seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf out = tf.sqrt(subsamp_sum) else: out = tf.pow(subsamp_sum, 1/pnorm)
tensorflow.pow
5,400
import tensorflow as tf fields.InputDataFields.groundtruth_boxes: tf.constant( np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_area: tf.constant(np.array([.5, .4, .3])), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, -1, 1], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant( np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]], np.float32)), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([True, False, True]), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(3, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_is_crowd: tf.constant([False, True, False]), fields.InputDataFields.groundtruth_difficult: tf.constant(np.array([0, 0, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn,
tensorflow.constant
5,401
from tensorflow.contrib.learn.python.learn.estimators import test_data def _assertCommonMetrics(self, metrics): estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics) estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics) self.report_benchmark( iters=metrics['global_step'], extras={k: v for k, v in metrics.items() if k in _METRIC_KEYS}) def benchmarkMatrixData(self): iris = test_data.prepare_iris_data_for_logistic_regression() cont_feature = feature_column.real_valued_column('feature', dimension=4) bucketized_feature = feature_column.bucketized_column( cont_feature, test_data.get_quantile_based_buckets(iris.data, 10)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=tempfile.mkdtemp(), linear_feature_columns=(bucketized_feature,), dnn_feature_columns=(cont_feature,), dnn_hidden_units=(3, 3)) input_fn = test_data.iris_input_logistic_fn metrics = classifier.fit(input_fn=input_fn, steps=_ITERS).evaluate( input_fn=input_fn, steps=100) self._assertSingleClassMetrics(metrics) def benchmarkTensorData(self):
tensorflow.contrib.learn.python.learn.estimators.test_data.get_quantile_based_buckets
5,402
import tensorflow as tf cell_drop = tf.contrib.rnn.DropoutWrapper(cell_basic, variational_recurrent=True, dtype=tf.float32, input_size=num_input, input_keep_prob=input_prob, state_keep_prob=state_prob) else: #tanh by default cell_basic = tf.contrib.rnn.BasicRNNCell(state_size) cell_drop = tf.contrib.rnn.DropoutWrapper(cell_basic, variational_recurrent=True, dtype=tf.float32, input_size=num_input, input_keep_prob=input_prob, state_keep_prob=state_prob) return cell_drop
tensorflow.contrib.rnn.DropoutWrapper
5,403
import tensorflow as tf with tf.Session(config = config) as sess: # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') nrof_preprocess_threads = 4 image_size = (args.image_size, args.image_size) eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1,), (1,), (1,)], shared_name=None, name=None) eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op') image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) # Load the model input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
tensorflow.placeholder
5,404
import tensorflow as tf tf.global_variables_initializer().run() else: saver.restore(sess, args.model_path) for i in range(max_train_step): batch_x, batch_gt = mnist.train.next_batch(batch_size) sess.run(train_op, feed_dict={x: batch_x, gt: batch_gt}) if i % 100 == 0: correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(gt, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print('=> accuracy: {}'.format(sess.run(accuracy, feed_dict={x: mnist.test.images, gt: mnist.test.labels}))) saver.save(sess, 'mnist/mnist_{:02d}.ckpt'.format(int(i / 100) + 1))
tensorflow.argmax
5,405
import tensorflow as tf """Inject a VAE-style latent.""" # Latent for stochastic model input_frames = tf.to_float(features["inputs_raw"]) target_frames = tf.to_float(features["targets_raw"]) full_video = tf.concat([input_frames, target_frames], axis=1) latent_mean, latent_std = self.construct_latent_tower( full_video, time_axis=1) latent = common_video.get_gaussian_tensor(latent_mean, latent_std) latent = tf.layers.flatten(latent) latent = tf.expand_dims(latent, axis=1) latent = tf.expand_dims(latent, axis=1) latent_mask = tf.layers.dense(latent, filters, name="latent_mask") zeros_mask = tf.zeros( common_layers.shape_list(layer)[:-1] + [filters], dtype=tf.float32) layer = tf.concat([layer, latent_mask + zeros_mask], axis=-1) extra_loss = self.get_extra_loss(latent_mean, latent_std) return layer, extra_loss @registry.register_model
tensorflow.expand_dims
5,406
import tensorflow as tf odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(pred, even) pred2 = tf.gather(pred, odd) tgt1 = tf.gather(tgt, even) tgt2 = tf.gather(tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) # loss = tf.maximum(0.0, tf.math.abs(tgt_larg - pred_larg) - tf.math.abs(tgt_small - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV5(pred, tgt, resample=1): # p = tf.print('begin loss v5', [resample, pred.shape,tgt.shape]) # with tf.control_dependencies([p]): pred_flat = tf.reshape(pred, [-1]) tgt_flat = tf.reshape(tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) num_sam = tools.shape(batch)[0] index = tf.range(num_sam) divider = tf.constant(resample, dtype=tf.float32)
tensorflow.reduce_mean
5,407
import tensorflow as tf lr = args.lr n_epoch = args.n_epoch n_batch_size = args.n_batch_size reg_lambda = args.reg_lambda keep_prob = args.keep_prob cross_stitch_enabled = args.cross_stitch_enabled with tf.variable_scope("placeholder"): X = tf.placeholder(tf.float32, (None, 128), "X") y_1 = tf.placeholder(tf.float32, (None, n_output_1), "y_1") y_2 = tf.placeholder(tf.float32, (None, n_output_2), "y_2") is_training = tf.placeholder(tf.bool, (), "is_training") with tf.variable_scope("network"): with contrib.framework.arg_scope( [contrib.layers.fully_connected], # he initialization weights_initializer=contrib.layers.variance_scaling_initializer(),
tensorflow.placeholder
5,408
import tensorflow as tf with tf.variable_scope(tf.get_variable_scope()): encoder_output_label, encoder_output_latent = encoder(x_input) # Concat class label and the encoder output decoder_input = tf.concat([encoder_output_label, encoder_output_latent], 1) decoder_output = decoder(decoder_input) # Regularization Phase with tf.variable_scope(tf.get_variable_scope()): d_g_real = discriminator_gauss(real_distribution) d_g_fake = discriminator_gauss(encoder_output_latent, reuse=True) with tf.variable_scope(tf.get_variable_scope()): d_c_real = discriminator_categorical(categorial_distribution) d_c_fake = discriminator_categorical(encoder_output_label, reuse=True) # Semi-Supervised Classification Phase with tf.variable_scope(tf.get_variable_scope()): encoder_output_label_, _ = encoder(x_input_l, reuse=True, supervised=True) # Generate output images with tf.variable_scope(tf.get_variable_scope()): decoder_image = decoder(manual_decoder_input, reuse=True)
tensorflow.get_variable_scope
5,409
import tensorflow as tf def block(x, scope, train=False, scale=False): with tf.variable_scope(scope): #nx = emb_size
tensorflow.variable_scope
5,410
import tensorflow as tf # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Cyclical Learning Rate Schedule policies for TensorFlow.""" import tensorflow as tf @tf.keras.utils.register_keras_serializable(package="Addons") class CyclicalLearningRate(tf.keras.optimizers.schedules.LearningRateSchedule): """A LearningRateSchedule that uses cyclical schedule.""" def __init__( self, initial_learning_rate, maximal_learning_rate, step_size, scale_fn, scale_mode="cycle", name=None, ):
tensorflow.keras.utils.register_keras_serializable
5,411
import tensorflow as tf activation=modeling.get_activation(bert_config.hidden_act), kernel_initializer=modeling.create_initializer( bert_config.initializer_range)) input_tensor = modeling.layer_norm(input_tensor) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if clip: log_probs = tf.log(tf.clip_by_value(tf.nn.softmax(logits, axis=-1), 1e-6, 1.0 - 1e-6)) else: log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1]) one_hot_labels = tf.one_hot(
tensorflow.matmul
5,412
import tensorflow as tf if indices is None: indices = tf.range(len(self._batch_env)) observ_dtype = self._parse_dtype(self._batch_env.observation_space) observ = tf.py_func( self._batch_env.reset, [indices], observ_dtype, name='reset') observ = tf.check_numerics(observ, 'observ')
tensorflow.py_func
5,413
import tensorflow as tf t_vars = tf.trainable_variables() logging.info(" [*] printing trainable variables") else: try: # TF1.0+ t_vars = tf.global_variables() except Exception: # TF0.12 t_vars = tf.all_variables() logging.info(" [*] printing global variables")
tensorflow.global_variables
5,414
from tensorflow.python.ops import math_ops update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ check_ops.assert_type(values, dtypes.bool) count = _create_local('count', shape=[]) values = math_ops.to_float(values) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor)
tensorflow.python.ops.math_ops.to_float
5,415
import tensorflow as tf weight: the weight of the loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.variable_scope(name): batch_size = tf.shape(source_samples)[0] samples = tf.concat(values=[source_samples, target_samples], axis=0) samples = flatten(samples) domain_selection_mask = tf.concat( values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))], axis=0)
tensorflow.shape
5,416
import tensorflow as tf labels, mode, config=None, params=None, decode_hparams=None): hparams = copy.deepcopy(hparams) use_tpu = params and params.get("use_tpu", False) hparams.use_tpu = use_tpu # merge decode_hparams into hparams if present if mode == tf.estimator.ModeKeys.PREDICT and decode_hparams is not None: for k, v in six.iteritems(decode_hparams.values()): if hasattr(hparams, k) and getattr(hparams, k) != v: tf.logging.warning("Overriding hparams.%s with %s from decode_hparams" % (k, v)) setattr(hparams, k, v) # Instantiate model data_parallelism = None if not use_tpu and config: data_parallelism = config.data_parallelism model = cls( hparams, mode, data_parallelism=data_parallelism,
tensorflow.logging.warning
5,417
from tensorflow.python.platform import test self.assertListEqual([height, width, 3], list(image.shape)) self.assertListEqual([1], list(label.shape)) def testConflictingRecordKeyItem(self): dataset_dir = tempfile.mkdtemp(prefix=os.path.join(self.get_temp_dir(), 'tfrecord_dataset')) with self.cached_session(): with self.assertRaises(ValueError): dataset_data_provider.DatasetDataProvider( _create_tfrecord_dataset(dataset_dir), record_key='image') if __name__ == '__main__': test.main()
tensorflow.python.platform.test.main
5,418
import tensorflow as tf with tf.control_dependencies([update]): self.d_loss_class = tf.identity(self.d_loss_class) self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.end_points_D['D_on_G_logits'], labels=tf.zeros_like(self.end_points_D['D_on_G_logits'])) self.d_loss_class = tf.reduce_mean(self.d_loss_class) self.d_loss_real = tf.reduce_mean(self.d_loss_real) self.d_loss_fake = tf.reduce_mean(self.d_loss_fake) if is_fm_loss: global_pool_head = self.end_points_D['global_pool'] real_data_features = tf.slice(global_pool_head, [0, 0], [batch_size_train, num_classes])
tensorflow.reduce_mean
5,419
import tensorflow as tf v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1]))
tensorflow.Variable.SaveSliceInfo
5,420
import tensorflow as tf key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts))
tensorflow.nn.softmax
5,421
import tensorflow as tf self.conv2 = self._residual_block('conv2_2', self.conv2, 64) _debug(self.conv2) with tf.variable_scope('conv3_x'): self.conv3 = self._residual_block('conv3_1', self.conv2, 128, pool_first=True, strides=2) _debug(self.conv3)
tensorflow.variable_scope
5,422
from tensorflow.python.framework import constant_op var1 = variables.Variable([4.0, 5.0], dtype=dtype) with self._maybeWithDevice("/job:worker" if is_distributed else None): grads0 = constant_op.constant([[0.1, 0.1], [0.1, 0.1]], dtype=dtype) grads1 = constant_op.constant([0.01, 0.01], dtype=dtype) sgd = gradient_descent.GradientDescentOptimizer(3.0) clip_opt = variable_clipping_optimizer.VariableClippingOptimizer(
tensorflow.python.framework.constant_op.constant
5,423
import tensorflow as tf self._lr = tf.get_collection_ref('lr')[0] self._new_lr = tf.get_collection_ref('new_lr')[0] self._lr_update = tf.get_collection_ref('lr_update')[0] rnn_params = tf.get_collection_ref('rnn_params')
tensorflow.get_collection_ref
5,424
from tensorflow.python.framework import ops mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype) vstar = self.get_slot(var, "vstar") gold = self.get_slot(var, "gold") # glod is not sparse v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking) with ops.control_dependencies([v_diff]): # run v_diff operation before scatter_add scaled_grad = scatter_add(vstar, indices, grad) var_update = state_ops.assign_sub(var, lr_t * (scaled_grad + gold)) return control_flow_ops.group(*[var_update, ])
tensorflow.python.framework.ops.control_dependencies
5,425
import tensorflow as tf else: return output, alphas def din_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) print ("querry_size mismatch") query = tf.concat(values = [ query, query, ], axis=1)
tensorflow.concat
5,426
from tensorflow.python.training import checkpoint_utils # decrease with training. summary_file = glob.glob(os.path.join(config.logdir, "events.out.*"))[0] events = summary_test_util.events_from_file(summary_file) train_losses = [event.summary.value[0].simple_value for event in events if event.summary.value and event.summary.value[0].tag == "train/loss"] self.assertEqual(config.epochs, len(train_losses)) self.assertLess(train_losses[-1], train_losses[0]) # 5. Verify that checkpoints exist and contains all the expected variables. self.assertTrue(glob.glob(os.path.join(config.logdir, "ckpt*"))) ckpt_variable_names = [ item[0] for item in checkpoint_utils.list_variables(config.logdir)] self.assertIn("global_step", ckpt_variable_names) for v in trainer.variables: variable_name = v.name[:v.name.index(":")] if ":" in v.name else v.name self.assertIn(variable_name, ckpt_variable_names) class EagerSpinnSNLIClassifierBenchmark(test.Benchmark): def benchmarkEagerSpinnSNLIClassifier(self): test_device = "gpu:0" if tfe.num_gpus() else "cpu:0" with tf.device(test_device):
tensorflow.python.training.checkpoint_utils.list_variables
5,427
import tensorflow as tf # Use fixed archs if specified, otherwise use placeholders' (normal_arch, reduction_arch) = self._get_fixed_cell_archs(**knobs) normal_arch = normal_arch if not use_dynamic_arch else ph.normal_arch reduction_arch = reduction_arch if not use_dynamic_arch else ph.reduction_arch # Initialize steps variable step = self._make_var('step', (), dtype=tf.int32, trainable=False, initializer=tf.initializers.constant(0)) # For train dataset, preprocess & do inference utils.logger.log('Building model for training...') (train_X, train_classes, train_dataset_init_op) = \ self._preprocess(ph.train_images, ph.train_classes, is_train=True, **knobs)
tensorflow.initializers.constant
5,428
import tensorflow as tf input_image = tf.image.resize(datapoint['image'], (512, 512)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask
tensorflow.image.flip_left_right
5,429
import tensorflow as tf class InstanceSegmentUtilsTest(tf.test.TestCase): def get_instance_masks(self): mask0 = tf.constant([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
tensorflow.constant
5,430
import tensorflow as tf for t in range(self.T): context, alpha = self._attention_layer(features, features_proj, h, reuse=(t!=0)) alpha_list.append(alpha) if self.selector: context, beta = self._selector(context, h, reuse=(t!=0)) with tf.variable_scope('lstm', reuse=(t!=0)): _, (c, h) = lstm_cell(inputs=tf.concat(axis=1, values=[x[:,t,:], context]), state=[c, h]) logits = self._decode_lstm(x[:,t,:], h, context, dropout=self.dropout, reuse=(t!=0)) loss += tf.reduce_sum(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=captions_out[:, t]) * mask[:, t]) if self.alpha_c > 0: alphas = tf.transpose(tf.stack(alpha_list), (1, 0, 2)) # (N, T, L) alphas_all = tf.reduce_sum(alphas, 1) # (N, L) alpha_reg = self.alpha_c * tf.reduce_sum((16./196 - alphas_all) ** 2) loss += alpha_reg return loss / tf.to_float(batch_size) def build_sampler(self, max_len=20): features = self.features
tensorflow.nn.sparse_softmax_cross_entropy_with_logits
5,431
import tensorflow as tf self._on_training_abort(sess) def inference(self, max=10^6): self.fetch_datasets() self.build_ae_model() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # nut.print_model_info() # nut.list_checkpoint_vars(self.get_latest_checkpoint().replace(EMB_SUFFIX, '')) self.saver = tf.train.Saver() self._restore_model(sess) # nut.print_model_info()
tensorflow.global_variables_initializer
5,432
import tensorflow as tf sess.run(sequence_var.initializer) print(sess.run(linear_var)) print(sess.run(sequence_var)) rnorm_var = tf.random_normal([row_dim, col_dim], mean=0.0, stddev=1.0) runif_var = tf.random_uniform([row_dim, col_dim], minval=0, maxval=4) print(sess.run(rnorm_var)) print(sess.run(runif_var)) ops.reset_default_graph() sess = tf.Session() my_var = tf.Variable(tf.zeros([1,20])) merged = tf.summary.merge_all() writer = tf.summary.FileWriter("./logs", graph=sess.graph) initialize_op = tf.global_variables_initializer() sess.run(initialize_op)
tensorflow.summary.FileWriter
5,433
import tensorflow as tf c, num_bits=int(self.hparams.z_size / self.hparams.num_blocks), base=2) c_hot = tf.one_hot(c_int, depth=self.hparams.block_v_size, axis=-1) c_hot_flat = tf.reshape( c_hot, shape=[-1, self.hparams.num_blocks, self.hparams.block_v_size]) h1 = tf.matmul(tf.transpose(c_hot_flat, perm=[1, 0, 2]), self.means) h1 = tf.transpose(h1, perm=[1, 0, 2]) h1 = tf.reshape(h1, shape=h1_shape) h1_shape[0] = self.hparams.batch_size h2 = tf.layers.dense(tf.nn.relu(h1), self.hparams.filter_size, name="vch2") res = tf.layers.dense( tf.nn.relu(h2), self.hparams.hidden_size, name="vcfin") return res def discrete_bottleneck(self, x): """Discretization bottleneck for latent variables.
tensorflow.nn.relu
5,434
import tensorflow as tf "teacher_logits_tensor":teacher_logit, "student_feature_tensor":model.get_pooled_output(), "teacher_feature_tensor":features["distillation_feature"], "student_label":tf.ones_like(label_ids, dtype=tf.int32), "teacher_label":tf.zeros_like(label_ids, dtype=tf.int32), "logits_ratio":kargs.get("logits_ratio", 0.5),
tensorflow.ones_like
5,435
import tensorflow as tf w = variable_with_weight_decay([n_in, output_dim], initializer, l2_strength) variable_summaries(w) if isinstance(bias, float): bias = tf.get_variable("biases", [output_dim], tf.float32, tf.constant_initializer(bias)) variable_summaries(bias) output = tf.nn.bias_add(tf.matmul(x, w), bias) return output def _bn(self, name, x): with tf.variable_scope(name): moving_average_decay = 0.9 decay = moving_average_decay batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2]) mu = tf.get_variable('mu', batch_mean.shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=False) tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, mu) tf.add_to_collection('mu_sigma_bn', mu) sigma = tf.get_variable('sigma', batch_var.shape, dtype=tf.float32, initializer=tf.ones_initializer(), trainable=False) tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, sigma) tf.add_to_collection('mu_sigma_bn', sigma) beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32,
tensorflow.variable_scope
5,436
import tensorflow as tf "char_embed", [n_chars, char_embed_dim], dtype=DTYPE, initializer=tf.random_uniform_initializer(-1.0, 1.0) )
tensorflow.random_uniform_initializer
5,437
from tensorflow.python.client import device_lib else: raise ValueError("Invalid model: %s", FLAGS.model) if FLAGS.rnn_mode: config.rnn_mode = FLAGS.rnn_mode if FLAGS.num_gpus != 1 or tf.__version__ < "1.3.0" : config.rnn_mode = BASIC return config def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to PTB data directory") gpus = [ x.name for x in device_lib.list_local_devices() if x.device_type == "GPU" ] if FLAGS.num_gpus > len(gpus): raise ValueError( "Your machine has only %d gpus " "which is less than the requested --num_gpus=%d." % (len(gpus), FLAGS.num_gpus)) raw_data = reader.ptb_raw_data(FLAGS.data_path) train_data, valid_data, test_data, _ = raw_data config = get_config() eval_config = get_config()
tensorflow.python.client.device_lib.list_local_devices
5,438
import tensorflow as tf # Set up our moving statistics. When connecting in parallel, this is shared. self._moving_mean = tf.get_variable( "moving_mean", shape=self._mean_shape, collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES], initializer=tf.zeros_initializer(), trainable=False) self._moving_variance = tf.get_variable( "moving_variance", shape=self._mean_shape, collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES], initializer=tf.ones_initializer(), trainable=False) def build_batch_stats(): """Builds the batch statistics calculation ops.""" # We use the moving mean as an estimate of the mean in order to perform # a more numerically stable calculation of the batch mean. # Copy for better stability. shift = tf.add(self._moving_mean, 0) counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics( input_batch, reduction_indices, keep_dims=True,
tensorflow.ones_initializer
5,439
import tensorflow as tf Args: source_samples: a tensor of shape [num_samples, num_features] target_samples: a tensor of shape [num_samples, num_features] weight: a scalar weight for the loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the correlation loss value. """ with tf.name_scope(name): source_samples -= tf.reduce_mean(source_samples, 0) target_samples -= tf.reduce_mean(target_samples, 0) source_samples = tf.nn.l2_normalize(source_samples, 1) target_samples = tf.nn.l2_normalize(target_samples, 1) source_cov = tf.matmul(tf.transpose(source_samples), source_samples) target_cov = tf.matmul(tf.transpose(target_samples), target_samples) corr_loss = tf.reduce_mean(tf.square(source_cov - target_cov)) * weight assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss]) with tf.control_dependencies([assert_op]): tag = 'Correlation Loss' barrier = tf.no_op(tag) return corr_loss def maximum_mean_discrepancy(x, y,
tensorflow.transpose
5,440
import tensorflow as tf tgt1, tgt2 = tf.split(tgt, 2, axis=0) soft_sign = tf.tanh((tgt1 - tgt2) * temp) loss = tf.maximum(0.0, soft_sign * ((tgt1 - tgt2) - (pred1 - pred2))) loss = tf.reduce_mean(loss) return loss
tensorflow.reduce_mean
5,441
import tensorflow as tf end_logits = tf.transpose(tf.squeeze(end_logits, -1), [1, 0]) end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask end_log_probs = tf.nn.log_softmax(end_logits_masked, -1) else: # during inference, compute the end logits based on beam search start_top_log_probs, start_top_index = tf.nn.top_k( start_log_probs, k=FLAGS.start_n_top) start_index = tf.one_hot(start_top_index, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bkl->bkh", output, start_index) end_input = tf.tile(output[:, :, None], [1, 1, FLAGS.start_n_top, 1]) start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1]) end_input = tf.concat([end_input, start_features], axis=-1)
tensorflow.one_hot
5,442
from tensorflow.python.framework import ops @ops.RegisterShape("Add") @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater") @ops.RegisterShape("GreaterEqual") @ops.RegisterShape("Less") @ops.RegisterShape("LessEqual") @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum") @ops.RegisterShape("Mod") @ops.RegisterShape("Mul") @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow") @ops.RegisterShape("Sub") def _BroadcastShape(op): """Common shape function for binary operators that broadcast their inputs.""" shape_x = op.inputs[0].get_shape() shape_y = op.inputs[1].get_shape() if shape_x.ndims is None or shape_y.ndims is None:
tensorflow.python.framework.ops.RegisterShape
5,443
import tensorflow as tf class StudentTask(base_model.BaseTask): @base_layer.initializer def __init__(self, params): super(StudentTask, self).__init__(params) p = self.params with tf.variable_scope(p.name): self.CreateVariable('x', py_utils.WeightParams( shape=[], init=py_utils.WeightInit.Uniform())) def ComputePredictions(self, theta, input_batch): return theta.x
tensorflow.variable_scope
5,444
import tensorflow as tf Returns: the list of cropped images. """ outputs = [] for image in image_list: image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] offset_height = (image_height - crop_height) / 2 offset_width = (image_width - crop_width) / 2
tensorflow.shape
5,445
import tensorflow as tf predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn)
tensorflow.logging.info
5,446
import tensorflow as tf generator_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(generator_loss, var_list=en_var) supervised_encoder_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1).minimize(supervised_encoder_loss, var_list=en_var) init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution)
tensorflow.reshape
5,447
import tensorflow as tf # calculating loss self._loss = None if mode_gen in ('ce_train', 'loss', ): xent = CE_loss(vocab_scores, answer_batch, loss_weights) # [batch_size] if mode_gen == 'loss': xent *= self.placeholders.reward # multiply with rewards self._loss = tf.reduce_mean(xent) # Calculate coverage loss from the attention distributions if options.use_coverage: with tf.variable_scope('coverage_loss'): self._coverage_loss = _coverage_loss(attn_dists, loss_weights)
tensorflow.reduce_mean
5,448
from tensorflow.contrib import layers def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples(examples, self._feature_columns)
tensorflow.contrib.layers.parse_feature_columns_from_examples
5,449
import tensorflow as tf def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope):
tensorflow.variable_scope
5,450
import tensorflow as tf self.a = a self.q = self._build_net(S, self.a, 'eval_net', trainable=True) # Input (s_, a_), output q_ for q_target self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net') with tf.variable_scope('target_q'): self.target_q = R + self.gamma * self.q_ with tf.variable_scope('abs_TD'): self.abs_td = tf.abs(self.target_q - self.q)
tensorflow.get_collection
5,451
import tensorflow as tf sess.run(update_fp_false, {holder: inp for holder, inp in zip(dec_inp_holder_fp_false, dec_inp_fp_false)}) for v_true, v_false in matched_variables: self.assertAllClose(v_true.eval(), v_false.eval()) def EmbeddingRNNSeq2SeqF(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_rnn_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingRNNSeq2SeqNoTupleF(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_rnn_seq2seq(
tensorflow.nn.rnn_cell.BasicLSTMCell
5,452
import tensorflow as tf def cw_1d(X, y=None): def N0(mean, variance): return 1.0/(tf.sqrt(2.0 * m.pi * variance)) * tf.exp((-(mean**2))/(2*variance)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N)
tensorflow.exp
5,453
import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 1000000, """Number of batches to run.""") tf.app.flags.DEFINE_integer('num_gpus', 1, """How many GPUs to use.""") tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") def tower_loss(scope): """Calculate the total loss on a single tower running the CIFAR model.
tensorflow.app.flags.DEFINE_integer
5,454
import tensorflow as tf Tensor with nearest element in mean encoded in one-hot notation. """ x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keep_dims=True) means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True) scalar_prod = tf.matmul( tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1])) scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2]) dist = x_norm_sq + tf.transpose( means_norm_sq, perm=[2, 0, 1]) - 2 * scalar_prod if self.hparams.soft_em: nearest_idx = tf.stack(
tensorflow.transpose
5,455
import tensorflow as tf length = tf.reduce_sum(used, axis=1) length = tf.cast(length, tf.int64) return length @staticmethod def last_relevant(outputs, length): # Borrowed from: https://gist.github.com/rockt/f4f9df5674f3da6a32786bcf9fbb6a88 batch_size, max_length, hidden_size = tf.unstack(tf.shape(outputs)) index = tf.range(0, batch_size) * max_length + (tf.cast(length, tf.int32) - 1) flat = tf.reshape(outputs, [-1, hidden_size]) relevant = tf.gather(flat, index) return relevant
tensorflow.shape
5,456
import tensorflow as tf return {'w':self.w,'b':self.b} class WeightNormTransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NHWC',epsilon=1e-9) : with tf.variable_scope(name) : assert data_format == 'NHWC' self.v = tf.get_variable('v', [k_h, k_w, out_dim, input_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.strides = [1, d_h, d_w, 1]
tensorflow.truncated_normal_initializer
5,457
import tensorflow as tf predictions = ssd.get_predictions( score_threshold=params['score_threshold'], iou_threshold=params['iou_threshold'], max_boxes_per_class=params['max_boxes_per_class'] ) if mode == tf.estimator.ModeKeys.PREDICT: # because images are resized before # feeding them to the network box_scaler = features['box_scaler'] predictions['boxes'] /= box_scaler export_outputs = tf.estimator.export.PredictOutput({ name: tf.identity(tensor, name) for name, tensor in predictions.items() }) return tf.estimator.EstimatorSpec( mode, predictions=predictions, export_outputs={'outputs': export_outputs} ) # add l2 regularization with tf.name_scope('weight_decay'): add_weight_decay(params['weight_decay']) regularization_loss = tf.losses.get_regularization_loss() # create localization and classification losses
tensorflow.identity
5,458
import tensorflow as tf if self.config["model_heads"]: span_indices = tf.expand_dims(tf.range(self.config["max_span_width"]), 0) + tf.expand_dims(span_starts, 1) # [k, max_span_width] span_indices = tf.minimum(util.shape(context_outputs, 0) - 1, span_indices) # [k, max_span_width] span_text_emb = tf.gather(head_emb, span_indices) # [k, max_span_width, emb] with tf.variable_scope("head_scores"): self.head_scores = util.projection(context_outputs, 1) # [num_words, 1] span_head_scores = tf.gather(self.head_scores, span_indices) # [k, max_span_width, 1] span_mask = tf.expand_dims(tf.sequence_mask(span_width, self.config["max_span_width"], dtype=tf.float32), 2) # [k, max_span_width, 1] span_head_scores += tf.log(span_mask) # [k, max_span_width, 1]
tensorflow.variable_scope
5,459
import tensorflow as tf #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1) output = facts * tf.expand_dims(alphas, -1) output = tf.reshape(output, tf.shape(facts)) # output = output / (facts.get_shape().as_list()[-1] ** 0.5)
tensorflow.shape
5,460
from tensorflow.python.framework import tensor_util segment_ids_shape.assert_has_rank(1) indices_shape.assert_is_compatible_with(segment_ids_shape) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMeanGrad") def _SparseSegmentMeanGradShape(op): """Shape function for the SparseSegmentMeanGrad op.""" input_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape().with_rank(1) unused_segment_ids_shape = op.inputs[2].get_shape().merge_with(indices_shape) unused_output_dim0_shape = op.inputs[3].get_shape().merge_with( tensor_shape.scalar()) output_dim0 = tensor_util.ConstantValue(op.inputs[3]) if output_dim0 is not None: dim0 = output_dim0[0] else: dim0 = None return [tensor_shape.TensorShape([dim0]).concatenate(input_shape[1:])] @ops.RegisterShape("UnsortedSegmentSum") def _UnsortedSegmentSumShape(op): """Shape function for UnsortedSegmentSum.""" data_shape = op.inputs[0].get_shape() segment_ids_shape = op.inputs[1].get_shape()
tensorflow.python.framework.tensor_util.ConstantValue
5,461
import tensorflow as tf params.output, "%s.json" % args.model, collect_params(params, model_cls.get_parameters()) ) # Build Graph with tf.Graph().as_default(): if not params.record: # Build input queue if params.use_bert and params.bert_emb_path: features = dataset.get_training_input_with_bert(params.input + [params.bert_emb_path], params) else:
tensorflow.Graph
5,462
from tensorflow.python.framework import ops with ops.name_scope(name, values=( (values or []) + [self.batch_ndims, self.event_ndims])) as scope: yield scope def _is_all_constant_helper(self, *args): """Helper which returns True if all inputs are constant_value.""" return all(tensor_util.constant_value(x) is not None for x in args) def _assert_non_negative_int32_scalar(self, x): """Helper which ensures that input is a non-negative, int32, scalar.""" x = ops.convert_to_tensor(x, name="x") if x.dtype.base_dtype != dtypes.int32.base_dtype: raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32)) x_value_static = tensor_util.constant_value(x) if x.get_shape().ndims is not None and x_value_static is not None: if x.get_shape().ndims != 0: raise ValueError("%s.ndims=%d is not 0 (scalar)" % (x.name, x.get_shape().ndims)) if x_value_static < 0: raise ValueError("%s.value=%d cannot be negative" %
tensorflow.python.framework.ops.convert_to_tensor
5,463
import tensorflow as tf init = tf.global_variables_initializer() # Reshape immages to display them input_images = tf.reshape(x_input, [-1, 28, 28, 1]) generated_images = tf.reshape(decoder_output, [-1, 28, 28, 1]) # Tensorboard visualization tf.summary.scalar(name='Autoencoder Loss', tensor=autoencoder_loss) tf.summary.scalar(name='Discriminator gauss Loss', tensor=dc_g_loss) tf.summary.scalar(name='Discriminator categorical Loss', tensor=dc_c_loss) tf.summary.scalar(name='Generator Loss', tensor=generator_loss) tf.summary.scalar(name='Supervised Encoder Loss', tensor=supervised_encoder_loss) tf.summary.histogram(name='Encoder Gauss Distribution', values=encoder_output_latent) tf.summary.histogram(name='Real Gauss Distribution', values=real_distribution) tf.summary.histogram(name='Encoder Categorical Distribution', values=encoder_output_label) tf.summary.histogram(name='Real Categorical Distribution', values=categorial_distribution)
tensorflow.summary.scalar
5,464
import tensorflow as tf tf.reset_default_graph() self.graph = tf.Graph() for c in self.graph.collections: self.graph.clear_collection(c) self.graph_manager = self.graph.as_default() self.graph_manager.__enter__() self.sess = tf.Session(graph=self.graph) self.sess_manager = self.sess.as_default() self.sess_manager.__enter__() self.sess.__enter__() logger.add_output(NullOutput()) deterministic.set_seed(1)
tensorflow.Session
5,465
from tensorflow.contrib.eager.python import tfe data_dir = os.path.join(FLAGS.dir, "data") train_data = load_dataset( data_dir=data_dir, url=SOURCE_TRAIN_URL, batch_size=FLAGS.batch_size) eval_data = load_dataset( data_dir=data_dir, url=SOURCE_TEST_URL, batch_size=FLAGS.batch_size) model = RNNColorbot( rnn_cell_sizes=FLAGS.rnn_cell_sizes, label_dimension=3, keep_prob=FLAGS.keep_probability) optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) if FLAGS.no_gpu or tfe.num_gpus() <= 0: print(tfe.num_gpus()) device = "/cpu:0" else: device = "/gpu:0" print("Using device %s." % device) log_dir = os.path.join(FLAGS.dir, "summaries") tf.gfile.MakeDirs(log_dir) train_summary_writer = tf.contrib.summary.create_file_writer( os.path.join(log_dir, "train"), flush_millis=10000) test_summary_writer = tf.contrib.summary.create_file_writer(
tensorflow.contrib.eager.python.tfe.num_gpus
5,466
from tensorflow.contrib.rnn.python.ops import core_rnn with ops.Graph().as_default(), ops.device("/device:GPU:0"): inputs = seq_length * [ array_ops.zeros([batch_size, num_units], dtypes.float32) ] cell = lambda: lstm_ops.LSTMBlockCell(num_units=num_units) # pylint: disable=cell-var-from-loop multi_cell = rnn_cell.MultiRNNCell( [cell() for _ in range(num_layers)]) outputs, final_state = core_rnn.static_rnn( multi_cell, inputs, dtype=dtypes.float32) trainable_variables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) gradients = gradients_impl.gradients([outputs, final_state], trainable_variables) training_op = control_flow_ops.group(*gradients) self._BenchmarkOp(training_op, "tf_rnn_lstm_block_cell %s %s" %
tensorflow.contrib.rnn.python.ops.core_rnn.static_rnn
5,467
import tensorflow as tf tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1]) tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:1]) tf.summary.image('training_masks', training_masks) tf.summary.scalar('model_loss', model_loss)
tensorflow.summary.image
5,468
import tensorflow as tf tf.summary.histogram('weight', filt) tf.summary.histogram('bias', conv_biases) return bias def conv_bn_relu(self, bottom,name, kernel_size, output_channels, initializer,stride=1, bn=False,training=False,relu=True): input_channels = bottom.get_shape().as_list()[-1] with tf.variable_scope(name) as scope: kernel = self.variable('weights', [kernel_size, kernel_size, input_channels, output_channels], initializer, regularizer=tf.contrib.layers.l2_regularizer(0.0005)) conv = tf.nn.conv2d(bottom, kernel, [1, stride, stride, 1], padding='SAME') biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0)) conv_layer = tf.nn.bias_add(conv, biases) if bn: conv_layer = self.batch_norm_layer('batch_norm_layer',conv_layer,training) if relu: conv_layer = tf.nn.relu(conv_layer, name=scope.name) print('Conv layer {0} -> {1}'.format(bottom.get_shape().as_list(),conv_layer.get_shape().as_list()))
tensorflow.contrib.layers.l2_regularizer
5,469
import tensorflow as tf result = self.dflux / self.dtime if clip_magnitude is not None: result = tf.clip_by_value( result, clip_value_min=-clip_magnitude, clip_value_max=clip_magnitude
tensorflow.clip_by_value
5,470
import tensorflow as tf update_mean = moving_averages.assign_moving_average(moving_mean, mean, decay) update_variance = moving_averages.assign_moving_average(moving_variance, variance, decay) with tf.control_dependencies([update_mean, update_variance]): X = tf.identity(X) else: # For prediction, do batch norm with computed moving mean & variance from training # Don't update moving averages if predicting (X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, mean=moving_mean, variance=moving_variance, epsilon=epsilon, is_training=False) else: (X, _, _) = tf.nn.fused_batch_norm(X, scale, offset, epsilon=epsilon, is_training=True) return X def _mark_for_monitoring(self, name, value): tf.add_to_collection(TF_COLLECTION_MONITORED, tf.identity(value, name)) def _add_monitoring_of_values(self): monitored_values = tf.get_collection(TF_COLLECTION_MONITORED) monitored_values = {
tensorflow.nn.fused_batch_norm
5,471
from tensorflow.python.framework import ops with ops.op_scope([x], name, "Tanh") as name: x = ops.convert_to_tensor(x, name="x") return gen_math_ops._tanh(x, name=name) ops.RegisterShape("Abs")(common_shapes.unchanged_shape) ops.RegisterShape("Ceil")(common_shapes.unchanged_shape) ops.RegisterShape("Conj")(common_shapes.unchanged_shape) ops.RegisterShape("Cos")(common_shapes.unchanged_shape) ops.RegisterShape("Exp")(common_shapes.unchanged_shape) ops.RegisterShape("Floor")(common_shapes.unchanged_shape) ops.RegisterShape("Imag")(common_shapes.unchanged_shape) ops.RegisterShape("Inv")(common_shapes.unchanged_shape) ops.RegisterShape("IsFinite")(common_shapes.unchanged_shape) ops.RegisterShape("IsInf")(common_shapes.unchanged_shape) ops.RegisterShape("IsNan")(common_shapes.unchanged_shape)
tensorflow.python.framework.ops.RegisterShape
5,472
from tensorflow.python.ops import array_ops return array_ops.unstack(values) else: with ops.device(tensors[0].device): sizes = array_ops.stack( [array_ops.shape(tensor)[0] for tensor in tensors]) values = array_ops.concat(tensors, axis=0) with ops.device(device): sizes = array_ops.unstack(sizes)
tensorflow.python.ops.array_ops.shape
5,473
import tensorflow as tf bboxes = tf.concat(
tensorflow.concat
5,474
import tensorflow as tf # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss)
tensorflow.variable_scope
5,475
import tensorflow as tf loss=-tf.reduce_sum(labels*tf.log(predicts)) return loss def optimer(self,loss,lr=0.001): train_step=tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_step path=r'C:\JC\test\train_model.ckpt'
tensorflow.train.GradientDescentOptimizer
5,476
import tensorflow as tf print(ops) # => prints ops created. """ micros = int(time.time()*10**6) scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"): return tensor_or_op.op return tensor_or_op def _to_ops(iterable):
tensorflow.get_default_graph
5,477
import tensorflow as tf anchor_ratios = [0.25, 0.5, 1.0, 2.0, 4.0] height, width = 64, 128 anchors = generate(anchor_size, anchor_stride, anchor_scales, anchor_ratios, height, width) init = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})) as sess: sess.run(init) anchors_out = sess.run(anchors) print(anchors_out[-30:]) print(anchors.shape) print(anchors_out[158623])
tensorflow.global_variables_initializer
5,478
import tensorflow as tf name, shape=[], dtype=tf.int64, initializer=tf.initializers.zeros(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES])
tensorflow.initializers.zeros
5,479
import tensorflow as tf final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct def contra_traj_lossV4(pred, tgt, horizon=12, resample=1, hard_ratio=1.0): horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred_flat = tf.reshape(horizon_pred, [-1]) tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) sample_func = sample_pair(batch) def sample_compute(_): pairs = sample_func()
tensorflow.reshape
5,480
import tensorflow as tf hyper_decoder=hyper_decoder, estimator=entropy_bottleneck) status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir)) zs = entropy_bottleneck.decompress(z_strings, z_min_v, z_max_v, z_shape, z_shape[-1]) print("Entropy Decoder (Hyper)") def loop_hyper_deocder(z): z = tf.expand_dims(z, 0) loc, scale = hyper_decoder(z) return tf.squeeze(loc, [0]), tf.squeeze(scale, [0]) locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO scales = tf.maximum(scales, lower_bound) print("Hyper Decoder") ys = conditional_entropy_model.decompress(y_strings, locs, scales, y_min_v, y_max_v, y_shape) print("Entropy Decoder") def loop_synthesis(element): y = tf.expand_dims(element[0], 0) x_coori = tf.expand_dims(element[1], 0)
tensorflow.map_fn
5,481
import tensorflow as tf loss = tf.reduce_mean(loss) return loss def contra_step_lossV4(pred, tgt): # 50*50 # Step-wise contrastive loss even = [2 * i for i in range(25)] odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(pred, even) pred2 = tf.gather(pred, odd) tgt1 = tf.gather(tgt, even) tgt2 = tf.gather(tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) # loss = tf.maximum(0.0, tf.math.abs(tgt_larg - pred_larg) - tf.math.abs(tgt_small - pred_small)) loss = tf.reduce_mean(loss) return loss
tensorflow.gather
5,482
from tensorflow.python.framework import op_def_library as _op_def_library Returns: A tuple of `Tensor` objects (output1, output2). output1: A `Tensor` of type `float32`. output2: A `Tensor` of type `string`. """ result = _op_def_lib.apply_op("TestStringOutput", input=input, name=name) return _TestStringOutputOutput._make(result) _ops.RegisterShape("TestStringOutput")(None) def _InitOpDefLibrary(): op_list = _op_def_pb2.OpList() _text_format.Merge(_InitOpDefLibrary.op_list_ascii, op_list) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib _InitOpDefLibrary.op_list_ascii = """op { name: "GraphDefVersion" output_arg { name: "version" type: DT_INT32 } is_stateful: true } op { name: "KernelLabel"
tensorflow.python.framework.op_def_library.OpDefLibrary
5,483
import tensorflow as tf blk_shape[0], q_shape[1] * strides[1], q_shape[2] * strides[2], 3 ], strides) blk_indices_crop = blk_indices_crop // tf.stack([1, strides[1], strides[2]]) return blk_indices_crop def _strides_one(): # Calculate otuput indices when strides = 1. return blk_indices[:, :q_shape[1], :q_shape[2], :] strides_gt_one = tf.logical_or(tf.greater(strides[1], 1), tf.greater(strides[2], 1)) blk_indices_crop = tf.cond(strides_gt_one, _strides_gt_one, _strides_one) y = tf.scatter_nd(blk_indices_crop, q, out_shape) return y return tf.cond( tf.equal(tf.size(blk_indices_), 0), lambda: tf.zeros(out_shape, dtype=x.dtype), _conv_nonzero) # returns an int64 start timer handle that should be passed to cuda_timer_end_op
tensorflow.cond
5,484
import tensorflow as tf else: return tf.concat(sharded_logits, 0), losses
tensorflow.concat
5,485
import tensorflow as tf def f(layer_input): return tf.keras.layers.concatenate(list(layer_input), axis=-1) return tf.keras.layers.Lambda(f) @gin.configurable def extract_observation_layer(): return tf.keras.layers.Lambda(lambda obs: obs['observation']) @gin.configurable def monitor_freq(freq=100, vid_dir='./videos'): return functools.partial(Monitor, video_callable=lambda x: (x%freq) == 0, directory=vid_dir)
tensorflow.keras.layers.Lambda
5,486
import tensorflow as tf tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1)
tensorflow.stack
5,487
import tensorflow as tf # mse_loss = tf.multiply(params['mse_weight'] / params['num_stacks'], tf.add_n(bce_loss_list), name='mse_loss') # tf.summary.scalar('mse', mse_loss) # tf.losses.add_loss(mse_loss) # Add weight decay to the loss. We exclude the batch norm variables because # doing so leads to a small improvement in accuracy. loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') tf.summary.scalar('loss', total_loss) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics)
tensorflow.nn.l2_loss
5,488
from tensorflow.python.platform import tf_logging as logging if np.isnan(_extract_output(outputs, self._loss_tensor)): failure_message = "Model diverged with loss = NaN." if self._fail_on_nan_loss: logging.error(failure_message) raise NanLossDuringTrainingError else: logging.warning(failure_message) # We don't raise an error but we return "should stop" so we stop, but # without an exception. return True
tensorflow.python.platform.tf_logging.warning
5,489
import tensorflow as tf def main(argv=None): keep_probability = tf.placeholder(tf.float32, name="keep_probabilty") image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image") annotation = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="annotation") z = tf.placeholder(tf.float32, shape=[None, 4, 4, 128], name="z") # pred_annotation, logits = inference(image, keep_probability,z) # tf.summary.image("input_image", image, max_outputs=2) # tf.summary.image("ground_truth", tf.cast(annotation, tf.uint8), max_outputs=2) # tf.summary.image("pred_annotation", tf.cast(pred_annotation, tf.uint8), max_outputs=2)
tensorflow.placeholder
5,490
from tensorflow.python.ops import check_ops `mask` if `weights` is `None`, and otherwise `weights`. Raises: ValueError: If `weights` and `mask` are not `None` and have mismatched shapes. """ if mask is not None: check_ops.assert_type(mask, dtypes.bool) if weights is None: weights = array_ops.ones_like(mask, dtype=dtypes.float32) weights = math_ops.cast(math_ops.logical_not(mask), weights.dtype) * weights return weights
tensorflow.python.ops.check_ops.assert_type
5,491
import tensorflow as tf with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_1 = tf.Variable(123.45) save = tf.train.Saver({"v0": v0_1}) tf.initialize_all_variables().run() save.save(sess, save_path) with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_2 = tf.Variable(543.21) save = tf.train.Saver({"v0": v0_2}) tf.initialize_all_variables().run() self.assertAllClose(543.21, v0_2.eval()) save.restore(sess, save_path)
tensorflow.Graph
5,492
import tensorflow as tf with tf.variable_scope("loss"): if is_training: output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) output_layer = tf.reshape(output_layer, [-1, hidden_size]) logits = tf.matmul(output_layer, output_weight, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, 11]) log_probs = tf.nn.log_softmax(logits, axis=-1) # labels = tf.cast(labels,dtype=tf.float32) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_sum(per_example_loss) return (loss, per_example_loss, logits) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): def model_fn(features, labels, mode, params): tf.logging.info("*** Features ***") for name in sorted(features.keys()):
tensorflow.reduce_sum
5,493
import tensorflow as tf min_iou_thresh=0.5, is_class_agnostic=False) nms_masks_expected2 = tf.stack([mask2, mask0, mask5, mask4]) nms_scores_expected2 = tf.constant([0.95, 1.0, 0.8, 0.7], dtype=tf.float32) nms_classes_expected2 = tf.constant([0, 1, 2, 2], dtype=tf.int32) self.assertAllEqual(nms_masks1.numpy(), nms_masks_expected1.numpy()) self.assertAllClose(nms_scores1.numpy(), nms_scores_expected1.numpy()) self.assertAllEqual(nms_classes1.numpy(), nms_classes_expected1.numpy())
tensorflow.constant
5,494
import tensorflow as tf with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_linear_targets[i]) tf.summary.scalar("regularization_loss", model.regularization_loss) tf.summary.scalar("stop_token_loss", model.stop_token_loss) tf.summary.scalar("loss", model.loss) tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed if hparams.tacotron_teacher_forcing_mode == "scheduled": tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing # ratio decay when mode = "scheduled"
tensorflow.summary.histogram
5,495
import tensorflow as tf def validation_mapper(byte): image = tf.image.decode_jpeg( tf.reshape(byte, shape=[]), 3, **JPEG_OPT) image = resize_shortest_edge(image, tf.shape(image), 256) image = center_crop(image, 224) image = tf.reverse(image, axis=[2]) # to BGR return image def training_mapper(byte): jpeg_shape = tf.image.extract_jpeg_shape(byte) # hwc bbox_begin, bbox_size, distort_bbox = tf.image.sample_distorted_bounding_box(
tensorflow.reverse
5,496
import tensorflow as tf 'WS: pruning ratio protocol (\'uniform\' | \'heurist\' | \'optimal\')') tf.app.flags.DEFINE_integer('ws_nb_rlouts', 200, 'WS: # of roll-outs for the RL agent') tf.app.flags.DEFINE_integer('ws_nb_rlouts_min', 50, 'WS: minimal # of roll-outs for the RL agent to start training') tf.app.flags.DEFINE_string('ws_reward_type', 'single-obj', 'WS: reward type (\'single-obj\' OR \'multi-obj\')') tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression') tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression') tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning') tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning') tf.app.flags.DEFINE_integer('ws_nb_iters_feval', 25, 'WS: # of iterations for fast evaluation') tf.app.flags.DEFINE_float('ws_prune_ratio_exp', 3.0, 'WS: pruning ratio\'s exponent term') tf.app.flags.DEFINE_float('ws_iter_ratio_beg', 0.1, 'WS: iteration ratio (at starting time)') tf.app.flags.DEFINE_float('ws_iter_ratio_end', 0.5, 'WS: iteration ratio (at ending time)') tf.app.flags.DEFINE_float('ws_mask_update_step', 500, 'WS: step size for updating the pruning mask') def calc_prune_ratio(vars_list): """Calculate the overall pruning ratio for the given list of variables. Args: * vars_list: list of variables Returns: * prune_ratio: overall pruning ratio of the given list of variables """ nb_params_nnz = tf.add_n([tf.count_nonzero(var) for var in vars_list]) nb_params_all = tf.add_n([tf.size(var) for var in vars_list])
tensorflow.app.flags.DEFINE_float
5,497
from tensorflow.contrib.distributions.python.ops import distribution_util return control_flow_ops.with_dependencies([ check_ops.assert_less( array_ops.ones((), self.dtype), self.alpha, message="mean not defined for components of self.alpha <= 1"), ], mean) @distribution_util.AppendDocstring( """Variance for inverse gamma is defined only for `alpha > 2`. If `self.allow_nan_stats` is `False`, an exception will be raised rather than returning `NaN`.""") def _variance(self): var = (math_ops.square(self.beta) /
tensorflow.contrib.distributions.python.ops.distribution_util.AppendDocstring
5,498
import tensorflow as tf x = tf.placeholder_with_default(input=[1., 3., 5.], shape=[3]) log_prob = pareto.log_prob(x) self.evaluate(log_prob) def testParetoLogPdfMultidimensional(self): batch_size = 6 scale = tf.constant([[2., 4., 5.]] * batch_size) scale_v = [2., 4., 5.] concentration = tf.constant([[1.]] * batch_size) concentration_v = 1. x = np.array([[6., 7., 9.2, 5., 6., 7.]], dtype=np.float32).T pareto = tfd.Pareto(concentration, scale) log_prob = pareto.log_prob(x) self.assertEqual(log_prob.shape, (6, 3))
tensorflow.constant
5,499