init([0.2] * task.n_params)
else:
| tensorflow.get_default_session | 6,824 |
import tensorflow as tf
def triplet_loss(anchor, positive, negative, alpha=0.2, name='triplet_loss'):
"""Calculate the triplet loss according to the FaceNet paper.
Args:
anchor: 2-D `tensor` [batch_size, embedding_size], the embeddings for the anchor images.
positive: 2-D `tensor` [batch_size, embedding_size], the embeddings for the positive images.
negative: 2-D `tensor` [batch_size, embedding_size], the embeddings for the negative images.
alpha: positive to negative triplet distance margin
Returns:
the triplet loss.
"""
with tf.name_scope(name):
pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), 1)
neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), 1)
basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha)
loss = tf.reduce_mean(tf.maximum(basic_loss, 0.0), 0)
return loss
def decov_loss(xs, name='decov_loss'):
"""Decov loss as described in https://arxiv.org/pdf/1511.06068.pdf 'Reducing
Overfitting In Deep Networks by Decorrelating Representation'.
Args:
xs: 4-D `tensor` [batch_size, height, width, channels], input
| tensorflow.subtract | 6,825 |
import tensorflow as tf
-------
tf.Tensor
A biased tensor with the same shape as the input tensor.
"""
if init is None:
init = tf.zeros([tensor.get_shape()[-1].value])
with tf.name_scope(name, tensor.op.name, [tensor]):
b = tf.Variable(init, name='b')
return tf.nn.bias_add(tensor, b)
def dropout(tensor, dropout_prob, training=True, training_only=True):
| tensorflow.name_scope | 6,826 |
import tensorflow as tf
metrics = {'normalized_error': ne_mertric, 'last_pred_mse':last_pred_mse}
predictions = {'normalized_error': ne_mertric[1]}
ne_mertric = tf.identity(ne_mertric[1], name='ne_mertric')
base_learning_rate = params['learning_rate']
mse_loss_list = []
if params['use_ohkm']:
base_learning_rate = 1. * base_learning_rate
for pred_ind in list(range(len(pred_outputs) - 1)):
mse_loss_list.append(0.5 * tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind],
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(pred_ind),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))# SUM, SUM_OVER_BATCH_SIZE, default mean by all elements
temp_loss = tf.reduce_mean(tf.reshape(tf.losses.mean_squared_error(targets_list[-1], pred_outputs[-1], weights=1.0, loss_collection=None, reduction=tf.losses.Reduction.NONE), [cur_batch_size, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], -1]), axis=-1)
num_topk = config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')] // 2
gather_col = tf.nn.top_k(temp_loss, k=num_topk, sorted=True)[1]
gather_row = tf.reshape(tf.tile(tf.reshape(tf.range(cur_batch_size), [-1, 1]), [1, num_topk]), [-1, 1])
| tensorflow.cast | 6,827 |
from tensorflow.python.ops import array_ops
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
| tensorflow.python.ops.array_ops.shape | 6,828 |
import tensorflow as tf
rpn_scores.set_shape([None, 1])
return rois, rpn_scores
def _crop_pool_layer(self, bottom, rois, name):
with tf.variable_scope(name):
# tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果
batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1])
# Get the normalized coordinates of bboxes
bottom_shape = tf.shape(bottom)
height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0])
width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0])
# rois除以h,w就得到了rois在特征图上的位置
x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width
y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height
x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width
y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height
# Won't be backpropagated to rois anyway, but to save time
bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1))
# 'roi_pooling_size', 7
| tensorflow.to_float | 6,829 |
import tensorflow as tf
self.sess = tf.Session(config=config)
self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0]
self.a_bound = (env.action_space.high - env.action_space.low) / 2
self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action')
self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage')
self.rewards = tf.placeholder(tf.float32, [None, 1], 'discounted_r')
# Dateset with experiennce replay
self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions,
'rewards': self.rewards, 'advantage': self.advantage})
self.dataset = self.dataset.shuffle(buffer_size=10000)
self.dataset = self.dataset.batch(self.MINIBATCH)
self.dataset = self.dataset.cache()
self.dataset = self.dataset.repeat(self.EPOCHS)
self.data_iter = self.dataset.make_initializable_iterator()
batch = self.data_iter.get_next()
| tensorflow.data.Dataset.from_tensor_slices | 6,830 |
import tensorflow as tf
'swish':swish,
'gelu':gelu
}
lr_schedules = {
'warmup_cosine':warmup_cosine,
'warmup_linear':warmup_linear,
'warmup_constant':warmup_constant,
}
def _norm(x, g=None, b=None, e=1e-5, axis=[1]):
u = tf.reduce_mean(x, axis=axis, keep_dims=True)
s = tf.reduce_mean(tf.square(x-u), axis=axis, keep_dims=True)
x = (x - u) * tf.rsqrt(s + e)
if g is not None and b is not None:
x = x*g + b
return x
def norm(x, scope, axis=[-1]):
with tf.variable_scope(scope):
n_state = shape_list(x)[-1]
g = tf.get_variable("g", [n_state], initializer=tf.constant_initializer(1))
b = tf.get_variable("b", [n_state], initializer=tf.constant_initializer(0))
return _norm(x, g, b, axis=axis)
def dropout(x, pdrop, train):
| tensorflow.rsqrt | 6,831 |
import tensorflow as tf
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]])
| tensorflow.layers.dense | 6,832 |
import tensorflow as tf
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
logits,
input_.targets,
tf.ones([self.batch_size, self.num_steps], dtype=data_type()),
average_across_timesteps=False,
average_across_batch=True)
| tensorflow.reshape | 6,833 |
import tensorflow as tf
self.interaction = gmf(uid=self.user_id, iid=self.item_id, num_users=self.train_set.num_users,
num_items=self.train_set.num_items, emb_size=self.num_factors,
reg_user=self.regs[0], reg_item=self.regs[1], seed=self.seed)
logits = tf.layers.dense(self.interaction, units=1, name='logits',
kernel_initializer=tf.initializers.lecun_uniform(self.seed))
self.prediction = tf.nn.sigmoid(logits)
self.loss = loss_fn(labels=self.labels, logits=logits)
train_op = train_fn(self.loss, learning_rate=self.learning_rate, learner=self.learner)
initializer = tf.global_variables_initializer()
| tensorflow.nn.sigmoid | 6,834 |
import tensorflow as tf
with tf.Session() as sess:
"initialize the variables"
sess.run(tf.global_variables_initializer())
| tensorflow.global_variables_initializer | 6,835 |
from tensorflow.python.ops import array_ops
self._gate_linear = _Linear(
[inputs, state],
2 * self._num_units,
True,
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)
value = math_ops.sigmoid(self._gate_linear([inputs, state]))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
self._num_units,
| tensorflow.python.ops.array_ops.split | 6,836 |
import tensorflow as tf
self.translated_z = trans_z
s_h, s_w = self.output_height, self.output_width
s_h0, s_h1, s_h2, s_h3 = \
int(s_h/ns0), int(s_h/ns0/ns1), int(s_h/ns0/ns1/ns2), int(s_h/ns0/ns1/ns2/ns3)
s_w0, s_w1, s_w2, s_w3 = \
int(s_w/ns0), int(s_w/ns0/ns1), int(s_w/ns0/ns1/ns2), int(s_w/ns0/ns1/ns2/ns3)
def decode(z, skip_h3, skip_h2, skip_h1, skip_h0):
z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin'))
h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob)
h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3),
[self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3))
h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3),
[self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2))
h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3),
[self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1))
print(h3.get_shape())
h4 = deconv2d(tf.concat([h3, skip_h0], 3),
[self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0)
return h4
with tf.variable_scope("deconv") as scope:
output_h4 = decode(trans_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0)
scope.reuse_variables()
truthoutput_h4 = decode(tgtimg_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0)
self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3
print(tgtimg_z.get_shape())
self.out = output_h4
self.out2 = truthoutput_h4
| tensorflow.concat | 6,837 |
import tensorflow as tf
# execute at test time
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon)
return tf.cond(train, func1, func2)
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
var = grad_and_vars[0][1]
grad_and_var = (grad, var)
average_grads.append(grad_and_var)
return average_grads
def binary_mask(shape, p=0.7):
samples = tf.random_uniform(shape, minval=0.0, maxval=1.0)
mask = tf.less_equal(samples, p)
return tf.cast(mask, tf.float32)
| tensorflow.concat | 6,838 |
import tensorflow as tf
vars_ = self.model.trainable_variables
self.assertTrue(isinstance(grads, list))
self.assertTrue(isinstance(vars_, list))
self.assertEqual(len(grads), len(vars_))
for grad, var in zip(grads, vars_):
if grad is not None:
self.assertEqual(grad.shape, var.shape)
def test_training_graph(self):
"""Test model training in graph mode."""
with tf.Graph().as_default():
config = config_.get_hparams_cifar_38()
config.add_hparam("n_classes", 10)
config.add_hparam("dataset", "cifar-10")
x = tf.random_normal(
shape=(self.config.batch_size,) + self.config.input_shape)
t = tf.random_uniform(
shape=(self.config.batch_size,),
minval=0,
maxval=self.config.n_classes,
dtype=tf.int32)
global_step = tf.Variable(0., trainable=False)
model = revnet.RevNet(config=config)
_, saved_hidden = model(x)
grads, _ = model.compute_gradients(saved_hidden=saved_hidden, labels=t)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = optimizer.apply_gradients(
zip(grads, model.trainable_variables), global_step=global_step)
| tensorflow.random_normal | 6,839 |
import tensorflow as tf
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.flatten, w) + b
self.fc1 = tf.nn.relu(out)
# fc2
with tf.variable_scope('fc2'):
w = tf.get_variable('w', [self.fc1.get_shape()[1], 2048], initializer=he_normal,
regularizer=regularizer)
b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0))
out = tf.matmul(self.fc1, w) + b
self.fc2 = tf.nn.relu(out)
# fc3
with tf.variable_scope('fc3'):
w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer,
regularizer=regularizer)
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0))
self.fc3 = tf.matmul(self.fc2, w) + b
| tensorflow.matmul | 6,840 |
import tensorflow as tf
# Net loss
check_shape([loss_policy, loss_q, entropy], [[]] * 3)
loss = loss_policy + self.q_coef * loss_q - self.ent_coef * entropy
tf.summary.scalar('entropy_loss', entropy)
tf.summary.scalar('policy_gradient_loss', loss_policy)
tf.summary.scalar('value_function_loss', loss_q)
tf.summary.scalar('loss', loss)
norm_grads_q, norm_grads_policy, avg_norm_grads_f = None, None, None
avg_norm_k, avg_norm_g, avg_norm_k_dot_g, avg_norm_adj = None, None, None, None
| tensorflow.summary.scalar | 6,841 |
import tensorflow as tf
eval_metric_ops=eval_metric_ops
)
assert mode == tf.estimator.ModeKeys.TRAIN
with tf.variable_scope('learning_rate'):
global_step = tf.train.get_global_step()
learning_rate = tf.train.cosine_decay(
params['initial_learning_rate'],
global_step, decay_steps=params['num_steps']
)
tf.summary.scalar('learning_rate', learning_rate)
| tensorflow.train.cosine_decay | 6,842 |
import tensorflow as tf
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(MODEL_DIR, from_name)
assign_ops.append(tf.assign(var, var_value))
| tensorflow.contrib.framework.load_variable | 6,843 |
import tensorflow as tf
self._options,
self._weight_file,
ids_placeholder,
embedding_weight_file=self._embedding_weight_file,
use_character_inputs=self._use_character_inputs,
max_batch_size=self._max_batch_size)
ops = self._build_ops(lm_graph)
self._ops[ids_placeholder] = ops
self._graphs[ids_placeholder] = lm_graph
ret = ops
return ret
def _build_ops(self, lm_graph):
with tf.control_dependencies([lm_graph.update_state_op]):
# get the LM embeddings
token_embeddings = lm_graph.embedding
layers = [
tf.concat([token_embeddings, token_embeddings], axis=2)
]
n_lm_layers = len(lm_graph.lstm_outputs['forward'])
for i in range(n_lm_layers):
layers.append(
tf.concat(
[lm_graph.lstm_outputs['forward'][i],
lm_graph.lstm_outputs['backward'][i]],
axis=-1
)
| tensorflow.control_dependencies | 6,844 |
import tensorflow as tf
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([], tf.int64),
"is_real_example": tf.FixedLenFeature([], tf.int64),
| tensorflow.FixedLenFeature | 6,845 |
import tensorflow as tf
reduce_instance_dims: By default collapses the batch and instance dimensions
to arrive at a single scalar output. If False, only collapses the batch
dimension and outputs a vector of the same shape as the input.
name: (Optional) A name for this operation.
Returns:
Two `Tensor`s. Both have the same type as `x`.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'min_and_max'):
output_dtype = x.dtype
if (not reduce_instance_dims and isinstance(x, tf.SparseTensor) and
x.dtype.is_floating):
combine_fn = np.nanmax
default_accumulator_value = (np.nan if x.dtype.is_floating else
-output_dtype.max)
elif not reduce_instance_dims and isinstance(x, tf.RaggedTensor):
raise NotImplementedError(
'Elemenwise min_and_max does not support RaggedTensors.')
else:
| tensorflow.compat.v1.name_scope | 6,846 |
import tensorflow as tf
def _attn(q, k, v, train=False, scale=False):
#w=[-1,head,n_ctx,n_ctx]
w = tf.matmul(q, k)
if scale:
n_state = shape_list(v)[-1]
w = w*tf.rsqrt(tf.cast(n_state, tf.float32))
w = mask_attn_weights(w)
w = tf.nn.softmax(w)
w = dropout(w, attn_pdrop, train)
#w=[-1,head,n_ctx,n_ctx],v=[-1,head,n_ctx,emb]
a = tf.matmul(w, v)
return a
def split_states(x, n):
x_shape = shape_list(x)
m = x_shape[-1]
new_x_shape = x_shape[:-1]+[n, m//n]
return tf.reshape(x, new_x_shape)
def merge_states(x):
x_shape = shape_list(x)
new_x_shape = x_shape[:-2]+[np.prod(x_shape[-2:])]
return tf.reshape(x, new_x_shape)
| tensorflow.matmul | 6,847 |
import tensorflow as tf
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
| tensorflow.gfile.Glob | 6,848 |
import tensorflow as tf
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights,
)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights
)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]
)
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32
)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions
)
next_sentence_mean_loss = tf.metrics.mean(
| tensorflow.reshape | 6,849 |
import tensorflow as tf
self._is_training = is_training
self._input = input_
self._rnn_params = None
self._cell = None
self.batch_size = input_.batch_size
self.num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
with tf.device("/cpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
output, state = self._build_rnn_graph(inputs, config, is_training)
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
| tensorflow.nn.embedding_lookup | 6,850 |
import tensorflow as tf
batch_size = y_pred.shape[0]
num_of_joints = y_pred.shape[-1]
pred = tf.reshape(tensor=y_pred, shape=(batch_size, -1, num_of_joints))
heatmap_pred_list = tf.split(value=pred, num_or_size_splits=num_of_joints, axis=-1)
gt = tf.reshape(tensor=target, shape=(batch_size, -1, num_of_joints))
heatmap_gt_list = tf.split(value=gt, num_or_size_splits=num_of_joints, axis=-1)
loss = 0.0
for i in range(num_of_joints):
heatmap_pred = tf.squeeze(heatmap_pred_list[i])
heatmap_gt = tf.squeeze(heatmap_gt_list[i])
| tensorflow.split | 6,851 |
import tensorflow as tf
def _create_regularizers_hook(self, config):
wb_regularizers = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# see keras_utils.py: activity_and_contractive_regularizers
ac_regularizers = tf.get_collection(AC_REGULARIZATION)
custom_regularizers = tf.get_collection(CUSTOM_REGULARIZATION)
if wb_regularizers:
wb_regularizers_names = [r.name for r in wb_regularizers]
else:
wb_regularizers = [tf.zeros([1])]
wb_regularizers_names = ["none"]
wb_regularizers_fileNames = {"fileName" : "wb_regularizers"}
if ac_regularizers:
ac_regularizers_names = [r.name for r in ac_regularizers]
else:
ac_regularizers = [tf.zeros([1])]
ac_regularizers_names = ["none"]
ac_regularizers_fileNames = {"fileName" : "ac_regularizers"}
| tensorflow.zeros | 6,852 |
import tensorflow as tf
env = gym.make(ENV_NAME)
env.seed(1)
STATE_DIM = env.observation_space.shape[0] # 24
ACTION_DIM = env.action_space.shape[0] # 4
ACTION_BOUND = env.action_space.high # [1, 1, 1, 1]
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_')
############################### Actor ####################################
class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
self.lr = learning_rate
| tensorflow.placeholder | 6,853 |
import tensorflow as tf
def _SparseTensorValue_1x1x1(self):
ind = np.array([[0, 0, 0]]).astype(np.int64)
val = np.array([0]).astype(np.int32)
shape = np.array([3, 4, 5]).astype(np.int64)
return tf.SparseTensorValue(ind, val, shape)
def testAddTakeMany(self):
with self.test_session(graph=tf.Graph(), use_gpu=False) as sess:
sp_input0 = self._SparseTensorValue_5x6(np.arange(6))
sp_input1 = self._SparseTensorValue_3x4(np.arange(6))
handle0 = add_sparse_to_tensors_map(sp_input0, shared_name="a")
handle1 = add_sparse_to_tensors_map(sp_input1, shared_name="a")
self.assertEqual(handle0.get_shape(), ())
handles_concat = tf.stack([handle0, handle1])
| tensorflow.Graph | 6,854 |
import tensorflow as tf
if scale > 1:
X = self.conv(name + '_downsample', X, filter, scale, scale, (not norm) and use_bias, "VALID", stddev)
else:
X = self.conv(name + '_conf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev)
if norm == 'I':
X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse)
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name)
elif norm == 'G':
X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse)
if dropout > 0.0:
X = tf.layers.dropout(X, dropout, training=is_train)
if slope < 1.0:
X = tf.nn.leaky_relu(X, slope) if slope > 0.0 else tf.nn.relu(X)
return X
def decoder_conf(name, X, filter, f_size, scale, norm, reuse, is_train, dropout=0.0, stddev=-1.0, slope=0.00,
| tensorflow.contrib.layers.group_norm | 6,855 |
import tensorflow as tf
# Lstm Units.
self.num_units = 16
def buildLstmLayer(self):
return tf.keras.layers.StackedRNNCells([
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, use_peepholes=True, forget_bias=1.0, name="rnn1"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, num_proj=8, forget_bias=1.0, name="rnn2"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units // 2,
use_peepholes=True,
num_proj=8,
forget_bias=0,
name="rnn3"),
tf.lite.experimental.nn.TFLiteLSTMCell(
self.num_units, forget_bias=1.0, name="rnn4")
])
| tensorflow.lite.experimental.nn.TFLiteLSTMCell | 6,856 |
import tensorflow as tf
src_features = tf.gather(src_features, indices, axis=0)
src_features = tf.stop_gradient(src_features)
| tensorflow.stop_gradient | 6,857 |
import tensorflow as tf
def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects):
return gtboxes_and_label_h[:, :int(max(num_objects)), :].astype(np.float32), \
gtboxes_and_label_r[:, :int(max(num_objects)), :].astype(np.float32)
def main(self):
with tf.Graph().as_default() as graph, tf.device('/cpu:0'):
num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
global_step = slim.get_or_create_global_step()
lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu*cfgs.BATCH_SIZE)
| tensorflow.Graph | 6,858 |
import tensorflow as tf
batch = 1
rows = 8
cols = 24
block_length = 4
block_width = 2
hparams = tf.contrib.training.HParams(
block_raster_scan=True,
hidden_size=2,
likelihood=likelihood,
mode=tf.estimator.ModeKeys.PREDICT,
num_mixtures=num_mixtures,
query_shape=[block_length, block_width],
)
inputs = tf.random_uniform([batch, rows, cols, hparams.hidden_size],
minval=-1., maxval=1.)
outputs = common_image_attention.postprocess_image(
inputs, rows, cols, hparams)
num_blocks_rows = rows // block_length
num_blocks_cols = cols // block_width
self.assertEqual(outputs.shape,
(batch, num_blocks_rows, num_blocks_cols,
block_length, block_width, depth))
@parameterized.parameters(
(common_image_attention.DistributionType.DMOL, 5, 50),
(common_image_attention.DistributionType.CAT, None, 256),
| tensorflow.random_uniform | 6,859 |
import tensorflow as tf
Returns:
Path to resulting file.
"""
if not tf.gfile.Exists(work_directory):
tf.gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename)
if not tf.gfile.Exists(filepath):
| tensorflow.gfile.Exists | 6,860 |
from tensorflow.python.ops import variables
def test_categorical_variable(self):
random_seed.set_random_seed(42)
with self.cached_session() as sess:
cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2])
embeddings = ops.categorical_variable(
cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var")
sess.run(variables.global_variables_initializer())
emb1 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]})
emb2 = sess.run(embeddings,
feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]})
self.assertEqual(emb1.shape, emb2.shape)
self.assertAllEqual(np.transpose(emb2, axes=[1, 0, 2]), emb1)
| tensorflow.python.ops.variables.global_variables_initializer | 6,861 |
import tensorflow as tf
tf.identity(truncated_learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
| tensorflow.train.MomentumOptimizer | 6,862 |
import tensorflow as tf
None,
] + tu.shape_to_tf_shape(input_shape), "INPUT1")
# If the input is a string, then convert each string to the
# equivalent int32 value.
if tf_input_dtype == tf.string:
in0 = tf.strings.to_number(in0, tf.int32)
in1 = tf.strings.to_number(in1, tf.int32)
add = tf.add(in0, in1, "ADD")
sub = tf.subtract(in0, in1, "SUB")
# Cast or convert result to the output dtype.
if tf_output0_dtype == tf.string:
| tensorflow.strings.to_number | 6,863 |
import tensorflow as tf
Parameters
----------
x: Tensor or variable.
y: Tensor or variable.
Returns
-------
A tensor, dot product of x and y.
"""
if get_ndim(x) is not None and (get_ndim(x) > 2 or get_ndim(y) > 2):
x_shape = []
for i, s in zip(int_shape(x), tf.unstack(tf.shape(x))):
if i is not None:
x_shape.append(i)
else:
x_shape.append(s)
x_shape = tuple(x_shape)
y_shape = []
for i, s in zip(int_shape(y), tf.unstack(tf.shape(y))):
if i is not None:
y_shape.append(i)
else:
y_shape.append(s)
| tensorflow.shape | 6,864 |
import tensorflow as tf
batch_size = input_shape[0]
passage_len = input_shape[1]
with variable_scope.variable_scope("attention_decoder"):
encoder_features = tf.expand_dims(encoder_states, axis=2) # now is shape [batch_size, passage_len, 1, encoder_dim]
W_h = variable_scope.get_variable("W_h", [1, 1, encoder_dim, options.attention_vec_size])
self.W_h = W_h
encoder_features = nn_ops.conv2d(encoder_features, W_h, [1, 1, 1, 1], "SAME") # [batch_size, passage_len, 1, attention_vec_size]
| tensorflow.expand_dims | 6,865 |
import tensorflow as tf
counter = tf.Variable(
0, name="counter", trainable=False, dtype=tf.int32)
with tf.name_scope('AccumGradOptimizer'):
ops = []
for s, gv in zip(slots, grads_and_vars):
g, v = gv
ops.append(s.assign_add(g))
update_counter = tf.assign_add(counter, 1, name='update_counter')
update_slot_op = tf.group(update_counter, *ops, name='update_slot')
def update_grad():
update_op = self._opt.apply_gradients(slots_and_vars)
with tf.control_dependencies([update_op]):
clear_ops = [tf.assign(s, tf.zeros_like(s)) for s in slots]
return tf.group(*clear_ops, name='update_grad')
pred = tf.equal(tf.mod(counter, self._niter), 0)
with tf.control_dependencies([update_slot_op]):
if name is None:
name = 'cond_update_grad'
op = tf.cond(pred, update_grad, tf.no_op, name=name).op
return op
if __name__ == '__main__':
# run it with "python -m tensorpack.tfutils.optimizer"
x = tf.get_variable('x', shape=[6])
cost = tf.reduce_sum(tf.abs(x), name='cost')
| tensorflow.group | 6,866 |
import tensorflow as tf
"""
parameters = dict(locals())
# Convert the covariance_matrix up to a scale_tril and call MVNTriL.
with tf.name_scope(name) as name:
with tf.name_scope("init", values=[loc, covariance_matrix]):
dtype = dtype_util.common_dtype([loc, covariance_matrix], tf.float32)
loc = loc if loc is None else tf.convert_to_tensor(
loc, name="loc", dtype=dtype)
if covariance_matrix is None:
| tensorflow.name_scope | 6,867 |
import tensorflow as tf
# Performance tuning flags.
tf.flags.DEFINE_boolean('winograd_nonfused', True,
"""Enable/disable using the Winograd non-fused
| tensorflow.flags.DEFINE_boolean | 6,868 |
import tensorflow as tf
step = tf.to_float(global_step)
warmup_steps = tf.to_float(params.warmup_steps)
| tensorflow.to_float | 6,869 |
import tensorflow as tf
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value.flatten()))
def _bytes_feature(value):
if isinstance(value, str):
value = value.encode('utf-8')
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def make_tf_example(d):
feature = {
'bounding_box_samples': _float_feature(d['bounding_box_samples']),
'depth_renders': _float_feature(d['depth_renders']),
| tensorflow.train.BytesList | 6,870 |
import tensorflow as tf
if batch_size == num_tasks:
indices = tf.transpose(tf.stack([orig_indices, orig_indices], axis=0))
| tensorflow.stack | 6,871 |
import tensorflow as tf
best_target_per_prior_index = tf.tensor_scatter_nd_update(best_target_per_prior_index, tf.expand_dims(best_prior_per_target_index, 1), targets)
# 2.0 is used to make sure every target has a prior assigned
best_target_per_prior = tf.tensor_scatter_nd_update(best_target_per_prior, tf.expand_dims(best_prior_per_target_index, 1), tf.ones_like(best_prior_per_target_index, dtype=tf.float32)*2.0)
# size: num_priors
labels = tf.gather(gt_labels, best_target_per_prior_index)
labels = tf.where(tf.less(best_target_per_prior, iou_threshold), tf.constant(0, dtype='int64'), labels)
# labels[best_target_per_prior < iou_threshold] = 0 # the backgournd id
| tensorflow.gather | 6,872 |
import tensorflow as tf
# Saver with no arg, defaults to 'all variables'.
save = tf.train.Saver()
| tensorflow.train.Saver | 6,873 |
import tensorflow as tf
self._p = p
def _compute(self, x, y):
self._dim = x._rank()
kernel = np.zeros((tf.size(x), tf.size(y)))
for l in tf.range(start=0, limit=tf.size(x), delta=1, dtype=None, name='l_range'):
for m in tf.range(start=0, limit=tf.size(y), delta=1, dtype=None, name='m_range'):
| tensorflow.size | 6,874 |
import tensorflow as tf
anchor_match_negative_indicator_matrix = tf.math.logical_not(
tf.eye(num_anchors, dtype=tf.bool))
| tensorflow.eye | 6,875 |
import tensorflow as tf
reg = tf.contrib.layers.l2_regularizer(1e-3)
with tf.variable_scope(name, reuse=reuse):
layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg)
layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg)
mu = tf.layers.dense(layer_a2, self.a_dim, tf.nn.tanh, kernel_regularizer=reg)
# sigma = tf.layers.dense(layer_a2, self.a_dim, tf.nn.softplus, kernel_regularizer=reg)
sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5))
sigma = tf.clip_by_value(sigma, 0.0, 1.0)
norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
| tensorflow.constant_initializer | 6,876 |
import tensorflow as tf
sub_loop(keypoint_model_fn, m, detail_params[m]['model_dir'], run_config, detail_params[m]['train_epochs'], detail_params[m]['epochs_per_eval'], detail_params[m]['lr_decay_factors'], detail_params[m]['decay_boundaries'], detail_params[m]['checkpoint_path'], detail_params[m]['checkpoint_exclude_scopes'], detail_params[m]['checkpoint_model_scope'], detail_params[m]['ignore_missing_vars'])
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
| tensorflow.logging.set_verbosity | 6,877 |
import tensorflow as tf
self.test_image_B = tf.placeholder(tf.float32,[None, self.image_size, self.image_size,self.output_c_dim], name='test_B')
self.saver = tf.train.Saver()
def train_network(self):
self.learning_rate = tf.placeholder(tf.float32)
self.d_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.discriminator_loss,var_list=self.d_variables)
self.g_optimizer = tf.train.AdamOptimizer(self.learning_rate,beta1=self.beta1,beta2=self.beta2).minimize(self.generator_loss,var_list=self.g_variables)
self.init_op = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(self.init_op)
#self.dataset_dir = '/home/santanu/Downloads/DiscoGAN/edges2handbags/train/'
self.writer = tf.summary.FileWriter("./logs", self.sess.graph)
count = 1
start_time = time.time()
for epoch in range(self.epoch):
data_A = os.listdir(self.dataset_dir + 'trainA/')
data_B = os.listdir(self.dataset_dir + 'trainB/')
data_A = [ (self.dataset_dir + 'trainA/' + str(file_name)) for file_name in data_A ]
| tensorflow.Session | 6,878 |
import tensorflow as tf
mask = np.expand_dims(mask, 0)
print(image.shape)
print(mask.shape)
input_image = np.concatenate([image, mask], axis=2)
print(input_image.shape)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
input_image = tf.constant(input_image, dtype=tf.float32)
output = MODEL.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
| tensorflow.constant | 6,879 |
import tensorflow as tf
def compile_data(tmp_dir, datasets, filename):
"""Concatenate all `datasets` and save to `filename`."""
filename = os.path.join(tmp_dir, filename)
# lang1_fname = filename + ".lang1"
# lang2_fname = filename + ".lang2"
lang1_fname = filename + ".source"
lang2_fname = filename + ".target"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
return filename
with tf.gfile.GFile(lang1_fname, mode="w") as lang1_resfile:
with tf.gfile.GFile(lang2_fname, mode="w") as lang2_resfile:
for dataset in datasets:
url = dataset[0]
compressed_filename = os.path.basename(url)
compressed_filepath = os.path.join(tmp_dir, compressed_filename)
if url.startswith("http"):
| tensorflow.logging.info | 6,880 |
from tensorflow.python.ops import variable_scope
options = self.options
with variable_scope.variable_scope("attention_decoder"):
v = variable_scope.get_variable("v", [options.attention_vec_size])
v = tf.expand_dims(tf.expand_dims(v, axis=0), axis=0)
w_c = None
if options.use_coverage:
with variable_scope.variable_scope("coverage"):
w_c = variable_scope.get_variable("w_c", [options.attention_vec_size])
w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
word_t_representation = self.embedding_lookup(word_t)
(state_t, context_t, coverage_t, attn_dist_t, p_gen_t, output_t) = self.one_step_decoder(
state_t_1, context_t_1, coverage_t_1, word_t_representation, encoder_states, encoder_features,
passage_word_idx, passage_mask, v, w_c, word_vocab)
| tensorflow.python.ops.variable_scope.get_variable | 6,881 |
import tensorflow as tf
layer_idx=1)
if self.batch_norm:
with tf.variable_scope(
'l3_h2_bn',
| tensorflow.variable_scope | 6,882 |
import tensorflow as tf
'WS: pruning ratio protocol (\'uniform\' | \'heurist\' | \'optimal\')')
tf.app.flags.DEFINE_integer('ws_nb_rlouts', 200, 'WS: # of roll-outs for the RL agent')
tf.app.flags.DEFINE_integer('ws_nb_rlouts_min', 50,
'WS: minimal # of roll-outs for the RL agent to start training')
tf.app.flags.DEFINE_string('ws_reward_type', 'single-obj',
'WS: reward type (\'single-obj\' OR \'multi-obj\')')
tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression')
tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression')
tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning')
tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning')
tf.app.flags.DEFINE_integer('ws_nb_iters_feval', 25, 'WS: # of iterations for fast evaluation')
tf.app.flags.DEFINE_float('ws_prune_ratio_exp', 3.0, 'WS: pruning ratio\'s exponent term')
tf.app.flags.DEFINE_float('ws_iter_ratio_beg', 0.1, 'WS: iteration ratio (at starting time)')
tf.app.flags.DEFINE_float('ws_iter_ratio_end', 0.5, 'WS: iteration ratio (at ending time)')
tf.app.flags.DEFINE_float('ws_mask_update_step', 500, 'WS: step size for updating the pruning mask')
def calc_prune_ratio(vars_list):
"""Calculate the overall pruning ratio for the given list of variables.
| tensorflow.app.flags.DEFINE_integer | 6,883 |
from tensorflow.python.ops import math_ops
# term from the formula above.
# `relevant_precision_per_k` (float64) - Relevant precisions; i.e.,
# precisions at all k for which relevance indicator is true.
relevant_per_k = _sparse_true_positive_at_k(
predictions_idx_per_k, labels_per_k, name='relevant_per_k')
tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k')
retrieved_per_k = math_ops.cumsum(
array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k')
precision_per_k = math_ops.div(
math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k),
| tensorflow.python.ops.math_ops.cumsum | 6,884 |
import tensorflow as tf
x = tf.transpose(observations, [0, 2, 3, 1, 4])
x_shape = common_layers.shape_list(x)
x = tf.reshape(x, x_shape[:-2] + [-1])
dropout = getattr(self.hparams, "dropout_ppo", 0.0)
with tf.variable_scope("feed_forward_cnn_small"):
x = tf.cast(x, tf.float32) / 255.0
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 32, (4, 4), strides=(2, 2), name="conv1",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 64, (4, 4), strides=(2, 2), name="conv2",
activation=common_layers.belu, padding="SAME")
x = tf.nn.dropout(x, rate=dropout)
x = tf.layers.conv2d(
x, 128, (4, 4), strides=(2, 2), name="conv3",
activation=common_layers.belu, padding="SAME")
flat_x = tf.layers.flatten(x)
| tensorflow.nn.dropout | 6,885 |
from tensorflow.contrib.slim.python.slim import queues
with session.Session('') as sess:
with queues.QueueRunners(sess):
| tensorflow.contrib.slim.python.slim.queues.QueueRunners | 6,886 |
import tensorflow as tf
def _to_dataset(x, dtype=tf.int32):
x = tf.ragged.constant(x, dtype=dtype)
d = tf.data.Dataset.from_tensor_slices(x)
d = d.map(lambda x: x)
| tensorflow.data.Dataset.from_tensor_slices | 6,887 |
from tensorflow.python.ops import array_ops
b_list = [b[i] for i in range(numTensors)]
b_grads = b_module.bspmm(a_indices, a_values, a_shape, grad, adjoint_a=True, adjoint_b=False)
bg_row=tf.shape(b_grads[0])[0]
bg_col=tf.shape(b_grads[0])[1]
b_grads = tf.reshape(b_grads, (numTensors * bg_row, bg_col))
if adj_b:
b_grads = [array_ops.transpose(b_g) for b_g in b_grads]
for t in range(numTensors):
rows = a_indices[t][:, 0]
cols = a_indices[t][:, 1]
parts_a = array_ops.gather(grad[t], rows if not adj_a else cols)
parts_b = array_ops.gather(b_list[t] if not adj_b else array_ops.transpose(b_list[t]), cols if not adj_a else rows)
a_values_grads.append(math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1))
return_val = [None for _ in range(numTensors)] + a_values_grads + [None for _ in range(numTensors)] + [b_grads]
return tuple(return_val)
| tensorflow.python.ops.array_ops.transpose | 6,888 |
import tensorflow as tf
batch_size = tf.shape(attention_weights)[0]
src_len = tf.shape(attention_weights)[2]
| tensorflow.shape | 6,889 |
import tensorflow as tf
else:
log_probs = tf.nn.log_softmax(logits, axis=-1)
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
| tensorflow.reshape | 6,890 |
import tensorflow as tf
def evaluate_spherical_harmonics(
degree_l: TensorLike,
order_m: TensorLike,
theta: TensorLike,
phi: TensorLike,
name: str = "spherical_harmonics_evaluate_spherical_harmonics") -> TensorLike: # pylint: disable=line-too-long
with tf.name_scope(name):
degree_l = tf.convert_to_tensor(value=degree_l)
order_m = tf.convert_to_tensor(value=order_m)
theta = tf.convert_to_tensor(value=theta)
phi = tf.convert_to_tensor(value=phi)
var_type = theta.dtype
sign_m = tf.math.sign(order_m)
order_m = tf.abs(order_m)
zeros = tf.zeros_like(order_m)
result_m_zero = _spherical_harmonics_normalization(
| tensorflow.convert_to_tensor | 6,891 |
import tensorflow as tf
v1 = sess.graph.get_tensor_by_name("v1:0")
self.assertEqual(11.0, v1.eval())
def testMultiSaverCollection(self):
self._testMultiSaverCollectionSave()
self._testMultiSaverCollectionRestore()
def testBinaryAndTextFormat(self):
test_dir = self._TestDir("binary_and_text")
filename = os.path.join(test_dir, "metafile")
with self.test_session(graph=tf.Graph()):
# Creates a graph.
tf.Variable(10.0, name="v0")
# Exports the graph as binary format.
tf.train.export_meta_graph(filename, as_text=False)
with self.test_session(graph=tf.Graph()):
# Imports the binary format graph.
saver = tf.train.import_meta_graph(filename)
# Exports the graph as text format.
saver.export_meta_graph(filename, as_text=True)
with self.test_session(graph=tf.Graph()):
# Imports the text format graph.
tf.train.import_meta_graph(filename)
# Writes wrong contents to the file.
tf.train.write_graph(saver.as_saver_def(), os.path.dirname(filename),
os.path.basename(filename))
with self.test_session(graph=tf.Graph()):
# Import should fail.
with self.assertRaisesWithPredicateMatch(
IOError, lambda e: "Cannot parse file"):
| tensorflow.Graph | 6,892 |
import tensorflow as tf
"""
box1 = box1.numpy() if isinstance(box1, tf.Tensor) else box1
box2 = box2.numpy() if isinstance(box2, tf.Tensor) else box2
box1 = box1.astype(np.float32)
box2 = box2.astype(np.float32)
# rotates around z, while we rotate around y so need to swap
center_1 = tf.reshape(box1[0:3][[0, 2, 1]], [1, 3])
center_2 = tf.reshape(box2[0:3][[0, 2, 1]], [1, 3])
rotation_z_1 = tf.reshape(box1[-1], [1])
rotation_z_2 = tf.reshape(box2[-1], [1])
length_1 = tf.reshape(box1[3 + 0], [1])
height_1 = tf.reshape(box1[3 + 2], [1])
width_1 = tf.reshape(box1[3 + 1], [1])
length_2 = tf.reshape(box2[3 + 0], [1])
height_2 = tf.reshape(box2[3 + 2], [1])
width_2 = tf.reshape(box2[3 + 1], [1])
iou = np.squeeze(np_box_ops.iou3d_7dof_box(
length_1, height_1, width_1, center_1, rotation_z_1,
length_2, height_2, width_2, center_2, rotation_z_2))
return iou
| tensorflow.reshape | 6,893 |
import tensorflow as tf
tf.summary.scalar(scope+'/loss', loss)
return loss
def accuracy(logits, labels):
'''
Evaluate the quality of the logits at predicting the label
'''
# for summary
with tf.name_scope('accuracy') as scope:
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
correct = tf.cast(correct, tf.float32)
accuracy = tf.reduce_mean(correct)*100.0
tf.summary.scalar(scope+'accuracy',accuracy)
return accuracy
def num_correct_prediction(logits, labels):
'''
Evaluate the quality of the logits at predicting the label
'''
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
| tensorflow.cast | 6,894 |
import tensorflow as tf
'adj': tf.sparse_placeholder(tf.float32),
'adj_orig': tf.sparse_placeholder(tf.float32),
| tensorflow.sparse_placeholder | 6,895 |
from tensorflow.contrib import layers
nn_activations = [layers.fully_connected(data, self.params.layer_size)]
for _ in range(1, self.params.num_layers):
# pylint: disable=W0106
nn_activations.append(
layers.fully_connected(
nn_activations[-1],
self.params.layer_size))
nn_activations_tensor = array_ops.concat(
| tensorflow.contrib.layers.fully_connected | 6,896 |
import tensorflow as tf
images, labels = input_name.build_input(
FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode) # FLAGS.mode='attack', batch_size=200
Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False)
Res.build_graph()
saver = tf.train.Saver()
adv_images = adv_craft_func(hps, images, FLAGS.attack_method, eps=FLAGS.eps, RCE_train=FLAGS.RCE_train)
model_nor = model_name.ResNet(hps, images, FLAGS.mode, Reuse=True)
model_nor.build_graph()
| tensorflow.train.Saver | 6,897 |
import tensorflow as tf
# Recompute rewards and done flags
states, tasks = self._task_distribution.split(experience.observation[:,
0])
next_states, next_tasks = self._task_distribution.split(
experience.observation[:, 1])
rewards, dones = self._task_distribution.evaluate(states,
experience.action[:, 0],
tasks)
# Strictly speaking, we don't need to relabel the next rewards and next
# dones because they end up being thrown away. Only the current rewards
# and dones end up being important.
next_rewards, next_dones = self._task_distribution.evaluate(
next_states, experience.action[:, 1], next_tasks)
new_rewards = tf.concat([rewards[:, None], next_rewards[:, None]], axis=1)
new_dones = tf.concat([dones[:, None], next_dones[:, None]], axis=1)
# 0 if episode is done, 1 if episode is continuing
new_discount = 1.0 - tf.cast(new_dones, tf.float32)
assert new_rewards.shape == experience.reward.shape
assert new_discount.shape == experience.discount.shape
experience = experience.replace(reward=new_rewards, discount=new_discount)
return experience
def _soft_relabel(self, experience):
"""Reassigns tasks to each state and next state.
Does not recompute the rewards or done flags.
| tensorflow.concat | 6,898 |
import tensorflow as tf
self.dropout_output = args.dropout_output
self.dropout_input = args.dropout_input
self.clip_norm = args.clip_norm
self.embedding_init = embedding_init
self.x = tf.placeholder(tf.int32, [None, None], 'input')
self.y = tf.placeholder(tf.int32, [None, self.num_classes], 'labels')
self.seq_len = tf.placeholder(tf.int64, [None], 'input_length')
def inference(self, forward_only=None):
embed_inputs = tf.nn.embedding_lookup(self.embedding_init, self.x) ## (batch_size, seq_len, 100)
with tf.variable_scope('hidden', reuse=forward_only):
with tf.variable_scope('lstm_cell'):
lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=self.num_hidden, use_peepholes=False,
# forget_bias=0.0,
activation=tf.nn.relu,
# initializer=tf.truncated_normal_initializer(stddev=0.1),
# initializer=tf.random_uniform_initializer(-0.003, 0.003),
initializer=tf.contrib.layers.xavier_initializer(),
state_is_tuple=True)
if not forward_only:
| tensorflow.nn.embedding_lookup | 6,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.