seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
shadow_loss_mod.build_backward(FLAGS.model.lr, FLAGS.model.weight_decay)
algo = TRPO(vfn=vfn, policy=policy, dim_state=dim_state, dim_action=dim_action, **FLAGS.TRPO.as_dict())
advtask = ADVTASK(dim_state, dim_action, policy, vfn, warmup_policy, warmup_vfn, task, alpha=alpha, beta=beta, nsample=nsample, atype=atype)
tf.get_default_session().run(tf.global_variables_initializer())
print ("norm params:", normalizers_parameters)
print ("norm_copy params:", normalizers_copy_parameters)
norm_before = tf.get_default_session().run(normalizers_parameters)
print ("norm_before:", norm_before)
assert FLAGS.algorithm != 'MF', "don't support model free for now"
print (f"n_envs for task: {nsample}//{FLAGS.plan.max_steps}={nsample//FLAGS.plan.max_steps}")
| tensorflow.get_default_session | 5,500 |
import tensorflow as tf
train_op = self.optimize(loss, num_async_replicas=num_async_replicas)
if common_layers.is_on_tpu():
_remove_summaries() # summaries not currently working on TPU
return tf.contrib.tpu.TPUEstimatorSpec(
tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(
| tensorflow.contrib.tpu.TPUEstimatorSpec | 5,501 |
import tensorflow as tf
self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats])
self.cs = self._mask / tf.reduce_sum(self._mask, 1, keep_dims=True)
# The final prediction is the average of the predictions for each word
# weighted by the individual confidence/utility scores.
preds_weighted = tf.mul(tf.reshape(tf.transpose(self.cs), [-1, 1]),
tf.reshape(self.preds_by_word,
[-1, self._out_vocab_size]))
preds_weighted_reshaped = tf.reshape(preds_weighted,
self.preds_by_word.get_shape())
self.probs = tf.reduce_sum(preds_weighted_reshaped, 0)
self._xent = _SafeXEnt(self.y, self.probs, class_weights=class_weights)
| tensorflow.reshape | 5,502 |
import tensorflow as tf
if num_channels_in is None:
num_channels_in = self.top_size
name = 'affine' + str(self.counts['affine'])
self.counts['affine'] += 1
with tf.variable_scope(name):
init_factor = 2. if activation == 'relu' else 1.
kernel = tf.get_variable(
'weights', [num_channels_in, num_out_channels],
| tensorflow.variable_scope | 5,503 |
import tensorflow as tf
elif self.optim_type == 'rprop':
self.optimizer = tf.train.RMSPropOptimizer(self.lr)
elif self.optim_type == 'sgd':
self.optimizer = tf.train.GradientDescentOptimizer(self.lr)
elif self.optim_type == 'adamW':
self.optimizer = AdamWOptimizer(self.config.weight_decay,
| tensorflow.train.GradientDescentOptimizer | 5,504 |
import tensorflow as tf
def build_moving_stats():
return (
tf.identity(self._moving_mean),
tf.identity(self._moving_variance),
| tensorflow.identity | 5,505 |
import tensorflow as tf
else:
# during inference, compute the end logits based on beam search
start_top_log_probs, start_top_index = tf.nn.top_k(
start_log_probs, k=FLAGS.start_n_top)
start_index = tf.one_hot(start_top_index,
depth=seq_len, axis=-1, dtype=tf.float32)
start_features = tf.einsum("lbh,bkl->bkh", output, start_index)
end_input = tf.tile(output[:, :, None],
[1, 1, FLAGS.start_n_top, 1])
start_features = tf.tile(start_features[None],
[seq_len, 1, 1, 1])
end_input = tf.concat([end_input, start_features], axis=-1)
end_logits = tf.layers.dense(
end_input,
xlnet_config.d_model,
kernel_initializer=initializer,
activation=tf.tanh,
name="dense_0")
end_logits = tf.contrib.layers.layer_norm(end_logits,
| tensorflow.tile | 5,506 |
import tensorflow as tf
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
| tensorflow.logging.info | 5,507 |
import tensorflow as tf
def creat_optimizer(self,readout):
action = tf.placeholder(tf.float32,[None,self.ACTIONS])
y = tf.placeholder(tf.float32,[None])
readout_action = tf.reduce_sum(tf.multiply(readout,action),reduction_indices=1)
| tensorflow.placeholder | 5,508 |
from tensorflow.contrib.layers.python.layers import utils
)
mean, variance = utils.smart_cond(
use_batch_stats,
| tensorflow.contrib.layers.python.layers.utils.smart_cond | 5,509 |
import tensorflow as tf
inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec
inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec
inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec
with tf.variable_scope('self_attn_inter_block'):
inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool)
block_ct_res = directional_attention_with_dense(
inter_block_attn_output, inter_block_attn_output_mask, direction, 'disa',
| tensorflow.variable_scope | 5,510 |
from tensorflow.contrib.framework import deprecated_arg_values
class ExportMonitor(EveryN):
"""Monitor that exports Estimator every N steps."""
# TODO(philstahlfeld): Investigate switching export.export_estimator
# configuration values to **kwargs so that updates to the export_estimator
# function don't have to be reflected here.
@deprecated_arg_values(
"2016-09-23",
"The signature of the input_fn accepted by export is changing to be "
"consistent with what's used by tf.Learn Estimator's train/evaluate. "
"input_fn (and in most cases, input_feature_key) will both become "
"required args.",
| tensorflow.contrib.framework.deprecated_arg_values | 5,511 |
import tensorflow as tf
if not self.graph.finalized:
self.graph.finalize()
tf.logging.info('Start training')
for i in range(iterations):
loss, summaries, _ = self.sess.run(
| tensorflow.logging.info | 5,512 |
import tensorflow as tf
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean(
values=next_sentence_example_loss)
return {
"masked_lm_accuracy": masked_lm_accuracy,
| tensorflow.reshape | 5,513 |
import tensorflow as tf
filters_out = filters * 4 if bottleneck else filters
def projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
data_format)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, training, None, 1, data_format)
return tf.identity(inputs, name)
class Model(object):
"""Base class for building the Resnet Model."""
def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
kernel_size,
conv_stride, first_pool_size, first_pool_stride,
block_sizes, block_strides,
final_size, resnet_version=DEFAULT_VERSION, data_format=None,
dtype=DEFAULT_DTYPE):
"""Creates a model for classifying an image.
| tensorflow.identity | 5,514 |
import tensorflow as tf
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint, different_vocabulary=False)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
| tensorflow.train.init_from_checkpoint | 5,515 |
import tensorflow as tf
logits = logits[:, current_output_position, :, :]
return tf.squeeze(logits, axis=[1, 2])
initial_ids = tf.zeros([batch_size], dtype=tf.int32)
if self.has_input:
inputs_old = features["inputs"]
features["inputs"] = tf.expand_dims(features["inputs"], 1)
if len(features["inputs"].shape) < 5:
features["inputs"] = tf.expand_dims(features["inputs"], 4)
# Expand the inputs in to the beam size.
features["inputs"] = tf.tile(features["inputs"], [1, beam_size, 1, 1, 1])
s = common_layers.shape_list(features["inputs"])
features["inputs"] = tf.reshape(features["inputs"],
[s[0] * s[1], s[2], s[3], s[4]])
target_modality = self._problem_hparams.target_modality
vocab_size = target_modality.top_dimensionality
# Setting decode length to input length + decode_length
decode_length = tf.constant(decode_length)
if "partial_targets" not in features:
decode_length += common_layers.shape_list(features["inputs"])[1]
| tensorflow.tile | 5,516 |
import tensorflow as tf
x_flat = tf.reshape(x, [-1, 1])
c = self.int_to_bit(x_flat, num_bits=self.hparams.z_size, base=2)
shape = common_layers.shape_list(c)
new_shape = shape
new_shape.append(self.hparams.num_blocks)
new_shape.append(int(self.hparams.z_size / self.hparams.num_blocks))
c = tf.to_int32(tf.reshape(c, shape=new_shape))
h1_shape = shape_x
h1_shape.append(self.hparams.hidden_size)
h1 = tf.zeros(dtype=tf.float32, shape=h1_shape)
c_int = self.bit_to_int(
c, num_bits=int(self.hparams.z_size / self.hparams.num_blocks), base=2)
| tensorflow.reshape | 5,517 |
import tensorflow as tf
loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1)
mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior])
num_pos_per_batch = tf.reduce_sum(
tf.cast(mask_pos_per_batch, tf.float32), 1, keepdims=True)
num_pos_per_batch = tf.maximum(num_pos_per_batch, 1)
num_neg_per_batch = tf.minimum(neg_pos_ratio * num_pos_per_batch,
tf.cast(num_prior, tf.float32) - 1)
mask_hard_neg = tf.reshape(
tf.cast(loss_class_idx_rank, tf.float32) < num_neg_per_batch,
[num_batch * num_prior, 1])
# 3. classification loss including positive and negative examples
loss_class_mask = tf.logical_or(mask_pos, mask_hard_neg)
loss_class_mask_b = tf.broadcast_to(loss_class_mask,
tf.shape(class_pred))
filter_class_true = tf.boolean_mask(tf.cast(mask_pos, tf.float32),
| tensorflow.cast | 5,518 |
import tensorflow as tf
batch_size = 8
inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)]
| tensorflow.placeholder | 5,519 |
from tensorflow.python.framework import ops
return list(zip(noisy_gradients, variables))
def _multiply_gradients(grads_and_vars, gradient_multipliers):
"""Multiply specified gradients."""
multiplied_grads_and_vars = []
for grad, var in grads_and_vars:
if (grad is not None and
(var in gradient_multipliers or var.name in gradient_multipliers)):
key = var if var in gradient_multipliers else var.name
multiplier = gradient_multipliers[key]
if isinstance(grad, ops.IndexedSlices):
grad_values = grad.values * multiplier
grad = ops.IndexedSlices(grad_values, grad.indices, grad.dense_shape)
else:
grad *= math_ops.cast(multiplier, grad.dtype)
multiplied_grads_and_vars.append((grad, var))
return multiplied_grads_and_vars
| tensorflow.python.framework.ops.IndexedSlices | 5,520 |
import tensorflow as tf
if do_norm:
conv = tf.layers.batch_normalization(conv, momentum=0.9)
if activation_function == "relu":
conv = tf.nn.relu(conv, name = 'relu')
if activation_function == "leakyrelu":
conv = tf.nn.leaky_relu(conv, alpha=relu_factor)
if activation_function == "elu":
conv = tf.nn.elu(conv, name = 'elu')
return conv
def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"):
with tf.variable_scope(name):
deconv = tf.layers.conv2d_transpose(input_data, filters, kernel_size, (stride, stride), padding, activation = None)
if do_norm:
deconv = tf.layers.batch_normalization(deconv, momentum = 0.9)
if activation_function == "relu":
deconv = tf.nn.relu(deconv, name = 'relu')
if activation_function == "leakyrelu":
deconv = tf.nn.leaky_relu(deconv, alpha=relu_factor)
if activation_function == "elu":
deconv = tf.nn.elu(deconv, name = 'elu')
| tensorflow.variable_scope | 5,521 |
import tensorflow as tf
grads = [tf.random_uniform([10, 10], -1., 1.) for _ in range(5)]
grads_and_vars = list(zip(grads, range(5)))
hparams = {
"type": "clip_by_global_norm",
"kwargs": {
"clip_norm": 0.1
}
}
gn_grad_clip_fn = opt.get_gradient_clip_fn(hparams)
gn_grads_and_vars = gn_grad_clip_fn(grads_and_vars)
gn_grads, _ = zip(*gn_grads_and_vars)
gn_grads_true, _ = tf.clip_by_global_norm(
grads, hparams["kwargs"]["clip_norm"])
hparams = {
"type": "clip_by_value",
"kwargs": {
"clip_value_min": -0.01,
"clip_value_max": 0.01
}
}
v_grad_clip_fn = opt.get_gradient_clip_fn(hparams)
v_grads_and_vars = v_grad_clip_fn(grads_and_vars)
| tensorflow.clip_by_global_norm | 5,522 |
import tensorflow as tf
pooled_outputs.append(pooled)
with tf.name_scope("preFc"):
# combine all pooled outputs
total_filters = num_filter * len(filter_list)
# concat all the pooled weights
H_pool = tf.concat(pooled_outputs, 3)
#flatten it for fully connected layer
H_pool_flat = tf.reshape(H_pool, [-1, total_filters])
with tf.name_scope("dropout"):
H_drop = tf.nn.dropout(H_pool_flat, keep_prob = keep_prob)
# Final (unnormalized) layer
with tf.name_scope("output"):
W = tf.get_variable("W",
shape=[total_filters, nb_classes],
initializer=tf.contrib.layers.xavier_initializer())
# add final layer bias
b = tf.Variable(tf.constant(0.1, shape=[nb_classes]), name="b")
# calc l2 losses
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
# do logit = W*X+b
logit = tf.nn.xw_plus_b(H_drop, W, b, name="scores")
predictions = tf.nn.softmax(logit, name="predictions")
| tensorflow.name_scope | 5,523 |
import tensorflow as tf
# Restores from MetaGraphDef.
new_saver = tf.train.import_meta_graph(filename)
| tensorflow.train.import_meta_graph | 5,524 |
import tensorflow as tf
def sample_compute(_):
pairs = sample_func()
loss = compute_contra_loss(*pairs, hard_ratio=hard_ratio)
pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.size(loss, out_type=tf.float32)
p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4,
lambda: tf.print('csrt acc ', [pct]),
lambda: tf.no_op())
with tf.control_dependencies([p]):
return tf.reduce_mean(loss)
loss = tf.map_fn(fn=lambda inp: sample_compute(inp), elems=tf.range(resample), dtype=tf.float32,
parallel_iterations=32)
final_loss = tf.reduce_mean(loss)
return final_loss
def contra_traj_lossV6(pred, tgt, horizon=12):
| tensorflow.reduce_mean | 5,525 |
import tensorflow as tf
Returns:
loss value, means negative log-likelihood.
"""
logL = 0
# pre-calculate cumsum
cumsum_y_pred = tf.cumsum(y_pred)
hazard_ratio = tf.exp(y_pred)
cumsum_hazard_ratio = tf.cumsum(hazard_ratio)
if self.train_data['ties'] == 'noties':
log_risk = tf.log(cumsum_hazard_ratio)
likelihood = y_pred - log_risk
# dimension for E: np.array -> [None, 1]
uncensored_likelihood = likelihood * y_true
logL = -tf.reduce_sum(uncensored_likelihood)
else:
# Loop for death times
for t in self.train_data['failures']:
tfail = self.train_data['failures'][t]
trisk = self.train_data['atrisk'][t]
d = len(tfail)
dr = len(trisk)
logL += -cumsum_y_pred[tfail[-1]] + (0 if tfail[0] == 0 else cumsum_y_pred[tfail[0]-1])
if self.train_data['ties'] == 'breslow':
s = cumsum_hazard_ratio[trisk[-1]]
logL += tf.log(s) * d
| tensorflow.reduce_sum | 5,526 |
import tensorflow as tf
cdf_plus = tf.nn.sigmoid(plus_in)
min_in = inv_stdv * (centered_inputs - 1. / 255.)
cdf_min = tf.nn.sigmoid(min_in)
log_cdf_plus = plus_in - tf.nn.softplus(plus_in)
log_one_minus_cdf_min = -tf.nn.softplus(min_in)
cdf_delta = cdf_plus - cdf_min
| tensorflow.nn.softplus | 5,527 |
import tensorflow as tf
def load_agent_ckpt(ckpt_dir, tf_agent, global_step=None):
if global_step is None:
global_step = tf.compat.v1.train.get_or_create_global_step()
train_checkpointer = common.Checkpointer(
ckpt_dir=ckpt_dir, agent=tf_agent, global_step=global_step)
train_checkpointer.initialize_or_restore().assert_existing_objects_matched()
| tensorflow.compat.v1.train.get_or_create_global_step | 5,528 |
from tensorflow.python.feature_column import feature_column_lib as core_feature_column
loss_reduction=losses.Reduction.SUM_OVER_NONZERO_WEIGHTS)
model = estimator.GradientBoostedDecisionTreeRanker(
head=head_fn,
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
use_core_libs=True,
feature_columns=[
core_feature_column.numeric_column("f1"),
core_feature_column.numeric_column("f2")
],
ranking_model_pair_keys=("a", "b"))
model.fit(input_fn=_ranking_train_input_fn, steps=1000)
model.evaluate(input_fn=_ranking_train_input_fn, steps=1)
model.predict(input_fn=_infer_ranking_train_input_fn)
class CoreGradientBoostedDecisionTreeEstimator(test_util.TensorFlowTestCase):
| tensorflow.python.feature_column.feature_column_lib.numeric_column | 5,529 |
import tensorflow as tf
def tower_loss(images, score_maps, geo_maps, training_masks, reuse_variables=None):
# Build inference graph
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
f_score, f_geometry = model.model(images, is_training=True)
| tensorflow.get_variable_scope | 5,530 |
import tensorflow as tf
'`rightmost_transposed_ndims` and `perm`.')
if rightmost_transposed_ndims is not None:
rightmost_transposed_ndims = tf.convert_to_tensor(
value=rightmost_transposed_ndims,
| tensorflow.convert_to_tensor | 5,531 |
import tensorflow as tf
crit_gen = tf.reduce_mean(tf.square(crit_fake - tf.ones_like(crit_fake)))
rep_loss = tf.reduce_mean(tf.square(pred - x2d))
KK = tf.matmul(K, K, transpose_b=True)
K_trace = tf.expand_dims(tf.expand_dims(tf.trace(KK), -1), -1)
K_loss = tf.reduce_mean(tf.abs(KK / K_trace - tf.eye(2)))
| tensorflow.matmul | 5,532 |
import tensorflow as tf
def _latent_projections(self, latents):
bs, dim = latents.get_shape().as_list()
with tf.variable_scope("discriminator_z_projection", reuse=tf.AUTO_REUSE) as scope:
k1 = tf.get_variable("kernel1", [dim, dim * 4])
k2 = tf.get_variable("kernel2", [dim * 4, dim])
z_proj = tf.matmul(tf.nn.leaky_relu(tf.matmul(latents, k1), name=scope.name), k2)
z_proj = z_proj / tf.reshape(tf.norm(z_proj, ord=2, axis=-1), [bs, 1])
return z_proj
def create_loss(self, features, labels, params, is_training=True):
"""Build the loss tensors for discriminator and generator.
| tensorflow.matmul | 5,533 |
import tensorflow as tf
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
| tensorflow.FixedLenFeature | 5,534 |
import tensorflow as tf
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
| tensorflow.get_variable | 5,535 |
import tensorflow as tf
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
| tensorflow.FixedLenFeature | 5,536 |
import tensorflow as tf
epsilon=self.rprop_epsilon)
_opt_op = trainer.apply_gradients(grads)
# so when you call _train, you first do the gradient step, then you apply ema
with tf.control_dependencies([_opt_op]):
_train = tf.group(ema_apply_op)
# Ops/Summaries to run, and their names for logging
| tensorflow.control_dependencies | 5,537 |
import tensorflow as tf
):
# data for self-attention
rep_map_dp = dropout(rep_map, keep_prob, is_train)
rep_dep_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, dep_selection)
rep_head_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, head_selection)
# mask generation
dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1])
head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep])
if direction is None:
direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld]
else:
if direction == 'forward':
direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld]
else:
direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld]
# [bs, slh, slh]
rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2))
attn_mask = tf.logical_and(direct_mask, rep_mask_tile) # [bs, slh, sld]
# tensor tile
rep_map_tile = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_head, 1, 1]) # bs,slh,sld,vec
with tf.variable_scope('attention'): # bs,sl,sl,vec
f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
dependent = linear(rep_dep_tensor_dp, ivec, False, scope='linear_dependent') # bs,sld,vec
dependent_etd = tf.expand_dims(dependent, 1) # bs,1,sld,vec
head = linear(rep_head_tensor_dp, ivec, False, scope='linear_head') # bs,slh,vec
| tensorflow.greater | 5,538 |
import tensorflow as tf
def resnet_model_fn(inputs, training):
"""Our model_fn for ResNet to be used with our Estimator."""
network = resnet_model.imagenet_resnet_v2(
resnet_size=18, num_classes=class_num, mode='se', data_format=None)
inputs= network(inputs=inputs, is_training=training)
feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
inputs = tf.layers.dense(inputs=inputs, units=class_num)
# inputs = tf.layers.dense(inputs=feat, units=class_num)
inputs = tf.identity(inputs, 'final_dense')
return inputs, feat
| tensorflow.nn.l2_normalize | 5,539 |
import tensorflow as tf
output = tf.nn.sigmoid(dense(d_dense_2, n_l1, input_dim, 'd_output'))
return output
def discriminator_gauss(x, reuse=False):
"""
Discriminator that is used to match the posterior distribution with a given gaussian distribution.
:param x: tensor of shape [batch_size, z_dim]
:param reuse: True -> Reuse the discriminator variables,
False -> Create or search of variables before creating
:return: tensor of shape [batch_size, 1]
"""
if reuse:
tf.get_variable_scope().reuse_variables()
with tf.name_scope('Discriminator_Gauss'):
dc_den1 = tf.nn.relu(dense(x, z_dim, n_l1, name='dc_g_den1'))
dc_den2 = tf.nn.relu(dense(dc_den1, n_l1, n_l2, name='dc_g_den2'))
output = dense(dc_den2, n_l2, 1, name='dc_g_output')
return output
def discriminator_categorical(x, reuse=False):
"""
Discriminator that is used to match the posterior distribution with a given categorical distribution.
:param x: tensor of shape [batch_size, n_labels]
:param reuse: True -> Reuse the discriminator variables,
| tensorflow.get_variable_scope | 5,540 |
import tensorflow as tf
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='xentropy')
weight = tf.convert_to_tensor(weight, dtype=logits.dtype.base_dtype, name='loss_weight')
loss = tf.multiply(weight, tf.reduce_mean(cross_entropy), name='value')
| tensorflow.convert_to_tensor | 5,541 |
import tensorflow as tf
initial_data = tf.concat([initial_state, initial_context, tf.expand_dims(initial_pos, axis=1), initial_weights],
axis=1)
context_size = initial_context.shape[1].value
def get_logits(state, ids, time): # for beam-search decoding
with tf.variable_scope('decoder_{}'.format(decoder.name)):
state, context, pos, prev_weights = tf.split(state, [cell_state_size, context_size, 1, -1], axis=1)
input_ = embed(ids)
pos = tf.squeeze(pos, axis=1)
pos = tf.cond(tf.equal(time, 0),
lambda: pos,
lambda: update_pos(pos, ids, encoder_input_length[align_encoder_id]))
if decoder.cell_type.lower() == 'lstm' and decoder.use_lstm_full_state:
output = state
else:
# Output is always the right-most part of the state (even with multi-layer RNNs)
| tensorflow.squeeze | 5,542 |
import tensorflow as tf
sequence_length=text_len,
initial_state_fw=state_fw,
initial_state_bw=state_bw)
text_outputs = tf.concat([fw_outputs, bw_outputs], 2) # [num_sentences, max_sentence_length, emb]
text_outputs = tf.nn.dropout(text_outputs, self.lstm_dropout)
if layer > 0:
highway_gates = tf.sigmoid(util.projection(text_outputs, util.shape(text_outputs, 2))) # [num_sentences, max_sentence_length, emb]
text_outputs = highway_gates * text_outputs + (1 - highway_gates) * current_inputs
current_inputs = text_outputs
| tensorflow.nn.dropout | 5,543 |
import tensorflow as tf
pooling_result = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, 0, hn], tf.float32),
lambda: mean_pooling_for_unselected_head(
unhead_org_idx, sl_unhead, rep_unhead_mask,
input_idx, sl, rep_mask, rep_map, None) # todo: point !
)
with tf.variable_scope('output'):
if keep_unselected:
range_head = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_head])
scatter_attn = tf.cond(
tf.equal(sl_head, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_head, head_org_idx], -1), attn_result, [bs, sl+1, hn])
)
range_unhead = tf.tile(tf.expand_dims(tf.range(bs), -1), [1, sl_unhead])
scatter_pooling = tf.cond(
tf.equal(sl_unhead, 0),
lambda: tf.zeros([bs, sl+1, hn], tf.float32),
lambda: tf.scatter_nd(
tf.stack([range_unhead, unhead_org_idx], -1), pooling_result, [bs, sl+1, hn])
)
self_attn_input = rep_map
context_features = tf.add(scatter_attn[:, :-1], scatter_pooling[:, :-1], 'context_features')
output_mask = rep_mask
else:
| tensorflow.stack | 5,544 |
import tensorflow as tf
# TPU requires a fixed batch size for all batches, therefore the number
# of examples must be a multiple of the batch size, or else examples
# will get dropped. So we pad with fake examples which are ignored
# later on.
while len(predict_examples) % FLAGS.predict_batch_size != 0:
predict_examples.append(PaddingInputExample())
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
file_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
| tensorflow.logging.info | 5,545 |
import tensorflow as tf
# exit()
return avg_loss
def compute_contra_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
if hard_ratio < 1.0:
hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32)
loss = tf.reshape(loss, [-1])
hard_loss, _ = tf.math.top_k(loss, k=hard_num)
return hard_loss
return loss
def compute_error_loss(pred1, pred2, tgt1, tgt2, hard_ratio=1.0):
geq = tf.cast((tgt1 - tgt2) > 0, tf.bool)
tgt_larg = tf.where(geq, tgt1, tgt2)
tgt_small = tf.where(geq, tgt2, tgt1)
pred_larg = tf.where(geq, pred1, pred2)
pred_small = tf.where(geq, pred2, pred1)
loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small))
| tensorflow.reshape | 5,546 |
from tensorflow.python.framework import ops
ops.RegisterShape("LRN")(common_shapes.unchanged_shape_with_rank(4))
@ops.RegisterShape("LRNGrad")
def _LRNGradShape(op):
"""Shape function for LRNGrad op."""
in_grads_shape = op.inputs[0].get_shape().with_rank(4)
in_image_shape = op.inputs[1].get_shape().with_rank(4)
out_image_shape = op.inputs[2].get_shape().with_rank(4)
return [in_grads_shape.merge_with(in_image_shape).merge_with(out_image_shape)]
ops.RegisterShape("Softmax")(
common_shapes.unchanged_shape_with_rank(2))
@ops.RegisterShape("InTopK")
def _InTopKShape(op):
"""Shape function for InTopK op."""
predictions_shape = op.inputs[0].get_shape().with_rank(2)
targets_shape = op.inputs[1].get_shape().with_rank(1)
batch_size = predictions_shape[0].merge_with(targets_shape[0])
return [tensor_shape.vector(batch_size.value)]
| tensorflow.python.framework.ops.RegisterShape | 5,547 |
import tensorflow as tf
# end of a sentence
if all_tokens[i] == "[SEP]":
sentence["tokens"] = tokens
sentence["ppl"] = float(np.exp(sentence_loss / word_count_per_sent))
sentences.append(sentence)
i += 1
if output_file is not None:
tf.logging.info("Saving results to %s" % output_file)
writer.write(json.dumps(sentences, indent=2, ensure_ascii=False))
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
| tensorflow.logging.info | 5,548 |
import tensorflow as tf
"""
if split_name not in split_to_sizes:
raise ValueError('split name %s was not recognized.' % split_name)
file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
# Allowing None in the signature so that dataset_factory can use the default.
if reader is None:
reader = tf.TFRecordReader
# Features in Pascal VOC TFRecords.
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height': tf.FixedLenFeature([1], tf.int64),
'image/width': tf.FixedLenFeature([1], tf.int64),
'image/channels': tf.FixedLenFeature([1], tf.int64),
'image/shape': tf.FixedLenFeature([3], tf.int64),
'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/label': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/difficult': tf.VarLenFeature(dtype=tf.int64),
'image/object/bbox/truncated': tf.VarLenFeature(dtype=tf.int64),
}
| tensorflow.FixedLenFeature | 5,549 |
import tensorflow as tf
if len(conflicts) > 0:
tf.logging.info('Variables with incompatible shapes: \n\t{}'.format(
'\n\t'.join(conflicts)))
else:
var_list = None
with tf.device('/cpu:0'):
saver = tf.train.Saver(var_list=var_list, save_relative_paths=True)
saver.restore(self.sess, checkpoint_path)
def save(self, checkpoint_path):
| tensorflow.device | 5,550 |
import tensorflow as tf
elif activation == "relu":
A = tf.nn.relu(h)
| tensorflow.nn.relu | 5,551 |
import tensorflow as tf
with tf.tpu.bfloat16_scope():
return two_stream_loss(FLAGS, features, labels, mems, is_training)
else:
return two_stream_loss(FLAGS, features, labels, mems, is_training)
def get_classification_loss(
FLAGS, features, n_class, is_training):
"""Loss for downstream classification tasks."""
bsz_per_core = tf.shape(features["input_ids"])[0]
inp = tf.transpose(features["input_ids"], [1, 0])
seg_id = tf.transpose(features["segment_ids"], [1, 0])
inp_mask = tf.transpose(features["input_mask"], [1, 0])
label = tf.reshape(features["label_ids"], [bsz_per_core])
xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
run_config = xlnet.create_run_config(is_training, True, FLAGS)
xlnet_model = xlnet.XLNetModel(
xlnet_config=xlnet_config,
run_config=run_config,
input_ids=inp,
seg_ids=seg_id,
input_mask=inp_mask)
| tensorflow.transpose | 5,552 |
import tensorflow as tf
batch_image,batch_label=get_batch(image,label,trainnum,0)
work=trainwork()
inf=work.inference(batch_image)
loss=work.softmax_loss(inf,batch_label)
opti=work.optimer(loss,learnrate)
test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum)
test_inf=work.test_inference(test_image_batch)
test_labels=tf.one_hot(test_label_batch,classnum)
test_pre = tf.reshape(test_inf, [testnum, classnum])
correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
test_pre = tf.argmax(test_pre, 1)
test_true = tf.argmax(test_labels, 1)
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
valid_inf=work.valid_inference(valid_image_batch)
valid_labels=tf.one_hot(valid_label_batch,classnum)
| tensorflow.reshape | 5,553 |
import tensorflow as tf
def __forward_pass(self, x, reuse):
fc_size1 = 384
fc_size2 = 192
# convolutional layers
with tf.variable_scope('conv1'):
layer1, weights1 = new_conv_layer(x, name="conv1", num_input_channels=3, num_filters=64, filter_size=5, ac_fun=tf.nn.relu,
pool_ksize=[1, 3, 3, 1])
with tf.variable_scope('conv2'):
layer2, weights2 = new_conv_layer(input=layer1, name="conv2", num_input_channels=64, num_filters=64, filter_size=5,
ac_fun=tf.nn.relu, pool_ksize=[1, 3, 3, 1])
with tf.name_scope('flatten'):
layer3, num_features = flatten_layer(layer2)
# fully connected layers
with tf.variable_scope('fc1'):
layer4, weights4 = new_fc_layer(input=layer3, name="fc1", num_inputs=num_features, num_outputs=fc_size1)
# print(layer4)
with tf.variable_scope('fc2'):
logits, weights5 = new_fc_layer(input=layer4, name="fc2", num_inputs=fc_size1, num_outputs=fc_size2)
# add histograms
if not reuse:
| tensorflow.name_scope | 5,554 |
import tensorflow as tf
span_emb = tf.concat(span_emb_list, 1) # [k, emb]
return span_emb # [k, emb]
def get_mention_scores(self, span_emb):
with tf.variable_scope("mention_scores"):
return util.ffnn(span_emb, self.config["ffnn_depth"], self.config["ffnn_size"], 1, self.dropout) # [k, 1]
def softmax_loss(self, antecedent_scores, antecedent_labels):
gold_scores = antecedent_scores + tf.log(tf.to_float(antecedent_labels)) # [k, max_ant + 1]
marginalized_gold_scores = tf.reduce_logsumexp(gold_scores, [1]) # [k]
log_norm = tf.reduce_logsumexp(antecedent_scores, [1]) # [k]
return log_norm - marginalized_gold_scores # [k]
def bucket_distance(self, distances):
"""
Places the given values (designed for distances) into 10 semi-logscale buckets:
[0, 1, 2, 3, 4, 5-7, 8-15, 16-31, 32-63, 64+].
"""
logspace_idx = tf.to_int32(tf.floor(tf.log(tf.to_float(distances))/math.log(2))) + 3
| tensorflow.reduce_logsumexp | 5,555 |
import tensorflow as tf
return safe_get(name, list(shape), initializer=tf.constant_initializer(weights), dtype=tf.float32)
def batched_matrix_vector_multiply(vector, matrix):
""" computes x^T A in mini-batches. """
vector_batch_as_matricies = tf.expand_dims(vector, [1])
mult_result = tf.matmul(vector_batch_as_matricies, matrix)
squeezed_result = tf.squeeze(mult_result, [1])
return squeezed_result
| tensorflow.expand_dims | 5,556 |
import tensorflow as tf
activation=tf.nn.relu,
name='l1',
trainable=trainable
)
mu = 2 * tf.layers.dense(inputs=l1,
units=action_dim, # number of hidden units
activation=tf.nn.tanh,
name='mu',
trainable=trainable
)
sigma = tf.layers.dense(inputs=l1,
units=action_dim, # output units
activation=tf.nn.softplus, # get action probabilities
name='sigma',
trainable=trainable
)
norm_dist = tf.distributions.Normal(loc=mu, scale=sigma)
params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name)
return norm_dist, params
| tensorflow.layers.dense | 5,557 |
import tensorflow as tf
return accuracy
def num_correct_prediction(logits, labels):
'''
Evaluate the quality of the logits at predicting the label
'''
correct = tf.equal(tf.arg_max(logits,1), tf.arg_max(labels,1))
correct = tf.cast(correct, tf.int32)
n_correct = tf.reduce_sum(correct)
return n_correct
def optimize(loss, learning_rate, global_step):
'''
| tensorflow.cast | 5,558 |
import tensorflow as tf
# The output is (mean, var).
if self._compute_variance and not self._compute_weighted:
return [
analyzer_nodes.TensorInfo(
tf.as_dtype(self._output_numpy_dtype), self._output_shape, None)
] * 2
else:
return [
| tensorflow.as_dtype | 5,559 |
import tensorflow as tf
# In this example, we limit mnist data
Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
Xte, Yte = mnist.test.next_batch(200) #200 for testing
# tf Graph Input
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])
# Nearest Neighbor calculation using L1 Distance
# Calculate L1 Distance
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.negative(xte))),
reduction_indices=1)
# Prediction: Get min distance index (Nearest neighbor)
pred = tf.arg_min(distance, 0)
accuracy = 0.
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start training
| tensorflow.negative | 5,560 |
import tensorflow as tf
recall = recall_score(labels_all,predicted_score)
apk_sc = rank_metrics.apk(actual, predicted, k=50)
return roc_sc, auprc_score,accuracy,precision,recall,f ,apk_sc
def construct_placeholders(edge_types):
placeholders = {
'batch': tf.placeholder(tf.int32, name='batch'),
'batch_neg': tf.placeholder(tf.int32, name='batch_neg'),
'batch_node':tf.placeholder(tf.int32,name = 'batch_node'),
'adj_min_batch': tf.placeholder(tf.float32,name='adj_min_batch'),
'sim_min_batch': tf.placeholder(tf.float32,name='sim_min_batch'),
'batch_edge_type_idx': tf.placeholder(tf.int32, shape=(), name='batch_edge_type_idx'),
'batch_row_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_row_edge_type'),
'batch_col_edge_type': tf.placeholder(tf.int32, shape=(), name='batch_col_edge_type'),
'degrees': tf.placeholder(tf.int32),
| tensorflow.placeholder | 5,561 |
import tensorflow as tf
num_block_layers = 3
dense_layer_depth = 16
def lstm_network(input, scope='lstm_network'):
with tf.variable_scope(scope):
# tf.nn.rnn_cell
lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# tf.nn.rnn_cell
# lstm_cell1 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer1, forget_bias=1.0)
# lstm_cell2 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer2, forget_bias=1.0)
#lstm_cells = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
# initial_state = lstm_cells.zero_state(batch_size, tf.float32)
_, states = tf.nn.dynamic_rnn(lstm_cells, input, dtype=tf.float32, initial_state=None)
| tensorflow.contrib.rnn.MultiRNNCell | 5,562 |
import tensorflow as tf
def z_conv(self, id, input, channels, size, stride=1, padding="SAME", use_bias=False, dilation=1):
# zero mean conv
if type(size) == int: size = [size, size]
in_ch = input.get_shape().as_list()[-1]
# init = tf.contrib.layers.variance_scaling_initializer(dtype=tf.float32)
init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
filters = tf.get_variable('zero_conv_weights' + id, initializer=init, shape=[size[0], size[1], in_ch, channels])
filters = filters - tf.reduce_mean(filters, axis=[0, 1, 2], keepdims=True)
if padding == "PARTIAL":
with tf.variable_scope('mask'):
_, h, w, _ = input.get_shape().as_list()
| tensorflow.get_variable | 5,563 |
import tensorflow as tf
# [n_envs * n_steps, n_act]
grad = tf.gradients(- (loss_policy - self.ent_coef * entropy) * self.n_steps * self.n_envs,
phi_i)
# [n_envs * n_steps, n_act] # Directly computed gradient of KL divergence wrt f
kl_grad = - f_polyak_i / (f_i_ + eps)
k_dot_g = tf.reduce_sum(kl_grad * grad, axis=-1)
adj = tf.maximum(0.0, (tf.reduce_sum(kl_grad * grad, axis=-1) - self.delta) / (
tf.reduce_sum(tf.square(kl_grad), axis=-1) + eps)) # [n_envs * n_steps]
# Calculate stats (before doing adjustment) for logging.
avg_norm_k = avg_norm(kl_grad)
avg_norm_g = avg_norm(grad)
avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
avg_norm_adj = tf.reduce_mean(tf.abs(adj))
grad = grad - tf.reshape(adj, [self.n_envs * self.n_steps, 1]) * kl_grad
# These are turst region adjusted gradients wrt f ie statistics of policy pi
grads_f = -grad / (self.n_envs * self.n_steps)
grads_policy = tf.gradients(f_i_, self.params, grads_f)
grads_q = tf.gradients(loss_q * self.q_coef, self.params)
grads = [gradient_add(g1, g2, param, verbose=self.verbose)
for (g1, g2, param) in zip(grads_policy, grads_q, self.params)]
avg_norm_grads_f = avg_norm(grads_f) * (self.n_steps * self.n_envs)
norm_grads_q = tf.global_norm(grads_q)
norm_grads_policy = tf.global_norm(grads_policy)
else:
grads = tf.gradients(loss, self.params)
norm_grads = None
| tensorflow.reshape | 5,564 |
import tensorflow as tf
self.epsilon = epsilon
self.name = name
self.mean = tf.reduce_mean(x, [0, 1, 2], keep_dims=True)
self.mean_sq = tf.reduce_mean(tf.square(x), [0, 1, 2], keep_dims=True)
self.batch_size = int(x.get_shape()[0])
assert x is not None
| tensorflow.square | 5,565 |
import tensorflow as tf
for h, n_out in enumerate(layers_width[1:]):
# Hidden layer
if(h < len(layers_width)-2):
# Perform affine mapping at each layer of the neural network
Z = tf.layers.dense(Z, n_basis//2)
# Define variational parameters
alpha_mean = tf.get_variable('alpha_mean_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_logstd = tf.get_variable('alpha_logstd_layer'+str(h),
shape=[1, 1, n_basis, n_out],
initializer=tf.random_normal_initializer())
alpha_std = tf.exp(alpha_logstd)
# Compute epsilon from {n_samples} standard Gaussian
# epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out])
epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out])
hyp_params = tf.get_variable('hyp_params_layer'+str(h),
shape=[2],
initializer=tf.random_normal_initializer())
l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1])
epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2
# Compute A_{h+1}
| tensorflow.random_normal_initializer | 5,566 |
import tensorflow as tf
entropy, log_prob):
indices = tf.range(0, layer_id, dtype=tf.int32)
start_id = 4 * (layer_id - 2)
prev_layers = []
for i in range(2): # index_1, index_2
next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm)
prev_c, prev_h = next_c, next_h
query = anchors_w_1.gather(indices)
query = tf.reshape(query, [layer_id, self.lstm_size])
query = tf.tanh(query + tf.matmul(next_h[-1], self.w_attn_2))
query = tf.matmul(query, self.v_attn)
logits = tf.reshape(query, [1, layer_id])
if self.temperature is not None:
logits /= self.temperature
if self.tanh_constant is not None:
logits = self.tanh_constant * tf.tanh(logits)
index = tf.multinomial(logits, 1)
index = tf.to_int32(index)
index = tf.reshape(index, [1])
arc_seq = arc_seq.write(start_id + 2 * i, index)
| tensorflow.matmul | 5,567 |
import tensorflow as tf
output_activation, dropout_rate)
rnd_pred_act = act_limit * rnd_pred_act
with tf.variable_scope('rnd_targ_cri'):
rnd_targ_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None), axis=1)
with tf.variable_scope('rnd_pred_cri'):
rnd_pred_cri = tf.squeeze(mlp(tf.concat([x_ph, a_ph], axis=-1), list(hidden_sizes) + [1], activation, None),
axis=1)
rnd_pred_cri_in_ph = tf.concat([x_ph, a_ph], axis=-1)
rnd_pred_cri_in_dim = rnd_pred_cri_in_ph.shape.as_list()[1]
rnd_pred_cri_dropout_mask_generator = DropoutMaskGenerator(rnd_pred_cri_in_dim,
hidden_sizes, model_prob=1.0 - dropout_rate)
| tensorflow.concat | 5,568 |
import tensorflow as tf
tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i])
tf.summary.scalar("regularization_loss", model.regularization_loss)
tf.summary.scalar("stop_token_loss", model.stop_token_loss)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed
if hparams.tacotron_teacher_forcing_mode == "scheduled":
tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing
# ratio decay when mode = "scheduled"
gradient_norms = [tf.norm(grad) for grad in model.gradients]
tf.summary.histogram("gradient_norm", gradient_norms)
tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize
# gradients (in case of explosion)
return tf.summary.merge_all()
def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss,
loss):
values = [
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss",
simple_value=before_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss",
simple_value=after_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss",
simple_value=stop_token_loss),
tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss),
| tensorflow.summary.merge_all | 5,569 |
import tensorflow as tf
"dtype=float32)")
def testReprWorksCorrectlyScalar(self):
# Usually we'd write np.float(X) here, but a recent Eager bug would
# erroneously coerce the value to float32 anyway. We therefore use constants
# here, until the bug is resolved in TensorFlow 1.12.
normal = tfd.Normal(loc=tf.constant(0, tf.float16),
scale=tf.constant(1, tf.float16))
self.assertEqual(
repr(normal),
"<tfp.distributions.Normal"
" 'Normal/'"
" batch_shape=()"
" event_shape=()"
| tensorflow.constant | 5,570 |
import tensorflow as tf
tf.expand_dims(k, 0),
util.shape(context_outputs, 0),
True) # [1, k]
top_span_indices.set_shape([1, None])
top_span_indices = tf.squeeze(top_span_indices, 0) # [k]
top_span_starts = tf.gather(candidate_starts, top_span_indices) # [k]
top_span_ends = tf.gather(candidate_ends, top_span_indices) # [k]
top_span_emb = tf.gather(candidate_span_emb, top_span_indices) # [k, emb]
top_span_cluster_ids = tf.gather(candidate_cluster_ids, top_span_indices) # [k]
top_span_mention_scores = tf.gather(candidate_mention_scores, top_span_indices) # [k]
top_span_sentence_indices = tf.gather(candidate_sentence_indices, top_span_indices) # [k]
top_span_speaker_ids = tf.gather(speaker_ids, top_span_starts) # [k]
c = tf.minimum(self.config["max_top_antecedents"], k)
if self.config["coarse_to_fine"]:
top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.coarse_to_fine_pruning(top_span_emb, top_span_mention_scores, c)
else:
top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.distance_pruning(top_span_emb, top_span_mention_scores, c)
dummy_scores = tf.zeros([k, 1]) # [k, 1]
for i in range(self.config["coref_depth"]):
with tf.variable_scope("coref_layer", reuse=(i > 0)):
top_antecedent_emb = tf.gather(top_span_emb, top_antecedents) # [k, c, emb]
top_antecedent_scores = top_fast_antecedent_scores + self.get_slow_antecedent_scores(top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb) # [k, c]
top_antecedent_weights = tf.nn.softmax(tf.concat([dummy_scores, top_antecedent_scores], 1)) # [k, c + 1]
top_antecedent_emb = tf.concat([tf.expand_dims(top_span_emb, 1), top_antecedent_emb], 1) # [k, c + 1, emb]
| tensorflow.minimum | 5,571 |
import tensorflow.contrib.graph_editor as ge
elif checkpoints == 'speed':
# checkpoint all expensive ops to maximize running speed
checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul')
elif checkpoints == 'memory':
| tensorflow.contrib.graph_editor.filter_ts_from_regex | 5,572 |
import tensorflow as tf
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean(
values=next_sentence_example_loss)
| tensorflow.argmax | 5,573 |
import tensorflow as tf
predictions['image_info'] = features['image_info']
if params['include_mask']:
predictions['mask_outputs'] = tf.nn.sigmoid(model_outputs['mask_outputs'])
if params['use_tpu']:
return tf.contrib.tpu.TPUEstimatorSpec(mode=mode, predictions=predictions)
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Set up training loss and learning rate.
global_step = tf.train.get_or_create_global_step()
learning_rate = learning_rates.step_learning_rate_with_linear_warmup(
global_step,
| tensorflow.estimator.EstimatorSpec | 5,574 |
import tensorflow as tf
# lang2_fname = filename + ".lang2"
lang1_fname = filename + ".source"
lang2_fname = filename + ".target"
if tf.gfile.Exists(lang1_fname) and tf.gfile.Exists(lang2_fname):
tf.logging.info("Skipping compile data, found files:\n%s\n%s", lang1_fname,
lang2_fname)
| tensorflow.gfile.Exists | 5,575 |
import tensorflow as tf
tf.add_to_collection('debug_layers', self.x_preprocessed)
with tf.variable_scope('conv1_x'):
print('Building unit: conv1')
self.conv1 = self._conv('conv1', self.x_preprocessed, padding= [[0,0],[3,3],[3,3],[0,0]],
num_filters=64, kernel_size=(7, 7), stride=(2, 2), l2_strength=self.wd,
bias=self.bias)
self.conv1 = self._bn('bn1', self.conv1)
self.conv1 = self._relu('relu1', self.conv1)
_debug(self.conv1)
self.conv1= tf.pad(self.conv1, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT")
self.conv1 = tf.nn.max_pool(self.conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID',
name='max_pool1')
_debug(self.conv1)
print('conv1-shape: ' + str(self.conv1.shape.as_list()))
with tf.variable_scope('conv2_x'):
self.conv2 = self._residual_block('conv2_1', self.conv1, 64)
_debug(self.conv2)
self.conv2 = self._residual_block('conv2_2', self.conv2, 64)
_debug(self.conv2)
with tf.variable_scope('conv3_x'):
self.conv3 = self._residual_block('conv3_1', self.conv2, 128, pool_first=True, strides=2)
| tensorflow.nn.max_pool | 5,576 |
import tensorflow as tf
datasetRoot = config.validation.data.root_path
data_list_path = os.path.join(datasetRoot,config.validation.data.path)
n_batch = batch_override or config.validation.n_batch[partial_level]
# read in datalist and create dataset
with open(data_list_path) as f:
data_path_list = [datasetRoot + x[:-1] for x in f.readlines()]
n_data = len(data_path_list)
dataset = tf.data.Dataset.from_tensor_slices(data_path_list)
if shuffle_repeat:
dataset = dataset.shuffle(n_data).repeat()
dataset = dataset.map(self.data_map)
# validation
validation_dataset = dataset.batch(n_batch).prefetch(4)
validation_iterator = validation_dataset.make_one_shot_iterator()
| tensorflow.data.Dataset.from_tensor_slices | 5,577 |
import tensorflow as tf
pos_ = tf.minimum(pos_, encoder_input_length - 1)
pos_ = tf.maximum(pos_, 0) # TODO: when pos is < 0, use <S> or </S>
weights_ = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos_, axis=1)), depth=attn_length))
weighted_average_ = tf.reduce_sum(tf.expand_dims(weights_, axis=2) * hidden_states, axis=1)
weighted_average.append(weighted_average_)
weighted_average = tf.concat(weighted_average, axis=1)
weighted_average = dense(weighted_average, encoder.attn_size)
elif pos is not None:
weights = tf.to_float(tf.one_hot(tf.to_int32(tf.squeeze(pos, axis=1)), depth=attn_length))
weighted_average = tf.reduce_sum(tf.expand_dims(weights, axis=2) * hidden_states, axis=1)
else:
| tensorflow.concat | 5,578 |
import tensorflow as tf
gstack = tf.concat([self.prev_g, cut_g], axis=1)
self.last_c_g = gstack[:, 1:]
# print self.last_c_g
gsum = tf.reduce_sum(gstack, axis=1)
phi = tf.get_variable("phi", (self.g_dim, self.k))
w = tf.matmul(gsum, phi)
w = tf.expand_dims(w, [2])
# Calculate policy and sample
logits = tf.reshape(tf.matmul(U, w), [-1, num_acts])
self.pi = tf.nn.softmax(logits)
self.log_pi = tf.nn.log_softmax(logits)
self.sample = policy_utils.categorical_sample(
tf.reshape(logits, [-1, num_acts]), num_acts)[0, :]
def build_value(self, _input):
with tf.variable_scope('VF'):
hidden = tf.layers.dense(inputs=_input,
units=self.vf_hidden_size,
activation=tf.nn.elu)
w = tf.get_variable("weights", (self.vf_hidden_size, 1))
| tensorflow.nn.log_softmax | 5,579 |
import tensorflow as tf
name,
scale=True,
train=True,
epsilon=1e-8,
decay=.1,
axes=[0],
bn_lag=DEFAULT_BN_LAG):
"""Batch normalization."""
# create variables
with tf.variable_scope(name):
var = variable_on_cpu(
"var", [dim], tf.constant_initializer(1.), trainable=False)
mean = variable_on_cpu(
"mean", [dim], tf.constant_initializer(0.), trainable=False)
step = variable_on_cpu("step", [], tf.constant_initializer(0.), trainable=False)
if scale:
gamma = variable_on_cpu("gamma", [dim], tf.constant_initializer(1.))
beta = variable_on_cpu("beta", [dim], tf.constant_initializer(0.))
| tensorflow.variable_scope | 5,580 |
import tensorflow as tf
"""
# This assert should be only used with an instance that commutes with sum.
assert stage.commutes_with_sum
num_summands = len(server_test_data)
expected_sum = np.sum([d.decoded_x for d in server_test_data], axis=0)
sum_encoded_x = {}
for k in server_test_data[0].encoded_x:
sum_encoded_x[k] = np.sum([d.encoded_x[k] for d in server_test_data],
axis=0)
with tf.Graph().as_default():
with self.session() as sess:
decode_sum_encoded_x = sess.run(
stage.decode(sum_encoded_x, decode_params, num_summands, shape))
self.assertAllClose(
expected_sum,
decode_sum_encoded_x,
rtol=DEFAULT_RTOL,
atol=DEFAULT_ATOL)
| tensorflow.Graph | 5,581 |
import tensorflow as tf
self._score_summaries.update(self._proposal_targets) #self._score_summaries.update(self._anchor_targets)
return rois, roi_scores
def _anchor_component(self):
with tf.variable_scope('ANCHOR_' + 'default'):
# just to get the shape right
# 根据原始输入图片通过VGG16的conv5_3后,缩小16倍,得到RPN的输入feature map大小
height = tf.to_int32(tf.ceil(self._im_info[0, 0] / np.float32(self._feat_stride[0])))
width = tf.to_int32(tf.ceil(self._im_info[0, 1] / np.float32(self._feat_stride[0])))
| tensorflow.variable_scope | 5,582 |
import tensorflow as tf
tf.summary.image('input', images)
tf.summary.image('score_map', score_maps)
tf.summary.image('score_map_pred', f_score * 255)
tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1])
| tensorflow.summary.image | 5,583 |
import tensorflow as tf
def _attn(q, k, v, train=False, scale=False):
#w=[-1,head,n_ctx,n_ctx]
w = tf.matmul(q, k)
| tensorflow.matmul | 5,584 |
import tensorflow as tf
"""
Test RNN graph 0 step
"""
def test_rnn(test_data_x,test_data_y, g, checkpoint, input_prob, output_prob, state_prob, num_test):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
test_data_yp = np.insert(test_data_y,0,0,axis=0)[:-1]
"read the trained graph"
g['saver'].restore(sess, checkpoint)
| tensorflow.global_variables_initializer | 5,585 |
import tensorflow as tf
params["discriminator_from_rgb_layers"][i][0][:]
for i in range(len(params["discriminator_from_rgb_layers"]))
]
# Create list to hold fromRGB 1x1 convs.
from_rgb_conv_tensors = [
self.from_rgb_conv_layers[i](
inputs=tf.zeros(
shape=[1] + from_rgb[i][0:3], dtype=tf.float32
)
)
for i in range(len(from_rgb))
]
print_obj(
| tensorflow.zeros | 5,586 |
import tensorflow as tf
return new_state
def output_step_scan(self, dummy, new_state):
if self.dale_ratio:
new_output = tf.matmul(
tf.nn.relu(new_state),
tf.matmul(
tf.abs(self.W_out) * self.output_Connectivity,
self.Dale_out,
name="in_2"),
transpose_b=True, name="3")\
+ self.b_out
| tensorflow.nn.relu | 5,587 |
import tensorflow as tf
"""
states = dict()
for name in sorted(self.states_memory):
states[name] = tf.gather(params=self.states_memory[name], indices=indices)
internals = dict()
| tensorflow.gather | 5,588 |
import tensorflow as tf
images, num_cols=FLAGS.num_images_per_class)
tf.summary.image('generated_images', reshaped_img, max_outputs=1)
| tensorflow.summary.image | 5,589 |
import tensorflow as tf
self.set_training_op()
# not used at the moment, could be useful at a certain point
# self.create_random_update_op()
# there are case in which multiple losses exit
if isinstance(self.loss, dict):
for k, v in self.loss.items():
self.loss[k] = tf.check_numerics(v, "self.loss" + str(k) + " is not finite")
else:
self.loss = tf.check_numerics(self.loss, "self.loss is not finite")
#session will be created after init
def create_datasets_with_handles(self, dataset):
datasets_nodes, handle, ds_initializers, ds_handles = dataset.get_dataset_with_handle(self.batch_size["train"], self.batch_size["eval"])
self.datasets_initializers = ds_initializers
self.datasets_handles_nodes = ds_handles
self.ds_handle = handle
| tensorflow.check_numerics | 5,590 |
import tensorflow as tf
with tf.variable_scope(name) as scope:
conv = tf.nn.conv2d(x, W, [1, stride, stride, 1], padding='SAME')
pre_activation = tf.nn.bias_add(conv, bias)
output = tf.nn.relu(pre_activation, name=scope.name)
return output
# 定义一个池化层,默认为max_pooling
def max_pool_2x2(self,name, x):
with tf.variable_scope(name) as scope:
maxpool = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')
return maxpool
# 创建DQN
def creat_network(self):
# 网络的参数,权重
W_conv1 = self.weight_variable('W_conv1', [8, 8, 4, 32]) # 第一层卷积层为8x8的卷积核,输入通道为4,输出通道为32
b_conv1 = self.bias_variable('b_conv1', [32])
W_conv2 = self.weight_variable('W_conv2', [4, 4, 32, 64]) # 第二层卷积层为4x4的卷积核,输入通道为32,输出通道为64
| tensorflow.nn.max_pool | 5,591 |
import tensorflow as tf
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
tf.summary.scalar("Training Loss", m.cost)
tf.summary.scalar("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
tf.summary.scalar("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(
config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
models = {"Train": m, "Valid": mvalid, "Test": mtest}
| tensorflow.name_scope | 5,592 |
import tensorflow as tf
return images, sparse_labels
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv_scale(x, W):
return tf.nn.conv3d(x, W, strides=[1,1,1,1,1], padding='VALID')
def inference(x):
""" Creates a model with pooling across space and scales.
| tensorflow.Variable | 5,593 |
from tensorflow.python.framework import ops
output_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name)
output_shape.assert_is_fully_defined()
filter_height = int(filter_shape[0])
filter_width = int(filter_shape[1])
filter_in_depth = int(filter_shape[2])
output_count = np.prod(output_shape.as_list())
return ops.OpStats("flops", (output_count * filter_in_depth * filter_height *
filter_width * 2))
@ops.RegisterStatistics("Conv2D", "weight_parameters")
def _calc_conv_weight_params(graph, node):
| tensorflow.python.framework.ops.OpStats | 5,594 |
import tensorflow as tf
self.rewards_ph_n +
(1 - self.terminals_ph_n) *( self.gamma**self.n_step_length ) * self.value_target_n)
qf1_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf1) ** 2)*self.weight_ph)
qf1_loss_n_col = tf.reduce_mean(((q_backup_n - qf1) ** 2),1)
qf2_loss_n = 0.5 * tf.reduce_mean(((q_backup_n - qf2) ** 2)*self.weight_ph)
if self.n_step:
value_for_priority = qf1_loss_col + qf1_loss_n_col
else:
| tensorflow.reduce_mean | 5,595 |
import tensorflow as tf
# None would fire an exception were it actually executed.
self.assertTrue(normal._is_scalar_helper(x.get_shape, lambda: None))
self.assertTrue(normal._is_scalar_helper(lambda: tf.TensorShape(None),
lambda: tf.shape(x)))
x = tf.placeholder(dtype=tf.int32, shape=[1])
| tensorflow.shape | 5,596 |
from tensorflow.python.ops import array_ops
cm_dtype = dtypes.int64 if weights is not None else dtypes.float64
total_cm = _create_local('total_confusion_matrix',
shape=[num_classes, num_classes], dtype=cm_dtype)
# Cast the type to int64 required by confusion_matrix_ops.
predictions = math_ops.to_int64(predictions)
labels = math_ops.to_int64(labels)
num_classes = math_ops.to_int64(num_classes)
# Flatten the input if its rank > 1.
predictions_rank = predictions.get_shape().ndims
if predictions_rank > 1:
predictions = array_ops.reshape(predictions, [-1])
labels_rank = labels.get_shape().ndims
if labels_rank > 1:
labels = array_ops.reshape(labels, [-1])
weights = _mask_weights(ignore_mask, weights)
if weights is not None:
weights_rank = weights.get_shape().ndims
if weights_rank > 1:
weights = array_ops.reshape(weights, [-1])
| tensorflow.python.ops.array_ops.reshape | 5,597 |
import tensorflow as tf
in_size: size of the hidden state vectors
mats: list of hidden state vectors
"""
pred_mat = tf.get_variable('pred_mat',
[in_size, self._out_vocab_size])
pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size])
# Make a prediction on every word.
def GetWordPred(o_):
logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
return tf.nn.softmax(logits)
#self.preds_by_word1 = tf.pack([GetWordPred(o_) for o_ in mats])
#self.preds_by_word = tf.reshape(self.preds_by_word1, self.y.get_shape())
#self.probs = tf.mul(tf.expand_dims(self._mask,2), self.preds_by_word)
self.preds_by_word = tf.pack([GetWordPred(o_) for o_ in mats])
self.preds_by_instance = tf.pack([self.preds_by_word[:,i,:] for i in range(self.preds_by_word.get_shape()[1])])
| tensorflow.nn.xw_plus_b | 5,598 |
import tensorflow as tf
shape = tf.cast(shape, tf.int64)
attn_dist = tf.reshape(attn_dist, shape=[-1]) # [batch_size*passage_length]
one_hot_spare_rep = tf.SparseTensor(indices=indices, values=attn_dist, dense_shape=shape) # [batch_size, passage_length, extended_vsize]
if passage_mask is not None:
passage_mask = tf.expand_dims(passage_mask, axis=-1)
one_hot_spare_rep = one_hot_spare_rep * passage_mask
one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize]
vocab_dist = tf.add(vocab_dist, one_hot_spare_rep)
if self.options.add_first_word_prob_for_phrase:
vocab_dist = tf.nn.softmax(vocab_dist) # normalize
return vocab_dist # [batch_size, extended_vsize]
def linear(args, output_size, bias=True, bias_start=0.0, scope=None):
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError("`args` must be specified")
| tensorflow.add | 5,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.