application_number
int64
10.3M
15.9M
decision
stringclasses
3 values
title
stringlengths
3
468
abstract
stringlengths
43
4.3k
claims
stringlengths
44
338k
description
stringlengths
1.93k
2.86M
background
stringlengths
0
194k
summary
stringlengths
0
391k
cpc_label
stringlengths
0
12
filing_date
stringlengths
8
8
patent_issue_date
stringclasses
691 values
date_published
stringclasses
720 values
examiner_id
stringlengths
0
7
ipc_label
stringlengths
0
10
npe_litigated_count
int64
0
410
examiner_full_name
stringlengths
6
34
invention_title
stringlengths
3
410
small_entity_indicator
stringclasses
3 values
continuation
int64
0
1
decision_as_of_2020
stringclasses
6 values
main_ipcr_label_subclass
stringclasses
451 values
filing_year
int64
2k
2.02k
10,968,717
ACCEPTED
Browser navigation for devices with a limited input system
Methods, system, and computer program products for browsing content with a display area and input system that may be limited in comparison to more traditional browsing systems. Movement between and selection of interactive elements generally occurs in a navigation mode, whereas interaction with a single interactive element generally occurs in an edit mode. In navigation mode, a direction input selects the next interactive element in the direction indicated. If no interactive element is at least partially visible in the direction indicated or if a selected interactive element is only partially visible, the display scrolls. Switching between navigation mode and edit mode is based on the input received, in view of the input supported, by a particular interactive element. Interactive elements may be limited to the width of available display area.
1. A computer program product for use in either a wireless telephone or personal digital assistant having a display area and input system, the input system including a direction key and an action key, wherein the input system and display area are limited as compared to a pointing device and larger display area often found in more traditional browsing systems, and wherein one or more interactive elements within content received from a content source may behave differently in a browsing context than the one or more interactive elements behave in an operating system shell context, the computer program product comprising one or more computer-readable media having computer-executable instructions for implementing a method of browsing content that contains one or more interactive elements, wherein the browsing includes an edit mode and a navigation mode, the method comprising acts of: starting in the navigation mode; displaying at least a portion of the content on the wireless telephone or personal digital assistant display area; receiving a direction input generated by the direction key of the wireless telephone or personal digital assistant; while the direction input is being received, if less than all of the content is displayed and no interactive element is at least partially visible in the direction of the direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed portion of the content, automatically scrolling the display of the content in the direction of the direction input; selecting an interactive element that is at least partially visible, the selection being based on the direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed portion of the content, wherein said interactive element can be only partially visible; and placing a selection box around the interactive element to indicate that the interactive element is selected. 2. A computer program product as recited in claim 1, wherein the interactive element comprises one of a link, single line textbox, a multiple line textbox, a spinner, a radio button, a checkbox, a button, and a picker. 3. A computer program product as recited in claim 1, wherein the interactive element accepts character input, the method further comprising an act of switching from navigation mode to edit mode upon receiving a character input. 4. A computer program product as recited in claim 1, wherein the interactive element accepts character input or allows for one or more items to be selected from a group of one or more items, the method further comprising an act of switching from navigation mode to edit mode upon receiving an action input. 5. A computer program product as recited in claim 1, wherein the method further comprises the acts of: browsing with the wireless telephone or personal digital assistant in edit mode; and switching from edit mode to navigation mode upon receiving an action input. 6. A computer program product as recited in claim 1, wherein the interactive element does not accept a direction input, the method further comprising the acts of: browsing with the wireless telephone or personal digital assistant in edit mode; and switching from edit mode to navigation mode upon receiving the direction input. 7. A computer program product as recited in claim 1, wherein the interactive element is part of form content that does not include a submit element, the method further comprising the acts of: browsing with the wireless telephone or personal digital assistant in edit mode; and submitting the form content upon receiving an action input. 8. A computer program product as recited in claim 1, wherein the interactive element is capable of representing two states, the method further comprising an act of switching from one state to the other upon receiving an action input while in navigation mode. 9. A computer program product as recited in claim 1, wherein the interactive element comprises a link, the method further comprising an act of following the link upon receiving an action input. 10. A computer program product as recited in claim 1, wherein the interactive element exceeds the width of available wireless telephone or personal digital assistant display area, the method further comprising an act of adjusting the width of the interactive element to be less than or equal to the width of available wireless telephone or personal digital assistant display area. 11. A computer program product as recited in claim 1, wherein the interactive element is only partially visible in the wireless telephone or personal digital assistant display area, the method further comprising acts of: adjusting the width of the interactive element to be less than or equal to the width of available wireless telephone or personal digital assistant display area if the width of the interactive element exceeds the width of available wireless telephone or personal digital assistant display area; and scrolling the wireless telephone or personal digital assistant display area until the interactive element is completely visible. 12. A computer program product as recited in claim 1, wherein the selected interactive element is a previously selected interactive element, the method further comprising the acts of: receiving a subsequent direction input that corresponds to scrolling the wireless telephone or personal digital assistant display area, the subsequent direction input being generated by activating a navigation key; while the subsequent direction input is being received, if less than all of the content is displayed and no other interactive element is at least partially visible in the direction of the subsequent direction input, scrolling the display of the content in the direction of the subsequent direction input; selecting a next interactive element that is at least partially visible, the selection being based on the subsequent direction input relative to the previously selected interactive element; removing highlighting from the previously selected interactive element to indicate that the previously selected interactive element is no longer selected; and highlighting the next interactive element to indicate that the next interactive element is selected. 13. A computer program product for use in either a wireless telephone or personal digital assistant configured for browsing content received from a content source, and having a display area and input system that is limited as compared to pointing devices and displays often found in more traditional browsing systems, and wherein one or more interactive elements within content received from the content source may behave differently in a browsing context than the one or more interactive elements behave in an operating system shell context, the computer program product comprising one or more computer-readable media having computer-executable instructions for implementing a method of browsing content that includes one or more interactive elements, wherein the browsing includes an edit mode and a navigation mode, the method comprising steps for: presenting at least a portion of the content on a display area of a browsing system; receiving a direction input generated by activating a navigation key; upon receiving a direction input, determining an interactive element has been selected based on the direction input, wherein the interactive element is only partially visible; visually indicating that the interactive element is selected; and automatically scrolling the browsing system upon determining that the interactive element has been selected and that the interactive element is only partially visible in the browsing system display area, wherein the browsing system display area is automatically scrolled until the interactive element is completely visible. 14. A computer program product as recited in claim 13, wherein the browsing system comprises one of a wireless telephone and a personal digital assistant. 15. A computer program product as recited in claim 33, wherein the interactive element comprises one of a link, single line textbox, a multiple line textbox, a spinner, a radio button, a checkbox, a button, and a picker. 16. A computer program product as recited in claim 13, further comprising a step for changing the mode of the browsing system. 17. A computer program product as recited in claim 13, wherein the interactive element is capable of representing two states, the method further comprising an act of switching from one state to the other upon receiving an action input while in navigation mode. 18. A computer program product as recited in claim 13, wherein the interactive element comprises a link, the method further comprising an act of following the link upon receiving an action input. 19. A computer program product as recited in claim 13, wherein the interactive element exceeds the width of available browsing system display area, the method further comprising a step for controlling the width of the interactive element. 20. A computer program product as recited in claim 13, wherein the step for determining an interactive element for selection based on a direction input comprises acts of: receiving a direction input that corresponds to scrolling the browsing system display area, the direction input being generated by activating a navigation key; while the direction input is being received, if less than all of the content is displayed and no interactive element is at least partially visible, scrolling the display of the content in the direction of the direction input; and selecting an interactive element that is at least partially visible, the selection being based on the direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed portion of the content. 21. A computer program product for use in either a wireless telephone or personal digital assistant having a display area and input system that are limited as compared to a pointing device and larger display area often found in more traditional browsing systems, the computer program product comprising one or more computer-readable media having computer-executable instructions for implementing a method of browsing content that contains one or more interactive elements, the method comprising: displaying at least a portion of content on the display area of either a wireless telephone or personal digital assistant; receiving a direction input generated by the wireless telephone or personal digital assistant; while the direction input is being received, if less than all of the content is displayed and no interactive element is at least partially visible in the direction of the direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed portion of the content, automatically scrolling the display of the content in the direction of the direction input; selecting an interactive element that is only partially visible, the selection being based on the direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed portion of the content, wherein said interactive element is only partially visible; and graphically indicating that the interactive element is selected.
CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a continuation application of commonly-assigned U.S. patent application Ser. No. 09/861,327 filed May 18, 2001, entitled “Browser Navigation for Devices with a Limited Input System”. That patent application claims priority to U.S. Provisional Application No. 60/239,600, entitled, “BROWSER NAVIGATION FOR DEVICES WITH LIMITED INPUT MECHANISMS,” filed Oct. 11, 2000, both of which are incorporated herein by reference. BACKGROUND OF THE INVENTION 1. The Field of the Invention The present invention relates to browsing electronic content. More specifically, the present invention relates to methods, systems, and computer program products for browsing content that includes interactive elements using a computerized system with a display area and input system that may be somewhat limited in comparison to the pointing devices and displays typically found in more traditional browsing systems. 2. Background and Relevant Art Content typically includes interactive elements, such as links and form controls. Activating or following a link causes the content that is associated with the link to be requested and displayed. Selecting a form control allows for interaction with the form control. Traditional browsing systems generally include a keyboard and a pointing device such as a mouse, for activating links and interacting with form controls. Tab order navigation is possible, but may not follow an order expected by the user, especially if scrolling is required to view all of the content. In traditional browsing systems, a user activates a link or selects a form control by simply placing a mouse pointer over the interactive element and pressing a mouse button. With each mouse press, a user may follow a link, select a text field so that text may be entered from a keyboard, toggle a radio button or checkbox, choose one or more items from a list, or cause the action associated with a button to be executed. The mouse also is used in scrolling the display area, as necessary. Nevertheless, content often is authored to minimize scrolling the display of traditional browsing systems, particularly in the horizontal direction. Browsing systems with limited input systems and display areas, however, such as a phone having a numeric keypad, a directional control, and an action key, may make it difficult to select and interact with content designed for more traditional browsing systems that make use of pointing devices and have larger display areas. For example, without a pointing device, how are links activated and how are form controls selected? The direction control is a natural choice for scrolling because this operation is similar to many traditional browsing systems. (When no interactive element is selected, arrow keys usually are used for scrolling.) But, without a mouse, selecting individual interactive elements presents a significant challenge. Tab order navigation does not provide an adequate solution because tab order generally follows the order of interactive elements in the content as authored or written, rather than the order of interactive elements in the content as displayed. Thus, in some situations, tab order moves horizontally, and in other situations, tab order moves vertically. For example, content that includes a table often will have a vertical tab order within individual table cells, but a horizontal tab order from cell to cell. Content outside of a table usually has a horizontal tab order. Because users generally are unaware of whether content includes a table or not, tab order may appear completely arbitrary, moving horizontally one time and vertically the next. Therefore, when browsing content that includes interactive elements, methods, systems, and computer program products are needed for computerized systems that may have limited display areas and input systems, as compared to the pointing devices and displays typically found in more traditional browsing systems. Furthermore, certain interactive elements may be more intuitive in a browsing context, if those interactive elements operate somewhat differently from how they might function in an operating system shell environment. BRIEF SUMMARY OF THE INVENTION The present invention provides a navigation mode and an edit mode for browsing content with a computerized system that may include a somewhat limited display area and/or input system. Navigation mode generally includes movement between and selection of interactive elements, whereas the edit mode generally includes interaction with a single interactive element. In navigation mode, pressing a direction key selects the next interactive element in the direction indicated by the direction key (e.g., up, down, left, right). When moving horizontally, an interactive element is in the direction indicated by the direction control if the interactive element is at substantially the same vertical level. For example, if a later element overlaps a previous element on a given vertical level by any amount, the two elements are considered to be at substantially the same vertical level. Vertical movement is to an interactive element at the next vertical level in the direction indicated by the direction control. If multiple interactive elements lie at the next vertical level, the one closest in the horizontal direction to the beginning of the current interactive element is selected. To indicate selection, an interactive element is highlighted, such as by placing a selection box around the element. The interactive element remains selected until it is no longer visible (i.e., it has scrolled off the display area) or the next interactive element becomes at least partially visible and is selected. If no interactive element is at least partially visible in the direction indicated or if a selected interactive element is only partially visible, the display scrolls in the direction indicated by the direction control. Switching from navigation mode to edit mode may be accomplished in several ways. For example, once an interactive element allowing character entry is selected, typing a character on the keypad automatically switches from navigation mode to edit mode. Similar to a mouse click, pressing the action button after an interactive element has been selected also switches to edit mode. Where interactive elements only require a mouse click to function in traditional browsing systems, such as links, checkboxes, radio buttons, other buttons, and the like, pressing action uses the selected control (i.e., follows the link, checks or unchecks a checkbox, chooses a radio button, performs the action associated with the button, etc.) rather than switching to edit mode. In edit mode, pressing the action button switches back to navigation mode. If a particular direction key is not allowed in edit mode, pressing the direction key also will exit edit mode. For forms that do not include a submit button on the form, pressing the action key will submit the form, rather than switching to navigation mode. Certain interactive elements may be limited to the width of the display area that is available for displaying content so that the entire element can be visible at one time. Therefore, the width of an interactive element that exceeds the width of available display area may be adjusted to be less than or equal to the width of available display area. If a selected interactive element is only partially visible, switching into edit mode scrolls the control into full view. Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter. BRIEF DESCRIPTION OF THE DRAWINGS In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered as limiting its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: FIG. 1 illustrates an exemplary system that provides a suitable operating environment for the present invention; FIG. 2 shows a portion of a wireless telephone; FIG. 3 is a flow diagram that corresponds to receiving a direction input while navigating between interactive elements; FIG. 4 shows several interactive elements and their positions relative to each other for use in describing the selection of interactive elements during navigation; FIGS. 5A-5H illustrate various interactive elements; FIG. 6 is a flow diagram that corresponds to receiving input while editing interactive elements; FIG. 7 is a flow diagram that corresponds to receiving an action input while navigating between interactive elements; FIG. 8 is a flow diagram that corresponds to receiving a character input while navigating between interactive elements; and FIGS. 9A-9C show an exemplary method for browsing content according to the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention extends to methods, systems, and computer program products for browsing content that includes interactive elements using a browsing system with a display area and input system that may be limited in comparison to the pointing devices and displays typically found in more traditional browsing systems. As used in this application, the term “browsing system” should be interpreted broadly to encompass any computerized system for locating and presenting content, including text, images, audio, video, computer instructions, and the like. With the popularity of the World Wide Web (“Web”), content frequently is formatted using hypertext markup language (“HTML”) and computer instructions often are embedded in content using Javascript. Both HTML and Javascript allow for the creation of interactive elements within content. Those of skill in the art, however, will recognize that a wide variety of markup and scripting languages exist. In particular, extensible markup language (“XML”) is becoming increasingly popular because it allows for user-defined extensions to the language. Note also that content may be converted from one language to another. Furthermore, it is anticipated that additional formats, languages, technology and/or standards for authoring content with interactive elements will become available in the future. The present invention, therefore, does not impose any requirements on how content with interactive elements is authored, whether based on current or future technology. Thus, any reference to HTML and/or Javascript, either explicit or implied, should be interpreted as exemplary of aspects or embodiments of the present invention and not as limiting its scope. Those skilled in the art also will appreciate that the invention may be practiced in network computing environments with many types of computer system configurations, including personal computers, mobile/hand-held devices, such as personal digital assistants (“PDAs”) and wireless telephones, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices. The embodiments of the present invention may comprise a special purpose or general purpose computer including various computer hardware, as discussed in greater detail below. Embodiments within the scope of the present invention also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that may be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to oak carry or store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such a connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of computer-readable media. Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented. Although not required, the invention may be described in the general context of computer-executable instructions, such as program modules, being executed by computers in network environments. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represent examples of corresponding acts for implementing the functions described in such steps. With reference to FIG. 1, an exemplary system for implementing the invention comprises a general purpose computing device in the form of a generic computer 20, including a processing unit 21, a system memory 22, and a system bus 23 that couples various system components including the system memory 22 to the processing unit 21. Although some components of computer 20, such as monitor 47, keyboard 40, and mouse 42, may seem specific to a conventional computer, those of skill in the art will recognize that analogous components may be found in other computing devices. For example, wireless telephones often include an LCD or plasma display area, a numeric keypad, and one or more navigation buttons. Therefore, any component described with reference to generic computer 20 should be interpreted broadly to encompass analogous components that are appropriate for and consistent with a particular implementation or embodiment of the present invention. In some implementations, a component may be connected only intermittently or may be missing entirely. The system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory includes read only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output system (BIOS) 26, containing the basic routines that help transfer information between elements within the computer 20, such as during start-up, may be stored in ROM 24. The computer 20 may also include a magnetic hard disk drive 27 for reading from and writing to a magnetic hard disk 39, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to removable optical disk 31 such as a CD-ROM or other optical media. The magnetic hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive-interface 33, and an optical drive interface 34, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules and other data for the computer 20. Although the exemplary environment described herein employs a magnetic hard disk 39, a removable magnetic disk 29 and a removable optical disk 31, other types of computer readable media for storing data can be used, including magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, RAMs, ROMs, and the like. Note that decreasing form factors are making it practical to use at least some of the foregoing components with mobile devices. Furthermore, it is anticipated that future technological advances with respect to size, power consumption, and the like, will lead to an increased selection of storage options. Program code means comprising one or more program modules may be stored on the hard disk 39, magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more application programs 36, other program modules 37, and program data 38. A user may enter commands and information into the computer 20 through keyboard 40, pointing device 42, or other input devices (not shown), such as a numeric keypad, directional buttons, pressure-sensitive software keyboard, microphone, joy stick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 21 through a serial port interface 46 coupled to system bus 23. Alternatively, the input devices may be connected by other interfaces, such as a parallel port, a game port or a universal serial bus (USB). A monitor 47 or another display device, such as an LCD or gas plasma display, is also connected to system bus 23 via an interface, such as video adapter 48. In addition to the monitor, personal computers typically include other peripheral output devices (not shown), such as speakers and printers. The computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as remote computers 49a and 49b. Remote computers 49a and 49b may each be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically include many or all of the elements described above relative to the computer 20, although only memory storage devices 50a and 50b and their associated application programs 36a and 36b have been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN) 52 that are presented here by way of example and not limitation. Such networking environments are commonplace in office-wide or enterprise-wide computer networks, intranets and the Internet. When used in a LAN networking environment, the computer 20 is connected to the local network 51 through a network interface or adapter 53. When used in a WAN networking environment, the computer 20 may include a modem 54, a wireless link, or other means for establishing communications over the wide area network 52, such as the Internet. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the computer 20, or portions thereof, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing communications over wide area network 52 may be used. FIG. 2 shows a portion of a wireless telephone. A wireless telephone is merely one example of a browsing system with limited display and input capabilities. Typically, PDAs and other handheld devices also have limited displays and input systems. The present invention, however, is not necessarily limited to any particular hardware or device, handheld or otherwise. Nevertheless, some benefits provided by the present invention may be more pronounced where displays and/or input systems are less robust than corresponding displays and/or input systems found in traditional browsing systems. Four-direction and action key 210 is an example of both a navigation key generating direction input and an action key providing action input. Depressing key 210 at any one of the four arrows generates a direction input corresponding to the direction of the arrow. An action input is generated by depressing the center of key 210. The center of key 210 may be a separate button (not shown) or may be integral with the navigation arrows such that depressing the center generates simultaneous, but conflicting direction input. In other words, simultaneous up and down arrows or simultaneous left and right arrows are interpreted as an action input. Typically, an action input corresponds to pressing an enter key on a keyboard, but other actions are not precluded, as circumstances may warrant. A user may enter characters, such as numbers, letters, punctuation, etc., with keypad 220. Audio input 230 is the mobile telephone's mouthpiece. Display area 240 displays content received while browsing. Note however, that all of display area 240 may not be available for displaying content. For example, portions of display area 240 may be used for titles, menus, switching between tasks, etc. Therefore, available display area generally refers to the portion of display area 240 that is devoted to displaying content, and may represent all or less than all of display area 240. As noted previously, the present invention provides for a navigation mode and an edit mode. Edit mode generally is characterized by interaction with a single interactive element and is described more fully in connection with FIG. 6 and the interactive elements shown in FIGS. 5A-5H. In contrast, navigation mode generally is characterized by movement between and selection of interactive elements (i.e., changing focus from one interactive element to another) and is described more filly in connection with FIGS. 3 and 4. Transitions from navigation mode to edit mode and interactive elements that operate in an intuitive manner without using a dedicated edit mode are covered in the description of FIGS. 7 and 8. Turning first then to FIG. 3, during operation in navigation mode 310, a direction input 320 is received. Decision block 330 determines if an interactive element is at least partially visible in the direction of direction input 320, either relative to the beginning of the content if no interactive element has been selected or relative to an interactive element that is selected currently. If no interactive element is visible in the direction of the direction input, decision block 340 determines if more content is available in the direction of the direction input. If more content is available in the direction of the direction input, the display scrolls 342 in the direction of the direction input; otherwise, the direction input is ignored 344. Returning to decision block 330, if an interactive element is visible in the direction of direction input 320, selecting the next interactive element depends on the direction of direction input 320, unless no interactive element has been selected previously, wherein the interactive element closest to the beginning of the content is selected (not shown). For horizontal input, decision block 360 determines if the visible interactive element lies at substantially the same vertical level as the interactive element that is selected currently. (The meaning of substantially the same vertical level will be described in more detail below, with respect to FIG. 4.) If substantially at the same level, the interactive element in the direction of the direction input is selected 362. If the visible interactive element does not lie at the substantially the same vertical level, operation continues with decision block 340, as described above. For vertical direction input, the interactive element at the next vertical level in the direction of direction input 320 that is closest in the horizontal direction to the beginning of the previously selected interactive element is selected 352. FIG. 4 shows several interactive elements and their positions relative to each other for use in describing the selection of interactive elements during navigation. The display 400 of content includes vertical levels 410, 420, 430, and 440. Note that at vertical level 410, Element 1, Element 2, and Element 3 do not display at exactly the same vertical coordinates. Nevertheless, Element 1, Element 2, and Element 3 lie at substantially the same vertical level. By allowing for some variation in the vertical display coordinates for interactive elements, navigation is more intuitive. In particular, the height of Element 1 is h1 and the height of Element 3 is h3. The distance y1 is the amount that Element 3 overlaps with Element 1. Alternatively, y1 may represent the amount of vertical separation between interactive elements rather than the amount of overlap. Note that the present invention does not necessarily limit y1 to any particular dimension or calculation. Because y1 reflects the expectations of users, it is possible for y1 to take on a wide range of values, as may be suitable for a particular embodiment or implementation. However, in at least some circumstances, y1 is a portion of h3, the height of Element 3, indicating that Element 3 partially overlaps Element 1. (Although not shown, note also that it may be possible for a single element to span and be reachable from multiple vertical levels. When navigating horizontally from an element spanning multiple vertical levels, the next element is selected from the top most spanned vertical level where an interactive element is visible.) The height of Element 2 is not shown because it overlaps completely with Element 1 and therefore is clearly at the same vertical level as Element 1. Initially no interactive element is selected. As indicated with respect to FIG. 3, a direction input that is not in the direction of an interactive element that is at least partially visible or in a direction that permits scrolling will be ignored (see block 344). Thus, direction input up or to the left will be ignored. Because initially no interactive element is selected, however, a down direction input or a right direction input will select Element 1 (i.e., the first interactive element relative to the beginning of the content). Once selected, an interactive element is highlighted, such as by drawing a dashed box around the element to indicate that the selected interactive element has focus. The present invention does not necessarily limit the type of highlighting used to indicate selection. It is only relevant for some form of visual cue to occur that is specific to the selected interactive element. Left and right direction input will select interactive elements in numerical order, either ascending for right direction input or descending for left direction input. Up and down direction input is somewhat more complicated. Beginning with Element 1, down direction input selects interactive elements in the following order: Element 1, Element 4, Element 6, Element 7. Beginning with Element 7, up direction input selects interactive elements in reverse order: Element 7, Element 6, Element 4, Element 1. Moving from vertical level 430 to vertical level 420 may include some ambiguity because vertical level 420 includes multiple interactive elements. Selecting between Element 4 and Element 5 depends on the horizontal distances labeled x1 and x2. The distance x1 represents the horizontal distance from the beginning of Element 6 (the currently selected interactive element when moving from vertical level 430 to vertical level 420) to the nearest portion of Element 4. Likewise, the distance x2 represents the horizontal distance from the beginning of Element 6 to the nearest portion of Element 5. When selection moves in the vertical direction and more than one interactive element lies at a vertical level, the interactive element closest in the horizontal direction to the beginning of the previously selected interactive element is selected next. In other words, Element 4 is selected if x1 is less than or equal to x2, and Element 5 is selected if x2 is less than x1. Note that the same processing occurs for moving between Element 1 and Element 4, but the result is obvious. In contrast, there is no ambiguity in moving from Element 4 to Element 6 and then to Element 7. FIGS. 5A-5H illustrate various interactive elements, the operation of which will be described in greater detail with respect to FIGS. 6-8. Those of skill in the art will recognize that the interactive elements shown in FIGS. 5A-5H are merely exemplary of interactive elements that are useful in describing embodiments of the present invention in the context of HTML content. However, as explained previously, the present invention is not necessarily limited to any particular types of interactive elements or any particular type of content. For example, JAVA and Javascript allow for the creation of interactive elements and show that the types of interactive elements within the scope of the present invention are governed only by the creativity of those who author content. In addition to existing interactive elements, therefore, it is fully anticipated that new interactive elements will be developed and should be considered to fall within the meaning of interactive elements as used in this application, regardless of the particular technology that implements and/or deploys a particular interactive element. Furthermore, it should be apparent that the following discussion does not catalog all existing interactive elements, but rather, identifies a sufficient number to adequately describe how the present invention operates. FIG. 5A illustrates single line textbox 510 for entry of characters. Although display is limited to a single line, characters within the textbox may allow for scrolling if character entry exceeds the width of textbox 510. FIG. 5B illustrates multiple line textbox 520. Multiple line textbox 520 is also for character entry. Due to display area constraints, multiple line textbox 520 may display as a single line in navigation mode, and then to facilitate editing, expand to a multiple line display in edit mode. A close button may be included with multiple line textbox 520 to assist in returning to navigation mode. Like single line textbox 510, multiple line textbox 520 may allow for scrolling if character entry exceeds the width of textbox 520. Radio button 530, with button 532 and text 534, is illustrated in FIG. 5C. Radio buttons allow for choosing one item and only one item from a group or list of items. FIG. 5D illustrates checkbox 540, with button 542 and text 544. In contrast to radio button 530, checkbox 540 allows for selecting zero or more items from a group or list of items. FIG. 5E illustrates spinner 550, with text 552, left arrow 556, and right arrow 554. Similar to radio buttons, spinner 550 groups related items and allows one and only one to be chosen. Activating left arrow 556 chooses the previous item in the list and activating right arrow 554 chooses the next item in the list. The list may be circular, such that moving through all choices with either arrow returns to the initial choice. Alternatively the list may be linear, having a starting point that may be reached with left arrow 556 and having an ending point that may be reached with right arrow 554. Picker 560, with text 562 and right arrow 564, as illustrated in FIG. 5F, is similar to checkbox 540. Activating right arrow 564 displays a list of checkbox options. Like multiple line textbox 520, a close button may be included with picker 560 to facilitate returning to navigation mode. Activating button 570 of FIG. 5G causes an action associated with the button to be executed. FIG. 5H illustrates link 580, a hypertext markup language link that browses content associated with the link when the link is activated or followed. FIG. 6 is a flow diagram that corresponds to receiving input while editing a selected interactive element, such as one of those described above in connection with FIGS. 5A-5H. Depending on the selected interactive element, input received while in edit mode may be used by the interactive element (e.g., entering characters into a textbox) or may cause a return to navigation mode (e.g., so that another interactive element may be selected). Following the discussion of edit mode and FIG. 6, the description of FIGS. 7 and 8 explains how transitions to edit mode are made from the navigation mode identified above, with respect to FIGS. 3 and 4. Turning now then to FIG. 6, during operation in edit mode 610, an input 630 is received. If the selected interactive element is only partially visible, entering edit mode will scroll 620 the display until the selected element is completely visible. Decision block 640 determines if input 630 is a direction input. If so, decision block 650 determines if the selected interactive element accepts direction input so that the direction input may be processed 652. For example, direction input may be accepted in single line textbox 510 and multiple line textbox 520 for moving the cursor position, although up and down direction input would not be accepted by single line textbox 510. Spinner 550 also may accept direction input, with a left direction input choosing a previous item in the spinner list and a right direction input choosing the next item in the spinner list. If decision block 650 determines that the selected interactive element does not accept direction input, operation transitions or switches to navigation mode 654. If input 630 is not a direction input, decision block 660 determines if input 630 is an action input. If not, input 630 is processed as character input 662. Note that FIG. 6 suggests three basic types of input: direction input, action input, and character input. However, the present invention does not necessarily require dividing all input into any particular number of categories. It is expected, therefore, that alternate embodiments may use additional, fewer, or other categories, depending on the needs or preferences of a particular application. Furthermore, alternate embodiments also may include additional, fewer, or other modes of operation, again depending on the needs or preferences of the particular application. Processing character input depends on the selected interactive element. Ordinarily, character input has greatest application in entering information into single line textbox 510 and multiple line textbox 520. However, character input also may be used in finding a particular entry in spinner 550 and picker 560. For example, if spinner 550 or picker 560 are used to chose a state based on state codes, entering a “W” may immediately move to the end of the list, as opposed to moving through a list item by item or page by page as would likely occur using a direction input. If decision block 660 determines that input 630 is an action input, decision block 670 considers whether the content being browsed is form content without a submit button. Some form content may fail to provide an explicit submit button, in which case an action input is interpreted as a request to submit the form 672. In the usual case, however, an action input switches from edit mode back to navigation mode 674. For spinner 550, switching from edit mode to navigation mode 674 is somewhat different behavior than occurs in an operating system shell context. More specifically, in an operating system shell context, once a spinner has been selected, an action input ordinarily displays a list of radio button options. FIG. 7 is a flow diagram that corresponds to receiving an action input while navigating between interactive elements. During operation in navigation mode 710, an action input 720 is received. If decision block 730 determines that the selected interactive element is a link, receiving an action input activates or follows the link 732. If the selected interactive element is a radio button or checkbox, as determined in decision block 740, the state of the radio button or checkbox is switched. Radio buttons and checkboxes are both examples of interactive elements capable of representing two states. Because multiple checkboxes may be chosen, switching the state of a checkbox means either (i) an unchecked checkbox is checked, or (ii) a checked checkbox is unchecked. Radio buttons are slightly more complex to explain since only one item may be chosen at any given time. Therefore, switching the state of a radio button means that (i) if the radio button was not chosen previously, the radio button will be chosen and any other radio button that may have been chosen previously will no longer be chosen, or (ii) a radio button that was previously chosen remains chosen. If the selected interactive element is a button, as determined in decision block 750, the action associated with the button is executed or performed 752 upon receiving an action input 720. Note that links, radio buttons, checkboxes, and buttons are examples of interactive elements that operate in an intuitive manner without using a dedicated edit mode. For other interactive elements, such single line textbox 510, multiple line textbox 520, spinner 550, and picker 560, an action input switches to edit mode 754. FIG. 8 is a flow diagram that corresponds to receiving a character input while navigating between interactive elements. During operation in navigation mode 810, a character input 820 is received. Character input may include numbers, letters, punctuation, white space, etc. If decision block 830 determines that the interactive element does not accept character input, character input 820 is ignored 836. Otherwise, character input 820 causes a switch from navigation mode to edit mode 832 and character input 820 is processed 834. For example, if the selected interactive element is a single line textbox 510 or a multiple line textbox 520, entering a letter while in navigation mode switches to edit mode and places the letter in the textbox. As indicated earlier, spinner 550 and picker 560 also may use character input to find an item in a long list by advancing to and/or choosing an item that matches the character entered. FIGS. 9A-9C show an exemplary method for browsing content according to the present invention. A step for presenting (910) at least a portion of content on the display area of a browsing system may include the acts of retrieving (912) the content and displaying (914) the retrieved content. The content may be retrieved from a local or remote source. A step for controlling the width (920a) of an interactive element may include the act of adjusting the width of the interactive element to the width of available display area on the browsing system if the width of the interactive element exceeds the width of available display area. A step for determining (930a) an interactive element for selection based on a 2 direction input may include the following acts: an act of starting (932) in navigation mode by default when content displays; an act of receiving (934a) a direction input from a direction key, such as four-direction and action key 210 of FIG. 2; an act of scrolling (936a) the display of the content in the direction of the received direction input if less than all of the content is displayed and no interactive element is at least partially visible; and an act of selecting (938a) an interactive element based on the received direction input relative to a previously selected interactive element or, if no interactive element has been previously selected, based on the direction input relative to the beginning of the displayed content. Note that for English content, an up arrow or left arrow relative to the beginning of the display content does not make sense and therefore is ignored. A step for indicating (940a) that an interactive element is selected may include the act of highlighting (944a) the interactive element. For example, a selection box may be placed around the interactive element or the visual appearance of the interactive element may be otherwise altered such that a selected interactive element is distinguishable from an interactive element that has not been selected. The present invention does not necessarily require any particular type of highlighting. A step for changing (950) the mode of a browsing system may include an act of switching (951) from navigation mode to edit mode upon receiving a character input. For example, when an interactive element such as single line textbox 510, multiple line textbox 520, spinner 550, or picker 560 is selected, receiving a character input switches to edit mode. An act of switching (953) from navigation mode to edit mode upon receiving an action input also may be included as part of a step from changing (950) the mode of a browsing system. An action input is an explicit indication to switch modes, whereas a character input is an implied indication to switch modes. Once in edit mode, a step for changing (950) the mode of a browsing system may include the act of switching (955) from edit mode to navigation mode upon receiving an action input. In other words, an action input may be used both for entering and exiting edit mode. Likewise, an act of switching (957) from edit mode to navigation mode upon receiving a direction input also may be included within a step form changing (950) the mode of a browsing system. For interactive elements that do not accept a particular direction input, such as an up or down arrow in a single line textbox, receiving the particular direction input switches from edit mode to navigation mode. Additionally, a step for changing (950) the mode of a browsing system may include the act of submitting (959) form content upon receiving an action input. For content that does not include a submit button, an action input is associated with submitting the form. After submitting a form, the browsing system switches from edit mode to navigation mode because submitting a form usually causes new content to be displayed by a browsing device and, as described above, the browsing system may default to navigation mode as content initially displays. Some types of interactive elements may operative intuitively without a dedicated edit mode and therefore switching modes may not be necessary for interacting with those elements. The present invention may include the act of switching (960) the state of a selected interactive element such as a radio button or checkbox. Similarly, the act of following (970) a selected link upon receiving an action input or executing the action (not shown) associated with a button also are within the scope of the present invention. If selected interactive element is only partially visible, a step for controlling the width (920c) of an interactive element (see 920a of FIG. 9A) also may include the act of scrolling (924) the display area until the interactive element is completely visible. Automatically scrolling the display of content ordinarily occurs when switching from navigation mode to edit mode. Upon switching from navigation mode to edit mode, it becomes clear that a particular interactive element is of interest and should be completely visible, whereas in navigation mode, it may be unclear whether interest is in (i) an interactive element selected as a natural consequence of scrolling displayed content, or (ii) other content that becomes visible as content scrolls. In addition to the acts described in connection with FIG. 9A, a step for determining (930c) an interactive element for selection based on a direction input may include other acts, such as an act of receiving (934c) a subsequent direction input. If less than all of the content is display and no interactive element is at least partially visible, determining (930c) an interactive element for selection also may include an act of scrolling (936c) the display of the content in the direction of the subsequent direction input. For a horizontal direction input, determining (930c) an interactive element for selection may include an act of selecting (938c-1) the closest interactive element in the direction of the direction input that is at substantially the same vertical level. For a vertical direction input, determining (930c) an interactive element for selection may include an act of selecting (938c-2) the interactive element at the next vertical level in the direction of the direction input that is closest in the horizontal direction to a previously selected interactive element. A step for indicating (940c) that an interactive element is selected may further include the acts of removing (942) the highlighting from a previously selected interactive element and highlighting (944c) the next selected interactive element (see also 940a of FIG. 9A). The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. What is claimed and desired to be secured by United States Letters Patent is:
<SOH> BACKGROUND OF THE INVENTION <EOH>1. The Field of the Invention The present invention relates to browsing electronic content. More specifically, the present invention relates to methods, systems, and computer program products for browsing content that includes interactive elements using a computerized system with a display area and input system that may be somewhat limited in comparison to the pointing devices and displays typically found in more traditional browsing systems. 2. Background and Relevant Art Content typically includes interactive elements, such as links and form controls. Activating or following a link causes the content that is associated with the link to be requested and displayed. Selecting a form control allows for interaction with the form control. Traditional browsing systems generally include a keyboard and a pointing device such as a mouse, for activating links and interacting with form controls. Tab order navigation is possible, but may not follow an order expected by the user, especially if scrolling is required to view all of the content. In traditional browsing systems, a user activates a link or selects a form control by simply placing a mouse pointer over the interactive element and pressing a mouse button. With each mouse press, a user may follow a link, select a text field so that text may be entered from a keyboard, toggle a radio button or checkbox, choose one or more items from a list, or cause the action associated with a button to be executed. The mouse also is used in scrolling the display area, as necessary. Nevertheless, content often is authored to minimize scrolling the display of traditional browsing systems, particularly in the horizontal direction. Browsing systems with limited input systems and display areas, however, such as a phone having a numeric keypad, a directional control, and an action key, may make it difficult to select and interact with content designed for more traditional browsing systems that make use of pointing devices and have larger display areas. For example, without a pointing device, how are links activated and how are form controls selected? The direction control is a natural choice for scrolling because this operation is similar to many traditional browsing systems. (When no interactive element is selected, arrow keys usually are used for scrolling.) But, without a mouse, selecting individual interactive elements presents a significant challenge. Tab order navigation does not provide an adequate solution because tab order generally follows the order of interactive elements in the content as authored or written, rather than the order of interactive elements in the content as displayed. Thus, in some situations, tab order moves horizontally, and in other situations, tab order moves vertically. For example, content that includes a table often will have a vertical tab order within individual table cells, but a horizontal tab order from cell to cell. Content outside of a table usually has a horizontal tab order. Because users generally are unaware of whether content includes a table or not, tab order may appear completely arbitrary, moving horizontally one time and vertically the next. Therefore, when browsing content that includes interactive elements, methods, systems, and computer program products are needed for computerized systems that may have limited display areas and input systems, as compared to the pointing devices and displays typically found in more traditional browsing systems. Furthermore, certain interactive elements may be more intuitive in a browsing context, if those interactive elements operate somewhat differently from how they might function in an operating system shell environment.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention provides a navigation mode and an edit mode for browsing content with a computerized system that may include a somewhat limited display area and/or input system. Navigation mode generally includes movement between and selection of interactive elements, whereas the edit mode generally includes interaction with a single interactive element. In navigation mode, pressing a direction key selects the next interactive element in the direction indicated by the direction key (e.g., up, down, left, right). When moving horizontally, an interactive element is in the direction indicated by the direction control if the interactive element is at substantially the same vertical level. For example, if a later element overlaps a previous element on a given vertical level by any amount, the two elements are considered to be at substantially the same vertical level. Vertical movement is to an interactive element at the next vertical level in the direction indicated by the direction control. If multiple interactive elements lie at the next vertical level, the one closest in the horizontal direction to the beginning of the current interactive element is selected. To indicate selection, an interactive element is highlighted, such as by placing a selection box around the element. The interactive element remains selected until it is no longer visible (i.e., it has scrolled off the display area) or the next interactive element becomes at least partially visible and is selected. If no interactive element is at least partially visible in the direction indicated or if a selected interactive element is only partially visible, the display scrolls in the direction indicated by the direction control. Switching from navigation mode to edit mode may be accomplished in several ways. For example, once an interactive element allowing character entry is selected, typing a character on the keypad automatically switches from navigation mode to edit mode. Similar to a mouse click, pressing the action button after an interactive element has been selected also switches to edit mode. Where interactive elements only require a mouse click to function in traditional browsing systems, such as links, checkboxes, radio buttons, other buttons, and the like, pressing action uses the selected control (i.e., follows the link, checks or unchecks a checkbox, chooses a radio button, performs the action associated with the button, etc.) rather than switching to edit mode. In edit mode, pressing the action button switches back to navigation mode. If a particular direction key is not allowed in edit mode, pressing the direction key also will exit edit mode. For forms that do not include a submit button on the form, pressing the action key will submit the form, rather than switching to navigation mode. Certain interactive elements may be limited to the width of the display area that is available for displaying content so that the entire element can be visible at one time. Therefore, the width of an interactive element that exceeds the width of available display area may be adjusted to be less than or equal to the width of available display area. If a selected interactive element is only partially visible, switching into edit mode scrolls the control into full view. Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
20041019
20080902
20050414
78326.0
2
ALVESTEFFER, STEPHEN D
BROWSER NAVIGATION FOR DEVICES WITH A LIMITED INPUT SYSTEM
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,968,782
ACCEPTED
Baggage transportation security system and method
In a communications network, such as the Internet system and method for arranging the transportation of baggage for airline passengers. Flight information and baggage information from a user is received via the communications network. Typically this is accomplished via a combination of information capture from an online travel provider (e.g., airline) and user input at a Web page. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport (e.g., residence, office, hotel, etc.). Travelers may access updated information concerning the location of their baggage from a desktop or laptop computer, a hand-held communication device, a cellular telephone with Internet access, or other suitable communications device.
1-35. (cancelled) 36. A method for arranging the transportation of baggage for an airline passenger from an origin location to a destination location via an origin airport and a destination airport, the origin location and destination location being distinct from the origin airport and destination airport, respectively, the method comprising: checking in bags with a ground delivery operator; collecting the baggage from the origin location, the step of collecting being performed by the ground delivery operator; tagging the baggage; and transmitting baggage information via a communications network and associating said baggage information with flight information of a flight to be taken by the passenger; and transporting the baggage from the origin location to the origin airport; 37. The method of claim 36 further comprising establishing a baggage-delivery Web site adapted to serve a first Web page to a browser, the first Web page displaying information concerning airline travel planned by the passenger and comprising a form, the form comprising a first field for entering the origin location for the baggage and a second field for entering the destination location for the baggage. 38. The method of claim 36 further comprising transporting the baggage from the origin airport to the destination airport. 39. The method of claim 36 further comprising delivering the baggage to the destination location. 40. The method of claim 36 further comprising maintaining updated information concerning baggage location and delivery status in a database. 41. The method of claim 36 further comprising receiving a request from the passenger via a wireless network for information concerning baggage location and delivery status. 42. The method of claim 36 further comprising transmitting information concerning baggage location and delivery status to the passenger. 43. The method of claim 36, wherein the provided baggage information comprises a priority and security tracking status of a bag. 44. The method of claim 14 further comprising transporting the baggage to the origin airport via a screening facility. 45. The method of claim 44, wherein the screening facility comprises at least one explosive detection system machine. 46. The method of claim 43, wherein the secure screening facility processes baggage in accordance with a plurality of priority classes. 47. The method of claim 43, wherein the plurality of priority classes include cold, warm and hot. 48. The method of claim 45, wherein the priority class is based on one or more of (i) time remaining until a departure time, (ii) bag size, (iii) destination location, (iv) a screening or security related factor. 49. The method of claim 36, wherein updated information concerning baggage location and delivery status is maintained with the aid of at least one of a computer, a cellular telephone, kiosks, a PDA, or other remote computing device linked to the server via the communications link. 50. The method of claim 49, wherein the communication link is configured to inform a passenger of the need to addressed a flagged bag. 51. The method of claim 49, wherein a baggage pickup and delivery Web site provides a user with a login name and a password for accessing the site and, optionally, further provides an estimate of a fee for baggage pickup and delivery to a user for approval. 52. The method of claim 36 further comprising preparing a baggage manifest for the baggage and transmitting the baggage manifest to the ground delivery operator.
CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 09/665,938, filed Sep. 20, 2000, entitled Baggage Transportation System and Method, hereby incorporated by reference herein in its entirety and for each of its teachings and embodiments. FIELD OF THE INVENTION The present invention relates to the field of baggage handling and security. More particularly, the present invention relates to a system and method for arranging baggage pick-up from a traveler-specified first location and delivery to a traveler-specified second location, and the tracking and screening of such bags for security purposes. BACKGROUND OF THE INVENTION Transporting baggage to and from the home or office to the airport is frequently one of the most cumbersome aspects of airline travel for business and pleasure travelers alike. Moreover, airline passengers carrying more than one small piece of luggage to the airport are often forced to wait in long lines to manually check their luggage with airline personnel. Typically, at check-in, an airline employee inputs the passenger's name or ticket number and the number of bags traveling with the passenger into a computer terminal. Tags are then generated and affixed to the baggage, which is then placed on a conveyor. Due to the time constraints associated with airline travel, this delay often forces passengers to hurry through the airport to board their flights on time, adding to an already stressful travel experience. The inconvenience associated with checking baggage continues even after passengers disembark an aircraft in their destination city. Travelers must typically wait at baggage carousels for their baggage to appear, while the line outside of the airport for ground transportation steadily grows. Those unlucky passengers whose bags are unloaded last from the aircraft will unfortunately spend additional time waiting in line for ground transportation. In addition, airline delays and/or unavoidable scheduling may often force business travelers to carry their baggage directly from the airport to a business meeting because they do not have sufficient time to check in at their hotel. The prior art includes baggage handling systems that are limited to intra-airport (or intra-terminal) baggage handling. For example, U.S. Pat. No. 5,793,639 to Yamazaki is directed to an intra-airport baggage receiving and handling method and system, with particular emphasis on the security aspects of baggage handling. Other prior art shipping services ship packages (e.g., a set of golf clubs) as freight separate from the passenger (i.e., the packages or baggage are not transported as checked baggage on a commercial airline flight with their passenger owner). Airlines will also typically deliver baggage to the home of a passenger when that baggage was temporarily lost or delayed during travel. None of these prior art systems, however, eliminates the need for travelers to carry their bags to the airport, wait in line to check their bags at the counter with airline personnel, with a skycap, or at an airport kiosk, retrieve their bags from an airport carousel, and carry their bags to a destination location. While passenger convenience remains an important priority for air travel providers, the events of Sep. 11, 2001 have also raised public awareness of security issues surrounding air travel. Making our airways safe has become a priority of both the air travel industry and our federal government. One focus of this wide-ranging security effort has been on baggage screening and efforts to ensure that checked bags do not contain explosive devices. To this end, Congress has mandated that by Dec. 31, 2002, 100% of checked baggage at all United States airports must be electronically screened for explosives. Critics of this mandate maintain that it will be impossible to achieve 100% baggage screening with currently-existing explosive detection system (EDS) facilities due to high false-positive screening rates and low throughput capability. They also suggest that the cost for installing a sufficient number of EDS machines to satisfy the mandate would exceed current budget estimates. They therefore recommend that Congress relax the mandate and push the deadline for 100% baggage screening to 2004. This would allow time to procure and install additional EDS machines and to realize improvements in EDS technology. Such a delay in implementing the mandate, however, will obviously adversely affect air travel security. SUMMARY OF THE INVENTION A system and method for arranging the transportation of baggage for airline passengers from an origin location (e.g., home, office, etc.) to a destination location (e.g., hotel, convention center) and to enable passengers to monitor and verify the status of their baggage transportation via a computer or handheld communications device (cell phone, PDA, etc.) is disclosed. The disclosed system and method significantly alleviate the inconvenience associated with airline travel while providing enhanced security. In a preferred embodiment, flight information and baggage information from a user is received via a communications network such as the Internet. This may be accomplished by providing a link from an online travel provider Web site (e.g., an airline) to a baggage delivery Web site. In one preferred embodiment, information entered by a user during the purchase of an airline ticket is automatically captured by the baggage delivery Web site. Additional information relating to baggage delivery may be input directly by a user at the baggage delivery Web site. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport. Information concerning the location of the baggage may be provided to a user via the communications network. In a preferred embodiment, the present system and method also provide improved air-travel security in a number of ways. For example, the present system and method may significantly increase the number of checked bags screened for explosive devices without requiring an increase in the number of EDS machines or improvements in screening technology. In a preferred embodiment, this is accomplished by collecting bags in advance of flight time and screening them during off-peak periods at a secure location outside of an airport's departure terminal. As noted, this significantly increases the number of bags that may be examined, and facilitates compliance with the Congressional mandate of 100% screening of checked bags. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which: FIG. 1 is a block diagram illustrating the transportation of passenger baggage in the prior art; FIG. 2 is a block diagram illustrating the transportation of baggage according to the present invention; FIG. 3 is a block diagram of a preferred embodiment of a system of the present invention; FIG. 4 is a flowchart illustrating the steps in a preferred embodiment of the present invention; FIG. 5A is a sample web page from an airline web site; FIG. 5B is another sample web page from an airline web site displaying available flights for a selected itinerary; FIG. 5C is still another sample web page from an airline web site displaying traveler information; FIG. 5D is another web page from an airline web site with a link to allow users to arrange baggage pick and/or delivery; FIG. 6A is a sample web page illustrating the input and/or capture of flight information from a passenger; FIG. 6B is a sample web page illustrating the input of baggage pick-up and/or delivery information; FIG. 7 is a flowchart illustrating the operation of a web site in accordance with a preferred embodiment of the present invention; FIG. 8 is a sample web page displaying baggage status information to an inquiring user; and FIG. 9 is a flow diagram illustrating aspects of a preferred embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference is now made to FIG. 1, which is a block diagram illustrating the transportation of passenger baggage in the prior art. As shown, a passenger 102 must typically carry his or her baggage from an origin location 104 (e.g., home, office, etc.) to an origin airport 106. Once at airport 106, passenger 102 must usually wait in line to check bags at the counter with airline personnel, with a skycap, or at an airport kiosk 107 at the appropriate airline terminal. The length of a passenger's wait depends on current airport conditions. For example, if many flights have been canceled or delayed due to inclement weather, most passengers will be forced to wait in line to re-book their flights for a later time. Passengers arriving at the airport at these times will often have to wait in line for over an hour simply to check their baggage, while those passengers not checking baggage may proceed directly to the departure gate without waiting in line. After passengers and their checked baggage are successfully loaded onto a plane 108 and flown to a destination airport 110, passenger 102 must again wait at a baggage carousel 112 at the arrival terminal to claim his or her checked baggage. Passenger 102 must then transport his or her baggage via some form of ground transportation to their next location (e.g., office, conference center, etc.), which may or may not be their final destination location 114 (e.g., hotel, residence, etc.). Reference is now made to FIG. 2, which is a block diagram illustrating the transportation of passenger baggage according to the present invention. Baggage 202 is picked up by a Ground Delivery Operator (GDO) from an origin location 204. The origin location may preferably be any location specified by the passenger such as the passenger's home, place of business, or hotel. The baggage may be checked by the GDO at the origin location 204, or transported and checked on behalf of its owner at origin airport 206. In a preferred embodiment, the GDOs act as agents on behalf of the airline. In a preferred embodiment, system rules may establish that an origin location must be within some specified radius (e.g., 50 miles) of the origin airport and that baggage must be picked up by a GDO within some specified time window prior to the passenger's scheduled departure time. Upon pick-up, the GDO preferably confirms that the passenger possesses proof of ticket purchase and valid photo ID. In a preferred embodiment, the passenger's identity may alternatively or additionally be biometrically confirmed. The GDO also preferably screens all passengers with standard security questions and provides the results back to the passenger's airline or other appropriate security office. The GDO then tags the baggage with a scanable tag and logs it into a trackable computer database using a portable tag-generating and scanning device. The tag-generating and scanning device may be integrated with or coupled to a laptop or other computing device. The tags are preferably scanned each time custody of the bag is transferred from one entity (e.g. a GDO) to another (e.g., an airport screening facility) thus facilitating tracking of baggage location in a database, as described below. Moreover, each bag may be tagged with a radio frequency identification (RFID) tag to further facilitate bag tracking. Typically, a confirmation number or other baggage identifier is provided to the baggage owner when baggage delivery is initially booked (e.g., via telephone or the baggage delivery Web site 310 in FIG. 3) to allow for real-time tracking of baggage, as described below. Moreover, baggage claim tickets (which may include this confirmation number) are preferably printed and scanned in the passenger's presence to evidence receipt of the passenger's bags. Baggage 202 is preferably transported by the GDO to a secure screening facility that complies with all state Department of Transportation (DOT), airport, Transportation Security Administration (TSA), and airport carrier security programs. At the facility, the bags are screened by TSA-approved personnel, securely stored until flight time approaches, and then entered into the airport's baggage-sortation system for delivery to the appropriate flight. In one preferred embodiment, the secure screening facility may be located on airport grounds but away from the airport's passenger terminals. Alternatively, the secure screening facility may be located off-site from the airport altogether. These embodiments reduce the demands on premium terminal and/or airport space, thus decreasing the costs associated with baggage screening. They also enhance security by removing the baggage screening process from the noise and confusion often found in passenger terminals. Where a separate screening facility is not practical or desired for economic or other reasons, baggage 202 may alternatively be screened using screening facilities located at the passenger's departure terminal. Congress has recently adopted a 100% baggage screening mandate to improve air-travel security. In a preferred embodiment, the present system and method provide a mechanism for increasing the number of screened bags and facilitating this mandated goal while increasing baggage-screening efficiency and decreasing costs. This preferred embodiment is described in connection with FIG. 9. As shown in FIG. 9, in step 902, baggage is delivered by GDOs to the secure screening facility. In step 904, received bags are prioritized and sorted based on the time remaining until their respective flights are scheduled to depart. If desired, the prioritization and sorting algorithms may also take into consideration other factors such as bag size, destination location, or other screening- or security-related factors. In a preferred embodiment, baggage may be separated into three priority classes: cold, warm, and hot, depending upon the amount of time remaining until departure time. Bags specified as cold or warm are preferably held in a secure environment until they are screened. In step 906, the sorted bags are processed in parallel by as many explosive detection system (EDS) machines as are available at the screening facility. The bags may additionally or alternatively be examined by one or more other appropriate security machines and/or personnel. In step 908, bags that do not pass screening are flagged for further security processing (e.g., bomb-squad analysis). Police or other homeland-security authorities may also be contacted and/or the bag owner informed, if appropriate. For example, there may be ample time to contact the passenger and arrange for her to be present during a physical search of the bag well in advance of flight time. Moreover, since the system preferably maintains a record of each person who has handled the baggage (which may include biometric information), baggage security is enhanced. Otherwise, in step 910, approved bags are interlined to the appropriate airline for loading on the passenger's flight. Alternatively, bags cleared by the screening system may be fed directly into the airport's baggage sortation system. In step 912, screening results are provided to the airline security checkpoint. The bag scanning method described above provides several benefits. First, as noted, it improves security and decreases costs because it is performed off-site from the passenger terminal. Second, proper prioritization and sorting of bags delivered by GDOs allows continuous bag screening by the facility's EDS machines during both peak and off-peak travel hours. This reduces the total number of EDS machines required for baggage screening and associated operating costs by increasing utilization of each machine. Third, because baggage 202 is delivered to the screening facility in advance of the passenger's scheduled flight time, the system is better able to cope with any delays that may arise in the screening process such as malfunctioning machines or suspicious baggage. In a preferred embodiment, the present system and method may comprise a database that tracks the location and integrity of each checked piece of baggage at all times. To facilitate the accuracy of information in this database, the present system and method may employ a wireless global positioning system (GPS) to track ground and/or air transportation vehicles over terrestrial and satellite networks. Baggage tracking may be further facilitated by supplementing information in the database with information from major airlines' reservation and departure control systems. In a preferred embodiment, a common language may be defined to simplify and standardize data communications between these multiple systems. In this way, an operational database with system-wide situational awareness and details of baggage 202 may be maintained and monitored. In a preferred embodiment, information transmitted from airline computer systems to the baggage tracking database includes any itinerary changes due to flight changes or cancellations, or changes in an individual passenger's travel plans. This information is used to update the baggage tracking database to ensure that the baggage is routed and delivered properly with minimum delay. As noted, screened bags are preferably transported to the passenger's airline for loading on the passenger's flight. Thus, the owner of the bags, passenger 208, need not carry his or her baggage to the airport or wait in line at check-in. Instead, passenger 208 may proceed directly to the departure gate 211. Baggage 202 is loaded on the plane 210 with passenger 208 and flown to the destination airport 212. Moreover, upon arrival, passenger 208 is preferably free to leave the airport immediately and proceed to a business meeting, hotel, or other appointment/location 214. Passenger 208 need not pick up baggage 202 at a baggage carousel because the baggage is delivered directly to the passenger's designated destination location 216 (e.g., hotel, residence, etc.). Reference is now made to FIG. 3 which is a block diagram of a system of the present invention. As shown in FIG. 3, users communicating via conventional computers 302 (e.g., desktop PCs, laptops, etc.), land-line telephones 304, or wireless communications devices 306 (e.g., cellular telephone, Palm VII™, etc.) may access a travel Web site, such as airline Web site 308 via a communications network, such as the Internet 309. In a preferred embodiment, while purchasing airline tickets, users are provided the option of arranging for the pick-up and delivery of their personal baggage. As described more fully below, when a user chooses this option, the user links to a second baggage-delivery Web site 310 dedicated to baggage delivery. Typically, Web site 310 is maintained by a server computer 312 having a database 314. Database 314 stores baggage identification information (e.g., baggage claim numbers) in linked relation to a final delivery location specified by the traveler. Alternatively, users can directly access the baggage delivery Web site 310 to make arrangements for the transportation of their baggage. After making baggage transportation arrangements, users can check the status of their baggage (e.g., delivered or not delivered) by accessing Web site 310 via conventional computer 302, conventional telephone 304, or wireless device 306, as described below. Typical operation of the present system and method is further described in connection with FIG. 4. As shown in FIG. 4, in step 402, the traveler navigates to a travel Web site 308, such as the Web site of an airline. An example of a home Web page 502 of a typical airline Web site is shown in FIG. 5A. In step 404, prospective travelers may enter their flight criteria (e.g., travel origin and destination locations and preferred travel dates) into an HTML form 504 on Web page 502. As shown in FIG. 5B, the prospective passenger is then typically provided with a list 506 of available flights meeting the specified criteria at a second Web page 508. In step 406, the passenger then selects a flight from list 506 and, if a reservation can be made for the passenger's desired flight, the Web site then prompts the passenger to enter billing information 510, such as the passenger's name, address, and credit card number, at another Web page 512, as shown in FIG. 5C. At a final confirmation Web page 514, an example of which is shown in FIG. 5D, the passenger confirms the ticket purchase. In this preferred embodiment, in step 408, if the traveler wishes to make arrangements for baggage pick-up and delivery, the traveler indicates this desire in step 410 by clicking an icon 516 on Web page 514 (see FIG. 5D) to navigate to baggage-delivery Web site 310 (see FIG. 3). In a preferred embodiment, all of the passenger's travel information is forwarded from Web page 512 to Web site 310 via automatic data relay when the passenger clicks icon 516. For example, the server operating Web page 512 may directly transmit a passenger's flight information to baggage-delivery Web site 310 via Electronic Data Interchange (EDI). The transmitted data may be specified in extensible Markup Language (XML) or other appropriate format. In step 410, Web site 310 dynamically creates a Web page including the passenger's travel information and a form to permit the passenger to fill in additional information concerning baggage delivery. An example of how such a Web page might look is shown in FIG. 6A. As shown in FIG. 6A, Web page 602 is automatically filled in with the traveler's name, address, and flight information 604 using the data relayed from airline Web site 308. Web page 602 also includes blank fields 606 to prompt the user to enter the number of bags, the location from which the baggage is to be picked up, and the location to which it is to be delivered. Typically, the traveler schedules and/or reserves a pickup appointment time within a range of acceptable baggage pick-up times. For example, a traveler may wish to have his or her baggage picked-up and processed the evening before an early morning flight. In step 412, the traveler enters the necessary baggage information and confirms his or her desire to have baggage picked-up and delivered. FIG. 6B is an example of Web page 602 with baggage information 608 filled in by the traveler. Alternatively or in addition, baggage pickup arrangements may be made without requiring traveler access to the Internet. For example, the system may be adapted to permit travelers to book baggage pickup and delivery via a telephone network. Travelers booking flights by telephone via, e.g., an airline's toll free telephone number, may be asked after finalizing their travel arrangements whether they would like to arrange for baggage pickup and/or delivery. If the traveler responds in the affirmative, he or she may be forwarded to a baggage-pickup telephone operations center. In step 414, at a time specified by the traveler, the baggage is collected from the origin location by a GDO and tagged using a portable baggage tag generating device. Upon generation of the baggage tag, database 314 is updated and the baggage identifier is stored in linked relation to the final traveler-specified location. Alternatively, a passenger who carries his or her bags to the airport and checks them in the traditional fashion can make baggage delivery arrangements by accessing an airport kiosk terminal and providing the baggage identifier information (e.g., baggage tag identification numbers) and a destination location. This aspect is especially useful for the business traveler who may have carried his or her bags to the airport but must proceed directly to a business meeting upon arrival at the destination airport and does not wish to carry his or her bags to the meeting. Baggage delivery may also be arranged as part of the usual pre-flight check-in process. In step 416, after clearing security checks at the off-site screening facility or departure terminal, the baggage is transported from the origin airport to the destination airport. In a preferred embodiment, checked baggage is matched with the passenger upon boarding to ensure 100% positive passenger-baggage matching. If a GDO is delayed in transporting baggage to an airport and the scheduled flight is missed, or if the schedule flight is missed for any other reason such as screening difficulties or other security issues, arrangements for an alternate flight are made. Traveler claims for missing or damaged bags are preferably handled by personnel associated with the entity that operates the baggage pick-up and delivery service. Alternatively, claims for missing or damaged bags may be handled by the GDO. In step 418, the baggage is again collected from the airport by a porter or other personnel associated with the baggage delivery Web site and delivered to the final traveler-specified location. In the event that any problem is encountered during baggage transport and a traveler's baggage is not transported, the traveler is preferably immediately contacted both via telephone and electronic mail, if possible. The present system and method are further described in connection with FIG. 7. As shown in FIG. 7, when a user accesses the home page of Web site 310, he or she is prompted to enter his or her user login and password at Web page 3.1. If the user has not already registered as a member of the Web site, he or she is prompted to become a new member at Web page 3.2.1. The new member area of the Web site includes Web pages 3.2.2 describing how the baggage delivery system of the present invention operates. After registering as a new member, a user will receive a login name and password to access the site. After logging in, members are greeted at Web page 3.3.1.1 and provided with any member messages at Web page 3.3.1.2 regarding current transactions and/or promotions from the baggage-delivery system. Once within the member area, members can make baggage delivery arrangements and/or check their baggage delivery and flight status. If a member decides to make baggage delivery arrangements, the member enters the appropriate baggage information (e.g., number of bags, pick-up and destination locations) and a transaction record is created. The mileage and corresponding fee for the locations and number of bags specified by the member are calculated and submitted to the member for approval. As shown, this mileage and fee calculation may be performed by a third party (e.g., airline), but it should be understood that this function could easily be performed by the party maintaining Web site 310. For example, fees may be automatically generated from internal database rule rates established by the entity that maintains the baggage delivery Web site. If the member wishes to proceed with the baggage delivery transaction, a flight-specific baggage manifest is generated and sent to a GDO. Upon tagging of baggage by a GDO, or, alternatively, checking of the baggage at the airport by a member traveler, the baggage claim numbers are captured in database 314 (see FIG. 3) and matched with the transaction record created earlier. If a member wishes to check flight status, a third party feed of flight status information may be queried and the appropriate information is relayed to the member. As discussed briefly above, at any time during the baggage transportation process, a passenger may monitor the status of the baggage delivery process by using a computer or other communications device, such as a cellular telephone or PDA (e.g., Palm VII™, Handspring Visor™, etc.). As shown in FIG. 8, to perform such a status inquiry, a user will typically access Web site 310 and enter his or her flight confirmation number 802 and/or other baggage identifier code. After appropriate identity authentication (e.g., entry and confirmation of a user password), baggage delivery status 804 (e.g., delivered, delayed, etc.) is displayed to the user. This aspect is also quite advantageous to the business traveler, since he or she can silently access the Web site via a wireless communications device while at a business meeting to determine if his or her baggage has been successfully delivered to a hotel or residence. In some preferred embodiments, service providers and other entities such as travel agents, conventions, rental car companies and cruise lines may be provided with an interface to the present system to permit such entities to offer baggage-related services to their customers. Alternatively or in addition, the Web sites of these entities may provide an Internet link to baggage-delivery Web site 310. While the present invention has been described with reference to the preferred embodiments, those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be clearly understood that the embodiments of the invention described above are not intended as limitations on the scope of the invention, which is defined only by the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Transporting baggage to and from the home or office to the airport is frequently one of the most cumbersome aspects of airline travel for business and pleasure travelers alike. Moreover, airline passengers carrying more than one small piece of luggage to the airport are often forced to wait in long lines to manually check their luggage with airline personnel. Typically, at check-in, an airline employee inputs the passenger's name or ticket number and the number of bags traveling with the passenger into a computer terminal. Tags are then generated and affixed to the baggage, which is then placed on a conveyor. Due to the time constraints associated with airline travel, this delay often forces passengers to hurry through the airport to board their flights on time, adding to an already stressful travel experience. The inconvenience associated with checking baggage continues even after passengers disembark an aircraft in their destination city. Travelers must typically wait at baggage carousels for their baggage to appear, while the line outside of the airport for ground transportation steadily grows. Those unlucky passengers whose bags are unloaded last from the aircraft will unfortunately spend additional time waiting in line for ground transportation. In addition, airline delays and/or unavoidable scheduling may often force business travelers to carry their baggage directly from the airport to a business meeting because they do not have sufficient time to check in at their hotel. The prior art includes baggage handling systems that are limited to intra-airport (or intra-terminal) baggage handling. For example, U.S. Pat. No. 5,793,639 to Yamazaki is directed to an intra-airport baggage receiving and handling method and system, with particular emphasis on the security aspects of baggage handling. Other prior art shipping services ship packages (e.g., a set of golf clubs) as freight separate from the passenger (i.e., the packages or baggage are not transported as checked baggage on a commercial airline flight with their passenger owner). Airlines will also typically deliver baggage to the home of a passenger when that baggage was temporarily lost or delayed during travel. None of these prior art systems, however, eliminates the need for travelers to carry their bags to the airport, wait in line to check their bags at the counter with airline personnel, with a skycap, or at an airport kiosk, retrieve their bags from an airport carousel, and carry their bags to a destination location. While passenger convenience remains an important priority for air travel providers, the events of Sep. 11, 2001 have also raised public awareness of security issues surrounding air travel. Making our airways safe has become a priority of both the air travel industry and our federal government. One focus of this wide-ranging security effort has been on baggage screening and efforts to ensure that checked bags do not contain explosive devices. To this end, Congress has mandated that by Dec. 31, 2002, 100% of checked baggage at all United States airports must be electronically screened for explosives. Critics of this mandate maintain that it will be impossible to achieve 100% baggage screening with currently-existing explosive detection system (EDS) facilities due to high false-positive screening rates and low throughput capability. They also suggest that the cost for installing a sufficient number of EDS machines to satisfy the mandate would exceed current budget estimates. They therefore recommend that Congress relax the mandate and push the deadline for 100% baggage screening to 2004. This would allow time to procure and install additional EDS machines and to realize improvements in EDS technology. Such a delay in implementing the mandate, however, will obviously adversely affect air travel security.
<SOH> SUMMARY OF THE INVENTION <EOH>A system and method for arranging the transportation of baggage for airline passengers from an origin location (e.g., home, office, etc.) to a destination location (e.g., hotel, convention center) and to enable passengers to monitor and verify the status of their baggage transportation via a computer or handheld communications device (cell phone, PDA, etc.) is disclosed. The disclosed system and method significantly alleviate the inconvenience associated with airline travel while providing enhanced security. In a preferred embodiment, flight information and baggage information from a user is received via a communications network such as the Internet. This may be accomplished by providing a link from an online travel provider Web site (e.g., an airline) to a baggage delivery Web site. In one preferred embodiment, information entered by a user during the purchase of an airline ticket is automatically captured by the baggage delivery Web site. Additional information relating to baggage delivery may be input directly by a user at the baggage delivery Web site. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport. Information concerning the location of the baggage may be provided to a user via the communications network. In a preferred embodiment, the present system and method also provide improved air-travel security in a number of ways. For example, the present system and method may significantly increase the number of checked bags screened for explosive devices without requiring an increase in the number of EDS machines or improvements in screening technology. In a preferred embodiment, this is accomplished by collecting bags in advance of flight time and screening them during off-peak periods at a secure location outside of an airport's departure terminal. As noted, this significantly increases the number of bags that may be examined, and facilitates compliance with the Congressional mandate of 100% screening of checked bags.
20041019
20060718
20050324
71175.0
1
TRAN, KHOI H
BAGGAGE TRANSPORTATION SECURITY SYSTEM AND METHOD
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,968,783
ACCEPTED
Baggage transportation security system and method
In a communications network, such as the Internet system and method for arranging the transportation of baggage for airline passengers. Flight information and baggage information from a user is received via the communications network. Typically this is accomplished via a combination of information capture from an online travel provider (e.g., airline) and user input at a Web page. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport (e.g., residence, office, hotel, etc.). Travelers may access updated information concerning the location of their baggage from a desktop or laptop computer, a hand-held communication device, a cellular telephone with Internet access, or other suitable communications device.
1-13. (canceled) 14. A method for arranging for the secure transportation of baggage for an airline passenger from an origin location to a destination location via a flight taken from an origin airport and a destination airport, the origin location and destination location being distinct from the origin airport and destination airport, respectively, the method comprising: (a) obtaining origin location, flight information, and baggage information; (b) generating a baggage manifest for the baggage and transmitting the baggage manifest to a ground delivery operator; (c) collecting the baggage at the origin location from the passenger, the step of collecting being performed by the ground delivery operator; (d) verifying the identity of the passenger; (e) tagging the baggage; (f) transmitting baggage information via a communications network and associating said baggage information with flight information of the flight; (g) the ground delivery operator transporting the baggage from the origin location to a screening facility; (h) performing pre-flight screening security checks of the baggage; (i) delivering the baggage to an airport's baggage sortation system; and (j) maintaining updated information concerning baggage location and delivery status in a database. 15. The method of claim 14, wherein the step of obtaining flight information further comprises interfacing with airline reservation and departure control systems. 16. The method of claim 14, wherein the step of collecting further comprises providing a baggage claim check to the passenger. 17. The method of claim 14, wherein the step of verifying the passenger's identity comprises biometric identification. 18. The method of claim 14, wherein the step of tagging the baggage comprises applying a radio frequency identification tag to the baggage. 19. (canceled) 20. (canceled) 21. The method of claim 14, wherein the steps of transporting and maintaining includes tracking of the ground delivery operator's vehicle through a positioning system. 22. The method of claim 14, further comprising the step of providing the screening results to the airline. 23. The method of claim 14, wherein the step of obtaining origin location information for the baggage further comprises establishing a baggage-delivery Web site adapted to serve a first Web page to a browser, the first Web page displaying information concerning airline travel planned by the passenger and comprising a form, the form comprising a field for entering the origin location for the baggage. 24. The method of claim 23, further comprising the step of obtaining destination location information, and wherein the form further comprises a second field for entering the destination location for the baggage. 25. The method of claim 24, further comprising the steps of: (k) transporting the baggage from the origin airport to the destination airport; (l) delivering the baggage to the destination location; (m) receiving a request from a user via a second communications network for information concerning baggage location and delivery status; and (n) transmitting information concerning baggage location and delivery status to the user. 26. The method of claim 25, further comprising providing an identifier to the user for tracking baggage. 27-35. (canceled) 36. The method of claim 14, wherein the provided flight and baggage information comprises a priority and security tracking status of a bag. 37. The method of claim 14, wherein the screening facility in a secure screening facility. 38. The method of claim 37, wherein the screening facility comprises at least one explosive detection system machine. 39. The method of claim 36, wherein the secure screening facility processes baggage in accordance with a plurality of priority classes. 40. The method of claim 36, wherein the plurality of priority classes include cold, warm and hot. 41. The method of claim 39, wherein the priority class is based on one or more of (i) time remaining until a departure time, (ii) bag size, (iii) destination location, (iv) a screening or security related factor. 42. The method of claim 14, wherein the step of maintaining updated information concerning baggage location and delivery status in a database is aided by at least one of a computer, a cellular telephone, kiosks, a PDA, or other remote computing device linked to the server via the communications link. 43. The method of claim 42, wherein the communication link is configured to inform a passenger of the need to addressed a flagged bag. 44. The method of claim 42, wherein a baggage pickup and delivery Web site provides a user with a login name and a password for accessing the site and, optionally, further provides an estimate of a fee for baggage pickup and delivery to a user for approval.
CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 09/665,938, filed Sep. 20, 2000, entitled Baggage Transportation System and Method, hereby incorporated by reference herein in its entirety and for each of its teachings and embodiments. FIELD OF THE INVENTION The present invention relates to the field of baggage handling and security. More particularly, the present invention relates to a system and method for arranging baggage pick-up from a traveler-specified first location and delivery to a traveler-specified second location, and the tracking and screening of such bags for security purposes. BACKGROUND OF THE INVENTION Transporting baggage to and from the home or office to the airport is frequently one of the most cumbersome aspects of airline travel for business and pleasure travelers alike. Moreover, airline passengers carrying more than one small piece of luggage to the airport are often forced to wait in long lines to manually check their luggage with airline personnel. Typically, at check-in, an airline employee inputs the passenger's name or ticket number and the number of bags traveling with the passenger into a computer terminal. Tags are then generated and affixed to the baggage, which is then placed on a conveyor. Due to the time constraints associated with airline travel, this delay often forces passengers to hurry through the airport to board their flights on time, adding to an already stressful travel experience. The inconvenience associated with checking baggage continues even after passengers disembark an aircraft in their destination city. Travelers must typically wait at baggage carousels for their baggage to appear, while the line outside of the airport for ground transportation steadily grows. Those unlucky passengers whose bags are unloaded last from the aircraft will unfortunately spend additional time waiting in line for ground transportation. In addition, airline delays and/or unavoidable scheduling may often force business travelers to carry their baggage directly from the airport to a business meeting because they do not have sufficient time to check in at their hotel. The prior art includes baggage handling systems that are limited to intra-airport (or intra-terminal) baggage handling. For example, U.S. Pat. No. 5,793,639 to Yamazaki is directed to an intra-airport baggage receiving and handling method and system, with particular emphasis on the security aspects of baggage handling. Other prior art shipping services ship packages (e.g., a set of golf clubs) as freight separate from the passenger (i.e., the packages or baggage are not transported as checked baggage on a commercial airline flight with their passenger owner). Airlines will also typically deliver baggage to the home of a passenger when that baggage was temporarily lost or delayed during travel. None of these prior art systems, however, eliminates the need for travelers to carry their bags to the airport, wait in line to check their bags at the counter with airline personnel, with a skycap, or at an airport kiosk, retrieve their bags from an airport carousel, and carry their bags to a destination location. While passenger convenience remains an important priority for air travel providers, the events of Sep. 11, 2001 have also raised public awareness of security issues surrounding air travel. Making our airways safe has become a priority of both the air travel industry and our federal government. One focus of this wide-ranging security effort has been on baggage screening and efforts to ensure that checked bags do not contain explosive devices. To this end, Congress has mandated that by Dec. 31, 2002, 100% of checked baggage at all United States airports must be electronically screened for explosives. Critics of this mandate maintain that it will be impossible to achieve 100% baggage screening with currently-existing explosive detection system (EDS) facilities due to high false-positive screening rates and low throughput capability. They also suggest that the cost for installing a sufficient number of EDS machines to satisfy the mandate would exceed current budget estimates. They therefore recommend that Congress relax the mandate and push the deadline for 100% baggage screening to 2004. This would allow time to procure and install additional EDS machines and to realize improvements in EDS technology. Such a delay in implementing the mandate, however, will obviously adversely affect air travel security. SUMMARY OF THE INVENTION A system and method for arranging the transportation of baggage for airline passengers from an origin location (e.g., home, office, etc.) to a destination location (e.g., hotel, convention center) and to enable passengers to monitor and verify the status of their baggage transportation via a computer or handheld communications device (cell phone, PDA, etc.) is disclosed. The disclosed system and method significantly alleviate the inconvenience associated with airline travel while providing enhanced security. In a preferred embodiment, flight information and baggage information from a user is received via a communications network such as the Internet. This may be accomplished by providing a link from an online travel provider Web site (e.g., an airline) to a baggage delivery Web site. In one preferred embodiment, information entered by a user during the purchase of an airline ticket is automatically captured by the baggage delivery Web site. Additional information relating to baggage delivery may be input directly by a user at the baggage delivery Web site. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport. Information concerning the location of the baggage maybe provided to a user via the communications network. In a preferred embodiment, the present system and method also provide improved air-travel security in a number of ways. For example, the present system and method may significantly increase the number of checked bags screened for explosive devices without requiring an increase in the number of EDS machines or improvements in screening technology. In a preferred embodiment, this is accomplished by collecting bags in advance of flight time and screening them during off-peak periods at a secure location outside of an airport's departure terminal. As noted, this significantly increases the number of bags that may be examined, and facilitates compliance with the Congressional mandate of 100% screening of checked bags. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which: FIG. 1 is a block diagram illustrating the transportation of passenger baggage in the prior art; FIG. 2 is a block diagram illustrating the transportation of baggage according to the present invention; FIG. 3 is a block diagram of a preferred embodiment of a system of the present invention; FIG. 4 is a flowchart illustrating the steps in a preferred embodiment of the present invention; FIG. 5A is a sample web page from an airline web site. FIG. 5B is another sample web page from an airline web site displaying available flights for a selected itinerary; FIG. 5C is still another sample web page from an airline web site displaying traveler information; FIG. 5D is another web page from an airline web site with a link to allow users to arrange baggage pick and/or delivery; FIG. 6A is a sample web page illustrating the input and/or capture of flight information from a passenger; FIG. 6B is a sample web page illustrating the input of baggage pick-up and/or delivery information; FIG. 7 is a flowchart illustrating the operation of a web site in accordance with a preferred embodiment of the present invention; FIG. 8 is a sample web page displaying baggage status information to an inquiring user; and FIG. 9 is a flow diagram illustrating aspects of a preferred embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference is now made to FIG. 1, which is a block diagram illustrating the transportation of passenger baggage in the prior art. As shown, a passenger 102 must typically carry his or her baggage from an origin location 104 (e.g., home, office, etc.) to an origin airport 106. Once at airport 106, passenger 102 must usually wait in line to check bags at the counter with airline personnel, with a skycap, or at an airport kiosk 107 at the appropriate airline terminal. The length of a passenger's wait depends on current airport conditions. For example, if many flights have been canceled or delayed due to inclement weather, most passengers will be forced to wait in line to re-book their flights for a later time. Passengers arriving at the airport at these times will often have to wait in line for over an hour simply to check their baggage, while those passengers not checking baggage may proceed directly to the departure gate without waiting in line. After passengers and their checked baggage are successfully loaded onto a plane 108 and flown to a destination airport 110, passenger 102 must again wait at a baggage carousel 112 at the arrival terminal to claim his or her checked baggage. Passenger 102 must then transport his or her baggage via some form of ground transportation to their next location (e.g., office, conference center, etc.), which may or may not be their final destination location 114 (e.g., hotel, residence, etc.). Reference is now made to FIG. 2, which is a block diagram illustrating the transportation of passenger baggage according to the present invention. Baggage 202 is picked up by a Ground Delivery Operator (GDO) from an origin location 204. The origin location may preferably be any location specified by the passenger such as the passenger's home, place of business, or hotel. The baggage may be checked by the GDO at the origin location 204, or transported and checked on behalf of its owner at origin airport 206. In a preferred embodiment, the GDOs act as agents on behalf of the airline. In a preferred embodiment, system rules may establish that an origin location must be within some specified radius (e.g., 50 miles) of the origin airport and that baggage must be picked up by a GDO within some specified time window prior to the passenger's scheduled departure time. Upon pick-up, the GDO preferably confirms that the passenger possesses proof of ticket purchase and valid photo ID. In a preferred embodiment, the passenger's identity may alternatively or additionally be biometrically confirmed. The GDO also preferably screens all passengers with standard security questions and provides the results back to the passenger's airline or other appropriate security office. The GDO then tags the baggage with a scanable tag and logs it into a trackable computer database using a portable tag-generating and scanning device. The tag-generating and scanning device may be integrated with or coupled to a laptop or other computing device. The tags are preferably scanned each time custody of the bag is transferred from one entity (e.g. a GDO) to another (e.g., an airport screening facility) thus facilitating tracking of baggage location in a database, as described below. Moreover, each bag may be tagged with a radio frequency identification (RFID) tag to further facilitate bag tracking. Typically, a confirmation number or other baggage identifier is provided to the baggage owner when baggage delivery is initially booked (e.g., via telephone or the baggage delivery Web site 310 in FIG. 3) to allow for real-time tracking of baggage, as described below. Moreover, baggage claim tickets (which may include this confirmation number) are preferably printed and scanned in the passenger's presence to evidence receipt of the passenger's bags. Baggage 202 is preferably transported by the GDO to a secure screening facility that complies with all state Department of Transportation (DOT), airport, Transportation Security Administration (TSA), and airport carrier security programs. At the facility, the bags are screened by TSA-approved personnel, securely stored until flight time approaches, and then entered into the airport's baggage-sortation system for delivery to the appropriate flight. In one preferred embodiment, the secure screening facility may be located on airport grounds but away from the airport's passenger terminals. Alternatively, the secure screening facility may be located off-site from the airport altogether. These embodiments reduce the demands on premium terminal and/or airport space, thus decreasing the costs associated with baggage screening. They also enhance security by removing the baggage screening process from the noise and confusion often found in passenger terminals. Where a separate screening facility is not practical or desired for economic or other reasons, baggage 202 may alternatively be screened using screening facilities located at the passenger's departure terminal. Congress has recently adopted a 100% baggage screening mandate to improve air-travel security. In a preferred embodiment, the present system and method provide a mechanism for increasing the number of screened bags and facilitating this mandated goal while increasing baggage-screening efficiency and decreasing costs. This preferred embodiment is described in connection with FIG. 9. As shown in FIG. 9, in step 902, baggage is delivered by GDOs to the secure screening facility. In step 904, received bags are prioritized and sorted based on the time remaining until their respective flights are scheduled to depart. If desired, the prioritization and sorting algorithms may also take into consideration other factors such as bag size, destination location, or other screening- or security-related factors. In a preferred embodiment, baggage may be separated into three priority classes: cold, warm, and hot, depending upon the amount of time remaining until departure time. Bags specified as cold or warm are preferably held in a secure environment until they are screened. In step 906, the sorted bags are processed in parallel by as many explosive detection system (EDS) machines as are available at the screening facility. The bags may additionally or alternatively be examined by one or more other appropriate security machines and/or personnel. In step 908, bags that do not pass screening are flagged for further security processing (e.g., bomb-squad analysis). Police or other homeland-security authorities may also be contacted and/or the bag owner informed, if appropriate. For example, there may be ample time to contact the passenger and arrange for her to be present during a physical search of the bag well in advance of flight time. Moreover, since the system preferably maintains a record of each person who has handled the baggage (which may include biometric information), baggage security is enhanced. Otherwise, in step 910, approved bags are interlined to the appropriate airline for loading on the passenger's flight. Alternatively, bags cleared by the screening system may be fed directly into the airport's baggage sortation system. In step 912, screening results are provided to the airline security checkpoint. The bag scanning method described above provides several benefits. First, as noted, it improves security and decreases costs because it is performed off-site from the passenger terminal. Second, proper prioritization and sorting of bags delivered by GDOs allows continuous bag screening by the facility's EDS machines during both peak and off-peak travel hours. This reduces the total number of EDS machines required for baggage screening and associated operating costs by increasing utilization of each machine. Third, because baggage 202 is delivered to the screening facility in advance of the passenger's scheduled flight time, the system is better able to cope with any delays that may arise in the screening process such as malfunctioning machines or suspicious baggage. In a preferred embodiment, the present system and method may comprise a database that tracks the location and integrity of each checked piece of baggage at all times. To facilitate the accuracy of information in this database, the present system and method may employ a wireless global positioning system (GPS) to track ground and/or air transportation vehicles over terrestrial and satellite networks. Baggage tracking may be further facilitated by supplementing information in the database with information from major airlines' reservation and departure control systems. In a preferred embodiment, a common language may be defined to simplify and standardize data communications between these multiple systems. In this way, an operational database with system-wide situational awareness and details of baggage 202 may be maintained and monitored. In a preferred embodiment, information transmitted from airline computer systems to the baggage tracking database includes any itinerary changes due to flight changes or cancellations, or changes in an individual passenger's travel plans. This information is used to update the baggage tracking database to ensure that the baggage is routed and delivered properly with minimum delay. As noted, screened bags are preferably transported to the passenger's airline for loading on the passenger's flight. Thus, the owner of the bags, passenger 208, need not carry his or her baggage to the airport or wait in line at check-in. Instead, passenger 208 may proceed directly to the departure gate 211. Baggage 202 is loaded on the plane 210 with passenger 208 and flown to the destination airport 212. Moreover, upon arrival, passenger 208 is preferably free to leave the airport immediately and proceed to a business meeting, hotel, or other appointment/location 214. Passenger 208 need not pick up baggage 202 at a baggage carousel because the baggage is delivered directly to the passenger's designated destination location 216 (e.g., hotel, residence, etc.). Reference is now made to FIG. 3 which is a block diagram of a system of the present invention. As shown in FIG. 3, users communicating via conventional computers 302 (e.g., desktop PCs, laptops, etc.), land-line telephones 304, or wireless communications devices 306 (e.g., cellular telephone, Palm VII™, etc.) may access a travel Web site, such as airline Web site 308 via a communications network, such as the Internet 309. In a preferred embodiment, while purchasing airline tickets, users are provided the option of arranging for the pick-up and delivery of their personal baggage. As described more fully below, when a user chooses this option, the user links to a second baggage-delivery Web site 310 dedicated to baggage delivery. Typically, Web site 310 is maintained by a server computer 312 having a database 314. Database 314 stores baggage identification information (e.g., baggage claim numbers) in linked relation to a final delivery location specified by the traveler. Alternatively, users can directly access the baggage delivery Web site 310 to make arrangements for the transportation of their baggage. After making baggage transportation arrangements, users can check the status of their baggage (e.g., delivered or not delivered) by accessing Web site 310 via conventional computer 302, conventional telephone 304, or wireless device 306, as described below. Typical operation of the present system and method is further described in connection with FIG. 4. As shown in FIG. 4, in step 402, the traveler navigates to a travel Web site 308, such as the Web site of an airline. An example of a home Web page 502 of a typical airline Web site is shown in FIG. 5A. In step 404, prospective travelers may enter their flight criteria (e.g., travel origin and destination locations and preferred travel dates) into an HTML form 504 on Web page 502. As shown in FIG. 5B, the prospective passenger is then typically provided with a list 506 of available flights meeting the specified criteria at a second Web page 508. In step 406, the passenger then selects a flight from list 506 and, if a reservation can be made for the passenger's desired flight, the Web site then prompts the passenger to enter billing information 510, such as the passenger's name, address, and credit card number, at another Web page 512, as shown in FIG. 5C. At a final confirmation Web page 514, an example of which is shown in FIG. 5D, the passenger confirms the ticket purchase. In this preferred embodiment, in step 408, if the traveler wishes to make arrangements for baggage pick-up and delivery, the traveler indicates this desire in step 410 by clicking an icon 516 on Web page 514 (see FIG. 5D) to navigate to baggage-delivery Web site 310 (see FIG. 3). In a preferred embodiment, all of the passenger's travel information is forwarded from Web page 512 to Web site 310 via automatic data relay when the passenger clicks icon 516. For example, the server operating Web page 512 may directly transmit a passenger's flight information to baggage-delivery Web site 310 via Electronic Data Interchange (EDI). The transmitted data may be specified in eXtensible Markup Language (XML) or other appropriate format. In step 410, Web site 310 dynamically creates a Web page including the passenger's travel information and a form to permit the passenger to fill in additional information concerning baggage delivery. An example of how such a Web page might look is shown in FIG. 6A. As shown in FIG. 6A, Web page 602 is automatically filled in with the traveler's name, address, and flight information 604 using the data relayed from airline Web site 308. Web page 602 also includes blank fields 606 to prompt the user to enter the number of bags, the location from which the baggage is to be picked up, and the location to which it is to be delivered. Typically, the traveler schedules and/or reserves a pickup appointment time within a range of acceptable baggage pick-up times. For example, a traveler may wish to have his or her baggage picked-up and processed the evening before an early morning flight. In step 412, the traveler enters the necessary baggage information and confirms his or her desire to have baggage picked-up and delivered. FIG. 6B is an example of Web page 602 with baggage information 608 filled in by the traveler. Alternatively or in addition, baggage pickup arrangements may be made without requiring traveler access to the Internet. For example, the system maybe adapted to permit travelers to book baggage pickup and delivery via a telephone network. Travelers booking flights by telephone via, e.g., an airline's toll free telephone number, may be asked after finalizing their travel arrangements whether they would like to arrange for baggage pickup and/or delivery. If the traveler responds in the affirmative, he or she may be forwarded to a baggage-pickup telephone operations center. In step 414, at a time specified by the traveler, the baggage is collected from the origin location by a GDO and tagged using a portable baggage tag generating device. Upon generation of the baggage tag, database 314 is updated and the baggage identifier is stored in linked relation to the final traveler-specified location. Alternatively, a passenger who carries his or her bags to the airport and checks them in the traditional fashion can make baggage delivery arrangements by accessing an airport kiosk terminal and providing the baggage identifier information (e.g., baggage tag identification numbers) and a destination location. This aspect is especially useful for the business traveler who may have carried his or her bags to the airport but must proceed directly to a business meeting upon arrival at the destination airport and does not wish to carry his or her bags to the meeting. Baggage delivery may also be arranged as part of the usual pre-flight check-in process. In step 416, after clearing security checks at the off-site screening facility or departure terminal, the baggage is transported from the origin airport to the destination airport. In a preferred embodiment, checked baggage is matched with the passenger upon boarding to ensure 100% positive passenger-baggage matching. If a GDO is delayed in transporting baggage to an airport and the scheduled flight is missed, or if the schedule flight is missed for any other reason such as screening difficulties or other security issues, arrangements for an alternate flight are made. Traveler claims for missing or damaged bags are preferably handled by personnel associated with the entity that operates the baggage pick-up and delivery service. Alternatively, claims for missing or damaged bags may be handled by the GDO. In step 418, the baggage is again collected from the airport by a porter or other personnel associated with the baggage delivery Web site and delivered to the final traveler-specified location. In the event that any problem is encountered during baggage transport and a traveler's baggage is not transported, the traveler is preferably immediately contacted both via telephone and electronic mail, if possible. The present system and method are further described in connection with FIG. 7. As shown in FIG. 7, when a user accesses the home page of Web site 310, he or she is prompted to enter his or her user login and password at Web page 3.1. If the user has not already registered as a member of the Web site, he or she is prompted to become a new member at Web page 3.2.1. The new member area of the Web site includes Web pages 3.2.2 describing how the baggage delivery system of the present invention operates. After registering as a new member, a user will receive a login name and password to access the site. After logging in, members are greeted at Web page 3.3.1.1 and provided with any member messages at Web page 3.3.1.2 regarding current transactions and/or promotions from the baggage-delivery system. Once within the member area, members can make baggage delivery arrangements and/or check their baggage delivery and flight status. If a member decides to make baggage delivery arrangements, the member enters the appropriate baggage information (e.g., number of bags, pick-up and destination locations) and a transaction record is created. The mileage and corresponding fee for the locations and number of bags specified by the member are calculated and submitted to the member for approval. As shown, this mileage and fee calculation may be performed by a third party (e.g., airline), but it should be understood that this function could easily be performed by the party maintaining Web site 310. For example, fees may be automatically generated from internal database rule rates established by the entity that maintains the baggage delivery Web site. If the member wishes to proceed with the baggage delivery transaction, a flight-specific baggage manifest is generated and sent to a GDO. Upon tagging of baggage by a GDO, or, alternatively, checking of the baggage at the airport by a member traveler, the baggage claim numbers are captured in database 314 (see FIG. 3) and matched with the transaction record created earlier. If a member wishes to check flight status, a third party feed of flight status information may be queried and the appropriate information is relayed to the member. As discussed briefly above, at any time during the baggage transportation process, a passenger may monitor the status of the baggage delivery process by using a computer or other communications device, such as a cellular telephone or PDA (e.g., Palm VII™, Handspring Visor™, etc.). As shown in FIG. 8, to perform such a status inquiry, a user will typically access Web site 310 and enter his or her flight confirmation number 802 and/or other baggage identifier code. After appropriate identity authentication (e.g., entry and confirmation of a user password), baggage delivery status 804 (e.g., delivered, delayed, etc.) is displayed to the user. This aspect is also quite advantageous to the business traveler, since he or she can silently access the Web site via a wireless communications device while at a business meeting to determine if his or her baggage has been successfully delivered to a hotel or residence. In some preferred embodiments, service providers and other entities such as travel agents, conventions, rental car companies and cruise lines maybe provided with an interface to the present system to permit such entities to offer baggage-related services to their customers. Alternatively or in addition, the Web sites of these entities may provide an Internet link to baggage-delivery Web site 310. While the present invention has been described with reference to the preferred embodiments, those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be clearly understood that the embodiments of the invention described above are not intended as limitations on the scope of the invention, which is defined only by the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Transporting baggage to and from the home or office to the airport is frequently one of the most cumbersome aspects of airline travel for business and pleasure travelers alike. Moreover, airline passengers carrying more than one small piece of luggage to the airport are often forced to wait in long lines to manually check their luggage with airline personnel. Typically, at check-in, an airline employee inputs the passenger's name or ticket number and the number of bags traveling with the passenger into a computer terminal. Tags are then generated and affixed to the baggage, which is then placed on a conveyor. Due to the time constraints associated with airline travel, this delay often forces passengers to hurry through the airport to board their flights on time, adding to an already stressful travel experience. The inconvenience associated with checking baggage continues even after passengers disembark an aircraft in their destination city. Travelers must typically wait at baggage carousels for their baggage to appear, while the line outside of the airport for ground transportation steadily grows. Those unlucky passengers whose bags are unloaded last from the aircraft will unfortunately spend additional time waiting in line for ground transportation. In addition, airline delays and/or unavoidable scheduling may often force business travelers to carry their baggage directly from the airport to a business meeting because they do not have sufficient time to check in at their hotel. The prior art includes baggage handling systems that are limited to intra-airport (or intra-terminal) baggage handling. For example, U.S. Pat. No. 5,793,639 to Yamazaki is directed to an intra-airport baggage receiving and handling method and system, with particular emphasis on the security aspects of baggage handling. Other prior art shipping services ship packages (e.g., a set of golf clubs) as freight separate from the passenger (i.e., the packages or baggage are not transported as checked baggage on a commercial airline flight with their passenger owner). Airlines will also typically deliver baggage to the home of a passenger when that baggage was temporarily lost or delayed during travel. None of these prior art systems, however, eliminates the need for travelers to carry their bags to the airport, wait in line to check their bags at the counter with airline personnel, with a skycap, or at an airport kiosk, retrieve their bags from an airport carousel, and carry their bags to a destination location. While passenger convenience remains an important priority for air travel providers, the events of Sep. 11, 2001 have also raised public awareness of security issues surrounding air travel. Making our airways safe has become a priority of both the air travel industry and our federal government. One focus of this wide-ranging security effort has been on baggage screening and efforts to ensure that checked bags do not contain explosive devices. To this end, Congress has mandated that by Dec. 31, 2002, 100% of checked baggage at all United States airports must be electronically screened for explosives. Critics of this mandate maintain that it will be impossible to achieve 100% baggage screening with currently-existing explosive detection system (EDS) facilities due to high false-positive screening rates and low throughput capability. They also suggest that the cost for installing a sufficient number of EDS machines to satisfy the mandate would exceed current budget estimates. They therefore recommend that Congress relax the mandate and push the deadline for 100% baggage screening to 2004. This would allow time to procure and install additional EDS machines and to realize improvements in EDS technology. Such a delay in implementing the mandate, however, will obviously adversely affect air travel security.
<SOH> SUMMARY OF THE INVENTION <EOH>A system and method for arranging the transportation of baggage for airline passengers from an origin location (e.g., home, office, etc.) to a destination location (e.g., hotel, convention center) and to enable passengers to monitor and verify the status of their baggage transportation via a computer or handheld communications device (cell phone, PDA, etc.) is disclosed. The disclosed system and method significantly alleviate the inconvenience associated with airline travel while providing enhanced security. In a preferred embodiment, flight information and baggage information from a user is received via a communications network such as the Internet. This may be accomplished by providing a link from an online travel provider Web site (e.g., an airline) to a baggage delivery Web site. In one preferred embodiment, information entered by a user during the purchase of an airline ticket is automatically captured by the baggage delivery Web site. Additional information relating to baggage delivery may be input directly by a user at the baggage delivery Web site. The baggage to be transported is identified and transported from an origin airport to a destination airport. The baggage is delivered to the user specified destination location. The method may further comprise collecting the baggage from an origin location other than the origin airport. Information concerning the location of the baggage maybe provided to a user via the communications network. In a preferred embodiment, the present system and method also provide improved air-travel security in a number of ways. For example, the present system and method may significantly increase the number of checked bags screened for explosive devices without requiring an increase in the number of EDS machines or improvements in screening technology. In a preferred embodiment, this is accomplished by collecting bags in advance of flight time and screening them during off-peak periods at a secure location outside of an airport's departure terminal. As noted, this significantly increases the number of bags that may be examined, and facilitates compliance with the Congressional mandate of 100% screening of checked bags.
20041019
20060822
20050421
71175.0
1
TRAN, KHOI H
BAGGAGE TRANSPORTATION SECURITY SYSTEM AND METHOD
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,969,036
ACCEPTED
External indicator for electronic toll communications
An external indicator for use in proximity to an on-board unit or transponder for an electronic toll collection (ETC) system. The external indicator senses RF transmissions from the on-board unit and/or roadside readers of the ETC system and produces sensory outputs when transmissions are detected. The external indicator receives RF signals, demodulates them, and analyses the demodulated RF signals to determine if it has received a roadside reader trigger signal and/or a transponder response signal. A sensory indicator, such as a visual, auditory, or kinetic device, alerts an occupant of a vehicle to the detected RF transmissions and, accordingly, to the likely occurrence of an ETC transaction.
1. An external indicator for use in proximity to an on-board unit of an electronic toll collection system, the electronic toll collection system including a roadside unit for communicating with the on-board unit and conducting an electronic toll collection (ETC) transaction, the external indicator comprising: an RF antenna; an RF detector coupled to said RF antenna for demodulating an RF signal induced in said RF antenna by an RF transmission and for outputting a demodulated signal; a processor having an input for receiving said demodulated signal and an output for providing an indicator signal, the processor having a component for determining if said demodulated signal is indicative of an ETC transmission between said on-board unit and said roadside unit and, if so, generating said indicator signal; and an indicator device coupled to the output of said processor, said indicator device producing a sensory event in response to said indicator signal. 2. The external indicator claimed in claim 1, wherein said processor includes a signal strength component for comparing a signal strength of said demodulated signal with a first threshold level. 3. The external indicator claimed in claim 2, wherein said signal strength component outputs a detection signal if said signal strength of said demodulated signal exceeds said first threshold level, and wherein said component for determining operates in response to said detection signal. 4. The external indicator claimed in claim 2, wherein said signal strength component comprises a first comparator for applying said first threshold level. 5. The external indicator claimed in claim 4, wherein said signal strength component further includes a second comparator for applying a second threshold level, wherein said second comparator outputs said demodulated signal to said component for determining. 6. The external indicator claimed in claim 1, wherein said component for determining determines whether said demodulated signal includes predetermined characteristics. 7. The external indicator claimed in claim 6, wherein said predetermined characteristics comprise characteristics indicative of an electronic toll collection transaction. 8. The external indicator claimed in claim 7, wherein said predetermined characteristics comprise characteristics associated with a transponder response signal protocol. 9. The external indicator claimed in claim 7, wherein said predetermined characteristics comprise characteristics associated with a reader communication protocol. 10. The external indicator claimed in claim 1, wherein said indicator device comprises at least one visual device, sensory device, or kinetic device. 11. The external indicator claimed in claim 1, wherein said indicator device is selected from the group consisting of a light emitting diode, a speaker, a buzzer, a chime, a vibratory mechanism, an incandescent light, and a display screen. 12. A method of signalling detection of a likely electronic toll collection (ETC) transaction between an on-board unit and a roadside unit, the method comprising the steps of: receiving and demodulating an RF signal to produce a demodulated signal; determining if the demodulated signal is indicative of an ETC communication between the roadside unit and the on-board unit and, if so, generating an indicator signal; and outputting said indicator signal to an indicator device for producing an sensory event in response to said indicator signal. 13. The method claimed in claim 12, including a step of comparing a signal strength of said demodulated signal with a first threshold level. 14. The method claimed in claim 13, including a step of outputting a detection signal based upon said step of comparing if said signal strength of said demodulated signal exceeds said first threshold level, and wherein said step of determining is performed in response to said detection signal. 15. The method claimed in claim 13, wherein said step of determining includes a second step of comparing the signal strength of said demodulated signal with a second threshold level. 16. The method claimed in claim 12, wherein said step of determining includes analyzing whether said demodulated signal includes predetermined characteristics. 17. The method claimed in claim 16, wherein said predetermined characteristics comprise characteristics indicative of an electronic toll collection communication. 18. The method claimed in claim 17, wherein said predetermined characteristics comprise characteristics associated with a transponder response signal protocol. 19. The method claimed in claim 18, wherein said step of analyzing includes digitizing said demodulated signal and comparing data content of said digitized signal with predetermined data content. 20. The method claimed in claim 17, wherein said predetermined characteristics comprise characteristics associated with a reader communication protocol. 21. The method claimed in claim 12, wherein said indicator device comprises at least one visual device, sensory device, or kinetic device. 22. The method claimed in claim 12, wherein said indicator device is selected from the group consisting of a light emitting diode, a speaker, a buzzer, a chime, a vibratory mechanism, an incandescent light, and a display screen.
FIELD OF THE INVENTION The present invention relates to radio frequency (RF) electronic toll collection and, in particular, to an external device for signalling occurrence of an electronic toll communication. BACKGROUND OF THE INVENTION Electronic toll collection systems conduct toll transactions electronically using RF communications between a vehicle-mounted transponder (a “tag”) and a stationary toll plaza transceiver (a “reader”). A reader is sometimes referred to as a roadside unit (RSU) and a tag is sometimes referred to as an on-board unit (OBU). An example of an electronic toll collection system is described in U.S. Pat. No. 6,661,352 issued Dec. 9, 2003 to Tiernay et al., and owned in common with the present application. The contents of U.S. Pat. No. 6,661,352 are hereby incorporated by reference. In a typical electronic toll collection system, the reader broadcasts a wakeup or trigger RF signal. A tag on a vehicle passing through the broadcast area or zone detects the wakeup or trigger signal and responds with its own RF signal. There are generally two types of tags: active transponders that generate and send their own signal and backscatter transponders that modulate a continuous wave signal provided by the reader. In either case, the tag responds by sending a response signal containing information stored in memory in the transponder, such as the transponder ID number, the last toll plaza ID number, etc. The reader receives the response signal and conducts an electronic toll transaction, such as by debiting a user account associated with the transponder ID number. The reader may then broadcast a programming RF signal to the tag. The programming signal provides the tag with updated information for storage in its memory. It may, for example, provide the tag with a new account balance and/or a new toll plaza ID number. Some existing electronic toll collection systems feature relatively simple on-board units (tags) that have no sensory indicators, such as lights, display screens, speakers, or other sensory devices. Accordingly, a vehicle occupant cannot know whether or not his or her on-board unit is functioning correctly. In particular, as the vehicle passes through a toll collection plaza or zone the vehicle occupant may receive no indication as to whether a toll transaction has taken place. It would be advantageous to provide for a device that may be used in conjunction with existing electronic toll collection system tags to signal occurrence of an electronic toll communication. SUMMARY OF THE INVENTION The present invention provides an external indicator for use in proximity to an on-board unit or transponder for an electronic toll collection (ETC) system. The external indicator senses RF transmissions from the on-board unit and/or roadside readers of the ETC system and produces sensory outputs when transmissions are detected. The external indicator receives RF signals, demodulates them, and analyses the demodulated RF signals to determine if it has received a roadside reader trigger signal and/or a transponder response signal. A sensory indicator, such as a visual, auditory, or kinetic device, alerts an occupant of a vehicle to the detected RF transmissions and, accordingly, to the likely occurrence of an ETC transaction. In one aspect, the present invention provides external indicator for use in proximity to an on-board unit of an electronic toll collection system, the electronic toll collection system including a roadside unit for communicating with the on-board unit and conducting an electronic toll collection (ETC) transaction. The external indicator includes an RF antenna and an RF detector coupled to the RF antenna for demodulating an RF signal induced in the RF antenna by an RF transmission and for outputting a demodulated signal. It also includes a processor having an input for receiving the demodulated signal and an output for providing an indicator signal, the processor having a component for determining if the demodulated signal is indicative of an ETC transmission between the on-board unit and the roadside unit and, if so, generating the indicator signal. The external indicator includes an indicator device coupled to the output of the processor, the indicator device producing a sensory event in response to the indicator signal. In another aspect, the present invention provides a method of signalling detection of a likely electronic toll collection (ETC) transaction between an on-board unit and a roadside unit. The method includes the steps of receiving and demodulating an RF signal to produce a demodulated signal, determining if the demodulated signal is indicative of an ETC transmission between the roadside unit and the on-board unit and, if so, generating an indicator signal, and outputting the indicator signal to an indicator device for producing an sensory event in response to the indicator signal. Other aspects and features of the present invention will be apparent to those of ordinary skill in the art from a review of the following detailed description when considered in conjunction with the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Reference will now be made, by way of example, to the accompanying drawings which show an embodiment of the present invention, and in which: FIG. 1 shows a perspective view of an extent of toll highway having an electronic toll collection system; FIG. 2 shows a block diagram of an external indicator; FIG. 3 shows a simplified circuit diagram of an embodiment of the external indicator; and FIG. 4 shows, in flowchart form, a method of signalling detection of an electronic toll collection transaction using an external indicator. Similar reference numerals are used in different figures to denote similar components. DESCRIPTION OF SPECIFIC EMBODIMENTS Some of the embodiments described below relate to “open road” electronic toll collection systems, wherein vehicles are not gated through a toll plaza. It will be appreciated that the present invention may be used in conjunction with such electronic toll collection systems and with other electronic toll collection systems, including lane-based toll booth systems. Moreover, it will be appreciated that the present invention is not restricted to highway toll payment, but rather may be used in conjunction with other electronic payment systems employing vehicle-borne transponders and external stationary readers, such as electronic parking collection systems. Reference is first made to FIG. 1, which shows an extent of toll highway which represents a communication zone 100 having a downstream direction indicated by arrows 110. At a point which corresponds to an entrance or an exit point from the highway, tolling equipment is provided comprising a photography gantry 11 and, just downstream therefrom, a radio frequency (RF) toll gantry 13 with antennae 112 thereon. Motor vehicles 12 and 14 are shown approaching the gantries 11, 13 and motor vehicles 16 and 18 are shown having just passed the gantries 11, 13. A roadside RF system 20 includes a processor 23 which includes the means for coordinating a reader 22, Application Processing (not shown), Angle of Arrival Processor (not shown), their interfaces and data links. The reader 22 communicates with motor vehicle-borne transponders by means of the gantry antennae 112. Such motor vehicle-borne transponders are shown as 12T, 14T, 16T, and 18T. The protocol for communication between said transponders 12T, 14T, 16T, and 18T and the reader 22 is a two-way RF communications system, forming part of an electronic toll collection system. The RF signals used are normally about 915 MHz and signal at a data bit rate of about 500 kbps. The roadside RF system 20 is part of the electronic toll collection system. The roadside RF system 20 and the RF toll gantry 13 output a wakeup (or trigger) signal which will activate a transponder circuit within the communications zone 100. Each transponder will attempt to activate into one of several activation time slots at random. The reader 22 and the communications protocol will ensure that each communication with the transponders 12T, 14T, 16T, and 18T is in a different time slot. The reader 22 continuously polls for transponders that have not previously communicated or have just entered the zone 100. In another embodiment, the toll gantry 13 is limited in power and range and is disposed so as to ensure only one vehicle is within range of the toll gantry 13 at one time, thereby eliminating the need for a time division multiplexing communication protocol. Other embodiments of an electronic toll highway system will be apparent to those of ordinary skill in the art. The communication protocol will customarily cause the transponders 12T, 14T, 16T, and 18T to communicate specific data carried in memory. The data includes characteristics, such as the transponder identification code, class type (e.g. standard, commercial, recreational), last entry/exit point and, in some applications, account status or balance and battery condition. At least one of the motor vehicles, for example motor vehicle 12, is equipped with a transponder 12T that does not includes any sensory indicators to signal to the driver that an electronic toll transaction has occurred or is occurring. Accordingly, the motor vehicle 12 includes an external indicator 30. The external indicator 30 is placed in close proximity to the transponder 12T. In some embodiments, the external indicator 30 may be provided with a sticky backing or other mechanism for affixing the external indicator 30 to the interior of the windshield in close proximity to the transponder 12T. In another embodiment, the external indicator 30 includes a chain, hook or other mechanism for hanging the external indicator 30 from, for example, the rear-view mirror of the motor vehicle 12. In yet another embodiment, the external indicator 30 includes a bracket, sticky pad, or other mechanism for affixing the external indicator 30 to the dashboard of a vehicle. Other mechanisms for placing the external indicator 30 in relatively close proximity to a transponder will be apparent to those of ordinary skill in the art. The external indicator 30 detects RF transmissions between the transponder 12T and the reader 22 or, more particularly, the gantry-mounted antennae 112. The external indicator 30 includes a sensory output device for signalling to an occupant of the motor vehicle 12 that an RF transmission has been detected. In this manner, the vehicle occupant is notified that the transponder 12T is engaged in communications with the reader 22. The occupant may conclude that an electronic toll collection (ETC) transaction is being processed by the roadside RF system 20. The sensory output produced by the external indicator 30 may take any form suitable for notifying an occupant of the vehicle that RF transmissions have been detected. For example, the external indicator 30 may include a visual indicator, such as one or more light emitting diodes (LEDs). It may also, or alternatively, include an auditory indicator, such as a buzzer, chimes, speaker, or other auditory device. In some embodiments, the sensory output may be kinetic, such as through a vibratory mechanism. Different sensory outputs may be used in combination. In some embodiments, the external indicator 30 may be coupled to the motor vehicle 12 on-board electronics such that it sends an indicator signal to the motor vehicle 12 systems and the sensory output is generated by the motor vehicle 12 system. For example, the motor vehicle 12 dashboard display may provide an indicator light or sound in response to the indicator signal. Other methods of signalling the vehicle occupant will be apparent to one of ordinary skill in the art. Embodiments of the external indicator 30 may be adapted to detect RF ETC communications with varying degrees of specificity. In one embodiment, the external indicator 30 detects the RF wakeup signal broadcast by the reader 22. In this embodiment, the external indicator 30 produces an indicator signal whenever the external indicator 30 enters the communications zone 100 where the reader 22 is broadcasting the RF wakeup signal. In another embodiment, the external indicator 30 detects the RF wakeup signal broadcast by the reader 22 and compares the detected RF signal to a predetermined pattern to confirm that the signal is in fact an ETC wakeup signal and not an RF signal relating to another type of system. For example, if RF wakeup signal is characterized by a transmission having a predefined duration, then the external indicator may assess whether the detected signal features the predefined duration. In another example, if the RF wakeup signal is characterized by a particular set of pulses (or a pattern) at a given frequency, then the external indicator 30 assesses whether the detected signal matches the expected set of pulses (or pattern). In a further embodiment, the external indicator 30 detects the RF wakeup signal broadcast by the reader 22 and awaits a response signal from the transponder 12T. If the external indicator 30 detects a response signal from the transponder 12T, then it generates the indicator signal to signify that an ETC communication has been detected and that an ETC transaction is likely taking place. In such an embodiment, the external indicator 30 may detect the response signal on the basis of a comparison of the detected response signal with a predetermined response signal pattern to verify that the detected signal is a legitimate transponder response signal. For example, the external indicator 30 may compare the duration of the detected response signal with a predefined expected duration for a legitimate response signal. In another example, the external indicator 30 may compare the coding scheme of the detected response signal with the predefined coding scheme associated with a legitimate transponder response signal, such as Manchester encoding. In yet another example, the external indicator 30 may compare the data contents or a portion of the contents of the detected response signal with a predetermined pattern or result, such as a check code, an ID number format, or other expected and verifiable content. Those of ordinary skill in the art will appreciate that detecting the response signal from the transponder 12T is preferable to simply detecting the wakeup signal from the reader 22 since the response signal at least indicates that the transponder 12T is communicating with the reader 22. In an embodiment wherein only the wakeup signal is detected, the external indicator 30 only indicates when a reader is in the vicinity, and not whether the transponder is communicating with the reader. To provide a device that indicates to a driver that an ETC transaction has occurred, it is preferable that the external indicator 30 detect the response signal from the transponder. The external indicator 30 could be designed to detect a subsequent programming signal from the reader; however, the external indicator 30 would need to be able to distinguish between a programming signal broadcast to its associated transponder 12T as opposed to a transponder in another vehicle in the communications zone 100. In some embodiments, the external indicator 30 may provide a sensory indication corresponding to detection of a reader trigger signal and a different sensory indication corresponding to detection of a transponder response signal. For example, upon detecting a reader trigger signal, the external indicator may begin flashing a yellow LED to signal that the vehicle has entered a toll collection area. Once a transponder response signal is detected, the external indicator may illuminate a green LED to indicate that the transponder has responded and that an ETC transaction has likely occurred. In order to conserve power and battery life, the external indicator 30 may operate in a low-current sleep mode until it receives the wakeup signal from the reader 22. Thereafter it powers-up and attempts to detect the response signal from the transponder. Once the external indicator 30 detects the response signal and triggers the sensory indicator, or once the external indicator 30 fails to detect a response signal and times out, then it re-enters the low-current sleep mode to await receipt of a further wake-up signal. To avoid being re-triggered in the same toll plaza, the external indicator 30 may include a timer component for ignoring wakeup signals for a predetermined duration after triggering a sensory indicator or timing out without detecting a response signal. In another embodiment, the external indicator 30 may examine the contents of any detected signals to determine whether the signals relate to the same transaction or the same toll plaza. For example, the external indicator 30 may examine any communications from the reader to determine if the reader ID is the same as was previously received. If so, the external indicator 30 may conclude that it is in the same toll plaza. Alternatively, the external indicator 30 may examine the contents of any detected transponder response signals to determine whether it is in the same toll plaza. For example, it may examine the last transaction field in the response signal to see if the data remains the same. Reference is now made to FIG. 2, which shows a block diagram of the external indicator 30. The external indicator 30 includes an RF antenna 32 and an RF detector 34 coupled to the RF antenna 32. A current is induced in the RF antenna 32 by a received RF signal. The RF detector 34 demodulates the received signal and outputs a baseband (i.e. demodulated) signal. The external indicator 30 further includes an analog signal processor 36, a digital signal processor 38, and an indicator device 40. The analog signal processor 36 receives the baseband signal from the RF detector 34. The analog signal processor 36 may include a comparator component for performing signal strength threshold detection. It also may include signal conditioning or shaping components for removing or compensating for anomalies introduced by the channel and/or for shaping the analog signal into a digital signal. The analog signal processor 36 outputs a detected signal. The detected signal is input to the digital signal processor 38. In one embodiment, the analog signal processor 36 performs signal shaping to convert the baseband analog signal to a digital received signal, which is input to the digital signal processor 38. The digital signal processor 38 then analyzes the digital received signal to determine if the received signal features certain required characteristics. For example, the digital signal processor 38 may attempt to locate a predetermined bit pattern that is expected in a transponder response signal. Successful detection of a qualifying signal is achieved if the digital signal processor 38 determines that the received signal has the required characteristics. The digital signal processor 38 has an output connected so as to trigger the indicator device 40 once the qualifying signal is detected. It will be understood that the particular characteristics that will be indicative of a transponder response signal are dependent upon the communications protocol of the particular ETC system. As described above, the indicator device 40 may include auditory, visual, or kinetic signalling devices. In one embodiment, the indicator device 40 includes one or more lights. In another embodiment, the indicator device 40 includes a buzzer. Other variations will be apparent to those skilled in the art. Those of ordinary skill in the art will appreciate that various functions described as being performed by the analog signal processor 36 may, in other embodiments, be performed by the digital signal processor 38. Similarly, in some embodiments functions described as being performed by the digital signal processor 38 may be implemented as analog signal processing. In some embodiments, either the analog signal processor 36 or the digital signal processor 38 may be eliminated, with all signal processing functions being performed by the remaining processor. It will also be understood that the analog signal processor 36 may be implemented by a number of analog or integrated circuit elements in combination, including comparators, operational amplifiers, and various other devices. The digital signal processor 38 may be implemented using a digital signal processing (DSP) chip, a microcontroller, a microprocessor, an application specific integrated circuit (ASIC) and/or other digital devices. Various such devices may operate under stored program control and the suitable programming of such devices lies within the knowledge of one of ordinary skill in the art having regard to the description herein. Software programs may be stored in a memory element (not shown) associated with the digital device. Reference is now made to FIG. 3, which shows a simplified circuit diagram of an embodiment of the external indicator 30. In this embodiment, the external indicator 30 is designed to detect a reader trigger signal. Upon detecting the reader trigger signal, the external indicator 30 is designed to detect a transponder response signal. A detected transponder response signal is analyzed to determine whether it includes predetermined characteristics before it is deemed to be a qualifying transponder response signal. The analog signal processor 36 includes a first comparator 42 and a second comparator 44. The first comparator 42 assesses whether a received and demodulated signal (i.e. a baseband signal) from the RF detector 34 meets a first threshold level. The first threshold level is established by a first reference voltage 46 which serves as an input to the first comparator 42. The other input to the first comparator 42 is the baseband signal from the RF detector 34. The first reference voltage 46, and thus the first threshold level, is set so as to establish a minimum signal strength for a detected reader trigger signal. If a reader trigger signal does not meet the first threshold level, then the external indicator 30 does not react to it. Once a detected reader trigger signal meets the first threshold level, the first comparator 42 outputs a detection signal. It will be appreciated that when the first comparator 42 receives an input baseband signal having a sufficient signal strength the thresholding operation of the first comparator 42 results in signal shaping so as to output a binary detected signal. In this embodiment, the digital signal processor 38 comprises a microcontroller or digital circuit having an input port 50, an enable output port 54, and a data input port 52. The binary detected signal output from the first comparator 42 is input to the input port 50, with interrupt capability. The binary detected signal may be digitized and analyzed by the digital signal processor 38 so as to qualify it as a valid reader trigger signal. For example, the digital signal processor 38 may evaluate the duration of the binary detected signal or the pulse pattern of the signal. If the binary detected signal is qualified as a reader trigger signal, then the digital signal processor 38 outputs an enable signal from the enable output port 54. The enable signal enables or powers the second comparator 44. The second comparator 44 is for detecting receipt of a transponder response signal. The inputs to the second comparator 44 are the demodulated received baseband signal from the RF detector 34 and a second reference voltage 48. The second reference voltage 48 is established to set a minimum signal strength (i.e. a second threshold level) for a received signal to qualify as a detected transponder response signal. Advantageously, the first threshold level for a qualifying trigger signal may be set independently of the second threshold level for a qualifying response signal. If the baseband signal meets the second threshold level, then the baseband signal is output from the second comparator 44. The output of the second comparator 44 is connected to the data input port 52 of the digital signal processor 38. Accordingly, if signal strength of the baseband signal meets the second threshold level, then it is input to the digital signal processor 38. Again, it will be appreciated that the second comparator 44 performs a binary signal shaping operation to output a binary signal. The digital signal processor 38 digitizes the binary signal to create a digital received signal and it analyzes whether the digital received signal meets predetermined criteria for qualification as a transponder response signal. The predetermined criteria may, for example, comprise a predefined signal duration, a coding scheme, and/or a predetermined data content. The data content comparison may be based upon the contents of a particular field of data that may be expected to appear in a valid transponder response signal. The digital signal processor 38 further includes one or more indicator output ports 56 (shown as 56a and 56b). If the digital received signal qualifies as a transponder response signal, then the digital signal processor 38 outputs an indicator signal on the indicator output ports 56. The output ports 56 are coupled to one or more indicator devices 40 (shown as 40a and 40b). As shown, in some embodiments, the indicator devices 40 may comprise LEDs 40a or a buzzer 40b. It will be understood that the external indicator 30 may include other components for performing other signal processing operations. For example, the external indicator 30 may include filters and other components for signal shaping and conditioning. Reference is now made to FIG. 4, which shows, in flowchart form, a method 150 of signalling detection of an electronic toll collection transaction using an external indicator. The method 150 shown in FIG. 4 is based upon an embodiment wherein a reader transmission is first detected and then a transponder transmission is detected and compared with predetermined criteria. It will be appreciated that other embodiments will involve a variation of the method 150. For example, in some embodiments, the method 150 may involve a comparison of the reader transmission with certain predetermined criteria to verify that a reader trigger signal has been detected. The method 150 begins in step 152, wherein the external indicator is in its sleep mode. It will be understood by those of ordinary skill in the art that the sleep mode is a mode in which the external indicator shuts off all circuits except the low current RF receiver so as to maintain minimum current consumption. In step 153 the RF receiver receives an RF signal. In step 154 the RF signal is demodulated to produce a baseband signal. As described above in connection with FIG. 3, the receipt and demodulation of the RF signal may be implemented using an antenna and RF detector. In one embodiment, the modulation scheme is amplitude modulation; however, other types of modulation are included within the scope of the present invention. In step 156, the baseband signal strength is compared against a first threshold signal level. The first threshold signal level is established to set a minimum signal strength required for the external indicator to deem a received signal to constitute a reader transmission. In step 158, the external indicator assesses whether the baseband signal qualifies as a reader transmission. In some embodiments, this qualification step may constitute simply determining if the signal meets the first threshold level. In other embodiments, the baseband signal may be digitized and assessed against other criteria, such as duration, pattern, etc. If the baseband signal qualifies as a reader trigger signal, then the method 150 continues to step 160. If not, then the method 150 returns to step 152 to return to sleep mode and to continue listening for a reader trigger signal. Having now received a reader trigger signal, in steps 160 and 162 the external indicator continues to receive and demodulate incoming RF signals. The baseband signal resulting from demodulation is compared against a second threshold to evaluate its signal strength in step 164. The second threshold may be the same as the first threshold or it may be different. Typically, the second threshold will be established at a different level to account for the expected differences in signal strength as between a reader transmission and a tag transmission at the locality of the external indicator. The comparison in step 164 establishes whether the received signal may be deemed a potential transponder response signal. In step 166, the external indicator assesses whether the baseband signal meets the second threshold level for signal strength and may therefore be deemed a potential transponder response signal. If the second threshold level is met, then the method 150 continues in step 168; otherwise, the method 150 returns to step 160 to continue awaiting receipt of a signal of sufficient strength. The method 150 may include a timeout evaluation step 16.7 in which the method 150 determines whether a preset duration has elapsed without detection of a potential transponder response signal. If such a duration has elapsed, then the method 150 may revert back to step 152 to re-enter sleep mode and await receipt of another reader trigger signal. In step 168, the potential transponder response signal, i.e. baseband signal, is evaluated to determine if it is a transponder response signal. In particular, it is evaluated against predetermined criteria indicative of a transponder response signal. In one embodiment, this evaluation comprises digitizing the baseband signal and comparing the digitized signal with a predetermined bit pattern. If the predetermined bit pattern is detected in the digitized signal, then the external indicator may deem the signal to be a transponder response signal in step 170. If the baseband signal does not meet the predetermined criteria, then the method 150 returns to step 160 to continue searching for a transponder response signal. The method 150 may include a timeout evaluation step 171 in which the external indicator assesses whether a predetermined length of time has elapsed without detection of a validated transponder response signal. If so, then the method 150 may return to step 152 to re-enter sleep mode and await a reader trigger signal again. If a valid transponder transmission is detected in step 170, then in step 172 the external indicator may assess whether the transmission relates to the same transaction. In some embodiments, the external indicator may be designed to output an indicator signal only once per toll plaza, so it may evaluate whether the tag transmission relates to the same toll plaza transaction. It may do this on the basis of comparing a reader ID with the most recently detected reader ID, or comparing the last transaction field in the response signal with the most recently detected last transaction field. Other comparisons or evaluation may be apparent to those of ordinary skill in the art. If the transponder transmission relates to the same toll plaza or transaction, then from step 172 the method 150 returns to step 152 to re-enter sleep mode and await a new reader trigger signal. Otherwise, the method 150 continues to step 172 wherein the external indicator outputs an indicator signal. The indicator signal triggers the output of a sensory indication, such as a visual, auditory or kinetic stimulus, to alert a vehicle occupant to the detection of a likely ETC transaction. The sensory indication may be output for a predetermined duration; for example, a light may be illuminated for a number of seconds and/or a buzzer or beeper may sound for a preset period or for a preset number of discreet instances. An ETC system that uses passive (i.e. backscatter) tags presents particular difficulties. The tags operate by receiving a continuous wave RF transmission from the roadside reader. The tags do not broadcast an independent signal. Instead they modulate the continuous wave RF signal by switching the load coupled to the RF antenna on the tag. The resulting modulation is sensed at the antenna of the roadside reader. The external indicator will receive both the continuous wave signal from the reader and the continuous wave signal as modulated by the transponder. The external indicator may employ a demodulator with baseband filtering capability to obtain the transponder response signal (i.e. the reflected signal). The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Certain adaptations and modifications of the invention will be obvious to those skilled in the art. Therefore, the above discussed embodiments are considered to be illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
<SOH> BACKGROUND OF THE INVENTION <EOH>Electronic toll collection systems conduct toll transactions electronically using RF communications between a vehicle-mounted transponder (a “tag”) and a stationary toll plaza transceiver (a “reader”). A reader is sometimes referred to as a roadside unit (RSU) and a tag is sometimes referred to as an on-board unit (OBU). An example of an electronic toll collection system is described in U.S. Pat. No. 6,661,352 issued Dec. 9, 2003 to Tiernay et al., and owned in common with the present application. The contents of U.S. Pat. No. 6,661,352 are hereby incorporated by reference. In a typical electronic toll collection system, the reader broadcasts a wakeup or trigger RF signal. A tag on a vehicle passing through the broadcast area or zone detects the wakeup or trigger signal and responds with its own RF signal. There are generally two types of tags: active transponders that generate and send their own signal and backscatter transponders that modulate a continuous wave signal provided by the reader. In either case, the tag responds by sending a response signal containing information stored in memory in the transponder, such as the transponder ID number, the last toll plaza ID number, etc. The reader receives the response signal and conducts an electronic toll transaction, such as by debiting a user account associated with the transponder ID number. The reader may then broadcast a programming RF signal to the tag. The programming signal provides the tag with updated information for storage in its memory. It may, for example, provide the tag with a new account balance and/or a new toll plaza ID number. Some existing electronic toll collection systems feature relatively simple on-board units (tags) that have no sensory indicators, such as lights, display screens, speakers, or other sensory devices. Accordingly, a vehicle occupant cannot know whether or not his or her on-board unit is functioning correctly. In particular, as the vehicle passes through a toll collection plaza or zone the vehicle occupant may receive no indication as to whether a toll transaction has taken place. It would be advantageous to provide for a device that may be used in conjunction with existing electronic toll collection system tags to signal occurrence of an electronic toll communication.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides an external indicator for use in proximity to an on-board unit or transponder for an electronic toll collection (ETC) system. The external indicator senses RF transmissions from the on-board unit and/or roadside readers of the ETC system and produces sensory outputs when transmissions are detected. The external indicator receives RF signals, demodulates them, and analyses the demodulated RF signals to determine if it has received a roadside reader trigger signal and/or a transponder response signal. A sensory indicator, such as a visual, auditory, or kinetic device, alerts an occupant of a vehicle to the detected RF transmissions and, accordingly, to the likely occurrence of an ETC transaction. In one aspect, the present invention provides external indicator for use in proximity to an on-board unit of an electronic toll collection system, the electronic toll collection system including a roadside unit for communicating with the on-board unit and conducting an electronic toll collection (ETC) transaction. The external indicator includes an RF antenna and an RF detector coupled to the RF antenna for demodulating an RF signal induced in the RF antenna by an RF transmission and for outputting a demodulated signal. It also includes a processor having an input for receiving the demodulated signal and an output for providing an indicator signal, the processor having a component for determining if the demodulated signal is indicative of an ETC transmission between the on-board unit and the roadside unit and, if so, generating the indicator signal. The external indicator includes an indicator device coupled to the output of the processor, the indicator device producing a sensory event in response to the indicator signal. In another aspect, the present invention provides a method of signalling detection of a likely electronic toll collection (ETC) transaction between an on-board unit and a roadside unit. The method includes the steps of receiving and demodulating an RF signal to produce a demodulated signal, determining if the demodulated signal is indicative of an ETC transmission between the roadside unit and the on-board unit and, if so, generating an indicator signal, and outputting the indicator signal to an indicator device for producing an sensory event in response to the indicator signal. Other aspects and features of the present invention will be apparent to those of ordinary skill in the art from a review of the following detailed description when considered in conjunction with the drawings.
20041020
20070828
20060420
86763.0
G08G1065
0
SWARTHOUT, BRENT
EXTERNAL INDICATOR FOR ELECTRONIC TOLL COMMUNICATIONS
UNDISCOUNTED
0
ACCEPTED
G08G
2,004
10,969,261
ACCEPTED
Disposable faller bar with improved core
A faller bar assembly includes a support member that defines a generally annular shaft. A sleeve defines a tubular wall with a generally annular opening and receives the generally annular shaft. The sleeve includes a rib that projects outwardly from the tubular wall and supports a plurality of combing needles. The rib includes a rib wall disposed within a plane defined by an axis of the generally annular opening. The rib wall defines an intermediate surface with the tubular wall having an angle of between 40 and 55 degrees to the plane defined by the axis.
1. A faller bar assembly, comprising: a support member defining a generally annular shaft; a sleeve defining tubular wall with a generally annular opening for receiving said generally annular shaft; said sleeve including a rib projecting outwardly from said tubular wall and having a plurality of combing needles spaced therealong; and wherein said rib includes a rib wall disposed within a plane defined by an axis of said generally annular opening, said rib wall defining an intermediate surface with said tubular wall having an angle of between generally 40° and 55° to said plane defined by said axis. 2. An assembly as set forth in claim 1, wherein said generally annular shaft includes a shaft planar surface and said tubular wall defines an inner wall planar surface positioned in an abutting relationship with said shaft planar surface. 3. An assembly as set forth in claim 1, wherein said sleeve comprises a polymeric substrate. 4. An assembly as set forth in claim 3, wherein said polymeric substrate includes strengthening agents. 5. An assembly as set forth in claim 1, wherein said combing needles are retained by said rib. 6. An assembly as set forth in claim 5, wherein said coming needles are integrally molded with said rib. 7. An assembly as set forth in claim 1, wherein said support member comprises a metallic substrate. 8. An assembly as set forth in claim 1, wherein said tubular wall includes a wall thickness of between generally 1.1 mm and generally 0.9 mm. 9. An assembly as set forth in claim 8, wherein said shaft includes a shaft diameter of between generally 6.2 mm to generally 7.0 mm. 10. An assembly as set forth in claim 1, wherein said shaft includes a knurled surface interfacing with said sleeve thereby providing an improved torque resistance. 11. An assembly as set forth in claim 1, wherein said intermediate surface defines an angle with said plane defined by said axis of generally 45°. 12. A faller bar assembly for use with a drafting machine, comprising: a support member defining a diameter and being circumscribed by a sleeve having a sleeve thickness and supporting a plurality of combing needles, wherein said support member is adapted to be affixed to the drafting machine for combing slivers of fibrous material, and said diameter of said support member defines a ratio with said thickness of said sleeve of between generally 8 and 6 to 1. 13. An assembly as set forth in claim 12, wherein said diameter of said support member is generally 7 mm. 14. An assembly as set forth in claim 12, wherein said thickness of said sleeve is generally 1 mm. 15. An assembly as set forth in claim 12, wherein said sleeve includes a rib and said combing needles are dispose in said rib. 16. An assembly as set forth in claim 12, wherein said sleeve defines an intermediate section and said rib defines a plane, said intermediate section forming an angle with said plane of between generally 40° and 55°. 17. An assembly as set forth in claim 16, wherein said sleeve defines an intermediate section and said rib defines a plane, said intermediate section forming an angle with said plane of generally 45°. 18. An assembly as set forth in claim 12, wherein said sleeve defines an intermediate section and said rib defines a plane, said intermediate section forming an angle with said plane of between generally 40° and 55°. 19. An assembly as set forth in claim 12, wherein said intermediate section defines a corner on said sleeve wall. 20. An assembly as set forth in claim 12, wherein said diameter of said support member defines a ratio with said thickness of said sleeve of generally 7 to 1.
PRIOR APPLICATIONS This application claims priority to U.S. Provisional Patent Application No. 60/512,722 filed on Oct. 20, 2003. FIELD OF THE INVENTION The present invention relates generally to a drafting machine used for combing a sliver mass of fibrous material to make yarn. More specifically, the present invention relates to an improved faller bar for use in the drafting machine. BACKGROUND OF THE INVENTION During the manufacturing of yarn products, slivers of fibrous material, disposed in a tangled mass, must be combed to orient the individual fibers in a generally uniform direction. To orient the individual fibers in a generally uniform direction, the sliver mass is combed by a series of faller bars, typically numbering 144. A typical faller bar includes a plurality of combing needles, similar in appearance to a hair comb, that comb the sliver mass to orient the individual fibers in the generally uniform direction. Forces are generated upon the faller bar by pulling the sliver mass through the series of faller bars. These forces are known to break and bend the combing needles on a frequent basis. Previously, faller bars have been manufactured entirely out of metallic substrates where the combing needles are mounted in the metallic substrate. The metallic faller bar is known to be expensive and difficult to replace when damaged. Therefore, disposable faller bars have been introduced to the industry to reduce the cost of replacing damaged faller bars. Known replaceable faller bars include a support member defining a generally angular shaft having a diameter of less than 6 mm. The sleeve typically includes a rib projecting outwardly that supports a plurality of combing needles used to orient the individual fibers of the sliver mass as set forth above. A sleeve defines a tubular wall having a generally annular opening that receives the support member. Problems with this design arise due to the narrow diameter, of about 6 mm or less of the support member. The faller bar is known to flex and break due to the narrow diameter of the support member. One such faller bar is disclosed in United States Patent Application No. 2002/0069504 where the disclosed support member has a narrow diameter to provide enough sleeve wall thickness to enable the sleeve to be molded over the support member. In addition, a flexing faller bar has also resulted in defects in the sliver mass. To reduce the amount of flexing characteristic of presently available faller bars, a smaller sliver mass is introduced to the drafting machine, which results in reduced productivity. Because the limited space available inside a drafting machine, it has been impossible to increase the diameter of the support member due to the additional diameter of up to about 2 mm required of the sleeve. The sleeve heretofore has required a tubular wall thickness of about 2 mm so that the polymers used to form the sleeve can flow through the sleeve mold without producing defects, such as, for example a void in the tubular wall resulting from inadequate flow of material. An increase in diameter of the support member has required the increase in diameter of the sleeve which results in a non-functional faller bar due to the lack of space inside the drafting machine. Therefore, it would be desirable to produce a faller bar having a sleeve with narrower wall thickness so that an increased diameter of the support member can be introduced to the drafting machine. SUMMARY OF THE INVENTION A support member for a faller bar assembly includes a generally annular shaft. A sleeve defining a tubular wall with a generally annular opening receives a generally annular shaft of the support member. The sleeve includes a rib projecting outwardly from the tubular wall having a plurality of combing needles spaced therealong. The rib includes a rib wall disposed within a plane defined by an axis of the generally annular opening. The rib wall defines an intermediate surface with the tubular wall having an angle of between generally 40° and 50° to the plane defined by the axis. In order to increase the diameter of the support member, the tubular wall of the sleeve must have a thinner cross section or wall thickness because the overall diameter of the assembly cannot increase. One reason prior art tubular wall thicknesses have exceeded 2 mm is primarily to allow polymer materials to flow through a plastic mold during the injection molding process. The inventive faller bar has provided a design that allows for the increase in the diameter of the generally annular shaft, which has unexpectedly increased the strength of the faller bar by over 100%. By adding 1 mm to the diameter of the annular shaft from 6 mm to generally 7 mm has increased the breaking strength from approximately 3,500 lbs. to approximately 7,000 pounds. However, in order to provide space for this increased generally annular shaft thickness within the drafting machine, the tubular wall thickness must be decreased by an equivalent amount. Because prior attempts to mold the sleeve having a tubular wall thickness of about 1 mm or less has been unsuccessful due to the narrow die cavity, dimensional adjustments must necessarily to be made to the sleeve to improve the flowability of the polymer used to form the sleeve. Specifically, an intermediate surface disposed between the rib wall and the tubular wall has been added and was found to be necessary for molding a tubular wall having a thickness of about 1 mm or less. It was determined that the intermediate surface disposed between the rib wall and the tubular wall must have an angular relationship with the plane defined by an axis of the tubular wall and the rib wall of between about 40° and 50°. An angle greater than about 50° requires more space of the sleeve than is available inside the drafting machine. An angle less than about 40° proved to be ineffective when trying to injection mold the tubular wall. Therefore, the unique dimensions of the present inventive faller bar assembly have proven effective in solving the problems associated with prior art disposable faller bar assemblies. BRIEF DESCRIPTION OF THE DRAWINGS Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein: FIGS. 1a and 1b show a prior art disposable faller bar; FIGS. 2a and 2b show one preferred embodiment of the faller bar of the present invention; FIG. 3 shows a cross sectional view of an alternative embodiment of the present invention; and FIG. 4 shows a further alternative embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS. 1a and 1b, a prior art faller bar is generally shown at 10 for use in a drafting machine (not shown). The faller bar 10 includes a support member 12 with an annular shaft 14 with a diameter of generally 6 mm or less. A prior art sleeve 16 includes a plastic bearing surface 18 that receives the annular shaft 16. A rib 20 extends outwardly from the tubular wall 22. A plurality of combing needles 24 are spaced along the rib 20 for combing a sliver mass being processed in the drafting machine. The tubular wall 22 has a thickness of generally 2 mm when subtracting the inner diameter of the wall 22 from the outer diameter of the wall 22. Given the configuration of the assembly 10, this is the minimum wall thickness required to enable polymeric material to flow throughout the sleeve 16 during the molding process. Referring now to FIGS. 2a and 2b, the inventive faller bar assembly is generally shown at 30. The inventive faller bar assembly 30 includes a support member 32 having a generally annular shaft 34. A sleeve 36 defines a tubular wall 38 with a generally annular opening 40 for receiving the generally annular shaft 34 of the support member 32. The sleeve 36 includes a rib 42 that extends outwardly from the tubular wall 38. A plurality of combing needles 44 are spaced along the rib 42. Various sizes of combing needles 44 may be used to achieve a desired result while combing the sliver mass being processed through the drafting machine. Up to around 72 combing needles 44 are integrally molded into the rib 42 in a spaced relationship. The density of the combing needles 44 is dependent upon the size of the combing needles 44 used. For example, larger combing needles 44 may have a density of 2.5 combing needles 44 per centimeter. A smaller combing needle 44 could include a density of up to 9 combing needles 44 per centimeter. Generally, larger combing needles 44 are used at the beginning of a combing process and smaller combing needles 44 are used at the end of a combing process. In certain circumstances, flat combing needles 44 are preferable and can be spaced along the rib 42 at a density of up to 789 combing needles 44 per centimeter. Preferably, glass filled nylon 6 is used to mold the sleeve 36. The glass filled nylon 6 has produced durability characteristics that are desirable for the faller bar assembly 30. However, other polymers and other fillers such as Carbon fiber, and Impact modifiers can be used. The annular opening 40 of the tubular wall 38 defines an axis 46 that is generally in the same plane of a rib wall 48 of the rib 42. The rib wall 48 defines an intermediate surface 50 with the tubular wall 38. The preferred polymer fill location 52 is located on the rib 42 at an end opposite of the transition surface 50. The transition surface 50 has proven to be desirable for polymer flow when forming the tubular wall 38 that includes a thickness of about 1 mm or less. This allows the increase in diameter of the shaft 34 by adding 1 mm to the increasing the diameter from about 6 mm to generally 7 mm, which has increased the breaking strength from approximately 3,500 lbs. to approximately 7,000 pounds. This produces a ratio between the shaft 34 and the sleeve 38 thickness of between generally 8 and 6 to 1. As stated above, when increasing the diameter of the generally annular shaft 34, the thickness of the tubular wall 38 must be decreased for the assembly 30 to fit into the drafting machine by keeping the assembly 30 at generally constant outer dimensions. The transition surface 50 defines an angle with the plane of the rib wall 48 of between generally 40° and 50°. More preferably, the transition surface 50 defines an angle of generally 45° with the plane of the rib wall 48. It has been proven that an angle of less than about 40° does not provide adequate polymeric flow through the mold die to form the tubular wall 38. It has also been proven that an angle greater than about 50° increases the size of the sleeve 36 to a level that does not allow the installation of the assembly 30 into the drafting machine. However, in some circumstance, and angle of about 55° has been shown to be desirable as shown in an alternative embodiment in FIG. 3. Producing a sharp transition corner 51 between the transition surface 50 and the tubular wall 38 having a sharper radius than that of the tubular wall 38 has also shown desirable results. The tubular wall 38 defines a wall plane or inner, generally planar surface 54 inside the annular opening 40. The generally annular shaft 34 defines a shaft planar surface 56 that is positioned in an abutting relationship to the wall planar surface 54. The abutment of the wall planar surface 54 and the shaft planar surface 56 prevents the shaft 34 from spinning inside the annular opening 40 producing an improved torque resistance to the assembly 30. Alternatively, the annular shaft 34 is knurled or otherwise scored as shown in FIG. 4 to improve torque resistance for preventing the tubular wall 38 from slipping on the annular shaft 34. The knurling region 58 preferably extends along the annular shaft 34 the full length of the tubular wall 38. The knurling region provides scoring on the surface of the annular shaft 34 having diamond, straight, slanted, or a curvilinear configuration to produce an increased torque resistance. During the injection molding process, the polymer used to form the sleeve 36 fills the voids in the annular shaft 34 formed during the knurling process, which results in increased torque properties for the assembly 30. The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, wherein reference numerals are merely for convenience and are not to be in any way limiting, the invention may be practiced otherwise than as specifically described.
<SOH> BACKGROUND OF THE INVENTION <EOH>During the manufacturing of yarn products, slivers of fibrous material, disposed in a tangled mass, must be combed to orient the individual fibers in a generally uniform direction. To orient the individual fibers in a generally uniform direction, the sliver mass is combed by a series of faller bars, typically numbering 144 . A typical faller bar includes a plurality of combing needles, similar in appearance to a hair comb, that comb the sliver mass to orient the individual fibers in the generally uniform direction. Forces are generated upon the faller bar by pulling the sliver mass through the series of faller bars. These forces are known to break and bend the combing needles on a frequent basis. Previously, faller bars have been manufactured entirely out of metallic substrates where the combing needles are mounted in the metallic substrate. The metallic faller bar is known to be expensive and difficult to replace when damaged. Therefore, disposable faller bars have been introduced to the industry to reduce the cost of replacing damaged faller bars. Known replaceable faller bars include a support member defining a generally angular shaft having a diameter of less than 6 mm. The sleeve typically includes a rib projecting outwardly that supports a plurality of combing needles used to orient the individual fibers of the sliver mass as set forth above. A sleeve defines a tubular wall having a generally annular opening that receives the support member. Problems with this design arise due to the narrow diameter, of about 6 mm or less of the support member. The faller bar is known to flex and break due to the narrow diameter of the support member. One such faller bar is disclosed in United States Patent Application No. 2002/0069504 where the disclosed support member has a narrow diameter to provide enough sleeve wall thickness to enable the sleeve to be molded over the support member. In addition, a flexing faller bar has also resulted in defects in the sliver mass. To reduce the amount of flexing characteristic of presently available faller bars, a smaller sliver mass is introduced to the drafting machine, which results in reduced productivity. Because the limited space available inside a drafting machine, it has been impossible to increase the diameter of the support member due to the additional diameter of up to about 2 mm required of the sleeve. The sleeve heretofore has required a tubular wall thickness of about 2 mm so that the polymers used to form the sleeve can flow through the sleeve mold without producing defects, such as, for example a void in the tubular wall resulting from inadequate flow of material. An increase in diameter of the support member has required the increase in diameter of the sleeve which results in a non-functional faller bar due to the lack of space inside the drafting machine. Therefore, it would be desirable to produce a faller bar having a sleeve with narrower wall thickness so that an increased diameter of the support member can be introduced to the drafting machine.
<SOH> SUMMARY OF THE INVENTION <EOH>A support member for a faller bar assembly includes a generally annular shaft. A sleeve defining a tubular wall with a generally annular opening receives a generally annular shaft of the support member. The sleeve includes a rib projecting outwardly from the tubular wall having a plurality of combing needles spaced therealong. The rib includes a rib wall disposed within a plane defined by an axis of the generally annular opening. The rib wall defines an intermediate surface with the tubular wall having an angle of between generally 40° and 50° to the plane defined by the axis. In order to increase the diameter of the support member, the tubular wall of the sleeve must have a thinner cross section or wall thickness because the overall diameter of the assembly cannot increase. One reason prior art tubular wall thicknesses have exceeded 2 mm is primarily to allow polymer materials to flow through a plastic mold during the injection molding process. The inventive faller bar has provided a design that allows for the increase in the diameter of the generally annular shaft, which has unexpectedly increased the strength of the faller bar by over 100%. By adding 1 mm to the diameter of the annular shaft from 6 mm to generally 7 mm has increased the breaking strength from approximately 3,500 lbs. to approximately 7,000 pounds. However, in order to provide space for this increased generally annular shaft thickness within the drafting machine, the tubular wall thickness must be decreased by an equivalent amount. Because prior attempts to mold the sleeve having a tubular wall thickness of about 1 mm or less has been unsuccessful due to the narrow die cavity, dimensional adjustments must necessarily to be made to the sleeve to improve the flowability of the polymer used to form the sleeve. Specifically, an intermediate surface disposed between the rib wall and the tubular wall has been added and was found to be necessary for molding a tubular wall having a thickness of about 1 mm or less. It was determined that the intermediate surface disposed between the rib wall and the tubular wall must have an angular relationship with the plane defined by an axis of the tubular wall and the rib wall of between about 40° and 50°. An angle greater than about 50° requires more space of the sleeve than is available inside the drafting machine. An angle less than about 40° proved to be ineffective when trying to injection mold the tubular wall. Therefore, the unique dimensions of the present inventive faller bar assembly have proven effective in solving the problems associated with prior art disposable faller bar assemblies.
20041020
20070109
20051222
65534.0
1
SUTTON, ANDREW W
DISPOSABLE FALLER BAR WITH IMPROVED CORE
SMALL
0
ACCEPTED
2,004
10,969,533
ACCEPTED
Methods and systems for implementation of the calling name delivery service through use of a location register in a network element in a wireless network
Methods and systems for providing for calling party name and/or other information corresponding to a wireless unit to be stored in association with an identifier of the wireless unit in a location register such as the home location register (HLR) in a network element of a wireless network. The network element is configured to accept and support the TR-1188, wireless intelligent network (WIN), or the like messaging processes. When a calling party uses a wireless unit to make a call to a wireline unit of a subscriber having calling name delivery service, the call is routed in a conventional manner to the service switching point (SSP) serving the calling line of the wireline unit. Based on the called party's status as a subscriber, the SSP uses the appropriate messaging process in a query/response exchange to obtain the calling party name and/or other information from the appropriate network element that includes the calling name (or other information) in or has access to an appropriate location register. The SSP then may provide the calling party name and/or other information for display on the wireline unit or associated display device.
1. In a communications system including a wireless network and a wireline network, the wireless network including a network element functionally connected to the wireline network, the network element also functionally connected to a location register (LR) with the LR including an entry corresponding to a wireless unit, the entry including an identifier of the wireless unit, and the wireline network including a service switching point (SSP) serving a wireline unit connected to a calling line having information delivery service enabled, a method to provide the wireline unit with information corresponding to the wireless unit when the wireless unit makes a call to the wireline unit, the method comprising: causing the identifier in the entry in the LR to be associated with the information corresponding to the wireless unit; with respect to receipt of the call to the wireline unit, causing the SSP to note the calling line has been enabled for the information delivery service, and based thereon, to initiate a query to be routed to the network element in the wireless network based on the identifier of the wireless unit for the information corresponding to the wireless unit, the query including the identifier of the wireless unit; in response to receipt of the query by the network element, causing the network element to use the identifier with the LR to find the entry in the LR including the identifier; and based on the information being associated with the identifier in the entry, causing the LR to retrieve the information corresponding to the wireless unit and to provide the information to the network element; causing the network element to provide the information in a response routed to the SSP; and upon receipt of the response, causing the SSP to provide the information to the wireline unit. 2. The method of claim 2 wherein the information comprises a name corresponding to the wireless unit. 3. The method of claim 1, further comprising: upon receipt of the information, causing the wireline unit to display the information. 4. A location register (LR) in a network element of a wireless network, the LR comprising: a plurality of entries with each entry including an identifier corresponding respectively to a wireless unit; each identifier of an entry being associated with information corresponding respectively to the wireless unit; and the information being retrievable respectively based on the identifier of the wireless unit for provision in response to a query for the information received by the network element of the wireless network, whereby the information corresponding respectively to the wireless unit having the identifier may be retrieved through use of the entry having the identifier in the LR of the network element in the wireless network. 5. The LR of claim 4, wherein the information comprises a name corresponding respectively to the wireless unit. 6. The LR of claim 4, wherein the information comprises a presentation indicator with respect to a name, the identifier; and wherein the presentation indicator comprises a presentation restriction, or a presentation allowance. 7. A method for a location register (LR) of a network element in a wireless network to provide information associated with a wireless unit, the method comprising: causing the LR to include a plurality of entries with each entry including an identifier and corresponding respectively to a wireless unit, each identifier of an entry being associated with information corresponding respectively to the wireless unit; causing the LR in response to receipt of a query including the identifier to use the identifier to find an entry having the identifier in common with the query; based on the information being associated with the identifier of the entry, causing the LR to retrieve the information corresponding to the wireless unit; and causing the LR to provide the information in a response to the query. 8. The method of claim 7, wherein the information comprises a name corresponding respectively to the wireless unit. 9. The method of claim 7, wherein the information comprises a presentation allowance with respect to a name, the identifier; and wherein after finding the entry, checking that the information associated with the identifier of the entry comprises the presentation allowance prior to causing the LR to retrieve the information corresponding to the wireless unit. 10. A method for a location register (LR) of a network element in a wireless network to respond to a request for information regarding a wireless unit, the method comprising: causing the LR to include a plurality of entries with each entry including a identifier corresponding respectively to a wireless unit, each identifier of an entry being associated with information corresponding respectively to the wireless unit; causing the LR in response to receipt of a query including the identifier to use the identifier to find an entry having the identifier in common with the query, the identifier of the entry being associated with information including a presentation restriction; and based on the presentation restriction, causing the LR to provide a response to the query, the response providing notice of the presentation restriction.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 10/347,832 filed Jan. 21, 2003, the contents of which are incorporated by reference herein in their entirety, which is a continuation of U.S. patent application Ser. No. 09/378,904 filed Aug. 23, 1999, the contents of which are incorporated by reference herein in their entirety. FIELD OF THE INVENTIONS The present inventions relate to communications, and particularly, relate to the provision of a calling name and/or other information relating to a wireless unit used to make a call to a called party using a wireline unit and having a calling name delivery service. BACKGROUND The communications service known as calling name delivery or identification is popular with customers. Calling name delivery also may be referred to as calling name presentation (CNAP). A calling name delivery service provides identification of the calling party (e.g., personal name, company name, “restricted”, “unavailable”, etc.) and/or other information to the called party. In particular, a customer who subscribes to a calling name delivery service typically has a telecommunications unit or device that allows for the real-time display of a calling party name and/or other information associated with a received call. A calling name delivery service also may be referred to as an information delivery service, especially when the delivery service delivers information in addition to or other than a calling name. The calling name delivery service generally provides calling name (and/or other information) for calls between wireline (also referred to as a landline) units. For example, assume Scott and Laura each have a wireline unit (such as a telephone) in their respective homes. Scott uses his home telephone to call Laura at home. Laura subscribes to a calling name delivery service, and thus, Scott's name appears on the display of Laura's home telephone when he calls Laura. Unfortunately, the above-described process of calling name delivery is not applicable to a call from a wireless unit such as a cell phone or other mobile phone to a wireline unit. For example, assume Scott uses his car phone to call Laura at home. As noted, Laura subscribes to the calling name delivery service. But the communications system is unable to delivery Scott's name or other information associated with the received call to Laura's home telephone. The principal reason the communications system is unable to delivery Scott's name when he is using his car phone is that there is no calling name database or other source available to provide Scott's name associated with his cell phone for display on Laura's home telephone. In contrast, in the wireline example, a calling name database typically stores information associated with each calling line served in a region. But a wireless unit is not associated with a calling line in the physical sense that a wireline unit is associated with a calling line. Thus, information related to a wireless unit is not typically stored in a calling name database that includes information related to calling lines served in a general region. Scott's call from his car phone results in a display on Laura's home telephone that may read: “Information unavailable” or “out of area”. A subscriber to a calling name delivery service generally is not pleased to repeatedly receive the “information unavailable” or “out of area” notice on his or her display in association with a call. The subscriber may believe that he or she is not getting his or her money's worth in terms of the fees he or she pays for the calling name delivery service. Further, a subscriber to a calling name delivery service becomes accustomed to viewing the display of calling party information and feels frustrated when such information is not forthcoming. Unfortunately, previous attempts to incorporate wireless units in a calling name delivery service have not proved entirely successful. As noted above, calling name information associated with a wireless unit is not generally incorporated in a calling name database used to find name or other information associated with a wireline unit. A calling name database includes entries that may be indexed based on the calling line on which a call originates. A wireless unit is not associated with a calling line. Thus, the characteristics of a wireless unit do not fit the entry format in a typical calling line database serving wireline units. A separate database for wireless units has been suggested. For example, the wireless database may be set up to include entries so as to provide calling name and/or other information associated with a wireless unit whose owner is based within a “home” region. But, unlike a wireline unit, a wireless unit is mobile and may operate outside its home region in a visited region. A wireless unit operating in a visited region is said to be “roaming”. If the user of the wireless unit makes a call while roaming, the calling name delivery service may be unable to find any information about the roaming unit. The service again displays the “information unavailable” or “out of area” notice to the subscriber. Moreover, given the nature of wireless units, the distribution and use of wireless units is generally more dynamic than that of wireline units. A customer may have the same wireline number (also referred to as a directory number or a telephone number) for years. But the same customer or household may have more than one wireless unit. A customer may lose or have his or her wireless unit stolen. A customer may buy new wireless units and discard the old ones as technology improves. A customer may switch relatively frequently upon contract expiration or for other reasons among wireless service providers and each time garner a new or different wireless unit. This dynamic distribution and use of wireless units makes it difficult to keep track of wireless units. For example, assume a wireless database is set up to include entries so as to provide calling name and/or other information associated with a wireless unit. Also assume the problems associated with a roaming unit in the delivery of calling name service are solved or at least minimized. Entries in the wireless database need to be routinely and repeatedly updated so as to provide correct information in the calling name delivery service. With the dynamic distribution and use of wireless units, keeping up with the many changes to the entries in a wireless database is not an insignificant task. This task is complicated by the need to keep the calling name and/or other information regarding a wireless unit in the wireless calling name database in synchronicity with the information regarding the wireless unit in a home location register (HLR) of a mobile switching center (MSC) or other wireless network element. This synchronicity may be difficult to achieve and result in discrepancies between the wireless calling name database and the HLR. Another previous attempt to incorporate wireless units in a calling name delivery service is described in the patent to Serbetcioglu et al., U.S. Pat. No. 5,511,111, entitled “Caller Name and Identification Communication System with Caller Screening Option.” Serbetcioglu et al. adds a feature server to an existing network. The network feature server intercepts an incoming call for a called subscriber and prompts the caller to either speak his or her name, or speak or punch a pin number. The called subscriber then is played the caller's spoken name or is provided with information that is associated with the pin number entered by the caller. There are drawbacks to the use of Serbetcioglu et al. 's feature server. A drawback is that Serbetcioglu et al. requires that another element (the feature server) be added to the telecommunications network. In addition, in Serbetcioglu et al., calls must be routed for interception by the feature server. Thus, Serbetcioglu et al. requires re-routing of current patterns. Yet another drawback is that Serbetcioglu et al. generally does not provide information for all callers for display such as generally provided by calling name delivery services. Only those callers who have been previously entered by the called subscriber into the feature server may have their names displayed. Other “unknown” callers are requested to speak their names, and the caller's spoken name is delivered to the called subscriber. The delivery of a spoken name generally requires the called subscriber to listen on his or her handset or otherwise get more involved with the call than by simply glancing at the display unit for the name of the calling party. Accordingly, there is a need for methods and systems that provide a calling party name and/or other information corresponding to a wireless unit where the wireless unit used to make a call to the wireline unit of a subscriber having a calling name delivery service. SUMMARY Generally stated, the present inventions relate to methods and systems for providing for calling party name and/or other information associated with a wireless unit to be delivered to a wireline unit as part of a calling name delivery service. To implement such service, the methods and systems provide for calling party name and/or other information associated with a wireless unit to be associated with the mobile identity number (MIN) and/or mobile directory number (MDN) of the wireless unit in a location register (LR) such as the home location register (HLR) in a network element of a wireless network. The network element is configured to accept and support the TR-1188, wireless intelligent network (WIN), or the like messaging processes. Advantageously, the calling party name and/or other information for a particular wireless unit may be provisioned into or updated at the same time the MIN and/or MDN of the wireless unit is set up or updated in the LR. Another advantage is that a separate calling name database for wireless units is not required and the problems associated with such a separate calling name database are obviated. When a calling party uses a wireless unit to make a call to a wireline unit of a subscriber having calling name delivery service, the call is routed in a conventional manner to the service switching point (SSP) serving the calling line of the wireline unit. Based on the called party's status as a subscriber, the SSP uses the appropriate messaging process in a query/response exchange to obtain the calling party name and/or other information from the appropriate network element that includes the calling party name (and/or other information) in or has access to an appropriate location register. The SSP then delivers the calling party name (and/or other information) over the calling line for display on the called party's wireline unit or other display device. Advantageously, the subscriber to calling name delivery service who is using a wireline unit is provided with the service with respect to wireless units as well as wireline units. More specifically stated, the present inventions relate to an exemplary method to provide a wireline unit with information corresponding to a wireless unit when the wireless unit makes a call to the wireline unit. This method may be implemented in an environment of a communications system including a wireless network and a wireline network. The wireless network includes a network element functionally connected to the wireline network. The network element also is functionally connected to a location register (LR) with the LR including at least an entry corresponding to a wireless unit. The entry includes a mobile identification number (MIN) and/or a mobile directory number (MDN) of the wireless unit. The wireline network includes a service switching point (SSP) serving a wireline unit. Pursuant to this exemplary method, the MIN and/or the MDN in the entry in the LR are associated with information corresponding to the wireless unit. When the wireless unit calls the wireline unit, the SSP serving the wireline unit notes that the wireline unit is to be provided with calling name delivery service. The SSP initiates a query/response exchange with a network element in the wireless network so as to obtain information, such as the calling party name, regarding the wireless unit. In particular, the SSP routes a query to the network element in the wireless network based on the MIN and/or MDN of the wireless unit. The query is routed through the communications system until it arrives at the appropriate network element. In response to receipt of the query by the network element, the network element uses the MIN and/or the MDN with the LR to find the entry in the LR including the MIN and/or the MDN. Based on the information associated with the MIN and/or MDN in the entry, the LR retrieves the information corresponding to the wireless unit and provides the information to the network element. The network element then provides the information in a response routed through the communications system to the SSP. Upon receipt of the response, the SSP provides the information to the wireline unit. Upon receipt of the information, the wireline unit may display the information to the called party. Advantageously, the called party may be provided with the calling party name of the person using the wireless unit to call the called party. The present inventions also provide an exemplary LR for use in a network element of a wireless network. The LR typically includes a plurality of entries with each entry including a MIN and/or MDN corresponding respectively to a wireless unit. Each MIN and/or MDN of an entry is associated with information, such as calling party name information, corresponding respectively to the wireless unit. The information is retrievable based on the MIN and/or MDN of the wireless unit for provision in response to a query for the information received by the network element of the wireless network. Advantageously, the LR allows for information corresponding to a wireless unit to be retrieved from the LR through use of an entry having the MIN and/or the MDN in common with the wireless unit. In the exemplary LR, the information associated with the MIN and/or MDN of an entry may include a name, and a presentation indicator associated with a name. Further, the information may include a calling name subsystem number or a calling name translation type. Further, the present inventions relate to an exemplary method for an LR of a network element in a wireless network to provide information associated with a wireless unit. Pursuant to this method, the LR is provisioned to include a plurality of entries with each entry including a MIN and/or MDN and corresponding respectively to a wireless unit. Each MIN and/or MDN of an entry is associated with information corresponding respectively to the wireless unit. The LR may receive a query for information related to a wireless unit. For example, the query may seek the calling party name associated with the wireless unit. In response to receipt of a query including the MIN and/or the MDN, the LR uses the MIN and/or the MDN to find an entry having the MIN and/or the MDN in common with the query. The LR may check whether the information associated with the MIN and/or the MDN includes a presentation allowance or other such indicator. Based on the information being associated with the MIN and/or the MDN of the entry, the LR retrieves the information corresponding to the wireless unit. The LR then provides the information in a response to the query. In an exemplary embodiment, prior to providing the information, the LR may check that a presentation indicator including a presentation allowance is present in the information. In some cases, the information may include a presentation indicator that includes a presentation restriction. If a presentation restriction is included in the information, the LR may provide a response to the query, but the response may include notice of the presentation restriction and fail to include the information sought by the query. Therefore, it is an object of the present inventions to provide methods and systems that provide a calling party name and/or other information to a wireline unit where the wireless unit used to make a call to the wireline unit of a subscriber having a calling name delivery service. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an exemplary environment for implementation and/or operation of exemplary embodiments of the present inventions. FIG. 2 illustrates an exemplary method of the present inventions. DETAILED DESCRIPTION Generally stated, the present inventions relate to methods and systems that provide a calling party name and/or other information associated with a wireless unit to a wireline unit of a subscriber having a calling name delivery service. An exemplary embodiment implements the present inventions by providing for a calling party name and/or other information associated with a wireless unit to be stored in association with the mobile identity number (MIN) and/or mobile directory number (MDN) in a location register (LR) such as the home location register (HLR) in or functionally connected to a network element (such as a service control point (SCP)) in a wireless network of a communications system. When a calling party uses a wireless unit to make a call to a wireline unit of a subscriber having a calling name delivery service in a wireline network, the call is routed in a conventional manner from the wireless network to the wireline network, and in particular, to the service switching point (SSP) serving the calling line of the wireline unit. Based on the called party's status as a subscriber to calling name delivery service (e.g., the called party's line is enabled for the service), the SSP obtains the calling party name and/or other information in a query/response exchange with the appropriate network element that includes the calling name (and/or other information) in or has access to an appropriate location register (LR). Advantageously, the SSP may provide the calling party name and/or other information for display on the called party's wireline unit or display device. Additional details regarding the present inventions are provided below beginning with a description of an exemplary environment (FIG. 1), a description of the provisioning of an exemplary HLR of an exemplary network element in a wireless network, and a description of call flow in a call from a wireless unit to a wireline unit of a subscriber having calling name delivery service (FIG. 2). Exemplary Environment—FIG. 1 FIG. 1 illustrates an exemplary environment of a communications system 6 for implementation and/or operation of exemplary embodiments of the present inventions. Communications system 6 includes a wireless network 8 and a wireline network 10. The wireline network 10 may be the public switched telecommunications network (PSTN) or the like. A wireline network also may be referred to as a landline network. The wireline network 10 includes a plurality of end offices which are represented by service switching point (SSP or switch) 12. An SSP typically includes switch functionality, but also includes other functionality so as to communicate with other network elements, and in particular, with Advanced Intelligent Network (AIN) elements. An SSP is coupled to one or more subscriber lines, which also may be referred to as calling lines or telephone lines. Each SSP serves a designated group of calling lines, and thus, the SSP that serves a particular calling line may be referred to as its serving switch. A representative calling line 13 is illustrated as being served by SSP 12. Each calling line is assigned a ten digit calling line number, which also may be referred to as a telephone number or directory number. For example, a calling line number may be in the form of “NPA-NXX-XXXX.” The calling line 13 is typically connected to a piece of terminating equipment such as a telephone 14. Although a telephone is illustrated as the terminating equipment, terminating equipment may include other telecommunications devices including, but not limited to facsimile machines, computers, modems, etc. Thus, to reach a particular subscriber associated with the telephone 14, a caller dials the telephone number assigned to the calling line connected to the telephone 14. The call is routed from the caller through the communications system 6, and in particular, through the wireline network 10 until the call arrives at the SSP 12 serving the calling line 13 connected to the telephone 14. SSP 12 is interconnected to other SSPs by a plurality of trunk circuits (not illustrated). These are the voice path trunks that interconnect the SSPs to connect communications. The solid lines (other than arrows) connecting the elements in the figures represent voice links. Each of the SSPs is connected to another type of AIN element referred to as a local signal transfer point (STP) 16 via respective data links. The dashed lines connecting the elements in the figures represent data links. Currently, these data links employ a signaling protocol referred to as Signaling System 7 (SS7). Much of the intelligence of the AIN resides in yet another type of element referred to as a service control point (SCP) (not illustrated) that may be connected to STP 16 and other elements (not illustrated) over SS7 data links. As noted, the communications system 6 illustrated in FIG. 1 includes a wireless network 8 and a wireline network 10. The wireless network 8 may be a cellular system, a personal communications service (PCS) system, a global standard for mobile communications (GSM) system, a wireless intelligent network (WIN), or other system wherein radio technology is used in communications. A device operating in the wireless network 8 may be referred to as a wireless unit, a wireless communications unit (WCU), a mobile phone, a cell phone, a car phone, or the like. Generally, the exemplary wireless network 8 and the devices operating therein operate pursuant to a standard entitled “Cellular Radio-Telecommunications Intersystem Operation”, established by the Telecommunications Industry Association (TIA), 2500 Wilson Boulevard, Arlington, Va. 22201. This standard is commonly referred to as ANSI-41. See also ANSI-41D, American National Standards Institute, New York, N.Y., and TIA/EIA-41D, Cellular Radiotelecommunications Intersystem Operations, December 1997, and TIA/EIA-41-D Enhancements for Wireless Calling. Name Feature Descriptions, June 1998, Telecommunications Industry Association (TIA)/Electronic Industries Association (EIA), Standards & Technology Department, 2500 Wilson Boulevard, Arlington, Va. 22201, which are incorporated herein by reference. The wireless network 8 may be functionally connected to the wireline network 10 in a number of ways. FIG. 1 illustrates a connection between the wireless network 8 and the wireline network 10 through an access tandem 18. This type of connection through the access tandem 18 generally carries voice traffic between the wireless network 8 and the wireline network 10. In addition to connecting wireless and wireline networks, access tandems may be used to connect other elements of a communications system such as two SSPs of a wireline network. Further, an access tandem 18 may be connected to elements of the wireless network 8 or wireline network 10 through data links as illustrated in FIG. 1 by the data link between STP 16 in the wireline network 10 and the access tandem 18. As illustrated, the access tandem 18 is connected to a mobile switching center (MSC) 20 (also referred to as a mobile switch). An MSC in the wireless network 8 may be likened to a switch in the wireline network 10 in that an MSC directs communications to and from wireless units served by the MSC. But unlike a switch in the wireline network 10, an MSC typically stores or has access to information about wireless units operating in an area or region served by the MSC. Particularly, an MSC generally includes or has access to two location registers (not illustrated) for the storage of information about wireless units. A home location register (HLR) (not illustrated) includes entries for wireless units that are considered to be “home” units to the MSC. A visitors' location register (VLR) (not illustrated) includes entries for wireless units that are “roaming” in the region served by the MSC. An MSC 20 typically is connected by wireline to one or more base stations such as station 22. A base station 22 uses radio technology to send and to receive communications to and from wireless units operating within the range of the base station 22. FIG. 1 illustrates a cell phone 24 as the wireless unit operating in the wireless network 8, but a wireless unit may include other devices operating based on radio technology in communications. The wireless network 8 in FIG. 1 also includes an STP 26 that is connected to other elements of the communications system 6. As illustrated, STP 26 is connected by respective data links to the MSC 20 in the wireless network 8, to the STP 16 in the wireline network 10, and to a service control point (SCP) 28 in the wireless network 8. As discussed briefly above in connection with the SCPs that may be present in a wireline network 10, an SCP such as SCP 28 in the wireless network 8 is generally an intelligent network element. Typically, an SCP includes service package applications (SPAs), programming, and/or the like for the implementation of communications and other services to subscribers. An SCP also may include and/or have access to databases, tables, or other storage for information related to subscribers, and particularly, information that may be helpful in the implementation of communications and other services to subscribers. FIG. 1 illustrates that SCP 28 is at least functionally connected to location register (LR), and specifically, to a home location register (HLR) 30. Although HLR 30 is illustrated as separate from SCP 28, HLR 30 may be included as part of SCP 28. Alternatively, or in addition, HLR 30 may be a separate unit or may be included as part of another network element such as MSC 20. Further, HLR 30 may be connected to SCP 28 by line connection and/or by data links. In this exemplary embodiment, the HLR 30 includes entries for wireless units that are considered to be “home” units to MSC 20. The cell phone 24 is a wireless unit that is a “home” unit of MSC 20. Thus, HLR 30 includes an entry for cell phone 24. But the HLR 30 also may include entries for wireless units (not illustrated) that are considered to be “home” units to other MSCs (not illustrated) in the wireless network 8. Additional details regarding the information stored in the entries of HLR 30 are provided below. Provisioning of an Exemplary LR An exemplary embodiment of the present inventions provides for the storage of or access to calling name and/or other information related to a person/entity associated with a wireless unit in or by a location register (LR) such as the home location register (HLR) of a network element in a wireless network. FIG. 1 illustrates that such an LR may be the HLR 30 that is functionally connected to the network element referenced as SCP 28. The LR may be another register, database, table, or the like that may include the information described below in connection, correspondence, or association with an exemplary entry. The network element generally may be any intelligent network element (such as the SCP 28 or an intelligent peripheral) that is at least functionally connected to the LR and that is provisioned as described below in connection with the exemplary SCP 28 or provisioned equivalently. The calling name and/or other information related to the person/entity associated with the wireless unit may be stored in or accessed by the HLR in an entry, in a calling name table, or database, or in other ways, such that the calling name and/or other information may be retrieved by using the mobile identity number (MIN) and/or mobile directory number (MDN) of the wireless unit. For example, the calling name associated with the wireless unit 24 may be stored in the HLR 30 in association with the MIN and/or MDN of the wireless unit 24. Advantageously, the calling party name and/or other information for a particular wireless unit may be provisioned into or updated at the same time the MIN and/or MDN of the wireless unit is set up or updated in the LR. Another advantage is that a separate calling name database for wireless units is not required and the problems associated with such a separate calling name database are obviated. As well as storing the calling name and/or other information in the HLR or otherwise, the network element (illustrated as the SCP 28) is configured so as to be accessible and responsive to queries, inquiries, requests or the like for the calling name and/or other information from other elements of the communications system 6, and in particular, from elements (such as the SSPs) of the wireline network 10. For example, the network element such as SCP 28 may be configured to accept a query including the MIN and/or MDN of the wireless unit 24 originating from SSP 12 in the wireline network 10, and in response to the query, to provide a response that includes a calling name and/or other information retrieved from or through the HLR 30 on the basis or use of the MIN and/or MDN provided in the query. An exemplary embodiment provides network elements such as the SCP 28, and the functionally connected HLR 30 to store the calling name and/or other information, to be accessible, and to respond to queries, inquiries, requests and the like for the calling name and/or other information by providing the SCP 28 with programming (such as a service package application (SPA) or the like) so as to recognize and support TR-1188, WIN, or the like message processing. TR-1188 message processing refers to the Technical Reference, TR-NWT-001188, Issue 1, December 1991, LSSGR, LATA Switching System Generic Requirements, CLASS Feature: Calling Name Delivery Generic Requirements, FSD 01-01-1070, Bell Communications Research, Inc. (BellCore), Morristown, N.J., which is incorporated herein by reference. As those skilled in the art recognize, TR-1188 message processing is used in the provision of calling name delivery service in wireline networks. Advantageously, the configuration of a network element in a wireless network to recognize and support TR-1188 message processing allows wireline network elements such as an SSP to conduct a query/response exchange for calling name information with a wireless network element such as the SCP 28. By way of additional explanation, an exemplary call flow is provided immediately below in connection with FIG. 2 with respect to the display on a wireline unit of a calling name associated with a wireless unit used to make a call to the wireline unit. An Exemplary Call Flow—FIG. 2 FIG. 2 illustrates an exemplary method of the present inventions. Assume for this exemplary method that a customer (Scott) of the service provider for the wireline network 10 subscribes to a calling name delivery service. Scott's wireline unit 14 is connected by calling line 13 and is served by SSP 12. Scott's calling line 13 has been assigned the directory number of 404.847.2400. As Scott is a subscriber to calling name delivery service, Scott's calling line 13 is enabled for that service. Such enablement may be accomplished in any manner of different ways. For example, Scott's serving SSP 12 may include line information for Scott's calling line 13 that enables Scott's calling line 13 for calling name delivery service. As another example, Scott's calling line may be provisioned with a terminating attempt trigger (TAT) such that the serving SSP 12 obtains instructions from another wireline network element (such as an SCP or an intelligent peripheral (not illustrated)) on how to handle a call for Scott's calling line 13. Also assume for this example that a customer (Laura) of the service provider for the wireless network 8 uses a wireless unit 24. Upon subscription to wireless service in the wireless network 8, information regarding Laura and her wireless unit 36 is provisioned in an entry in the HLR 30 of SCP 28. The entry corresponding to Laura is typically one of a plurality of entries corresponding to other subscribers of wireless service. In particular, Laura's entry in the HLR 30 is provisioned to include at least a mobile identity number (MIN) and/or a mobile directory number (MDN) 32 for Laura's wireless unit 24. In the exemplary embodiments, a MIN and/or MDN of an entry in the network element may be associated with information corresponding to the appropriate respective wireless unit (i.e., the wireless unit of the MIN and/or MDN). The information may include a source indicator such as a calling party name (such as the subscriber's personal name, nickname, etc.), the name of an entity, or the like, (such as the name of a business if the wireless unit is used in connection with a business), and/or other information that may be provided as an indication of the source of a call (such as geographic information). For example, the MIN and/or MDN 32 of Laura's entry may be associated with Laura's personal name. In addition to the source indicator, the information may include an indicator (“presentation indicator”) as to whether the source indicator (and/or other information) is to be provided in response to a query, inquiry, or request for such information. The presentation indicator in the information may include a presentation restriction, a presentation allowance, and/or a variable presentation option, or the like. Generally, a variable presentation option is a “toggle” option that allows the subscriber to switch back and forth between a “presentation allowance” and “presentation restriction”. Typically, such a switch or toggle is implemented by a subscriber dialing a special feature code or the like. In response to receipt of the special feature code, the appropriate system or application (such as in the SCP 28 or HLR 30) arranges for the opposite presentation or restriction of what had been associated with the subscriber. For example, assume Laura's presentation indicator is set to presentation allowance so that her name is presented to called parties when Laura makes calls using her wireless unit. Assume Laura desires to make a prank call to a friend and does not want to have the friend alerted to her identity when she makes the prank call using her wireless unit. In that case, Laura may toggle her presentation indicator from “presentation allowance” to “presentation restriction”. When Laura makes her prank call, her name then is not presented to the called party. Of course, there are more serious and more practical uses for the variable presentation option. For example, a physician calling a patient at the patient's place of employment may toggle the indicator to “presentation restriction” so as to maintain patient confidentiality. In addition to the source indicator and the presentation indicator, the information may include data (“implementation data”) related to the implementation of the calling name delivery service such as a status indicator, a calling name subsystem number, a calling name translation type, or the like. An association between the MIN and/or MDN 32 of an entry and the information corresponding to a wireless unit may be accomplished in any manner of different ways. For example, the entry including the MIN and/or the MDN may include the information as part of the entry. As another example, the entry or the MIN and/or MDN of the entry may serve as a pointer, flag, etc. or include a pointer, flag, etc. to another storage medium (such as a database, table, or the like) including the information corresponding to the wireless unit. The other storage medium may be included in the HLR 30, the SCP 28, or another network element such as an MSC 20. Preferably, the association is accomplished in such a manner that the information corresponding to the wireless unit may be retrieved based on the MIN and/or MDN of the wireless unit. As noted, the information corresponding to the wireless unit and associated with the MIN and/or MDN in an entry of the HLR may include a presentation indicator such as a presentation restriction, a presentation allowance, and/or a variable presentation option, or the like. By inclusion of such a presentation indicator in the information, the HLR 30 is effectively provisioned so that the MIN and/or MDN for Laura's wireless unit 24 is associated with a presentation allowance or presentation restriction related respectively to Laura's desire or lack thereof to have her source indicator (such as her personal name) presented or not presented to called parties. Assume for this example that the presentation indicator is a presentation allowance, i.e., Laura's information may be presented to a called party when Laura uses her cell phone to make a call to the called party. Referring again to the example illustrated in FIG. 2, assume that Laura has initiated a call from her wireless unit 24 to Scott's home telephone 14 by dialing Scott's directory number (404.847.2400). Laura's call is routed in a conventional manner from her wireless unit 24 through base station 22 to the MSC 20 serving Scott's unit (arrow 1). The MSC 20 further routes the call on the basis of the dialed directory number to access tandem 18 (arrow 2), which routes the call to the SSP 12 serving Scott's calling line (arrow 3). As noted, Laura's call is routed in a conventional manner in the communications system 6 from the wireless network 8 to the wireline network 10, and so the routing includes use of the Initial Address Message (IAM) in the Integrated Services Digital Network User Part (ISUP) of the SS7 protocol. The IAM includes at least Laura's MIN and/or MDN, and may include a point code or other identifier for the MSC 20 serving Laura's wireless unit 24. At the SSP 12, Scott's calling line is enabled for calling name delivery service. Thus, in response to Laura's call to Scott, the SSP 12 launches a query for the information that is associated with the MIN and/or MDN of Laura's cell phone. In this example, the MIN and MDN of Laura's cell phone is 404.555.3200. Preferably, the query is a TR-1 188[5] residential name query as explained above, and in particular, a TR-1188 TCAP INVOKE message for calling name (CNAM). The TCAP aspect of the query includes a GenericName (GN) parameter and a Digits parameter. The GN parameter is empty of content, but the Digits parameter contains the MIN and/or the MDN of Laura's wireless unit 24. The query is routed initially to STP 16 in the wireline network (arrow 4). The STP 16 performs a global title translation (GTT) on the MIN and/or MDN in the query to obtain the point code of the network element to which the query is to be ultimately routed. Thus, the STP 16 is provisioned with or has access to information such as a table, database, chart, application, or the like which the STP 16 may use in connection with the MIN and/or MDN provided by the query to obtain the point code of the network element to which the query is to be ultimately routed. In this example, the GTT results in a point code for the network element 28 in the wireless network 8. After the STP 16 performs the GTT, the query is routed in a conventional manner through the communications system 6 until it reaches the STP 26 in the wireless network 8 serving the network element to which the query is to be routed (arrow 5). The STP 26 further routes the query to the SCP 28, and hence, to the HLR 30 (arrow 6). Generally stated, upon receipt of the query, the SCP 28 checks with the HLR 30 for an entry or a record including the MIN and/or MDN of Laura's wireless unit 24. There are four possible results to the check: (1) The entry or record including the MIN and/or MDN is not found. In that case, a response is returned pursuant to the TR-1188 messaging process that includes a Return Error with the error code set to “missing customer record”, or the like. (2) The appropriate entry or record is found, but the associated information is unavailable for some reason. In that case, a response is returned pursuant to the TR-1188 messaging process that includes a Return Error with the error code set to “data unavailable”, or the like. (3) The appropriate entry or record is found and the associated information is available. As noted, the information may include a presentation indicator as well as a calling party name. The presentation indicator relates to the availability of the calling party name for presentation to the called party. If the presentation indicator is a presentation allowance, then the response may include the calling party name (and/or other information) in the GenericName parameter for presentation to the called party. If the presentation indicator is a presentation restriction, then the response may include a “private” message, or the like in the GenericName parameter for presentation to the called party. (4) The query may be received as NOT for CNAM. In that case, a response is returned pursuant to the TR-1188 messaging process that includes a Return Reject with problem specifier set to “Incorrect Parameter.” Referring again to the example of Laura's call to Scott, upon subscription to wireless service in the wireless network 8, information regarding Laura and her wireless unit 24 were provisioned in the HLR 30 of SCP 28. In particular, the HLR 30 was provisioned to include the MIN and/or MDN of Laura's wireless unit 34 in association with Laura's name and a presentation indicator or status. In this example, the status is “presentation allowance”. Generally, the HLR 30 may include a calling name table with entries. Preferably, the calling name table is an extension to the home subscriber profile database in an HLR pursuant ANSI-41. Each entry may include a name (and/or other information) that is associated with a MIN and/or MDN in the HLR 30. An entry also may include or be associated with a presentation indicator. In some embodiments, the entry may include feature activation information as to whether the calling party presentation feature is available. Inclusion of a calling party name and/or other information may be included or not included in a response based on the feature activation information in the entry. Further, in some embodiments, the entry may include information as to a subsystem number and/or a translation type. Thus, the MIN and/or MDN of a wireless unit (from the Digits parameter of the TR-1188 message) may be used to index into the calling name table of the LR to retrieve a name (or other information) (and presentation indicator) from an entry corresponding to the wireless unit. In a response to the query, the SCP 28 includes Laura's name as obtained from the HLR 30, and in this example, as obtained from the entry corresponding to Laura's wireless unit 34 on the basis of the MIN and/or MDN of Laura's unit 34 associated with or in the calling name table included in the HLR 30. Also in this example, the SCP 28 includes the “presentation allowance” in the response. In particular, the SCP 28 causes the response to be returned as a TCAP Return Result with the GenericName (GN) parameter populated with Laura's name. The SCP 28 routes the response in a conventional manner through the communications system 6, and particularly, through STP 26 in the wireless network 8 (arrow 7), through the STP 16 in the wireline network 10 (arrow 8), and to the SSP 12 (arrow 9). Advantageously, the SSP 12 has obtained the name (and/or other information) associated with the wireless unit 34 that initiated the call to a calling line served by the SSP 12. The SSP 12 then transmits Laura's name (and/or other information) over calling line 13 for display on Scott's home telephone 14 (arrow 13). Scott is provided with Laura's name (and/or other information relating to the wireless unit 34) as part of the calling name delivery service to which Scott subscribed. Alternative Exemplary Embodiments As noted in the example discussed in connection with FIG. 2 above, Laura's call on her wireless unit 24 is through the communications system 6 to the SSP 12 serving the calling party 14. In the example discussed above, based on the called party being a subscriber to calling name delivery service, the SSP 12 then engages in a query/response exchange with a network element 28 of the wireless network 8 so as to obtain the calling name and/or other information regarding the calling party using the wireless unit. But in at least a couple of exemplary embodiments, the need for the SSP 12 serving the called party to obtain the calling party name and/or other information is obviated by the supply of such calling party name and/or other information to the SSP 12. In an exemplary embodiment, the MSC 20 may include a location register (LR) that includes profile information as well as sub-profile information such as the calling party name and/or other information associated with the MIN and/or MDN of Laura's wireless unit 24. For example, the MSC 20 may include an entry in a register wherein the entry corresponds to the MIN and/or MDN of Laura's unit 24 and is associated with Laura's name and a presentation indicator that is set to presentation allowance (or other setting). Upon receipt of the call from Laura's wireless unit 24, the MSC 20 obtains the calling party name and/or other information from the entry. In this exemplary embodiment, the MSC 20 may include the information (Laura's name and the presentation allowance) in the set up and routing of the call to the SSP 12 serving the called party 14. In another exemplary embodiment, the MSC 20 may not include the calling party name and/or other information, but the MSC may obtain such information as part of the set up of the call to the wireline network 10. In particular, the MSC 20 may obtain the calling party name and/or other information associated with the MIN and/or MDN of Laura's wireless unit 24 from another network element or other source. For example, the MSC 20 may obtain the information from another wireless network element such as the HLR 30 of the SCP 28. Laura's entry in the HLR 30 may include sub-profile information such as calling party name and/or other information. Also in this exemplary embodiment, the MSC 20 may include the information (Laura's name and the presentation allowance) in the set up and routing of the call to the SSP 12 serving the called party 14. CONCLUSION In sum, the present inventions include the described exemplary methods and systems for providing a calling party name and/or other information corresponding to a wireless unit to be stored in association with the mobile identity number (MIN) and/or mobile directory number (MDN) of the wireless unit in a location register such as the home location register (HLR) in a network element of a wireless network. The network element is configured to accept and support the TR-1188, wireless intelligent network (WIN), or the like messaging processes. When a calling party uses a wireless unit to make a call to a wireline unit of a subscriber having calling name delivery service, the call is routed in a conventional manner to the service switching point (SSP) serving the calling line of the wireline unit. Based on the called party's status as a subscriber, the SSP uses the appropriate messaging process in a query/response exchange to obtain the calling party name and/or other information from the appropriate network element that includes the calling name (or other information) in or has access to an appropriate location register. The SSP then may provide the calling party name and/or other information for display on the wireline unit or associated display device. From the foregoing description of exemplary embodiments, other alternative constructions of the present inventions may suggest themselves to those skilled in the art. Therefore, the scope of the present invention is to be limited only to the claims below and the equivalents thereof.
<SOH> BACKGROUND <EOH>The communications service known as calling name delivery or identification is popular with customers. Calling name delivery also may be referred to as calling name presentation (CNAP). A calling name delivery service provides identification of the calling party (e.g., personal name, company name, “restricted”, “unavailable”, etc.) and/or other information to the called party. In particular, a customer who subscribes to a calling name delivery service typically has a telecommunications unit or device that allows for the real-time display of a calling party name and/or other information associated with a received call. A calling name delivery service also may be referred to as an information delivery service, especially when the delivery service delivers information in addition to or other than a calling name. The calling name delivery service generally provides calling name (and/or other information) for calls between wireline (also referred to as a landline) units. For example, assume Scott and Laura each have a wireline unit (such as a telephone) in their respective homes. Scott uses his home telephone to call Laura at home. Laura subscribes to a calling name delivery service, and thus, Scott's name appears on the display of Laura's home telephone when he calls Laura. Unfortunately, the above-described process of calling name delivery is not applicable to a call from a wireless unit such as a cell phone or other mobile phone to a wireline unit. For example, assume Scott uses his car phone to call Laura at home. As noted, Laura subscribes to the calling name delivery service. But the communications system is unable to delivery Scott's name or other information associated with the received call to Laura's home telephone. The principal reason the communications system is unable to delivery Scott's name when he is using his car phone is that there is no calling name database or other source available to provide Scott's name associated with his cell phone for display on Laura's home telephone. In contrast, in the wireline example, a calling name database typically stores information associated with each calling line served in a region. But a wireless unit is not associated with a calling line in the physical sense that a wireline unit is associated with a calling line. Thus, information related to a wireless unit is not typically stored in a calling name database that includes information related to calling lines served in a general region. Scott's call from his car phone results in a display on Laura's home telephone that may read: “Information unavailable” or “out of area”. A subscriber to a calling name delivery service generally is not pleased to repeatedly receive the “information unavailable” or “out of area” notice on his or her display in association with a call. The subscriber may believe that he or she is not getting his or her money's worth in terms of the fees he or she pays for the calling name delivery service. Further, a subscriber to a calling name delivery service becomes accustomed to viewing the display of calling party information and feels frustrated when such information is not forthcoming. Unfortunately, previous attempts to incorporate wireless units in a calling name delivery service have not proved entirely successful. As noted above, calling name information associated with a wireless unit is not generally incorporated in a calling name database used to find name or other information associated with a wireline unit. A calling name database includes entries that may be indexed based on the calling line on which a call originates. A wireless unit is not associated with a calling line. Thus, the characteristics of a wireless unit do not fit the entry format in a typical calling line database serving wireline units. A separate database for wireless units has been suggested. For example, the wireless database may be set up to include entries so as to provide calling name and/or other information associated with a wireless unit whose owner is based within a “home” region. But, unlike a wireline unit, a wireless unit is mobile and may operate outside its home region in a visited region. A wireless unit operating in a visited region is said to be “roaming”. If the user of the wireless unit makes a call while roaming, the calling name delivery service may be unable to find any information about the roaming unit. The service again displays the “information unavailable” or “out of area” notice to the subscriber. Moreover, given the nature of wireless units, the distribution and use of wireless units is generally more dynamic than that of wireline units. A customer may have the same wireline number (also referred to as a directory number or a telephone number) for years. But the same customer or household may have more than one wireless unit. A customer may lose or have his or her wireless unit stolen. A customer may buy new wireless units and discard the old ones as technology improves. A customer may switch relatively frequently upon contract expiration or for other reasons among wireless service providers and each time garner a new or different wireless unit. This dynamic distribution and use of wireless units makes it difficult to keep track of wireless units. For example, assume a wireless database is set up to include entries so as to provide calling name and/or other information associated with a wireless unit. Also assume the problems associated with a roaming unit in the delivery of calling name service are solved or at least minimized. Entries in the wireless database need to be routinely and repeatedly updated so as to provide correct information in the calling name delivery service. With the dynamic distribution and use of wireless units, keeping up with the many changes to the entries in a wireless database is not an insignificant task. This task is complicated by the need to keep the calling name and/or other information regarding a wireless unit in the wireless calling name database in synchronicity with the information regarding the wireless unit in a home location register (HLR) of a mobile switching center (MSC) or other wireless network element. This synchronicity may be difficult to achieve and result in discrepancies between the wireless calling name database and the HLR. Another previous attempt to incorporate wireless units in a calling name delivery service is described in the patent to Serbetcioglu et al., U.S. Pat. No. 5,511,111, entitled “Caller Name and Identification Communication System with Caller Screening Option.” Serbetcioglu et al. adds a feature server to an existing network. The network feature server intercepts an incoming call for a called subscriber and prompts the caller to either speak his or her name, or speak or punch a pin number. The called subscriber then is played the caller's spoken name or is provided with information that is associated with the pin number entered by the caller. There are drawbacks to the use of Serbetcioglu et al. 's feature server. A drawback is that Serbetcioglu et al. requires that another element (the feature server) be added to the telecommunications network. In addition, in Serbetcioglu et al., calls must be routed for interception by the feature server. Thus, Serbetcioglu et al. requires re-routing of current patterns. Yet another drawback is that Serbetcioglu et al. generally does not provide information for all callers for display such as generally provided by calling name delivery services. Only those callers who have been previously entered by the called subscriber into the feature server may have their names displayed. Other “unknown” callers are requested to speak their names, and the caller's spoken name is delivered to the called subscriber. The delivery of a spoken name generally requires the called subscriber to listen on his or her handset or otherwise get more involved with the call than by simply glancing at the display unit for the name of the calling party. Accordingly, there is a need for methods and systems that provide a calling party name and/or other information corresponding to a wireless unit where the wireless unit used to make a call to the wireline unit of a subscriber having a calling name delivery service.
<SOH> SUMMARY <EOH>Generally stated, the present inventions relate to methods and systems for providing for calling party name and/or other information associated with a wireless unit to be delivered to a wireline unit as part of a calling name delivery service. To implement such service, the methods and systems provide for calling party name and/or other information associated with a wireless unit to be associated with the mobile identity number (MIN) and/or mobile directory number (MDN) of the wireless unit in a location register (LR) such as the home location register (HLR) in a network element of a wireless network. The network element is configured to accept and support the TR-1188, wireless intelligent network (WIN), or the like messaging processes. Advantageously, the calling party name and/or other information for a particular wireless unit may be provisioned into or updated at the same time the MIN and/or MDN of the wireless unit is set up or updated in the LR. Another advantage is that a separate calling name database for wireless units is not required and the problems associated with such a separate calling name database are obviated. When a calling party uses a wireless unit to make a call to a wireline unit of a subscriber having calling name delivery service, the call is routed in a conventional manner to the service switching point (SSP) serving the calling line of the wireline unit. Based on the called party's status as a subscriber, the SSP uses the appropriate messaging process in a query/response exchange to obtain the calling party name and/or other information from the appropriate network element that includes the calling party name (and/or other information) in or has access to an appropriate location register. The SSP then delivers the calling party name (and/or other information) over the calling line for display on the called party's wireline unit or other display device. Advantageously, the subscriber to calling name delivery service who is using a wireline unit is provided with the service with respect to wireless units as well as wireline units. More specifically stated, the present inventions relate to an exemplary method to provide a wireline unit with information corresponding to a wireless unit when the wireless unit makes a call to the wireline unit. This method may be implemented in an environment of a communications system including a wireless network and a wireline network. The wireless network includes a network element functionally connected to the wireline network. The network element also is functionally connected to a location register (LR) with the LR including at least an entry corresponding to a wireless unit. The entry includes a mobile identification number (MIN) and/or a mobile directory number (MDN) of the wireless unit. The wireline network includes a service switching point (SSP) serving a wireline unit. Pursuant to this exemplary method, the MIN and/or the MDN in the entry in the LR are associated with information corresponding to the wireless unit. When the wireless unit calls the wireline unit, the SSP serving the wireline unit notes that the wireline unit is to be provided with calling name delivery service. The SSP initiates a query/response exchange with a network element in the wireless network so as to obtain information, such as the calling party name, regarding the wireless unit. In particular, the SSP routes a query to the network element in the wireless network based on the MIN and/or MDN of the wireless unit. The query is routed through the communications system until it arrives at the appropriate network element. In response to receipt of the query by the network element, the network element uses the MIN and/or the MDN with the LR to find the entry in the LR including the MIN and/or the MDN. Based on the information associated with the MIN and/or MDN in the entry, the LR retrieves the information corresponding to the wireless unit and provides the information to the network element. The network element then provides the information in a response routed through the communications system to the SSP. Upon receipt of the response, the SSP provides the information to the wireline unit. Upon receipt of the information, the wireline unit may display the information to the called party. Advantageously, the called party may be provided with the calling party name of the person using the wireless unit to call the called party. The present inventions also provide an exemplary LR for use in a network element of a wireless network. The LR typically includes a plurality of entries with each entry including a MIN and/or MDN corresponding respectively to a wireless unit. Each MIN and/or MDN of an entry is associated with information, such as calling party name information, corresponding respectively to the wireless unit. The information is retrievable based on the MIN and/or MDN of the wireless unit for provision in response to a query for the information received by the network element of the wireless network. Advantageously, the LR allows for information corresponding to a wireless unit to be retrieved from the LR through use of an entry having the MIN and/or the MDN in common with the wireless unit. In the exemplary LR, the information associated with the MIN and/or MDN of an entry may include a name, and a presentation indicator associated with a name. Further, the information may include a calling name subsystem number or a calling name translation type. Further, the present inventions relate to an exemplary method for an LR of a network element in a wireless network to provide information associated with a wireless unit. Pursuant to this method, the LR is provisioned to include a plurality of entries with each entry including a MIN and/or MDN and corresponding respectively to a wireless unit. Each MIN and/or MDN of an entry is associated with information corresponding respectively to the wireless unit. The LR may receive a query for information related to a wireless unit. For example, the query may seek the calling party name associated with the wireless unit. In response to receipt of a query including the MIN and/or the MDN, the LR uses the MIN and/or the MDN to find an entry having the MIN and/or the MDN in common with the query. The LR may check whether the information associated with the MIN and/or the MDN includes a presentation allowance or other such indicator. Based on the information being associated with the MIN and/or the MDN of the entry, the LR retrieves the information corresponding to the wireless unit. The LR then provides the information in a response to the query. In an exemplary embodiment, prior to providing the information, the LR may check that a presentation indicator including a presentation allowance is present in the information. In some cases, the information may include a presentation indicator that includes a presentation restriction. If a presentation restriction is included in the information, the LR may provide a response to the query, but the response may include notice of the presentation restriction and fail to include the information sought by the query. Therefore, it is an object of the present inventions to provide methods and systems that provide a calling party name and/or other information to a wireline unit where the wireless unit used to make a call to the wireline unit of a subscriber having a calling name delivery service.
20041020
20061212
20050317
79731.0
3
NGUYEN, THUAN T
METHODS AND SYSTEMS FOR IMPLEMENTATION OF THE CALLING NAME DELIVERY SERVICE THROUGH USE OF A LOCATION REGISTER IN A NETWORK ELEMENT IN A WIRELESS NETWORK
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,970,130
ACCEPTED
Automated quoting of molds and molded parts
Automated, custom mold manufacture for a part begins by creating and storing a collection of information of standard tool geometries and surface profiles machinable by each of the standard tool geometries. A customer sends a CAD file for the part to be molded to the system. The system assesses the CAD file to determine various pieces of mold manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be manufactured in a two-piece, straight-pull mold, and whether the mold can by CNC machined out of aluminum. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities, surface finish and material, which an independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts. The quotation is based in part upon mold manufacturing time as automatically assessed from the part drawings and based in part on the independent parameters selected by the customer. The customer's part is geometrically assessed so the system automatically selects appropriate tools and computes tool paths for mold manufacture. In addition to the part cavity, the system preferably assesses the parting line, the shutoff surfaces, the ejection pins and the runners and gates for the mold. The preferred system then generates CNC machining instructions to manufacture the mold, and the mold is manufactured in accordance with these instructions.
1. (canceled) 2. (canceled) 3. (canceled) 4. (canceled) 5. (canceled) 6. (canceled) 7. (canceled) 8. (canceled) 9. (canceled) 10. (canceled) 11. (canceled) 12. (canceled) 13. (canceled) 14. (canceled) 15. (canceled) 16. (canceled) 17. (canceled) 18. (canceled) 19. A method of custom quotation for manufacture of a mold and/or manufacture of a molded part, the mold defining a cavity corresponding in shape to the part to be molded, the method comprising: assessing a customer's CAD file via computer to determine at least one cost-affecting parameter of mold manufacture and/or part manufacture, the CAD file defining a shape of a part to be molded; providing the customer with at least one computer menu of customer-selectable values for a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile; allowing the customer to select one of the provided customer-selectable values; computer calculating a quotation for mold manufacture and/or part manufacture based in part upon the cost-affecting parameter determined by computer assessment of the customer's CAD file and based in part upon the customer-selected value; and communicating the computer calculated quotation to the customer via computer. 20. The method of claim 19, wherein the cost-affecting parameter is a parameter of forming a cavity in an injection mold. 21. The method of claim 20, wherein the cost-affecting parameter is a parameter of forming a cavity in an aluminum-based injection mold block. 22. The method of claim 21, wherein the cost-affecting parameter is a machining cost estimate of machining a cavity in an aluminum-based injection mold block. 23. The method of claim 19, wherein the computer menu of customer-selectable values for a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile comprises a menu of available injection moldable plastics, such that the computer generated quotation varies based upon which plastic the customer selects for the part. 24. The method of claim 19, wherein the computer menu of customer-selectable values for a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile comprises a menu of possible surface finishes, such that the computer generated quotation varies based upon which surface finish the customer selects for the part. 25. The method of claim 19, wherein the computer menu of customer-selectable values for a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile comprises a menu of number of parts in a production run, such that the computer generated quotation comprises a piece price which varies based upon how many parts the customer selects to be run. 26. The method of claim 19, wherein the computer calculated quotation comprises a series of piece price quotations covering different lot sizes, the series of piece price quotations varying non-linearly based upon how many parts the customer selects to be run. 27. The method of claim 19, wherein the computer menu of customer-selectable values for a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile comprises a menu of potential delivery times, such that the computer generated quotation non-linearly varies based upon lead time required by the customer. 28. A method of quotation and manufacture of a mold and/or molded part, the method comprising: assessing a customer's CAD file via computer to determine at least one cost-affecting parameter of mold manufacture and/or part manufacture, the CAD file defining a shape of a part to be molded; computer calculating a quotation for mold manufacture and/or part manufacture based at least in part upon the cost-affecting parameter determined by computer assessment of the customer's CAD file, the quotation including costs of machining of a cavity into a mold block corresponding in shape to the part to be molded as defined by the customer's CAD file; communicating the computer calculated quotation to the customer; and upon acceptance of the computer calculated quotation by the customer, machining the cavity into the mold block corresponding in shape to the part to be molded as defined by the customer's CAD file. 29. The method of claim 28, wherein the mold block is an aluminum-based injection mold block. 30. A computer program for custom quotation for manufacture of an injection mold and/or manufacture of an injection molded part, the computer program comprising: an input dedicated for receiving a customer's CAD file, the CAD file defining a shape of a part to be molded; computer code for analyzing the customer's CAD file to determine at least one cost-affecting parameter of injection mold manufacture; and an output providing a dollar value quotation for injection mold manufacture and/or part manufacture which includes costs associated with machining a cavity into the injection mold, the cavity corresponding in shape to the part to be injection molded, the output based at least in part on the cost-affecting parameter of injection mold manufacture as determined by the computer code analysis of the customer's CAD file. 31. The computer program of claim 30, further comprising: an input dedicated for receiving information of a cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile, and wherein the output is based in part on the cost-affecting parameter of mold manufacture and/or part manufacture unassociated with part surface profile. 32. The computer program of claim 30, wherein the input comprises an internet address configured to receive the customer's CAD file. 33. A computer program for automated analysis of a part for conformance with acceptability criterion on injection molding of the part, the computer program comprising: an input dedicated for receiving a customer's CAD file, the CAD file defining a shape of a part to be molded; computer code for analyzing the customer's CAD file to determine features of the part which fall within and outside of at least one injection molding acceptability criterion; and an output providing a rendering which highlights physical geometry modification locations relative to remaining unaltered portions of the part surface profile which fall within the at least one injection molding acceptability criterion. 34. The computer program of claim 33, wherein the injection molding acceptability criterion comprises a determination of whether the part can be manufactured in a straight pull mold. 35. The computer program of claim 33, wherein the injection molding acceptability criterion comprises a determination of whether the part contains acceptable draft angle. 36. The computer program of claim 33, wherein the injection molding acceptability criterion comprises a determination of whether mold geometry for the part can be formed through machining with a standard set of CNC machining tools. 37. The computer program of claim 33, wherein the injection molding acceptability criterion comprises a determination of whether mold geometry can be formed in aluminum or in an aluminum-based alloy. 38. The computer program of claim 33, wherein the injection molding acceptability criterion comprises a determination of whether the part is acceptably sized for injection mold manufacture.
CROSS-REFERENCE TO RELATED APPLICATION(S) This application is a continuation-in-part of U.S. patent application Ser. No. 10/056,755 of Lawrence J. Lukis et al., filed Jan. 24, 2002, entitled AUTOMATED CUSTOM MOLD MANUFACTURE, incorporated by reference herein, which claims priority from provisional patent application 60/344,187, filed Dec. 27, 2001, entitled AUTOMATED MANUFACTURE OF STRAIGHT PULL MOLDS FOR CUSTOM PLASTIC PARTS. This application also claims priority from provisional patent application 60/386,658 of Lawrence J. Lukis et al., filed Jun. 5, 2002, entitled IMPROVED PROTOTYPE QUOTING. BACKGROUND OF THE INVENTION The present invention relates to the field of mold making, and particularly to the manufacture of molds, such as for use with injection molding presses, from blocks of metal. More specifically, the present invention relates to software supported methods, systems and tools used in the design and fabrication of molds for custom plastic parts, and in presenting information to customers for the customer to have selective input into various aspects of such design and fabrication which affect price of a customized part profile. Injection molding, among other types of molding techniques, is commonly utilized to produce plastic parts from molds. Companies and individuals engaged in fabricating molds are commonly referred to as “moldmakers.” In many cases (referred to as “straight pull” injection molding), the mold consists of two metal blocks, one top and one bottom. Most commonly, the metal blocks are high quality machine steel, so the mold will have an acceptably long life. Opposed surfaces of each mold block are machined to jointly produce the required cavity in the shape of the desired part, as well as “shut-off” surfaces sealing the cavity when the mold blocks are pressed together. The line on which shut-off surfaces intersect with the surface of the cavity is called the parting line. The corresponding line on the surface of the part formed by the parting line is called the witness mark. After the mold assembly is set up in an injection molding press, parts are made by filling the cavity with molten plastic. The mold blocks are separated from each other after solidification of the molten plastic. The plastic part, normally sticking after separation to the bottom block, is then ejected by means of ejectors. The moldmaking art has a long history of fairly gradual innovation and advancement. Molds are designed pursuant to a specification of the part geometry provided by a customer; in many cases, functional aspects of the plastic part also need to be taken into account. Historically, moldmaking involves at least one face-to-face meeting between the moldmaker and the customer, in which the customer submits detailed part geometry, usually with the aid of drawings, to the moldmaker and outlines the function of the part. Armed with knowledge of injection molding technology, the moldmaker designs the mold corresponding to the drawings of the part. In particular, the moldmaker orients the part to enable a straight pull mold separation, splits its surface into two areas separated by a suitable parting line, and replicates these areas in the top and bottom blocks. The moldmaker determines the location and shape of the shut-off surfaces and enlarges the dimensions of the cavity relative to the desired part as necessary to account for shrinkage of the plastic material. The moldmaker determines the size and position of one or more gates and runners to provide an adequate flow path for the molten plastic shot into the cavity. Sizes and locations of openings for ejection pins are also selected by the moldmaker. The machining operations to be performed to fabricate the designed mold are determined by the moldmaker. The moldmaker then runs various cutting tools, such as endmills, drills and reams, to machine the basic cavity, shut-off surfaces, runners, gates and ejector pin openings in blocks of metal. To produce certain hard-to-mill features in the mold, the moldmaker may also design and machine electrodes, and then perform electro-discharge machining (“EDM”) of the mold blocks. The moldmaker then outfits the mold blocks with ejection pins and prepares the mold assembly for use in the injection molding press. Throughout all of this design and fabrication, the moldmaker makes numerous design choices pertaining to the geometric details of the cavities to be machined as well as to the tools to be used for machining. All these steps involve a high degree of skill and experience on the part of the moldmaker. Experienced moldmakers, after having considered the design submitted by the customer, may sometimes suggest changes to the part geometry so that the part is more manufacturable and less costly. Highly experienced, gifted moldmakers can charge a premium for their services, both in return for the acuity of their experience and perception in knowing what will and will not work in the mold, and in return for their skill, speed and craftsmanship in machining the mold. Because of the large number of technical decisions involved and considerable time spent by highly skilled moldmakers in analyzing in detail the part geometry by visual inspection, obtaining a desired injection mold has generally been quite expensive and involved a significant time delay. A single mold may cost tens or hundreds of thousands of dollars, and delivery times of eight to twelve weeks or more are common. As in many other areas of industry, various computer advances have been applied to the moldmaking art. Today, most of customer's drawings are not prepared by hand, but rather through commercially available programs referred to as CAD (Computer-Aided Design) software. To produce drawings of the molds based on the drawings of custom parts, moldmakers also use CAD software, including packages developed specifically for this task. Also, in most moldmaking companies machining operations are not manually controlled. Instead, CNC (Computer Numerical Control) machines such as vertical mills are used to manufacture molds and, if needed, EDM electrodes in accordance with a set of CNC instructions. To compute detailed toolpaths for the tools assigned by the moldmaker and to produce long sequences of such instructions for CNC mills, computers running CAM (Computer-Aided Manufacturing) software (again, including packages developed specifically for the moldmaking industry) are used by most moldmakers. CAD/CAM software packages are built around geometry kernels—computationally intensive software implementing numerical algorithms to solve a broad set of mathematical problems associated with analysis of geometrical and topological properties of three-dimensional (3D) objects, such as faces and edges of 3D bodies, as well as with generation of new, derivative 3D objects. At present, a number of mature and powerful geometry kernels are commercially available. While existing CAD/CAM software packages allow designers and CNC machinists to work with geometrically complex parts, they are still far from completely automating the designer's work. Rather, these packages provide an assortment of software-supported operations that automate many partial tasks but still require that numerous decisions be made by the user to create the design and generate machining instructions. CAD/CAM packages usually facilitate such decisions by means of interactive visualization of the design geometry and machining tools. This makes software applicable to a wide variety of tasks involving mechanical design and machining operations. The downside of such versatility, when applied to moldmaking, is that it results in long and labor intensive working sessions to produce mold designs and CNC machining instructions for many custom parts, including parts lending themselves to straight pull molding. Visualization allows the moldmaker to evaluate whether the mold and injection molded parts can be made sufficiently close to the design using available tools. The fidelity with which plastic parts can be manufactured is limited by the finite precision of mills and cutting tools used to machine the mold, and by shrinkage of plastic materials (slightly changing the shape and dimensions of the injection molded parts as they cool down and undergo stress relaxation in a way that is largely but not entirely predictable). These rather generic factors establish the level of dimensional tolerances for injection-molded parts, the level that is generally known and in most cases acceptable to the customers. Oftentimes, however, additional factors come into play that can result in more significant deviations of injection molded plastic parts from the submitted design geometry. These factors are usually associated with certain features that are hard to machine in the mold using vertical mills. For example, very thin ribs in the part can be made by cutting deep and narrow grooves in the mold, but may require an endmill with an impractically large length to diameter ratio. Machining of angles between adjacent faces joined by small radius fillets (and, especially, of angles left without a fillet) may result in similar difficulties. Exact rendering of such features may substantially increase the cost of the mold, and even make its fabrication impractical with the technology available to the moldmaker. Obviously, such manufacturability issues need to be identified, communicated to the customer, and, if necessary, rectified before proceeding with mold fabrication. Their resolution normally requires tight interaction between the moldmaker and the customer, as both parties are in possession of complementary pieces of information needed to resolve the issues. The moldmaker has first hand knowledge of the mold fabrication technology available to him, while the customer, usually represented in this process by the part designer, has first hand understanding of part functionality and cosmetic requirements. Based on this understanding, the customer can either agree to the anticipated deviations of part geometry from the submitted specification, or, if the deviations are unacceptable, the customer can modify the part design to resolve manufacturability issues without compromising functional and cosmetic aspects of the design. As plastic parts often have many unnamed (and hard to name) features, pure verbal communication not supported by visualization of the part can be awkward and misleading. Therefore, communicating such information requires a face-to-face meeting with the customer, in which the moldmaker and the customer view the drawing or image of the part and discuss the issues in detail. Such meetings take a considerable amount of time, both from moldmakers and their customers, and increase business costs. Resolution of manufacturability issues is closely connected with price quotations requested by customers. When a customer requests a price quotation for a molding project, the moldmaker informally applies a wealth of experience and knowledge to predict costs and various difficulties in fabricating the mold. The potential mold manufacturability issues should be substantially resolved before a binding quotation can be given to a customer. For this reason, it can often take one or two weeks for a customer just to obtain a price quotation. Quoting is performed at a stage when securing the order for the moldmaking job is uncertain, and the cost of quoting must be recovered by the moldmaker from the subset of quotes that are actually accepted. In the event that the customer contracts with the moldmaker for the job, the quotation becomes a constituent part of the contract for manufacturing the mold and injection molded parts. For obvious reasons the informal quoting method is prone to human errors. If the request for quotation results in the job order, such errors will most likely become apparent during mold design and machining, or even after the mold is finished and used for manufacturing the first plastic parts. The price of such mistakes in terms of the lost time and effort, as well as in terms of strained customer relations, may be rather high. Thus, for a moldmaking business to be successful and profitable, good communication between the customer and the moldmaker in resolving manufacturability issues and accurate quoting are extremely important. BRIEF SUMMARY OF THE INVENTION The present invention is a method and system of automated, custom quotation for manufacture of a mold and/or manufacture of a molded part. To begin the process, a customer sends a CAD file defining the surface profile for the part to be molded to the system. The system then assesses two different types of information to arrive at a quotation. First, the part surface profile (which could have any of a virtually infinite number of shapes) is assessed, to consider certain cost-affecting parameters determined by the part surface profile. Further, the customer is provided with at least one menu of customer-selectable values for a cost-affecting parameter unassociated with part surface profile. A quotation is then automatically generated which varies based upon both (i.e., infinitely-customized and menu-selected) types of information, and automatically transmitted to the customer. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an exemplary “cam” part desired by a customer. FIG. 2 is a flow diagram of the preferred method followed by the present invention to manufacture the mold for the exemplary “cam” part. FIG. 3 is a representational view conceptually showing failure of straight pull in a y-axis direction. FIG. 4 is a representational view conceptually showing acceptance of straight pull in a z-axis direction. FIG. 5 is an elevational view of a standard endmill. FIG. 6 is an exemplary product deviation file of the exemplary part of FIG. 1. FIG. 7 is a computer screen shot of a perspective view showing the selected tool paths of the standard endmill of FIG. 4 in fabricating the mold for the exemplary part of FIG. 1. FIG. 8 is a perspective view showing the parting line, the shut-off surfaces, and the ejection pin locations for the exemplary part of FIG. 1. FIG. 9 is a perspective view showing sprews, runners, gates and ejection pins for the mold for the exemplary part of FIG. 1. FIG. 10 is a computer screen shot of a preferred customer interface for the quotation system, showing customer selection of one parameter. While the above-identified drawing figures set forth one or more preferred embodiments, other embodiments of the present invention are also contemplated, some of which are noted in the discussion. In all cases, this disclosure presents the illustrated embodiments of the present invention by way of representation and not limitation. Numerous other minor modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention. DETAILED DESCRIPTION The present invention will be described with reference to an exemplary part 10 shown in FIG. 1. FIG. 1 represents a “cam” part 10 designed by the customer. In part because the cam 10 is custom-designed (i.e., not a staple article of commerce) by or for this particular customer, the cam 10 includes numerous features, none of which have commonly accepted names. For purposes of discussion, we will give names to several of these features, including a part outline flange 12, a circular opening 14 with two rotation pins 16, a non-circular opening 18, a notch 20, a rib 22, a 60° corner hole 24, a 30° corner hole 26, and a partial web 28. However, workers skilled in the art will appreciate that the customer may in fact have no name or may have a very different name for any of these features. FIG. 2 is a flow chart showing how the present invention is used to manufacture the customer's part. The first step involves a Customer Data Input module 30. Thus, the starting input for the present invention is the CAD part design file 32, provided by the customer from the customer's computer 34. There are several standard exchange formats currently used in the 3D CAD industry. Presently the most widely used format is the Initial Graphics Exchange Specification (IGES) standard. The present invention accepts IGES, STL or various other formats, and is compatible with all the commercial CAD products currently in use. In contrast to most moldmaker's operations which involve an initial face-to-face meeting with the customer to discuss drawings, the present invention allows the customer to provide the CAD file 32 without a face-to-face meeting. Such communication could occur through a mailed computer disk or through a dial-up modern site. In particular, however, an address on a global communications network such as the internet 36 is configured to receive customer CAD files 32. While the address could be a simple e-mail address, the preferred address is a website on the world-wide-web, configured to receive a CAD file 32 from a customer for the part to be molded. The “web-centric” customer interface preferably include a part submission page as part of the Customer Data Input module 30, which allows the customer to identify which standard CAD/CAM format is being used for the part drawings. Alternatively, the customer's CAD file 32 may be evaluated with an initial program which determines which type of standard CAD/CAM format is being used by the customer. If the CAD file 32 transmitted by the customer does not conform to a recognized standard CAD file format so as to be readable by the software of the present invention, the customer data input module returns an error message to the customer. The customer's CAD file 32 entirely defines the part 10. The next step in the process is performed by a geometry analyzer module 38, which assesses the geometry of the customer's part 10 using a set of acceptability criteria 40, 42, 44, 46. This geometry analyzer module 38 is used to determine whether the mold for the part defined by the customer's CAD file 32 can be inexpensively manufactured in accordance with the present invention. Various acceptability criteria can be used, depending upon the software and manufacturing capabilities used in automated manufacturing of the mold. For example, if the software and manufacturing capabilities are limited to manufacturing straight pull molds only, the first preferred acceptability criterion 40 is whether the part can be molded in a straight pull mold. If desired, an individual may view the customer's CAD file 32, either through a printout drawing or on-screen, to visually inspect and determine whether the part can be manufactured in a straight pull mold. However, in the preferred embodiment, the program automatically identifies whether the part can be manufactured in a straight pull mold. Automatic “straight pull” manufacturability identification 40 involves selecting an orientation of the part in the customer's CAD file 32. Customers typically draw parts oriented with an x-, y- or z-axis which coincides with the most likely straight pull direction. FIGS. 3 and 4 represent an example of this. First, the cam 10 is solid modelled in the y-direction as a plurality of parallel line segments extending in the y-direction as shown in FIG. 3. The geometry analyzer module 38 then considers each line in the solid modeling, to determine whether the line is continuous and intersects the part surface profile only at a single beginning and a single ending. As shown here, line 48 is a first line which fails this test, as it intersects the cam 10 three times: once through the part outline flange 12 and twice on the sides of the 60° corner hole 24. The y-direction orientation of this part 10 thus fails to permit straight pull mold manufacturability 40. The cam 10 is next solid modelled in the z-direction as a plurality of parallel line segments extending in the z-direction as shown in FIG. 4. The geometry analyzer module 38 again considers each line in the solid modeling, to determine whether the line is continuous and intersects the part surface profile only at a single beginning and a single ending. As shown here in FIG. 4, all the line segments meet this test 40. Because the cam 10 passed the test 40 in the z-direction, it is thus determined that the part 10 can be oriented such that the z-direction is the straight pull direction. Thus, the cam 10 can be formed with a straight pull mold with the straight pull direction coinciding with the z-direction as drawn. If desired, the “straight pull” manufacturability identification 40 can be terminated once it is determined that at least one orientation of the part 10 exists which can be manufactured with a straight pull mold. Preferably, additional tests continue to be automatically run by the geometry analyzer module 38 to confirm the best orientation of the part 10 which can be manufactured with a straight pull mold. For instance, a similar x-direction test is run, which this cam part 10 fails similar to the z-direction test. Similarly, additional orientational tests can be run, with the parallel lines in the solid modeling run at angles to the x-, y- and z- directions selected in the customer's CAD file 32. If the part passes “straight pull” manufacturability 40 on two or more orientations, then an assessment is made of which orientation should be used for the mold. Computer programmers will recognize that, once the acceptability criteria are defined to include a determination 40 of whether the part can be molded in a straight pull mold and the orientation necessary for molding in a straight pull mold, there are many equivalent programming methods to apply this acceptability criterion 40 to the customer's CAD file 32. If the CAD file 32 for the part 10 fails the straight pull manufacturability test 40 such as due to the presence of undercuts, the preferred system provides the customer with a graphical image of the part 10 in an orientation that comes closest to passing the straight pull manufacturability test 40, but further with faces that have undercut portions highlighted. A comment is provided to the customer that the design of the part 10 should be revised to get rid of the undercuts. If desired, the “straight pull” manufacturability criterion 40 may assess not only whether a straight pull mold is possible at the selected orientation, but may further evaluate draft angle. Draft angle affects the ease of machining the mold, as vertical edges are more difficult to machine. Draft angle also affects the ease of using the mold, as more vertical sides have a higher sticking force making ejection of the part 10 from the mold more difficult. Thus, more robust ejection pin systems may be needed for parts with high draft angles. For example, in a preferred straight pull manufacturability criterion 40, draft angles on all sides of at least 0.5° are required. The straight pull manufacturability criterion 40 will thus automatically identify zero-drafted (vertical) surfaces and reject such parts as failing the straight pull manufacturability criterion 40. In the preferred embodiment, the present invention further reviews the part design using a second acceptability criterion 42, of whether the mold geometry can be formed through machining with a standard set of CNC machining tools. This second acceptability criterion 42 involves determining which tools are available, what are limitations in using the available tools, and defining areas of the mold (if any) which cannot be machined with the available tools. Because this second acceptability criterion 42 has significant overlap with generating the automated set of CNC machining instructions in the tool selection and tool path computation module 68, it is discussed in further detail below. In particular, however, the preferred standard CNC machining tools include a collection of standard-sized endmills, standard-sized reams and standard-sized drills. With this collection of standard CNC machining tools, limitations exist with respect to the radii of curvature of various edges and corners, and with respect to aspect ratio of deep grooves in the mold. In general, an edge of a part cannot have a tighter radius of curvature than the smallest endmills and drill bits. In general, any grooves in the mold, which correspond to any ribs in the part, must have an aspect ratio which permits at least one of the standard CNC machining tools to reach the depth of the groove. For example, FIG. 5 depicts the profile of a standard {fraction (1/4)} inch diameter ball endmill 50. This endmill 50 has a cutting depth 52 of slightly less than 2 inches limited by a collet 54. If a {fraction (1/4)} inch thick groove in the mold has a height of 2 inches or more, then the standard {fraction (1/4)} inch diameter endmill 50 cannot be used to form the groove portion of the cavity. The aspect ratios of standard endmills are based upon the strength of the tool steel (so the tool 50 won't easily break in use), and follow a similar aspect ratio curve. That is, all endmills which are less than {fraction (1/4)} inch in diameter are shorter than the standard {fraction (1/4)} inch diameter ball endmill 50. All endmills which are longer than 2 inches are wider than {fraction (1/4)} inch in diameter. Thus, no tool in the standard set can be used to make a groove {fraction (1/4)} inch thick with a height of 2 inches or more. As an approximate rule, ribs should be no deeper than ten times their minimum thickness. The geometry analyzer module 38 includes analysis 42 run against the customer's CAD file 32, to conceptually compare the part shape against collected geometric information of a plurality of standard tool geometries, such a standard endmills. For the cam 10, all of the CAD file 32 passes except for the rib 22, which is too thin and long. The preferred CNC machining criterion 42 further considers aspect ratios of grooves relative to the parting line of the mold. Because endmills can be used downward in the bottom half (cavity) of the mold and upward in the top half (core) of the mold, aspect ratios of features which contain the parting line can be twice that of aspect ratios of features which do not contain the parting line. That is, groove depth is measured relative to the lowest adjacent extending surface on the half of the mold in which the groove is machined. In the cam 10, for instance, the inside edge of the part outline flange 12 does not intersect the parting line, because the parting line extends along the inside edge of the partial web 28. The depth of the part outline flange 12 is therefore measured relative to the adjacent extending surface, the partial web 28. The aspect ratio determined by this depth of the part outline flange 12 relative to the thickness of the part outline flange 12 must be within the aspect ratio of at least one tool in the standard set. In contrast, the outer edge of the part outline flange 12 has no adjacent extending surface and intersects the parting line. Because the parting line separates the outer edge of the part outline flange 12 into the two mold blocks, the depth of the outer edge of the part outline flange 12 relative to its thickness can be up to twice the aspect ratio of at least one tool in the standard set. The CNC machining criterion 42 runs similar programming analysis to verify that each corner of the part 10 has a sufficient radius of curvature to permit machining by one of the standard CNC machining tools. For instance, the CNC machining criterion may limit the minimum radius of outside corners of the part to no less than ½ the minimum wall thickness. If the CAD file 32 fails either due to having too deep of grooves or having too tight of corners, the part fails the CNC machining criterion 42, and the customer must be informed. Computer programmers will recognize that, once the acceptability criteria 42 are defined to include a determination of whether groove depths and/or corner radii of the part permit standard CNC machining, there are many equivalent programming methods to apply this acceptability criterion to the customer's CAD file 32. In the preferred embodiment, the geometry analyzer module 38 further reviews a third acceptability criterion 44, of whether the mold geometry can be formed in aluminum or in an aluminum-based alloy. That is, a design parameter imposed upon the preferred system is that the mold be manufacturable from standard aluminum-based mold block stock. Aluminum is selected for cost reasons, with a primary cost savings in that aluminum is more quickly machined than steel, and a secondary cost savings in that the aluminum blocks themselves are less expensive than steel. However, aluminum is not as strong as steel, and excessively thin structures of aluminum will not withstand the forces imparted during injection molding. Accordingly, the program looks at the mold to determine whether any portions of the mold are too thin. The cam 10 has one thin recess, the notch 20, which if sufficiently thin and deep fails this criterion. That is, as the cam 10 was designed by the customer, the mold for the cam 10 cannot be formed of aluminum and withstand the forces of injection molding. Computer programmers will recognize that, once the acceptability criteria 44 are defined to include a determination of whether the mold can be formed of aluminum, there are many equivalent programming methods to apply this acceptability criterion to the customer's CAD file 32. One of the preferred inputs to the customer data input module 30 from the customer 34 is the type of plastic material which is selected for the part 10. For instance, the customer data input module 30 may permit the customer to select from any of the following standard plastics: ABS (natural), ABS (white), ABS (black), ABS (gray-plateable), Acetyl/Delrin (natural), Acetyl/Delrin (black), Nylon (natural), Nylon (black), 13% glass filled Nylon (black), 33% glass filled Nylon (black), 33% glass filled Nylon (natural), 30% glass filled PET/Rynite (black), Polypropylene (natural), Polypropylene (black), Polycarbonate (clear), Polycarbonate (black), Ultem 1000 (black), Ultem 2200 (20% glass filled) (black), Ultem 2300 (30% glass filled) (black). Different plastics have different viscosity curves at molding temperatures, different solidification rates, and different shrinkage rates. In the preferred embodiment, the program further reviews a fourth acceptability criterion 46, of whether the mold geometry can be adequately injection molded with the plastic material selected by the customer. This acceptability criterion 46 involves an assessment of whether the mold contains areas that will not shrink uniformly for the selected plastic material, and whether gating can be readily machined into the mold, to result in an acceptable flow path for the plastic which will be met at an attainable mold temperature and pressure so the shot adequately and uniformly fills the cavity. Additional acceptability criteria could be included, such as related to the size of the part. For instance, the part may need to fit within a maximum projected area, as viewed through the straight-pull axis, of 50 sq. in. (400 sq. cm). Similarly, the part may need to be smaller than a maximum part volume, such as a maximum volume of 18 cu. in. (200 cc). If the customer's CAD file 32 fails one or more acceptability criteria 40, 42, 44, 46, this failure is communicated to the customer. If desired, the failure to meet any acceptability criteria 40, 42, 44, 46, may be communicated through a telephone call. However, preferably the program automatically generates a computer message which is transmitted to the customer, such as an e-mail. The preferred acceptability failure message indicates the nature of the failure. In the most preferred embodiment, the program includes a proposed modification CAD file communication module 56. The proposed modification CAD file communication module 56 involves several different steps. First, information is stored about each way in which the part 10 fails an acceptability criterion 40, 42, 44, 46. For instance, not only will information be stored that the cam 10 fails because the rib 22 is too thin and long and because the notch 20 is too deep and thin, but information is also stored about the closest rib and notch which would pass the acceptability criteria 42, 44. That is, by making the rib 22 slightly thicker, the rib 22 can be formed in the mold with standard CNC endmills. By making notch 20 slightly thicker, the aluminum mold will withstand the forces of injection molding. The proposed modification CAD communication module 56 then generates a modified CAD file 58, which distinguishes between the portions of the part geometry which pass all acceptability criteria 40, 42, 44, 46 and the portions of the part geometry which fail at least one acceptability criteria 40, 42, 44, 46. A drawing from the proposed modification CAD file 58 is shown as FIG. 6. The proposed modification CAD file 58 highlights the closest approximations 60, 62, relative to remaining unaltered portions of the cam design part surface profile 10 which pass all acceptability criteria 40, 42, 44, 46. Highlighting may be done through different line formats, different colors, etc. For instance, using one of predefined color coding schemes, colors are assigned to representative areas to show the identified association of the machinable points and to indicate the lack of appropriate tool. The part geometry supplemented by the color data is preferably placed in a file 58 using one of the standard graphical formats suitable for rendering interactively manipulated three-dimensional views of the part 10. The file 58 together with the legend explaining the color coding scheme used can be sent or otherwise made available to the customer for interactive viewing, possibly with additional comments. For instance, the file 58 might identify one or more zero-drafted deep ribs. Comments included with the file 58 may request that the customer redesign the part to introduce at least 0.5 degree draft on deep ribs, or may say that the quote price can be lowered if the rib's walls are drafted. The proposed modification CAD communication module 56 then automatically transmits the proposed modification CAD file 58 to the customer, so the customer can view the changes required for inexpensive manufacture of the mold. Skilled moldmakers will recognize that there are seldom mold designs that can't be done, only mold designs that can't be done without adding significant complexity. For instance, a mold for the cam 10 as originally designed by the customer could be formed, but it would be formed of steel rather than aluminum and the rib portion 22 of the mold would be burned by EMD. The present invention is configured based upon the capabilities of the moldmaking shop. If the moldmaking shop can handle CNC machined aluminum molds as well as EMD steel molds, then the program may assess acceptability criteria for both types of processes. If the customer's CAD file 32 fails at least one acceptability criteria for the less expensive method of mold manufacture, then a first proposed modification CAD file 58 may be generated and transmitted to the customer. If the customer's CAD file 32 passes all acceptability criteria for the more expensive method of mold manufacture, this information may be transmitted to the customer as well. The present invention thus provides a computerized method for fast identification of the mold manufacturability issues. In ways that have never been before contemplated in the moldmaking art, and in particular without requiring a face-to-face meeting between a customer and an experienced moldmaker, mold manufacturability issues are automatically identified and communicated to the customer. The three-dimensional graphical representation 58 of mold manufacturability issues is very convenient and considerably simplifies communication of such issues to the customers. The geometry analyzer module 38 in tandem with the proposed modification CAD communication module 56 are valuable tools for the design engineer. These modules 38, 56 can be used during the development process to guide the design toward a part 10 that can be manufactured quickly and economically, whether or not it is quoted and manufactured in accordance with the rest of the preferred system. The next part of the preferred system is the quoting module 64. If desired, quoting may be performed the prior art way, by having an experienced moldmaker review drawings of the customer's part 10 and meticulously consider what may be involved in making the mold. More preferably however, the quoting module 64 automatically generates a quotation 66 for the mold, and transmits the automatically-generated quotation 66 to the customer 34. To automatically generate a quotation 66, the program must assess one or more cost parameters which are indicative of the real costs which will be incurred to form the mold. The most basic cost parameters preferably considered involve the machining actions which will be used to form the mold. That is, the preferred quotation 66 varies based upon computer analysis by the quoting module 64 of at least one indicator of mold manufacture time. Automatic determination of machining actions and/or other material removal steps in the tool selection and tool path computation module 68 is further detailed below. If machining actions are automatically determined, then the quoting module 64 automatically assesses the determined machining actions to arrive at a quotation 66. As one example, a primary indicator of overall mold manufacture time is how long it takes to CNC machine the mold. A primary indicator of how long it takes to CNC machine the mold is the number of steps in the series of CNC machining instructions. Thus, the automatic quotation 66 may be based in part or in full on the number of steps in the series of CNC machining instructions. As a further, more accurate iteration, how long it takes to CNC machine the mold further depends upon which tools are used and what the material removal rate of each tool 50 is. Thus, the quoting module 64 stores information about a rate of material removal associated with each of the different material removal steps. The preferred quoting module 64 automatically identifies an estimated duration of material removal required for each discrete portion of the part surface profile. The automatic quotation 66 may be based in part or in full on a total of estimated durations of material removal. If desired, the Customer Data Input module 30 may permit the customer to select a special surface finish, such as a polished finish, matte (similar to EDM), or special etched textures. If so, the automatic quotation may further vary based upon the difficulty in applying the selected special surface finish to the mold. In general, the time required during material removal is only a portion of the time required for CNC machining. Additional time is required to change from one tool to another. For instance, standard CNC machines may include spots for 10 to 40 tools. Changing among these 10 to 40 tools takes additional time. Further, a portion of the cost of CNC machining is based upon the expense and wear rate of the tool 50. Some tools are more expensive than others, and some tools need to be replaced more frequently than others. Even more time and cost may be incurred if a special, custom or delicate tool is required for some material removal steps. As a separate, more accurate enhancement, the quoting module 64 may consider the number and type of tools used in the selected material removal steps. A separate iteration which improves the accuracy of the quotation 66 involves having the quoting module 64 consider the parting line and corresponding shutoff surfaces of the mold. In general, simple molds which can be formed with an x-y planar parting line and shutoff surfaces are relatively inexpensive. A major portion of the expense of some molds may involve the time required to machine the parting line and corresponding shutoff surfaces which are not x-y planar. Separate from basing the quotation 66 on the number of CNC steps or on the estimated durations of material removal, the automatic quoting module 64 may consider the complexity in forming the parting line and corresponding shutoff surfaces. Alternatively, the quoting module 64 may ignore the complexity of building shut-off surfaces that are necessary in the full-blown mold design, particularly if the design of the shutoff surfaces is not automated. If the determined parting line is complex, it may be beneficial to inform the customer of the complexity in the parting line, either as part of the manufacturability criterion 40 or as part of the quoting module 64. Thus the customer may be allowed to have input in selection of a more simplified parting line, or the system may specifically suggest to the customer that the parting line or particular features in the part 10 which contribute to parting line complexity be moved. Yet another separate indicator of mold manufacture time depends on the size of the part 10. Larger molds often take more time. Larger molds certainly require a greater expense in the cost of the raw mold blocks. The preferred quoting module 64 further accounts for the mold block area required for the part 10. A further separate indicator of mold manufacture time involves ribbing and tightly radiused corners, as discussed previously with regard to acceptability criteria 40, 42, 44, 46 in the geometry analyzer module 38. Deep grooves in the mold and sharper corners take more time to machine. The preferred quoting module 64 further automatically assesses and accounts for the amount, depth and steepness of ribbing required for the part 10. A further separate indicator of mold manufacture time involves evaluation of draft angle, as discussed previously with regard to acceptability criteria 40 in the geometry analyzer module 38. Evaluation of draft angle can be enhanced by including the minimal draft angle into the mathematical expression for the price quotation. Steeper draft angles typically take more time and are more costly to machine. Further, parts with steeper draft angles are more difficult to eject from the mold. The preferred quoting module 64 further automatically assesses and accounts for the steepness of the draft angles required for the part 10, both as an indicator of mold manufacture time and as a potential difficulty in use of the mold during injection runs. With the preferred mold manufacturability acceptability criteria 40 requiring a draft angle of at least 0.5°, the preferred quoting module 64 includes additional costs (which vary based upon the draft angle) for draft angles in the range of 0.5 to 2.0°. If all sides are provided with draft angles of at least 2.0°, then no additional cost allowance due to a steep draft angle is included by the preferred quoting module 64. A further separate indicator of mold manufacturing difficulty and time depends upon whether and which features cannot be standardly CNC machined, but rather require EDM. The existence of any required EDM material removal will increase the cost of the mold. Each feature which requires EDM will increase cost, and more so if the EDM feature is deep enough to require, because of electrode wear, multiple EDM electrodes. The preferred quoting module 64 identifies any different discrete portions of the part surface profile which are associated with different electrodes for EDM, and the automatically generated quotation 66 varies based upon the estimated number of electrodes required. Many customers have no injection mold experience or equipment, or otherwise are not interested in taking actual possession of the mold. While the cost to manufacture the mold may be the primary cost of the part, customers often want parts, not molds. Accordingly, the preferred quoting module 64 quotes piece prices. Different piece price quotations 66 may be given, for instance, for 10, 100, 1000, or 10000 parts. In addition to the cost of the mold, the primary cost considerations for piece price quotations 66 depend upon what type of plastics material is used, and how much of it. The preferred quoting module 64 automatically provides piece price quotations, which involve the cost of the mold and further vary based upon the volume of the part and the plastic material selected by the customer for injection molding. The quoting module 64 communicates the quotation 66 to the customer, preferably through the internet 36 such as through the website (if real-time quotation is attained) or through a responsive e-mail to the customer's computer 34. The customer may then accept the quotation 66 through the same medium. FIG. 10 depicts a screen shot 100 of a preferred customer interface for quoting module 64. The preferred quoting module 64 processes two different types of information to arrive at a quotation. First, the surface profile of the part 10 (which could have any of a virtually infinite number of shapes) is assessed, to consider certain cost-affecting parameters determined by the part surface profile. The second type of information is quite different from the infinite variability of the shape information, and involves providing the customer with at least one menu of customer-selectable values for a cost-affecting parameter unassociated with part surface profile. For instance, a first preferred cost-affecting parameter unassociated with part surface profile is selected from a menu 102 of differing number of possible cavities. In order to provide the customer with a menu 102 of possible cavity numbers, the size and layout of the mold cavity 84 must first be assessed relative to the size of mold blocks available. For instance, a size comparison and mold layout analysis for one part 10 may result in a possibility of up to eight identical cavities being formed within a single mold block. The customer is then provided with a drop-down menu 102 of the number of possible cavities, for the customer to select between menu values of “1 cavity”, “2 cavities”, “4 cavities”, and “8 cavities”. For a different part (not shown), the size comparison and mold layout analysis may result in a possibility over only four identical cavities being formed within a single mold block, in which case the drop-down menu 102 of the number of possible cavities for that part would only provide selectable values of “1 cavity”, “2 cavities” and “4 cavities”. The number of cavities selected by the customer is then evaluated in the quoting module 64 as a cost parameter both for mold cost and for piece price cost, with mold cost increasing due to the additional time and cost required to machine more cavities, but with piece price cost decreasing because multiple parts can be run with each shot. The preferred quoting module computes a quotation on the basis of a mathematical expression which describes several components of the price—such as the cost of mold block, milling time, polishing time, setup-time in the press, etc. Some of these components may be independent of the number of cavities (e.g., setup time), some are directly proportional to the number of cavities (such as polishing time), some exhibit more complex dependance (for example, the cost of mold block for small parts does not depend on the number of cavities provided that several cavities fit in the same block—but increases if bigger mold block is needed). The quoting module 64 re-computes the quotation each time when the customer changes the available preferences. A second preferred cost-affecting parameter unassociated with part surface profile which is menu selectable is surface finishes. The customer is provided with a drop-down menu 104 of offered surface finishes. For example, the customer may be provided with a drop-down menu 104 which allows the customer to select between values of “T-0 (finish to Protomold discretion. Tool marks may be visible)”, “SPI-C1 (600 Stone)”, “SPI-B1 (400 Paper)”, “T-1 (Medium bead blast finish—similar to a medium EDM finish)”, “T-2 (Coarse bead blast finish—similar to a coarse EDM finish)” and “SPI-A2 (High Polish)”. In the preferred quoting module 64, the customer may select any of these different menu-provided surface finishes from a different drop-down menu 104, 106 for each side of the mold. In an alternative embodiment (not shown), the customer may be permitted to select different surface finishes between different faces even on the same side of the mold. To avoid naming confusion over the different faces, the alternative quoting module provides a graphical representation of each side of the part with different faces marked with indicia, such as shaded in different colors. The quoting module then provides a drop-down menu for each colored shading on the graphical representation (i.e., “surface finish for blue face” menu, “surface finish for red face” menu, etc.) so the customer can select the surface finish applied to each colored face of the depicted cavity 84. Once the customer selects the drop-down menu value for the surface finish, the quoting module 64 assesses the cost of applying the selected surface finish for the cavity 84, computed based upon the time, materials and tools required to apply the selected surface finish, preferably also as a function of the surface area for the applied finish. A third preferred cost-affecting parameter unassociated with part surface profile which is menu selectable is material of the part. The customer is provided with a drop-down menu 108 of offered materials. The material or resin used for the part 10 is an integral consideration in the design process, affecting many material properties of the part 10 such as strength, flexibility, hardness, corrosion resistance, flammability, etc. Further, cost of each plastic material or resin is subject to change due to market conditions. Accordingly, the preferred material menu 108 provides numerous alternatives. For example, the customer may be provided with a drop-down menu 108 which allows the customer to select between the following seventy values: “Customer supplied”, “ABS, Natural (LUSTRAN 433-1050)”, “ABS, Black (CYCOLAC T-4500)”, “ABS, Black (LUSTRAN 433-4000)”, “ABS, White (LUSTRAN 248-2005)”, “ABS, Black (POLYLAC PA-765)”, “ABS Platable, Light Grey (LUSTRAN PG298)”, “ABS Platable, Gray (CYCOLAC MG37EP)”, “ABS/PC, Black (BAYBLEND FR 110-1510)”, “ABS, White (LUSTRAN 248-2005)”, “ABS/PC, Light Gray (BAYBLEND T85 2095)”, “ABS/PC, Black (CYCOLOY C2950-701)”, “ABS/PC, Natural (BAYBLEND T 45-1000)”, “ABS/PC, Black (BAYBLEND T 85-1510)”, “ABS/PC, Black (BAYBLEND T85 2D95)”, “Acetal Copolymer, Black (CELCON M90)”, “Acetal Homopolymer, Black (DELRIN 500 P BK602)”, “Acetal Homopolymer, Natural (DELRIN 500P NC010)”, “Acetal Homopolymer, 20% GF, Black (DELRIN 577-BK000)”, “Acetal Homopolymer, Black (DELRIN 500 CL BK601)”, “HDPE, Natural (HiD 9006)”, “LDPE, Natural (DOW LDPE 722)”, “Nylon 46, Natural (STANYL TW341)”, “Nylon 6, Natural (ZYTEL 7331F NC010)”, “Nylon 6, Black (ZYTEL 7331F dyed)”, “Nylon 6, Black (RTP 200A FR)”, “Nylon 66, Black (ZYTEL 101L BKB009)”, “Nylon 66, 13% GF, Black (ZYTEL 70G13 HSIL)”, “Nylon 66, 14% GF, Black (ZYTEL 8018 HS)”, “Nylon 66, 43% GF, Black (ZYTEL 74G43W BK196)”, “Nylon 66 33% GF, Natural (ZYTEL 70G33HSIL)”, “Nylon 66, 33% GF, Black (ZYTEL 70G33 HSIL BK031)”, “Nylon 66, Natural (ZYTEL 103 HSL)”, “Nylon 66, Natural (RTP 202 FR)”, “PBT 30% GF, Black (VALOX 420 SEO)”, “PBT 15% GF, Black (CRASTIN SK 652 FR)”, “PBT, Black (VALOX 357-1066)”, “PC, Opaque/White (MAKROLON 2558-3336)”, “PC, Black (LEXAN 940)”, “PC, Clear (MAKROLON 2405-1112)”, “PC, Clear (MAKROLON 2458-1112)”, “PC, Black (MAKROLON 2405-1510)”, “PC, 10% Glass, Black (MAKROLON 9415-1510)”, “PC 20% GF, Natural (MAKROLON 8325-1000)”, “PC 20% Glass, Black (MAKROLON 8325-1510)”, “PC, clear (MAKROLON 6455-1045)”, “PC, Infrared (LEXAN 121-S80362)”, “PEI, Black (ULTEM 1000-7101)”, “PEI, 20% GF, Black (ULTEM 2200-7301)”, “PEI 30% GF, Black (ULTEM 2300-7301)”, “PEI, 40% GF, Black (ULTEM 2400-7301)”, “PET 30% Glass, Black (RYNITE 530-BK503)”, “PET 45% Glass Mineral Flame Retardant, Black (RYNITE FR 945 BK507)”, “PET 35% Glass Mica Low Warp, Black (RYNITE 935 BK505)”, “PETG, Clear (EASTAR 6763)”, “PMMA Clear (PLEXIGLAS V052-100)”, “PP 20% Talc Filled, Natural (MAXXAM NR 218.G001-1000)”, “PP, Black (MAXXAM FR 301)”, “PP Copolymer, Natural (PROFAX 7531)”, “PP Copolymer, Natural (PROFAX SR 857M)”, “PP Homopolymer, Natural (PROFAX 6323)”, “PP Homopolymer, Natural (PROFAX 6523)”, “PS (GPPS), Clear (STYRON 666 Dwl)”, “PS (HIPS), Black (RC 3502B)”, “PS (HIPS), Natural (STYRON 498)”, “PUR, Natural (ISOPLAST 202EZ)”, “TPE, Natural (SANTOPRENE 211-45)”, “TPE, Black (SANTOPRENE 101-73)”, “TPU-Polyester, Black (TEXIN 285-1500)” and “TPU-Polyether, Natural (TEXIN 985-1000)”. Once the customer selects the drop-down menu value for the material, the quoting module 64 assesses the cost of using the selected material. The primary input into the quotation module 64 based upon the selected material is the current raw material cost multiplied by the computed volume of the part plus sprews and runners. However, other costs considerations of the selected material may also be taken into account, such as ease of working with the material, wear on the mold 86 caused by the material, and shrink factor of the material. If the customer selects “customer supplied”, then the quotation module 64 minimizes the cost of the raw material itself, but maximizes the cost of working with the material to account for potential difficulties. A fourth preferred cost-affecting parameter unassociated with part surface profile which is menu selectable is the estimated delivery date. For instance, the customer may be provided with a menu 110 permitting selection of a delivery date of “within 5 business days” or “10-15 business days”. Alternatively, additional or more specific levels of delivery date pricing may be provided. The preferred quotation module 64 thus includes a premium charged for rushed processing. A fifth preferred cost-affecting parameter unassociated with part surface profile which is menu selectable is the number of parts or lot size for piece price quotation. For instance, the customer may be provided with a menu permitting selection of a piece price quotation in lots sizes of “100”, “500”, “1,000”, “2,000”, “5,000”, “10,000”, “20,000”, “100,000” or “200,000” parts. This piece price quotation may then be provided to the customer separately from the tooling charge. Alternatively, the preferred quotation module 64 quotes prices 112 for all these different lot sizes, so the customer can readily see how the lot size affects the piece price. In the preferred system, the quoting module 64 operates in conjunction with the geometry analyzer module 38 to provide graphical feedback to the customer. Preferably, this feedback occurs in real time to allow the customer to redesign physical features of the part 10 (i.e., change the underlying CAD file 32 for the part 10) while obtaining real-time quotation information of how the redesign affects the quotation. The quoting module 64 is another important tool which can be used by design engineers separately from other facets of the preferred system, such as to compare different design alternatives. Since it is fast and easy, instant online quoting is a powerful tool for budgeting and comparing design alternatives during the development process. Design engineers may use online quoting several times in the design of a single part and online quoting will become a very important part of their design process. The next part of the preferred embodiment involves the tool selection and tool path computation module 68. The tool selection and tool path computation module 68 may be activated upon receipt of an accepted quotation 66, but more preferably operates in conjunction with the quoting module 64 as discussed earlier. The task of the tool selection and tool path computation module 68 is to determine what tools to use and what tool paths should be used with those tools to efficiently manufacture the mold for the part specified by the CAD file 32 of the customer. As an initial step, the predicted shrinkage 70 of the plastic material upon solidification is applied to the CAD file 32. Based upon the plastic material that the customer indicates will be used to the customer data input module 30, the dimensions are increased in accordance with known shrinkage factors. Subsequent calculations in the tool selection and tool path computation module 68 are based upon the size of the cavity (before shrink, as determine by a shrinkage factor 70) rather than size of the part 10 (after shrink). As a second initial step, standard mold block sizes are assessed to determine mold block layout 72. Mold layout 72 is the process of assigning and locating one or more core/cavities onto a standardized mold base. For small, simple parts, two or more identical cavities may be machined into a standard sized mold block. A family mold contains more than one unique part, and is often used to reduce tooling cost for a group of parts that are used together. A multi-cavity mold usually refers to a mold with multiple copies of the same part. This approach is commonly used to reduce per part costs when expected production volume will be significant. Either or both approaches may be utilized using the present invention. Selecting one of several standard mold base sizes determines the size of the raw block of aluminum from which the mold will be formed. If the automatic quoting module 64 is used, information about which standard size of mold block is to be used and the number of cavities in the mold as selected in mold layout 72 is fed back to the automatic quoting module 64. Before any selection of tools and computations of tool paths can be performed, the orientation of the part relative to the mold must be determined. While this could be performed manually by an experienced moldmaker, the preferred automated method was described earlier with reference to automatic “straight pull” manufacturability identification 40 as one of the acceptability criteria. Once the orientation of the part relative to the mold is determined, the parting line and corresponding shutoff surfaces are selected 74. The parting line and corresponding shutoff surfaces should be oriented with respect to the part to permit straight pull of the first half and the second half in a straight-pull z-direction during molding of the part. Again, selection of the parting line and corresponding shutoff surfaces could be performed manually by an experienced moldmaker. In the preferred embodiment, the parting line and corresponding shutoff surfaces are automatically oriented 74 with respect to the part 10 as follows. The CAD file 32 is assessed to automatically determine all edge surfaces which extend parallel to the straight-pull z-direction. For a moment, the parallel edge surfaces are excluded from the determination, as determining the parting line for the other portions of the part 10 is relatively easy. If an edge surface does not extend parallel to the straight-pull z-direction, then the parting line is at the height of the greatest areal extent of the part. Thus, the parting line/shutoff surface portion 74 of the tool selection and tool path computation module 68 automatically defines parting line segments which extend along the uniquely (non z-direction) extending greatest periphery of the part 10. If an edge surface does not extend parallel to the straight-pull z-direction, then the parting line is at the height of the greatest areal extent of the part. The cam 10 has no uniquely (non z-direction) extending periphery of the part, as the part outline flange 12, the circular opening 14, the two rotation pins 16, the non-circular opening 18, the notch 20, the 60° corner hole 24, the 30° corner hole 26, and the partial web 28 all provide edge surfaces which extend in the z-direction. The unique parting line segments (if any) must now be connected within the edge surfaces which extend parallel to the straight-pull z-direction. Preferably, the parting line selection routine 74 uses the CNC machining criterion 42 and verifies potential z-direction heights of the parting line segments within the parallel edge surfaces, to assure that the selection of the parting line comports with the desired machinability of the mold. For instance, if tool 50 is being used to machine the bottom mold block at a parallel edge surface of the part outline flange 12, and if tool 50 has a cutting depth 52 of two inches, then the parting line segment must be within the bottom two inches of the parallel edge surface of the part outline flange 12. Once any unique parting line segments are defined and the CNC machining criterion 42 is verified, the parting line selection routine 74 can use any of several optimization routines. For the shortest parting line, the parting line segments within the parallel edge surfaces simply connect the unique and CNC defined parting line segments. To the extent possible, the parting line should be designed to be no steeper than 5-10 degrees. Preferably, a smoothing routine is used to define curved parting line segments within the parallel edge surfaces. In the preferred embodiment, a second derivative of the parting line (i.e., the instantaneous change in slope of the parting line) is minimized in conjunction with minimizing the length of the parting line. Shutoff surfaces within the mold are automatically determined in much the same way. The shutoff surfaces are those surfaces where the mold halves will contact each other when the mold is closed. First, the shutoff surfaces by definition include the parting line. If the parting line is planar, with no holes inside the part, the shutoff surface is defined to be coplanar with the parting line. In the case of the cam 10, the circular opening 14 and the non-circular opening 18 also represent areas of contact between the shutoff surfaces for the two parts of the mold. The parting line around the part outline flange 12, the parting line around the circular opening 14 and the parting line around the non-circular opening 18 can each be planar. The shutoff surface at the circular opening 14 can be planar, as can the shutoff surface at the non-circular opening 18. Defining the shutoff surfaces can be very complex in the case of a part with a highly articulated parting line and complex internal telescoping shutoffs. Beyond considering the parting line, the preferred embodiment 74 optimizes the selection of the shutoff surfaces. To the extent possible, the shut-off surfaces should be designed to be no steeper than 5-10 degrees. While a straight-line routine could be used, the preferred embodiment uses a three-dimensional smoothing routine. The preferred smoothing routines create a parting line shutoff surface which is mathematically complex, and virtually impossible to hand machine. However, the complex surface is mathematically defined, and translated into CNC machining instructions. In the CNC machining instructions, the mathematical complexity of the curve is not particularly important. What is important in the CNC machining instructions is that the shut off surfaces are as smooth as possible, and thus can be formed with the largest tool(s) possible and at the fastest material removal rates. Automatic selection 74 of the parting line and corresponding shutoff surfaces thus provides for: (a) a fast assessment of acceptability criterion 42; (b) a fast quotation 66; (c) a fast generation of CNC machining instructions 76; and (d) a fast CNC machining operation 78 to fabricate the mold. After the parting line and the shutoff surfaces 74 are determined, the preferred method uses the geometry analyzer module 38 to automatically determine the tools and material removal steps required to form the cavity or cavities. The cavity is split in two parts, one for the top mold block and the other for the bottom mold block. In contrast to the shutoff surfaces, which are defined identically but opposite for the two mold blocks, the cavity obviously may have different top and bottom shapes. For each of the two cavity surfaces, the geometry analyzer module 38 generates a cloud of points dense enough to represent the part geometry with acceptable tolerance. For each point in the cloud, the geometry analyzer module 38 traverses the set of machining tools available. That is, a collection of information of standard tool geometries and surface profiles machinable by each of the standard tool geometries is created and stored in the program 38. Because we have already defined the system constraints to include straight-pull manufacturability 40, the preferred collection of information is only considered in the CNC machine with the mold block oriented relative to the tool in the straight-pull z-direction. This stored information is considered by the geometry analyzer module 38 to determine which tools are available to machine a small vicinity of each point without gouging more distant parts of the partial surface either with the tip or shank of the tool 50 or with the collet 54 holding the tool 50. The tool information is traversed starting from the most efficient (fastest material removal, lowest cost) tool and going in the direction of decreasing tool efficiency. The traversal is stopped when several tools that can machine the current point without gouging are found. The association between the points and the identified most effective non-gouging tools is stored in the memory. If, for the current point, a non-gouging tool could not be found at all, this fact is also stored in memory. The failure to find a non-gouging tool can then be used as the basis for the proposed modification CAD file communication module 56 discussed earlier. For the collection of points which can be machined, the geometry analyzer module 38 uses a tool selection optimization routine 80 which selects the most efficient tool. In general, the collection of machinable points should be machined with as few tool changes as possible, but still at the highest rate of material removal. The tool selection and tool path computation module 68 automatically identifies and locates discrete machinable portions of the part surface profile which can be machined with a single tool 50, and records the most efficient tool path for that tool 50. As noted earlier, the preferred tools used in the CNC machining process most commonly include standard-sized endmills. For instance, much of the surface profile for the cavity for the cam 10 can be efficiently machined with the ¼ endmill 50. FIG. 7 is a “screen-shot” representing a portion of an optimized tool path 82 generated so as much of the cavity 84 as possible for the cam 10 can be machined by CNC machining with the ¼ endmill 50. The preferred tool selection and tool path computation module 68 determines the other portions of the mold 86 as well. In particular, the preferred tool selection and tool path computation module 68 automatically identifies 88 sizes and locations of ejector pins 90, as shown in FIG. 8. Ejector pins 90 are used to push the part 10 out of the mold 86 after it has been formed. In general, ejector pin selection 88 considers the profile of the mold 86 to determine the deepest locations which provide significant surface area extending perpendicular to the straight-pull z-direction. The ejector pin selection routine 88 centers ejector pin locations on these flat surfaces, and sizes the ejector pins 90 by selecting the largest standard size that will fit within each flat surface. The preferred tool selection and tool path computation module 68 also automatically identifies 92 sizes and locations of runners 93 and gates 94, as shown in FIG. 9. A gate 94 is the place on the mold 86 where the plastic is injected into the mold cavity 84 as a part is being produced. A runner 93 is the path on the mold 86 where the molten plastic travels to get from the molding machine to the gate(s) 94 and into the part cavity 84. The sizes of runners 93 and gates 94 are selected 92 from knowledge of standard cutting tool sizes, based upon the plastic material selected by the customer, the volume of the part, and the known flow constraints of that plastic material. The locations of the gates 94 are generally selected 92 to connect to the part 10 on a surface which extends parallel to the z-direction, and to minimize seam lines in the part 10 based upon flow geometry. The locations of the runners 93 are generally selected 92 to be as straight as possible from the sprue location 96 to the gates 94. Once the parting line and shutoff surfaces 98 have been defined (step 74), the mold layout has been specified 72, the tools have been selected 68, and the tool paths for the cavity 84 have been computed 80, the preferred method includes a CNC instruction generation module 100 which generates the detailed instructions 76 that will be used by the CNC milling equipment to cut the mold 86 from a raw block of aluminum. The CNC instruction generation module 100 generates a series of CNC machining instructions 76 corresponding to machining the mold 86 with the selected tools and computed machining actions. For instance, the CNC instruction generation module 100 may generate a “g-code” program containing a set of instructions 76 for CNC milling machines. If desired, the shape of the cavity 84 as machined in the mold block can be visualized with one of the g-code viewers developed for up-front visual verification of machining under the control of g-code programs, and the shape of the cavity 84 can be visually compared with drawings of the part 10. CNC machining instructions 76 are generated to machine ejector pin locations 90, sprues 96, runners 93, gates 94 etc. into the mold blocks. The final step in the preferred process is machining 78 the mold 86. The shutoff surfaces 98 are machined into the mold blocks with the selected tools and computed machining actions and via the computer generated series of CNC machining instructions 76. The cavity 84 is likewise machined into the first and second halves of the mold 86. Locations for ejector pins 90 are machined into the first and second halves of the mold 86 via the computer generated series of CNC machining instructions 76, as are runners 93 and gates 94. If the quotation 66 involve a piece price quotation, the number of pieces ordered by the customer are run in an injection mold press. The pieces are shipped back to the customer. The customer is billed in accordance with the quotation 66. The present invention allows mass production techniques to be used in the moldmaking process, even though every mold is custom designed, custom machined and different. Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As one example, while the present invention has been described with relation to various patentable features being performed in separately named modules, computer programmers will recognize many equivalent options exist for naming of the modules and organization of the programming features. As another example, while the present invention as described is constrained to require straight-pull, two-piece molds, enhancements may be made to support side actions in the mold. Permitting side action molds will overcome the current requirement that parts be producible in simple straight-pull molds. Side action molds allow molding parts with undercut faces—faces that cannot be placed entirely in one subset because they have areas that need machining from opposite directions. Permitting side action molds will thus increase the percentage of parts that are eligible for the automated process.
<SOH> BACKGROUND OF THE INVENTION <EOH>The present invention relates to the field of mold making, and particularly to the manufacture of molds, such as for use with injection molding presses, from blocks of metal. More specifically, the present invention relates to software supported methods, systems and tools used in the design and fabrication of molds for custom plastic parts, and in presenting information to customers for the customer to have selective input into various aspects of such design and fabrication which affect price of a customized part profile. Injection molding, among other types of molding techniques, is commonly utilized to produce plastic parts from molds. Companies and individuals engaged in fabricating molds are commonly referred to as “moldmakers.” In many cases (referred to as “straight pull” injection molding), the mold consists of two metal blocks, one top and one bottom. Most commonly, the metal blocks are high quality machine steel, so the mold will have an acceptably long life. Opposed surfaces of each mold block are machined to jointly produce the required cavity in the shape of the desired part, as well as “shut-off” surfaces sealing the cavity when the mold blocks are pressed together. The line on which shut-off surfaces intersect with the surface of the cavity is called the parting line. The corresponding line on the surface of the part formed by the parting line is called the witness mark. After the mold assembly is set up in an injection molding press, parts are made by filling the cavity with molten plastic. The mold blocks are separated from each other after solidification of the molten plastic. The plastic part, normally sticking after separation to the bottom block, is then ejected by means of ejectors. The moldmaking art has a long history of fairly gradual innovation and advancement. Molds are designed pursuant to a specification of the part geometry provided by a customer; in many cases, functional aspects of the plastic part also need to be taken into account. Historically, moldmaking involves at least one face-to-face meeting between the moldmaker and the customer, in which the customer submits detailed part geometry, usually with the aid of drawings, to the moldmaker and outlines the function of the part. Armed with knowledge of injection molding technology, the moldmaker designs the mold corresponding to the drawings of the part. In particular, the moldmaker orients the part to enable a straight pull mold separation, splits its surface into two areas separated by a suitable parting line, and replicates these areas in the top and bottom blocks. The moldmaker determines the location and shape of the shut-off surfaces and enlarges the dimensions of the cavity relative to the desired part as necessary to account for shrinkage of the plastic material. The moldmaker determines the size and position of one or more gates and runners to provide an adequate flow path for the molten plastic shot into the cavity. Sizes and locations of openings for ejection pins are also selected by the moldmaker. The machining operations to be performed to fabricate the designed mold are determined by the moldmaker. The moldmaker then runs various cutting tools, such as endmills, drills and reams, to machine the basic cavity, shut-off surfaces, runners, gates and ejector pin openings in blocks of metal. To produce certain hard-to-mill features in the mold, the moldmaker may also design and machine electrodes, and then perform electro-discharge machining (“EDM”) of the mold blocks. The moldmaker then outfits the mold blocks with ejection pins and prepares the mold assembly for use in the injection molding press. Throughout all of this design and fabrication, the moldmaker makes numerous design choices pertaining to the geometric details of the cavities to be machined as well as to the tools to be used for machining. All these steps involve a high degree of skill and experience on the part of the moldmaker. Experienced moldmakers, after having considered the design submitted by the customer, may sometimes suggest changes to the part geometry so that the part is more manufacturable and less costly. Highly experienced, gifted moldmakers can charge a premium for their services, both in return for the acuity of their experience and perception in knowing what will and will not work in the mold, and in return for their skill, speed and craftsmanship in machining the mold. Because of the large number of technical decisions involved and considerable time spent by highly skilled moldmakers in analyzing in detail the part geometry by visual inspection, obtaining a desired injection mold has generally been quite expensive and involved a significant time delay. A single mold may cost tens or hundreds of thousands of dollars, and delivery times of eight to twelve weeks or more are common. As in many other areas of industry, various computer advances have been applied to the moldmaking art. Today, most of customer's drawings are not prepared by hand, but rather through commercially available programs referred to as CAD (Computer-Aided Design) software. To produce drawings of the molds based on the drawings of custom parts, moldmakers also use CAD software, including packages developed specifically for this task. Also, in most moldmaking companies machining operations are not manually controlled. Instead, CNC (Computer Numerical Control) machines such as vertical mills are used to manufacture molds and, if needed, EDM electrodes in accordance with a set of CNC instructions. To compute detailed toolpaths for the tools assigned by the moldmaker and to produce long sequences of such instructions for CNC mills, computers running CAM (Computer-Aided Manufacturing) software (again, including packages developed specifically for the moldmaking industry) are used by most moldmakers. CAD/CAM software packages are built around geometry kernels—computationally intensive software implementing numerical algorithms to solve a broad set of mathematical problems associated with analysis of geometrical and topological properties of three-dimensional (3D) objects, such as faces and edges of 3D bodies, as well as with generation of new, derivative 3D objects. At present, a number of mature and powerful geometry kernels are commercially available. While existing CAD/CAM software packages allow designers and CNC machinists to work with geometrically complex parts, they are still far from completely automating the designer's work. Rather, these packages provide an assortment of software-supported operations that automate many partial tasks but still require that numerous decisions be made by the user to create the design and generate machining instructions. CAD/CAM packages usually facilitate such decisions by means of interactive visualization of the design geometry and machining tools. This makes software applicable to a wide variety of tasks involving mechanical design and machining operations. The downside of such versatility, when applied to moldmaking, is that it results in long and labor intensive working sessions to produce mold designs and CNC machining instructions for many custom parts, including parts lending themselves to straight pull molding. Visualization allows the moldmaker to evaluate whether the mold and injection molded parts can be made sufficiently close to the design using available tools. The fidelity with which plastic parts can be manufactured is limited by the finite precision of mills and cutting tools used to machine the mold, and by shrinkage of plastic materials (slightly changing the shape and dimensions of the injection molded parts as they cool down and undergo stress relaxation in a way that is largely but not entirely predictable). These rather generic factors establish the level of dimensional tolerances for injection-molded parts, the level that is generally known and in most cases acceptable to the customers. Oftentimes, however, additional factors come into play that can result in more significant deviations of injection molded plastic parts from the submitted design geometry. These factors are usually associated with certain features that are hard to machine in the mold using vertical mills. For example, very thin ribs in the part can be made by cutting deep and narrow grooves in the mold, but may require an endmill with an impractically large length to diameter ratio. Machining of angles between adjacent faces joined by small radius fillets (and, especially, of angles left without a fillet) may result in similar difficulties. Exact rendering of such features may substantially increase the cost of the mold, and even make its fabrication impractical with the technology available to the moldmaker. Obviously, such manufacturability issues need to be identified, communicated to the customer, and, if necessary, rectified before proceeding with mold fabrication. Their resolution normally requires tight interaction between the moldmaker and the customer, as both parties are in possession of complementary pieces of information needed to resolve the issues. The moldmaker has first hand knowledge of the mold fabrication technology available to him, while the customer, usually represented in this process by the part designer, has first hand understanding of part functionality and cosmetic requirements. Based on this understanding, the customer can either agree to the anticipated deviations of part geometry from the submitted specification, or, if the deviations are unacceptable, the customer can modify the part design to resolve manufacturability issues without compromising functional and cosmetic aspects of the design. As plastic parts often have many unnamed (and hard to name) features, pure verbal communication not supported by visualization of the part can be awkward and misleading. Therefore, communicating such information requires a face-to-face meeting with the customer, in which the moldmaker and the customer view the drawing or image of the part and discuss the issues in detail. Such meetings take a considerable amount of time, both from moldmakers and their customers, and increase business costs. Resolution of manufacturability issues is closely connected with price quotations requested by customers. When a customer requests a price quotation for a molding project, the moldmaker informally applies a wealth of experience and knowledge to predict costs and various difficulties in fabricating the mold. The potential mold manufacturability issues should be substantially resolved before a binding quotation can be given to a customer. For this reason, it can often take one or two weeks for a customer just to obtain a price quotation. Quoting is performed at a stage when securing the order for the moldmaking job is uncertain, and the cost of quoting must be recovered by the moldmaker from the subset of quotes that are actually accepted. In the event that the customer contracts with the moldmaker for the job, the quotation becomes a constituent part of the contract for manufacturing the mold and injection molded parts. For obvious reasons the informal quoting method is prone to human errors. If the request for quotation results in the job order, such errors will most likely become apparent during mold design and machining, or even after the mold is finished and used for manufacturing the first plastic parts. The price of such mistakes in terms of the lost time and effort, as well as in terms of strained customer relations, may be rather high. Thus, for a moldmaking business to be successful and profitable, good communication between the customer and the moldmaker in resolving manufacturability issues and accurate quoting are extremely important.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention is a method and system of automated, custom quotation for manufacture of a mold and/or manufacture of a molded part. To begin the process, a customer sends a CAD file defining the surface profile for the part to be molded to the system. The system then assesses two different types of information to arrive at a quotation. First, the part surface profile (which could have any of a virtually infinite number of shapes) is assessed, to consider certain cost-affecting parameters determined by the part surface profile. Further, the customer is provided with at least one menu of customer-selectable values for a cost-affecting parameter unassociated with part surface profile. A quotation is then automatically generated which varies based upon both (i.e., infinitely-customized and menu-selected) types of information, and automatically transmitted to the customer.
20041021
20090915
20050505
62201.0
1
BAHTA, KIDEST
AUTOMATED QUOTING OF MOLDS AND MOLDED PARTS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,970,144
ACCEPTED
Method of preparation and composition of a water soluble extract of the bioactive component of the plant species uncaria for enhancing immune, anti-inflammatory, anti-tumor and DNA repair processes of warm blooded animals
A method for isolating the bioactive component of the water-soluble extract of Uncaria tomentosa known as C-MED-100®, comprising (i) precipitating the spray drying carrier from C-MED-100®; (ii) using the resulting C-MED-100® to obtain a spotting mixture for thin layer chromatography (TLC); (iii) spotting the C-MED-100® spotting mixture on pre-run TLC plates and eluting the plates to obtain the fluorescing band with Rf=0.2-0.3; (iv) scraping off the Rf=0.2-0.3 band, eluting it in ammonia and freeze drying the eluted band to form a powder; and (v) extracting the powder with methanol to remove solubilized silica gel, concentrating the methanol solution and crystalizing the concentrated solution to obtain the bioactive component. The isolated bioactive component in vitro is a quinic acid analog, preferably quinic acid lactone. By contrast, the isolated bioactive component in vivo is quinic acid, whether as free acid or as a quinic acid salt, including quinic acid ammonium salt. A pharmaceutical composition comprising a pharmaceutically effective amount of the bioactive component and a nontoxic inert carrier or diluent. The bioactive component may be used to enhance immune competency, treat disorders associated with the immune system, inhibit the inflammatory response, treat disorders associated with the inflammatory response, enhance the anti-tumor response, and treat disorders associated with the response to tumor formation and growth, all in mammals.
1. A pharmaceutical composition, comprising: a pharmaceutically effective amount of a compound selected from the group consisting of quinic acid and quinic acid salts, wherein said quinic acid and quinic acid salts have: a UV absorption maximum at approximately 200 nm, and a bioassay efficacy using IC50 in HL-60 cells of less than 100 μg/ml; and a nontoxic inert carrier or diluent. 2. A method for enhancing the immune competency of a mammal by inhibiting TNF-α production or inhibiting NF-κB production, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to inhibit TNF-α production or to inhibit NF-κB production. 3. A method for treating disorders associated with the immune system of a mammal by inhibiting TNF-α production or inhibiting NF-κB production, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to inhibit TNF-α production or to inhibit NF-κB production. 4. A method for inhibiting the inflammatory response of a mammal by inhibiting TNF-α production or inhibiting NF-κB production, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to inhibit TNF-α production or to inhibit NF-κB production, and wherein said administering is other than topical. 5. A method of treating disorders associated with the inflammatory response of a mammal by inhibiting TNF-α production or inhibiting NF-κB production, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to inhibit TNF-α production or to inhibit NF-κB production, and wherein said administering is other than topical. 6. A method of treating chemotherapy-induced leucopenia or reduced blood cell numbers in peripheral blood comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells. 7. A method for enhancing the DNA repair process of a human via supplementation with a water soluble extract of an Uncaria species, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1. 8. A method for enhancing the anti-tumor response of a mammal by inducing apoptosis of tumor cells, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to induce apoptosis of tumor cells. 9. A method of treating disorders associated with the response of a mammal to tumor formation and growth by inducing apoptosis of tumor cells, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1, wherein said pharmaceutical composition is in an amount effective to induce apoptosis of tumor cells. 10. A method of treating disorders associated with the aging of a mammal, comprising the step of: administering to said mammal said pharmaceutical composition of claim 1. 11. A pharmaceutical composition, comprising: a quinic acid salt having an IC50 value in cultured HL-60 cells of 1,100 μg/ml or less. 12. The composition of claim 11, wherein said quinic acid salt is selected from the group consisting of: ammonium salt, zinc salt, calcium salt and sodium salt. 13. A method for isolating a bioactive component of a water soluble extract of an Uncaria species, comprising: (a) precipitating a spray drying carrier from said extract by mixing said extract with distilled water and evaporating ethanol, and freeze drying a water-dissolved extract; (b) mixing said freeze-dried extract with distilled water and ethanol to obtain a spotting mixture for thin layer chromatography; (c) spotting the mixture on pre-run TLC plates and chromatographing plates in a system of approximately 1% ammonia and ethanol, thereby obtaining a fluorescing band with Rf=0.2-0.3; (d) scraping off said fluorescing band with Rf=0.2-0.3; (e) eluting said scraped band with aqueous ammonia and freeze drying said eluted scraped band to dryness to form a powder; (f) extracting said powder with methanol to remove solubilized silica gel, leaving a methanol solution; (g) concentrating said methanol solution; and (h) crystallizing said concentrated solution to obtain said bioactive component. 14. The method of claim 13, wherein said bioactive component consists of quinic acid and quinic acid salts. 15. The method of claim 14, wherein said quinic acid salts are quinic acid ammonium salts.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 10/093,794 to Pero, filed Mar. 7, 2002, currently pending, and incorporates its subject matter herein by reference in its entirety. Both applications are commonly assigned to Optigenex, Inc. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is directed to the isolation, purification and structural identification of the bioactive component of water extracts of Cat's Claw (Uncaria species). The bioactive component previously was identified in vitro as quinic acid lactone and other related quinic acid esters. The present invention now identifies the in vivo bioactive component as quinic acid and quinic acid salts, including quinic acid ammonium salts. The present invention also is directed to the pharmaceutical use of said bioactive component for enhancing the immune, anti-inflammatory, anti-aging, anti-tumor and DNA repair processes in warm blooded animals. 2. Discussion of the Related Art Uncaria tomentosa, commonly known as Una de Gato or Cat's Claw, has been widely used historically as a natural remedy, and is currently present in a number of nutritional formulations to treat a large variety of health disorders. To applicant's knowledge, all of the commercial preparations of Cat's Claw except the water soluble extract (the “Pero extract”) disclosed in U.S. Pat. Nos. 6,039,949 and 6,238,675 B1 and allowed patent U.S. Ser. No. 09/824,508, issued as U.S. Pat. No. 6,361,805 B2 (the “Pero patents”) to Pero, and U.S. Pat. No. 6,797,286 to Bobrowski, are based on the oxindole alkaloid content thereof. This is due to Dr. Keplinger's (Austria) discovery, in the early 1960's, of the presence of oxindole alkaloids. (Keplinger, K., Laus, G., Wurm, M., Dierich, M. P., Teppner, H., “Uncaria tomentosa (Willd.) DC.-Ethnomedicinal use and new pharmacological, toxicological and botanical results,” J. Ethanopharmacology 64: 23-34, 1999). The Pero extract, the preferred embodiment of which is commercially available under the names C-MED-100® and ACTIVAR AC-11™, is a novel Cat's Claw extract quite unlike any other commercial versions in that it contains only traces of alkaloids (<0.05%) (Sheng et al., “Treatment of chemotherapy-induced leucopenia in the rat model with aqueous extract from Uncaria tomentosa,” Pytomedicine 7 (2): 137-143, 2000). Instead, the Pero extract contains a new class of active ingredients, carboxyl alkyl esters (CAEs), having demonstrated efficacy as described and protected in the Pero patents. C-MED-100® and ACTIVAR AC-11™ are the first products offered in the nutritional industry to support both auto-immune and DNA repair-enhancing functions, which are of critical importance in reducing the consequences of age-related disorders such as autoimmune, inflammatory and neoplastic diseases. References herein to C-MED-100® and/or ACTIVAR AC-11™ shall be understood to include the Pero extract, of which C-MED-100® and ACTIVAR AC-11™ are preferred embodiments. The precise chemical identification of the Pero extract's active ingredients has not heretofore been achieved. However, the chemical and biological characteristics of those ingredients have been sufficiently completed to standardize the commercial manufacture of the Pero extract. (See, the Pero patents). C-MED-100® and ACTIVAR AC-11™, which are the commercially available Pero extract, are formulated and based on the historical medicinal uses of Cat's Claw, of which an important step is exhaustive hot water extraction for approximately 18 hours at around 95° C. The extract is then ultrafiltrated to remove high molecular weight (>10,000 MW) toxic conjugates, and spray dried to contain 8-10% carboxy alkyl esters (CAEs) as active ingredients in vitro. CAEs were characterized as the only active ingredients of C-MED-100® in vitro as a result of their absorption (85%) onto charcoal. No biological activity was observed in the unabsorbed fraction. Using thin layer chromatography (TLC) as the purification tool, the active ingredients showed a UV absorption maximum at about 200 nm, and reacted with hydroxylamine and ferric chloride, thus characterizing them as esters (e.g. CAEs). The inventor has subsequently determined that the active ingredients of C-MED-100® and ACTIVAR AC-11™ in vivo are quinic acid, as free acid, and its salts, including quinic acid ammonium salt. There are two physiological factors regarding the natural forms of quinic acid as the active ingredients of water extracts of Cat's Claw such as C-MED-100® or ACTIVAR AC-11™ which, in turn, might result in quite different biological responses when administered in vitro or in vivo. First, the acidity of the stomach, pH=1, has been shown to be strong enough to hydrolyze any quinic acid esters present in C-MED-100® to quinic acid. Second, the microflora of the digestive tract of mammals are well known to both synthesize and metabolically convert quinic acid to other analogs such as chlorogenic acid, ferrulic acid, shikimic acid, cinnamonic acid, and benzoic acid. (Seifter E., Rettura G., Reissman D., Kambosos D., Levevson S. M. 1971, “Nutritional response to feeding L-phenylacetic, skikimic and D-quinic acids in weanling rats,” J. Nutr. 101 (6): 747-54; Gonthier M. P., et al. 2003, “Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats,” J. Nutr. 133 (6): 1853-63). These well known physiologic facts have raised the possibility that even though quinic acid esters are the bioactive ingredients in vitro, quinic acid esters in vivo could have been metabolized to quinic acid before being absorbed into circulation to mediate efficacious responses. The research disclosed herein confirms that this is the case. Daily oral doses of C-MED-100® between 250-700 mg have proven efficacious in humans. These dosages have been shown to enhance anti-inflammatory, DNA repair, immuno and anti-tumor processes of warm blooded animals, including humans. (See, the Pero patents; Lamm, S., Sheng, Y., Pero, R. W., “Persistent response to pneumococcal vaccine in individuals supplemented with a novel water soluble extract of Uncaria tomentosa, C-Med-100,” Phytomed 8: 267-274, 2001; Sheng, Y., Li, L., Holmgren, K., Pero, R. W., “DNA repair enhancement of aqueous extracts of Uncaria Tomentosa in a human volunteer study,” Phytomed 8: 275-282, 2001; Sheng, Y., Bryngelsson, C., Pero, R. W., “Enhanced DNA repair, immune function and reduced toxicity of C-MED-110™, a novel aqueous extract from Uncaria tomentosa,” J. of Ethnopharmacology 69: 115-126 (2000)). The CAEs in C-MED-100® are shown to give profound nutritional support as a dietary supplement because the CAEs enhance both DNA repair and immune cell responses, which, in turn, are the critical physiological processes that regulate aging. (See, the Pero patents, Sheng, Y., Pero, R. W., Wagner, H., “Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa,” Phytomedicine 7 (2): 137-143 (2000) and as cited above). Both of these processes involve regulating the nuclear transcription factor kappa beta (NF-κB). NF-κB is well known to control (i) the nuclear events that salvage cells from apoptotic cell death and (ii) pro-inflammatory cytokine production. (Beg, A. A. and Baltimore, D., “An essential role for NF-κB in preventing tumor necrosis factor alpha (TNF-α) induced cell death,” Science 274: 782-784, 1996; Wang, C—Y, Mayo, M. W., Baldwin, A. S., “TNF-α and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κB,” Science 274: 784-787, 1996). Hence, this mechanism directly connects induction of apoptosis to programmed cell toxicity with inhibition of pro-inflammatory cytokine production and inflammation. Apoptosis is an essential biochemical process in the body that regulates cells from division (replication) into differentiation and toward an increased functional capacity. Cells entering apoptosis will not only be stimulated to differentiate and increase functionality but will eventually die from this “programmed cell death”. Thus, induced apoptosis resulting from NF-κB inhibition by C-MED-100® would (i) effectively kill tumor cells, because they would be forced out of replication by apoptosis and into eventual death; and simultaneously (ii) increase immune cell responsiveness, because more immune competent cells would be forced to differentiate and would live longer because of the parallel enhancement of DNA repair. NF-κB also sends signals to inflammatory cells instructing them to produce cytokines (growth factors, i.e., TNF-α and the interleukins). These signals, in turn, stimulate phagocytic cells to kill more invading infectious agents, which, at least in part, is accomplished by producing high levels of oxygen free radicals. Thus, inhibiting NF-κB has anti-inflammatory properties because it prevents over-reaction of the inflammatory process that can be harmful to normal body tissues. In addition, because pro-inflammatory cytokines are a major source of endogenous free radical production in humans, NF-κB inhibition is antimutagenic by reducing genetic damage that may accumulate over the years. As fewer radicals are produced, there is less damage to the DNA and less inhibition of natural repair. A result is that aging is curtailed. It is now shown that quinic acid and its salts, including quinic acid ammonium salt, have an effect on NF-κB in vivo corresponding to the effect of CAEs in vitro. The Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, is thus an ultimate nutritional supplement for anti-aging remedies because it prevents free radical damage by NF-κB inhibition, induces differentiation and immune cell responsiveness by apoptosis, enhances DNA repair, and kills tumor cells, which in turn are the major factors related to aging. (Sheng, Y., Pero, R. W., Amiri, A. and Bryngelsson, C., “Induction of apoptosis and inhibition of proliferation and clonogenic growth of human leukemic cell lines treated with aqueous extracts of Uncaria Tomentosa,” Anticancer Research 18: 3363-3368 (1998); Sandoval-Chacon M., Thompson J. H., Zhang X. J., Liu X., Mannick E. E., Sadowicka H., Charbonet R. M., Clark D. A., Miller M. J., “Anti-inflammatory actions of cat's claw: the role of NF-kappa B,” Aliment Pharmacol. Ther. 12: 1279-1289, 1998; Sandoval M., Charbonnet R. M., Okuhama N. N., Roberts J., Krenova Z., Trentacosti A. M., Miller M. J., “Cat's claw inhibits TNF alpha production and scavenges free radicals: role in cytoprotection,” Free Radicals Biol. Med. 29 (1): 71-78, 2000; Åkesson C., Lindgren H., Pero R. W., Leanderson T., Ivars F., “An extract of Uncaria Tomentosa inhibiting cell division and NF-κB activity without inducing cell death,” International Immunopharm 3: 1889-1900 (2003)). It is beneficial to identify the active component thereof. By isolating and identifying the active component, it is possible to purify the component and enhance the pharmaceutical use and increase the efficacy thereof. The present invention is directed to the isolation, purification and identification of the CAEs characterized as the active ingredients of the Pero extract in vitro, which CAEs are identified and structurally elucidated as quinic acid analogs. The present invention also is directed to the isolation, purification and identification of quinic acid and quinic acid salts, including quinic acid ammonium salt, as the active ingredients of the Pero extract in vivo. The present invention also is directed to the use of quinic acid and quinic acid salts, including quinic acid ammonium salt, in vivo to enhance immune competency, treat disorders associated with the immune system, inhibit the inflammatory response, treat disorders associated with the inflammatory response, enhance the DNA repair process, enhance the anti-tumor response, and treat disorders associated with the response to tumor formation and growth. BRIEF SUMMARY OF THE INVENTION If the plant species Uncaria is hot water extracted, which has been the historical practice for medicinal use, and then ultrafiltrated to deplete large molecular weight (>10,000) components, including, for example, toxic conjugates of tannins, there still remains in the non-ultrafiltrated fraction, a novel phytomedicinal preparation of Uncaria (e.g. C-MED-100®, ACTIVAR AC-11™) having potent immuno, anti-tumor, anti-inflammatory, and DNA repair enhancing properties. In a preferred embodiment of the present invention, C-MED-100® or ACTIVAR AC-11™ is dissolved in water, spray dried and the spray drying agent (starch) removed by precipitation with 90% aqueous ethanol. The resultant solution is subjected to thin layer chromatography (TLC) on silica gel to identify the active ingredient(s) giving the product its efficacy. The 90% ethanol C-MED-100®/ACTIVAR AC-1™ is spotted on (applied to) TLC plates (silica gel 60 F254) and then chromatographed in a system of approximately 1% ammonia in greater than about 95% ethanol. There is only one area on the TLC chromatogram having biological activity (at Rf=0.2-0.3) when eluted with 1% aqueous ammonia and subsequently bioassayed for the ability to kill tumor cells by induction of apoptosis. The Rf=0.2-0.3 compound shows an ultraviolet absorption maximum in water at about 200 nm, absorbs onto charcoal and is characterized chemically as a CAE by reaction with hydroxylamine and ferric chloride. (Bartos, “Colorimetric determination of organic compounds by formation of hydroxamic acids,” Talanta 27: 583-590, 1980). In another embodiment of this invention, the biologically active CAEs isolated from the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, are further purified and structurally identified as a quinic acid analog. Elution from silica TLC plates with aqueous ammonia proved to be necessary because of very tight binding to silica. Although the Rf=0.2-0.3 spot is essentially free from other C-MED-100®or ACTIVAR AC-11™ components, it contains relative large amounts of dissolved inorganic silica. In order to remove the inorganic component(s) introduced from the purification scheme on silica TLC, the 1% aqueous ammonia solution is freeze dried and then re-dissolved in methanol, leaving behind the solubilized silica. The Rf=0.2-0.3 spot is crystalized from methanol and subsequently identified by chemical analysis as quinic acid. Thus, one embodiment of the present invention comprises a method for isolating the bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, comprising: (a) precipitating the spray drying carrier from the Pero extract by mixing the extract with distilled water and evaporating the ethanol, and freeze drying the water-dissolved extract; (b) mixing the freeze-dried extract with distilled water and ethanol to obtain a spotting mixture for thin layer chromatography; (c) spotting the mixture on pre-run TLC plates and chromatographing the plates in a system of approximately 1% ammonia and ethanol, thereby obtaining a fluorescing band with Rf=0.2-0.3; (d) scraping off the fluorescing band with Rf=0.2-0.3; (e) eluting the scraped band with aqueous ammonia and freeze drying the eluted scraped band to dryness to form a powder; (f) extracting the powder with methanol to remove solubilized silica gel, leaving a methanol solution; (g) concentrating the methanol solution; and (h) crystallizing the concentrated solution to obtain the bioactive component. Another embodiment of the present invention comprises identification of the in vitro bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, obtained by the foregoing method. In this embodiment the in vitro bioactive component exhibits the same properties as the Pero extract and consists essentially of a quinic acid analog. Preferably, the quinic acid analog is quinic acid lactone and/or other alkyl esters. Another embodiment of the present invention comprises identification of the in vivo bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, obtained by the foregoing method. In this embodiment the in vivo bioactive component exhibits the same properties as the Pero extract and consists essentially of quinic acid and its salts, including quinic acid ammonium salt. In another embodiment, the present invention comprises a pharmaceutical composition comprising a pharmaceutically effective amount of the bioactive component of the Pero extract and a nontoxic inert carrier or diluent. The present invention also includes embodiments which comprise using the pharmaceutical composition to (i) enhance the immune competency of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (ii) treat disorders associated with the immune system of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (iii) inhibit the inflammatory response of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (iv) treat disorders associated with the inflammatory response of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells or increasing white blood cells (WBC) in vivo after chemotherapy-induced leucopenia, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (v) enhance the anti-tumor response of a mammal by inducing apoptosis of tumor cells, comprising administering the pharmaceutical composition in an amount effective to induce apoptosis of tumor cells; (vi) treat disorders associated with the response of a mammal to tumor formation and growth by inducing apoptosis of tumor cells, comprising administering the pharmaceutical composition in an amount effective to induce apoptosis of tumor cells; and (vii) enhance the DNA repair processes of a mammal, and, thus, provide anti-mutagenic activity important to treating aging disorders. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the linear regression of UV absorbence versus CAE (estimated as _g/ml using dioctyl phthalate as standard). FIG. 2 shows the influence of UV absorbing compounds removed by charcoal adsorption on the 3[H] thymidine incorporation of HL-60 cells in vitro. FIG. 3 shows that quinic acid treated with ammonia (QAA), but not quinic acid (QA), inhibits Raji cell proliferation. FIG. 3A illustrates Raji cells (2×105) that were cultured in the presence of indicated concentrations of C-MED-100®, QAA or QA. Growth rate was assayed after 48 hours by counting triplicate samples of duplicate cultures in a Coulter cell counter. Results from one representative experiment out of two performed is presented as mean values of cell/ml±standard deviation (S.D). FIG. 3B illustrates triplicate samples of cells from duplicate parallel cultures stained with trypan blue at indicated times and counted. The data show the mean number of viable cells/ml±S.D. from one out of two similar experiments. FIGS. 3C and 3D show that C-MED-100®, QAA and QA do not induce cell death. Cells from the same cultures as in FIG. 3B were stained with Annexin V and 7AAD and analyzed by flow cytometry. The results are presented as the mean number of Annexin V+ 7AAD− (apoptotic) or 7AAD+ (dead) cells±S.D. of duplicates from three experiments with similar results. Statistically significant differences (*p<0.05) and (**p<0.01), compared to Raji cells grown in medium (no drug). FIG. 4 shows that QAA, but not QA, inhibit proliferation of mitogen-stimulated mouse lymphocytes. FIG. 4A illustrates spleen cells (2×105) that were activated with Con A (left; 2.5 μg/ml) or LPS (right; 10 μg/ml) in the presence of indicated concentrations of C-MED-100®, QAA or QA. Proliferation was assayed after 48 hours by 3[H]-thymidine incorporation in triplicate cultures. Results from one representative experiment out of three are presented as mean values±S.D. FIGS. 4B and 4C (left panels) show that neither C-MED-100®, QAA nor QA induce cell death. Cells from parallel cultures were stained with trypan blue and the mean absolute number of viable and dead cells/ml from one out of three similar experiments are shown. FIGS. 4B and 4C (right panels) show that C-MED-100®, QAA and QA do not induce apoptosis. Aliquots of the above cultures were stained with Annexin V and 7AAD and analyzed by flow cytometry. The results are presented as the mean number of Annexin V+ 7AAD− (apoptotic) and 7AAD+ (dead) cells/ml±S.D. of duplicates from three experiments with similar results. Statistically significant differences (*p<0.05) and (**p<0.01) compared to the control cultures stimulated with Con A (FIG. 4B) or LPS (FIG. 4C) alone. FIG. 5 shows C-MED-100® and QA inhibit NF-κB activity. FIG. 5A illustrates Jurkat T that are cells transfected with a NF-κB reporter construct were pre-cultured with various concentrations of QA or C-MED-100® for two hours. PMA (50 ng/ml) and ionomycin (1 μM) were thereafter added and the cells incubated for another six hours. The mean induction of luciferase activity in triplicate cultures from one representative experiment out of four are shown (left panel). QA induced no cell death or apoptosis in Jurkat T cells at concentrations which inhibited NF-κB activity. Jurkat T cells were incubated with various concentrations of QA for 24 hours and thereafter stained with Annexin V and 7AAD before analysis by flow cytometry. The data are the mean values±S.D. of triplicates from one representative experiment out of two performed (right panel). FIG. 5B illustrates 70Z/3 cells (2×105) that were pretreated for 4 h with C-MED-100® or QA before activation for 20 h with LPS (25 μg/ml). The cells were thereafter stained with 7AAD and Igκ-antibodies and analyzed by flow cytometry. The results are mean Igκ-positive cells±S.D. (left panel) and mean 7AAD negative cells±S.D. (right panel) of duplicate cultures from one representative experiment out of two performed. FIGS. 5C and 5D illustrate 70Z/3 cells (5×106) that were pre-treated with QA (2 mg/ml) or with PDTC (100 μM) as a positive control for two hours and thereafter stimulated with LPS (25μ/g/ml) for the indicated time. Cytoplasmic extracts equalized for protein concentration were analyzed by western blotting using IκBα-specific antibodies. One representative experiment out of three (FIG. 5C) and one representative experiment out of two (FIG. 5D) are presented. FIG. 6 shows an increased spleen cell number in QA and C-MED-100® treated mice. Mice were treated with indicated concentrations of QA or C-MED-100® in the drinking water for 21 days, sacrificed and absolute number of spleen cells counted using trypan blue exclusion. The presented data are mean cell numbers±S.D. pooled from five experiments (water, n=21; C-MED-100® 4 mg/ml, n=24; C-MED-100® 8 mg/ml, n=9; QA 1 mg/ml, n=9; QA 2 mg/ml, n=22; QA 4 mg/ml, n=10). Statistically significant differences compared to control mice supplemented with tap water are indicated. FIG. 7 shows an increased number of white blood cells (WBC) in QA treated mice. Mice were treated with indicated concentrations of either QA or C-MED-100® in the drinking water for 21 days and thereafter sacrificed. FIGS. 7A and 7B illustrate that the number of WBC, lymphocytes (FIG. 7A) and erythrocytes (RBC) (FIG. 7B) in peripheral blood was determined using an automatic cell counter. The data are presented as the mean number of cells/ml±S.D. from five experiments (water, n=21; C-MED-100® 4 mg/ml, n=24; C-MED-100®8 mg/ml, n=9; QA 1 mg/ml, n=9; QA 2 mg/ml, n=22; QA 4 mg/ml, n=10). Statistically significant differences compared to control mice supplemented with tap water are indicated. FIG. 8 shows in vitro growth inhibition induced by various QA salts in cultured HL-60 cells, as compared to growth inhibition induced by C-MED-100. DETAILED DESCRIPTION OF THE INVENTION The method and composition of the present invention are best understood with reference to the following examples: EXAMPLE 1 Isolation and Purification of the In Vitro Bioactive Component of the Pero Extract The method of preparation and the composition of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, are described in the Pero patents which are incorporated herein by reference. C-MED-100® and ACTIVAR AC-11™, preferred embodiments of the Pero extract, are hot water extractions of Cat's Claw (Uncaria tomentosa) carried out for 18-24 hours at 90-100° C. and ultra-filtrated to remove compounds greater than 10,000 molecular weight as previously described in the Pero patents. C-MED-100® is further prepared for the commercial market by spray drying the extract with corn starch (Niro F-10 Spray-Drier). Procedures are currently used to purify the in vitro active components of C-MED-100® as CAEs and it is understood that these procedures would apply to any Pero extract. The procedures are: 1. C-MED-100® work-up for active ingredient estimation: The CAEs in C-MED-100® have very unusual water solubility. They tend to bind to tannin and polysaccharide polymers, and so, when dried, are difficult to redissolve in appropriate organic solvents such as ethanol. The preferred procedure, and it should be understood that the parameters provided are approximations and not strict limitations, is: (a) 100 mg of C-MED-100® is dissolved in 1 ml distilled water in a glass tube for 30 minutes. The dissolved solution is centrifuged at 2000×g for 10 minutes. The resulting first supernatant is reserved for analysis. (b) 200 μl of the first supernatant is placed into a new glass tube, and 4.8 ml of 99.7% ethanol is added thereto. The resulting solution contains 4 mg/ml C-MED-100® suspended in about 96% ethanol. (c) The C-MED-100®/ethanol solution is vortexed (mixed) and centrifuged at 2000×g to remove insoluble material. The resulting second supernatant is reserved for analysis. (d) The second supernatant is diluted from a C-MED-100® concentration of 4 mg/ml to one of 30-200 μ/g/ml with 99.7% ethanol for measurement of UV absorbence. Preferably, concentrations of 60 and 120 μg/ml are examined as duplicate concentrations for calculation of CAE by UV absorbence. (e) The UV absorbence at 205 nm for the two concentrations of C-MED-100® (preferably 60 and 120 μg/ml) is measured in a UV spectrophotometer. Because the CAEs in C-MED-100® have a UV maximum absorption at 205 nm, the amount of CAE may be estimated by the degree of UV absorption. The standard curve showing the amount of CAE in μg/ml in relation to the degree of UV absorption is shown in FIG. 1. (f) Calculation of the concentration of CAEs, in μg/ml, is determined by linear regression analysis of the slope of best fit by the equation y=0.0491×0.212, where y=UV absorbence values determined and x=concentration of CAE (μg/ml). The two different concentrations of C-MED-100® (preferably 60 and 120 μg/ml) then serve as the denominator for which the calculated CAE from the UV standard curve serves as the nominator in the calculation of percentage CAE in C-MED-100®. In practice, the two values are averaged. (g) The foregoing procedure has been validated against a colorimetric procedure involving conversion of CAE to hydroxamic acids and reaction with ferric chloride. (Bartos, Colorimetric determination of organic compounds by formation of hydroxamic acids, Telanta 27: 583-590, 1980). The two procedures give the same estimation of CAE content. 2. Analytical procedures for final purification and isolation of C-MED-100®'s active ingredient. Again, the parameters provided are approximations and should serve as exemplary not as limitations: (i) Precipitation of spray drying carrier (corn starch) from crude water extracts of C-MED-100®: 5 g of C-MED-100® is mixed with 50 ml distilled water and 950 ml 99.7% ethanol. The ethanol is evaporated off in the air and the resulting solution is freeze dried. Yield is approximately 1 g. (ii) Silica gel thin layer chromatography (TLC) purification and isolation of C-MED-100®'s active ingredient: Step 1: To 200 mg C-MED-100® minus the removal of starch (after procedure no. 1 above), add 200 μl distilled water and 200 μl 95.5% ethanol. Mix to form a spotting mixture. Step 2: Spot the spotting mixture of Step 1 on 4 pre-run TLC plates (Silica gel 60F254). The elution system consists of approximately 1% NH3 in at least 95% ethanol. The sole active component is found at Rf=0.2-0.3. Step 3: Scrape off the fluorescing blue band with Rf=0.2-0.3. Eluate with approximately 1% aqueous ammonia and freeze dry to dryness. Step 4: Extract the powder from Step 3 with methanol to remove solubilized silica gel. Concentrate the methanol solution and crystallize the active component. (iii) High pressure liquid chromatography (HPLC) quantitative determination of active component: The column preferably is a 3 μm C18 column (83 mm×4.3 mm internal diameter, Perkin Elmer Corp., Norwalk, Conn.). The preferred solvent gradient elution is as follows: Pump B contains methanol and pump A contains 1% acetic acid in distilled water. A gradient was run from 10% to 90% over a period of 25 minutes at a flow rate at 1.5 ml/min. Detection is at UV 254 nm. The peak appears at 18 minutes into the gradient run. (iv) Spectrophotometric detection of active ingredients: The active component of C-MED-100® has an absorption maximum in water in the UV range at about 200 nm. Hence, crude extracts of C-MED-100® also having an absorption maximum at about 200 nm as well as its purified active components such as CAEs and their corresponding organic acids can be estimated by UV absorption at this wavelength against a known CAE standard. An assay of biological activity of C-MED-100®'s active ingredient is prepared as follows: HL-60 W6899 cells are exposed in microculture at 5000 cells per well (96-well plates) for 5 days at 37C in a CO2 incubator. After incubation, the cells are washed with saline and clonogenicity estimated by MTT assay. Results of the assay are summarized in Table 1, below. EXAMPLE 2 Analytical Identification of the Active Ingredient of C-MED-100® as Quinic Acid The bioactive component (sample approximately 1 mg) isolated by TLC is completely dissolved in about 0.7 ml D2O for NMR with no shift reagent added. The following spectra are recorded: NMR 020108ta 1: 1H 2: 1H/1H-correlated spectra; COSY 3: 1H/13C-correlated spectra; HMBC. 4: 13C-Dept135. 5: 1H/13C-correlated spectra; HMQ The 1H-spectrum contains signals from a main compound. The three 1H-signals at 4.03, 3.90 and 3.43 ppm are found to be signals from methine-groups (see HMQC). Furthermore, the obtained 13C-signals at 66.9 B 75.1 correlate to these protons, and their chemical shifts imply that the carbons are bound to oxygen, possibly as CHOH-groups. The three signals are bound to each other in a straight chain as found in the COSY spectrum. The main compound also showed 1H-signals at about 1.72 B 1.99 ppm with correlations to 13C-signals at about 40 ppm. The HMQC spectrum reveals that these signals are CH2-groups and the COSY spectrum implies that the individual protons in each CH2-group are unequal. Judged from the COSY spectrum, the two outer CHOH-groups are bound to different CH2-groups. This gives the following partial structure: However, as many of the 1H-1H-couplings were larger/smaller compared with normal couplings it seemed likely that the compound rotation was sterically hindered and therefore a ring system was suggested. Furthermore, as the 13C-shifts for the CH2-groups were near 40 ppm it seemed likely that R1=R2=a carbon atom. This gave the following partial structure: No signals that explain X and Y in the compound could be found in the NMR spectra. After the NMR spectra were obtained also MS-analysis was performed. The sample was introduced into the MS by infusion. MS spectra on the D2O solution diluted with acetonitrile (ACN) (50/50) gave the mass number of 197 (negative ions, M-D=195). Then the solution was evaporated by means of a gentle stream of nitrogen and reconstituted in H2O/ACN (50/50). Here the mass number 192 was achieved (negative ions, M-H=191). In conclusion, the compound mass number is 192 and contains 5 exchangeable protons. When combining the information obtained from NMR and MS the following structure is proposed for the main compound: Quinic Acid This structure is quinic acid. Reference spectra obtained using authentic quinic acid were identical to that isolated and purified from C-MED-100®. Quinic acid, now identified as the active ingredient of C-MED-100®, is a known compound occurring as an intermediate metabolite in the natural synthesis of many aromatic compounds. (Bohm, B A, Shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid), Chem. Rev. 65: 435-466, 1965). Hence, it is disclosed here that quinic acid and its analogs are expected to occur in many botanical species, giving them added nutritional and health benefits. The only known prior art disclosing any medical uses of quinic acid and its analogs is for the treatment of skin wrinkles (U.S. Pat. Nos. 5,656,665 and 5,589,505) and of flu as neuroamidase inhibitors (U.S. Pat. Nos. 6,111,132 and 6,225,341). There has been no prior art disclosure that quinic acid and its analogs might be useful in treating the disorders for which C-MED-100® has been useful such as aging, inflammation, immune suppression, and control of tumor growth and DNA repair. Hence, this disclosure is of these additional uses for quinic acid and its analogs, especially quinic acid lactone. Moreover, quinic acid does not give a positive chemical reaction for a CAE. However, upon review of this structure, it became apparent that quinic acid might form a quinic acid lactone upon heating, which in turn would react as a CAE. (Fischer, H. O. and Dangschat, G. Helv. Chim Acta 18: 1200, 1935). Furthermore, treating the quinic acid lactone with 1% aqueous ammonia could convert it back to quinic acid. This chemistry was validated using purified quinic acid, and establishes that the active ingredient present in C-MED-100® has been synthesized during the historical medical preparation of this Cat's Claw product. Example 3 provides this validation. EXAMPLE 3 This example exploits the biochemical knowledge presented in examples 1 and 2 to determine that the active component of C-MED-100® in vitro is in fact quinic acid lactone. C-MED-100®, quinic acid and quinic acid lactone all absorb to charcoal, and when they did both the biological activity and UV absorption at 200 nm of C-MED-100® was also removed. This data teaches that the bioactive component of C-MED-100® absorbs maximally at 200 nm. The TLC results report that there are only 2 components of C-MED-100® having such an absorption maxima. The components, located at Rf=0.1 and Rf=0.3, when chromatographed in 1% ammonia in ethanol, correspond to quinic acid and quinic acid lactone, respectively. However, upon evaluation, the in vitro bioactive properties of the bioactive component of C-MED-100® could be almost completely accounted for by quinic acid lactone. As a result, the in vitro anti-aging, anti-inflammatory, immune and DNA repair enhancing and anti-tumor properties of C-MED-100® are due to the presence of quinic acid lactone and other relevant quinic acid alkyl esters. Those properties are hereby disclosed as attributable to quinic acid lactone. Table 1 illustrates the relative biochemical activities of (i) the isolated in vitro bioactive component of C-MED-100®, (ii) quinic acid, and (iii) quinic acid lactone: TABLE 1 Comparison of active ingredient of C-MED-100 ® to quinic acid and its lactone. (Parameters are approximations.) Chemical C-MED-100 ® Quinic acid Parameter active ingredient Quinic acid lactone Charcoal absorption yes yes yes in water AUV maximum 200 nm 200 nm 200 nm in water TLC in approximately Rf = 0-0.1 Rf = 0-0.05 Rf = 0.2-0.3 1% ammonia in 99% Rf = 0.2-0.3 ethanol using A200 nm for detection Formation of yes no yes hydroxamic acid/ ferric chloride color complex Bioassay efficacy 40 μg/ml >3000 μg/ml 80 μg/ml using IC50 in HL-60 cells Bioassay after 1% >3000 μg/ml >3000 μg/ml >3000 μg/ml aqueous ammonia IC50 HL-60 cells From the foregoing comparison, it is apparent that the in vitro bioactive component in C-MED-100® is, in fact, quinic acid lactone. Specifically, the relative IC50 values for the in vitro C-MED-100® bioactive component, quinic acid, and quinic acid lactone confirm that the in vitro bioactive component cannot be quinic acid, per se, but must be an analog thereof, such as quinic acid lactone. The difference in IC50 values for the in vitro C-MED-100® bioactive component and quinic acid lactone is not significant, and is likely due to the synergistic effect of other compounds present in C-MED-100®. However, the higher efficacy of the active ingredient, quinic acid lactone, in C-MED-100® than in its pure form indicates that the quinic acid lactone is more active in the presence of other naturally occurring components in C-MED-100® such as quinic acid. It has recently been determined that quinic acid, while not the principal bioactive ingredient of C-MED-100® in vitro, is in fact the principal bioactive ingredient of that compound in vivo. It has also been determined that quinic acid salts, including quinic acid ammonium salt, also are bioactive components of C-MED-100® and ACTIVAR AC-11™ in vivo. EXAMPLE 4 presented below in Table 2 teaches that quinic acid analogs could exist in C-MED-100® and ACTIVAR AC-1 ™ in 3 possible forms: (i) as a free acid, (ii) as a salt; e.g. sodium salt or ammonium salt, or (iii) as an ester such as quinic acid lactone, and any one of the 3 forms or combinations thereof could explain the biological efficacy of C-MED-100®. For example, if quinic acid is present as a salt it can have in vitro biological activity comparable to C-MED-100®. However, Table 2 also teaches that because C-MED-100® is very sensitive to base hydrolysis, the major component of C-MED-100® that is efficacious in vitro must be the quinic acid esters since, when quinic acid ester content disappears, so does the in vitro biological activity, and these changes are accompanied by an increased content of quinic acid. It is also taught in Table 2 that C-MED-100® contains not only quinic acid esters but also significant amounts of quinic acid itself before any base hydrolysis, supporting that at least two active forms of quinic acid analogs in C-MED-100® exist together and could possibly synergize each other. Even this principle of quinic acid/quinic acid lactone synergism is disclosed in Table 2 because a synthesized batch of quinic acid lactone containing 5% impurity of quinic acid, had much greater cytotoxicty than a 99% batch of quinic acid lactone. In summation, Example 4 teaches that although the primary in vitro bioactive ingredients in C-MED-100® are quinic acid esters such as quinic acid lactone or yet unidentified quinic acid alkyl esters, because other quinic acid equivalents are present such as free acid quinic acid or its salts that could synergize or otherwise explain the biological efficacy of C-MED-100®, they should also be considered bioactive forms of quinic acid. TABLE 2 Quinic acid (QA) (free acid), quinic acid salts and quinic acid esters; i.e., quinic acid lactone (QAL) analyzed as bioactive ingredients of C-MED-100 ®, that is in turn shown to be coupled to the simultaneous disappearance of in vitro biological efficacy and quinic acid ester content. HL-60 MTT IC50 % QA esters QA est. Compound (μg/ml) (Bartos) by TLC Quinic acid (QA) 1500 0 ++++ sodium salt QA ammonium salt 500 0 ++++ QA (free acid) >2300 0 ++++ (>99% pure, Sigma) QAL #1 batch syn. 1200 >91% not detected (+5% QA impurity) QAL #2 batch syn. >2300 100% 0 (>99% pure) QAL (>99%) 1600 35% ++ (+2 M NaOH, 2 hr) C-MED-100 ® 536 4.7% + (no base hydrolysis) C-MED-100 ® 1100 2.5% ++ (+2 M NaOH for 2 hr) In Table 2, the in vitro cytotoxicity of the various components were determined in HL-60 human leukemic cells using the MTT assay and calculation of IC50 values as described in detail elsewhere. Quinic acid ester content was determined by the Bartos method (Bartos, 1980). Quinic acid content was estimated by thin layer chromatography (TLC) on silica gel 60 F254 plates developed in a system of 1% ammonia in 95.5% ethanol. The quinic acid traveling between Rf=0.2-0.3 was eluted from the TLC plates with 1% aqueous ammonia and the relative quantity estimated by absorption at 200 nm as +being less than 0.050 and “++++” denoting the highest amount detected, with a decrease in the number of “+” signs corresponding to a decrease in the amount of QA detected. EXAMPLE 5 further extends and verifies the information already presented in Example 4. Because oral administration of C-MED-100® would necessitate gastrointestinal (GI) tract absorption of its active ingredients, there exists the possibility that the forms of quinic acid equivalents found in C-MED-100® would all be metabolized to quinic acid in vivo, no matter the quinic acid structure they were administered in. For example, the pH of the stomach is about 1 and this condition is strong enough to hydrolyze quinic acid esters, including quinic acid lactone, to quinic acid. Furthermore, the GI tract is rich in non-specific esterases that could also hydrolyze quinic acid esters to quinic acid. Likewise the intestinal microflora have a very active Shikimate pathway which can utilize quinic acid equivalents to synthesize chlorogenic acid and a host of other bioactive components (Herrmann K M, Weaver L M. The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 1999; 50: 473-503). For these reasons, the free acid form of quinic acid and the ammonium salt form thereof were tested for in vivo efficacy using a rat model that had been already used successfully with C-MED-100® to treat chemotherapy-induced leucopenia tin the rat (Sheng Y, Pero R W, Wagner H. Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa. Phytomedicine 2000; 7: 137-43). In vivo evaluation of the efficacy of quinic acid as an active ingredient isolated from water soluble Cat's Claw extracts. A rat model was used to evaluate if active ingredients isolated from water soluble extracts of Cat's Claw could be shown to be effective in vivo by inducing recovery of peripheral white blood cells (WBC) after doxorubicin (DXR)-induced leucopenia. This model has already been used effectively to demonstrate C-MED-100® administration after DXR treatment enhanced recovery of WBC about as efficiently as NEUPOGEN®, a standard therapy used in the clinic for this purpose (Sheng et al. Phytomedicine 2000; 7: 137-43). The rat study experimental design used to compare quinic acid and C-MED-100® is outlined in detail (diagrammatic form) below. 50 female W/Fu rats, weighing 150-180 g each, were divided into 5 groups of 10 rats per group. Doxorubicin, obtained from Pharmacia and Upjohn, was administered in a 2 mg/kg dose for all rats groups 2-5, IP injection (day 1, 3, 5). Group 3 also received C-MED-100® (Batch No E-40622), administered in a dose of 80 mg/kg, gavage daily from day 6 (24 hours after the third/last treatment of DXR) to the end of experiment (day 21/22). Group 4 received Quinic acid (QA, obtained from Sigma), administered at a dose of 200 mg/kg, gavage as per C-MED-100®. Group 5 received ammonia-treated quinic acid (QAA), synthesized by neutralizing QA with 1% ammonia and then lypholyzing to dryness, and administered at 200 mg/kg, gavage as C-MED-100®. The supplemental drug (gavage) for each of the groups of test rats is set forth in the below table: Supplement drug Group No. Doxorubicin (I.P.) (gavage) 1. Control 10 Saline Control Sterile tap water gavage 2. Doxorubicin 10 2 mg/kg × 3 Sterile tap water gavage (DXR) 3. C-MED-100 ® 10 2 mg/kg × 3 C-MED-100 ® gavage (80 mg/kg) 4. DXR + QA 10 2 mg/kg × 3 QA (200 mg/kg) gavage (200 mg/kg) 5. DXR + QAA 10 2 mg/kg × 3 QA-ammonium (200 mg/kg) (200 mg/kg) gavage The body weight (GM) of each rat was measured before and at the end of the experiment. Blood was sampled on day 0 (before any treatment), day 4 (24 hours after the second DXR treatment), day 7 (48 hours after the third/last DXR treatment), day 11, and day 15. Whole peripheral blood samples were collected into K3-EDTA containing tubes by periorbital puncture and then analyzed for WBC within 1 hour with an automated hematology analyzer (Sysmex, K-1000) Organ weights from major tissues (liver, kidney, lung, heart, spleen) were also collected and used as an indicator of any toxicity. Identification of quinic acid (QA) as an active ingredient of water extracts of Cat's Claw; e.g. C-MED-100®, ACTIVAR AC-11™. The characterization, isolation and final purification of the bioactive component in Cat's claw water extracts by silica gel TLC has been described herein. We have obtained additional chemical and biological evidence that demonstrates that the in vivo bioactive ingredient in C-MED-100® or ACTIVAR AC-11™ is quinic acid (QA). First, the only area on the TLC plates chromatographed in 1% ammonia in 95% ethanol that had biological activity assessed by the HL-60 bioassay was at Rf=0.2-0.3. As the 1 cm scraped TLC plate sections were eluted from the silica gel with 1% ammonia, any acids or esters present at this Rf location would have been converted to an ammonium salt, and this analog would have had the biological activity attributed to C-MED-100®. Nevertheless, the ammonia eluant was freeze dried, re-dissolved in water and the UV spectrum determined to have an absorption maximum at 200 nm. It is understood that research presented herein demonstrating the biological activity and biologically active component(s) of C-MED-100® is applicable, as well, to ACTIVAR AC-11™, as both products contain the Pero extract, merely in different levels of CAEs. Because of the possibility of base hydrolysis of esters or ammonium salt/chelate formation of acids of the bioactive component, the UV absorption maximum of C-MED-100® dissolved in water but not treated with ammonia was determined. C-MED-100® also had an UV absorption maximum of 200 nm in water or ethanol. These data led to the conclusion that removing the UV absorbing material from C-MED-100® would also remove the biological activity. For this purpose, a comparison of C-MED-100® water solutions before and after activated charcoal absorption (1 gm/l ml C-MED-100®/gm charcoal) was carried out. The data from such an experiment are presented in FIG. 2, which shows that >85% of the in vitro HL-60 cytotoxicity in C-MED-100® extract was removed due to charcoal absorption, and likewise it was paralleled by removal of >85% 200 nm UV absorbing materials. Since the only 200 nm UV absorbing components in C-MED-100® were located at Rf=0.2-0.3, and since C-MED-100® had a 200 nm UV absorption maximum which if removed by charcoal absorption also destroyed its biological activity, the active ingredient of C-MED-100® can only be attributed to components absorbing at 200 nm and traveling on silica gel 60 F254 TLC plates chromatographed in 1% ammonia in 95% ethanol to Rf=0.2-0.3. The C-MED-100® component at Rf=0.2-0.3 was crystallized from methanol and subjected to analytical chemical analysis. NMR analyses indicated the 1H-spectrum contained signals from a main compound. The three 1H-signals at 4.03, 3.90 and 3.43 ppm were found to be signals from methine-groups from HMQC— and Department reference 135-experiments spectra. Furthermore, the obtained 13C-signals at 66.9-75.1 correlated to these protons and their chemical shifts imply that the carbons are bound to oxygen, possibly as CHOH-groups. The three 1H-signals are also bound to each other in a straight chain as found in the COSY spectrum. The C-MED-100® compound also showed 1H-signals at about 1.72-1.99 ppm with correlations to 13C-signals at about 40 ppm. The reference 135 spectrum revealed that these signals were CH2-groups and the COSY spectrum implied that the individual protons in each CH2-group were unequal. Judged from the COSY spectrum the two outer CHOH-groups were bound two different CH2-groups and this suggested a straight chain structure. However, as many of the 1H-1H-couplings were larger/smaller compared with normal couplings it seemed likely that the compound rotation had steric hindrance and therefore a ring system was suggested. Furthermore, as the 13C-shifts for the CH2-groups were near 40 ppm it seemed likely two carbon atoms were outside the ring structure. After the NMR spectra were obtained MS-analysis was also performed. MS spectra on the D2O solution diluted with acetonitrile (ACN) (50/50) gave the mass number of 197 (negative ions, M-D=195). Then the solution was evaporated by means of a gentle stream of nitrogen and reconstituted in H2O/ACN (50/50). Here the mass number 192 was achieved (negative ions, M-H=191). In conclusion, the C-MED-100® in vivo bioactive compound had a mass number is 192 and contained 5 exchangeable protons. After combining the information obtained from NMR and MS the structure of QA was proposed for the C-MED-100® active compound in vivo. Quantitative determination and in vitro biological evaluation of QA analogs in water extracts of Cat's claw; e.g. C-MED-100®, ACTIVAR AC-11™. As QA has been found to be an active ingredient in C-MED-100® and ACTIVAR AC-11™ in vivo, and in light of the uncertainty that QA may have arisen as a result of base hydrolysis elution from silica gel after TLC, we have attempted to determine the presence of potential QA analogs in C-MED-100®. For this purpose, we have developed 3 chemical procedures that are capable of estimating various types of QA analogs that might be present in C-MED-100®, namely: (i) CAEs by UV absorption at 200 nm quantified against dioctyl phalthalate; (ii) QA esters using quinic acid lactone (QAL) as the standard ester and quantified by the Bartos reaction by forming hydroxamic acids and chromaphores with ferric chloride; and (iii) by NaOH neutralization that in turn estimates any free acid equivalents present in C-MED-100®. Data for these analyses are presented in Table 3, indicating about 8-10% CAE esters (w/w) present in C-MED-100®, of which 4-5% could be accounted for as QA esters. In addition, <1.6% (w/w) of C-MED-100® existed as the free QA analog (H+ form). We concluded that either free QA existed as an active ingredient in C-MED-100® at <1.6%, or there was a QA ester analog which had a free non-esterified carboxyl group present. In either case, these data are consistent with the major active ingredients in C-MED-100® in vitro as being CAEs in the form of QA esters. To further characterize the QA analogs as the active ingredients in C-MED-100® in vitro, we determined the influence of base hydrolysis on the chemistry and biological activity of C-MED-100®. QAL is in fact a cyclic ester of QA, and as such it is an example representing the general class of QA esters. Elution from silica gel with 1% ammonia were the mandated chemical conditions necessary to remove the QA analog (i.e., active ingredient) from silica gel, which in turn favored the base hydrolysis of QA esters such as QAL to QA. If so, then identification of QA after base hydrolysis from the elution of silica gel, would then be consistent with the natural occurrence in C-MED-100® of a QA ester at Rf=0.2-0.3. Hence, it was undertaken to prove that QAL as an example of QA esters was indeed hydrolyzed by either 1N HCl or 1M NaOH. The data are presented in Table 3. It is quite clear that either strong acid or base treatment converted QAL to QA, and left only QA remaining, thus supporting the fact that the isolation of QA from C-MED-100® (after base elution from silica gel was likely to have been originally present as a QA ester. TABLE 3 The acid and base hydrolysis of QAL and QA. The disappearance of the ester linkage in QAL was measured by formation of hydroxamic acids and colormetric development with ferric chloride using the Bartos reaction. The lack of breakdown of QA was also confirmed by TLC and UV absorption at 200 nm. Bartos Reaction (A490 nm) Compound μg/test Initial Average −Blank % Degraded Blank 0 0.175 0.175 0 — QA 500 0.170 ±0 ±0 QA 500 0.172 0.172 QAL 500 0.742 500 0.752 0.750 0.575 QAL (1N HCl) 500 0.413 QAL (1M NaOH) 500 0.323 0.368 0.192 66.6% QA (1N HCl) 500 0.170 0.176 QA (1M NaOH) 500 0.175 0.169 ±0 ±0 Having confirmed that base hydrolysis converted QA acid esters to QA, we proceeded to quantify C-MED-100® for the presence of certain types QA analogs. The data in Table 4 utilize 3 separate chemical procedures to estimate the relative amounts of potential QA analogs found in unhydrolyzed C-MED-100®. First of all there is maximally <1.6% QA in C-MED-100®, because by base neutralization there were only a total of <1.6% free acid equivalents which also included all other acids that might have been present, and thus contributing to the acidity of C-MED-100®. Hence QA alone cannot account for the in vitro efficacy of C-MED-100®. However, there was a much more substantial amount of CAEs, and this class of compounds had already been shown to contribute to the efficacy of C-MED-100® (FIG. 1), and at least about 4-5% of the CAEs could be accounted for as QA esters (Table 4). TABLE 4 The average content of QA analogs in C-MED-100 ®. C-MED- UV A200 nm Method Bartos Method pH Method 100 ® (dioctyl phthalate std.)) (QAL ester std.) (NaOH neut.) Batch CAE est. QA ester est. Free acid est. number % w/w % w/w % w/w E-42526 9.0 4.6 <1.6 E-43183 9.8 4.8 <1.7 E-43229 9.4 4.6 <1.8 E-43682 9.4 4.8 <1.4 E-43751 9.2 4.7 <1.9 E-44038 8.8 4.4 <1.6 E-44073 8.8 4.7 <1.9 Average 9.2 4.7 <1.7 In vivo efficacy studies of QA in the rat. There are two physiological factors regarding the natural forms of QA as the active ingredients of water extracts of Cat's Claw such as C-MED-100® or ACTIVAR AC-11™ which, in turn, might result in quite different biological responses when administered in vitro or in vivo. Firstly, there was the pH=1 of the stomach that we have shown is strong enough to hydrolyze any QA esters present in C-MED-100® to QA (Tables 3 and 5). Secondly, the microflora of the digestive tract of mammals are well known to both synthesize and metabolically convert QA to other analogs such as chlorogenic acid, ferrulic acid, shikimic acid, cinnamonic acid, and benzoic acid (Seifter E, et al. 1971. Nutritional response to feeding L-phenylacetic, shikimic and D-quinic acids in weanling rats. J Nutr 101 (6): 747-54; Gonthier M P, et al. 2003. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133 (6): 1853-63). These well known physiologic facts have raised the possibility that even though QA esters are the bioactive ingredients in vitro, QA esters in vivo could have been metabolized to QA before being absorbed into circulation to mediate efficacious responses. In order to test the hypothesis that natural occurring QA esters identified in C-MED-100® might be catabolized to QA in vivo and yet still be bioactive, we have directly compared the efficacy of QA and QAA to C-MED-100® in a rat model. This in vivo model discloses that DXR-induced leucopenia is restored to normal WBC levels about as efficiently as standard therapy for this purpose, i.e. NEUPOGEN®, after receiving oral daily doses of C-MED-100® for 14 days of 40-80 mg/kg (Sheng et al. 2000. Phytomed 7 (2): 137-143). Table 5 displays the data of rats given 3 doses of DXR (2 mg/kg) on days 1, 3, and 5 after initiation of the experiment, and then followed by oral daily administration of either water (control), C-MED-100®, QA or QAA for 6-21 days thereafter. Peripheral blood WBC were recorded throughout this time period, and the data indicated both QA or QAA could induce recovery from DXR-induced leucopenia about as effectively as 80 mg/kg C-MED-100® could. Furthermore, weight loss and organ pathology did not indicate any toxicity for the doses of C-MED-100® or its active ingredients that were tested. Based on these data we conclude that a QA analog is at least one class of active ingredients also observed for water soluble Cat's Claw water extracts, e.g. C-MED-100®, ACTIVAR AC-11™. TABLE 5 Enhanced recovery of doxorubucin (DXR) induced-leucopenia in the rat by treatment with C-MED-100 ® or quinic acid (QA). Treatment and sampling schedule (1012WBC/l) Group* n Day 0 Day 4 Day 7 Day 11 Day 15 Control (saline, 10 9.5 ± 1.4 8.8 ± 0.9 9. ± 1.0 9.2 ± 1.1 9.0 ± 0.8** gavage) DXR (2 mg/kg, ip) 10 9.5 ± 1.4 5.9 ± 0.7 5.3 ± 0.7 6.2 ± 0.7 7.1 ± 1.0 C-MED-100 ® 10 9.6 ± 1.4 5.4 ± 0.7 5.7 ± 1.1 7.6 ± 1.7 8.4 ± 1.5** (80 mg/kg, gavage) QA (200 mg/kg, 10 9.5 ± 1.5 6.5 ± 1.1 5.5 ± 0.9 6.4 ± 0.7 8.1 ± 1.5** gavage) QAA (200 mg/kg, 10 9.5 ± 1.1 6.5 ± 0.9 5.2 ± 0.5 6.7 ± 1.1 8.5 ± 1.0** gavage *DXR treatment days were 1,3, and 5 followed by C-MED-100 ®, QA or QAA treatment for 6-11 days thereafter **= p <0.05 compared to DXR alone, all other groups were not significantly different after 15 days of treatment. The data presented in Table 5 clearly teach that both QA and QAA were about as effective as 100 mg/kg of C-MED-100® at reversing doxorubicin-induced leucopenia. Because this in vivo model has been successfully used previously to demonstrate the broad range of clinical indications attributed to C-MED-100® and other cat's claw water extracts, such as recovery from chemotherapy-induced leucopenia, DNA repair enhancement, anti-inflammation, immune stimulation, anti-tumor effects and anti-aging effects including Alzheimer's and cognitive reasoning, there is little doubt that QA equivalents including not only QA esters but QA itself and its salts, including QAA, are active ingredients of C-MED-100® in vivo. EXAMPLE 6 We further identify QA as a biologically active component of the Pero extract in vivo, and demonstrate that QA increases splenic leukocyte numbers in vivo and inhibits NF-κB activity in cells grown in tissue culture in vitro. Materials and Methods: C57BL/6 females were bought from M&B A/S, Ry, Denmark and used in experiments at an age of 6-10 weeks. The animals were kept in a SPF facility at Lund University, Lund, Sweden. The use of laboratory animals complies with the guidelines of the European Community and was approved of by the local ethical committee. C-MED-100® was supplied by CampaMed, Inc. (New York, N.Y.), recently acquired by Optigenex, Inc (New York, N.Y.). Quinic acid (1,3,4,5-tetrahydroxy-cyclohexanecarboxylic acid) (QA) was bought from Sigma-Aldrich (Stockholm, Sweden). Both C-MED-100® and QA were dissolved in RPMI medium 30 minutes before use in in vitro cultures. QA was isolated from C-MED-100® as already described in detail elsewhere (WO 2003/074062 and Sheng Y, et al. An active ingredient of Cat's Claw water extracts. Identification and efficacy of quinic acid. Jour Ethnopharmacology In Press, 2004). Briefly, C-MED-100® was subjected to TLC chromatography in 1% ammonia in ethanol, eluted from the TLC plates in 1% ammonia in water and crystallized from methanol after neutralization and acidification with HCl. In vivo treatment: Mice were fed with C-MED-100® and QA (Sigma-Aldrich), dissolved in autoclaved tap water at indicated concentrations, for 21 days. The drinking water bottles were changed every third day. The animals were then sacrificed, the spleens removed and blood samples collected. The blood samples were analyzed in a Sysmex KX-21N cytometer (Sysmex Corporation, Kobe, Japan). Fluorochrome-conjugated reagents: Fluorescein isothiocyanate (FITC)-conjugated anti-CD8α (YTS169.4), anti-CD4 (GK1.5), anti-B220 (RA3.6B2), anti-Igκ and Cyanin 5 (Cy-5)-conjugated anti-B220 (RA3.6B2) were prepared in our laboratory. Phycoerythrine (PE)-conjugated anti-CD4 (RM4-5) and anti-CD8α (53-6.7) and allophycocyanin (APC)-conjugated TCRβ (H57-597) were bought from BD Biosciences (San Diego, Calif.). 7 amino-actinomycin D (7AAD) was bought from Sigma-Aldrich. Annexin V-FITC was bought from Molecular Probes (Leiden, Holland). Flow cytometry: Cells were counted and aliquots of 106 cells were stained with monoclonal antibodies in FACS-buffer (HBSS supplemented with 0.1% (NaN3) and 3% fetal calf serum (FCS) (Life Technologies, Paisley, G B), as previously described (Åkesson C, et al. C-Med 100, a hot water extract of Uncaria Tomentosa, prolongs lymphocyte survival in vivo. Phytomedicine 10: 23-33 (2003)). Spleen cells were pre-incubated for 10 min on ice with the anti-Fc-receptor antibody 2.4G2 (FcγRIII/II) (prepared in our laboratory) to prevent non-specific binding to Fc-receptors. The cells were analysed with a FACSCalibur flow cytometer (Becton Dickinson, San Jose, Calif.). Cell cultures: Raji human Burkitt's lymphoma (CCL-86), Jurkat human acute T-cell leukemia (TIB-152), 70Z/3 mouse pre-B lymphocyte cell line (TIB-158), or mouse spleen cells were used in the experiments. The cells were cultured in RPMI medium (Life Technologies) supplemented with 10% FCS, 10 mM HEPES buffer, antibiotics, 50 μM 2-mercaptoethanol and 1 mM sodium pyruvate (all supplements from Life Technologies) at 37° C., 5% CO2. The number of Raji cells in duplicate cultures were determined with a Coulter Z1 cell counter (Beckman Coulter Inc, Fullerton, Calif., USA) three times each. The number of viable and dead cells were determined using trypan blue exclusion, by counting three independent samples from duplicate cultures. Cells were stained with 2 μg/ml 7-amino-actinomycin D (7AAD; Sigma-Aldrich, St Louis, Mo., USA) and with Annexin V (Molecular Probes) according to the manufacturer's protocol and the cells were defined as apoptotic (Annexin V+ 7AAD−) or dead (7AAD+) by flow cytometry. Spleen cells were polyclonally activated with 2.5 μg/ml concanavalin A (Con A; Amersham Pharmacia, Uppsala, Sweden) or 10 μg/ml lipopolysaccharide (LPS; Sigma-Aldrich). PMA (50 ng/ml) and ionomycin (1 μM) (both from Sigma-Aldrich) and pyrollidine dithiocarbamate (PDTC) (100 μM, EMD Bioscience Inc, Calbiochem, San Diego, Calif., USA) were used in some cultures as indicated. Proliferation was detected by measuring thymidine incorporation after a 4 hours pulse with 1 μCi 3[H]-thymidine (Amersham Pharmacia). Transient transfection and analysis of luciferase activity: The reporter construct containing NF-κB binding sequences and the luciferase reporter gene was previously described. (Parra E, et al. Costimulation by B7-1 and LFA-3 targets distinct nuclear factors that bind to the interleukin-2 promoter: B7-1 negatively regulates LFA-3-induced NF-AT DNA binding. Mol Cell Biol 17: 1314-23 (1997)). Jurkat T cells were transiently transfected with the construct using the lipofectin method as described by the manufacturer (Life Technologies). After transfection, the cells were rested for 22 hours, pooled and pre-cultured for 2 hours in the presence or absence of C-MED-100® or QA before stimulation. After 6 hours of stimulation, the cells were harvested and washed twice in phosphate-buffered saline (PBS). The cells were lysed and aliquots of the lysates analyzed for luciferase activity using the Luciferase Assay System (Promega, Madison, Wis.). Luminiscence was quantitated in a MicroLumat LB 96 P luminometer (EG&G Berthold, Wallac Sverige A B, Upplands Väsby, Sweden). Preparation of cell extracts: The 70Z/3 cells were pretreated with QA (1 or 2 mg/ml) or with PDTC for 2 hours before they were stimulated with LPS for various time points. Whole cell extracts from the 70Z/3 cells (1×106) were prepared for analysis of the NF-κB signaling pathway. The cells were washed twice in PBS, resuspended in lysis buffer (75 mM Tris-HCl (pH 8.0), 100 mM NaCl, 5 mM KCl, 3 mM MgCl2, 2% NP-40, 1 mM PMSF and a protease inhibitor cocktail) (Roche Diagnostics Scandinavia A B) and incubated on ice for 10 min. The cell debris was pelleted and the supernatants were stored at −70° C. until Western Blot was performed. Western blotting: Cellular extracts from 70Z/3 cells were separated on a 10% SDS polyacrylamide gel and the proteins were transferred to a nylon membrane. After blocking overnight in 5% dry fat-free milk in TBST, the membrane was incubated for 2 hrs with primary antibodies specific either to IκBα or to phosphorylated IκBα (both from Cell Signaling Technology Inc, Beverly, Mass.). The membranes were thereafter washed three times in TBST, and incubated with HRP-conjugated goat anti-rabbit antibodies (Amersham Pharmacia). The membranes were washed three times and chemoluminescence was detected using the ECL-reagent (Amersham Pharmacia) and x-ray film (CEA AB, Strängnäs, Sweden). Statistics: Statistical analysis was performed using Student's two tailed t-test for unequal variance. A biologically active component of C-MED-100® in vivo: A biologically active component of C-MED-100® in vivo was isolated as described. The eluted material from one fraction was found to inhibit proliferation of HL-60 cells similarly to the C-MED-100® extract itself. A component in this biologically active fraction was identified by MALDI mass spectrometry as quinic acid (QA), as described in detail elsewhere (Sheng Y, et al. An active ingredient of Cat's Claw water extracts. Identification and efficacy of quinic acid. Submitted for publication). Commercially available QA was used in an effort to confirm this as well as other known biological activities of the of C-MED-100® (extract. As shown in FIGS. 3A, 3B and 4A, commercially available QA neither inhibited the proliferation of Raji tumor cells nor proliferation of ex vivo murine lymphocytes. One possible explanation for the functional discrepancy between commercial QA and the QA isolated from C-MED-100® might relate to the fact that QA isolated from C-MED-100® was treated with ammonia during chromatography and elution on silica gel. To test this possibility, commercially available QA was treated with 1% ammonia, under identical conditions to those used to isolate QA from C-MED-100® using TLC, and then analyzed its biological activity compared to commercial QA. As expected, ammonia-treated QA (QAA) inhibited cell proliferation in a dose dependent manner (FIGS. 3A, 3B, FIG. 4A) without being overtly toxic (FIG. 3D and FIGS. 4B, 4C). As previously reported (Åkesson C, et al. An extract of Uncaria tomentosa inhibiting cell division and NF-kappaB activity without inducing cell death. Int Immunopharmacol 3: 1889-900 (2003)) and confirmed here, C-MED-100® consistently reduced the fraction of apoptotic cells both in cultures of tumor cells (FIG. 3C) and normal lymphocytes (FIGS. 4B and 4C). QAA also significantly reduced the fraction of apoptotic T cells, while there was a tendency to reduction (p=0.053) in parallel cultures treated with QA (FIG. 4B). This effect was not seen in Raji cells (FIG. 3C) nor in normal B cells (FIG. 4C), 70Z/3 cells or Jurkat T cells (data not shown). This discrepancy remains a focus of future research. QA inhibits NF-κB activity: It is known that extracts of Uncaria tomentosa inhibit NF-κB activity in cells cultured in vitro. (Åkesson C, et al. Int Immunopharmacol 3: 1889-900 (2003); Aguilar J L, et al. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J Ethnopharmacol 81: 271-6 (2002); Tak P P, Firestein G S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107: 7-11 (2001)). To determine whether QA might inhibit this transcriptional regulator, we used Jurkat T cells transfected with a NF-κB dependent reporter gene. The results in FIG. 3A (left) demonstrate that QA, in a dose dependent manner, inhibited the NF-κB activity induced by activating the Jurkat T cells with PMA and ionomycin. The inhibition was observed at concentrations of QA that did not induce cell death (FIG. 3A, right). As would be expected from the data presented above, parallel experiments confirmed that QA did not inhibit proliferation of the Jurkat T cells either (data not shown). Thus, QA inhibits NF-κB activity, without inhibiting proliferation either of normal cells or of tumor cells. QAA inhibited the NF-κB activity to a similar extent as QA (data not shown). It is known that the LPS-induced Igκ-chain expression in 70Z/3 cells is NF-κB dependent. (Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47: 921-8 (1986)). As shown in FIG. 5B, QA and C-MED-100® inhibited Igκ-chain expression to a similar extent (left) without causing cell death (right). This model was used to further explore the mechanism of NF-κB inhibition. As can be seen in FIGS. 5C and 5A, QA inhibited the LPS-induced breakdown of IκBα in these cells, suggesting a plausible mechanism for the inhibition of NF-κB dependent reporter gene transcription. It is known that the antioxidant pyrollidine dithiocarbamate (PDTC) inhibits both the breakdown of IκBα and its resynthesis. (Schreck R, et al. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175: 1181-94 (1992)). Our results confirm this. However, QA did not affect the phosphorylation of IκBα, which in contrast was potently inhibited by PDTC, as shown in FIG. 3D. The QA-induced inhibition of IκBα breakdown is thus controlled at another level than IκBα phosphorylation. We have not further investigated the exact level at which QA inhibits the NF-κB activity. Increased spleen cell number in OA treated animals: It has been shown that in vivo treatment of mice for three weeks with the C-MED-100® extract increased the number of spleen cells, due to the prolongation of lymphocyte half life. (Åkesson C, et al. Phytomedicine 10: 23-33 (2003)). As shown in FIG. 4A, that observation is confirmed here, using the previously determined optimal concentration of C-MED-100® (4 mg/ml in the drinking water). The observation that a higher concentration of the extract (8 mg/ml) did not increase splenic lymphocyte numbers further, together with previously reported data, demonstrates that this biological effect is only seen in a narrow concentration range. Mice fed with drinking water containing 4 mg/ml C-MED-100® also had significantly higher spleen weight. However, neither of the groups fed with C-MED-100® had significant changes in body weight. Since QA decreased NF-κB activity in treated cells in vitro, we investigated whether this component might also be involved in the above in vivo biological response. To address this possibility, mice were fed with drinking water containing various concentrations of QA. As shown in FIG. 6A, mice fed with 2 mg/ml of QA had a significantly increased number of spleen cells, but similarly to what was observed in C-MED-100® treated mice, the increase was seen only in a narrow concentration range. It has been shown, and is confirmed here, that the increased spleen cell number was paralleled by significantly increased absolute numbers of the major lymphocyte subsets CD4+ T cells, CD8+ T cells and B cells (Åkesson C, et al. Phytomedicine 10: 23-33 (2003)) (FIG. 6B). Importantly, this was also the case in the QA treated animals. Taken together, these data strongly indicate QA as one candidate compound of this in vivo biological effect of C-MED-100®. Turning to FIG. 7, despite the significant increase in spleen cell number, there was no increase in WBC, blood lymphocytes or red blood cells (RBC) observed in C-MED-100® treated mice. In contrast, mice treated with increasing concentrations of QA had increasing number of WBC and blood lymphocytes. In the group treated with 4 mg/ml of QA this increase was significant as compared to normal control animals. However, the body weight of those animals was also significantly reduced so the significance of this observation is difficult to evaluate. As previously reported (Åkesson C, et al. Int Immunopharmacol 3: 1889-900 (2003)) and confirmed in here, exposure to C-MED-100® also had a significant anti-apoptotic effect on spleen cells at concentrations inhibiting proliferation. However, the number of apoptotic cells was not reduced in cultures exposed to QA or QAA, suggesting that other components of the extract might be responsible for this effect. It is known that extracts of Uncaria tomentosa inhibit the activity of the transcriptional regulator NF-κB (Sandoval-Chacon M, Thompson J H, Zhang X J, Liu X, Mannick E E, et al. Antiinflammatory actions of cat's claw: the role of NF-kappaB. Aliment Pharmacol Ther 12: 1279-89 (1998); Aguilar J L, et al. J Ethnopharmacol 81: 271-6 (2002)). This is most probably one of the reasons for the anti-inflammatory properties of such extracts. (Sandoval M, et al. Cat's claw inhibits TNFalpha production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med 2000; 29: 71-8). It has been shown that the C-MED-100® extract also inhibited NF-κB activity, but without inhibiting degradation or expression of IκBα. (Akesson C, et al. Int Immunopharmacol 3: 1889-900 (2003)). The data presented here indicate that QA, in a dose-dependent fashion, inhibited the expression of a NF-κB dependent reporter gene in tissue culture cells. A similar level of inhibition was seen using similar concentrations of QAA (data not shown). However, in contrast to the C-MED-100® extract, QA inhibited the degradation of IκBα. These data collectively suggest that QA and C-MED-100® (inhibited NF-κB activity by different mechanisms. Further, QA exposure did not detectably interfere with the phosphorylation of IκBα while it inhibited the degradation of that protein, suggesting that QA-induced inhibition of NF-κB activity is regulated at another level. It may seem paradoxical that QA, which is a potent inhibitor of LPS-induced NF-κB activity in 70Z/3 cells, does not inhibit LPS-induced proliferation of normal B cells. However, the toll-like receptor 4 (TLR4)-mediated induction of the MAP-kinase pathway (reviewed in O'Neill L A. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol 2002; 270: 47-61) may still occur in these cells and be sufficient to induce proliferation. C-MED-100® treatment was previously shown to accelerate the recovery of blood cells after chemically induced leukopenia in the rat. (Sheng et al. Phytomedicine 2000; 7: 137-43). We have shown that in vivo treatment prolongs lymphocyte half life leading to the accumulation of spleen cells in treated animals. This effect was dependent on the continuous presence of the extract, as lymphocyte numbers regained normal levels within a few weeks of terminating the treatment. As C-MED-100® has a clear anti-apoptotic effect on cells grown in vitro, one may speculate that the accumulation of lymphocytes might be caused by this property of the extract. Further, NF-κB is also known to be involved both in controlling cell division (Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol 2001; 159: 387-97; Joyce D, et al. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12: 73-90) and cell survival (Mak T W, Yeh W C. Signaling for survival and apoptosis in the immune system. Arthritis Res 2002; 4: S243-52), therefore suggesting that interference with the expression level of this transcriptional regulator might be involved in this in vivo phenomenon. In plant extracts QA can occur as an ester with caffeic acid, forming chlorogenic acid, a major component in coffee. (Clifford M N. Chlorogenic acids and other cinnamates-nature occurrence and dietary burden. J Sci Food Agric 1999; 79: 362-72). On the other hand, some fruits and berries such as cranberries and sea Buckthorn are particularly rich in free QA. (Coppola E D, Conrad E C, Cotter R. High pressure liquid chromatographic determination of major organic acids in cranberry juice. J Assoc Off Anal Chem 1978; 61: 1490-2; Beveridge T, Harrison J E, Drover J. Processing effects on the composition of sea buckthorn juice from Hippophae rhamnoides L. Cv. Indian Summer. J Agric Food Chem 2002; 50: 113-6). The absorption of dietary chlorogenic acid by both human and rodents is well-documented. (Olthof M R, Holiman P C, Katan M B. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 2001; 131: 66-71; Olthof M R, et al. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 2003; 133: 1806-14; Gonthier M P, Vemy M A, Besson C, Remesy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 2003; 133: 1853-9). It has been shown that gut microflora play an important role in the absorption of this compound by providing the esterases hydrolyzing chlorogenic acid into its constituents QA and caffeic acid (Gonthier M P, Verny M A, Besson C, Remesy C, Scalbert A. J Nutr 2003; 133: 1853-9; Adamson R H, Bridges J W, Evans M E, Williams R T. Species differences in the aromatization of quinic acid in vivo and the role of gut bacteria. Biochem J 1970; 116: 437-43) components. The QA component could then be subsequently further metabolized in tissues (Gonthier M P, Verny M A, Besson C, Remesy C, Scalbert A. J Nutr 2003; 133: 1853-9). Based on the foregoing, it is clear that the bioactive agent of C-MED-100® in vivo is not quinic acid lactone, but rather is quinic acid and its salts, including its ammonium salt. Accordingly the effects of C-MED-100®, including enhancing DNA repair, enhancing immune competency, inhibiting the inflammatory response, decreasing the proliferation of leukemic cells, treating immune system disorders, treating disorders associated with the inflammatory response, enhancing the anti-tumor response, treating disorders associated with the response to tumor formation, shown to be attributable to quinic acid analogs, such as quinic acid lactone, in vitro, are attributable as well to quinic acid and quinic acid salts, including ammonium-treated quinic acid, in vivo. EXAMPLE 8 Turning to FIG. 8, we further disclose that QA salts, especially QAA, were much more bioactive in vitro than QA alone. It is further taught that QA salts can be used to overcome the lack of efficacious comparison between the in vitro and in vivo biological activity data of QA. Further, in order to solve the problem of topical application of QA, we disclose that certain QA salts have in vitro efficacy comparable to that of C-MED-100® itself, thus rendering those QA salts useful for topical administration where systemic metabolism by the liver or the GI tract are not required. Specifically, certain QA salts—including but not limited to QAA, QA zinc salt (QA-Zn), QA calcium salt (QA-Ca) and QA sodium salt (QA-NA)—exhibit an IC50 in cultured HL-60 cells of no greater than 1,100 μg/ml, comparable to the IC50 value for C-MED-100® and less than the IC50 value for QAL. It is thus disclosed herein that certain QA salts, such as QAA-QA-Zn, QA-Ca and QA-Na, are biologically effective both in vitro and in vivo, whereas QA is bioactive only in vivo. QA was purchased from Sigma (>99%). QA salts were synthesized by neutralization with the appropriate base, i.e., NH4OH, NaOH, Ca(OH)2, Zn(OH)2, LiOH, KOH, lysine or histidine. Serial dilutions of test compounds were added to human HL-60 leukemic cells (0.05×106 cells/ml) in 96-well, flat bottomed microtiter plates to give final concentrations in the cultures up to 3000 μg/ml. The plates were incubated for 72 hr at 37 C, pulsed with 201 μl MTT (5 mg/ml) for 3 hr, and the color estimated spectrophotometrically at 540 nm as described previously. (Schweitzer, C M et al. Spectrophotometric determination of clonogenic capacity of leukemic cells in semisolid microtiter culture systems. Experimental Hematology 21: 573-578, 1993). IC50 values were calculated and compared based on the live/dead ratio of cells. As shown in FIG. 8, QA alone shows a much greater in vitro cytotoxicity than does C-MED-100®. By contrast, certain QA salts, in particular QAA (denoted in FIG. 8 as QA-NH4+), QA-Zn, QA-Ca and QA-Na, show an in vitro cytotoxicity comparable to that of C-MED-100®. Indeed, of the eight (8) QA salts tested, QAA showed an in vitro cytotoxicity level closest to that of C-MED-100®. Turning to Table 2, QAA, QA-Zn, QA-Ca and QA-Na are shown to have even less cytotoxicity in vitro that QAL, which is known to be the in vitro biologically active component of C-MED-100®. As a result, QAA may show bioactivity in vitro comparable to that of C-MED-100®., in addition to its bioactivity in vivo. These QA salts thus may be useful in topical applications, where systemic conversion of QAL or C-MED-100® to QA is neither necessary nor desired. These salts thus may be applied topically, to achieve the beneficial results ascribed to C-MED-100®. While the invention has been described with respect to certain specific embodiments, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the invention. It is intended, therefore, by the appended to cover all such modifications and changes as may fall within the true spirit and scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention is directed to the isolation, purification and structural identification of the bioactive component of water extracts of Cat's Claw (Uncaria species). The bioactive component previously was identified in vitro as quinic acid lactone and other related quinic acid esters. The present invention now identifies the in vivo bioactive component as quinic acid and quinic acid salts, including quinic acid ammonium salts. The present invention also is directed to the pharmaceutical use of said bioactive component for enhancing the immune, anti-inflammatory, anti-aging, anti-tumor and DNA repair processes in warm blooded animals. 2. Discussion of the Related Art Uncaria tomentosa, commonly known as Una de Gato or Cat's Claw, has been widely used historically as a natural remedy, and is currently present in a number of nutritional formulations to treat a large variety of health disorders. To applicant's knowledge, all of the commercial preparations of Cat's Claw except the water soluble extract (the “Pero extract”) disclosed in U.S. Pat. Nos. 6,039,949 and 6,238,675 B1 and allowed patent U.S. Ser. No. 09/824,508, issued as U.S. Pat. No. 6,361,805 B2 (the “Pero patents”) to Pero, and U.S. Pat. No. 6,797,286 to Bobrowski, are based on the oxindole alkaloid content thereof. This is due to Dr. Keplinger's (Austria) discovery, in the early 1960's, of the presence of oxindole alkaloids. (Keplinger, K., Laus, G., Wurm, M., Dierich, M. P., Teppner, H., “Uncaria tomentosa (Willd.) DC.-Ethnomedicinal use and new pharmacological, toxicological and botanical results,” J. Ethanopharmacology 64: 23-34, 1999). The Pero extract, the preferred embodiment of which is commercially available under the names C-MED-100® and ACTIVAR AC-11™, is a novel Cat's Claw extract quite unlike any other commercial versions in that it contains only traces of alkaloids (<0.05%) (Sheng et al., “Treatment of chemotherapy-induced leucopenia in the rat model with aqueous extract from Uncaria tomentosa,” Pytomedicine 7 (2): 137-143, 2000). Instead, the Pero extract contains a new class of active ingredients, carboxyl alkyl esters (CAEs), having demonstrated efficacy as described and protected in the Pero patents. C-MED-100® and ACTIVAR AC-11™ are the first products offered in the nutritional industry to support both auto-immune and DNA repair-enhancing functions, which are of critical importance in reducing the consequences of age-related disorders such as autoimmune, inflammatory and neoplastic diseases. References herein to C-MED-100® and/or ACTIVAR AC-11™ shall be understood to include the Pero extract, of which C-MED-100® and ACTIVAR AC-11™ are preferred embodiments. The precise chemical identification of the Pero extract's active ingredients has not heretofore been achieved. However, the chemical and biological characteristics of those ingredients have been sufficiently completed to standardize the commercial manufacture of the Pero extract. (See, the Pero patents). C-MED-100® and ACTIVAR AC-11™, which are the commercially available Pero extract, are formulated and based on the historical medicinal uses of Cat's Claw, of which an important step is exhaustive hot water extraction for approximately 18 hours at around 95° C. The extract is then ultrafiltrated to remove high molecular weight (>10,000 MW) toxic conjugates, and spray dried to contain 8-10% carboxy alkyl esters (CAEs) as active ingredients in vitro. CAEs were characterized as the only active ingredients of C-MED-100® in vitro as a result of their absorption (85%) onto charcoal. No biological activity was observed in the unabsorbed fraction. Using thin layer chromatography (TLC) as the purification tool, the active ingredients showed a UV absorption maximum at about 200 nm, and reacted with hydroxylamine and ferric chloride, thus characterizing them as esters (e.g. CAEs). The inventor has subsequently determined that the active ingredients of C-MED-100® and ACTIVAR AC-11™ in vivo are quinic acid, as free acid, and its salts, including quinic acid ammonium salt. There are two physiological factors regarding the natural forms of quinic acid as the active ingredients of water extracts of Cat's Claw such as C-MED-100® or ACTIVAR AC-11™ which, in turn, might result in quite different biological responses when administered in vitro or in vivo. First, the acidity of the stomach, pH=1, has been shown to be strong enough to hydrolyze any quinic acid esters present in C-MED-100® to quinic acid. Second, the microflora of the digestive tract of mammals are well known to both synthesize and metabolically convert quinic acid to other analogs such as chlorogenic acid, ferrulic acid, shikimic acid, cinnamonic acid, and benzoic acid. (Seifter E., Rettura G., Reissman D., Kambosos D., Levevson S. M. 1971, “Nutritional response to feeding L-phenylacetic, skikimic and D-quinic acids in weanling rats,” J. Nutr. 101 (6): 747-54; Gonthier M. P., et al. 2003, “Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats,” J. Nutr. 133 (6): 1853-63). These well known physiologic facts have raised the possibility that even though quinic acid esters are the bioactive ingredients in vitro, quinic acid esters in vivo could have been metabolized to quinic acid before being absorbed into circulation to mediate efficacious responses. The research disclosed herein confirms that this is the case. Daily oral doses of C-MED-100® between 250-700 mg have proven efficacious in humans. These dosages have been shown to enhance anti-inflammatory, DNA repair, immuno and anti-tumor processes of warm blooded animals, including humans. (See, the Pero patents; Lamm, S., Sheng, Y., Pero, R. W., “Persistent response to pneumococcal vaccine in individuals supplemented with a novel water soluble extract of Uncaria tomentosa , C-Med-100,” Phytomed 8: 267-274, 2001; Sheng, Y., Li, L., Holmgren, K., Pero, R. W., “DNA repair enhancement of aqueous extracts of Uncaria Tomentosa in a human volunteer study,” Phytomed 8: 275-282, 2001; Sheng, Y., Bryngelsson, C., Pero, R. W., “Enhanced DNA repair, immune function and reduced toxicity of C-MED-110™, a novel aqueous extract from Uncaria tomentosa,” J. of Ethnopharmacology 69: 115-126 (2000)). The CAEs in C-MED-100® are shown to give profound nutritional support as a dietary supplement because the CAEs enhance both DNA repair and immune cell responses, which, in turn, are the critical physiological processes that regulate aging. (See, the Pero patents, Sheng, Y., Pero, R. W., Wagner, H., “Treatment of chemotherapy-induced leukopenia in a rat model with aqueous extract from Uncaria tomentosa ,” Phytomedicine 7 (2): 137-143 (2000) and as cited above). Both of these processes involve regulating the nuclear transcription factor kappa beta (NF-κB). NF-κB is well known to control (i) the nuclear events that salvage cells from apoptotic cell death and (ii) pro-inflammatory cytokine production. (Beg, A. A. and Baltimore, D., “An essential role for NF-κB in preventing tumor necrosis factor alpha (TNF-α) induced cell death,” Science 274: 782-784, 1996; Wang, C—Y, Mayo, M. W., Baldwin, A. S., “TNF-α and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-κB,” Science 274: 784-787, 1996). Hence, this mechanism directly connects induction of apoptosis to programmed cell toxicity with inhibition of pro-inflammatory cytokine production and inflammation. Apoptosis is an essential biochemical process in the body that regulates cells from division (replication) into differentiation and toward an increased functional capacity. Cells entering apoptosis will not only be stimulated to differentiate and increase functionality but will eventually die from this “programmed cell death”. Thus, induced apoptosis resulting from NF-κB inhibition by C-MED-100® would (i) effectively kill tumor cells, because they would be forced out of replication by apoptosis and into eventual death; and simultaneously (ii) increase immune cell responsiveness, because more immune competent cells would be forced to differentiate and would live longer because of the parallel enhancement of DNA repair. NF-κB also sends signals to inflammatory cells instructing them to produce cytokines (growth factors, i.e., TNF-α and the interleukins). These signals, in turn, stimulate phagocytic cells to kill more invading infectious agents, which, at least in part, is accomplished by producing high levels of oxygen free radicals. Thus, inhibiting NF-κB has anti-inflammatory properties because it prevents over-reaction of the inflammatory process that can be harmful to normal body tissues. In addition, because pro-inflammatory cytokines are a major source of endogenous free radical production in humans, NF-κB inhibition is antimutagenic by reducing genetic damage that may accumulate over the years. As fewer radicals are produced, there is less damage to the DNA and less inhibition of natural repair. A result is that aging is curtailed. It is now shown that quinic acid and its salts, including quinic acid ammonium salt, have an effect on NF-κB in vivo corresponding to the effect of CAEs in vitro. The Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, is thus an ultimate nutritional supplement for anti-aging remedies because it prevents free radical damage by NF-κB inhibition, induces differentiation and immune cell responsiveness by apoptosis, enhances DNA repair, and kills tumor cells, which in turn are the major factors related to aging. (Sheng, Y., Pero, R. W., Amiri, A. and Bryngelsson, C., “Induction of apoptosis and inhibition of proliferation and clonogenic growth of human leukemic cell lines treated with aqueous extracts of Uncaria Tomentosa ,” Anticancer Research 18: 3363-3368 (1998); Sandoval-Chacon M., Thompson J. H., Zhang X. J., Liu X., Mannick E. E., Sadowicka H., Charbonet R. M., Clark D. A., Miller M. J., “Anti-inflammatory actions of cat's claw: the role of NF-kappa B,” Aliment Pharmacol. Ther. 12: 1279-1289, 1998; Sandoval M., Charbonnet R. M., Okuhama N. N., Roberts J., Krenova Z., Trentacosti A. M., Miller M. J., “Cat's claw inhibits TNF alpha production and scavenges free radicals: role in cytoprotection,” Free Radicals Biol. Med. 29 (1): 71-78, 2000; Åkesson C., Lindgren H., Pero R. W., Leanderson T., Ivars F., “An extract of Uncaria Tomentosa inhibiting cell division and NF-κB activity without inducing cell death,” International Immunopharm 3: 1889-1900 (2003)). It is beneficial to identify the active component thereof. By isolating and identifying the active component, it is possible to purify the component and enhance the pharmaceutical use and increase the efficacy thereof. The present invention is directed to the isolation, purification and identification of the CAEs characterized as the active ingredients of the Pero extract in vitro, which CAEs are identified and structurally elucidated as quinic acid analogs. The present invention also is directed to the isolation, purification and identification of quinic acid and quinic acid salts, including quinic acid ammonium salt, as the active ingredients of the Pero extract in vivo. The present invention also is directed to the use of quinic acid and quinic acid salts, including quinic acid ammonium salt, in vivo to enhance immune competency, treat disorders associated with the immune system, inhibit the inflammatory response, treat disorders associated with the inflammatory response, enhance the DNA repair process, enhance the anti-tumor response, and treat disorders associated with the response to tumor formation and growth.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>If the plant species Uncaria is hot water extracted, which has been the historical practice for medicinal use, and then ultrafiltrated to deplete large molecular weight (>10,000) components, including, for example, toxic conjugates of tannins, there still remains in the non-ultrafiltrated fraction, a novel phytomedicinal preparation of Uncaria (e.g. C-MED-100®, ACTIVAR AC-11™) having potent immuno, anti-tumor, anti-inflammatory, and DNA repair enhancing properties. In a preferred embodiment of the present invention, C-MED-100® or ACTIVAR AC-11™ is dissolved in water, spray dried and the spray drying agent (starch) removed by precipitation with 90% aqueous ethanol. The resultant solution is subjected to thin layer chromatography (TLC) on silica gel to identify the active ingredient(s) giving the product its efficacy. The 90% ethanol C-MED-100®/ACTIVAR AC-1™ is spotted on (applied to) TLC plates (silica gel 60 F 254 ) and then chromatographed in a system of approximately 1% ammonia in greater than about 95% ethanol. There is only one area on the TLC chromatogram having biological activity (at R f =0.2-0.3) when eluted with 1% aqueous ammonia and subsequently bioassayed for the ability to kill tumor cells by induction of apoptosis. The R f =0.2-0.3 compound shows an ultraviolet absorption maximum in water at about 200 nm, absorbs onto charcoal and is characterized chemically as a CAE by reaction with hydroxylamine and ferric chloride. (Bartos, “Colorimetric determination of organic compounds by formation of hydroxamic acids,” Talanta 27: 583-590, 1980). In another embodiment of this invention, the biologically active CAEs isolated from the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, are further purified and structurally identified as a quinic acid analog. Elution from silica TLC plates with aqueous ammonia proved to be necessary because of very tight binding to silica. Although the R f =0.2-0.3 spot is essentially free from other C-MED-100®or ACTIVAR AC-11™ components, it contains relative large amounts of dissolved inorganic silica. In order to remove the inorganic component(s) introduced from the purification scheme on silica TLC, the 1% aqueous ammonia solution is freeze dried and then re-dissolved in methanol, leaving behind the solubilized silica. The R f =0.2-0.3 spot is crystalized from methanol and subsequently identified by chemical analysis as quinic acid. Thus, one embodiment of the present invention comprises a method for isolating the bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, comprising: (a) precipitating the spray drying carrier from the Pero extract by mixing the extract with distilled water and evaporating the ethanol, and freeze drying the water-dissolved extract; (b) mixing the freeze-dried extract with distilled water and ethanol to obtain a spotting mixture for thin layer chromatography; (c) spotting the mixture on pre-run TLC plates and chromatographing the plates in a system of approximately 1% ammonia and ethanol, thereby obtaining a fluorescing band with R f =0.2-0.3; (d) scraping off the fluorescing band with R f =0.2-0.3; (e) eluting the scraped band with aqueous ammonia and freeze drying the eluted scraped band to dryness to form a powder; (f) extracting the powder with methanol to remove solubilized silica gel, leaving a methanol solution; (g) concentrating the methanol solution; and (h) crystallizing the concentrated solution to obtain the bioactive component. Another embodiment of the present invention comprises identification of the in vitro bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, obtained by the foregoing method. In this embodiment the in vitro bioactive component exhibits the same properties as the Pero extract and consists essentially of a quinic acid analog. Preferably, the quinic acid analog is quinic acid lactone and/or other alkyl esters. Another embodiment of the present invention comprises identification of the in vivo bioactive component of the Pero extract, preferably C-MED-100® or ACTIVAR AC-11™, obtained by the foregoing method. In this embodiment the in vivo bioactive component exhibits the same properties as the Pero extract and consists essentially of quinic acid and its salts, including quinic acid ammonium salt. In another embodiment, the present invention comprises a pharmaceutical composition comprising a pharmaceutically effective amount of the bioactive component of the Pero extract and a nontoxic inert carrier or diluent. The present invention also includes embodiments which comprise using the pharmaceutical composition to (i) enhance the immune competency of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (ii) treat disorders associated with the immune system of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (iii) inhibit the inflammatory response of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (iv) treat disorders associated with the inflammatory response of a mammal by inhibiting TNF-α production or inducing apoptosis of white blood cells or increasing white blood cells (WBC) in vivo after chemotherapy-induced leucopenia, comprising administering the pharmaceutical composition in an amount effective to inhibit TNF-α production or to induce apoptosis of white blood cells; (v) enhance the anti-tumor response of a mammal by inducing apoptosis of tumor cells, comprising administering the pharmaceutical composition in an amount effective to induce apoptosis of tumor cells; (vi) treat disorders associated with the response of a mammal to tumor formation and growth by inducing apoptosis of tumor cells, comprising administering the pharmaceutical composition in an amount effective to induce apoptosis of tumor cells; and (vii) enhance the DNA repair processes of a mammal, and, thus, provide anti-mutagenic activity important to treating aging disorders.
20041021
20090929
20050811
88237.0
1
TATE, CHRISTOPHER ROBIN
METHOD OF PREPARATION AND COMPOSITION OF A WATER SOLUBLE EXTRACT OF THE BIOACTIVE COMPONENT OF THE PLANT SPECIES UNCARIA FOR ENHANCING IMMUNE, ANTI-INFLAMMATORY, ANTI-TUMOR AND DNA REPAIR PROCESSES OF WARM BLOODED ANIMALS
SMALL
1
CONT-ACCEPTED
2,004
10,970,236
ACCEPTED
System and method to provide automated scripting for customer service representatives
A disclosed method provides automated scripting to guide a customer service representative (CSR) in handling a call from a customer. Operations within the method may include displaying products and two or more purpose classifications for selection by the CSR. The purpose classifications may include (a) an add classification for customer requests to add a new product to an account and (b) a remove classification for customer requests to remove an existing product from the account. A page generator may receive input from the CSR selecting one of the purpose classifications and one of the products as pertinent to the call. In response, the page generator may automatically displaying a customized page with scripted text for the CSR to read to the customer. The scripted text may correspond specifically both to the selected purpose classification and to the selected product.
1. A method comprising: obtaining information identifying a customer during a communication between a customer and a customer service representative (CSR); obtaining content related to the identified customer from a plurality of different databases; dynamically generating a script based, at least in part, on the obtained content; and displaying the dynamically generated script to the CSR while the communication is still in progress. 2. The method of claim 1, further comprising: concurrently displaying content from at least two different databases and the dynamically generated script using a consolidated interface. 3. The method of claim 1, wherein displaying the dynamically generated script further comprises: displaying links to content stored in at least one of the plurality of different databases 4. The method of claim 3, further comprising: changing an appearance of one or more links to indicate a likelihood that a particular link is relevant to the communication. 5. The method of claim 1, wherein dynamically generating the script further comprises: maintaining a macro glossary defining associations between identifiers and replacement text. 6. The method of claim 1, further comprising: modifying the script based on information provided to the CSR during the communication; and displaying the modified script to the CSR. 7. The method of claim 6, wherein modifying the script further comprises: providing links to additional script content based on information provided to the CSR during the communication. 8. A computer readable medium tangibly embodying a program of executable instructions, the program of executable instructions comprising: at least one instruction executable to obtain information identifying a customer during a communication between a customer and a customer service representative (CSR); at least one instruction executable to obtain content related to the identified customer from a plurality of different databases; at least one instruction executable to dynamically generate a script based, at least in part, on the obtained content; and at least one instruction executable to display the dynamically generated script to the CSR while the communication is still in progress. 9. The computer readable medium of claim 8, further comprising: at least one instruction executable to concurrently display content from at least two different databases and the dynamically generated script using a consolidated interface. 10. The computer readable medium of claim 8, wherein the at least one instruction executable to display the dynamically generated script further comprises: at least one instruction executable to display links to content stored in at least one of the plurality of different databases 11. The computer readable medium of claim 10, further comprising: at least one instruction executable to change an appearance of one or more of the links to indicate a likelihood that a particular link is relevant to the communication. 12. The computer readable medium of claim 8, wherein the at least one instruction executable to dynamically generate the script further comprises: at least one instruction executable to access a macro glossary defining associations between identifiers and replacement text. 13. The computer readable medium of claim 8, further comprising: at least one instruction executable to modify the script based on information provided to the CSR during the communication; and at least one instruction executable to display the modified script to the CSR. 14. The computer readable medium of claim 13, wherein the at least one instruction executable to modify the script further comprises: at least one instruction executable to provide links to additional script content based on information provided to the CSR during the communication. 15. An information handling system comprising: at least one processor; memory operably coupled to said at least one processor; and a program of instructions capable of being stored in said memory and executed by said processor, said program of instructions configured to execute a method comprising: obtaining information identifying a customer during a communication between a customer and a customer service representative (CSR); obtaining content related to the identified customer from a plurality of different databases; dynamically generating a script based, at least in part, on the obtained content; and displaying the dynamically generated script to the CSR while the communication is still in progress. 16. The information handling system of claim 1, wherein the method implemented by the program of instructions further comprises: concurrently displaying content from at least two different databases and the dynamically generated script using a consolidated interface. 17. The information handling system of claim 1, wherein the method implemented by the program of instructions further comprises: displaying links to content stored in at least one of the plurality of different databases 18. The information handling system of claim 3, wherein the method implemented by the program of instructions further comprises: changing an appearance of one or more links to indicate a likelihood that a particular link is relevant to the communication. 19. The information handling system of claim 1, further comprising: modifying the script based on information provided to the CSR during the communication; and displaying the modified script to the CSR. 20. The information handling system of claim 6, wherein modifying the script further comprises: providing links to additional script content based on information provided to the CSR during the communication.
RELATED APPLICATIONS This application is a continuation of prior application Ser. No. 10/136,157 entitled “System and Method to Provide Automated Scripting for Customer Service Representatives” filed May 1, 2002, now U.S. Pat. No. ______. TECHNICAL FIELD OF THE INVENTION This invention relates in general to computer systems. In particular, this invention relates to a system, a method, and a program product to provide automated scripting for customer service representatives. BACKGROUND OF THE INVENTION Customer satisfaction is typically very important to vendors such as telecommunications companies. Many vendors therefore employ specially trained customer service representatives (CSRs) to help ensure that calls from customers with questions or requests pertaining to the products that the company provides are handled effectively and efficiently. Effectiveness and efficiency are typically important goals for a customer service department. To increase the effectiveness and efficiency of CSRs, some companies provide CSRs with paper documents to be used for guidance when handling customer calls. Such a document may be known as a “contact strategy document” or a “CSR script.” For instance, a contact strategy document may be designed for handling calls from customers who want to add products to or remove products from their existing accounts. Such as contact strategy document may guide a CSR through steps designed save products from being cancelled and to upsell customers. While handling a customer call, a CSR may also interact with various screens from an enterprise system, such as a legacy mainframe application or database. For example, the CSR may use function keys to navigate through various legacy application screens to retrieve account data for the customer, data about the company's goods and services, etc. Accordingly, for a given call, the CSR may be required to perform the following tasks: (a) converse with the customer; (b) navigate through multiple legacy application screens; (c) refer repeatedly to the contact strategy document; (d) save existing products by producing explanations that overcome customer objections; (e) upsell available products by describing their benefits to the customer; and (f) process customer orders by manually entering data into various fields in the legacy application screens. Collectively, these tasks require significant mental effort, and they demand the memorization of considerable amounts of information by the CSR. These requirements may overwhelm many CSRs, and, as a result, CSRs may navigate through the enterprise application screens in an inefficient manner and may fail to use the prescribed contact strategy. Consequently, overwhelmed CSRs may fail to meet save and upsell goals, customer satisfaction may suffer, and the service provider may lose revenue that might have been realized, had the CSR performed as expected. BRIEF DESCRIPTION OF THE DRAWINGS A more complete understanding of the present invention and advantages thereof may be acquired by referring to the appended claims and to the following description of one or more example embodiments, with associated drawings. In the drawings: FIG. 1 presents a block diagram of a distributed data processing system including an example embodiment of a dynamic page generating system according to the present invention; FIG. 2 presents a block diagram illustrating various parts of an example embodiment of a gateway in the dynamic page generating system of FIG. 1; FIG. 3 presents a block diagram of a data storage device containing panel templates for the dynamic page generating system of FIG. 1; FIG. 4 presents a block diagram of a database containing various collections of data for use by the dynamic page generating system of FIG. 1; FIG. 5 depicts a portion of an example panel template; FIG. 6 depicts example key account data records; FIG. 7 depicts example transaction data records; FIG. 8 depicts example macro identifiers and respective replacement text strings; FIG. 9 depicts example link conditions; FIG. 10 presents a flowchart of an example embodiment of a method for providing automated scripting for customer service representatives according to the present invention; FIG. 11 depicts an example user interface with scripted messages generated according to the process illustrated in FIG. 10; and FIG. 12 depicts an example user interface with scripted messages generated according to FIG. 10. DETAILED DESCRIPTION OF AN EXAMPLE EMBODIMENT FIG. 1 presents a block diagram of an example embodiment of a distributed data processing system 10 that includes many components which cooperate to provide automated scripting for customer service representatives according to the present invention. In the example embodiment, a customer may use a telephone 11 to call a customer service representative (CSR) with a request for information about or changes to the customer's account with a service provider. The CSR may use a workstation 12 with a video display 15 to interact with a dynamic page generating system (DPGS) 20. In the example embodiment, DPGS 20 provides an “end-to-end” series of scripted messages that increase CSR efficiency and enhance customer satisfaction. The series of scripted messages may be referred to as an overlay, and the overlay is considered “end-to-end” because the series of scripted messages may guide and support CSR functions from the beginning to the end of the customer contact. Moreover, DPGS 20 may generate the overlay by automatically combining information from multiple remote sources and dynamically customizing the content presented to the CSR. For instance, a multi-state database in an enterprise system may contain information on thousands of products, universal service order codes (USOCs), pricing, field identifiers (FIDs), etc. However, DPGS 20 may filter that data and present the CSR only with relevant portions of that data (e.g., only data relating to products available in the state of the customer on the call). Furthermore, DPGS 20 may provide a consolidated interface for accessing tools required by the CSR. DPGS 20 may reduce the mental effort and demands for memorization required of the CSR. Thus, an end-to-end scripting overlay according to the invention may simplify the job of the CSR and allow CSRs that would otherwise be overwhelmed to handle customer calls more effectively. Consequently, CSRs may enjoy increased save and upsell performance, resulting in increased revenue for the product provider and increased satisfaction for the customer. For purposes of this document, (a) the term “products” may be used to refer to goods and to services; (b) to “upsell” is generally to convince the customer to accept a new product for the account that provides a more favorable business result (such as increased revenue) for the provider of that product, relative to an existing product for the customer; (c) and to “save” a product generally means to prevent the customer from removing the product from the account. In the example embodiment, the overlay has the following properties: (a) includes customer account information scraped from enterprise screens; (b) displays the customer account information in a user friendly format (e.g., by showing only the products that are either currently in a customer's subscription or available to the customer; (c) directs CSR navigation through a series of hyperlinked pages that are ordered based on the CRU contact strategy; (d) provides the CSR with scripted statements or messages about products, so the CSR may use the scripted messages, including product benefits and prices, to overcome customer objections; (e) populates appropriate enterprise application fields with customer order information, so the CSR need only review the information to complete the order; (f) logs CSR navigation through hyperlinked pages to a database, so that usage and save/upsell reports can be generated; and (g) allows authors or administrators to create, modify, and delete content for the hyperlinked pages in a way that allows pages with the new content to be delivered to CSR desktops in real time (i.e., while the pages are being used by CSRs without disrupting CSR operation). However, DPGSs according to the present invention are not limited to providing pages for CSRs, but may be used in alternative embodiments to dynamically generate pages for other purposes. For instance, a DPGS may be used by an automotive company to generate pages to allow customers to choose windshield wiper replacements for their make and model car, or to generate pages for troubleshooting an appliance, or basically any rules-based decision making, where key information combined with rules produces discrete outcomes that are predictable. For purposes of this disclosure a page is a collection of content (e.g., an html file, an XML file, a text file, etc.) that is ready to be delivered to a user interface module, such as a web browser object, for presentation to a user. In the illustrated embodiment, the overlay is implemented by dynamically generating the pages that will form the overlay, based on a variety of influences, such as user input from the CSR, data in DPGS 20, and data from remote systems. Those pages may be presented to the CSR in a display 15 of a workstation 12 within DPGS 20. For example, a browser object 17 may be used to display the pages in a graphical user interface, and a pointing device such as a mouse may be used to navigate from page to page within the overlay. DPGS 20 may use Visual Basic routines and a dynamic-html engine, for example, to allow the CSR to access existing enterprise software or data. Workstation 12 may include nonvolatile data storage such as one or more disk drives 24, volatile data storage such as random access memory (RAM) 22, one or more central processing units (CPUs) 21, and input/output (I/O) facilities 23 such as a network interface card or module. Gateway 16 may be implemented as a software application with various modules of computer instructions and data. Gateway 16 may generally reside on disk drive 24, and may be loaded into RAM 22 and executed by CPU 21 on demand. Another workstation 50 may include generally similar components, including gateway 16. As described in greater detail below, and an administrator may use workstation 50 to modify various components of DPGS 20. As described in greater detail below, gateway 16 may automatically and dynamically generate customized pages for the CSR, based on data sources such as user input from the CSR, data in remote systems 30, and data from enterprise systems such as legacy systems 40. Remote client/server systems 30 may contain, for example, an SQL database 32 and one or more other types of data storage 33. Legacy systems 40 may include various applications and related collections of data. For example, the resources in legacy systems 40 may include an order processing application 42, a file of product data 44, a file of customer account data 46, and other applications or databases. Gateway 16 may communicate with components internal and external to DPGS 20 either directly or via a network platform such as a local area or wide area intranet 14. Data used by DPGS 20 and components of DPGS 20 may thus reside on different hardware devices in distributed data processing system 10. FIG. 2 presents a block diagram illustrating various parts of gateway 16 from FIG. 1. As illustrated, gateway 16 may include a live interface module 76 and a page generator 28. As described in greater detail below with reference to FIG. 10, live interface module 76 may retrieve data pertaining to a customer from legacy systems 40, refine that data, and retain the refined customer data for use by page generator 28. The refined customer data may be retained in RAM 22 or disk drive 24, and that data may be referred to as key account data 66. For instance, gateway 16 may retain key account data 66 for a customer in RAM 22 only while the CSR is handling a call form that customer. FIG. 6 depicts example records in key account data 66. As indicated, each record may include a product description and a status field indicating whether the customer is already subscribed to that product (i.e., whether the product is “on” the account). Each record may also list the cost of any associated non-recurring charge (NRC) and monthly recurring charge (MRC). In the example embodiment, the records identify all of the products on the customer account and all of the products available for the customer account. Page generator 28 may perform most or all of the processing required to dynamically generate the pages to be presented to the CSR. That processing may be performed by a number of related components, such as a search function 52, a macro processor 54, and a link processor 56. A macro glossary 55 in macro processor 54 may define associations between predetermined macro identifiers and respective replacement text strings. A macro identifier and the corresponding replacement text string may be referred to collectively as a macro. Link processor 56 may use a Boolean compiler 57 to evaluate predefined link conditions. In the example embodiment, Boolean compiler 57 may be implemented to evaluate a statement (that may be simple or compound) using Boolean programming concepts to evaluate if a statement is true or false. Boolean logic generally allows several operators such as: greater than, less than, equal to, is between two ranges, outside two ranges using operators like “AND,” “OR” and “NOT.” The relationship of Boolean compiler 57 and link processor 56, provides additional instructions to page Generator 28 to allow the administrator to “HIDE” or “DIM” the link from the page. The interrelationship is further enhanced with availability to combine and process statements composed from multiple data sources. The Boolean Compiler will recognize elements from multiple sources such as: “Manage Products” (product data 44), customer account data 46, data storage 33 or SQL database 32. The Boolean compiler is accessible to the administrator from the “Manage Conditions” and “Edit Conditions' functions.” Page generator 28 may use search function 52 to find macro identifiers and links in panel templates, and page generator 28 may use macro processor 54 and link processor 56 to dynamic generate customized pages from the panel templates, as described in greater detail below. In addition, gateway 16 may include a data sync module 58 that, when activated by an administrator, updates product data in DPGS 20 to coincide with the product data in legacy systems 40. For instance, data sync module 58 may keep a table of product data 78 in SQL database 32 relatively up to date with changes to product data in legacy systems 40. In addition, when building product data 78, data sync module 58 may process or refine that data to make it more user friendly or easier to present or understand in a user interface. For instance, cryptic codes or abbreviations for products may be replaced with plain text product descriptions, such as “Call Waiting.” However, data sync module 58 may be inaccessible to CSRs. FIG. 3 presents a block diagram of data storage 30, which contains panel templates 62 for DPGS 20. Those templates typically include content that may or may not be presented to the CSR, depending on influences such as the nature of the customer contact and the progress of the CSR through interaction with a customer, as described in greater detail below. FIG. 5 depicts a portion of an example panel template. As illustrated, each panel template typically includes multiple hard-coded statements 71, macro identifiers 73, and links 75. In one embodiment, panel templates 62 may include hundreds of individual panel templates 63. Hard-coded statements 71 may contain standard html code, for instance, as well as macro identifiers 73 and links 75. FIG. 4 presents a block diagram of SQL database 32, illustrating certain collections of data (e.g., files or tables) used by DPGS 20. In the example embodiment, SQL database 32 includes tables for link conditions 74, refined product data 78, and transaction records 68. FIG. 9 depicts example link conditions 74. As shown, each link condition includes a template identifier and a condition specification. In the example embodiment, link conditions 74 reflect the business rules and process rules for the contact strategy, and link conditions 74 are used to help force the CSR to use the prescribed contact strategy. For example, link conditions 74 may cause page generator 28 to include only those links from a panel template that match the proper steps for the CSR to follow, according to the contact strategy. Consequently, the resulting customized page may reduce or eliminate any likelihood that the CSR might diverge from the proper process by, for example, selecting a link to an inappropriate page. FIG. 7 depicts example transaction records 68. In the example embodiment, each transaction record includes data relating to a particular customer call. As shown at record 26, when the transaction record is created at the beginning of the call, some of the fields may be empty. However, when the call ends, the records will typically include data for fields such as User, which identifies the CSR that handled the call, Billing Telephone Number (BTN), which identifies the customer account involved, Starttime, Stoptime, a Disposition code, and Navigation history identifying the panels that were presented for the CSR, and a record key. FIG. 8 depicts example macro identifiers and respective replacement text strings. For instance, macro glossary 55 associates the macro id “ARLM1DXI” with the replacement text string “$0.12.” Similarly, macro glossary 55 associates the macro id “SH” with the replacement text string “shipping and handling.” FIG. 10 depicts a flowchart of an example process for providing automated scripting for CSRs. That process begins with a CSR stationed at workstation 12 and with gateway 16 executing on workstation 12. At block 200, page generator 28 causes workstation 12 to display an initial page for the CSR. The initial page may include an input field for receiving customer identification information. When the CSR receives a customer call, the CSR may read a prescribed message from the initial page to greet the customer and ask the customer for identifying information, such as a name, address, telephone number, or account number. Upon receiving the identifying information, the CSR may enter that information into the initial page and then select an object on the page such as a hyperlink to proceed to the next step. At block 202, page generator 28 may extract the identifying information from the page, and at block 204, page generator 28 may create a transaction record used to save information about the interaction between the CSR and DPGS 20. At block 206, live interface module 76 may generate an enterprise request and retrieve account data from legacy systems 40. Gateway 16 may then store the account data as key account data 66. For instance, that data may include the account number, the current services on the account, and the services available for the account. At block 210, page generator 28 may determine whether a new template is needed. If so, at block 212 page generator 28 may determine which new template should be used. Page generator 28 may retrieve that template from panel templates 62 at block 214. Then, after the new template is retrieved, or if it is determined that a new template is not needed, page generator 28 may customize a new page to be displayed at workstation 12 for the CSR. If no new template was retrieved, the new customized page may be based on the old panel template. To generate the new customized page, search function 52 may examine the contents of the selected panel template to locate links and macro identifiers. Hard-coded statement may generally be copied over from the selected panel template to the customized page being generated. However, when a macro identifier is found, macro processor 54 may replace each macro identifier with the corresponding replacement text from macro glossary 55. For instance, with reference to FIG. 5, the macro identifier {user.firstname} may be replaced with the first name of the CSR. Furthermore, when a link is found, link processor 56 may search for a corresponding link condition in the table of link conditions 74. If such a link condition is found, Boolean compiler 57 may be used to evaluate whether the link condition is true or false. If the link condition is true, the link may be copied over to the customized page. If the link condition evaluates to false, however, the content in the panel template that corresponds to the link may be omitted from the customized page. For instance, with reference to FIGS. 5 and 9, when the link <a href=“ING0014.htm”> is detected, link processor 56 may evaluate a row in the table of link conditions 74 for the template “ING0014.htm.” If that link condition evaluates as false, the content associated with that link may be omitted from the customized page. (In FIG. 5, the content associated with link 75 is not expressly illustrated, although it typically would follow link 75.) Referring again the FIG. 10, page generator 28 may then cause workstation 12 to display the customized page at block 222. The CSR may then use the displayed page as a guide for interaction with the customer. For instance, the initial screen may include a greeting for the CSR to use in response to the call from the customer, and the first customized page may include various objects for the CSR to use to specify the nature of the call. Alternatively, the initial page may also be customized. For instance, one customized page may include various purpose classifications, including an add classification for customer requests to add a new product to an account, and a remove classification for customer requests to remove an existing product from the account. In addition, that customized page or a subsequent page may display products for selection by the CSR to indicate which product or products are pertinent to the call. At block 224, page generator 28 may detect that the CSR has selected an object such as a hyperlink on the customized page, and at block 226, page generator 28 may extract input data from the page. For example, page generator 28 may determine which of the purpose classifications was selected by the CSR and which of the products was selected by the CSR. In addition, the page generator 28 evaluates changes made to the product or pricing tab contents based on changes discussed by the CSR and Customer interaction. Changes made to the pricing tab allow the CSR and Customer to determine the new monthly and nonrecurring charges based on changes to their account. This is for comparative reasons, allowing customers and CSR's to price several options without submitting an order blindly. The Product tab takes instructions from commands contained within the script pages, allowing the CSR to rarely interact with it. However, the CSR has access to view and change (add, remove, save) any product returned from the legacy system. This allows the CSR to quickly make changes without using the script or to make changes to non scripted products. At block 230, page generator 28 may determine whether enterprise data is required, based on the input data from the page. If enterprise data is required, page generator may generate an enterprise request, use that request to retrieve the enterprise data from legacy systems 40, and process the enterprise data as depicted at blocks 232, 234, and 236. For example, processing the enterprise data may include operations such as translating the legacy account data into a format more suitable for a user interface, storing the translated data as key account data, determining available services for the account in question, etc. At block 240, if enterprise data was not required at block 230, or if enterprise data has been retrieved and processed, page generator 28 determines whether a customer order has been completed. For example, page generator 28 may determine whether the CSR has selected an object associated with a command to process a customer order. In addition, page generator 28 may require the CSR to confirm the order, for example in a confirmation page summarizing the suggested changes. As depicted at block 242, if a customer order is complete, page generator 28 may generate an enterprise request formatted as required for order processing application 42. Page generator 28 may then submit the request for validation at block 44, for instance by transmitting it to order processing application 42. At block 250, if an error is received from legacy systems 40, the process may return to block 210, with page generator 28 determining whether a new template is needed, for example to provide instructions for the CSR to overcome the problems with the submitted order. However, if no error is received, the process may pass from block 250 to block 252, and page generator 28 may then release the order for implementation. The order is released into the legacy system once the legacy system is ready to accept the order and allows the CSR to submit the transaction. Once released, the order image is distributed to various parts of the company. Gateway 16 may then update and close the transaction record for this call at block 254. Then, after the transaction record is closed or if page generator 28 determined that there was no completed customer order to process at block 240, page generator 28 may determine whether the customer contact is complete at block 260. For instance, this determination may be made by reference to input received from the CSR, such as the selection of a customer-contact-complete object. If the customer contact is not complete, the process may return to block 210, with page generator 28 deciding whether a new template is required and continuing to provide customized pages for the CSR as described above. Otherwise, gateway 16 may determine whether the application should be terminated, for instance in response to input from a network administrator. If the application is not being terminated, the process may return to block 200, with page generator 28 displaying the initial page in workstation 12. Otherwise, the application may end. FIG. 11 depicts an example user interface with scripted messages generated according to the process of FIG. 10. Specifically, FIG. 11 illustrates an example of output that may be produced in display 15 when a customized page is fed into to a web browser object in workstation 12. For instance, the customized page may be the initial page, and the generation of that page may have included the step of replacing a macro identifier in a corresponding panel template with the first name of the CSR, “Melissa.” FIG. 12 depicts another example of output that may be produced when a customized page is fed into to a web browser object. Is indicated by the hollow arrows at the bottom of the screen, that page includes a number of hyperlinks. However, when the page was generated, numerous additional hyperlinks may have been omitted as a result of evaluation results for link conditions associated with those links. For instance, the illustrated screen provides guidance for upselling a customer, and it is based on a corresponding template. If link processor 56 found any links in that template relating to products already on the customer account, page generator 28 may have omitted the content for those links from the page. For example, if the template included a link to upsell Call Waiting, but the customer account already included Call Waiting, the link for Call Waiting would be omitted from the page. Boolean compiler 57 in link processor 56 may use the key account data for the customer when evaluating the link conditions in a given panel template. Other components that may be used by Boolean compiler 57 to evaluate link conditions include combinations of elements such as greater than, less than, equal to, true and false, is a product is available, subscribed to, as well as the value or range of marketing intelligence data that may reside in data storage 33 or SQL database 32. One of the advantages provided by DPGS 20 is that it helps to increase the effectiveness and efficiency of CSRs and enhance customer satisfaction. Another advantage is that DPGS 20 uses data from multiple different sources to automatically generate pages with highly customized, consolidated content for a user interface. For instance, the customized page may be based on a panel template, but DPGS 20 may automatically omit and replace different elements of the template when building the customized page, based on influences such as user input, predefined business rules, etc. One DPGS strength is suppressing non-relevant data, therefore only presenting relevant information to the CSR, eliminating non-value-added clutter or information, allowing the CSR to talk freely with their customer. The DPGS combines business rules and business process intelligence together with data to make simple and complex decisions in real time. Although the present invention has been described with reference to an example embodiment, those with ordinary skill in the art will understand that numerous variations of the example embodiment could be practiced without departing from the scope and spirit of the present invention. For purposes of illustration, an example distributed system has been described. However, one of ordinary skill in the art will appreciate that alternative embodiments could be deployed with many variations in the number and type of components in the network, the network protocols, the network topology, the distribution of various software and data components among the hardware systems in the network, and myriad other details without departing from the present invention. The example embodiment has also been described with reference to objects such as hyperlinks. However, other types of interface objects or data items may be used in alternative embodiments to provide similar functionality. Also, although web browsers are used to produce the user interface screens in the example embodiment, different technologies may be used in alternative embodiments to provide user interfaces in accordance with the present invention. It should also be noted that the hardware and software components depicted in the example embodiment represent functional elements that are reasonably self-contained so that each can be designed, constructed, or updated substantially independently of the others. In alternative embodiments, however, it should be understood that the components may be implemented as hardware, software, or combinations of hardware and software for providing the functionality described and illustrated herein. In alternative embodiments, information handling systems incorporating the invention may include personal computers, mini computers, mainframe computers, distributed computing systems, and other suitable devices. Alternative embodiments of the invention also include computer-usable media encoding logic such as computer instructions for performing the operations of the invention. Such computer-usable media may include, without limitation, storage media such as floppy disks, hard disks, CD-ROMs, read-only memory, and random access memory; as well as communications media such wires, optical fibers, microwaves, radio waves, and other electromagnetic or optical carriers. The control logic may also be referred to as a program product. Many other aspects of the example embodiment may also be changed in alternative embodiments without departing from the scope and spirit of the invention. The scope of the invention is therefore not limited to the particulars of the illustrated embodiments or implementations but is defined by the appended claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Customer satisfaction is typically very important to vendors such as telecommunications companies. Many vendors therefore employ specially trained customer service representatives (CSRs) to help ensure that calls from customers with questions or requests pertaining to the products that the company provides are handled effectively and efficiently. Effectiveness and efficiency are typically important goals for a customer service department. To increase the effectiveness and efficiency of CSRs, some companies provide CSRs with paper documents to be used for guidance when handling customer calls. Such a document may be known as a “contact strategy document” or a “CSR script.” For instance, a contact strategy document may be designed for handling calls from customers who want to add products to or remove products from their existing accounts. Such as contact strategy document may guide a CSR through steps designed save products from being cancelled and to upsell customers. While handling a customer call, a CSR may also interact with various screens from an enterprise system, such as a legacy mainframe application or database. For example, the CSR may use function keys to navigate through various legacy application screens to retrieve account data for the customer, data about the company's goods and services, etc. Accordingly, for a given call, the CSR may be required to perform the following tasks: (a) converse with the customer; (b) navigate through multiple legacy application screens; (c) refer repeatedly to the contact strategy document; (d) save existing products by producing explanations that overcome customer objections; (e) upsell available products by describing their benefits to the customer; and (f) process customer orders by manually entering data into various fields in the legacy application screens. Collectively, these tasks require significant mental effort, and they demand the memorization of considerable amounts of information by the CSR. These requirements may overwhelm many CSRs, and, as a result, CSRs may navigate through the enterprise application screens in an inefficient manner and may fail to use the prescribed contact strategy. Consequently, overwhelmed CSRs may fail to meet save and upsell goals, customer satisfaction may suffer, and the service provider may lose revenue that might have been realized, had the CSR performed as expected.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>A more complete understanding of the present invention and advantages thereof may be acquired by referring to the appended claims and to the following description of one or more example embodiments, with associated drawings. In the drawings: FIG. 1 presents a block diagram of a distributed data processing system including an example embodiment of a dynamic page generating system according to the present invention; FIG. 2 presents a block diagram illustrating various parts of an example embodiment of a gateway in the dynamic page generating system of FIG. 1 ; FIG. 3 presents a block diagram of a data storage device containing panel templates for the dynamic page generating system of FIG. 1 ; FIG. 4 presents a block diagram of a database containing various collections of data for use by the dynamic page generating system of FIG. 1 ; FIG. 5 depicts a portion of an example panel template; FIG. 6 depicts example key account data records; FIG. 7 depicts example transaction data records; FIG. 8 depicts example macro identifiers and respective replacement text strings; FIG. 9 depicts example link conditions; FIG. 10 presents a flowchart of an example embodiment of a method for providing automated scripting for customer service representatives according to the present invention; FIG. 11 depicts an example user interface with scripted messages generated according to the process illustrated in FIG. 10 ; and FIG. 12 depicts an example user interface with scripted messages generated according to FIG. 10 . detailed-description description="Detailed Description" end="lead"?
20041021
20070508
20050310
96041.0
1
BUI, BING Q
SYSTEM AND METHOD TO PROVIDE AUTOMATED SCRIPTING FOR CUSTOMER SERVICE REPRESENTATIVES
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,970,350
ACCEPTED
Method, apparatus and network architecture for enforcing security policies using an isolated subnet
A method for enforcing security policies required to gain access to a network includes determining if a client desiring a connection to the network is in conformance with a current version of the security policies, and if a client is not in conformance with a current version of the security policies, denying the client access to the network and directing the client to an isolated sub-network for accessing a current version of the security policies. In one embodiment of the present invention an address server isolates non-conforming clients from the network and the network resources by directing non-conforming clients to an isolated sub-network. The isolated sub-network further directs the non-conforming clients to, for example, a local server or web-site for accessing a current version of the security policies.
1. A method for enforcing security policies of a network, comprising: determining if a client desiring a connection to the network is in conformance with a current version of said security policies; and if a client is not in conformance with a current version of said security policies, denying said client access to said network and directing said client to an isolated sub-network for accessing a current version of said security policies. 2. The method of claim 1, wherein conformance with a current version of said security policies is determined by the existence of an approved mark sent by a client. 3. The method of claim 2, wherein upon downloading the current security policies, a client is given an approved mark. 4. The method of claim 1, wherein conforming clients are issued an address to connect to said network. 5. The method of claim 1, wherein a non-conforming client is directed to said isolated sub-network by being issued a predetermined address adapted to direct said client to said isolated sub-network. 6. The method of claim 1, wherein a non-conforming client is directed to said isolated sub-network by calling a specific number adapted to direct said client onto a predetermined isolated dial-in server. 7. The method of claim 1, wherein a non-conforming client is directed to said isolated sub-network by a virtual local area network (VLAN) id adapted to direct said client onto a predetermined isolated VLAN. 8. The method of claim 1, wherein a non-conforming client is directed to said isolated sub-network by a virtual private network (VPN) server address adapted to direct said client onto a predetermined isolated VPN server. 9. The method of claim 8, wherein said isolated VPN server further implements a set of filtering rules such that only predetermined restricted servers are able to be reached by said non-conforming client. 10. The method of claim 8, wherein said isolated VPN server comprises a separate physical Ethernet card and said non-conforming client is directed to an Ethernet interface of said Ethernet card. 11. The method of claim 1, wherein said isolated sub-network isolates a non-conforming client from all network resources. 12. The method of claim 1, wherein said isolated sub-network directs a non-conforming client to a local server for accessing a current version of said security policies. 13. The method of claim 1, wherein said isolated sub-network directs a non-conforming client to a web server which directs said non-conforming client to a predetermined web-site for accessing a current version of said security policies. 14. An apparatus for enforcing security policies of a network upon a client requesting a connection to said network, said apparatus comprising a memory for storing information and program instructions and a processor for executing said instructions, said apparatus adapted to perform the steps of: determining if a client desiring a connection to the network is in conformance with a current version of said security policies; and if a client is not in conformance with a current version of said security policies, denying said client access to said network and directing said client to an isolated sub-network for accessing a current version of said security policies. 15. The apparatus of claim 14, wherein said apparatus comprises an address server. 16. The apparatus of claim 14, wherein said apparatus directs a non-conforming client to said isolated sub-network by issuing said client a predetermined address adapted to direct said client to said isolated sub-network. 17. The apparatus of claim 14, wherein said isolated network makes accessible to non-conforming clients a current version of said security policies. 18. The apparatus of claim 14, wherein said apparatus determines if a client is in conformance with a current version of said security policies by identifying a mark in a communication from said client. 19. The apparatus of claim 14, wherein said apparatus issues a conforming client an address for connection with said network. 20. A network architecture for enforcing security policies of a network upon a client requesting a connection to said network, said network architecture comprising: at least one client; an isolated sub-network for making accessible to non-conforming clients a current version of said security policies and isolating said non-conforming clients for network resources; and said network, including; an address server for controlling the access of said at least one client to said network; and wherein said address server is adapted to perform the steps of: determining if a client desiring a connection to said network is in conformance with a current version of said security policies; and if a client is not in conformance with a current version of said security policies, denying said client access to said network and directing said client to said isolated sub-network for accessing a current version of said security policies.
FIELD OF THE INVENTION The present invention relates to the field of data networks and, more specifically, to methods of protecting network systems from viruses and other malicious applications by enforcing security policies using an isolated sub-network. BACKGROUND OF THE INVENTION Although the universal increase in the implementation of the Internet and local intranets has resulted in many desirable results, such as the speed and breadth with which information is disseminated, it has also enabled many undesirable results. One of the most notable undesirable results associated with the implementation of such networks is the ease of the transmission of computer viruses, worms and other malicious applications. More specifically, before the advent of the Internet and local intranets, users rarely read or copied data onto their computers from unknown external sources. However, users today routinely receive data from unknown computers via e-mail or via download from the world-wide-web using, for example, a web browser. As such, any company or service provider providing network access is concerned with security. In particular, viruses and other malicious applications are a threat that needs to be contained. Most malicious applications exploit known security flaws in popular operating systems, in particular ones that are in widespread use, such as all versions of Microsoft Windows®. They first infect a vulnerable station, and then use this host to initiate communication with the purpose of spreading the infection and/or overloading a network. Most currently available virus protection software packages focus on identifying and removing viruses from a system. The virus protection programs protect the computer by scanning e-mail and other files for know sections of a virus or worm. Whenever a file is identified as containing a known virus or worm, the user is alerted and the file can be removed or the virus within the file may be removed. Whenever a new virus is identified, new code is written to search for the identifiable features of the new virus. However, these software programs are ineffective against new viruses that have been created after the virus software program was created since the virus protection software will not know what the identifiable features of the new virus are and will thus not find it when it scans the files. SUMMARY OF THE INVENTION The present invention addresses various deficiencies in the prior art by providing a method, apparatus and network architecture for enforcing the security policies required to gain access to a network using a sub-network. In one embodiment of the present invention a method of enforcing the security policies of a network includes determining if a client desiring a connection to the network is in conformance with a current version of the security policies, and if a client is not in conformance with a current version of the security policies, denying the client access to the network and directing the client to an isolated sub-network for accessing a current version of the security policies. In various embodiments of the present invention, in the isolated sub-network, a non-conforming client is directed by a captive portal to a local server for accessing a current version of the security policies. In alternate embodiments of the present invention, in the isolated sub-network, a non-conforming client is directed by a captive portal to a web server which directs the client to a predetermined web-site for accessing a current version of the security policies. In an alternate embodiment of the present invention, an address for enforcing the security policies of a network upon a client requesting a connection to the network includes a memory for storing information and program instructions and a processor for executing the instructions. The address server is adapted to perform the steps of a method of the present invention and, particularly in one embodiment, to perform the steps of determining if a client desiring a connection to the network is in conformance with a current version of the security policies of the network, and if a client is not in conformance with a current version of the security policies, denying the client access to the network and directing the client to an isolated sub-network for accessing a current version of the security policies. In an alternate embodiment of the present invention a network architecture for enforcing security policies of a network upon a client requesting a connection to the network includes at least one client, an isolated sub-network for making accessible to non-conforming clients a current version of the security policies and for isolating the non-conforming clients from network resources, where the network includes at least an address server for controlling the access of the at least one client to the network. In the network architecture, the address server is adapted to determine if a client desiring a connection to the network is in conformance with a current version of the security policies, and if a client is not in conformance with a current version of the security policies, to deny the client access to the network. The address server further directs the client to the isolated sub-network for accessing a current version of the security policies. BRIEF DESCRIPTION OF THE DRAWINGS The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which: FIG. 1 depicts a high-level block diagram of a portion of an IP network having an isolated sub-network in accordance with one embodiment of the present invention; FIG. 2 depicts a high-level block diagram of an embodiment of an address server suitable for use in the IP network of FIG. 1 ;and FIG. 3 depicts a method for enforcing security policies using a sub-network in accordance with one embodiment of the present invention. To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. DETAILED DESCRIPTION OF THE INVENTION Although various embodiments of the present invention are being depicted herein with respect to an IP network, the specific embodiments of the present invention should not be treated as limiting the scope of the invention. It will be appreciated by one skilled in the art and informed by the teachings of the present invention, that the concepts of the present invention may be applied in substantially any network for enforcing security policies using at least an isolated portion of a network. FIG. 1 depicts a high-level block diagram of a portion of an IP network having an isolated sub-network in accordance with one embodiment of the present invention. The IP network 100 of FIG. 1 illustratively comprises a client device 110, an IP network branch 120 and an isolated sub-network 140 (referred to herein as a quarantine sub-network). The sub-network 140 of the IP network 100 of FIG. 1 illustratively comprises a captive portal (illustratively a router) 142. The IP network branch 120 of the IP network 100 comprises a typical IP network comprising typical IP network components such as an IP address server (illustratively a DHCP server) 122. The IP network branch 120 further comprises other typical network components such as file servers, other clients and web servers (not shown). The IP address server 122 of the IP network 100 of FIG. 1 maintains information regarding a latest version of client software and the latest security policies required for communication with the IP network branch 120 of the IP network 100. The latest security information may comprise information regarding security measures required for communication with the IP network branch 120 such as a latest version of a virus protection software. The client software may comprise software needed by a client for downloading the security policies or for performing other security measures as indicated by the security policies. Although in the IP network 100 of FIG. 1, the IP address server 122 is illustratively depicted as a DHCP server, in alternate embodiments of the present invention other servers, such as a PPP dial-in server may be implemented in an IP branch of an IP network of the present invention. Similarly, although in the IP network 100 of FIG. 1, the captive portal 142 is illustratively depicted as a router, in alternate embodiments of the present invention other devices, such as domain name servers (DNS) may be implemented in a sub-network of an IP network of the present invention to redirect a client communication request. For example, a DNS server that returns the same IP address for all requests may be implemented to direct a client to a web server, which is configured to always present a predetermined start page. FIG. 2 depicts a high level block diagram of an address server suitable for use in the IP network branch 120 of the IP network 100 of FIG. 1. The address server 122 of FIG. 2 comprises a processor 210 as well as a memory 220 for storing information and control programs. The processor 210 cooperates with conventional support circuitry 230 such as power supplies, clock circuits, cache memory and the like as well as circuits that assist in executing the software routines stored in the memory 220. The address server 122 also contains input-output circuitry 240 that forms an interface between the various functional elements communicating with the address server 122. For example, in the embodiment of FIG. 1, the address server 122 communicates with the client 110 via a signal path S1. Although the address server 122 of FIG. 2 is depicted as a general purpose computer that is programmed to perform various control functions in accordance with the present invention, the invention can be implemented in hardware, for example, as an application specified integrated circuit (ASIC). As such, the process steps described herein are intended to be broadly interpreted as being equivalently performed by software, hardware, or a combination thereof. In the IP network 100 of FIG. 1, when the client 110 establishes a connection with the IP branch 120 of the IP network, the IP address server 122 examines the connection from the client 110 for a special mark or token sent by the client 110. For example, in the case when a DHCP server is implemented as the IP address server 122, the DHCP server may implement a DHCP Client-Id option to examine the connection from the client 110 for a special mark or token. When this mark indicates conformance to the latest security policy (i.e., determined by, for example calculating a hash value over the security policy file, and comparing this value against the value provided in the client mark), the IP address server 122 issues an IP address to the client 110 for communication with the IP network branch 120 as in conventional IP networks. The security policies of the present invention may be expressed in substantially any format and specifically in various known formats, such as passive formats (e.g., documents in a memory of a client) or active formats (e.g., script) such that they are capable of being examined by the IP address server 122. For example, in various embodiments of the present invention, security policies are expressed in a scripting language (e.g., JavaScript, VBScript, etc.) which is executed on the client 110. Using a scripting language, reference may be made to the state of the local machine, for example the Windows registry, a version of the operating system installed, installed patches and software, versions of applications installed, services running, network ports open for receiving packets, general configuration and settings, and users logged into the system, to determine if a client is in conformance with the latest security policies. Referring back to FIG. 1, when it is determined by the IP address server 122 that the client 110 provides no mark or an invalid (outdated) mark (e.g., an outdated virus protection software and/or other outdated security policies), the client 110 is assigned by the IP address server 122 an IP address from a predetermined sub-network range adapted to direct the client 110 to the sub-network 140 of the IP network 100 of FIG. 1. The sub-network range may include, for example, IP address from a special range (10.9.x.x). This range is part of a free private address space and is not routable across the Internet. This means that routers to the Internet will by default not forward packets with a source address in this range. The isolation is completed by making sure that packets with a source address in this range are also not forwarded by internal routers, and are filtered out at each server that is to be protected (e.g. file servers, mail servers, etc.) using standard packet filter functionality/rules. More specifically, in the present invention, the sub-network address directs the client 110 to the sub-network 140 (the quarantine sub-network), which forms a separate logical network which is isolated from the rest of the IP network 100 and in particular from network resources of the IP network branch 120, such as file servers, other clients, web servers , etc. As described above, the isolated sub-network 140 comprises a logically separate (instead of physically separate) network. However, in alternate embodiments of the present invention, an IP network in accordance with the present invention may implement two physical sockets and interaction with a user to put a cable in a first socket A (checked) or a second socket B (quarantine). However, the second solution is not very practical. In various embodiments of the present invention and referring to FIG. 1, in the isolated sub-network 140, a captive portal 142 redirects the client 110 to an optional local server 160. The local server 160 contains client software which contains at least the required security policies and which must be downloaded and run in order to obtain the ‘approved’ mark required for access to the IP network branch 120. The client software provides a policy file describing the required patches/software and security policies that must be installed on the client 110 to be given access to the IP network branch 120. The client software may also perform additional checks, such as a scanning the client 110 for viruses. A distinct advantage of the present invention is that with the configuration described above client software is able to be downloaded by the client 110 and as such does not have to be pre-installed on the client 110. As a result, security conformance may be determined and enforced by the network without the need for clients to have client software installed. Alternatively though, it is still within the concepts of the present invention for clients to have client software installed and to have the client software updated and upgraded as necessary by a local server or other source as described above. Once the client software has confirmed conformance to the security policy, the client 110 is marked ‘accepted’, for instance by setting a DHCP client-ID to a predetermined value, and renewal of the previously sought IP address is requested. After the client 110 is marked ‘accepted’, the IP address server 122 will detect conformance in the communication from the client 110 and issues an IP address to the client 110 for communication with the IP network branch 120 as in typical IP networks. In an alternate embodiment of the present invention and again referring to FIG. 1, the captive portal 142 in the isolated sub-network 140 comprises a web portal. The web portal intercepts all web browser requests from the client 110 and redirects the client 110 to a web page (not shown). On the web page, a link is provided to a client software and security policies which must be downloaded and run in order to obtain the ‘approved’ mark required for access to the IP network branch 120. As previously described, the client software provides a policy file describing the required patches/software and security policies that must be installed on the client 110 to be given access to the IP network branch 120. The client software may also perform additional checks, such as a scan for viruses. Alternatively, a list of missing patches and other (security) updates is presented to a user, with links to where the updates may be downloaded. These updates may be retrieved and installed using the quarantine sub-network 140. As before, once the client software has confirmed conformance to the security policies, the client 110 is marked ‘accepted’ (i.e., by setting a DHCP client id to a predetermined value) and renewal of the previously sought IP address is requested. This time, the IP address server 122 detects conformance in the communication from the client 110 and issues an IP address to the client 110 for communication with the IP network branch 120 as in typical IP networks. FIG. 3 depicts a method for enforcing security policies using a sub-network in accordance with an embodiment of the present invention. The method 300 is entered at step 302 where an access request from a client is received by an IP address server of an IP network for access to the IP network. The method 300 then proceeds to step 304. At step 304, the IP address server of the IP network examines the request from the client for a special mark or token communicated by the client for conformance with a latest security policy required for communication with the IP network. If the communication from the client indicates conformance with the required latest security policy, the method 300 proceeds to step 306. If the communication from the client indicates non-conformance with the required latest security policy, the method 300 proceeds to step 308. At step 306, the IP address server of the IP network issues an IP address to the client for communication with the IP network. The method 300 is then exited. At step 308, the IP address server of the IP network assigns the client an IP address from a previously determined sub-network range adapted to direct the client to an isolated sub-network. The method 300 then proceeds to step 310. At step 310, a captive portal in the isolated sub-network redirects the client to a local server which contains a latest version of a client software which includes at least a latest version of the security policies. The method 300 then proceeds to step 312. At an alternate step 310, a captive portal in the isolated sub-network is a web portal. The web portal intercepts all web browser requests from the client and redirects the client to a web page. On the web page, a link is provided to a latest version of a client software which includes at least a latest version of the security policies. At step 312, the client downloads and runs the client software to update the security policies of the client in order to obtain access to the IP network branch. At step 312, the client software may also perform virus scans for the client. The method 300 then proceeds to step 314. At step 314, upon being downloaded by the client, the client software confirms conformance of the client to the security policies, the client is marked ‘accepted’, and renewal of the previously sought IP address is requested from and granted by the IP address server. The method 300 is then exited. Although various embodiments of the present invention were described with reference to FIG. 1 where a client was directed to an isolated sub-network via an IP address, the above embodiments are not the only conceivable implementations for providing the isolation of the present invention. For example, in a network attempting to fulfill a dial-up connection, redirection of a client to an isolated sub-network (i.e., isolation or quarantine) may be implemented by calling a specific number which directs the client onto a predetermined dial-in server (e.g. 0800-QUARANTINE) adapted to provide updates to the security policies of the client. In an alternate embodiment of the present invention, another possibility for isolating a quarantined client is to use multiple virtual local area networks (VLANs). A VLAN is defined as a network of computers that behave as if they are connected to the same wire even though they may actually be physically located on different segments of a LAN. VLANs are configured through software rather than hardware, which makes them extremely flexible. In such an embodiment, a client is required to do authentication before being granted network access. A client is assigned different VLAN IDs in a RADIUS server reply. One such VLAN ID would be the ‘quarantine VLAN’ and switches are configured to forward packets on this VLAN to specific ports such that no critical machines or resources may be reached by a client through the VLAN when routing packets from a quarantined client. In an alternate embodiment of the present invention, 802.1X authentication, and in particular an extensible authentication protocol (EAP) tunneled method, is implemented to isolate a quarantined client. In such an embodiment, an outer identity (i.e., an identity used for setting up a tunnel) is set to a predetermined string value (e.g., the hash value). With such a configuration, a RADIUS server may distinguish compliant clients from non-compliant clients and return an appropriate VLAN ID (regular or quarantined, respectively) and/or specific IP address to issue to a client. In yet an alternate embodiment of the present invention, a virtual private network (VPN) tunnel connection is implemented to isolate a quarantined client. In such an embodiment a different VPN server address (name or IP address) is used for clients under quarantine. The VPN server may also implement quarantine by implementing a special set of IP filtering rules when routing packets from quarantined clients such that only predetermined restricted servers are able to be reached by a quarantined client. Alternatively, a separate physical Ethernet card may be added to a VPN server and only packets from quarantined clients forwarded to that Ethernet interface. While the forgoing is directed to various embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. As such, the appropriate scope of the invention is to be determined according to the claims, which follow.
<SOH> BACKGROUND OF THE INVENTION <EOH>Although the universal increase in the implementation of the Internet and local intranets has resulted in many desirable results, such as the speed and breadth with which information is disseminated, it has also enabled many undesirable results. One of the most notable undesirable results associated with the implementation of such networks is the ease of the transmission of computer viruses, worms and other malicious applications. More specifically, before the advent of the Internet and local intranets, users rarely read or copied data onto their computers from unknown external sources. However, users today routinely receive data from unknown computers via e-mail or via download from the world-wide-web using, for example, a web browser. As such, any company or service provider providing network access is concerned with security. In particular, viruses and other malicious applications are a threat that needs to be contained. Most malicious applications exploit known security flaws in popular operating systems, in particular ones that are in widespread use, such as all versions of Microsoft Windows®. They first infect a vulnerable station, and then use this host to initiate communication with the purpose of spreading the infection and/or overloading a network. Most currently available virus protection software packages focus on identifying and removing viruses from a system. The virus protection programs protect the computer by scanning e-mail and other files for know sections of a virus or worm. Whenever a file is identified as containing a known virus or worm, the user is alerted and the file can be removed or the virus within the file may be removed. Whenever a new virus is identified, new code is written to search for the identifiable features of the new virus. However, these software programs are ineffective against new viruses that have been created after the virus software program was created since the virus protection software will not know what the identifiable features of the new virus are and will thus not find it when it scans the files.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention addresses various deficiencies in the prior art by providing a method, apparatus and network architecture for enforcing the security policies required to gain access to a network using a sub-network. In one embodiment of the present invention a method of enforcing the security policies of a network includes determining if a client desiring a connection to the network is in conformance with a current version of the security policies, and if a client is not in conformance with a current version of the security policies, denying the client access to the network and directing the client to an isolated sub-network for accessing a current version of the security policies. In various embodiments of the present invention, in the isolated sub-network, a non-conforming client is directed by a captive portal to a local server for accessing a current version of the security policies. In alternate embodiments of the present invention, in the isolated sub-network, a non-conforming client is directed by a captive portal to a web server which directs the client to a predetermined web-site for accessing a current version of the security policies. In an alternate embodiment of the present invention, an address for enforcing the security policies of a network upon a client requesting a connection to the network includes a memory for storing information and program instructions and a processor for executing the instructions. The address server is adapted to perform the steps of a method of the present invention and, particularly in one embodiment, to perform the steps of determining if a client desiring a connection to the network is in conformance with a current version of the security policies of the network, and if a client is not in conformance with a current version of the security policies, denying the client access to the network and directing the client to an isolated sub-network for accessing a current version of the security policies. In an alternate embodiment of the present invention a network architecture for enforcing security policies of a network upon a client requesting a connection to the network includes at least one client, an isolated sub-network for making accessible to non-conforming clients a current version of the security policies and for isolating the non-conforming clients from network resources, where the network includes at least an address server for controlling the access of the at least one client to the network. In the network architecture, the address server is adapted to determine if a client desiring a connection to the network is in conformance with a current version of the security policies, and if a client is not in conformance with a current version of the security policies, to deny the client access to the network. The address server further directs the client to the isolated sub-network for accessing a current version of the security policies.
20041021
20110125
20060511
90964.0
G06F944
7
POLTORAK, PIOTR
METHOD, APPARATUS AND NETWORK ARCHITECTURE FOR ENFORCING SECURITY POLICIES USING AN ISOLATED SUBNET
UNDISCOUNTED
0
ACCEPTED
G06F
2,004
10,970,559
ACCEPTED
Multichannel device utilizing a centralized out-of-band authentication system (COBAS)
A multichannel security system is disclosed, which system is for granting and denying access to a host computer in response to a demand from an access-seeking individual and computer. The access-seeker has a peripheral device operative within an authentication channel to communicate with the security system. The access-seeker initially presents identification and password data over an access channel which is intercepted and transmitted to the security computer. The security computer then communicates with the access-seeker. A biometric analyzer—a voice or fingerprint recognition device—operates upon instructions from the authentication program to analyze the monitored parameter of the individual. In the security computer, a comparator matches the biometric sample with stored data, and, upon obtaining a match, provides authentication. The security computer instructs the host computer to grant access and communicates the same to the access-seeker, whereupon access is initiated over the access channel.
1. A multichannel security system for granting and denying access to a host computer, said access in response to a demand from an accessor for access to the host computer, said accessor having an associated peripheral device for providing communications to the security system, said multichannel security system comprising: a login identification accompanying said demand from an accessor for access to said host computer; interception means for receiving and verifying said login identification, said interception means in an access channel; an authentication channel operating independently from said access channel and, said authentication channel, in turn, comprising; a security computer adapted in the access-channel mode to receive from said interception means said demand for access together with said login identification and to communicate access information to said host computer and in the authentication-channel mode communications with said associated peripheral device of said accessor; a subscriber database in said security computer for retrieval of peripheral addresses corresponding to said login identification; said security computer adapted to connect to said associated peripheral device of said accessor; prompt means for instructing said accessor to re-enter predetermined data at and retransmit predetermined data from said associated peripheral device to said multichannel security system; comparator means in said security computer for authenticating access demands in response to retransmission of predetermined data from said associated peripheral device of said accessor; and, said security computer, upon verifying a match between said predetermined data and the re-entered and retransmitted data, providing in the access-channel mode instructions to the host computer to grant access thereto along said access channel. 2. A multichannel security system as described in claim 1 wherein: said associated peripheral device is a telephone with a tone generating keypad for entering data; and, said prompt means is an auditory message describing data to be entered. 3. A multichannel security system as described in claim 2 wherein said security computer further comprises: an announcement database therewithin; and a voice module capable of selecting a prerecorded auditory message from said announcement database and, for prompting the entry of data by said accessor, playing said prerecorded auditory message over said telephone. 4. A multichannel security system as described in claim 3 wherein, upon attaining an access-granted condition, said security computer communicates in said authentication channel the access information to said accessor by selecting and transmitting an access-granted message from said announcement database and sequentially disconnecting from the connection with said telephone prior to use of said access channel. 5. A multichannel security system as described in claim 2 wherein said authentication channel further comprises: a voice module, in response to instructions from said security computer, capable of synthesizing an auditory message, and, for prompting the entry of data by said accessor, playing a synthesized auditory message over said telephone. 6. A multichannel security system as described in claim 5 further comprising: an announcement database therewithin and, upon attaining an access-granted condition, said security computer communicates in said authentication channel the access information to said accessor by selecting and transmitting an access-granted message from said announcement database and sequentially disconnecting from the connection with said telephone prior to use of said access channel. 7. A multichannel security system as described in claim 1 wherein said security computer further comprises: an authentication program means, operating independently from said host computer, for authenticating an individual demanding access to said host computer; a biometric analyzer operating in response to instructions from said authentication program means to analyze a monitored parameter of said accessor; and, a biometric parameter database addressable by the biometric analyzer for retrieval of a previously registered sample of said individual, said sample corresponding to the identifier of said accessor. 8. A multichannel security system as described in claim 7 wherein said biometric analyzer is a voice recognition program for operation within said authentication channel to authenticate the accessor. 9. A multichannel security system as described in claim 8 wherein said voice recognition program comprises: a speech database in said security computer for retrieval of a speech sample of an accessor corresponding to the login identification of said accessor; said security computer adapted to provide instructions to connect and disconnect said security computer to and from said associated peripheral device of said accessor; voice sampling means for instructing said accessor to repeat back and transmit a predetermined auditory statement over said associated peripheral device to said security computer; voice recognition means in said security computer for authenticating access demands in response to transmission of said predetermined auditory statement received over said associated peripheral device of said accessor; and, said security computer, upon authenticating a match between the predetermined auditory statement and the transmitted voice data and upon disconnecting from said authentication channel, providing authentication of the accessor and instructing the host computer to. grant access along said access channel. 10. A multichannel security system as described in claim 7 wherein said biometric analyzer is a fingerprint verification program for operation within said authentication channel to authenticate the accessor. 11. A multichannel security system for granting and denying access to a host computer, said access in response to a demand from an accessor for access to the host computer, said accessor having an associated cellular telephone for providing communications to the security system, said multichannel security system comprising: a login identification accompanying said demand from an accessor for access to said host computer; interception means for receiving and verifying said login identification, said interception means in an access channel; an authentication channel operating independently from said access channel and, said authentication channel, in turn, comprising; a security computer adapted in the access-channel mode to receive from said interception means said demand for access together with said login identification and to communicate access information to said host computer and in the authentication-channel mode communications with said associated cellular telephone of said accessor; a subscriber database in said security computer for retrieval of peripheral addresses corresponding to said login identification; said security computer adapted to connect to said associated cellular telephone of said accessor; prompt means for instructing said accessor to re-enter predetermined data at and retransmit predetermined data from said associated cellular telephone to said multichannel security system; comparator means in said security computer for authenticating access demands in response to retransmission of predetermined data from said associated cellular telephone of said accessor; said security computer, upon verifying a match between said predetermined data and the re-entered and retransmitted data, providing in the access-channel mode instructions to the host computer to grant access thereto along said access channel; an authentication program means, operating independently from said host computer, for authenticating an individual demanding access to said host computer; a biometric analyzer operating in response to instructions from said authentication program means to analyze a monitored parameter of said accessor; and, a biometric parameter database addressable by the biometric analyzer for retrieval of a previously registered sample of said individual, said sample corresponding to the identifier of said accessor. 12. A multichannel security system as described in claim 11 wherein said security computer further comprises: an announcement database therewithin; and a voice module capable of selecting a prerecorded auditory message from said announcement database and, for prompting the entry of data by said accessor, playing said prerecorded auditory message over said telephone. 13. A multichannel security system as described in claim 12 wherein, upon attaining an access-granted condition, said security computer communicates in said authentication channel the access information to said accessor by selecting and transmitting an access-granted message from said announcement database and sequentially disconnecting from the connection with said telephone prior to use of said access channel. 14. A multichannel security system as described in claim 11 wherein said authentication channel further comprises: a voice module, in response to instructions from said security computer, capable of synthesizing an auditory message, and, for prompting the entry of data by said accessor, playing a synthesized auditory message over said telephone. 15. A multichannel security system as described in claim 11 wherein said biometric analyzer is a voice recognition program for operation within said authentication channel to authenticate the accessor. 16. A multichannel security system as described in claim 15 wherein said voice recognition program comprises: a speech database in said security computer for retrieval of a speech sample of an accessor corresponding to the login identification of said accessor; said security computer adapted to provide instructions to connect and disconnect said security computer to and from said associated peripheral device of said accessor; voice sampling means for instructing said accessor to repeat back and transmit a predetermined auditory statement over said associated peripheral device to said security computer; voice recognition means in said security computer for authenticating access demands in response to transmission of said predetermined auditory statement received over said associated peripheral device of said accessor; and, said security computer, upon authenticating a match between the predetermined auditory statement and the transmitted voice data and upon disconnecting from said authentication channel, providing authentication of the accessor and instructing the host computer to grant access along said access channel. 17. A multichannel security system as described in claim 11 wherein said biometric analyzer is a fingerprint verification program for operation within said authentication channel to authenticate the accessor. 18. A multichannel security system for granting and denying access to a host computer, said access in response to a demand over the internet from an accessor for access to the host computer, said accessor having an associated personal digital assistant (PDA) for providing communications to the security system, said multichannel security system comprising: a login identification accompanying said demand over the internet from an accessor for access to said host computer; interception means for receiving and verifying said login identification, said interception means in an access channel; an authentication channel operating independently from said access channel and, said authentication channel, in turn, comprising; a security computer adapted in the access-channel mode to receive from said interception means said demand over the internet for access together with said login identification and to communicate access information to said host computer and in the authentication-channel mode communications with said associated PDA of said accessor; a subscriber database in said security computer for retrieval of peripheral addresses corresponding to said login identification; said security computer adapted to connect to said associated PDA of said accessor; prompt means for instructing said accessor to re-enter predetermined data at and retransmit predetermined data from said associated PDA to said multichannel security system; comparator means in said security computer for authenticating access demands in response to retransmission of predetermined data from said associated PDA of said accessor; said security computer, upon verifying a match between said predetermined data and the re-entered and retransmitted data, providing in the access-channel mode instructions to the host computer to grant access thereto along said access channel; an authentication program means, operating independently from said host computer, for authenticating an individual demanding access to said host computer; a biometric analyzer operating in response to instructions from said authentication program means to analyze a monitored parameter of said accessor; and, a biometric parameter database addressable by the biometric analyzer for retrieval of a previously registered sample of said individual, said sample corresponding to the identifier of said accessor. 19. A multichannel security system as described in claim 18 wherein said biometric analyzer is a fingerprint verification program for operation within said authentication channel to authenticate the accessor. 20. A multichannel security system as described in claim 19 wherein, upon attaining an access-granted condition, said security computer communicates in said authentication channel the access information to said accessor by selecting and transmitting an access-granted message from said announcement database and sequentially disconnecting from the connection with said telephone prior to use of said access channel.
RELATED APPLICATION This is a continuation-in-part of an application entitled OUT-OF-BAND SECURITY NETWORKS FOR COMPUTER NETWORK APPLICATIONS, Ser. No. 09/655,297, filed Sep. 5, 2000 and now abandoned. This application is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to security networks for computer network applications, and, more particularly, to a security network which provides user authentication by an out-of-band system that is entirely outside the host computer network being accessed. In addition, the out-of-band system optionally includes provision for biometric identification as part of the authentication process. 2. Background of the Invention In the past, there have typically been three categories of computer security systems, namely, access control, encryption and message authentication, and intrusion detection. The access control systems act as the first line of defense against unwanted intrusions, and serve to prevent hackers who do not have the requisite information, e.g. the password, etc., from accessing the computer networks and systems. Secondly, the encryption and message authentication systems ensure that any information that is stored or in transit is not readable and cannot be modified. In the event that a hacker is able to break into the computer network, these systems prevent the information from being understood, and, as such, encryption systems as the second line of defense. Further intrusion detection systems uncover patterns of hacker attacks and viruses and, when discovered provide an alarm to the system administrator so that appropriate action can be taken. Since detection systems operate only after a hacker has successfully penetrated a system, such systems act as a third line of defense. Obviously, as an access control system is the first line of defense, it is important that the selection thereof be well-suited to the application. In access control systems there is a broad dichotomy between user authentication and host authentication systems. In current practice, the most common user authentication systems include simple password systems, random password systems, and biometric systems. The simple password systems are ubiquitous in our society with every credit card transaction using a pin identification number, every automatic teller machine inquiry looking toward a password for access, and even telephone answering messages using simple password systems for control. Additionally, when random password systems are used, another level of sophistication is added. In these systems, the password changes randomly every time a system is access. These systems are based on encryption or a password that changes randomly in a manner that is synchronized with an authorization server. The Secure ID card is an example of such a system. Random password systems require complimentary software and/or hardware at each computer authorized to use the network. In biometric systems, characteristics of the human body, such as voice, fingerprints or retinal scan, are used to control access. These systems require software and/or hardware at each computer to provide authorization for the use of the network. Another category of access control is that of host authentication. Here the commonest systems are those of “callback” and “firewall” systems. Callback systems are those systems which work by calling a computer back at a predetermined telephone number. These systems authenticate the location of a computer and are suitable for dial-up (modem) networks; however, such systems are ineffective when the attack comes via the Internet. On the other hand, firewall systems are designed to prevent attacks coming from the Internet and work by allowing access only from computers within a network. Even though firewall systems are implemented either as standalone systems or incorporated into routers, skilled hackers are able to penetrate host authentication systems. Typically, access-control security products, as described above, are in-band authentication systems with the data and the authentication information on the same network. Thus, upon accessing a computer, a computer prompt requests that you enter your password and, upon clearance, access is granted. In this example, all information exchanged is on the same network or in-band. The technical problem created thereby is that the hacker is in a self-authenticating environment. Except for callback systems, the above access control products authenticate only the user and not the location. When computer networks could only be accessed by modems, the authentication of location by dialing back the access-requesting computer, provided a modicum of security. Now, as virtually all computer networks are accessible by modem-independent internet connection, location authentication by callback is no longer secure. The lack of security arises as there is no necessary connection between the internet address and a location, and, in fact, an internet address most often changes from connection to connection. Thus, callback systems are rendered useless against attacks originating from the internet. In preparing for this application, a review of various patent resources was conducted. The review resulted in the inventor gaining familiarity with the following patents: Item No. Patent No. Inventor Orig. Class Date 1 6,408,062 Cave, Ellis K. 379/210.01 June 2002 2 5,901,284 Hamdy-Swink, 713/200 May 1999 Katheryn A. 3 5,898,830 Wesinger, Jr., 395/187.01 April 1999 et al. 4 5,872,834 Teitelbaum 379/93.03 February 1999 5 5,826,014 Coley, et al. 718,201 October 1998 6 5,787,187 Bouchard 382/115 July 1998 7 5,680,458 Spelman, et al. 380/21 October 1997 8 5,621,809 Bellegarda, et al. 382/116 April 1997 9 5,615,277 Hoffman 382/115 March 1997 10 5,588,060 Aziz 380/30 December 1996 11 5,548,646 Aziz, et al. 380/23 August 1996 12 5,153,918 Tuai, Gregory 713/182 October 1992 In general terms, the patents all show a portion of the authentication protocol and the data transferred in the same channel or “in-band”. For purposes of this discussion “in-band” operation is defined as one conducted wholly within a single channel or loop. Likewise, an “out-of-band” operation is defined as one using an authentication channel that is separated from the channel carrying the information and therefore is nonintrusive as it is carried over separate facilities, frequency channels, or time slots than those used for actual information transfer. The patent to E. K. Cave, U.S. Pat. No. 6,408,062, Item 1 above, describes a callback system. Here, the user is prequalified so that he does not get charged for calls that are not completed to the called party. However, here the authentication and the administrative function are in the same loop. In Item 3, the patent to Wesinger et al., U.S. Pat. No. 5,898,830 ('830) is a firewall patent. Here, the inventor attempts to enhance security by using out-of-band authentication. In his approach, a communication channel, or medium, other than the one over which the network communication takes place, is used to transmit or convey an access key. The key is transmitted from a remote location (e.g., using a pager or other transmission device) and, using a hardware token, the key is conveyed to the local device. In the Wesinger '830 system, to gain access, a hacker must have access to a device (e.g., a pager, a token, etc.) Used to receive the out-of-band information. Pager beep-back or similar authentication techniques may be especially advantageous in that, if a hacker attempts unauthorized access to a machine while the authorized user is in possession of the device, the user will be alerted by the device unexpectedly receiving the access key. The key is unique to each transmission, such that even if a hacker is able to obtain it, it cannot be used at other times or places or with respect to any other connection. Next, turning to Item 7, the patent to Spelman et al., U.S. Pat. No. 5,680,458 ('458), a method of recovering from the compromise of a root key is shown. Here, following the disruption of a new replacement key, an out-of-band channel is used by a central authority to publish a verification code which can be used by customers to verify the authenticity of the emergency message. The Spelman '458 patent further indicates that the central authority uses the root key to generate a digital signature which is appended to the emergency message to verify that the emergency message is legitimate. Hoffman, U.S. Pat. No. 5,615,277, Item 9, is next discussed. Here, biometrics are combined with a tokenless security and the patent describes a method for preventing unauthorized access to one or more secured computer systems. The security system and method are principally based on a comparison of a unique biometric sample, such as a voice recording, which is gathered directly from the person of an unknown user with an authenticated unique biometric sample of the same type. The Hoffman technology is networked to act as a full or partial intermediary between a secured computer system and its authorized users. The security system and method further contemplate the use of personal codes to confirm identifications determined from biometric comparisons, and the use of one or more variants in the personal identification code for alerting authorities in the event of coerced access. Items 10 and 11 have a common assignee, Sun Microsystems, Inc., and both concern encryption/decryption keys and key management. The patent to Tuai, U.S. Pat. No. 5,153,918 ('918) describes an in-band authentication system which uses a callback system after authentication. Within the authentication system, Tuai '918 employs a voice verification technique. The submission of the above list of documents is not intended as an admission that any such document constitutes prior art against the claims of the present application. Applicant does not waive any right to take any action that would be appropriate to antedate or otherwise remove any listed document as a competent reference against the claims of the present application. None of the above show the novel and unobvious features of the invention described hereinbelow. SUMMARY In general terms, the invention disclosed hereby includes in the embodiments thereof, a unique combination of user and host authentication. The security system of the present invention is out-of-band with respect to the host computer and is configured to intercept requests for access. The first step in controlling the incoming access flow is a user authentication provided in response to prompts for a user identification and password. After verification at the security system, the system operating in an out-of-band mode, uses telephone dialup for location authentication and user authentication via a password entered using a telephone keypad. In addition and optionally the system provides further authentication using a biometric system. When voice recognition is employed for the biometric component, the user speaks a given phrase which the system authenticates before permitting access. Upon granting of access, the user now for the first time enters the in-band operating field of the host computer. OBJECT AND FEATURES OF THE INVENTION It is an object of the present invention to provide a host computer with a cost effective, out-of-band security network that combines high security and tokenless operation. It is a further object of the present invention to provide a network to isolate the authentication protocol of a computer system from the access channel therefor. It is yet another object of the present invention to provide a separate security network which acts conjunctively with or as an overlying sentry box to the existing security system provided by the host computer. It is still yet another object of the present invention to provide an authentication using a biometric component, such as speech recognition, to limit access to specific individuals. It is a feature of the present invention that the security network achieves high security without encryption and decryption. It is another feature of the present invention to have a callback step that restricts authentication to a given instrument thereby enabling restriction to a fixed location. It is yet another feature of the present invention to combine callback and speech recognition in an out-of-band security facility. Other objects and features of the invention will become apparent upon review of the drawings and the detailed description which follow. BRIEF DESCRIPTION OF THE DRAWINGS In the following drawings, the same parts in the various views are afforded the same reference designators. FIG. 1 is a schematic diagram of the prior art security system; FIG. 1A is a schematic diagram of the security system of the present invention as applied to the internet in which an external accessor in a wide area network seeks entry into a host system; FIG. 2 is a schematic diagram of the apparatus required for the security system shown in FIG. 1; FIG. 3 is a schematic diagram of the software program required for the security system shown in FIG. 1 in which various program modules are shown for corresponding functions of the system and each module is shown in relation to the control module thereof; FIG. 4 is a detailed schematic diagram of the software program required for the line module of the security system shown in FIG. 3; FIG. 5 is a detailed schematic diagram of the software program required for the speech module of the security system shown in FIG. 3; FIG. 6 is a detailed schematic diagram of the software program required for the administration module of the security system shown in FIG. 3; FIG. 7 is a detailed schematic diagram of the software program required for the client/server module of the security system shown in FIG. 3; FIG. 8 is a detailed schematic diagram of the software program required for the database module of the security system shown in FIG. 3; FIGS. 9A through 9E is a flow diagram of the software program required for the security system shown in FIG. 1; FIG. 10 is a schematic diagram of a second embodiment of the security system of the present invention as applied to the intranet in which an internal accessor in a local area network seeks entry into a restricted portion of the host system; FIG. 11 is a schematic diagram of the third embodiment of the security system using as peripheral devices a cellular telephone and a fingerprint verification device; FIG. 12 is a detailed schematic diagram of the software program required for the fingerprint module of the security system shown in FIG. 11; and, FIG. 13 is a detailed schematic diagram of the fourth embodiment of the security system using as peripheral devices a personal digital assistant (PDA) and the associated fingerprint verification device. DESCRIPTION OF THE PREFERRED EMBODIMENT In the description that follows, the prior art is shown in FIG. 1. In a typical call-back system which this epitomizes, the user from his computer 10 accesses through an optional voice encoder 12 and, along a single authentication channel. The channel includes an in-band arrangement of the user's modem 14, the host computer modem 16 and the authentication controller 17. In a specific example of this, in the Tuai '918 system, see supra, which uses voice verification, the user accesses a host computer 18 via modems 14 and 16. The access attempt is intercepted by the controller 17 which prompts the user to enter a USER ID and speak a phrase for voice verification. If the verification is successful, the controller 17 acting within the single communication channel connects the user computer to the host computer. Both the USER ID and the voice password are sent along the same pathway and any improper accessor into this channel has the opportunity to monitor and/or enter both identifiers. The out-of-band security system networks for computer network applications is described in two embodiments. The first describes an application to a wide area network, such as the internet, wherein the person desiring access and the equipment used thereby are remote from the host computer. In this description and consistent with Newton's Telecom Dictionary (19th Ed.), an “out-of-band” system is defined herein as one having an authentication channel that is separated from the information channel and therefore is nonintrusive as it is carried over separate facilities than those used for actual information transfer. The second embodiment describes the application of the disclosed invention to a local area network wherein the person desiring access and the equipment used thereby are within the same network (referred to as the “corporate network”) as the host computer. For purposes of this description the person desiring access and the equipment used thereby are referred collectively as the “accessor”. In FIG. 1, a general overview of the first embodiment of the out-of-band security networks for computer network applications of this invention is shown and is referred to generally by the reference designator 20. Here the accessor is the computer equipment 22, including the central processing unit and the operating system thereof, and the person or user 24 whose voice is transmittable by the telephone 26 over telephone lines 28. The access network 30 is constructed in such a manner that, when user 24 requests access to a web page 32 located at a host computer or web server 34 through computer 22, the request-for-access is diverted by a router 36 internal to the corporate network 38 to an out-of-band security network 40. Authentication occurs in the out-of-band security network 40, which is described in detail below. This is in contradistinction to present authentication processes as the out-of-band security network 40 is isolated from the corporate network 38 and does not depend thereon for validating data. The first shows a biometric validation which, in this case, is in the form of voice recognition and is within voice network 42. While voice recognition is used herein, it is merely exemplary of many forms of recognizing or identifying an individual person. Others include, but are not limited to fingerprint identification, iris recognition, retina identification, palms recognition, and face recognition. Each of these are similar to the first embodiment in that these are a requirement for monitoring the particular parameter of the individual person; including the parameter to a mathematical representation or algorithm therefore; retrieving a previously stored sample (biometric data), thereof from a database and comparing the stored sample with the input of the accessor. Referring now to FIG. 2 a block diagram is shown for the hardware required by the out-of-band security network for computer network applications of this invention. The request-for-access is forwarded from the router 36 of the corporate network to a data network interface 50 which, in turn, is constructed to transfer the request to a dedicated, security network computer 52 over a data bus 48. The computer 52 is adapted to include software programs, see infra, for receiving the user identification and for validating the corresponding password, and is further adapted to obtain the user telephone number from lookup tables within database 54 through data bus 48. The computer 52 is equipped to telephone the user through a PBX interface 56 and voice bus 58. For voice recognition, a speech or biometric system 60 is provided to process requested speech phrases repeated by the user 24 which is verified within the security computer 52. Upon authentication, access is granted through the data network interface 50. Referring now to FIGS. 3 through 8 the software architecture supporting the above functions is next described. The security computer 52, FIG. 2, is structured to include various functional software modules, FIG. 3, namely, a control module 62, a line module 64, a speech module including a biometric for voice recognition 66, an administration module 68, a client/server module 70, and a database module 72. The software program of the control module 62 functions and interconnects with the other modules (line, speech, administration, client/server and database modules) to control the processing flow and the interfacing with the internal and external system components. As will be understood from the flow diagram description, infra, the control module 62 software of the security computer 52 incorporates a finite state machine, a call state model, process monitors, and fail-over mechanisms. The software program of the line module 64 is structured to provide an interface with the telephone network. The software program of the speech module 66 is structured to perform processing functions such as, but not limited to, speech verification, text-to-speech conversion and announcements. The software program of the administration module 68 is structured to archive the records of each call made, to provide security and management functions, and to process any alarms generated. The software program of the client/server module 70 is structured to enable a host computer or a web server 34 to interface with the out-of-band security network 40. The software program of the database module 72 is comprised of the databases to support the security network 40 which in the present invention includes an audit database, a subscriber database, a speech database, an announcement database, and a system database. Referring now to FIG. 4, the line module 64 is described in further detail. The analog telephone interface 74 is the equipment, such as voice bus 58 and PBX interface 56, that interfaces to an analog line. The analog telephone interface 74 is, in turn, controlled by software program of the analog line driver 76. Similarly, digital telephone interface 78 is the equipment, such as data bus 48 and PBX interface 56, that interfaces to a digital line (T1 or ISDN PRI)a. The digital telephone interface 78 is, in turn, controlled by the software program of the digital line driver 80. The software progarm of the telephone functions module 82 is structured to accommodate functions such as, Call Origination, Call Answer, Supervisory signaling, Call Progress signaling, Ring generation/detection, DTMF generation/detection, and line configuration. In FIG. 5 the speech module 66 architecture is detailed. The speech verification (SV) hardware 84, (part of speech system 60, FIG. 2) consists of digital signal processors that utilize SV algorithms for verification of an accessor's spoken password. The speech verification hardware 84 is controlled by the software program of the SV hardware driver 86. The software program of the speech verification processing unit 88 provides an interface with control module 62 and is structured to respond to queries therefrom for verifying an accessor's spoken password. Also, the SV processing unit 88 enables the enrollment of users with the speech password and the interaction of the speech database of database module 72. The text-to-speech (TTS) hardware 90 consists of digital signal processors that utilize TTS algorithms. The text-to-speech hardware 90 is controlled by the software program of the TTS hardware driver 92. The software program of the TTS processing unit 94 provides an interface with the control module 62 and, as required by the control module 62, converts text strings to synthesized speech. The announcement hardware 96 consists of digital signal processors that utilize speech algorithms to record and play announcements. The announcement hardware is controlled by the software program of the announcement hardware driver 98. The software program of the announcement processing unit 100 also provides an interface with control module 62; upon demands of the control module 62, supplies stored announcements; and interacts with the announcements database of database module 72. In FIG. 6, the software program of the administration module 68 is presented in more detail. As the administration module 68 interfaces with the control module 62, see supra, a subprogram, namely, a control module interface 102 is constructed to manage the communication therebetween. The administration module 68 further includes software to provide an audit trail of all calls requesting access. This unit or audit log 104 creates records about each call, which records are stored in the audit database of the database module 72. Any alarms caused as a result of errors, threshold crossing or system failures are processed by the software program of alarm module 106. For remote administration of the out-of-band security system 40 of this invention, the software program of the network interface 108 is provided, which software communicates with the corporate network 38 (via network adapters). Access to the out-of-band security system 40 for administrative purposes is controlled by security module 110. Similar to the network interface 108, the software program of the management module 112 provides for the remote management of the out-of-band security system 40 for configuration, status reporting, software upgrades and trouble-shooting purposes. Referring now to FIG. 7, the software program of the client/server module 70 that secures the host computer or web server or router 34 of the corporate network 38 through the out-of-band security system 40 of this invention is shown in detail. Here, the client protocol module 114 provides the interfacing means for the host computer or web server 34 and communicates with the out-of-band security system 40 using a proprietary protocol. Alternatively, standard protocols such as RADIUS and TACACS can be used. The server protocol module 116 interfaces with the control module 62 and manages the interaction with the client protocol module 114. In FIG. 8 a detailed schematic diagram is shown of the software program required for the database module 72 of the out-of-band security system 40 of this invention. The database module 72 is the recordkeeping center, the lookup table repository, and the archival storehouse of the system. In the above description numerous relationships to this module have already been drawn. The database module 72 communicates through control module interface 118 to the control module 62. Two types of communications are channeled to and from the database module 72, namely, communicating data for use during operations through database access interface 120 and communicating data for maintenance and provisioning of the out-of-band security system through database provisioning interface 122. While the databases described herein are specifically related to the application of this embodiment to voice recognition the formation of specific databases, e.g. a different set of samples of biometric parameters or characteristics, is within the contemplation of the invention. The databases hereof are the audit database 124 for the call records; the subscriber database 126 for subscriber information; the speech database 128 for aid in verifying an accessor's spoken password; the announcements database 130 for announcements to be played to users during a call; and, system database 132 for system related information (e.g. configuration parameters). In FIGS. 9A through 9E the flow diagram for the above software program operation is shown and is described hereinbelow. Thus, while the preceding in discussing the network architecture for the out-of-band security system 40 explains the access portion of the program—the operations side—and the configuration and maintenance portion of the program—the provisioning side, the description which follows is of the software operation of the out-of-band security system 40 from the receipt of a request-to-access inquiry to a granting-of-access or denial-of-access result. The logic description that follows reflects the accessor's inputs and the programmed processes along the logical pathway from the receipt of a request-to-access inquiry to a granting-of-access or denial-of-access result. The pathway commences at the REQUEST FOR ACCESS block 150 whereby a request to enter the host computer or web server 34 is received from the user at the remote computer 22. The user requesting access to the host computer from the remote computer is immediately prompted to login at the LOGIN SCREEN PRESENTED block 152. While the login procedure here comprises the entry of the user identification and password and is requested by the host computer 34, such information request is optionally a function of the security computer 40. Upon entry of data by user at the ENTRY OF ID AND PASSWORD block 154 the information is passes to the security computer 40. As described in the software architecture review, supra, the software pathway of the login data is first to client module 114 at SEND LOGIN DATA TO CLIENT MODULE block 156 and then successively to server module 116 at SEND LOGIN DATA TO SERVER MODULE block 158 and to control module 62 at SEND LOGIN DATA TO CONTROL MODULE block 160. In transmitting the login data from the client module 114 to the server module a proprietary protocol is employed, which protocol includes encryption of the data using standard techniques. The verification process is continued at the control module 62 which next enters the subscriber database 126 and retrieves at CONTROL MODULE QUERIES SUBSCRIBER DATABASE AND RETRIEVES PASSWORD ASSOCIATED WITH LOGIN ID block 162 the password associated with the logged in identification. The control module 62 verifies at CONTROL MODULE VERIFIES PASSWORD block 164 that the password received from the remote computer 22 is the same as the password retrieved from the subscriber database 126. Upon verification, the control module 62 at DOES THE PASSWORD MATCH? block 166 sends confirmation thereof back along the software pathway to inform the user of the event. Upon failure to verify, the control module 62 at DOES THE PASSWORD MATCH? block 166 initiates an alarm indicating that the login conditions were not met. The software program upon an alarm condition terminates processing. Alternatively, the program offers the user an opportunity to retry whereupon there is a retracement through the same software path as just described and then, upon repeated alarm occurrence, the software terminates processing. The retry process may be limited to a specified number of times. The message that the verification has been achieved is transmitted along the software pathway substantially in the reverse manner as the login data transmission. From the control module 62, the verification is first received by the server module 116 and at SEND VERIFICATION FROM SERVER MODULE TO CLIENT MODULE block 168 the verification message along with the information that the authentication is proceeding is transmitted to the client module 114. In transmitting these messages to the client module 114 from the server module a proprietary protocol is employed, which protocol includes decryption of the data, where required, using standard techniques. The client module 114 transmits at SEND VERIFICATION FROM CLIENT MODULE TO HOST COMPUTER block 170 the message to the host computer 34. Finally, the host computer 34 transmits at SEND VERIFICATION FROM HOST COMPUTER TO REMOTE COMPUTER block 172 the message that the login verification is complete is sent to the remote computer 22 and prompts the person or user 24 to stand by for a telephonic callback. Now with the control module 62 having verified the remote computer 22, the software program hereof is constructed to have the control module 62 at CALLBACK INITIATED BY CONTROL MODULE block 174 initiate out-of-band the call-back procedure to the user 24. The control module 62 queries the subscriber database 126 and retrieves therefrom the telephone number associated with the login identification. Based on the data retrieved from the subscriber database, the control module 62 instructs the line module 64 at DIAL USER TELEPHONE NUMBER block 176 to call user 24. Upon user 24 answering the telephone at USER ANSWERS TELEPHONE block 178, the software pathway continues with the line module 64 relaying to the control module 62 at CONTROL MODULE NOTIFIED BY LINE MODULE OF OFF-HOOK CONDITION block 180 that the user's telephone is off-hook. The program is constructed so that the control module 62 then instructs the speech module 66 at SPEECH MODULE INSTRUCTED BY CONTROL MODULE TO RETRIEVE PASSWORD block 182 to retrieve (or generate) a DTMF password. To accomplish this, the speech module 66 now queries the announcement database 130 at PROMPT RETRIEVED BY SPEECH MODULE block 184 retrieves the prompt to be played to the user 24. Alternatively, the password for the prompt is generated and synthesized by the text-to-speech system 90, 92 and 94 of the speech module 66. At PROMPT PLAYED BY SPEECH MODULE TO USER block 186, the user 24 is instructed to impress the DTMF password on the telephone keypad. The program progresses so that after the user 24 enters the DTMF password on the telephone keypad at USER ENTER DTMF PASSWORD block 188, the line module 64 at LINE MODULE TRANSMITS ENTRY TO CONTROL MODULE block 190 notifies the control module 62 of the entry made by user 24. In the manner similar to the login password, supra, the control module 62 queries the subscriber database and, at CONTROL MODULE RETRIEVES DTMF PASSWORD block 192, retrieves the password or the generated password associated with the subscriber. At CONTROL MODULE VERIFIES DTMF PASSWORD block 194, the control module 62 verifies that the password entered at the telephone keypad by the user matches the password retrieved from the subscriber database. Upon verification, the control module 62 at DOES THE DTMF PASSWORD MATCH? block 196 sends confirmation thereof back along the software pathway to inform the user of the event. Upon failure to verify, the control module 62 at DOES THE DTMF PASSWORD MATCH? block 196 initiates an alarm indicating that the login conditions were not met. The software program upon an alarm condition terminates processing. As in the previous password verification and alternatively, the program offers the user an opportunity to retry. Whereupon there is a retracement through the same software path as just described and then, upon repeated alarm occurrence, the software program terminates processing. As before, the retry process may be limited to a specified number of times. Upon out-of-band callback verification being received, the biometric identification portion of the software program is initiated. In this present embodiment, while the biometric parameter that is monitored is speech, any of a number of parameters may be used. In this case, the control module 62 instructs the speech module 66 at SPEECH MODULE RETRIEVES PROMPT FOR USER block 198 to retrieve a prompt that for the purpose of later playing the prompt to the user and collecting the speech password. The speech module 66 queries the announcement database 130 and retrieves the prompt to be played to the user 24. Besides using a prepared prompt, as above, a prompt synthesized by the text-to-speech system 90, 92 and 94 is utilizable for this purpose. The prompt for collecting the speech password is played to the user 24 at PROMPT USER AND COLLECT SPEECH PASSWORD block 200. The user 24, who has previously had his biometric sample, namely the speech pattern, registered with the speech database 128, the voices the speech password at USER VOICES SPEECH PASSWORD block 202 and transmits the same over the telephone at the remote computer 22 to the security computer 40. Then, at SPEECH MODULE RETRIEVES SPEECH PASSWORD ASSOCIATED WITH LOGIN ID block 204, the software program for the speech module 66 is adapted to query the speech database 128 and to retrieve the speech password associated with the accessor's login identification. Through the application of biometric analysis, such as voice recognition technology, the speech or module 66 at SPEECH MODULE VERIFIES SPEECH PASSWORD block 206 verifies that the voiced speech password received from the user 24 has the same pattern as the speech password retrieved from database 128. Upon verification, the speech module 66 at DOES THE SPEECH PASSWORD MATCH? block 208 sends confirmation thereof back along the software pathway to inform the user of the event. Upon failure to verify, the speech module 66 at DOES THE SPEECH PASSWORD MATCH? block 208 notifies the control module 62 which initiates an alarm indicating that the login conditions were not met. The software program upon an alarm condition terminates processing. As in the previous password verification and alternatively, the program offers the user an opportunity to retry. Whereupon there is a retracement through the same software path as just described and then, upon repeated alarm occurrence, the software program terminates processing. As before, the retry process may be limited to a specified number of times. Upon being notified of a match between the pattern of the voiced speech password and that of the one retrieved from the database 128, the control module 62 at CONTROL MODULE INSTRUCTS SPEECH MODULE TO ANNOUNCE ACCESS IS GRANTED block 210 instructs the speech module 66 to provide an announcement to the user 24 indicating that access is granted. The speech module 66 queries the announcement database 130 and retrieves the announcement for the user 24. Alternatively, the announcement can be synthesized by the text-to-speech system 90, 92 and 94 and played to the user 24. Whichever announcement is used, it is made to the user at ACCESS GRANTED ANNOUNCEMENT MADE TO USER block 212. Upon completion of the announcement at SPEECH MODULE NOTIFIES CONTROL MODULE OF ANNOUNCEMENT block 214, the speech module 66 notifies the control module 62 that the announcement has been made to the user 24. At this point at DISCONNECT TELEPHONE CONNECTION WITH USER block 215, the control module 62 instructs the line module 64 to terminate the telephone connection and the telephone connection between the security computer 40 and user 24 is severed. At CONTROL MODULE SENDS AUTHENTICATION MESSAGE TO SERVER PROTOCOL MODULE block 216, the message that the user 24 is authenticated is relayed by control module 62 to server protocol module 116 which is requested to communicate the same to the client protocol module 114. At SERVER PROTOCOL MODULE SENDS AUTHENTICATION MESSAGE TO CLIENT PROTOCOL MODULE block 217, the message is relayed to the client protocol module 114 and thence via a proprietary protocol, at CLIENT PROTOCOL MODULE SENDS AUTHENTICATION MESSAGE TO HOST COMPUTER block 218, to the host computer 34. The host computer or web server 34 at HOST COMPUTER GRANTS ACCESS TO USER block 219 grants access to the authenticated used 24. In FIG. 10 a schematic diagram of the second embodiment of the present invention is shown. For ease of comprehension, where similar components are used, reference designators “200” units higher are employed. In contrast to FIG. 1 which describes the out-of-band security networks for computer networks of this invention as applied to the internet or wide area networks, this embodiment describes the application to local area networks. The second embodiment is referred to generally by the reference designator 220. Here the accessor is the computer equipment 222, including the central processing unit and the operating system thereof, and the person or user 224 whose voice is transmittable by the telephone 226 over telephone lines 228. While in this example the biometric parameter monitored is voice patterns as interpreted by voice recognition systems, any of a number of other parameters may be used to identify the person seeking access. The access network 230 is constructed in such a manner that, when user 224 requests access to a high security database 232 located at a host computer 234 through computer 222, the request-for-access is diverted by a router 236 internal to the corporate network 238 to an out-of-band security network 240. Here the emphasis is upon right-to-know classifications within an organization rather than on avoiding entry by hackers. Thus, as the accessor is already within the system, the first level of verification of login identification and password at the host computer is the least significant and the authentication of the person seeking access is the most significant. Authentication occurs in the out-of-band security network 240, which is analogous to the one described in detail above, except the subscriber database becomes layered by virtue of the classification. This is in contradistinction to present authentication processes as the out-of-band security network 240 is isolated from the corporate network 238 and does not depend thereon for validating data. The overview shows the bibmetric validation which, in this case, takes the form of a voice network 242. In FIG. 11 a schematic diagram of the third embodiment of the present invention is shown. This embodiment describes the application of the security system to access over the internet. For ease of comprehension, where similar components are used, reference designators “300” units higher are employed. In contrast to FIG. 1 which describes the out-of-band security networks for computer networks of this invention as applied to wide area networks, this embodiment describes the application to internet networks. The third embodiment is referred to generally by the reference designator 320. The case of user accessing a web application, such as an online banking application, (located on a web server 334) over the internet 330. The user from a computer 322 accesses the web application over an access channel and enters their USER ID. The web server 334 sends the USER ID to the security system 340, also referred to as the centralized out-of-band authentication system (COBAS). COBAS 340 proceeds with authenticating the user through the user's cellular telephone over an authentication channel. The security system 340 calls the access-seeking user at the cellular telephone 326. The user answers the phone and is prompted to enter a password for password verification and to enter a biometric identifier, such as a fingerprint. The security system 340 authenticates the user and sends the result to the web server 334. Upon a positive authentication and after disconnecting from the authentication channel, access is granted along the access channel to the USER'S PC device 322. The flow diagram for the COBAS device 340 software is analogous to that described in the first embodiment, supra, but for the speech module 66. In lieu thereof, in FIG. 12 the fingerprint module 366 architecture is detailed. The fingerprint verification hardware 384, consists of digital signal processors that utilize algorithms for verification of an accessor's fingerprint. The fingerprint verification hardware 384 is controlled by the software program of the fingerprint hardware driver 386. The software program of the fingerprint verification processing unit 388 provides an interface with control module 362 and is structured to respond to queries therefrom for verifying an accessor's password. Also, the fingerprint processing unit 388 enables the enrollment of users fingerprint and the interaction of the fingerprint database of the COBAS device 340. The text-to-speech (TTS) hardware 390 consists of digital signal processors that utilize TTS algorithms. The text-to-speech hardware 390 is controlled by the software program of the TTS hardware driver 392. The software program of the TTS processing unit 394 provides an interface with the control module 362 and, as required by the control module 362, converts text strings to synthesized speech. The announcement hardware 396 consists of digital signal processors that utilize speech algorithms to record and play announcements. The announcement hardware is controlled by the software program of the announcement hardware driver 398. The software program of the announcement processing unit 400 also provides an interface with control module 362; upon demands of the control module 362, supplies stored announcements; and interacts with the announcements database of the related database (not shown). In FIG. 13 a schematic diagram of the fourth embodiment of the present invention is shown. This embodiment describes the application to PDAs (Personal Digital Assistant) . For ease of comprehension, where similar components are used, reference designators “400” units higher are employed. In contrast to FIG. 1 which describes the out-of-band security networks for computer networks as applied to wide area networks, this embodiment describes the application to wireless networks including peripherals, such as PDAs and cellular telephones. The fourth embodiment is referred to generally by the reference designator 420. Although there are several PDAs currently marketing including the Blackberry and the Palm Computer, in this embodiment an HP iPAQ running on a Windows CE operating system is utilized. These PDAs have wireless capabilities and can also incorporate custom software applications. The HP iPAQ hereof incorporates a fingerprint reader. The security system 420 has two distinct and independent channels of operation, namely, the access channel and the authentication channel. The user from a computer 422 accesses the web application over an access channel and enters their USER ID. The web server 434 sends the USER ID to the security system 440. COBAS 440 proceeds with authenticating the customer via the wireless network 442 over an authentication channel. The security system 440 sends an authentication request message to a software program located on the PDA 422. The software program prompts the user to enter their fingerprint. The COBAS security system 440 now authenticates the user's fingerprint against the template stored in its database and send the result to the web server 434. Upon a positive authentication and after disconnecting from the authentication channel, access is granted along the access channel to the USER'S PDA device 422. Because many varying and different embodiments may be made within the scope of the inventive concept herein taught, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirement of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates to security networks for computer network applications, and, more particularly, to a security network which provides user authentication by an out-of-band system that is entirely outside the host computer network being accessed. In addition, the out-of-band system optionally includes provision for biometric identification as part of the authentication process. 2. Background of the Invention In the past, there have typically been three categories of computer security systems, namely, access control, encryption and message authentication, and intrusion detection. The access control systems act as the first line of defense against unwanted intrusions, and serve to prevent hackers who do not have the requisite information, e.g. the password, etc., from accessing the computer networks and systems. Secondly, the encryption and message authentication systems ensure that any information that is stored or in transit is not readable and cannot be modified. In the event that a hacker is able to break into the computer network, these systems prevent the information from being understood, and, as such, encryption systems as the second line of defense. Further intrusion detection systems uncover patterns of hacker attacks and viruses and, when discovered provide an alarm to the system administrator so that appropriate action can be taken. Since detection systems operate only after a hacker has successfully penetrated a system, such systems act as a third line of defense. Obviously, as an access control system is the first line of defense, it is important that the selection thereof be well-suited to the application. In access control systems there is a broad dichotomy between user authentication and host authentication systems. In current practice, the most common user authentication systems include simple password systems, random password systems, and biometric systems. The simple password systems are ubiquitous in our society with every credit card transaction using a pin identification number, every automatic teller machine inquiry looking toward a password for access, and even telephone answering messages using simple password systems for control. Additionally, when random password systems are used, another level of sophistication is added. In these systems, the password changes randomly every time a system is access. These systems are based on encryption or a password that changes randomly in a manner that is synchronized with an authorization server. The Secure ID card is an example of such a system. Random password systems require complimentary software and/or hardware at each computer authorized to use the network. In biometric systems, characteristics of the human body, such as voice, fingerprints or retinal scan, are used to control access. These systems require software and/or hardware at each computer to provide authorization for the use of the network. Another category of access control is that of host authentication. Here the commonest systems are those of “callback” and “firewall” systems. Callback systems are those systems which work by calling a computer back at a predetermined telephone number. These systems authenticate the location of a computer and are suitable for dial-up (modem) networks; however, such systems are ineffective when the attack comes via the Internet. On the other hand, firewall systems are designed to prevent attacks coming from the Internet and work by allowing access only from computers within a network. Even though firewall systems are implemented either as standalone systems or incorporated into routers, skilled hackers are able to penetrate host authentication systems. Typically, access-control security products, as described above, are in-band authentication systems with the data and the authentication information on the same network. Thus, upon accessing a computer, a computer prompt requests that you enter your password and, upon clearance, access is granted. In this example, all information exchanged is on the same network or in-band. The technical problem created thereby is that the hacker is in a self-authenticating environment. Except for callback systems, the above access control products authenticate only the user and not the location. When computer networks could only be accessed by modems, the authentication of location by dialing back the access-requesting computer, provided a modicum of security. Now, as virtually all computer networks are accessible by modem-independent internet connection, location authentication by callback is no longer secure. The lack of security arises as there is no necessary connection between the internet address and a location, and, in fact, an internet address most often changes from connection to connection. Thus, callback systems are rendered useless against attacks originating from the internet. In preparing for this application, a review of various patent resources was conducted. The review resulted in the inventor gaining familiarity with the following patents: Item No. Patent No. Inventor Orig. Class Date 1 6,408,062 Cave, Ellis K. 379/210.01 June 2002 2 5,901,284 Hamdy-Swink, 713/200 May 1999 Katheryn A. 3 5,898,830 Wesinger, Jr., 395/187.01 April 1999 et al. 4 5,872,834 Teitelbaum 379/93.03 February 1999 5 5,826,014 Coley, et al. 718,201 October 1998 6 5,787,187 Bouchard 382/115 July 1998 7 5,680,458 Spelman, et al. 380/21 October 1997 8 5,621,809 Bellegarda, et al. 382/116 April 1997 9 5,615,277 Hoffman 382/115 March 1997 10 5,588,060 Aziz 380/30 December 1996 11 5,548,646 Aziz, et al. 380/23 August 1996 12 5,153,918 Tuai, Gregory 713/182 October 1992 In general terms, the patents all show a portion of the authentication protocol and the data transferred in the same channel or “in-band”. For purposes of this discussion “in-band” operation is defined as one conducted wholly within a single channel or loop. Likewise, an “out-of-band” operation is defined as one using an authentication channel that is separated from the channel carrying the information and therefore is nonintrusive as it is carried over separate facilities, frequency channels, or time slots than those used for actual information transfer. The patent to E. K. Cave, U.S. Pat. No. 6,408,062, Item 1 above, describes a callback system. Here, the user is prequalified so that he does not get charged for calls that are not completed to the called party. However, here the authentication and the administrative function are in the same loop. In Item 3, the patent to Wesinger et al., U.S. Pat. No. 5,898,830 ('830) is a firewall patent. Here, the inventor attempts to enhance security by using out-of-band authentication. In his approach, a communication channel, or medium, other than the one over which the network communication takes place, is used to transmit or convey an access key. The key is transmitted from a remote location (e.g., using a pager or other transmission device) and, using a hardware token, the key is conveyed to the local device. In the Wesinger '830 system, to gain access, a hacker must have access to a device (e.g., a pager, a token, etc.) Used to receive the out-of-band information. Pager beep-back or similar authentication techniques may be especially advantageous in that, if a hacker attempts unauthorized access to a machine while the authorized user is in possession of the device, the user will be alerted by the device unexpectedly receiving the access key. The key is unique to each transmission, such that even if a hacker is able to obtain it, it cannot be used at other times or places or with respect to any other connection. Next, turning to Item 7, the patent to Spelman et al., U.S. Pat. No. 5,680,458 ('458), a method of recovering from the compromise of a root key is shown. Here, following the disruption of a new replacement key, an out-of-band channel is used by a central authority to publish a verification code which can be used by customers to verify the authenticity of the emergency message. The Spelman '458 patent further indicates that the central authority uses the root key to generate a digital signature which is appended to the emergency message to verify that the emergency message is legitimate. Hoffman, U.S. Pat. No. 5,615,277, Item 9, is next discussed. Here, biometrics are combined with a tokenless security and the patent describes a method for preventing unauthorized access to one or more secured computer systems. The security system and method are principally based on a comparison of a unique biometric sample, such as a voice recording, which is gathered directly from the person of an unknown user with an authenticated unique biometric sample of the same type. The Hoffman technology is networked to act as a full or partial intermediary between a secured computer system and its authorized users. The security system and method further contemplate the use of personal codes to confirm identifications determined from biometric comparisons, and the use of one or more variants in the personal identification code for alerting authorities in the event of coerced access. Items 10 and 11 have a common assignee, Sun Microsystems, Inc., and both concern encryption/decryption keys and key management. The patent to Tuai, U.S. Pat. No. 5,153,918 ('918) describes an in-band authentication system which uses a callback system after authentication. Within the authentication system, Tuai '918 employs a voice verification technique. The submission of the above list of documents is not intended as an admission that any such document constitutes prior art against the claims of the present application. Applicant does not waive any right to take any action that would be appropriate to antedate or otherwise remove any listed document as a competent reference against the claims of the present application. None of the above show the novel and unobvious features of the invention described hereinbelow.
<SOH> SUMMARY <EOH>In general terms, the invention disclosed hereby includes in the embodiments thereof, a unique combination of user and host authentication. The security system of the present invention is out-of-band with respect to the host computer and is configured to intercept requests for access. The first step in controlling the incoming access flow is a user authentication provided in response to prompts for a user identification and password. After verification at the security system, the system operating in an out-of-band mode, uses telephone dialup for location authentication and user authentication via a password entered using a telephone keypad. In addition and optionally the system provides further authentication using a biometric system. When voice recognition is employed for the biometric component, the user speaks a given phrase which the system authenticates before permitting access. Upon granting of access, the user now for the first time enters the in-band operating field of the host computer.
20041021
20110111
20060223
72771.0
H04L900
6
POWERS, WILLIAM S
MULTICHANNEL DEVICE UTILIZING A CENTRALIZED OUT-OF-BAND AUTHENTICATION SYSTEM (COBAS)
UNDISCOUNTED
1
CONT-ACCEPTED
H04L
2,004
10,970,615
ACCEPTED
Light fixture and lens assembly for same
A light fixture or troffer for directing light emitted from a light source toward an area to be illuminated, including a reflector assembly within which the light source is positioned and a lens assembly detachably secured to a portion of the reflector assembly such that a lens of the lens assembly overlies the light source and such that substantially all of the light emitted from the light source passes through the lens assembly. In one example, the lens includes a curved prismatic surface that can be oriented toward or away from the underlying light source.
1. A light fixture, comprising: a reflector assembly extending along a base longitudinal axis, wherein the reflector assembly comprises at least one end face forming an obtuse angle with respect to the base longitudinal axis of the reflector assembly. 2. The light fixture of claim 1, further comprising a linear light source mounted within a portion of the reflector assembly. 3. The light fixture of claim 2, wherein the linear light source has at least one end, and wherein the at least one end face of the reflector assembly defines an opening constructed and arranged for receiving at least a portion of the at least one end of the linear light source. 4. The light fixture of claim 2, wherein the at least one end face comprises a first end face and an opposed second end face. 5. The light fixture of claim 4, wherein the reflector assembly further comprises an elongated base member having a first end edge, a spaced second end edge, and a base surface, the base longitudinal axis extending therebetween the first and second end edges. 6. The light fixture of claim 5, wherein each of the respective first and second end faces has a top edge, the opposed first and second end faces each being positioned with respect to the base member such that a portion of the top edge of the respective end face is positioned in substantially overlying registration with a portion of the base surface. 7. The light fixture of claim 6, wherein each of the respective first and second end faces has a face longitudinal axis that forms the obtuse angle with respect to the longitudinal axis of the base member. 8. The light fixture of claim 6, wherein at least a portion of the top edge of the respective end faces is spaced from at least a portion of the respective first and second end edges of the base member. 9. The light fixture of claim 7, wherein the respective obtuse angles formed between the face longitudinal axis of the first end face and the base longitudinal axis and the face longitudinal axis of the second end face and the base longitudinal axis are substantially equal. 10. The light fixture of claim 4, wherein each of the first and second end faces is substantially planar. 11. The light fixture of claim 4, wherein portions of each of the first and second end faces are non-planar. 12. The light fixture of claim 11, wherein portions of each of the first and second end faces are curved. 13. The light fixture of claim 12, wherein portions of the first and second end faces are substantially concave. 14. The light fixture of claim 12, wherein portions of the first and second end faces are substantially convex. 15. The light fixture of claim 1, wherein the obtuse angle is about and between about 95° to 160°. 16. The light fixture of claim 1, wherein the obtuse angle is about and between about 100° to 150°. 17. The light fixture of claim 1, wherein the obtuse angle is about and between about 100° to 135°. 18. The light fixture of claim 1, wherein the obtuse angle is about 120°. 19. The light fixture of claim 6, wherein the linear light source comprises a first end operatively connected to the base member adjacent the first end face and a second end operatively connected to the base member adjacent the second end face, and wherein the first and second faces each define an opening constructed and arranged to receive at least a portion of a selected end of the light source therethrough. 20. The light fixture of claim 19, further comprising a housing having a first end wall and an opposed second end wall, wherein the first end wall is connected to a portion of the first end edge of the base member and the second end wall is connected to a portion of the second end edge of the base member. 21. The light fixture of claim 20, wherein a portion of a bottom edge of the first end face is connected to a bottom portion of the first end wall of the housing and a portion of a bottom edge of the second end face is connected to a bottom portion of the second end wall. 22. The light fixture of claim 20, wherein the first end wall is substantially perpendicular to the base member adjacent the first end edge and the second end wall is substantially perpendicular to the base member adjacent the second end edge. 23. The light fixture of claim 20, wherein portions of the respective first and second end faces, the respective first and second end walls, and the base member each define a chamber adjacent the respective top edges of the first and second faces that is in operative communication with the opening in the respective first and second faces. 24. The light fixture of claim 23, wherein each of the respective chambers is constructed and arranged to receive at least a portion of a selected end of the linear light source therein. 25. The light fixture of claim 24, wherein each chamber is constructed and arranged to mount an electrical contact for detachably securing a selected end of the linear light source thereto. 26. The light fixture of claim 25, wherein the electrical contact is mounted onto a portion of the base surface of the base member. 27. The light fixture of claim 5, wherein the base member comprises a single piece of material. 28. The light fixture of claim 5, wherein the base member has a first longitudinally extending side edge and an opposed second longitudinally extending side edge, a portion of the base surface of the base member defining at least one longitudinally extending hollow, each hollow having a longitudinally extending first hollow edge and a longitudinally extending second hollow edge, at least a portion of a section of the hollow normal to the base longitudinal axis having a generally curved, concave shape. 29. The light fixture of claim 28, wherein each hollow extends inwardly to a central portion between the respective first and second hollow edges, the central portion of the hollow defining a longitudinally extending trough that extends inwardly away from the surface of the hollow, the trough housing the light source. 30. The light fixture of claim 29, wherein the central portion is generally symmetrically positioned with respect to the first and second hollow edges. 31. The light fixture of claim 29, further comprising a lens assembly comprising an elongated lens having a first end edge, an opposed second end edge, and a curved central lens portion that extends between the first and second end edges, the central lens portion defining a concave face oriented toward and spaced from the light source, wherein the lens is constructed and arranged for detachably securing the lens to a portion of the trough. 32. The light fixture of claim 31, wherein the lens assembly further comprises a diffuser inlay positioned between the linear light source and the concave face of the central lens portion. 33. The light fixture of claim 32, wherein the diffuser inlay is positioned in substantial overlying registration with the concave face of the central lens portion. 34. The light fixture of claim 31, wherein the lens is positioned with respect to the trough such that substantially all of the light emitted by the linear light source passes through the lens. 35. The light fixture of claim 2, wherein the linear light source is a T5 lamp. 36. The light fixture of claim 1, wherein at least a portion of the reflector assembly is coated with a substantially flat reflective material. 37. A light fixture, comprising: a reflector assembly extending along a longitudinal axis, the reflector assembly defining a trough; a linear light source operatively mounted within a portion of the trough of the reflector assembly; and a lens assembly comprising an elongated lens, the elongated lens mounted to a portion of the reflector assembly, wherein the reflector assembly controls high angle glare in the transverse direction by blocking high angle rays from the lens, and wherein the lens controls high angle glare in the longitudinal direction optically. 38. The light fixture of claim 37, wherein the reflector assembly further comprises an elongated base member having a first end edge, a spaced second end edge, a first longitudinally extending side edge, an opposed second longitudinally extending side edge, and a base surface, the longitudinal axis of the reflector assembly extending between the first end edge and the second end edge. 39. The light fixture of claim 38, wherein a portion of the base surface of the base member defines at least one longitudinally extending hollow, each hollow having a longitudinally extending first hollow edge and a longitudinally extending second hollow edge, at least a portion of a section of the hollow normal to the base longitudinal axis having a generally curved, concave shape, wherein each hollow extends inwardly to a central portion between the respective first and second hollow edges, the central portion of the hollow defining the longitudinally extending trough, which extends inwardly away from the surface of the hollow. 40. The light fixture of claim 39, wherein the portions of the hollow extending between the central portion and the respective first and second hollow edges forms a generally curved reflective surface. 41. The light fixture of claim 39, wherein the elongated lens has a lens longitudinal axis that is generally parallel to the linear light source and a central lens portion that is curved in a plane that is transverse to the lens longitudinal axis, the lens being constructed and arranged for detachable connection to a portion of the trough of the base member, the central lens portion of the lens having a prismatic surface that defines a face oriented toward and spaced from the light source. 42. The light fixture of claim 41, wherein the lens of said lens assembly is positioned with respect to the trough of the reflector assembly such that substantially all of the light emitted by the light source passes through the lens. 43. The light fixture of claim 41, wherein at least a portion of the face of the central lens portion is concave. 44. The light fixture of claim 41, wherein at least a portion of the face of the central lens portion is convex. 45. The light fixture of claim 41, wherein the lens is positioned in overlying registration with the trough, and wherein the central lens portion of the lens is symmetric about a plane that extends through the linear light source. 46. The light fixture of claim 41, wherein the central portion of the lens is generally symmetrically positioned with respect to the first and second hollow edges. 47. The light fixture of claim 39, wherein the respective first and second hollow edges extend to the respective first and second longitudinally extending side edges of the base member. 48. The light fixture of claim 39, wherein the base member defines a pair of adjoining, parallel hollows, a first hollow edge of a first hollow of the pair of hollows extending to the first side edge of the base member, a second hollow edge of a second hollow of the pair of hollows extending to the second side edge of the base member, and the second hollow edge of the first hollow and the first hollow edge of the second hollow being positioned proximate each other. 49. The light fixture of claim 39, wherein the trough has a top surface that adjoins a first side trough surface and an opposed second side trough surface, wherein each respective first and second side trough surfaces has an lower edge that is integral with a portion of the adjoined hollow, and wherein each of the first side trough surface and the second side trough surface has a trough surface axis that extends in a plane normal to the base longitudinal axis. 50. The light fixture of claim 49, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 140° to 90° with respect to the top surface of the trough. 51. The light fixture of claim 49, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 135° to 95° with respect to the top surface of the trough. 52. The light fixture of claim 49, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 130° to 100° with respect to the top surface of the trough. 53. The light fixture of claim 49, wherein the light source is positioned therein the trough such that the light longitudinal axis of the light source is positioned above a plane extending between the lower edges of the respective first and second side trough surfaces. 54. The light fixture of claim 49, wherein the light source is positioned therein the trough such that the light longitudinal axis of the light source is positioned substantially about or above an arcuate section extending between the lower edges of the respective first and second side trough surfaces, wherein the arcuate section has substantially the same radius as the concave hollow. 55. The light fixture of claim 38, wherein at least a portion of the base surface of the base member has a plurality of male ridges formed thereon that extend longitudinally between the first and second end edges of the base member. 56. The light fixture of claim 38, wherein at least a portion of the base surface of the base member has a plurality of female grooves formed therein that extend longitudinally between the first and second end edges of the base member. 57. The light fixture of claim 37, wherein the light source is positioned substantially parallel to the longitudinal axis of the reflector assembly. 58. The light fixture of claim 49, wherein the elongated lens has a first arm that is connected to a first lens edge of the central lens portion and a second arm that is connected to a second lens edge of the central lens portion, a portion of the first arm constructed and arranged for being detachably secured to a portion of the first side trough surface and a portion of the second arm constructed and arranged for being detachable secured to a portion of the second side trough surface. 59. The light fixture of claim 58, wherein each of the first and second arms has a bottom portion connected to the respective first and second lens edges, the bottom portion extending substantially from a first end edge of the lens to an opposed second end edge of the lens. 60. The light fixture of claim 59, wherein a portion of the bottom portion of each of the first and second arms of the lens is detachably positioned adjacent a portion of the respective lower edges of the first and second side trough surfaces. 61. The light fixture of claim 60, wherein a portion of the bottom portion of each of the first and second arm of the lens is positioned at an acute angle with and overlies a portion of the curved reflective surface of the hollow adjacent to the respective lower edges of the first and second side trough surfaces. 62. The light fixture of claim 61, wherein the distance between the respective first and second lens edges of the lens is greater than the distance between the respective lower edges of the first and second side trough surfaces. 63. The light fixture of claim 62, wherein each of the respective first and second lens edges is spaced from and overlies a portion of the curved reflective surface of the hollow. 64. The light fixture of claim 49, wherein the respective first and second lens edges are positioned adjacent a portion of the respective lower edges of the first and second side trough surfaces. 65. The light fixture of claim 58, wherein each of the respective first and second side trough surfaces have at least one male protrusion extending inwardly into the trough, and wherein each of the first and second arms of the lens has an end portion having a hook shape that is constructed and arranged for detachable engagement with the at least one male protrusion in each respective first and second trough surfaces. 66. The light fixture of claim 58, wherein each of the respective first and second side trough surfaces defines at least one slot, and wherein each of the first and second arms of the lens has an end portion having a male protrusion that is constructed and arranged for detachable engagement with the at least one slot in each respective first and second trough surfaces. 67. The light fixture of claim 37, wherein the lens assembly further comprises a diffuser inlay positioned between the central lens portion and the light source. 68. The light fixture of claim 67, wherein the diffuser inlay is positioned in substantial overlying registration with the prismatic surface of the central lens portion. 69. The light fixture of claim 38, wherein the reflector assembly further includes a first end face and an opposed second end face, each of the respective first and second end faces having a top edge, the opposed first and second end faces each being positioned with respect to the base member such that a portion of the top edge of the respective end face is positioned in substantially overlying registration with a portion of the base surface, and wherein each of the respective first and second end faces has a face longitudinal axis that forms an obtuse angle with respect to the base longitudinal axis of the base member. 70. The light fixture of claim 69, wherein at least a portion of the top edge of the respective end faces is spaced from at least a portion of the respective proximal and distal edges of the base member. 71. The light fixture of claim 69, wherein the respective obtuse angles formed between the face longitudinal axis of the first end face and the base longitudinal axis and the face longitudinal axis of the second end face and the base longitudinal axis are substantially equal. 72. The light fixture of claim 69, wherein each of the first and second end faces is substantially planar. 73. The light fixture of claim 69, wherein the first and second faces each define an opening constructed and arranged to receive at least a portion of a selected end of the light source therethrough. 74. The light fixture of claim 69, wherein the first end edge of the elongated lens is in overlying registration with a portion of the first end face and wherein the second end edge of the elongated lens is in overlying registration with a portion of the second side surface. 75. The light fixture of claim 40, wherein at least a portion of the reflective surface of the hollow has a plurality of male ridges formed thereon that extend longitudinally between the proximal and distal ends of the base member. 76. The light fixture of claim 40, wherein at least a portion of the reflective surface of the hollow has a plurality of female grooves formed therein that extend longitudinally between the proximal and distal ends of the base member. 77. The light fixture of claim 37, wherein the linear light source is a T5 lamp. 78. The light fixture of claim 38, wherein the lens assembly is positioned within the reflector assembly such that it is recessed above a substantially horizontal plane extending between the first and second longitudinal side edges and such that the lens assembly is not visible at high viewing angles in a vertical plane normal to the base longitudinal axis. 79. The light fixture of claim 78, wherein the lens assembly is recessed within the reflector assembly such that a plane bisecting one of the respective first and second longitudinal side edges and a tangential portion of the lens is oriented at an acute angle γ to the substantially horizontal plane extending between the first and second longitudinal side edges. 80. The light fixture of claim 79, wherein the acute angle γ is about and between 3° and 30°. 81. The light fixture of claim 79, wherein the acute angle γ is about and between 5° and 20°. 82. The light fixture of claim 79, wherein the acute angle γ is about and between 10° and 15°. 83. The light fixture of claim 58, wherein the lens assembly is positioned within the reflector assembly such that the light source is positioned below a plane bisecting one of the respective first or second longitudinally extending side edges and the adjacent respective first or second lens edges of the lens. 84. A light fixture, comprising: a reflector assembly defining a longitudinally extending trough; a linear light source releasably supported in the trough of the reflector assembly; and a lens assembly comprising an elongated lens having a central lens portion that is curved in a plane transverse to the trough and a lens longitudinal axis that is generally parallel to the light longitudinal axis, the lens being constructed and arranged for detachable connection to a portion of the trough, the central lens portion having a prismatic surface that defines a face oriented toward and spaced from the light source, wherein the lens of said lens assembly is positioned with respect to the trough of the reflector assembly such that substantially all of the light emitted by the light source passes through the lens, and wherein the reflector assembly controls high angle glare in the transverse direction by blocking high angle rays from the lens and the lens assembly controls high angle glare in the longitudinal direction optically. 85. The light fixture of claim 84, wherein at least a portion of the face of the central lens portion is concave. 86. The light fixture of claim 84, wherein at least a portion of the face of the central lens portion is convex. 87. The light fixture of claim 84, wherein the lens is positioned in overlying registration with the trough, and wherein the central lens portion of the lens is symmetric about a plane that extends through the light longitudinal axis. 88. The light fixture of claim 84, wherein the reflector assembly further comprises an elongated base member having a first end edge, a spaced second end edge, a first longitudinally extending side edge, an opposed second longitudinally extending side edge, a base surface, and a base longitudinal axis extending between the first and second end edges of the base member, a portion of the base surface of the base member defining at least one longitudinally extending hollow, each hollow having a longitudinally extending first hollow edge and a longitudinally extending second hollow edge, at least a portion of a section of the hollow normal to the base longitudinal axis having a generally curved, concave shape, each hollow extending inwardly to a central portion between the respective first and second hollow edges, wherein the central portion of the hollow defines the longitudinally extending trough, which extends inwardly and upwardly away from the surface of the hollow, wherein the portions of the hollow extending between the central portion and the respective first and second hollow edges forming a generally curved reflective surface, and wherein the central portion is generally symmetrically positioned with respect to the first and second hollow edges. 89. The light fixture of claim 88, wherein the respective first and second hollow edges extend to the respective first and second longitudinally extending side edges of the base member. 90. The light fixture of claim 88, wherein the base member defines a pair of adjoining, parallel hollows, a first hollow edge of a first hollow of the pair of hollows extending to the first side edge of the base member, a second hollow edge of a second hollow of the pair of hollows extending to the second side edge of the base member, and the second hollow edge of the first hollow and the first hollow edge of the second hollow being adjoined. 91. The light fixture of claim 88, wherein the trough has a top surface that adjoins a first side trough surface and an opposed second side trough surface, wherein each respective first and second side trough surfaces has an lower edge that is integral with a portion of the adjoined hollow, and wherein each of the first side trough surface and the second side trough surface has a trough surface axis that extends in a plane normal to the base longitudinal axis. 92. The light fixture of claim 91, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 140° to 90° with respect to the top surface of the trough. 93. The light fixture of claim 91, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 135° to 95° with respect to the top surface of the trough. 94. The light fixture of claim 91, wherein the trough surface axis of each of the first and second trough surfaces respectively forms an angle of about and between about 130° to 100° with respect to the top surface of the trough. 95. The light fixture of claim 91, wherein the light source is positioned therein the trough such that the light longitudinal axis of the light source is positioned above a plane extending between the lower edges of the respective first and second side trough surfaces. 96. The light fixture of claim 91, wherein the light source is positioned therein the trough such that the light longitudinal axis of the light source is positioned substantially about or above an arcuate section extending between the lower edges of the respective first and second side trough surfaces, wherein the arcuate section has substantially the same radius as the concave hollow. 97. The light fixture of claim 88, wherein the light source is positioned so that the light longitudinal axis is substantially parallel to the base longitudinal axis of the base member. 98. A light fixture having a linear light source in electrical communication with an external power source, comprising: a reflector assembly comprising an elongated base member having a first end edge, a spaced second end edge, a first longitudinally extending side edge, an opposed second longitudinally extending side edge, a base top surface, an opposed base bottom surface, and a base longitudinal axis extending between the first end edge and the second end edge of the base member; a housing having a first end wall connected to a portion of the first end edge of the base member, an opposed second end wall connected to a portion of the second end edge of the base member, and at least one angled cover having a first panel and a second panel, the first panel being connected to the second panel substantially along an angled edge, the first panel having a first side edge and the second panel having a second side edge, a first angled cover of the at least one angled cover having the first side edge connected to a portion of the first longitudinal side edge of the base member, the second side edge connected to a portion of the base top surface of the base member, the first angled cover extending between the first end wall and the second end wall so that portions of the first and second end walls, portions of the first angled cover and portions of the base top surface define a first ballast enclosure; and at least one ballast for electrically connecting the light source to the external power source, the at least one ballast being positioned in the first ballast enclosure. 99. The light fixture of claim 98, wherein a portion of the first angled cover defines a first port adjacent the angled edge that is in communication with the first ballast enclosure, and further comprising a first closure plate constructed and arranged for releasable connection to the first angled cover such that, in a closed position, the first closure plate is in substantial registration with the first port and the at least one ballast positioned in the first ballast enclosure can be selectively enclosed. 100. The light fixture of claim 99, wherein at least a portion of the first port is defined in a portion of the second panel of the first angled cover. 101. The light fixture of claim 99, wherein at least a portion of the first port is defined in a portion of the first panel of the first angled cover and is spaced from the first side edge of the first panel a predetermined distance. 102. The light fixture of claim 101, wherein at least a portion of the first port is defined in a portion of the second panel of the first angled cover. 103. The light fixture of claim 98, wherein the first end wall is substantially perpendicular to the base member adjacent the first end edge of the base member and the second end wall is substantially perpendicular to the base member adjacent the second end edge of the base member. 104. The light fixture of claim 98, wherein the first and second panels of the at least one angled cover are substantially perpendicular to each other. 105. The light fixture of claim 98, wherein the first panel of the first angled cover is substantially perpendicular to the base member adjacent the first longitudinally extending side edge of the base member. 106. The light fixture of claim 98, wherein the reflector assembly further comprises a first end face and an opposed second end face, each of the respective first and second end faces having a top edge, the opposed first and second end faces each being positioned with respect to the base member such that a portion of the top edge of the respective end face is positioned in substantially overlying registration with a portion of the base bottom surface and spaced from the respective proximal and distal edges of the base member. 107. The light fixture of claim 106, wherein each of the respective first and second end faces has a face longitudinal axis that forms an obtuse angle with respect to the base longitudinal axis of the base member. 108. The light fixture of claim 106, wherein a portion of a bottom edge of the first end face is connected to a bottom portion of the first end wall of the housing and a portion of a bottom edge of the second end face is connected to a bottom portion of the second end wall. 109. The light fixture of claim 108, wherein the first end wall and the first end face are formed integral to each other, and wherein the second end wall and the second end face are formed integral to each other. 110. The light fixture of claim 105, wherein the first and second faces each define an opening constructed and arranged to receive at least a portion of a selected end of the light source therethrough. 111. The light fixture of claim 110, wherein the respective first and second end faces, the respective first and second end walls, and the base bottom surface of the base member each define a chamber adjacent the respective top edges of the first and second faces that is in operative communication with the opening in the respective first and second faces. 112. The light fixture of claim 111, wherein each of the respective chambers is constructed and arranged to receive at least a portion of the light source therein. 113. The light fixture of claim 112, wherein each chamber is constructed and arranged to mount an electrical contact for detachably securing the light source thereto, the electrical contact in electrical communication with the ballast. 114. The light fixture of claim 113, wherein the electrical contact is mounted onto a portion of the base bottom surface of the base member. 115. The light fixture of claim 99, wherein a second angled cover of the at least one angled cover has the first side edge connected to a portion of the second longitudinal side edge of the base member, the second side edge connected to a portion of the base top surface of the base member, the second angled cover extending between the first end wall and the second end wall such that portions of the first and second end walls, portions of the second angled cover, and portions of the base top surface define a second ballast enclosure, and wherein a second ballast of the at least one ballast is in electrical communication with the light source and is positioned within the second ballast enclosure. 116. The light fixture of claim 115, wherein a portion of the second angled panel defines a second port adjacent the angled edge that is in communication with the second ballast enclosure, and further comprising a second closure plate constructed and arranged for releasable connection to the second angled panel such that, in a closed position, the second closure plate is in substantial registration with the second port and the second ballast of the at least one ballast positioned within the second ballast enclosure can be selectively enclosed. 117. The light fixture of claim 116, wherein at least a portion of the second port is defined in a portion of the first panel of the second angled cover and is spaced from the first side edge of the first panel a predetermined distance. 118. The light fixture of claim 117, wherein at least a portion of the second port is defined in a portion of the second panel of the second angled cover. 119. The light fixture of claim 117, wherein at least a portion of the second port is defined in a portion of the second panel of the second angled cover. 120. A light fixture, comprising: a reflector assembly extending along a longitudinal axis; and a linear light source having at least one end, the linear light source mounted within a portion of the reflector assembly, wherein the reflector assembly comprises at least one end face defining an opening constructed and arranged for receiving at least a portion of the at least one end of the linear light source, the at least one end face forming an obtuse angle with respect to the longitudinal axis of the reflector assembly. 121. A light fixture, comprising: a reflector assembly comprising an elongated base member having a first end edge, a spaced second end edge, a first longitudinally extending side edge, an opposed second longitudinally extending side edge, a base surface, and a base longitudinal axis extending between the first end edge and the second end edge, a portion of the base surface of the base member defining at least one longitudinally extending hollow, each hollow having a longitudinally extending first hollow edge and a longitudinally extending second hollow edge, at least a portion of a section of the hollow normal to the base longitudinal axis having a generally curved, concave shape, each hollow extending inwardly to a central portion between the respective first and second hollow edges, the central portion of the hollow defining a longitudinally extending trough that extends inwardly away from the surface of the hollow, the portions of the hollow extending between the central portion and the respective first and second hollow edges forming a generally curved reflective surface; a linear light source housed substantially therein the trough of the reflector assembly and having a light longitudinal axis; and a lens assembly comprising an elongated lens that has a lens longitudinal axis that is generally parallel to the light longitudinal axis and a central lens portion that is curved in a plane that is transverse to the lens longitudinal axis, the lens being constructed and arranged for detachable connection to a portion of the trough of the base member, the central lens portion having a prismatic surface that defines a face oriented toward and spaced from the light source, wherein the lens of said lens assembly is positioned with respect to the trough of the reflector assembly such that substantially all of the light emitted by the light source passes through the lens, and wherein the reflector assembly controls high angle glare in the transverse direction by blocking high angle rays from the lens and the lens assembly controls high angle glare in the longitudinal direction optically. 122. A reflector assembly for a light fixture, comprising: a first end face, an opposed second end face, and an elongated base member having a first end edge, a spaced second end edge, a base surface, and a base longitudinal axis extending between the first and second end edges, each of the respective first and second end faces having a top edge, the opposed first and second end faces each being positioned with respect to the base member such that a portion of the top edge of the respective end face is positioned in substantially overlying registration with a portion of the base surface, wherein each of the respective first and second end faces has a face longitudinal axis that forms an obtuse angle with respect to the longitudinal axis of the base member.
This application claims priority to and the benefit of U.S. Provisional Application No. 60/580,996, entitled “Light Fixture and Lens Assembly for Same,” filed on Jun. 18, 2004, which is incorporated in its entirety in this document by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to light fixtures for illuminating architectural spaces. The invention has particular application in light fixtures using fluorescent lamps, such as the T5 linear fluorescent lamp, as the light source. 2. Background Art Numerous light fixtures for architectural lighting applications are known. In the case of fixtures that provide direct lighting, the source of illumination may be visible in its entirety through an output aperture of the light fixture or shielded by elements such as parabolic baffles or lenses. A light fixture presently used in a typical office environment comprises a troffer with at least one fluorescent lamp and a lens having prismatic elements for distributing the light. Also known are light fixtures that use parabolic reflectors to provide a desired light distribution. The choice of light fixture will depend on the objectives of the lighting designer for a particular application and the economic resources available. To meet his or her design objectives, the lighting designer, when choosing a light fixture, will normally consider a variety of factors including aesthetic appearance, desired light distribution characteristics, efficiency, lumen package, maintenance and sources of brightness that can detract from visual comfort and productivity. An important factor in the design of light fixtures for a particular application is the light source. The fluorescent lamp has long been the light source of choice among lighting designers in many commercial applications, particularly for indoor office lighting. For many years the most common fluorescent lamps for use in indoor lighting have been the linear T8 (1 inch diameter) and the T12 (1½ inch diameter). More recently, however, smaller diameter fluorescent lamps have become available, which provide a high lumen output from a comparatively small lamp envelope. An example is the linear T5 (⅝ inch diameter) lamp manufactured by Osram/Sylvania and others. The T5 has a number of advantages over the T8 and T12, including the design of light fixtures that provide a high lumen output with fewer lamps, which reduces lamp disposal requirements and has the potential for reducing overall costs. The smaller-diameter T5 lamps also permit the design of smaller light fixtures. Some conventional fluorescent lamps, however, have the. significant drawback in that the lamp surface is bright when compared to a lamp of larger diameter. For example, a conventional T5 lamp can have a surface brightness in the range of 5,000 to 8,000 footlamberts (FL), whereas the surface brightness of the larger T8 and T12 lamps generally is about 3,000 FL and 2,000 FL, respectively (although there are some versions of linear T8 and T12 lamps with higher brightness). The consequence of such bright surfaces is quite severe in applications where the lamps may be viewed directly. Without adequate shielding, fixtures employing such lamps are very uncomfortable and produce direct and reflected glare that impairs the comfort of the lighting environment. Heretofore, opaque shielding has been devised to cover or substantially surround a fluorescent lamp to mitigate problems associated with light sources of high surface brightness; however, such shielding defeats the advantages of a fluorescent lamp in regions of distribution where the lamp's surfaces are not directly viewed or do not set up reflected glare patterns. Thus, with conventional shielding designs, the distribution efficiencies and high lumen output advantages of the fluorescent lamp can be substantially lost. A further disadvantage to traditional parabolic and prismatic troffers is the presence of distracting dynamic changes in brightness level and pattern as seen by a moving observer in the architectural space. Additionally, traditional parabolic and prismatic troffers allow direct or only slightly obscured views of the lamp source(s)) at certain viewing angles (low angles for both the parabolic and prismatic and most transverse angle for prismatic). This unaesthetic condition is remedied by indirect and direct-indirect fixture designs, but typically with a significant loss of efficiency. Another known solution to the problem of direct glare associated with the use of high brightness fluorescent lamps is the use of biax lamps in direct-indirect light fixtures. This approach uses high brightness lamps only for the uplight component of the light fixture while using T-8 lamps with less bright surfaces for the light fixture's down-light component. However, such design approaches have the drawback that the extra lamps impair the designer's ability to achieve a desired light distribution from a given physical envelope and impose added burdens on lamp maintenance providers who must stock and handle two different types of lamps. Conventional parabolic light fixture designs have several negative features. One of these is reduced lighting efficiency. Another is the so-called “cave effect,” where the upper portions of walls in the illuminated area are dark. In addition, the light distribution of these fixtures often creates a defined line on the walls between the higher lit and less lit areas. This creates the perception of a ceiling that is lower than it actually is. Further, when viewed directly at high viewing angles, a conventional parabolic fixture can appear very dim or, even, off. The present invention overcomes the above-described disadvantages of light fixtures using brighter light sources by providing a configuration that appears to a viewer as though it has a source of lower brightness, but which otherwise permits the light fixture to advantageously and efficiently distribute light generated by the selected lamp, such as the exemplified T5 lamp. The light fixture of the present invention reduces distracting direct glare associated with high brightness light sources used in direct or direct-indirect light fixtures. This reduction in glare is accomplished without the addition of lamps and the added costs associated therewith. SUMMARY OF THE INVENTION The present invention relates to a light fixture, or troffer, for efficiently distributing light emitted by a light source into an area to be illuminated. In one general aspect of the invention, the light fixture includes a reflector assembly that supports the light source. The light fixture may also include a lens assembly positioned with respect to a portion of the reflector assembly to receive light emitted by the light source and distribute it such that glare is further reduced. In a preferred embodiment, the lens assembly receives and distributes substantially all of the light emitted by the light source. In one aspect, the reflector assembly of the light fixture includes a base member that extends longitudinally between spaced edges along a longitudinal axis. At least a portion of the base member can form a reflective surface, which is preferably a curved reflective surface. In one aspect, the reflector assembly supports the light source such that the longitudinal axis of the light source is substantially parallel to that of the base member. The light source is preferably supported in a recessed portion of the reflector assembly whereby high angle glare in directions transverse to the longitudinal axis of the light fixture is blocked by the lower side edges of the light fixture. The light source can be a conventional lamp, such as, for example, a T5 lamp. In another aspect, the lens assembly includes a lens that has a first end edge, an opposed second end edge, and a central lens portion that extends longitudinally between the first and second end edges. In one aspect, the lens has a lens longitudinal axis that is generally parallel to the light longitudinal axis. The central portion of the lens has a prismatic surface that defines a face that can be oriented toward or away from the light source. In one aspect, the central lens portion is curved and can have a concave, convex, or planar shape in cross-section. In an alternative aspect, the lens assembly may include a diffuser inlay that is positioned in substantially overlying registration with a portion of the face of the central lens portion that faces the light source. In one embodiment, the prismatic surface of the central lens portion is concave relative to the light source. At least a portion of the prismatic surface defines an array of contiguous and parallel prismatic elements. In one example, each prismatic element extends generally longitudinally substantially between the first and second edges of the lens. In one example, the prismatic elements each have a curved surface that subtends an angle, in a transverse vertical plane, of about and between 80° to 120° with respect to their center of curvature. The lens is preferably detachably secured to a portion of the reflector assembly in overlying registration with the light source. In one aspect, a portion of the reflector assembly and a portion of the lens substantially enclose the light source so that, to an external viewer, the light source is substantially hidden from view. In one example, to the external viewer, the array of linear extending prismatic elements presents to the viewer an array of spaced, longitudinally extending shadows, or dark stripes, on the lens. Thus, the lens assembly of the present invention provides an aesthetically more pleasing appearance as well as efficiently distributing the light generated by the light source onto portions of the reflective surfaces of the reflector assembly and onto the desired area to be illuminated. The lens assembly and reflector assembly of the present invention increase the light efficiency of the light fixture and diffuse the light relatively uniformly, which minimizes the “cave effect” commonly noted in areas using conventional parabolic light fixtures in the ceiling. In one embodiment, the light fixture or troffer of the present invention results in a luminare efficiency that is greater than 80%, preferably. BRIEF DESCRIPTION OF THE FIGURES These and other features of the preferred embodiments of the invention will become more apparent in the detailed description in which reference is made to the appended drawings wherein: FIG. 1 is an exploded top perspective view of one embodiment of the light fixture of the present invention. FIG. 2 is an exploded bottom perspective view of the light fixture of FIG. 1. FIG. 3 is a bottom perspective view of the light fixture of FIG. 2. FIG. 4 is a cross-sectional view of the light fixture of FIG. 3, taken along line 4-4. FIG. 5A is a cross-sectional view of the light fixture of FIG. 3, taken along line 5-5. FIG. 5B is a cross-sectional view of one embodiment of the light fixture, showing the central lens portion having a concave shape. FIG. 5C is a cross-sectional view of one embodiment of the light fixture, showing at least a portion of the central lens portion having a flat shape. FIG. 6 is an exploded bottom perspective view of a second embodiment of the light fixture of the present invention. FIG. 7 is a partial perspective view of a housing of the light fixture showing one embodiment of a closure plate releaseably connected to a port in a ballast enclosure. FIG. 8 is an exploded top perspective view of one embodiment of a lens assembly of the light fixture of the present invention showing an elongated lens and a diffuser inlay. FIG. 9 is a cross-sectional view of the lens assembly of FIG. 8, taken along line 9-9. FIG. 10 is an enlarged partial cross-sectional view of the lens assembly of FIG. 8, showing one embodiment of an array of prismatic elements disposed on a surface of the lens. FIG. 11 is an enlarged partial cross-sectional view of the lens assembly, showing an alternative embodiment of the array of prismatic elements. FIGS. 12 and 13 are enlarged partial cross-sectional views of the lens assembly, showing still further alternative embodiments of the array of prismatic elements. FIG. 14 shows an enlarged partial cross-sectional view of one embodiment of the lens assembly of the present invention with the diffuser inlay in registration with a portion of the prismatic surface of the lens. FIG. 15 is a partial cross-sectional view of the light fixture of FIG. 3, taken along line 15-15, showing exemplary paths of light emitted from a high-intensity light source housed within the light fixture above the ceiling plane. FIG. 16 shows illumination test results for an exemplary prior art 3-lamp T8 parabolic troffer. FIG. 17 shows illumination test results for an exemplary 2-lamp T5 light fixture of the present invention. FIG. 18 shows an exemplary path of a reverse ray of light, in a vertical plane transverse to the longitudinal axis of the light fixture, entering the face of the lens, the face being oriented away from the light source. FIG. 19 shows an exemplary path of a reverse ray of light, in a vertical plane transverse to the longitudinal axis of the light fixture, being rejected out of the face of the lens, the face being that is oriented away from the light source. FIG. 20 shows an exemplary path of a reverse ray of light, in a vertical plane parallel to the longitudinal axis of the light fixture, entering the face of the lens and being rejected out of the face of the lens, the face being oriented away from the light. FIG. 21 is a perspective view of the exemplary path of a reverse ray of light. DETAILED DESCRIPTION OF THE INVENTION The present invention is more particularly described in the following exemplary embodiments that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. As used herein, “a,” “an,” or “the” can mean one or more, depending upon the context in which it is used. The preferred embodiments are now described with reference to the figures, in which like reference characters indicate like parts throughout the several views. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. Referring to FIGS. 1-6, a light fixture 10 or troffer of the present invention for illuminating an area includes a reflector assembly 20 for housing a linear light source 12. The light source extends along a light longitudinal axis between a first end 14 and a spaced second end 16. Light emanating from the light source 12 is diffused by a lens assembly 100 that is positioned between the light source 12 and the area to be illuminated. The light source 12 may be a conventional fluorescent lamp, and in one aspect, the light source 12 can be a conventional T5 lamp. The reflector assembly 20 of the light fixture includes an elongated base member 22 that has a first end edge 24, a spaced second end edge 26, a first longitudinally extending side edge 28 and an opposed second longitudinally extending side edge 29. The base member 22 further has a base surface 30 extending along a base longitudinal axis. The base member can be formed from a single piece of material or from a plurality of adjoined pieces. As one will appreciate, the reflector assembly can be formed from any code-compliant material. For example, the base member can be formed from steel. A portion of the base surface 30 of the base member 22 forms at least one longitudinally extending hollow 32 that extends inwardly in the transverse dimension away from the respective first and second longitudinally extending side edges. Each hollow 32 has a first hollow edge 34 and a second hollow edge 36. Each hollow 32 extends inwardly to a central portion 38 between the respective first and second hollow edges 34, 36. The central portion defines a longitudinally extending trough 40 that extends inwardly away from the surface of the hollow 32. At least a portion of each hollow 32 preferably forms a reflective surface 33 extending between central portion 38 and a respective one of the first and second hollow edges 34, 36. In one embodiment, at least a portion of a section of each hollow 32 normal to the base longitudinal axis has a generally curved shape such that such that portions of the hollow 32 form a generally curved reflective surface 35 for diffusely reflecting light received from the lens into the architectural space in a desired pattern. In one embodiment, the transverse section of the hollow can have a conventional barrel shape. In an alternative embodiment, a portion of each hollow 32 can have at least one planar portion. In one aspect, at least a portion of the hollow of the base surface 30 of the base member can be painted or coated with a reflective material or formed from a reflective material. The reflective material may be substantially glossy or substantially flat. In one example, the reflective material is preferably matte white to diffusely reflect incident light. The central portion 38 of the light fixture is preferably symmetrically positioned with respect to the first and second hollow edges 34, 36. The light fixture 10 of the present invention can include one or more hollows 32 that each houses a light source 12. For example, in a light fixture having a hollow, the first and second hollow edges 34, 36 of the hollow would extend generally to respective longitudinally extending side edges 28, 29 of the base member 22. In an alternative example, in which the light fixture 10 has two hollows, the base member 22 defines a pair of adjoining, parallel hollows. Here, a first hollow edge 34 of a first hollow 32′ extends generally to the first side edge 28 of the base member, and a second hollow edge 36 of a second hollow 32″ of the pair of hollows extends generally to the second side edge 29 of the base member. The second hollow edge 36 of the first hollow 32′ and the first hollow edge 34 of the second hollow 32″ are adjoined in one example. Alternatively, the second hollow edge 36 of the first hollow 32′ and the first hollow edge 34 of the second hollow 32″ are positioned proximate or near each other. In one aspect, at least a portion of the base surface 30 of the base member 22 has a plurality of male ridges 37 formed thereon that extend longitudinally between the ends of the base member. In an alternative aspect, at least a portion of the base surface 30 of the base member has a plurality of female grooves 39 formed thereon that extend longitudinally between the ends of the base member. Alternatively, the ridges or grooves extend at an angle to the longitudinal axis of the base member. For example, the male ridges or female grooves may extend transverse to the base longitudinal axis (i.e., extending between the respective first and second longitudinally extending side edges 28, 29 of the base member). In one example, at least a portion of the reflective surface 33 of the hollow 32 has the plurality of male ridges 37 formed thereon. In an alternative example, at least a portion of the reflective surface 33 of the hollow 32 has the plurality of female grooves 39 formed therein. In another aspect, each male ridge or female groove 37, 39 can extend substantially parallel to an adjoining male ridge or female groove. The ridges 37 or grooves 39 formed on the hollow 32 provide a diffusely reflecting surface. A trough 40 formed by a top surface 42, a first side trough surface 44 and an opposed second side trough surface 46 is provided for receiving the elongated light source 12. The trough extends along an axis parallel to the longitudinal axis of the light fixture. Each respective first and second side trough surface has a lower edge 48 that is integral with a portion of adjoined hollow 32. In one example, the lower edges of first and second trough surfaces are integral with the reflective surfaces 33 of the adjoined hollow. Each respective first and second side trough surfaces defines a trough surface axis that extends in a vertical plane normal to the base longitudinal axis of the base member. In one aspect, the trough surface axis of each of the first and second trough surfaces 44, 46 respectively forms an angle θ of about and between about 140° to 90° with respect to the top surface 42 of the trough. More particularly, the angle θ can be about and between about 1350° to 95° with respect to the top surface of the trough. Still more particularly, the angle E can be about and between about 130° to 100° with respect to the top surface of the trough. In another aspect, the angle θ formed between each of the respective first and second trough surfaces and the top surface of the trough can be substantially equal. In one aspect of the invention, the light source 12 can be positioned between the base surface of the base member and the lens assembly. In another aspect of the invention, the light source 12 can be positioned therein the trough 40 of the reflector assembly 20 such that the light longitudinal axis is positioned above a plane that extends between the lower edges 48 of the respective first and second trough surfaces. Alternatively, the light source 12 can be positioned therein the trough of the reflector assembly such that the light source is positioned substantially about or above an arcuate section that extends between the lower edges 48 of the respective first and second trough surfaces 44, 46 and is an arcuate continuation of the curvature of the curved reflective surfaces 35 of the hollow. In this aspect, the radius of the arcuate section can have substantially the same radius as the curved portion of the hollow. If the curved reflective surfaces of the hollow are parabolic, the arcuate section is a parabolic extension of the parabolas of the curved reflective surface. The reflector assembly 20 can also include a first end face 50 and an opposed second end face 52. Each of the end faces extends upwardly from a respective bottom edge 54 toward the top of the light fixture to a top edge 54. Each end face has a face longitudinal axis that forms an obtuse angle with respect to the longitudinal axis of the base member 22. In one aspect, the end faces 50, 52 are positioned with respect to the base member such that a portion of the top edge 54 of the end faces 50, 52 is positioned in substantial overlying registration with portions of the base surface 30. It is contemplated that at least a portion of the top edge 54 can contact at least a portion of the base surface 30. In another aspect, at least a portion of the top edge 54 is spaced inwardly from the end edges 24, 26 of the base member. The angled first and second end faces 50, 52 optically alter the apparent perspective of the light fixture and aesthetically give the light fixture a deeper appearance. In one aspect, the face longitudinal axis of each of the first and second end faces 50, 52 respectively forms an angle Ω of about and between 950° to 160° with respect to the base longitudinal axis of the base member 22. More particularly, the face longitudinal axis of each of the first and second end faces respectively forms an angle Ω of about and between 100° to 150° with respect to the base longitudinal axis. Still more particularly, the face longitudinal axis of each of the first and second end faces respectively forms an angle Ω of about and between 100° to 135° with respect to the base longitudinal axis. In another aspect, the face longitudinal axis of each of the first and second end faces respectively forms an angle Ω of about 120° with respect to the base longitudinal axis. In yet another aspect, the respective obtuse angles formed between the face longitudinal axis of the first end face 50 and the face longitudinal axis of the second end face 52 and the base longitudinal axis of the base member 22 are substantially equal. Alternative shapes of the first and second end faces 50, 52 are contemplated. Each of the first and second end faces may be substantially planar or non-planar. In the non-planar embodiments, portions of the first and second end faces are curved. The curved portions of the first and second end faces can be substantially concave or substantially convex. Portions of the first and second end faces can also have male ridges 37 or female grooves 39 formed thereon. The male ridges or female grooves can be sized, shaped and oriented to visually complement the male ridges 37 or female grooves 39 on the base member 22, as described above. The light fixture 10 of the present invention also includes a housing 60 having a first end wall 62 and a second end wall 64. In one aspect, the first end wall 62 is connected to a portion of the first end edge 24 of the base member 22 and the second end wall is connected to a portion of the second end edge 26 of the base member 22. In this aspect, a portion of a bottom edge 55 of the first end face 50 can be connected to a bottom portion 63 of the first end wall 62 of the housing and a portion of a bottom edge 55 of the second end face 52 is connected to a bottom portion 63 of the second end wall 64 of the housing. In one example, the first end wall 62 and the first end face 50 can be formed integral to each other. Similarly, the second end wall 64 and the second end face 52 can be formed integral to each other. The first end wall 62 can be positioned substantially perpendicular to the base member 22 adjacent the first end edge of the base member. Similarly, the second end wall 64 can be positioned substantially perpendicular to the base member 22 adjacent the second end edge of the base member. In one aspect, each of the first and second end faces 50, 52 define an opening 56 that is constructed and arranged to receive at least a portion of a selected end 14, 16 of the light source 12. In this aspect, portions of the respective first and second end faces 50, 52, portions of the respective first and second end walls 62, 64, and portions of the base surface 30 each define a chamber 58 adjacent the respective top edges 54 of the first and second end faces. The chamber 58 is in operative communication with the opening 56 in the respective first and second faces 50, 52 and is constructed and arranged to receive at least a portion of a selected end 14, 16 of the light source therein. The brighter conventional lamps, such as the exemplified T5 lamp, are typically shorter and have an elongated dark portion proximate its ends when compared to other conventional elongated fluorescent lamps, such as, for example, conventional T8 and T12 lamps. Thus, in use, the chambers prevent the darkened ends of the selected light source from being visible through the lens assembly. In one aspect, each chamber 58 is constructed and arranged to mount an electrical contact 59 or receptacle for detachably securing a selected end of the light source thereto. In one example, the electrical contact 59 is mounted onto a portion of the base surface 30 of the base member 22 that partially defines the chamber 58. It is contemplated that the electrical contact 59 can be mounted to any of the surfaces that define the chamber 58. Referring to FIGS. 1 and 7, the housing of the light fixture can also include at least one angled cover 65. In one aspect, each angled cover has a first panel 66 and a second panel 67 that are connected to each other at a common, angled edge 68. Each first panel 66 has a first side edge 70 and each second panel 67 has a second side edge 72. A first side edge 70 of the first panel 66 of a first angled cover 65′ has a first side edge that is connected to a portion of the first longitudinal side edge 28 of the base member 22. The second side edge 72 of the second panel 67 of the first angled cover 65′ has a second side edge that is connected to a portion of the base top surface 31 of the base member 22. In one example, the first panel 66 of the first angled cover 65′ is substantially perpendicular to the base member 22 adjacent the first longitudinally extending side edge 28 of the base member. In another example, the first and second panels 66, 67 of the at least one angled cover 65 are substantially perpendicular to each other. In one aspect, the first angled cover 65′ extends between the first and second end walls 62, 64 such that portions of the first angled cover, portions of the respective first and second end walls 62, 64 and portions of the base top surface 31 define a first ballast enclosure 74′. The light fixture 10 also includes at least one conventional light ballast 76 constructed and arranged for electrically connecting the light source to an external power source. In one aspect, the at least one ballast 76 is positioned within the interior of the first ballast enclosure 74′. To access the ballast, a portion of the first angled cover 65′ of the housing 60 of the light fixture defines a first port 78′ that is in communication with the interior of the first ballast enclosure 74′. In one aspect, the first port is positioned adjacent the angled edge 68 of the first angled cover 65′. The housing 60 may also include a first closure plate 79′ that is constructed and arranged for releasable connection to the first angled cover 65′. In a closed position, the first closure plate is in substantial registration with the first port 78′ so that the at least one ballast positioned within the first ballast enclosure 74′ can be selectively enclosed. In one aspect, at least a portion of the first port 78′ is defined in a portion of the second panel 67 of the first angled cover 65′. In another aspect, at least a portion of the first port 78′ is defined in a portion of the first panel 66 of the first angled cover 65′. In this example, the defined portion of the first port 78′ is spaced from the first side edge 70 of the first panel 66 of the first angled cover a predetermined distance. The predetermined distance is greater than the height of a conventional ceiling panel that would typically abut the bottom portion of the light fixture. Because the predetermined distance is greater than the conventional height of a ceiling panel, the first closure plate 79′ can be removed without binding onto the abutting ceiling panel or ceiling support apparatus. In an alternative example, a portion of the first port 78′ is defined in a portion of both the first and second panels 66, 67. Here, the defined portion of the first port in the first panel is spaced from the first side edge of the first panel of the first angled cover 65′ the predetermined distance. In this example, portions of the first closure plate 79′ are positioned at an angle with each other that is complementary to the angle formed between the first and second panels 66, 67 of the first angled cover. The at least one angled cover can also include a second angled cover 65″. In this example, the first side edge 70 of the first panel 66 of the second angled cover 65″ is connected to a portion of the second longitudinally extending side edge 29 of the base member 22 and the second side edge 72 of the second panel 67 of the second angled cover is connected to a portion of the base top surface 31 of the base member. Similar to the first angled cover, the second angled cover extends between the first end wall 62 and the second end wall 64 such that portions of the first and second end walls 62, 64, portions of the second angled cover 65″, and portions of the base top surface 31 define a second ballast enclosure 74″. The second ballast enclosure can remain empty or a second ballast 76″ of the at least one ballast can be positioned within the interior of the second ballast enclosure as the electrical demands of the use of the light fixture dictate. As one will appreciate, the second ballast of the at least one ballast can be in electrical communication with the light source and the external power source. In this example, a portion of the second angled panel can define a second port 78″ adjacent the angled edge that is in communication with the second ballast enclosure 74″. A second closure plate 79″ is provided that is constructed and arranged for releasable connection to the second angled panel 65″ such that, in a closed position, the second closure plate 79″ is in, substantial registration with the second port. Thus, the second ballast 78″ of the at least one ballast positioned in the second ballast enclosure 74″ can be selectively enclosed. In one aspect, at least a portion of the second port 78″ is defined in a portion of the first panel 66 of the second angled cover 65″ and is spaced from the first side edge 70 of the first panel 66 the predetermined distance for clearance from abutting ceiling panels. Alternatively, at least a portion of the second port 78″ is defined in a portion of the second panel 67 of the second angled cover. In one other embodiment, at least a portion of the second port 78″ is defined in a portion of the first panel 66 of the second angled cover (spaced from the first side edge 70 of the first panel the predetermined distance) and at least a portion of the second port 78″ is defined in a portion of the second panel 67 of the second angled cover 65″. Here, portions of the second closure plate 79″ are positioned at an angle with each other that is complementary to the angle formed between the first and second panels 66, 67 of the second angled cover 65″. In an alternative embodiment, suitable for retrofit applications, the housing can be a pre-existing housing that, for example, is conventionally mounted therein a ceiling. In this embodiment, the reflector assembly of the present invention is connected to the pre-existing housing. In one aspect, at least a portion of the base member defines an access port. A movable cover is provided that can be opened and closed by an operator to access a ballast that is disposed in an interior cavity that is formed between the back of the reflector assembly and portions of the pre-existing housing. In an alternative embodiment, the light fixture is suspended from the ceiling. In this embodiment, the reflector assembly can be connected to a housing that defines an interior cavity sized to accept the electrical ballast therein. The housing is spaced from the ceiling a predetermined distance and is mounted to the ceiling via conventional suspension means. Alternatively, the ballast can be mounted onto a portion of the surface of the base member that is oriented towards the ceiling. Here, the base member is spaced from the ceiling a predetermined distance and is mounted to the ceiling via conventional mounting means. As one will appreciate, it is contemplated that such a suspended light fixture could include one of more hollows. For example, in a suspended light fixture having a single hollow, the respective first and second side edges would extend to the edges of the base member. In an example having a pair of parallel hollows, the first hollow edge of a first hollow extends to one side edge of the base member and the second hollow edge of the second hollow edge extends to the other side edge of the base member. In one aspect, the trough of the reflector assembly of the suspended light fixture is integral with a portion of an adjoined hollow. In another aspect, the reflector assembly of the suspended light fixture includes at least one end face that is positioned at an obtuse angle with respect to the base member of the reflector assembly. Referring to FIGS. 1-6 and 8-15, the lens assembly 100 of the present invention is constructed and arranged to direct light emitted by the light source 12 onto the area to be illuminated. A basic function of the lens assembly 100 is to diffuse the light from the light source 12 to effectively hide the light source 12 itself from view while reducing its brightness. Thus, one function of the lens assembly is to effectively become the source of light for the light fixture. This is accomplished in the preferred embodiment by providing the lens 110 of the lens assembly with a plurality of longitudinally extending prismatic elements with short focal lengths. Because of the short focal lengths of the prismatic elements, the light from the light source is focused to parallel images very close to the surface of the lens at large angles of convergence. Because of the large angles of convergence, the images overlap and the light is essentially diffused. The diffused light is then either directed onto the surface to be illuminated without further reflection or is reflected by the reflective surfaces of the hollow 32. Thus, the lens assembly provides a diffuse source of lowered brightness. The light source 12 is mounted in the trough and is recessed with respect to the side edges of the reflector assembly. This allows the lens 110 to be placed higher in the light fixture and provides geometric control of high-angle rays emanating from the lens in the transverse direction. Thus, light rays produced at high viewing angles are physically blocked by the bottom longitudinally extending side edges 28, 29 of the light fixture, which prevents glare at high angles in that transverse direction. The light fixture of the invention controls glare in the longitudinal direction, however, optically. High angle glare is reduced in the longitudinal direction as illustrated in FIGS. 18-21 and as described below. Thus, in this aspect, the light fixture of the invention prevents glare at high viewing angles through two mechanisms, geometrically in the transverse direction and optically in the longitudinal direction. In one aspect, the lens assembly 100 includes a lens 110 having a first end edge 112, an opposed second end edge 113, and a central lens portion 114 that extends between the first and second edges. The central lens portion 114 has a lens longitudinal axis that extends between the first and second end edges. In one example, the lens longitudinal axis is generally parallel to the light longitudinal axis of the light source 12. In use, the lens 110 of the lens assembly is positioned with respect to the reflector assembly 20 of the light fixture such that substantially all of the light emitted by the light source 12 passes through the lens 110 prior to impacting portions of the reflective surfaces 33 of the reflector assembly and/or prior to being dispersed into the surrounding area. The lens 110 can be made from any suitable, code-compliant material such as, for example, a polymer or plastic. For example, the lens 110 can be constructed by extruding pellets of meth-acrylate or polycarbonates into the desired shape of the lens. The lens 110 can be a clear material or translucent material. In another aspect, the lens can be colored or tinted. Referring to FIGS. 5A-5C, the central lens portion 114 of the lens has a prismatic surface 116 on a face 118 of the central lens portion that is either spaced from and facing toward the light source 12 or, alternatively, spaced from and facing away from the light source 12. In one aspect of the invention, the central lens portion 114 is curved in cross-section such that at least a portion of the face 118 of the central lens portion has a concave or convex shape relative to the light source. In an alternative embodiment, at least a portion of the central lens portion 114 is planar in cross-section. In one aspect, the lens 110 is positioned within the reflector assembly so that it is recessed above a substantially horizontal plane extending between the first and second longitudinally extending side edges 28, 29. In a further aspect, the lens is recessed within the reflector assembly such that a plane bisecting one of the respective first and second longitudinally extending side edges and a tangential portion of the lens is oriented at an acute angle γ to the generally horizontal plane extending between the first and second longitudinally extending side edges 28, 29. In one aspect, the acute angle γ is about and between 3° to 30°. More particularly, the acute angle γ is about and between 05° to 20°. Still more particularly, the acute angle γ is about and between 10° to 15°. The recessed position of the lens assembly within the reflector assembly provides for high angle control of light emitted by the flight fixture in a vertical plane normal to the base longitudinal axis of the base member. In use, an observer approaching the ceiling mounted light fixture of the present invention from the side (i.e., from a direction transverse to the base longitudinal axis) would not see the lens assembly until they passed into the lower viewing angles. In effect, portions of the reflector assembly act to block the view of the lens assembly from an observer at the higher viewing angles (i.e., the viewing angles closer to the horizontal ceiling plane). In one aspect, as shown in FIGS. 8-17, the prismatic surface 116 of the lens defines an array of linearly extending prismatic elements 120. In one example, each prismatic element 122 thereof can extend substantially longitudinally between the first and second edge edges 112, 114 of the lens. Alternatively, each prismatic element 122 thereof can extend linearly at an angle relative to the lens longitudinal axis. For example, each prismatic element thereof can extend generally transverse to the lens longitudinal axis. In a further aspect, each prismatic element 122 can have substantially the same shape or, alternatively, can vary in shape to effect differing visual effects on an external observer, lighting of the hollow surface, or light distribution to the room. In one aspect, each prismatic element has a portion that is rounded or has a curved surface. In one aspect, in section normal to the lens longitudinal axis, each prismatic element has a base 124 and a rounded apex 126. Each prismatic element extends toward the apex 126 substantially perpendicular with respect to a tangent plane that extends through the base 124. In one aspect, an arcuate section or curved surface 128, normal to the lens longitudinal axis, of each prismatic element 122 subtends an angle β of about and between 85° to 130° with reference to the center of curvature of the arcuate section. More particularly, the arcuate section 128 of each prismatic element forms an angle β of about and between 90° to 120°. Still more particularly, the arcuate section 128 forms an angle β of about and between 950° to 110°. In another aspect, the arcuate section 128 forms an angle β of about 100°. In one aspect, the arcuate section 128 extends from a first cusp edge 130 of the prismatic element 122 to an opposed second cusp edge 132. In this example, adjoining prismatic elements are integrally connected at a common cusp edge 130, 132,133. Alternatively, the arcuate section 128 may be formed in a portion of the apex 126 of the prismatic element 122, such that adjoining prismatic element are integrally connected at a common edge 133. In this example, portions of the prismatic element 122 extending between the arcuate section and the common edge 133 can be planar or non-planer, as desired. It should be understood that other configurations and shapes are contemplated where the cross section of the optical elements is not strictly circular, and includes, for example, parabolic, linear, or other shapes. In one aspect, the base 124 of each prismatic element 122 has a width (w) between its respective common edges of about and between 0.5 inches to 0.01 inches. More particularly, the base of each prismatic element has a width between its respective common edges of about and between 0.3 inches to 0.03 inches. Still more particularly, the base of each prismatic element has a width between its respective common edges of about and between 0.15 inches to 0.05 inches. In another aspect, as shown in FIG. 4, a section of the array of prismatic elements 120 has a shape of a continuous wave. The section can be normal to the lens longitudinal axis. In one aspect, the shape of the continuous wave is a periodic waveform that has an arcuate section 128 formed in both the positive and negative amplitude portions of the periodic waveform (i.e., two prismatic elements are formed from each periodic waveform). The period of the periodic waveform can be substantially constant or may vary along the array of prismatic elements. In one aspect, the periodic waveform is a substantially sinusoidal waveform. In this example, the common cusp “edge” 130,132 between the two prismatic elements 122 forming from each periodic waveform occurs at the transition from positive/negative amplitude to negative/positive amplitude. In one aspect, the arcuate section 128 of each prismatic element 122 within each of the positive and negative amplitude portions of the periodic waveform subtends an angle λ of about and between 85° to 130° with reference to a center of curvature of the arcuate section. More particularly, the arcuate section 128 of each prismatic element within each of the positive and negative amplitude portions of the periodic waveform forms an angle λ of about and between 90° to 120°. Still more particularly, the arcuate section 128 of each prismatic element within each of the positive and negative amplitude portions of the periodic waveform forms an angle λ of about and between 950° to 110° with respect to the base longitudinal axis. In another aspect, the arcuate sections 128 within each of the positive and negative amplitude portions of the periodic waveform form an angle λ of about 100°. In one aspect, the period P of each prismatic element is about and between 1.0 inches to 0.02 inches. More particularly, the period P of each prismatic element is about and between 0.6 inches to 0.06 inches. Still more particularly, the period P of each prismatic element is about and between 0.30 inches to 0.10 inches. The lens 110 of the light assembly 100 is constructed and arranged for detachable connection to the light fixture 10 or troffer. In one aspect, when positioned relative to the base member 22, the central lens portion 114 of the lens assembly can extend generally parallel to the light longitudinal axis and generally symmetric about a plane that extends through the light longitudinal axis. In one other aspect, the plane of symmetry extends through the area desired to be illuminated. In one example, the lens 110 is constructed and arranged for detachable connection to a portion of the base surface 30 of the reflector assembly 20. In one particular example, the lens 110 is constructed and arranged for detachable connection to a portion of the trough 20 defined in the base member 22. In one aspect, the elongated lens 110 has a first arm 140 that is connected to a first lens edge 115 of the central lens portion 114 and a second arm 142 that is connected to a second lens edge 117 of the central lens portion 114. λ portion of the each respective first and second arm 140, 142 is constructed and arranged for being detachable secured to portions of the trough 40. In one example, a portion of the first arm 140 is constructed and arranged for being detachably secured to a portion of the first side trough surface 44 and a portion of the second arm 142 is constructed and arranged for being detachable secured to a portion of the second side trough surface 46. In one example, each of the first and second side trough surfaces 44, 46 has at least one male protrusion 45, such as, for example, at least one tab, extending inwardly into the interior of the trough 40. Each of the first and second arms 140, 142 of the lens 110 has an end portion 144 that is sized and shaped for detachable engagement with the at least one male protrusion 45 in each respective first and second trough surfaces. Alternatively, each of the first and second side surfaces 44, 46 can define at least one slot 47 that is constructed and arranged to complementarily engage a male protrusion 145 projecting from the end portion 144 of each of the respective first and second arms 140, 142 of the lens. In use, the lens 110 may be removed from the reflector housing by applying force to the respective first and second lens edges 115, 117 of the central lens portion 114. The application of force causes the central lens portion 114 to bend and, resultantly, causes the respective end portions 144 of the first and second arms 140, 142 to move toward each other. Removal of the applied force allows the lens 110 to return toward its unstressed shape and allows the respective end portions 144 of the first and second arms 140,142 to move away from each other. In one aspect, each of the first and second arms of the lens has a bottom portion 146 that is connected to the respective first and second lens edges 115, 117 and extends toward the end portions 144 of the respective arms 140, 142. The bottom portion 146 can be planar or non-planer in shape. In one example, the bottom portion 146 extends substantially between the first end edge 112 and the second end edge 113 of the lens. In one example, in use, when the lens 110 is detachably secured to the trough 40 of the reflector assembly 20, a portion of the bottom portion 146 of each of the first and second arms of the lens is detachably positioned adjacent to a portion of the respective lower edges 48 of the first and second side trough surfaces 44, 46. In one aspect of the invention, a portion of the bottom portion 146 of each of the first and second arms 140, 142 of the lens 110 is positioned at an acute angle with respect to the reflective surface 33 of the hollow 32 adjacent the respective lower edge 48 of the first and second trough surfaces 44, 46. In this example, the portion of the bottom portion 146 of each of the first and second arms of the lens overlies a portion of the reflective surface 33 of the hollow 32 adjacent the respective lower edge 48 of the first and second trough surfaces. Here, the distance between the respective first and second lens edges 115, 117 of the lens 110 is greater than the distance between the respective lower edges 48 of the first and second side trough surfaces 44, 46. In the embodiment described immediately above, each of the respective first and second lens edges 115, 117 is spaced from and overlies a portion of the reflective surfaces 33 of the hollow 32. Alternatively, the respective first and second lens edges 115, 117 may be positioned adjacent a portion of the respective lower edges 48 of the first and second side trough surfaces 44,46. In this particular embodiment, the lens 110 generally does not overly a portion of the curved reflective surface 33 of the hollow. In one aspect, portions of the lens 110 that are positioned adjacent the surface of the reflective assembly 20 are sized and shaped to be in close overlying registration with portions of the reflector assembly when the lens 110 is detachably secured to the reflector assembly 20. For example, each of the respective first and second ends 112, 113 of the lens are sized and shaped to be positioned adjacent to and in close overlying registration with portions of the reflector assembly 20, such as, for example, portions of the first and second end faces, if used. Thus, the light source 12 housed within the trough 40 of the reflector assembly 20 is substantially enclosed when the lens 110 is detachably secured to the reflective assembly. In one aspect, when the lens assembly is positioned within the reflector assembly, the light source is positioned below a plane bisecting the respective first or second longitudinally extending side edges 28, 29 and the adjacent respective first or second lens edges 115, 117. In this example, the relative position and shape of the reflector assembly and the lens assembly would prevent an observer, approaching the light fixture from a direction transverse to the base longitudinal axis, from viewing the light source through the bottom portion of the respective first or second arms of the lens. The lens assembly 100 can also include a conventional diffuser inlay 150, such as, for example, a OptiGrafix™ film product, which is a diffuser film that can be purchased from Grafix® Plastics. The diffuser inlay 150 can be pliable or fixed in shape, transparent, semi-translucent, translucent, and/or colored or tinted. In one example, the diffuser inlay 150 has relatively high transmission efficiency while also scattering a relatively high amount of incident light to angles that are nearly parallel to its surface. In one aspect, the diffuser inlay is positioned between a portion of the face 118 of the central lens portion and the light source 12. In another aspect, the diffuser inlay is sized and shaped for positioning in substantial overlying registration with the portion of the face 118 of the central lens portion 114 that is oriented toward the light source 12. The diffuser inlay 150 may be positioned in substantial overlying registration with a portion of the prismatic surface 116 of the central lens portion 114. In one aspect of the present invention, there is a gap 152 formed between portions of the two adjoining rounded prismatic elements 120 extending between the respective apexes of the two adjoined prismatic elements and the bottom face 151 of the diffuser inlay 150. The formed gap enhances the total internal refection capabilities of the lens assembly 100. Referring to FIGS. 16-21, the lens assembly 100 and reflector assembly 20 of the present invention increases the light efficiency of the light fixture 10 and diffuses the light relatively uniformly so that the “cave effect” commonly noted in areas using conventional parabolic light fixtures in the ceiling are minimized. In one embodiment, the light fixture 10 or troffer of the present invention results in a luminare efficiency that is greater than about 80%, preferably greater than about 85%. The efficiency of the light fixture 10 measured by using a goniophotometer to compare the light energy from the light fixture at a given angle with the light from an unshielded light source, as specified in the application testing standard. The test results for an exemplary light fixture of the present invention and comparable results for a conventional parabolic light fixture are included in FIGS. 16 and 17. The light fixture of the present invention has reduced light control relative to conventional parabolic fixtures to provide a lit space (particularly the walls) with a bright appearance while still maintaining adequate control and comfortable viewing for today's office environment. The light fixture 10 of the present invention has a low height profile that allows for easy integration with other building systems and installations in low plenum spaces. In one aspect, the height profile of the light fixture is about or below 5 inches. More particularly, the height profile of the light fixture is about or below 4 inches. In another aspect, the height profile of the light fixture is about 3.25 inches. In one embodiment of the lens assembly 100 discussed above, the central lens portion 114 of the lens 110 has a concave face 118 oriented toward the light source 12 when the lens 110 is detachably secured to and within a portion of the reflector assembly 20. The array of male rounded prismatic elements 120 can be extruded along the length of the lens 110. In use, the lens of the present invention design has a striped visual characteristic to an external observer when back lit. These “stripes” provide for visual interest in the lens 110 and may be sized and shaped to mirror any ridges or grooves disposed therein portions of the reflective surfaces 33 of the hollow 32 of the reflector assembly 20. The “stripes” also help to mitigate the appearance of the image of the lamp (the light source) by providing strong linear boundaries that breakup and distract from the edges of the lamp against the less luminous trough 40 of the reflector assembly 20. In addition, the “stripes” allow for the light fixture 10 of the present invention to provide high angle light control in vertical planes that are substantially parallel to the longitudinal axis of the light fixture. In a preferred embodiment, a primary function of the lens is to optically reduce the brightness of the light source. In addition, the lens reduces the brightness of the light source even further at higher viewing angles in the longitudinal direction by the optical phenomenon of total internal reflection. This allows the efficient use of light sources of higher brightness while nevertheless reducing glare at high viewing angles. It will be appreciated that the light fixture of the invention utilizes a unique combination of features to reduce high-angle glare in the transverse and longitudinal directions. In the transverse direction, high angle glare is controlled primarily by the geometric relationship between the lamp and the reflector assembly of the light fixture, while in the longitudinal direction, high angle glare is controlled primarily by the lens optically. In the preferred embodiment, the lens itself essentially becomes the light source, which effectively reduces lamp brightness in both the transverse and longitudinal directions optically, to further reduce glare associated with lamps of high brightness. Referring now to FIGS. 18 -21, the optical creation of the dark “stripes” in the lens is illustrated. A “reverse ray,” “backward ray” or “vision ray” is a light ray that originates from a hypothetical external viewer's eye and is then traced through the optical system of the light fixture. Although there is no physical equivalent, it is a useful construct in predicting how a particular optical element will look to an observer. In the present invention, on at least one side at the respective common cusp edges 130, 132, 133 of adjoining rounded prismatic elements 122, there exists a sufficiently large angle of incidence ω relative to the normal extending from the point of incidence of the reverse ray at the lens to air interface that a reverse ray will undergo total internal reflection. In one aspect, the angle of incidence ω is at least about 40°. More particularly, the angle of incidence ω is at least about 45. Still more particularly, the angle of incidence ω is at least about 50°. In effect, the array of prismatic elements acts as an array of partial light pipes. Each rounded prismatic element 122 has a sufficiently large angular extent such that some total internal reflection at each common cusp edge is assured regardless of viewing angle. In one aspect, since each arcuate section 128 of each rounded prismatic element 122 is substantially circular, if a reverse ray undergoes total internal reflection at one portion of the arcuate section and is subsequently reflected to another portion of the arcuate section, then total internal reflection will also occur at the second point of incidence because the arcuate section's geometry causes both interactions to have substantially the same angle of incidence. Generally then, a reverse ray that undergoes total internal reflection proximate a common cusp edge 133 will eventually exit the lens 110 out the same outer surface through which it entered the lens and will terminate on a surface or object in the room (as opposed to passing through the lens and terminating on the light source or the trough of the reflector assembly behind the lens). The reverse ray is said to be “rejected” by the lens. This means that the brightness an external viewer will perceive at the common cusp edge 133 of adjoining rounded prismatic elements 122 is the brightness associated with a room surface because any real/forward light ray impinging on the viewer's eyes from this part of the lens must have originated from the room or space. Generally, the brightness of an object or surface in the room is much lower than that of the light source or trough that is viewed through the central portions of the arcuate sections 128 of each prismatic element 122. This high contrast in brightness between the common cusp edge 133 between adjoining rounded prismatic elements 122 and the central portion of the arcuate sections 128 of each prismatic element 122 is so high that it is perceived, to the external viewer, as dark stripes on a luminous background. The linear array of prismatic elements of the lens assembly optically acts in the longitudinal direction to reduce high angle glare. This may be explained by considering a reverse ray that is incident on a portion of the prismatic surface of the lens proximate the common cusp edge 133 at the critical angle (the minimum angle of incidence ω) for total internal reflection of the reverse ray. An observer viewing that portion of the lens (i.e., the portion of the area about the common cusp edge) would perceive it as being “dark” relative to that adjacent “bright” portion of the arcuate section proximate the rounded apex of each individual prismatic element. The array of linear elements thus optically controls the light emitted from the lamp in the longitudinal direction. In one example, as the lens 110 is viewed at higher and higher viewing angles (as when the observer is further from the light fixture) in a vertical plane parallel or near parallel to the base longitudinal axis of the base member, the striping effect become more pronounced. This is a result of the increase in that portion of the prismatic surface of the lens that undergoes total internal reflection and creates the dark strips. This results from viewing the lens at angles greater than the critical angle for total internal reflection of a “reverse ray.” Thus, the effective width of each stripe grows as the lens is viewed at higher viewing angles, which is observed as the lens becoming dimmer at higher viewing angles. In the vertical planes extending between the base longitudinal axis of the reflector assembly and an axis transverse to the base longitudinal axis, higher view angle control is achieved through a combination of the high angle control proffered by the linearly extending array of prismatic elements of the lens, as discussed immediately above, and the lens assembly being recessed within the reflector assembly. In the vertical plane substantially parallel to the base longitudinal axis of the reflector assembly, the optical elements of the lens assembly, i.e., the array of prismatic elements, exert primary glare control of the higher viewing angles. In the vertical plane substantially transverse to the base longitudinal axis of the reflector assembly, the recessed position of the lens assembly within the reflector assembly exerts primary glare control of the higher viewing angles. In one aspect, if the prismatic shapes 122 are regularly spaced apart, the striping effect would also be regularly spaced. In another aspect, the prismatic elements 122 of the present invention can be sized and shaped to ensure some total internal reflection at all viewing angles so that the “striping” is perceptible at all viewing angles. In use, normal movement of a viewer in the room does not change the viewer's vertical angle of view relative to the light fixture very rapidly and at far distances the stripes become less distinct. Therefore, the change is stripe width is not perceived as a dynamic motion but rather as a subtle changing of the overall lens brightness (i.e., brighter at low vertical angles and dimmer when viewed at high vertical angles). The rounded or curved surfaced portions of each prismatic element 122 provide a wide spreading or diffusion of any incident light. The high degree of diffusion helps to obscure the image of the light source 12 as seen through the lens 110 even when the light source is in relatively close proximity to the face of the lens 1 10 that is oriented toward the light source. This becomes increasingly apparent as the lens is viewed at higher vertical angles in the vertical plane substantially parallel to the light source. In another aspect, the rounded or curved surface portions of the prismatic elements 122 provides for a gradual change in the perceived brightness as a result of a change in the angle of view. In yet another aspect, in an embodiment of the invention in which each prismatic element 122 has substantially the same shape, the dark striping and the brighter areas of the lens 110 appear to change uniformly and smoothly from one prismatic element 122 to the next, adjoining prismatic element 122. Although several embodiments of the invention have been disclosed in the foregoing specification, it is understood by those skilled in the art that many modifications and other embodiments of the invention will come to mind to which the invention pertains, having the benefit of the teaching presented in the foregoing description and associated drawings. It is thus understood that the invention is not limited to the specific embodiments disclosed hereinabove, and that many modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention generally relates to light fixtures for illuminating architectural spaces. The invention has particular application in light fixtures using fluorescent lamps, such as the T5 linear fluorescent lamp, as the light source. 2. Background Art Numerous light fixtures for architectural lighting applications are known. In the case of fixtures that provide direct lighting, the source of illumination may be visible in its entirety through an output aperture of the light fixture or shielded by elements such as parabolic baffles or lenses. A light fixture presently used in a typical office environment comprises a troffer with at least one fluorescent lamp and a lens having prismatic elements for distributing the light. Also known are light fixtures that use parabolic reflectors to provide a desired light distribution. The choice of light fixture will depend on the objectives of the lighting designer for a particular application and the economic resources available. To meet his or her design objectives, the lighting designer, when choosing a light fixture, will normally consider a variety of factors including aesthetic appearance, desired light distribution characteristics, efficiency, lumen package, maintenance and sources of brightness that can detract from visual comfort and productivity. An important factor in the design of light fixtures for a particular application is the light source. The fluorescent lamp has long been the light source of choice among lighting designers in many commercial applications, particularly for indoor office lighting. For many years the most common fluorescent lamps for use in indoor lighting have been the linear T8 (1 inch diameter) and the T12 (1½ inch diameter). More recently, however, smaller diameter fluorescent lamps have become available, which provide a high lumen output from a comparatively small lamp envelope. An example is the linear T5 (⅝ inch diameter) lamp manufactured by Osram/Sylvania and others. The T5 has a number of advantages over the T8 and T12, including the design of light fixtures that provide a high lumen output with fewer lamps, which reduces lamp disposal requirements and has the potential for reducing overall costs. The smaller-diameter T5 lamps also permit the design of smaller light fixtures. Some conventional fluorescent lamps, however, have the. significant drawback in that the lamp surface is bright when compared to a lamp of larger diameter. For example, a conventional T5 lamp can have a surface brightness in the range of 5,000 to 8,000 footlamberts (FL), whereas the surface brightness of the larger T8 and T12 lamps generally is about 3,000 FL and 2,000 FL, respectively (although there are some versions of linear T8 and T12 lamps with higher brightness). The consequence of such bright surfaces is quite severe in applications where the lamps may be viewed directly. Without adequate shielding, fixtures employing such lamps are very uncomfortable and produce direct and reflected glare that impairs the comfort of the lighting environment. Heretofore, opaque shielding has been devised to cover or substantially surround a fluorescent lamp to mitigate problems associated with light sources of high surface brightness; however, such shielding defeats the advantages of a fluorescent lamp in regions of distribution where the lamp's surfaces are not directly viewed or do not set up reflected glare patterns. Thus, with conventional shielding designs, the distribution efficiencies and high lumen output advantages of the fluorescent lamp can be substantially lost. A further disadvantage to traditional parabolic and prismatic troffers is the presence of distracting dynamic changes in brightness level and pattern as seen by a moving observer in the architectural space. Additionally, traditional parabolic and prismatic troffers allow direct or only slightly obscured views of the lamp source(s)) at certain viewing angles (low angles for both the parabolic and prismatic and most transverse angle for prismatic). This unaesthetic condition is remedied by indirect and direct-indirect fixture designs, but typically with a significant loss of efficiency. Another known solution to the problem of direct glare associated with the use of high brightness fluorescent lamps is the use of biax lamps in direct-indirect light fixtures. This approach uses high brightness lamps only for the uplight component of the light fixture while using T-8 lamps with less bright surfaces for the light fixture's down-light component. However, such design approaches have the drawback that the extra lamps impair the designer's ability to achieve a desired light distribution from a given physical envelope and impose added burdens on lamp maintenance providers who must stock and handle two different types of lamps. Conventional parabolic light fixture designs have several negative features. One of these is reduced lighting efficiency. Another is the so-called “cave effect,” where the upper portions of walls in the illuminated area are dark. In addition, the light distribution of these fixtures often creates a defined line on the walls between the higher lit and less lit areas. This creates the perception of a ceiling that is lower than it actually is. Further, when viewed directly at high viewing angles, a conventional parabolic fixture can appear very dim or, even, off. The present invention overcomes the above-described disadvantages of light fixtures using brighter light sources by providing a configuration that appears to a viewer as though it has a source of lower brightness, but which otherwise permits the light fixture to advantageously and efficiently distribute light generated by the selected lamp, such as the exemplified T5 lamp. The light fixture of the present invention reduces distracting direct glare associated with high brightness light sources used in direct or direct-indirect light fixtures. This reduction in glare is accomplished without the addition of lamps and the added costs associated therewith.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention relates to a light fixture, or troffer, for efficiently distributing light emitted by a light source into an area to be illuminated. In one general aspect of the invention, the light fixture includes a reflector assembly that supports the light source. The light fixture may also include a lens assembly positioned with respect to a portion of the reflector assembly to receive light emitted by the light source and distribute it such that glare is further reduced. In a preferred embodiment, the lens assembly receives and distributes substantially all of the light emitted by the light source. In one aspect, the reflector assembly of the light fixture includes a base member that extends longitudinally between spaced edges along a longitudinal axis. At least a portion of the base member can form a reflective surface, which is preferably a curved reflective surface. In one aspect, the reflector assembly supports the light source such that the longitudinal axis of the light source is substantially parallel to that of the base member. The light source is preferably supported in a recessed portion of the reflector assembly whereby high angle glare in directions transverse to the longitudinal axis of the light fixture is blocked by the lower side edges of the light fixture. The light source can be a conventional lamp, such as, for example, a T5 lamp. In another aspect, the lens assembly includes a lens that has a first end edge, an opposed second end edge, and a central lens portion that extends longitudinally between the first and second end edges. In one aspect, the lens has a lens longitudinal axis that is generally parallel to the light longitudinal axis. The central portion of the lens has a prismatic surface that defines a face that can be oriented toward or away from the light source. In one aspect, the central lens portion is curved and can have a concave, convex, or planar shape in cross-section. In an alternative aspect, the lens assembly may include a diffuser inlay that is positioned in substantially overlying registration with a portion of the face of the central lens portion that faces the light source. In one embodiment, the prismatic surface of the central lens portion is concave relative to the light source. At least a portion of the prismatic surface defines an array of contiguous and parallel prismatic elements. In one example, each prismatic element extends generally longitudinally substantially between the first and second edges of the lens. In one example, the prismatic elements each have a curved surface that subtends an angle, in a transverse vertical plane, of about and between 80° to 120° with respect to their center of curvature. The lens is preferably detachably secured to a portion of the reflector assembly in overlying registration with the light source. In one aspect, a portion of the reflector assembly and a portion of the lens substantially enclose the light source so that, to an external viewer, the light source is substantially hidden from view. In one example, to the external viewer, the array of linear extending prismatic elements presents to the viewer an array of spaced, longitudinally extending shadows, or dark stripes, on the lens. Thus, the lens assembly of the present invention provides an aesthetically more pleasing appearance as well as efficiently distributing the light generated by the light source onto portions of the reflective surfaces of the reflector assembly and onto the desired area to be illuminated. The lens assembly and reflector assembly of the present invention increase the light efficiency of the light fixture and diffuse the light relatively uniformly, which minimizes the “cave effect” commonly noted in areas using conventional parabolic light fixtures in the ceiling. In one embodiment, the light fixture or troffer of the present invention results in a luminare efficiency that is greater than 80%, preferably.
20041021
20070612
20051222
72228.0
1
LEE, GUNYOUNG T
LIGHT FIXTURE AND LENS ASSEMBLY FOR SAME
UNDISCOUNTED
0
ACCEPTED
2,004
10,970,860
ACCEPTED
Process for purifying proteins in a hydrophobic interaction chromatography flow-through fraction
The present invention is a process for separating a target protein (such as a recombinant protein produced in a cell culture) from a mixture containing the target protein and contaminants (such as cell culture contaminants), by contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution and collecting the unbound flow-through fraction containing the target protein. In one embodiment, the hydrophobic adsorbent may be a branched alkyl functional group. In another embodiment, the branched alkyl functional group has from 3 to 8 carbon atoms. In another embodiment, the branched alkyl functional group is a tertiary carbon atom, such as tert-butyl.
1. A process for separating a target protein from a mixture containing the target protein and contaminants, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. 2. The method of claim 1, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 3. The method of claim 2, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 4. The method of claim 3, wherein the branched alkyl functional group comprises a tertiary carbon atom. 5. The method of claim 4, wherein the branched alkyl functional group is tert-butyl. 6. A process for separating a recombinant target protein, produced as a product of cell culture expression in a host cell, from a mixture containing the target protein and contaminants, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. 7. The method of claim 6, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 8. The method of claim 7, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 9. The method of claim 8, wherein the branched alkyl functional group comprises a tertiary carbon atom. 10. The method of claim 9, wherein the branched alkyl functional group is tert-butyl. 11. A process for separating a recombinant Fc fusion target protein, produced as a product of cell culture expression in a host cell, from a mixture containing the target protein and contaminants, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. 12. The method of claim 11, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 13. The method of claim 12, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 14. The method of claim 13, wherein the branched alkyl functional group comprises a tertiary carbon atom. 15. The method of claim 14, wherein the branched alkyl functional group is tert-butyl. 16. A process for separating a recombinant target protein, produced as a product of cell culture expression in a host cell, from a mixture containing the target protein and contaminants, which comprises: a) preparing a chromatography column having a support comprising hydrophobic branched alkyl functional groups, wherein the branched alkyl functional groups have from 4 to 8 carbon atoms, at least one of which is a tertiary carbon atom; b) preparing the mixture in an aqueous solution having a salt concentration such that the contaminants bind to the column while the target protein in the mixture does not bind to the column; c) contacting the mixture with the column; and d) collecting from the column the portion of the mixture that does not bind to the column, which contains the target protein. 17. The method of claim 16, wherein the branched alkyl functional group is tert-butyl. 18. A process for removing Protein A from a mixture containing a target protein and Protein A, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. 19. The method of claim 18, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 20. The method of claim 19, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 21. The method of claim 20, wherein the branched alkyl functional group comprises a tertiary carbon atom. 22. The method of claim 21, wherein the branched alkyl functional group is tert-butyl. 23. A process for removing a misfolded variant of a recombinant target protein from a mixture containing correctly folded variants and misfolded variants of the target protein, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the correctly folded variant of the target protein. 24. The method of claim 23, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 25. The method of claim 24, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 26. The method of claim 25, wherein the branched alkyl functional group comprises a tertiary carbon atom. 27. The method of claim 26, wherein the branched alkyl functional group is tert-butyl. 28. A process for removing aggregated forms of a recombinant target protein from a mixture containing individual forms and aggregated forms of the target protein, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the individual form of the target protein. 29. The method of claim 28, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 30. The method of claim 29, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 31. The method of claim 30, wherein the branched alkyl functional group comprises a tertiary carbon atom. 32. The method of claim 31, wherein the branched alkyl functional group is tert-butyl. 33. A process for separating a recombinant target protein from a mixture containing the target protein and cell culture contaminants produced by cell culture expression of the recombinant protein in a Chinese Hamster Ovary host cell, which comprises: a) contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and b) collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. 34. The method of claim 28, wherein the hydrophobic adsorbent comprises a branched alkyl functional group. 35. The method of claim 29, wherein the branched alkyl functional group has from 3 to 8 carbon atoms. 36. The method of claim 30, wherein the branched alkyl functional group comprises a tertiary carbon atom. 37. The method of claim 37, wherein the branched alkyl functional group is tert-butyl. 38. A protein purified by the process of any one of claims 1-37.
CROSS-REFERENCE TO RELATED APPLICATION This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/514,486, filed Oct. 24, 2003. FIELD OF THE INVENTION The present invention relates to purification of proteins using hydrophobic interaction chromatography. BACKGROUND OF THE INVENTION Hydrophobic interaction chromatography (HIC) is a method for separating proteins based on the strength of their relative hydrophobic interactions with a hydrophobic adsorbent. Hydrophobicity is generally defined as the repulsion between a non-polar compound and a polar environment, such as water. Hydrophobic “interactions” are essentially the tendency of a polar environment to exclude non-polar (i.e., hydrophobic) compounds from the polar environment and force aggregation of the hydrophobic amongst themselves. The phenomenon of hydrophobic interactions is applied to the separation of proteins by using an aqueous salt solution to force a hydrophobic protein in a sample to aggregate with or bind adsorptively to hydrophobic functional groups (the adsorbent) affixed to a solid support. The adsorbed proteins are released from the adsorbent by eluting with decreasing salt concentrations which reverse the environment promoting the hydrophobic interactions, leading to loss of hydrophobic interactions between the proteins and the support and release of the protein from the support in order of increasing hydrophobicity (with the least hydrophobic proteins being released first). Recombinant proteins typically contain a variety of impurities that need to be removed before the product is pharmaceutically acceptable. Some of these impurities may include host cell proteins (HCPs) from the host cell system in which they are expressed. For a CHO system, these impurities are referred to as CHO Host Cell Proteins (CHOP). In addition to these impurities, the protein as expressed during cell culture may also contain variant forms of the product protein, for example, a misfolded form of the target protein. Other impurities may be added to the product stream or generated as a result of the purification process, such as higher molecular weight aggregates of the protein or leached Protein A. These impurities have a wide range of retentions on different modes of chromatography and removal of such a broad spectrum of impurities is difficult, typically requiring multiple steps involving different modes of chromatography. HIC may be utilized to separate proteins using two different approaches. In the first HIC approach, referred to as the “bind and elute” mode, the mixture containing the target protein is contacted with the hydrophobic adsorbent under conditions where the target protein binds to the adsorbent, while contaminants (or as much of the contaminants as possible) do not bind and flow through. In the “bind and elute” mode, the target protein may be recovered by applying to the adsorbent/protein complex a salt concentration applied in a gradual or step-wise reduced gradient, to selectively release the various bound proteins and contaminants and collecting discreet fractions until the fraction containing the more purified protein is obtained. In a process where a target protein is bound to the column (while allowing contaminants to flow through), adsorbents having greater hydrophobicity are typically used to bind a broader range of proteins which will be collected in a specific fraction release at a specific salt concentration in the course of applying the salt gradient. In the second HIC approach, referred to as the “flow-through” mode, the mixture containing the target protein is contacted with the hydrophobic adsorbent under conditions where the contaminants (or as much of the contaminants as possible) bind to the adsorbent, while the target protein (and as few contaminants as possible) does not bind and flows through. In this mode, the use of less hydrophobic adsorbents, such as those having lower molecular weight alkyl groups, are preferred, since a lower binding capacity is needed for conditions under which the target protein does not bind. As one would expect, however, use of HIC in the flow-through mode has been of limited usefulness because the conditions needed to allow the target protein to flow through inherently result in lower binding capacities, leading to early elimination of the target protein, or elimination of the target protein along with contaminants. While several different modalities of chromatography can be employed to remove a particular class of impurities, very few chromatographic steps are capable of removing all these impurities from a product. Thus, there is need for a purification process that can be employed generically for removal of these impurities from a recombinant protein. SUMMARY OF THE INVENTION In accordance with the present invention, it has been discovered that hydrophobic interaction chromatography using a hydrophobic adsorbent comprising branched hydrocarbon functional groups, such as branched alkyl groups, is highly selective in binding protein contaminants, while not binding the target protein, thus allowing the target protein to be recovered in the flow-through fraction. Use of HIC in flow-through has been found to be surprisingly efficient, resulting in a significantly higher recovery of the target protein in a single step, thus simplifying and improving the efficiency and cost of the protein purification process. The present invention includes a process for separating a target protein (such as a recombinant protein produced in a cell culture) from a mixture containing the target protein and contaminants which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In another embodiment, the present invention includes a process for separating a recombinant protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and cell culture contaminants, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In another embodiment, the present invention includes a process for separating a recombinant Fc fusion protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and cell culture contaminants, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In yet another embodiment, the present invention includes a process for separating a recombinant target protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and contaminants, which comprises: preparing a chromatography column having a support comprising hydrophobic branched alkyl functional groups, wherein the branched alkyl functional groups have from 4 to 8 carbon atoms, at least one of which is a tertiary carbon atom, preparing the mixture in an aqueous solution having a salt concentration such that the contaminants bind to the column while the target protein in the mixture does not bind to the column; contacting the mixture with the column; and collecting from the column the portion of the mixture that does not bind to the column, which contains the recombinant target protein. A process for removing a misfolded variant of a recombinant target protein from a mixture containing correctly folded variants and misfolded variants of the target protein, which comprises contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the correctly folded variant of the target protein. A process for removing Protein A from a mixture containing a target protein and Protein A, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In other embodiments of the present invention, the hydrophobic adsorbent comprises a branched alkyl functional group. In another embodiment, the branched alkyl functional group has from 3 to 8 carbon atoms, and more preferably from 4 to 6 carbon atoms. In another embodiment, the branched alkyl functional group contains a sec-carbon, a tert-carbon or a neo-carbon atom. In another embodiment, the branched alkyl functional group may be selected from one or more of the group consisting of sec-butyl, tert-butyl, tert-pentyl, and neopentyl. In another embodiment, the branched alkyl functional group is tert-butyl. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a chromatogram showing the purification of IL1IR-II in the flow-through step on a Macroprep t-butyl HIC resin. FIG. 2 is an SDS-PAGE gel showing the load and flow-through fractions from FIG. 1. Lane 1 shows molecular weight standards, lane 2 shows the HIC load, and lane 3 shows the HIC flow-through. FIG. 3 is a chromatogram showing the purification of RANK:Fc in the flow-through step on a Macroprep t-butyl HIC resin. FIG. 4 is a series of graphs that compare the HIC load to the HIC flowthrough pool by various analytical methods including size exclusion chromatography (SEC) (FIG. 4a), leached Protein A ELISA (FIG. 4b), HIC (FIG. 4c) and fCHOP ELISA (FIG. 4d). DETAILED DESCRIPTION OF THE INVENTION Definitions Adsorbent: An adsorbent is at least one molecule affixed to a solid support, or at least one molecule that is, itself, a solid, which is used to perform chromatography, such as hydrophobic interaction chromatography. In the context of hydrophobic interaction chromatography, the adsorbent is a hydrophobic functional group. Hydrophobic interaction chromatography or HIC: Hydrophobic interaction chromatography (HIC) is chromatography that utilizes specific reversible hydrophobic interactions between biomolecules in an aqueous salt solution as a basis for protein separation. In practice, HIC involves using an adsorbent, such as a hydrophobic aliphatic or aromatic hydrocarbon functional group affixed to a solid support, to chromatographically separate molecules that bind to the adsorbent from those proteins that do not. Antibody: An antibody is a protein or complex of proteins, each of which comprises at least one variable antibody immunoglobulin domain and at least one constant antibody immunoglobulin domain. Antibodies may be single chain antibodies, dimeric antibodies, or some higher order complex of proteins including, but not limited to, heterodimeric antibodies. Chromatography: Chromatography is the separation of chemically different molecules in a mixture from one another by contacting the mixture with an adsorbent, wherein one class of molecules reversibly binds to or is adsorbed onto the adsorbent. Molecules that are least strongly adsorbed to or retained by the adsorbent are released from the adsorbent under conditions where those more strongly adsorbed or retained are not. Constant antibody immunoglobulin domain: A constant antibody immunoglobulin domain is an immunoglobulin domain that is identical to or substantially similar to a CL, CH1, CH2, CH3, or CH4, domain of human or animal origin. See e.g. Charles A Hasemann and J. Donald Capra, Immunoglobulins: Structure and Function, in William E. Paul, ed., Fundamental Immunology, Second Edition, 209, 210-218 (1989), which is incorporated by reference herein in its entirety. Contaminant: A contaminant is any foreign or objectionable molecule, particularly a biological macromolecule such as a DNA, an RNA, or a protein, other than the protein being purified that is present in a sample of a protein being purified. Contaminants include, for example, other host cell proteins from cells used to recombinantly express the protein being purified, proteins that are part of an absorbent used in an affinity chromatography step that may leach into a sample during prior affinity chromatography step, such as Protein A, and misfolded variants of the target protein itself. FC: FC refers to the FC portion of an antibody, and includes human or animal immunoglobulin domains CH2 and CH3 or immunoglobulin domains substantially similar to these. For purposes of the invention, the biological activity of an FC portion of an antibody for the purpose of determining substantial similarity is the ability to be bound by a second protein that binds to naturally-occurring FC portions of antibodies, such as Protein A or Protein G. For discussion, see Hasemann and Capra, supra, at 212-213. Host cell proteins: Host cell proteins are proteins encoded by the naturally-occurring genome of a host cell into which DNA encoding a protein that is to be purified is introduced. Host cell proteins may be contaminants of the protein to be purified, the levels of which may be reduced by purification. Host cell proteins can be assayed for by any appropriate method including gel electrophoresis and staining and/or ELISA assay, among others. Host cell proteins include, for example, Chinese Hamster Ovary (CHO) proteins (CHOP) produced as a product of expression of recombinant proteins. IL1RII: IL1R-II refers to the Type II (B Cell) Interleukin-1 receptor described in U.S. Pat. Nos. 6,521,740; 5,464,937; and 5,350,683, each of which is incorporated by reference herein in its entirety. Polypeptide: For the purposes of the invention, “polypeptide” is used interchangeably with “protein.” Protein: A protein is any chain of at least five amino acids linked by peptide bonds. Protein A: Protein A is a protein originally discovered in the cell wall of Stapphylococcus that binds specifically to an FC portion of IgG antibody. For purposes of the invention, “Protein A” is any protein identical or substantially similar to Stapphylococcal Protein A, including commercially available and/or recombinant forms of Protein A. For purposes of the invention, the biological activity of Protein A for the purpose of determining substantial similarity is the capacity to bind to an FC portion of IgG antibody. Purify: To purify a protein means to reduce the amounts of foreign or objectionable elements, especially biological macromolecules such as proteins or DNA, that may be present in a sample of the protein. The presence of foreign proteins may be assayed by any appropriate method including gel electrophoresis and staining and/or ELISA assay. The presence of DNA may be assayed by any appropriate method including gel electrophoresis and staining and/or assays employing polymerase chain reaction. Recombinant fusion protein: A recombinant fusion protein is any protein that comprises part or all of two or more proteins that are not fused in their natural state. Examples of such proteins include, but are not limited to, human receptor activator of NF-KappaB fused to an FC portion of an antibody (huRANK:FC), tunica internal endothelial cell kinase-delta fused to an FC portion of an antibody (TEKdelta:FC), and tumor necrosis factor receptor fused to an FC portion of an antibody (TNFR:FC). RANK: “RANK” refers to a receptor activator of NF kappa β proteins comprising amino acid sequences that are identical or substantially similar to the sequence of a native RANK. Biological activity for the purpose of determining substantial similarity means the capacity to bind Rank ligand (RANK-L), to transduce a biological signal initiated by RANK-L binding to a cell, or to cross-react with anti-RANK antibodies raised against RANK from natural (i.e., non-recombinant) sources. A RANK protein may be any mammalian RANK, including murine or human RANK proteins. Such RANK proteins are described in U.S. Pat. Nos. 6,017,729; 6,562,948; and 6,271,349, each of which is incorporated by reference herein in its entirety. RANK:FC: RANK:FC is a recombinant fusion protein comprising all or part of an extracellular domain of a RANK fused to an FC region of an antibody, as described in U.S. Pat. Nos. 6,017,729; 6,562,948; and 6,271,349, each of which is incorporated by reference herein in its entirety. Separate or Remove: A protein is separated (or removed) from a mixture comprising the protein and other contaminants when the mixture is subjected to a process such that the concentration of the target protein is higher in the resulting product than the starting product. TNFR: “TNFR” refers to proteins comprising amino acid sequences that are identical or substantially similar to the sequence of a native mammalian tumor necrosis factor receptor (TNFR). Biological activity for the purpose of determining substantial similarity means the capacity to bind tumor necrosis factor (TNF), to transduce a biological signal initiated by TNF binding to a cell, or to cross-react with anti-TNFR antibodies raised against TNFR from natural (i.e., non-recombinant) sources. A TNFR may be any mammalian TNFR, including murine or human TNFRs. Such TNFRs are described in U.S. Pat. No. 5,395,760, which is incorporated by reference herein in its entirety, and in U.S. Pat. No. 5,610,279, which is incorporated by reference herein in its entirety. A particularly preferred TNFR is that described in U.S. Pat. No. 5,395,760, which has an apparent molecular weight by SDS-PAGE of about 80 kilodaltons in its glycosylated form. TNFR:FC: TNFR: FC is a recombinant fusion protein comprising all or part of an extracellular domain of a TNFR fused to an FC region of an antibody. Such an extracellular domain includes, but is not limited to, amino acid sequences substantially similar to amino acids 1-163, 1-185, or 1-235 of FIG. 2A of U.S. Pat. No. 5,395,760. Variable antibody immunoglobulin domain: A variable antibody immunoglobulin domain is an immunoglobulin domain that is identical or substantially similar to a VL or a VH domain of human or animal origin. For purposes of the invention, the biological activity of a variable antibody immunoglobulin domain for the purpose of determining substantial similarity is antigen binding. Description of the Process The process of purifying a protein often requires numerous steps, with each step resulting in a further reduction in yield. Hydrophobic interaction chromatography is one of many techniques commonly used. Protein purification by HIC may be performed in a column containing a hydrophobic media (typically a column packed with modified support of methacrylate copolymer or agarose beads to which is affixed an adsorbent consisting of mildly hydrophobic functional groups, such as small alkyl or aryl hydrocarbon groups). The column is equilibrated with a buffer at high salt concentration and a sample containing a mixture of proteins (the target protein, plus contaminating proteins) in a compatible non-denaturing high salt solution, is loaded onto the column. As the mixture passes through the column, the target protein binds to the adsorbent within the column, while unbound contaminants flow through. Bound protein is then eluted from the column with a reduced salt concentration. Typically, the target protein may be recovered by eluting the column with a salt concentration applied in a gradual or step-wise reduced gradient, to selectively release the various bound proteins at the particular salt concentration conducive to their release, and collecting discreet fractions until the fraction containing the more purified protein is obtained. By collecting flow-through fractions over discreet periods of time, fractions containing specific proteins can be isolated. In a process where a target protein is bound to the column (while allowing contaminants to flow through), adsorbents having greater hydrophobicity are typically used to bind a broader range of proteins which will be collected in a specific fraction conducive to the release of the protein. Less hydrophobic adsorbents, such as those having lower molecular weight alkyl groups, have been of limited efficacy because the resin generally demonstrates lower binding capacities leading to early elimination in HIC resin screens. The present invention relates to a process for separating the target protein from a mixture comprising the target protein and contaminants using hydrophobic interaction chromatography (HIC). In contrast to the bind and elute approach described above, however, the present invention applies HIC in a flow-through mode to separate the target protein by binding the contaminating proteins (rather than the target protein) to the chromatography support, and collecting the purified target protein in the unbound flow-through fraction. Thus, the present invention contemplates that HIC conditions will be such that contaminating proteins bind to the chromatography support, while the target protein does not bind. Separation of the target protein in the flow-through fraction greatly simplifies the separation process. In flow-through mode, HIC may be operated under higher loading capacities since only the impurities bind on the resin and the product flows through. Furthermore, HIC flow through mode enables use of lower salt concentrations since low to moderately hydrophobic proteins of interest elute preferentially at such lower salt concentrations. The process of the invention can, of course, be used in combination with other protein purification methodologies, such as salt precipitation, affinity chromatography, hydroxyapatite chromatography, reverse phase liquid chromatography, ion-exchange chromatography, or any other commonly used protein purification technique. It is contemplated, however, that the process of the present invention will eliminate or significantly reduce the need for other purification steps. Any or all chromatographic steps of the present invention can be carried out by any mechanical means. Chromatography may be carried out, for example, in a column. The column may be run with or without pressure and from top to bottom or bottom to top. The direction of the flow of fluid in the column may be reversed during the chromatography process. Chromatography may also be carried out using a batch process in which the solid media is separated from the liquid used to load, wash, and elute the sample by any suitable means, including gravity, centrifugation, or filtration. Chromatography may also be carried out by contacting the sample with a filter that absorbs or retains some molecules in the sample more strongly than others. In the following description, the various embodiments of the present invention are described in the context of chromatography carried out in a column. It is understood, however, that use of a column is merely one of several chromatographic modalities that may be used, and the illustration of the present invention using a column does not limit the application of the present invention to column chromatography, as those skilled in the art may readily apply the teachings to other modalities as well, such as those using a batch process or filter. The present in invention relates to a process for separating proteins on the basis of their ability to selectively bind to a hydrophobic chromatography medium. The hydrophobic chromatography medium is comprised of a solid support to which is affixed a hydrophobic adsorbent comprising a branched hydrocarbon functional group. A sample containing the target protein to be purified is contacted with the hydrophobic adsorbent under conditions that cause contaminants to selectively bind to the adsorbent, while the target protein does not bind. The portion of the mixture that does not bind (and which contains the target protein) is then separated from the adsorbent under conditions that do not interfere with the binding of the contaminants to the adsorbent. The hydrophobic chromatography medium may be represented by the formula S—X—R, where S is the support, multiple —X—R groups are covalently attached to the support, R is any one or more branched hydrocarbon functional group, and X is a hetero atom or group of atoms that serve to covalently bond R to the support. The support used in the present invention comprises a resin matrix prepared by any suitable means widely known to those skilled in the art. In general, the support may be of any material that is compatible with protein separations, is water insoluble, and can be modified by covalent linkage to form the —X—R linkage with the R functional group. Suitable supports may be any currently available or later developed materials having the characteristics necessary to practice the claimed method, and may be based on any synthetic, organic, or natural polymers. For example, commonly used support substances include organic materials such as cellulose, polystyrene, agarose, sepharose, polyacrylamide polymethacrylate, dextran and starch, and inorganic materials, such as charcoal, silica (glass beads or sand) and ceramic materials. Suitable solid supports are disclosed, for example, in Zaborsky “Immobilized Enzymes” CRC Press, 1973, Table IV on pages 28-46. Specific HIC support materials that may be used include methacrylate polymer and activated agarose (see, Porath, Nature 215, 1491 (1967) and Cuatrecasas, J. Biol. Chem. 245, 3059, (1970)). In certain instances it may be necessary to activate the support so that it will react with a functional R group to produce the —X—R moiety. Therefore, it is to be understood that if the source material for the support, for example agarose, is not itself amenable to reaction with a particular functional group, it may be conditioned or activated so that it will be amenable to such reactions. An example is the activation of agarose by treatment with cyanogen halide as described, for example, by Porath et al. in Nature, 215, 1491 (1967) and by Cuatrecsas in J. Biol. Chem. 245, 3059 (1970). The HIC support material may also be methacrylate copolymer bead resins (such as Macro-Prep t-butyl HIC support resins, supplied by Bio-Rad Laboratories, Inc.) to which branched hydrocarbon groups have been covalently attached. Appropriate characteristics include average bead sizes of 30 to 100 microns, functional group densities of 5 to 50 micromoles per ml gel, and beads containing 4-6% agarose. Other types of support materials include polystyrene/divinyl benzene matrix particles, which can be coupled to appropriate functional R groups described below. The selection and use of such support materials is well-known to those skilled in the art. As used in the present invention, R may be aromatic, aliphatic or mixed aromatic/aliphatic groups having sufficiently moderate to low hydrophobicity that they selectively bind protein contaminants while not binding a target protein. In one embodiment of the present invention, R is of low to moderate hydrophobicity. In another embodiment, the branched hydrocarbon R group is a branched alkyl group. The branched alkyl functional groups may have in various embodiments, respectively, from 3 to about 8 carbon atoms, from 4 to 7, from 4 to 6, from 4 to 5, or 4 carbon atoms. By way of example, the branched alkyl functional R group may be selected from one or more of the group consisting of isopropyl, isobutyl, sec-butyl, and tert-butyl isopentyl, sec-pentyl, tert-pentyl, neopentyl, isohexyl, sec-hexyl, tert-hexyl, and other higher branched alkyl groups having up to about 8 carbon atoms. In other embodiments, these branched alkyl groups may be those having tert-carbon (carbon bonded to three other carbons) or neo-carbon (carbon bonded to four other carbon) moieties, such as tert-butyl, tert-pentyl, and neopentyl. In another embodiment, R has a tert-carbon atom, such as tert-butyl, tert-pentyl and tert-hexyl. In another embodiment, R is tert-butyl. As indicated in the examples below, as between two R groups having the same number of carbon atoms, the most effective functional groups are those that are more highly branched. For example, tert-butyl, (having 4 carbon atoms, one of which is a tertiary carbon) is surprisingly more effective than linear-butyl (also having 4 carbon atoms, but which is unbranched). X may be any hetero atom, such as O or S, or group of atoms, such as NH, which may also carry an electric charge in the form of an ion. A variety of commercially available hydrophobic interaction chromatography resins can be used, and the present invention is not limited to any particular resin. One example of an HIC column having a branched alkyl functional group is Macroprep t-butyl (BioRad Laboratories, Inc). Prior to equilibration and chromatography, the HIC chromatography media (the support and adsorbent affixed to the support) may be pre-equilibrated in a chosen solution, e.g. a salt and/or buffer solution. Pre-equilibration serves the function of displacing a solution used for regenerating and/or storing the chromatography medium. One of skill in the art will realize that the composition of the pre-equilibration solution depends on the composition of the storage solution and the solution to be used for the subsequent chromatography. Thus, appropriate pre-equilibration solutions may include the same buffer or salt used for performing the chromatography, optionally, at a higher concentration than is used to perform chromatography. Buffers and salts that can be used for chromatography are discussed below. For example, when the solution used to perform chromatography comprises sodium phosphate at a given concentration, pre-equilibration may take place in a in a solution comprising sodium phosphate at a higher concentration. As an illustration of this, if the solution used to perform chromatography comprises sodium phosphate at between about 0.5 millimolar and about 50 millimolar, pre-equilibration may occur in a solution comprising sodium phosphate at concentrations between about 0.2 molar and about 0.5 molar, more preferably in concentrations of sodium phosphate between about 0.3 molar and about 0.4 molar, inclusive. Before the sample is applied to the column, the column can be equilibrated in the buffer or salt that will be used to chromatograph the protein. As discussed below, chromatography (and loading of the protein to be purified) can occur in a variety of buffers or salts including sodium, potassium, ammonium, magnesium, calcium, chloride, fluoride, acetate, phosphate, and/or citrate salts and/or Tris buffer. Citrate buffers and salts are preferred by those skilled in the art for their ease of disposal. Such buffers or salts can have a pH of at least about 5.5. In some embodiments, equilibration may take place in a solution comprising a Tris or a sodium phosphate buffer. Optionally, the sodium phosphate buffer is at a concentration between about 0.5 millimolar and about 50 millimolar, more preferably at a concentration between about 15 millimolar and 35 millimolar. Preferably, equilibration takes place at a pH of at least about 5.5. Equilibration may take place at pHs between about 6.0 and about 8.6, preferably at pHs between about 6.5 and 7.5. Most preferably, the solution comprises a sodium phosphate buffer at a concentration of about 25 millimolar and at a pH of about 6.8. The target protein that is to be purified can be produced by living host cells that have been genetically engineered to produce the protein. Methods of genetically engineering cells to produce proteins are well known in the art. See e.g. Ausabel et al., eds. (1990), Current Protocols in Molecular Biology (Wiley, New York). Such methods include introducing nucleic acids that encode and allow expression of the protein into living host cells. These host cells can be bacterial cells, fungal cells, or, preferably, animal cells grown in culture. Bacterial host cells include, but are not limited to, Escherichia coli cells. Examples of suitable E. coli strains include: HB101, DH5α, GM2929, JM109, KW251, NM538, NM539, and any E. coli strain that fails to cleave foreign DNA. Fungal host cells that can be used include, but are not limited to, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus cells. A few examples of animal cell lines that can be used are CHO, VERO, BHK, HeLa, Cos, MDCK, 293, 3T3, and WI38. New animal cell lines can be established using methods well know by those skilled in the art (e.g., by transformation, viral infection, and/or selection). Optionally, the protein can be secreted by the host cells into the medium. Protein concentration of a sample at any stage of purification can be determined by any suitable method. Such methods are well known in the art and include: 1) colorimetric methods such as the Lowry assay, the Bradford assay, the Smith assay, and the colloidal gold assay; 2) methods utilizing the UV absorption properties of proteins; and 3) visual estimation based on stained protein bands on gels relying on comparison with protein standards of known quantity on the same gel. See e.g. Stoschek (1990), Quantitation of Protein, in Guide to Protein Purification, Methods in Enzymol. 182: 50-68. The protein purification process of the present invention is applicable to any protein. The process is particularly useful in purifying proteins that are less hydrophobic than the contaminants from which they are being separated. The process is particularly useful, for example, in purifying proteins of low to moderate hydrophobicity, such as recombinantly produced proteins, or proteins comprising an FC region of an antibody, both of which tend to have relatively low to moderate hydrophobicities. Proteins comprising one or more constant antibody immunoglobulin domain(s) may, but need not, comprise a single or multiple variable antibody immunoglobulin domain(s). Fc fusion proteins may be a naturally-occurring protein or a recombinant fusion protein. It may comprise an FC portion of an antibody. It may also comprise a non-antibody protein. Some proteins specifically contemplated for use with the invention include recombinant fusion proteins comprising one or more constant antibody immunoglobulin domains, optionally an FC portion of an antibody, and a protein identical to or substantially similar to one of the following proteins: a flt3 ligand (as described in international application no. WO 94/28391, which is incorporated by reference herein in its entirety), a CD40 ligand (as described in U.S. Pat. No. 6,087,329, which is incorporated by reference herein in its entirety), erythropoeitin, thrombopoeitin, calcitonin, Fas ligand, ligand for receptor activator of NF-kappa B (RANKL), tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL, as described in international application no. WO 97/01633, which is incorporated by reference herein in its entirety), thymic stroma-derived lymphopoietin, granulocyte colony stimulating factor, granulocyte-macrophage colony stimulating factor (GM-CSF, as described in Australian Patent No. 588819, which is incorporated by reference herein in its entirety), mast cell growth factor, stem cell growth factor, epidermal growth factor, RANTES, growth hormone, insulin, insulinotropin, insulin-like growth factors, parathyroid hormone, interferons, nerve growth factors, glucagon, interleukins 1 through 18, colony stimulating factors, lymphotoxin-β, tumor necrosis factor (TNF), leukemia inhibitory factor, oncostatin-M, and various ligands for cell surface molecules ELK and Hek (such as the ligands for eph-related kinases or LERKS). Descriptions of proteins that can be purified according to the inventive methods may be found in, for example, Human Cytokines: Handbook for Basic and Clinical Research, Vol. II (Aggarwal and Gutterman, eds. Blackwell Sciences, Cambridge, Mass., 1998); Growth Factors: A Practical Approach (McKay and Leigh, eds., Oxford University Press Inc., New York, 1993); and The Cytokine Handbook (A. W. Thompson, ed., Academic Press, San Diego, Calif., 1991). Proteins contemplated by the invention also include recombinant fusion proteins comprising one or more constant antibody immunoglobulin domains, optionally an FC portion of an antibody, plus a receptor for any of the above-mentioned proteins or proteins substantially similar to such receptors. These receptors include: both forms of TNFR (referred to as p55 and p75), Interleukin-1 receptors types I and II (as described in EP Patent No. 0 460 846, U.S. Pat. No. 4,968,607, and U.S. Pat. No. 5,767,064, which are incorporated by reference herein in their entirety), Interleukin-2 receptor, Interleukin-4 receptor (as described in EP Patent No. 0 367 566 and U.S. Pat. No. 5,856,296, which are incorporated by reference herein in their entirety), Interleukin-15 receptor, Interleukin-17 receptor, Interleukin-18 receptor, granulocyte-macrophage colony stimulating factor receptor, granulocyte colony stimulating factor receptor, receptors for oncostatin-M and leukemia inhibitory factor, receptor activator of NF-kappa B (RANK, as described in U.S. Pat. No. 6,271,349, which is incorporated by reference herein in its entirety), receptors for TRAIL (including TRAIL receptors 1, 2, 3, and 4), and receptors that comprise death domains, such as Fas or Apoptosis-Inducing Receptor (AIR). Other proteins that may be purified using the process of the invention include differentiation antigens (referred to as CD proteins) or their ligands or proteins substantially similar to either of these, which are fused to at least one constant antibody immunoglobulin domain, optionally an FC portion of an antibody. Such antigens are disclosed in Leukocyte Typing VI (Proceedings of the VIth International Workshop and Conference, Kishimoto, Kikutani et al., eds., Kobe, Japan, 1996). Similar CD proteins include CD27, CD30, CD39, CD40, and ligands thereto (CD27 ligand, CD30 ligand, etc.). Several of the CD antigens are members of the TNF receptor family, which also includes 41BB ligand and OX40. The ligands are often members of the TNF family, as are 41BB ligand and OX40 ligand. Accordingly, members of the TNF and TNFR families can also be purified using the present invention. Enzymatically active proteins or their ligands can also be purified according to the invention. Examples include recombinant fusion proteins comprising at least one constant antibody immunoglobulin domain plus all or part of one of the following proteins or their ligands or a protein substantially similar to one of these: metalloproteinase-disintegrin family members, various kinases, glucocerebrosidase, superoxide dismutase, tissue plasminogen activator, Factor VIII, Factor IX, apolipoprotein E, apolipoprotein A-I, globins, an IL-2 antagonist, alpha-1 antitrypsin, TNF-alpha Converting Enzyme, ligands for any of the above-mentioned enzymes, and numerous other enzymes and their ligands. The method of the invention may also be used to purify antibodies or portions thereof and chimeric antibodies, i.e. antibodies having human constant antibody immunoglobulin domains coupled to one or more murine variable antibody immunoglobulin domain, or fragments thereof. The method of the invention may also be used to purify conjugates comprising an antibody and a cytotoxic or luminescent substance. Such substances include: maytansine derivatives (such as DM1); enterotoxins (such as a Staphlyococcal enterotoxin); iodine isotopes (such as iodine-125); technium isotopes (such as Tc-99m); cyanine fluorochromes (such as Cy5.5.18); and ribosome-inactivating proteins (such as bouganin, gelonin, or saporin-S6). Examples of antibodies or antibody/cytotoxin or antibody/luminophore conjugates contemplated by the invention include those that recognize any one or combination of the above-described proteins and/or the following antigens: CD2, CD3, CD4, CD8, CD11a, CD14, CD18, CD20, CD22, CD23, CD25, CD33, CD40, CD44, CD52, CD80 (B7.1), CD86 (B7.2), CD147, IL-1α, IL-1β, IL-4, IL-5, IL-8, IL-10, IL-2 receptor, IL-4 receptor, IL-6 receptor, IL-13 receptor, IL-18 receptor subunits, PDGF-β, VEGF, TGF, TGF-β2, TGF-β1, EGF receptor, VEGF receptor, C5 complement, IgE, tumor antigen CA125, tumor antigen MUC1, PEM antigen, LCG (which is a gene product that is expressed in association with lung cancer), HER-2, a tumor-associated glycoprotein TAG-72, the SK-1 antigen, tumor-associated epitopes that are present in elevated levels in the sera of patients with colon and/or pancreatic cancer, cancer-associated epitopes or proteins expressed on breast, colon, squamous cell, prostate, pancreatic, lung, and/or kidney cancer cells and/or on melanoma, glioma, or neuroblastoma cells, the necrotic core of a tumor, integrin alpha 4 beta 7, the integrin VLA-4, B2 integrins, TRAIL receptors 1, 2, 3, and 4, RANK, RANK ligand, TNF-α, the adhesion molecule VAP-1, epithelial cell adhesion molecule (EpCAM), intercellular adhesion molecule-3 (ICAM-3), leukointegrin adhesin, the platelet glycoprotein gp IIb/IIIa, cardiac myosin heavy chain, parathyroid hormone, rNAPc2 (which is an inhibitor of factor VIIa-tissue factor), MHC I, carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), tumor necrosis factor (TNF), CTLA-4 (which is a cytotoxic T lymphocyte-associated antigen), Fc-γ-1 receptor, HLA-DR 10 beta, HLA-DR antigen, L-selectin, IFN-γ, Respiratory Syncitial Virus, human immunodeficiency virus (HIV), hepatitis B virus (HBV), Streptococcus mutans, and Staphlycoccus aureus. The invention may also be used to purify anti-idiotypic antibodies, or substantially similar proteins, including but not limited to anti-idiotypic antibodies against: an antibody targeted to the tumor antigen gp72; an antibody against the ganglioside GD3; or an antibody against the ganglioside GD2. In the protein purification process of the present invention, the sample containing the target protein and contaminants may be loaded onto the adsorbent support under conditions in which the cell culture contaminants to bind to the stationary phase column, while permitting the protein of choice to pass through in the flow-through fraction. HIC is typically performed by loading the protein sample onto the chromatography column in an aqueous solution comprising a buffer and/or a salt. Lowering the ionic strength of the solution (i.e., decreasing the concentration of salt) reduces the tendency of hydrophobic materials to be retained by the column. Suitable buffers include, but are not limited to phosphate buffers, Tris buffers, acetate buffers, and/or citrate buffers. Acceptable salts may include, but are not limited to sodium chloride, ammonium chloride, potassium chloride, sodium acetate, ammonium acetate, sodium sulfate, ammonium sulfate, ammonium thiocyanate, sodium citrate, sodium phosphate, and potassium, magnesium, and calcium salts thereof, and combinations of these salts. In other embodiments, the salts include sodium citrate and sodium chloride. Acceptable ranges of salt concentrations used for HIC systems are typically in the range of from 0 to about 2M sodium citrate, 0 to about 4M sodium chloride, 0 to about 3M ammonium sulfate, 0 to about 1M sodium sulfate and 0 to about 2M sodium phosphate. The ranges of salt concentration may include 0 to about 1M sodium citrate, 0 to about 2M sodium chloride, 0 to about 1.5M ammonium sulfate, 0 to about 1M sodium sulfate and 0 to about 1.5M sodium phosphate. Other buffers and salts can also be used. After loading, the adsorbent can be washed with more of the same solution to cause the target protein (unbound to the adsorbent) to flow through the adsorbent. The protein is then collected in the flow-through fraction. Conditions for binding contaminants, while the target protein does not bind, can be easily optimized by those skilled in the art. The salt concentrations discussed herein are exemplary, and other salts and salt concentrations can be used by varying flow rates, temperatures, and elution times as is known in the art. Conditions under which these columns are used vary with the specific columns as is known in the art. For most proteins of interest, the pH range may be between about 6.0 and about 8.6, or alternatively between about 6.5 and about 7.5. However, certain proteins are known to be resistant to pH extremes, and a broader range may be possible. Typical conditions include a pH range of 5-7 and a sodium citrate concentration range of 0 to about 0.8M (e.g. 0.5M sodium citrate, pH 6.0). One skilled in the art will be guided by the knowledge in the art in determining which buffer or salt is appropriate for the particular protein being purified. Moreover, a skilled artisan can easily determine the optimal concentration of the selected buffer or salt to use by, for example, establishing particular buffer or salt conditions under which contaminants bind to an HIC column while the protein of interest flows through in the flow-through fraction. Fractions of the effluent of the column can be collected and analyzed to determine the concentration of buffer or salt at which the target protein and the contaminants elute. Suitable analyses include, for example, a measurement of electrical conductance with a conductivity meter (to determine the salt concentration in the sample) plus gel electrophoresis or ELISA assay (to determine the identity of the proteins in the sample). Optionally, the column can be washed with more of the same solution in which the protein sample was loaded, and this wash solution can also be collected and combined with the flow-through liquid. Subsequent to collection of the flow through and, optionally, the wash, which comprises the protein being purified, proteins that may remain bound to the column may be released by stripping the chromatography medium using a solution comprising the buffer or salt used for chromatography, but at a lower ionic strength to release the contaminant proteins. Then, the column may be regenerated using a solution that will have the effect of releasing most or all proteins from the chromatography medium and reducing or eliminating any microbial contamination that may be present in the chromatography medium. In one embodiment, such a solution may comprise sodium hydroxide. Other reagents can also be used. Subsequently, the column may be rinsed and stored in a solution that can discourage microbial growth. Such a solution may comprise sodium hydroxide, but other reagents can also be appropriate. The target protein, as well as contaminating proteins that may be present in a sample, can be monitored by any appropriate means. Preferably, the technique should be sensitive enough to detect contaminants in the range between about 2 parts per million (ppm) (calculated as nanograms per milligram of the protein being purified) and 500 ppm. For example, enzyme-linked immunosorbent assay (ELISA), a method well known in the art, may be used to detect contamination of the protein by the second protein. See e.g. Reen (1994), Enzyme-Linked Immunosorbent Assay (ELISA), in Basic Protein and Peptide Protocols, Methods Mol. Biol. 32: 461-466, which is incorporated herein by reference in its entirety. In one aspect, contamination of the protein by such other proteins can be reduced after HIC, preferably by at least about two-fold, more preferably by at least about three-fold, more preferably by at least about five-fold, more preferably by at least about ten-fold, more preferably by at least about twenty-fold, more preferably by at least about thirty-fold, more preferably by at least about forty-fold, more preferably by at least about fifty-fold, more preferably by at least about sixty-fold, more preferably by at least about seventy-fold, more preferably by at least about 80-fold, more preferably by at least about 90-fold, and most preferably by at least about 100-fold. In another aspect, contamination of the protein by such other proteins after HIC is not more than about 10,000 ppm, preferably not more than about 2500 ppm, more preferably not more than about 400 ppm, more preferably not more than about 360 ppm, more preferably not more than about 320 ppm, more preferably not more than about 280 ppm, more preferably not more than about 240 ppm, more preferably not more than about 200 ppm, more preferably not more than about 160 ppm, more preferably not more than about 140 ppm, more preferably not more than about 120 ppm, more preferably not more than about 100 ppm, more preferably not more than about 80 ppm, more preferably not more than about 60 ppm, more preferably not more than about 40 ppm, more preferably not more than about 30 ppm, more preferably not more than about 20 ppm, more preferably not more than about 10 ppm, and most preferably not more than about 5 ppm. Such contamination can range from undetectable levels to about 10 ppm or from about 10 ppm to about 10,000 ppm. If a protein is being purified for pharmacological use, one of skill in the art will realize that the preferred level of the second protein can depend on the weekly dose of the protein to be administered per patient, with the aim that the patient will not receive more than a certain amount of a contaminating protein per week. Thus, if the required weekly dose of the protein is decreased, the level of contamination by a second protein may possibly increase. The amount of DNA that may be present in a sample of the protein being purified can be determined by any suitable method. For example, one can use an assay utilizing polymerase chain reaction. Optionally, the technique can detect DNA contamination at levels of 10 picograms per milligram of protein and greater. DNA levels can be reduced by HIC, optionally by about two-fold, preferably by about five-fold, more preferably by about ten-fold, more preferably by about fifteen-fold, most preferably by about 20-fold. Optionally, levels of DNA after hydroxyapatite chromatography are less than about 20 picograms per milligram of protein, preferably less than 15 picograms per milligram of protein, more preferably less than 10 picograms per milligram of protein, most preferably less than 5 picograms per milligram of protein. The following examples are intended to illustrate particular embodiments, and not limit the scope, of the invention. Those skilled in the art will readily recognize that additional embodiments are encompassed by the invention. EXAMPLE 1 Purification of IL1R-II An HIC flow-through step on Macroprep t-butyl (BioRad Laboratories, Inc.) was employed in purifying a soluble extracellular domain of IL1R-II. A sample containing IL-1R-II was first subjected to purification on a TMAE Fractogel anion-exchange column using 25 mM Tris, pH 8 as the equilibration and wash buffer and 25 mM Tris, 150 mM NaCl, pH 8 as the elution buffer. The HIC step was performed at pH 7.0 with 600 mM citrate in the load buffer. FIG. 1 shows a representative chromatogram of the flow-through step on the t-butyl resin. As can be seen in the figure, a majority (˜90% by a quantitative assay) of the loaded protein flows through under these conditions. An elution peak is observed during a wash with 25 mM phosphate, pH 7.0 and a smaller peak was observed in the 0.5N NaOH strip. Table I shows the CHO host cell protein (CHOP) levels in the HIC load, HIC flow-through, and HIC elution fractions from the flow-through purification of IL1R-II shown in FIG. 1. As seen in the table, this step is successful in reducing host cell protein levels by several orders of magnitude. Most of these contaminants tend to bind tightly to the column and come off in the elution peak. TABLE 1 Fraction CHOP levels (ppm) HIC load 12319 HIC flowthrough pool 974 HIC elution peak 169199 The load and flowthrough fractions were also analyzed by SDS-PAGE. As shown in FIG. 2, the flow-through step on Macroprep t-butyl successfully removed a range of contaminants seen by SDS-PAGE. Lane 1 shows the molecular weight standards, lane two shows a wide distribution of various proteins in the initial sample load, and lane 3 shows that the flow-through fraction eliminated a majority of contaminants to yield a more highly purified form of IL 1R-II (the two bands representing IL1R-II in the form of a monomer and a dimmer). EXAMPLE 2 Purification of RANK:Fc The HIC step was employed after the Protein A purification step during downstream processing of RANK:Fc, an Fc fusion protein. At this stage in the process, the predominant impurities in the product include CHOP (˜5-10000 ppm), leached protein A (50-200 ppm), high molecular weight aggregate (2-5%) and the peak C form of the protein (5-10%). The peak C form of the protein is potentially misfolded RANK:Fc that has been found to have a lower binding activity than the peak B (main peak) form. RANK:Fc was purified in an HIC flow-through step using a Macroprep t-butyl resin prepared in accordance with the manufacture's directions. The column was prepared to a capacity of 15 mg/ml at an operating flow rate of 2 cm/min and sanitized with 0.5 NaOH. Following viral inactivation of the Protein A eluate pool, the eluate was diluted with 0.6M citrate solution (pH 6.0, 1:1.75 protein:salt ratio) to raise the final salt concentration of the feed load to 0.4M citrate prior to loading on the column. This level of citrate concentrations were shown to be optimal for separating the product from the impurities listed earlier. Following column equilibration (0.4M citrate, pH 6.0), the feed load containing the RANK:Fc protein was loaded on the column in a buffer consisting of 400 mM Citrate, pH 6.0. The product flowed through, while impurities stayed behind on the column and were removed by a water wash and a 0.5N NaOH regeneration step, followed by sterilization with 0.1M NaOH. The chromatograph shown in FIG. 3 shows the purification of RANK:Fc on a Macroprep t-butyl operated in the flow-through mode. Specifically, the chromatogram shows that the flow-through fraction contained essentially only Peak B (RANK:Fc), while the fractions following elution contained predominantly the other impurities, including CHOP, leached protein A, high molecular weight aggregates and Peak C (the misfolded form of RANK:Fc). FIG. 4 graphically compares the HIC load to the HIC flow-through pool by various analytical methods including SEC (FIG. 4a), leached Protein A ELISA (FIG. 4b), HIC (FIG. 4c) and fCHOP ELISA (FIG. 4d). Each of these figures indicates that the HIC flow-through step on Macroprep t-butyl is successful in removing aggregates, leached Protein A, the peak C (misfolded) form of the protein and host cell protein contaminants, all in a single step. The extent of clearance of these impurities was found to be far greater than that achieved with a single step on any other non-affinity mode of chromatography for this protein (ion-exchange HIC, metal-chelate etc.). EXAMPLE 3 Selectivity of Branched Hydrocarbon Functional Groups for Alternate Forms of RANK:Fc A range of HIC support media were compared independently for their selectivity between the peak B and C forms of RANK:Fc as defined by an HIC assay consisting of linear gradient elution (1 to 0M ammonium sulfate) on a TSK Butyl NPR column. Specifically, the chromatography media that were tested included (a) Macroprep t-butyl, (b) TosoHaas Butyl 650M, (c) Butyl Sepharose FF, (d) TosoHaas Phenyl 650M, and (e) TosoHaas Ether 650M. Analytical injections (0.5 mL at a concentration range of 0.5-2 mg/mL of peaks B and C (obtained from a preparative linear gradient experiment on the TSK Butyl NPR analytical column) were loaded onto various HIC columns, and the columns were eluted with a gradient of 400 mM citrate to 0 mM citrate in 15 CV followed by 5 CV washes with water followed by 0.5N NaOH. Peak B and C forms of the protein were separated by linear salt gradient (from 400 mM citrate to 0 mM citrate at pH 6.0 over 15 column volumes) prior to purification by HIC using the various chromatography media described above. The salt gradient was followed by strip steps with water followed by 0.5N NaOH. HIC using a Macroprep t-butyl column was highly selective, With the peak B being form eluting during the salt gradient (from about 30-50 min) while the peak C form of the protein was very strongly retained and eluting only during the 0.5N NaOH strip step (at about 80 min). In contrast HIC using a TosoHaas Butyl 650M column was much less selective, with both peaks eluting at very close or overlapping intervals during the salt gradient. Similar nonselectivity were observed using Butyl Sepharose 4FF, TosoHaas Phenyl 650M and TosoHaas Ether 650M media. This data indicate that the Macroprep t-butyl resin possesses a unique selectivity for these two similar variants of the same protein. Taken together with the data on the clearance of other impurities, including host cell proteins, leached Protein A and high molecular weight aggregates, this data indicates the utility of the HIC branched alkyl resin as a generic polishing step for a range of proteins produced by cell culture. While not being bound by any particular theory of mechanistic action, it would appear that these results are due to the unique tertiary butyl functionality present on this resin which is distinct from functionalities on the other resins (linear butyl, phenyl or ether groups). Additionally, it does not appear to be a contribution from the stationary phase backbone, since Macroprep t-butyl, Toso Haas Butyl, Phenyl and Ether resins all share a polymethacrylate backbone. EXAMPLE 4 Comparison of ter-Butyl and Linear Butyl Resins Having Same Hydrophobicity HIC resins were prepared with t-butyl and linear butyl functionalities which had similar hydrophobicities in order to determine whether the specificity of the t-butyl resin was attributable to its greater hydrophobicity (relative to the linear butyl resin) or to some specific selectivity associated with the branched physical structure of the t-butyl moiety. tert-butyl and linear butyl functional groups were immobilized by covalent attachment of their primary amino groups to a commercially available agarose support (NHS-activated Sepharose 4 Fast Flow; Amersham Biosciences, Piscataway, N.J.) via the NHS(N-hydroxysuccinimide) functional moiety, using standard chemistries in accordance with the directions provided by the manufacturer. This linkage forms a very stable amide, especially at high pH. The density of the t-butyl and linear butyl functional groups was adjusted empirically so that the net hydrophobicity of the two resins was equal, as determined by equal retention of RANK:Fc in a gradient of sodium citrate. Separate Peak B and C forms of the protein were obtained (by linear salt gradient from 400 mM citrate to 0 mM citrate at pH 6.0 over 15 column volumes on a TSK Butyl NPR analytical column) prior to purification by HIC. Analytical injections of the Peak B and C forms (0.5 mL at a concentration range of 0.5-2 mg/mL) were loaded onto the t-butyl and linear butyl columns, prepared as described above, and the columns were eluted with a gradient of 400 mM citrate to 0 mM citrate in 15 column volumes, followed by 5 column volume washes with water, followed by 0.5N NaOH. The salt gradient was followed by strip steps with water followed by 0.5N NaOH. HIC using the hydrophobically equalized t-butyl column was highly selective, with the peak B form eluting during the salt gradient while the peak C form of the protein was very strongly retained and eluting only during the 0.5N NaOH strip step. This data indicate that the selectivity of the t-butyl functional group is not due to a difference in hydrophobicity, but rather due to some other property inherent in the branched alkyl structure. The data on this resin from two different proteins (IL1R-II and RANK:Fc) indicates the generic nature of this flow-through step for purification of proteins, such as recombinantly expressed proteins and recombinantly expressed Fc fusion proteins, and for the removal of such contaminants as CHOP proteins, recombinant protein aggregates, Protein A and misfolded forms of a particular protein.
<SOH> BACKGROUND OF THE INVENTION <EOH>Hydrophobic interaction chromatography (HIC) is a method for separating proteins based on the strength of their relative hydrophobic interactions with a hydrophobic adsorbent. Hydrophobicity is generally defined as the repulsion between a non-polar compound and a polar environment, such as water. Hydrophobic “interactions” are essentially the tendency of a polar environment to exclude non-polar (i.e., hydrophobic) compounds from the polar environment and force aggregation of the hydrophobic amongst themselves. The phenomenon of hydrophobic interactions is applied to the separation of proteins by using an aqueous salt solution to force a hydrophobic protein in a sample to aggregate with or bind adsorptively to hydrophobic functional groups (the adsorbent) affixed to a solid support. The adsorbed proteins are released from the adsorbent by eluting with decreasing salt concentrations which reverse the environment promoting the hydrophobic interactions, leading to loss of hydrophobic interactions between the proteins and the support and release of the protein from the support in order of increasing hydrophobicity (with the least hydrophobic proteins being released first). Recombinant proteins typically contain a variety of impurities that need to be removed before the product is pharmaceutically acceptable. Some of these impurities may include host cell proteins (HCPs) from the host cell system in which they are expressed. For a CHO system, these impurities are referred to as CHO Host Cell Proteins (CHOP). In addition to these impurities, the protein as expressed during cell culture may also contain variant forms of the product protein, for example, a misfolded form of the target protein. Other impurities may be added to the product stream or generated as a result of the purification process, such as higher molecular weight aggregates of the protein or leached Protein A. These impurities have a wide range of retentions on different modes of chromatography and removal of such a broad spectrum of impurities is difficult, typically requiring multiple steps involving different modes of chromatography. HIC may be utilized to separate proteins using two different approaches. In the first HIC approach, referred to as the “bind and elute” mode, the mixture containing the target protein is contacted with the hydrophobic adsorbent under conditions where the target protein binds to the adsorbent, while contaminants (or as much of the contaminants as possible) do not bind and flow through. In the “bind and elute” mode, the target protein may be recovered by applying to the adsorbent/protein complex a salt concentration applied in a gradual or step-wise reduced gradient, to selectively release the various bound proteins and contaminants and collecting discreet fractions until the fraction containing the more purified protein is obtained. In a process where a target protein is bound to the column (while allowing contaminants to flow through), adsorbents having greater hydrophobicity are typically used to bind a broader range of proteins which will be collected in a specific fraction release at a specific salt concentration in the course of applying the salt gradient. In the second HIC approach, referred to as the “flow-through” mode, the mixture containing the target protein is contacted with the hydrophobic adsorbent under conditions where the contaminants (or as much of the contaminants as possible) bind to the adsorbent, while the target protein (and as few contaminants as possible) does not bind and flows through. In this mode, the use of less hydrophobic adsorbents, such as those having lower molecular weight alkyl groups, are preferred, since a lower binding capacity is needed for conditions under which the target protein does not bind. As one would expect, however, use of HIC in the flow-through mode has been of limited usefulness because the conditions needed to allow the target protein to flow through inherently result in lower binding capacities, leading to early elimination of the target protein, or elimination of the target protein along with contaminants. While several different modalities of chromatography can be employed to remove a particular class of impurities, very few chromatographic steps are capable of removing all these impurities from a product. Thus, there is need for a purification process that can be employed generically for removal of these impurities from a recombinant protein.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the present invention, it has been discovered that hydrophobic interaction chromatography using a hydrophobic adsorbent comprising branched hydrocarbon functional groups, such as branched alkyl groups, is highly selective in binding protein contaminants, while not binding the target protein, thus allowing the target protein to be recovered in the flow-through fraction. Use of HIC in flow-through has been found to be surprisingly efficient, resulting in a significantly higher recovery of the target protein in a single step, thus simplifying and improving the efficiency and cost of the protein purification process. The present invention includes a process for separating a target protein (such as a recombinant protein produced in a cell culture) from a mixture containing the target protein and contaminants which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In another embodiment, the present invention includes a process for separating a recombinant protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and cell culture contaminants, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In another embodiment, the present invention includes a process for separating a recombinant Fc fusion protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and cell culture contaminants, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution, and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In yet another embodiment, the present invention includes a process for separating a recombinant target protein, produced as a product of cell culture expression in a host cell, from a mixture containing the protein and contaminants, which comprises: preparing a chromatography column having a support comprising hydrophobic branched alkyl functional groups, wherein the branched alkyl functional groups have from 4 to 8 carbon atoms, at least one of which is a tertiary carbon atom, preparing the mixture in an aqueous solution having a salt concentration such that the contaminants bind to the column while the target protein in the mixture does not bind to the column; contacting the mixture with the column; and collecting from the column the portion of the mixture that does not bind to the column, which contains the recombinant target protein. A process for removing a misfolded variant of a recombinant target protein from a mixture containing correctly folded variants and misfolded variants of the target protein, which comprises contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the correctly folded variant of the target protein. A process for removing Protein A from a mixture containing a target protein and Protein A, which comprises: contacting the mixture with a hydrophobic adsorbent comprising branched hydrocarbon functional groups in an aqueous salt solution; and collecting the portion of the mixture that does not bind to the hydrophobic adsorbent, which contains the target protein. In other embodiments of the present invention, the hydrophobic adsorbent comprises a branched alkyl functional group. In another embodiment, the branched alkyl functional group has from 3 to 8 carbon atoms, and more preferably from 4 to 6 carbon atoms. In another embodiment, the branched alkyl functional group contains a sec-carbon, a tert-carbon or a neo-carbon atom. In another embodiment, the branched alkyl functional group may be selected from one or more of the group consisting of sec-butyl, tert-butyl, tert-pentyl, and neopentyl. In another embodiment, the branched alkyl functional group is tert-butyl.
20041022
20080923
20050623
94454.0
1
KAM, CHIH MIN
PROCESS FOR PURIFYING PROTEINS IN A HYDROPHOBIC INTERACTION CHROMATOGRAPHY FLOW-THROUGH FRACTION
UNDISCOUNTED
0
ACCEPTED
2,004
10,970,973
ACCEPTED
Aqueous dispersions of fluoropolymers
Fluorine-containing emulsifiers can be removed from fluoropolymer dispersions by adding to the dispersion a non ionic emulsifier, removing the fluorine-containing emulsifier by contact with an anion exchanger and separating the dispersion from the anion exchanger. The resulting dispersions can be concentrated and used for coating applications.
1. A process for removing fluorine-containing emulsifier from an aqueous fluoropolymer dispersion comprising adding to the dispersion an effective amount of a nonionic emulsifier to stabilize the dispersion, contacting the stabilized dispersion with an anion exchange resin and separating the dispersion from the anion exchange resin, wherein the separated dispersion is essentially free of fluorine-containing emulsifier. 2. The process as claimed in claim 1, wherein the solids content of the said dispersion is 10 to 70% by weight. 3. The process as claimed in claim 1, wherein the stabilized dispersion is contacted with the anion exchange resin in a basic environment. 4. The process as claimed in claim 1, wherein from 0.5 to 15% by weight of nonionic emulsifier is added, based on the weight of the solids content of the dispersion. 5. The process as claimed in claim 1, wherein the anion exchange resin has a counterion corresponding to an acid with a pKa value of at least 3. 6. The process as claimed in claim 1, wherein the anion exchange resin is used in the hydroxyl form. 7. An article comprising an aqueous fluoropolymer dispersion prepared according to claim 1. 8. An article comprising a coating of an aqueous fluoropolymer dispersion prepared according to claim 1. 9. The process as claimed in claim 1, further comprising upconcentrating the separated dispersion. 10. The process as claimed in claim 9, wherein the separated dispersion has a solids content of about 70% by weight or less. 11. The process as claimed in claim 1, wherein said contacting step and said separating step are accomplished continuously through an anion exchange resin bed. 12. The process as claimed in claim 1, wherein said contacting step is accomplished in a batch process and the anion exchange resin and the dispersion are subsequently subjected to said separating step.
CROSS REFERENCE TO RELATED APPLICATIONS This application is a divisional application of application Ser. No. 09/857081, filed on May 31, 2001, now allowed, which was a national stage filing under 35 U.S.C. 371 of PCT/EP99/09500 filed Dec. 4, 1999, which International Application was published as WO 00/35971, and which claims priority to DE 198 57 111.9, filed Dec. 11, 1998. The invention is concerned with aqueous dispersions of fluoropolymers being essentially free of fluorine-containing emulsifiers, a process for preparing such dispersions and their use. “Essentially free” means a content of less than 100 ppm, preferably less than 50 ppm, especially less than 25 ppm and in particular less than 5 ppm. Polyfluoroethylene-dispersions find wide applications in the coating industry due to the unique performance of the coatings in respect of e.g. release properties, good weathering resistance, and flame retardancy. They are mainly used for coating kitchenware, chemical apparatus and glass fabrics. In many such applications, the dispersions are applied at relatively high solids contents, e.g., up to 70% by weight. These concentrated dispersions are mainly stabilized by nonionic emulsifiers such as alkylarylpolyethoxy alcohols and alkylpolyethoxy alcohols, using colloid-chemistry methods. There are in principle two different polymerization processes for preparing fluoropolymers, namely suspension polymerization leading to polymer granules and, on the other hand the process known as emulsion polymerization, leading to an aqueous colloidal dispersion. This invention concerns emulsion polymerization, the resultant dispersions and their use. The manufacturing of such dispersions involves in principle the two processing steps polymerization and concentration. Polymers which are obtainable by aqueous emulsion polymerization are firstly homopolymers not processible from the melt, for example PTFE, secondly “modified” polymers, for example a polymer with more than about 99 mol % of tetrafluoroethylene (TFE) and an amount of comonomer(s) which is so low that the product retains its “not processible from the melt” character and thirdly low molecular weight “micropowder” dispersions which are processible from the melt, and fourthly copolymers, for example fluorinated thermoplastics or fluoroelastomers. The fluorinated thermoplastics include copolymers which are composed mainly of TFE and the amount needed of one or more comonomers to make the product processible from the melt, for example from 1 to 50 mol %, preferably from 1 to 10 mol %. Customary fluoromonomers, besides TFE, are vinylidene fluoride (VDF), other fluorinated olefins, such as chlorotrifluoroethylene (CTFE), in particular perfluorinated olefins having from 2 to 8 carbon atoms, such as hexafluoropropene (HFP), fluorinated ethers, in particular perfluorinated vinyl-alkyl ethers whose alkyl moieties have from 1 to 6 carbon atoms; for example perfluoro (n-propyl vinyl) ether (PPVE). Other comonomers which may be used are nonfluorinated olefins, such as ethylene or propylene. The resultant dispersions of polymers which are processible from the melt or not processible from the melt generally have a solids content of from 15 to 30% by weight. To achieve the abovementioned high solids content for application as a coating, and advantageously also for storage and transport, the solids content has to be increased by raising the concentration. Examples of methods used for this are raising the concentration thermally as in U.S. Pat. No. 3,316,201, decanting (U.S. Pat. No. 3,037,953) and ultrafiltration (U.S. Pat. No. 4,369,266). The known emulsion polymerization mostly takes place within a pressure range from 5 to 30 bar and within a temperature range from 5 to 100° C. as described in EP-B-30 663, for example. The polymerization process for preparing PTFE-dispersions substantially corresponds to the known process for preparing fine resin powders, known as paste product (U.S. Pat. No. 3,142,665). The polymerization process for preparing copolymers, such as dispersions of fluorinated thermoplastics, corresponds to the process for preparing these materials in the form of melt pellets. In all of these emulsion polymerizations an emulsifier is required which does not disrupt the polymerization by chain transfer. These emulsifiers are termed nontelogenic emulsifiers (U.S. Pat. No. 2,559,752). Use is mainly made of perfluorooctanoic acid (PFOA for example n-PFOA, CAS No. 335-67-1) in the form of ammonium and/or alkali metal salts. However, the abbreviation PFOA when used in the text below is not intended to exclude other fluorinated emulsifiers. The content of this emulsifier is generally within the range of 0.02 to 1% by weight, based on the polymer. Occasionally, other fluorinated emulsifiers are used. For example, EP-A-822 175 describes the use of salts of CH2-containing fluorocarboxylic acids for the emulsion polymerization of TFE. WO-A-97/08214 describes the use of 2-perfluorohexylethanesulfonic acid or salts thereof for TFE polymerization. U.S. Pat. No. 2,559,752 describes other fluorinated emulsifiers, but these have not been widely used since their volatility is low. These chemicals can cause discoloration of the final products at high processing temperatures. One of the greatest advantages of PFOA is its high volatility. PFOA is a very effective emulsifier and is practically indispensable due to its inertness in the polymerization reaction. However, PFOA is not biodegradable and has recently been classified as hazardous to the environment. However, it is known that PFOA can be removed from exhaust gases (EP-B-731 081), and moreover advantageous processes for removing PFOA from wastewater have been described (U.S. Pat. No. 4,282,162 and the as yet unpublished German Patent Applications 198 24 614.5 and 198 24 615.3 filed Jun. 2, 1998). In the techniques listed above for raising concentration, the majority of the PFOA remains in the polymer dispersion, even in the case of ultrafiltration or removal by decanting using a 100-fold excess of the nonionic emulsifier. For instance, in the ultrafiltration of U.S. Pat. No. 4,369,266 about 30% of the original PFOA content remains in the marketable dispersions. In specific cases the residual PFOA content can be reduced to below 10%, but the process is generally not cost-effective: achieving a reduction of this type requires addition of water and of a nonionic emulsifier to the dispersion whose concentration is to be raised. This gives unacceptably long process times. During subsequent use of these dispersions, PFOA can pass into the environment, for example with the wastewater inevitably arising from cleaning the equipment, and into the atmosphere as aerosol. The latter emission is still more pronounced when coatings are produced, since PFOA and its ammonium salt are highly volatile. In addition, PFOA and its salts decompose by decarboxylation at the sintering temperatures normally employed, from 350 to 450° C., to give fluorinated hydrocarbons, which have a major global-warming effect (“greenhouse effect”). The present invention provides high solid dispersions essentially free of PFOA. In this invention, “essentially free” means a content of less than 100 ppm, preferably less than 50 ppm, especially less than 25 ppm and in particular less than 5 ppm. These values are based on the entire dispersion, and not just the solids content. This is achieved by removal of fluorinated emulsifiers, e.g. PFOA, from fluoropolymer dispersions, such as PTFE, fluorothermoplast or fluoroelastomer dispersions, via anion exchange, namely by adding a nonionic emulsifier to the fluoropolymer dispersion and contacting this stabilized dispersion with a basic anion exchanger. This process works without jamming or clogging the ion exchange bed by coagulated latex particles. The resulting dispersion may optionally be upconcentrated. Fluoropolymer dispersions useful in this inventions include dispersions of homopolymers and copolymers of one or more fluorinated monomers, such as TFE, VDF or CTFE or other fluorinated olefins of 2 to 8 carbon atoms, perfluorinated olefins of 2 to 8 carbon atoms, e.g., HFP, fluorinated ethers, especially perfluorinated vinyl-alkyl ethers with alkyls of 1 to 6 carbon atoms, such as perfluoro-(n-propyl-vinyl) ether and perfluoro-(methyl-vinyl) ether. Useful comonomers also include non-fluorinated olefins, such as ethylene or propylene. This invention is intended to include such dispersions whether the resulting fluoropolymer is melt-processible or not. The latex particles usually have a submicroscopic diameter of less than 400 nm and preferably from 40 to 400 rm. Smaller particle sizes may be obtained by what is known as “micro-emulsion polymerization.” The latex particles are anionically stabilized by colloid chemistry methods. The anionic stabilization is provided by anionic endgroups, mostly COOH-groups, and by the anionic emulsifier, such as PFOA. Such anionically stabilized dispersions coagulate rapidly in an anion exchange bed and thus jam the ion exchange bed. The reason for that is the break down of the electrical double layer at the ion exchange sites. The treatment of an anionically stabilized dispersion with an anion exchanger is therefore considered to be technically not feasible, in particular for higher concentrations. The impairing or clogging of the ion exchange bed is observed even at concentrations 1000 times lower than those of the raw polymer dispersions, that is to say of the dispersion after polymerization. A helpful in choosing a useful ion exchanger is that the pKa value of the acid corresponding to the counterion of the anion exchanger has to be higher than the pKa value of the anionic endgroups of the polymer. Preferably, the anion exchanger has a counterion corresponding to an acid with a pKa value of at least 3. In contrast, coagulation is observed after prolonged periods if the anion exchanger is in the SO4−2 or Cl− form even with dispersions of copolymers of TFE and HFP, called “FEP”, and of TFE with PPVE, called “PFA”. These copolymers both have strongly acidic endgroups. The formation of such endgroups is explained in “Modern Fluoropolymers”, John Scheirs (Editor), John Wiley & Sons, Chichester (1997), pages 227 to 288, 244. The jamming or clogging of ion exchange beds when processing TFE-ethylene or VDF copolymer dispersions occurs almost instantly under such conditions. Therefore, at the outset, the anion exchange is performed in an essentially basic environment. Preferably, the ion exchange resin is transformed to the OH− form, but anions like fluoride or oxalate corresponding to weak acids can also be used. These anions are generally present in the dispersion and originate from the polymerization recipe. The specific basicity of the anion exchanger used is not critical. Strongly basic resins are preferred due to the observed higher efficiency in removing PFOA. The effective removal of PFOA from the dispersions depends on the ion exchange conditions. Weakly basic ion exchange resins show earlier PFOA breakthrough. The same is true for higher flow rates. The flow rate is not critical, standard flow rates can be used. The flow can be upward or downward. The ion exchange process can also be carried out as a batch process by mildly stirring the dispersion with the ion exchange resin in a vessel. After this treatment the dispersion is isolated by filtration. Use of this invention will minimize coagulation during a batch process. Non ionic emulsifiers are described in detail in “Nonionic Surfactants” M. J. Schick (editor), Marcel Dekker, Inc., New York 1967”. The choice of the nonionic emulsifier is also not critical. Alkylarylpolyethoxy alcohols, alkylpolyethoxy alcohols, or any other nonionic emulsifier can be used. This is a big advantage since the removal of PFOA from commercial dispersions leaves the formulation of the applied dispersions essentially unchanged. No differences could be observed using nonionic surfactants such as alkylarylpolyethoxy alcohol type, e.g., Triton™ X100, or of alkylpolyethoxy alcohol iype, e.g., GENAPOL™ X 080, with respect to effectiveness of the PFOA removal, flow rates, or jamming of the ion exchanger bed. The removal of PFOA is preferably carried out with crude dispersions from polymerization. Such dispersions generally have a solid content of 15 to 30% by weight. Sufficient non-ionic emulsifier is added to provide dispersion stability during subsequent processing, such as concentration. A sufficient quantity of non-ionic emulsifier generally means from 0.5 to 15% by weight and preferably from 1 to 5% by weight. These percentages are based upon the solids content of the dispersion. After removal of the PFOA, the dispersions may be concentrated using conventional procedures, such as ultrafiltration or thermal concentration. It is advantageous that the concentration of the non-ionic emulsifier in the final product is not much higher than in comparable commercial products. The absence of PFOA in these processes does not impair the concentration process, that is, no more coagulum is formed than in presence of PFOA during thermal concentration and ultrafiltration. The removal of PFOA via anion exchange can also be carried out with previously concentrated dispersions with a solids content of up to 70% by weight. However, due to the higher viscosity and density of such dispersions this process is technically more cumbersome. In this case the ion exchange is preferably operated by the upflow method, to avoid difficulties due to the flotation of the ion exchange bed. The high viscosity does not usually permit high flow rates. For such high solids dispersions the batch process appears to be more advantageous. The removal of PFOA is carried out by adding typically 1 to 5% by weight of nonionic emulsifier to the dispersion under mild agitation conditions and passing the dispersion over the anion exchanger. The anion exchanger may be preconditioned with a solution of nonionic emulsifier as used with the dispersion to be exchanged. The anion exchange resin is preferably brought into the OH− form. This is accomplished by bringing the anion exchange resin into contact with an NaOH solution. Dispersions are generally used for the ion exchange process without adjusting the pH value but the pH value may be increased to enhance the colloidal stability of the dispersion by adding a base, such as aqueous ammonia or sodium hydroxide solution. A pH value in the range of 7 to 9 is sufficient. The increased pH value does not greatly affect the efficiency of the removal of PFOA. This is believed to be due to the fact that PFOA is not only exchanged but also strongly absorbed on the ion exchange resin. Subsequently the ion exchanged dispersions are subjected to concentration, preferably using thermal concentration or ultrafiltration. No impairment of these processes could be observed. There are moreover no changes in end user processing or end use properties for such dispersions according to the invention. The anion exchange process in the presence of a non ionic emulsifier without jamming of the ion exchange bed, can be successfully used for the removal of any other anionic emulsifier used in any polymerisation process. This process may also be used for any crude fluoropolymer dispersions, such as dispersions of PFA, FEP, THV (THV is a terpolymer of TFE, HFP VDF), ET (ET is a copolymer of TFE and ethylene), TFE/P (a copolymer of TFE and propylene), copolymers of VDF and HFP, as well as homopolymers or copolymers comprising other fluorinated olefins or vinyl ethers. These polymers are described in detail in “Modern Fluoropolymers” cited above. The work up procedure as disclosed in U.S. Pat. No. 5,463,021 describes inter alia, a treatment of crude THV dispersions via an ion exchange process as one work up step. However, this is a cationic exchange process to remove manganese ions originating from the permanganate used as polymerization initiator. During the cationic exchange process the stabilizing electrical double layer is not affected because the latex particles are anionically stabilized. The invention will now be explained in more detail by the following examples. Experimental details: All percentages are by weight unless otherwise stated. Determination of PFOA The PFOA content of the anion exchanged dispersion may be quantitatively analyzed using the method described in “Encyclopedia of Industrial Chemistry Analysis”, Vol. 1, pages 339 to 340, Interscience Publishers, New York, N.Y., 1971 and in EP-A 194 690. Another method used is the conversion of the PFOA to the methyl ester and analysis the ester content by gas chromatography using an internal standard. The detection limit for PFOA for the latter method is 5 ppm. The latter method was used in the following examples. Anion Exchange Standard equipment was used. The dimensions of the column were 5×50 cm. AMBERLITE™ IRA 402 with a capacity of 1.2 meq/ml was used as strong basic anion exchange resin (AMBERLITE is a Trademark of Rohm & Haas). The bed volume was usually 400 ml. The ion exchanger was brought into the OH− form with NaOH solution. The exchanger was preconditioned with a 5%-solution of the non ionic emulsifier. The ion exchange was carried out at room temperature. The experiments were performed at different flow rates as given in Table 1. The non ionic emulsifier was added to the dispersions as a 10% concentrated solution. The content was varied as given in Table 1. The values are based on the polymer content. The technical feasibility of this process is considered to have been achieved if at least 5% of the theoretical capacity of the ion exchange resin used is consumed by the PFOA containing dispersion without jamming of the bed and without breakthrough of PFOA. The following nonionic surfactants were used: NIS 1: octyl phenoxy polyethoxy ethanol (commercial product TRITON™ X100, TRITON is a Trademark of Union Carbide Corp.). NIS 2: ethoxylate of a long-chain alkanol (commercial product GENAPOL™ X080, GENAPOL is a Trademark of Hoechst AG). EXAMPLES 1 to 7 All experiments were carried out with AMBERLITE IRA 402 in the OH− form. Changes to the preconditioning of the anion exchange resin with an aqueous solution of the non ionic surfactant were as indicated in Table 1. The fluoropolymer dispersion was obtained by homopolymerization of TFE according to EP-B 30 663. The solids content of the crude dispersion used is about 20%, and the average particle size is about 200 to 240 nm. The pH value is 7. The amount and type of the non ionic emulsifier added to the crude dispersion were changed as indicated in Table 1. The PFOA content of the dispersion is about 0.13% by weight (amounting to 3.14 mmol/kg dispersion). This corresponds to 2.7 ml of ion exchange resin per kg of crude dispersion. Example 3 shows that 54 ml of the total volume of 400 ml ion exchange resin are consumed. Thus, the ion exchange capacity provided was a more than 5-fold excess for all examples. The experimental details in Table 1 show different flow rates. During a given experiment no changes in the flow rate were observed. This is an indication of the absence of jamming of the ion exchange bed. The run time of the experiments was up to 67 h without interruption. All the examples result in dispersions with PFOA contents of less than 5 ppm, the analytical detection limit of the method used. TABLE 1 Example No. 1 2 3 4 5 6 7 Ion exchange resin, ml 400 ml 400 ml 400 ml 4 parallel columns 4 parallel columns 400 ml 400 ml 400 ml each 400 ml each Ion exchange resin conditioned 1 weight-% 5 weight-% 3 weight-% 5 weight-% 5 weight-% 5 weight-% 1 weight-% with an aqueous solution of NIS 1 NIS 1 NIS 1 NIS 1 NIS 2 NIS 2 NIS 2 Raw dispersion: Solid content of 22.7% 22.6% 22.7% 22.7% 22.5% 23% 22.8% PFOA content 0.132% 0.130% 0.132% 0.136% 0.138% 0.138% 0.136% Raw dispersion Stabilized with *) 1% NIS 1 3% NIS 1 4% NIS 1 5% NIS 1 5% NIS 2 4% NIS 2 1% NIS 2 Amount passed through 5 kg 19 kg 20 kg 40 kg 50 kg 18 kg 8 kg Flow rate 0.5 1/h 0.6 1/h 0.3 1/h 0.6 1/h 0.6 1/h 0.6 1/h 0.5 1/h Run time 10 h 35 h 67 h 17 h 21 h 30 h 16 h Jamming yes/no No no no no no no no Ion exchanged dispersion PFOA content <5 ppm <5 ppm <5 ppm <5 ppm <5 ppm <5 ppm <5 ppm *) based on solid content of the dispersion EXAMPLE 8 800 ml of AMBERLITE IRA 402 (OH− form, preconditioned with a 5%-solution of NIS 1) were slowly added to a stirred vessel containing 20 liters of dispersion similar to that used in examples 1 to 7, but concentrated by ultrafiltration (solids content: 52.5%, PFOA content: 0.065%, NIS 1 content: 5% based on polymer content). After mild stirring for 8 h at room temperature the anion exchanger was filtered off and the PFOA content of the dispersion was analyzed resulting in less than 5 ppm PFOA. EXAMPLE 9 The same procedure as for examples I to 7 was used for purification of a PFA crude dispersion. 400 ml of AMBERLITE IRA 402 (OH− form, preconditioned with 1%-solution of NIS 2) were used. The PFA dispersion (1500 ml, solid content 20 %) was stabilized with 5% by weight of NIS 2 based on the solid content of the dispersion. This dispersion contained 0.066% by weight of PFOA and showed a pH value of 4. The dispersion was passed over the anion exchange bed with a flow rate of 100 ml/h. This corresponds to a run time of 15 h. No jamming of the bed was observed and the resulting dispersion showed a PFOA content of <5 ppm. EXAMPLE 10 Example 9 was repeated using a crude FEP dispersion (solid content 20% by weight, PFOA content 0.08% by weight) stabilized with 5% by weight of NIS 2. The ion exchange process resulted in an FEP dispersion containing <5 ppm of PFOA. No jamming of the bed was observed. EXAMPLE 11 Example 9 was repeated but with a THV dispersion having a solids content of 20% and an average particle size of 80 nm. Before subjecting the dispersion to the anion exchange it was treated with a cation exchange resin as described in U.S. Pat. No. 5,463,021. The anion exchange process resulted in a THV dispersion containing <5 ppm of PFOA and no jamming of the bed was observed.
20041021
20080415
20050526
58135.0
1
HU, HENRY S
AQUEOUS DISPERSIONS OF FLUOROPOLYMERS
UNDISCOUNTED
0
ACCEPTED
2,004
10,971,087
ACCEPTED
Desiccant refrigerant dehumidifier systems
A method for conditioning air for an enclosure in which a supply air stream is cooled with a refrigerant system containing a variable compressor by passing the air over a cooling coil to reduce the temperature thereof; the thus cooled supply air stream is then passed through a segment of a rotating desiccant wheel under conditions which increase its temperature and reduce its moisture content, and then delivered to the enclosure. The desiccant wheel is regenerated by heating a regeneration air stream with the condensing coil of the refrigerant system, and then passing the heated regeneration air stream through another segment of the rotating desiccant wheel. At least one condition of the supply air stream, the regeneration air stream, and/or the refrigerant system is sensed or monitored and the output of the compressor is controlled in response to the sensed condition.
1. A method for conditioning air for an enclosure comprising the steps of cooling a supply air stream with a refrigerant system containing a variable compressor by passing the air over a cooling coil to reduce the temperature thereof, passing the thus cooled supply air stream through a segment of a rotating desiccant wheel under conditions which increase its temperature and reduce its moisture content, and then delivering the thus treated air to said enclosure; regenerating the desiccant wheel by heating a regeneration air stream with the condensing coil of the refrigerant system, and then passing the heated regeneration air stream through another segment of the rotating desiccant wheel to regenerate the desiccant in the wheel; sensing at least one condition of the supply air stream, the regeneration air stream, and/or the refrigerant system; and controlling the output of the compressor in response to the sensed condition. 2. The method as defined in claim 1 including the steps of supplying make-up air to said supply air, sensing at least one condition of the air in the enclosure and controlling the supply of make-up air in response to such sensed condition. 3. The method as defined in claim 1 including the step of sensing the regeneration air temperature entering the regeneration segment of the desiccant wheel and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil to control the air temperature entering that segment to a predetermined value. 4. The method as defined in claim 2 including the step of sensing the regeneration air temperature entering the regeneration segment of the desiccant wheel and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil to control the air temperature entering that segment to a predetermined value. 5. The method as defined in Clam 1 including the step of sensing the condensing coil pressure and maintaining it at a predetermined pressure condition, and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil thereby to maintain a relatively uniform regeneration air temperature. 6. The method as defined in Clam 2 including the step of sensing the condensing coil pressure and maintaining it at a predetermined pressure condition, and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil thereby to maintain a relatively uniform regeneration air temperature. 7. The method as defined in claim 1 including the step of sensing the temperature of the cooled supply air leaving the desiccant wheel and controlling compressor capacity in response to that sensed temperature to maintain the cool air temperature leaving the wheel at a predetermined value. 8. The method as defined in claim 5 including the step of sensing the temperature of the cooled supply air leaving the desiccant wheel and controlling compressor capacity in response to that sensed temperature to maintain the cool air temperature leaving the wheel at a predetermined value. 9. The method as defined in claim 6 including the step of sensing the temperature of the cooled supply air leaving the desiccant wheel and controlling compressor capacity in response to that sensed temperature to maintain the cool air temperature leaving the wheel at a predetermined value. 10. A method for condition air for supply to an enclosure comprising the steps of cooling a supply air stream having a temperature range of between 65° F.-95° and above and a moisture content of between 90-180 gr/lb. with a refrigerant system cooling coil to reduce the moisture content and temperature thereof to a first predetermined moisture content saturation level and saturation temperature range, passing the thus cooled and dried ambient supply air stream through a segment of a rotating desiccant wheel under conditions which increase its temperature to a second predetermined temperature range of about 68-81° F. and reduce its moisture content further to a predetermined humidity level of between 30-80 gr/lb.; and then delivering the thus treated air to said enclosure; regenerating the desiccant wheel by heating a regeneration air stream with the condensing coil of the refrigerant system to increase its temperature to a predetermined temperature range of 105° F.-135° F. and then passing the heated regeneration air stream through another segment of the rotating desiccant wheel to regenerate the desiccant in the wheel; sensing at least one condition of the supply air stream, the regeneration air stream and/or the refrigeration system; and controlling the output of the compressor in response to the sensed condition. 11. The method as defined in claim 10 including the steps of supplying make-up air to said supply air, sensing at least one condition of the air in the enclosure and controlling the supply of make-up air in response to such sensed condition. 12. The method as defined in claim 11 including the step of sensing the regeneration air temperature entering the regeneration segment of the desiccant wheel and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil to control the air temperature entering that segment to a predetermined value. 13. The method as defined in claim 12 including the step of sensing the temperature of the cooled supply air leaving the desiccant wheel and controlling compressor capacity in response to that sensed temperature to maintain the cool air temperature leaving the wheel at a predetermined value. 14. The method as defined in Clam 12 including the step of sensing the condensing coil pressure and maintaining it at a predetermined pressure condition, and controlling the volume of regeneration air passing the condenser coil and entering the regeneration segment of the condenser coil thereby to maintain a relatively uniform regeneration air temperature. 15. The method as defined in claim 14 including the step of sensing the temperature of the cooled supply air leaving the desiccant wheel and controlling compressor capacity in response to that sensed temperature to maintain the cool air temperature leaving the wheel at a predetermined value.
This application is a continuation of U.S. patent application Ser. No. 10/670,309, filed Sep. 26, 2003, which is a continuation of U.S. patent application Ser. No. 10/316,952, filed Dec. 12, 2002, now U.S. Pat. No. 6,711,907, which is a continuation in part of U.S. patent application Ser. No. 09/795,818 filed Feb. 28, 2001, now U.S. Pat. No. 6,557,365, the disclosure of each of which is incorporated herein by reference. BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to air conditioning and dehumidification equipment, and more particularly to an air conditioning method and apparatus using desiccant wheel technology. It is well known that traditional air conditioning designs are not well adapted to handle both the moisture load and the temperature loads of a building space. Typically, the major source of moisture load in a building space comes from the need to supply external make-up air to the space since that air usually has a higher moisture content than required in the building. In conventional air conditioning systems, the cooling capacity of the air conditioning unit therefore is sized to accommodate the latent (humidity) and sensible (temperature) conditions at peak temperature design conditions. When adequate cooling demand exists, appropriate dehumidification capacity is achieved. However, the humidity load on an enclosed space does not vary directly with the temperature load. That is, during morning and night times, the absolute humidity outdoors is nearly the same as during higher temperature midday periods. Thus, at those times there often is no need for cooling in the space and therefore no dehumidification takes place. Accordingly, preexisting air conditioning systems are poorly designed for those conditions. Those conditions, at times, lead to uncomfortable conditions within the building and can result in the formation of mold or the generation of other microbes within the building and its duct work, leading to what is known as Sick Building Syndrome. To overcome these problems, ASHRAE Draft Standard 62-1989 recommends the increased use of make-up air quantities and recommends limits to the relative humidity in the duct work. If that standard is properly followed, it actually leads to a need for even increased dehumidification capacity independent of cooling demands. A number of solutions have been suggested to overcome this problem. One solution, known as an “Energy Recovery Ventilator (ERV),” utilizes a conventional desiccant coated enthalpy wheel to transfer heat and moisture from the make-up air stream to an exhaust air stream. These devices are effective in reducing moisture load, but require the presence of an exhaust air stream nearly equal in volume to the make-up air stream in order to function efficiently. ERVs are also only capable of reducing the load since the delivered air will always be at a higher absolute humidity in the summer months than the return air. Without active dehumidification in the building, the humidity in the space will rise as the moisture entering the system exceeds the moisture leaving in the exhaust stream. However, ERVs are relatively inexpensive to install and operate. Other prior art systems use so-called cool/reheat devices in which the outside air is first cooled to a temperature corresponding to the desired building internal dew point. The air is then reheated to the desired temperature, most often using a natural gas heater. Occasionally, heat from a refrigerant condenser system is also used to reheat the cooled and dehumidified air stream. Such cool/reheat devices are relatively expensive and inefficient, because excess cooling of the air must be done, followed by wasteful heating of air in the summer months. A third category of prior art device has also been suggested using desiccant cooling systems in which supply air from the atmosphere is first dehumidified using a desiccant wheel or the like and the air is then cooled using a heat exchanger. The heat from this air is typically transferred to a regeneration air stream and is used to provide a portion of the desiccant regeneration power requirements. The make-up air is delivered to the space directly, or alternatively is cooled either by direct or indirect evaporative means or through more traditional refrigerant-type air conditioning equipment. The desiccant wheel is regenerated with a second air stream which originates either from the enclosure being air conditioned or from the outside air. Typically, this second air stream is used to collect heat from the process air before its temperature is raised to high levels of between 150° F. to 350° F. as required to achieve the appropriate amount of dehumidification of the supply air stream. Desiccant cooling systems of this type can be designed to provide very close and independent control of humidity and temperature, but they are typically more expensive to install than traditional systems. Their advantage is that they rely on low cost sources of heat for the regeneration of the desiccant material. U.S. Pat. No. 3,401,530 to Meckler, U.S. Pat. No. 5,551,245 to Carlton, and U.S. Pat. No. 5,761,923 to Maeda disclose other hybrid devices wherein air is first cooled via a refrigerant system and dried with a desiccant. However, in all of these disclosures high regeneration temperatures are required to adequately regenerate the desiccant. In order to achieve these high temperatures, dual refrigerant circuits are needed to increase or pump up the regeneration temperature to above 140° F. In the case of the Meckler patent, waste heat from an engine is used rather than condenser heat. U.S. Pat. No. 4,180,985 to Northrup discloses a device wherein refrigerant condensing heat is used to regenerate a desiccant wheel or belt. In the Northrup system, the refrigerant circuit cools the air after it has been dried. The invention as described in our parent application Serial No. 08/795,818 is particularly suited to take outside air of humid conditions, such as are typical in the South and Southeastern portions of the United States and in Asian countries and render it to a space neutral condition. This condition is defined as ASHRAE comfort zone conditions and typically consists of conditions in the range of 73-78° F. and a moisture content of between 55-71 gr/lb. or about 50% relative humidity. In particular, the system is capable of taking air of between 85-95° F. and 130-145 gr/lb. of moisture and reducing it to the ASHRAE comfort zone conditions. However, that system also works above and below these conditions, e.g., at temperatures of 65-85° F. or 95° F. and above and moisture contents of 90-130 gr/lb. or 145-180 gr/lb. As compared to conventional techniques the invention of the parent application has significant advantages over alternative techniques for producing air at indoor air comfort zone conditions from outside air. The most significant advantage being low energy consumption. That is, the energy required to treat the air with a desiccant assist is 25-45% less than that used in previously disclosed cooling technologies. That system uses a conventional refrigerant cooling system combined with a rotatable desiccant wheel. The refrigerant cooling system includes a conventional cooling coil, condensing coil and compressor. Means are provided for drawing a supply air stream, preferably an outdoor air stream over the cooling coil of the refrigerant system to reduce its humidity and temperature to a first predetermined temperature range. The thus cooled supply air stream is then passed through a segment of the rotary desiccant wheel to reduce its moisture content to a predetermined humidity level and increase its temperature to a second predetermined temperature range. Both the temperature and humidity ranges are within the comfort zone. This air is then delivered to the enclosure. The system also includes means for regenerating the desiccant wheel by passing a regeneration air stream, typically also from an outside air supply, over the condensing coil of the refrigerant system, thereby to increase its temperature to a third predetermined temperature range. The thus heated regeneration air is passed through another segment of the rotatable desiccant wheel to regenerate the wheel. It is an object of the present invention to treat outside supply air at any ambient condition and render it to practically any drier and cooler psychrometric condition with lower enthalpy. Yet another object of the present invention is to provide a desiccant based dehumidification and air conditioning system which is relatively inexpensive to manufacture and to operate. Another object of the present invention is to heat make-up air while recovering enthalpy from a return air stream. Yet another object of the present invention is to provide a desiccant based air conditioning and dehumidifying system using single, multiple and or variable compressors operating at the highest suction pressures possible to produce stable operating conditions and enhanced energy savings. A further object of the present invention is to utilize the exhaust air from the building as a regeneration air source. This air will be at an absolute moisture condition substantially lower than ambient air for a portion of the year. Using this air and adding heat from the condenser coil will produce a better sink for process air moisture removal. In accordance with an aspect of the present invention the system of the present invention includes an air conditioning or refrigeration circuit containing a condensing coil, a cooling or evaporation coil and a compressor and a desiccant wheel having a first segment receiving supply air from the cooling coil of the refrigeration circuit to selectively dry the supply air. A regeneration air path supplies regeneration air to a second segment of the desiccant wheel as it rotates through the regeneration air path. According to the invention this system is modulated to provide a constant outlet air condition from the process portion of the desiccant wheel over a wide range of inlet conditions and volumes. Preferably the system uses variable compressors whose output can be varied in response to air or refrigerant conditions at predetermined points in the system. In one embodiment the system may be operated in numerous different modes from fresh air supply only to supply of simultaneous cooled and dehumidified air. In addition a particularly simple and inexpensive housing structure for the system of the invention is provided. The above, and other objects, features and advantages of the present invention will be apparent in the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings, wherein: FIGS. 1, 1A and 1B are schematic diagrams of a first embodiment of the basic system of the present invention; FIG. 2 is a psychrometric chart describing the cycle achieved by the embodiment of FIG. 1; FIG. 3 is a psychrometric chart describing the cycle achieved by the embodiment of FIG. 1 using a different control system. FIG. 4 is a schematic view of another embodiment of the present invention which is adapted to treat make-up air and recover enthalpy from the return air stream. FIG. 5 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the cooling only mode; FIG. 6 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the dehumidification only mode; FIG. 7 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the dehumidification and cooling mode; FIG. 8 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in an enthalpy exchange mode; FIG. 9 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in a fresh air exchange mode; FIG. 10 is a schematic diagram of an embodiment similar to that of FIG. 1, but utilizing two compressors; FIG. 11 is an evaporator cross plot for the system of FIG. 10; FIG. 12 is a schematic diagram similar to FIG. 1 showing yet another embodiment of the invention using a reactivation temperature control scheme; and FIG. 13 is a schematic plan view of a housing structure for use with the system of FIG. 1. Referring now to the drawings in detail, and initially to FIG. 1 thereof, a simplified air conditioning and dehumidification system 10 according to the present invention is illustrated which utilizes a refrigerant cooling system and a rotating desiccant wheel dehumidification system. This system is a refinement of the system disclosed in our parent application. In this case the system takes air at any ambient condition and renders it to practically any drier and cooler psychrometric condition with a lower enthalpy. In system 10, the refrigerant cooling system includes a refrigerant cooling circuit containing at least one cooling or evaporator coil 52, at least one condenser coil 58, and a compressor 28 for the liquid/gas refrigerant which is carried in connecting refrigerant lines 29. In use, supply air from the atmosphere is drawn by a blower 50, through duct work 51 or the like, over the cooling coil 52 of the refrigerant system where its temperature is lowered and it is slightly dehumidified. From there, the air passes through the process sector 54 of a rotating desiccant wheel 55 where its temperature is increased and it is further dehumidified. That air is then provided to the enclosure or space 57. Desiccant wheel 55 of the dehumidification system is of known construction and receives regeneration air in a regeneration segment 60 from ducts 61 and discharges the same through duct 62. The wheel 55 is regenerated by utilizing outside air drawn by a blower 56 over the condenser coil 58 of the air conditioning system. This outside air stream is heated as it passes over the condenser coil and is then supplied to regeneration segment 60 to regenerate the desiccant. The regeneration air is drawn into the system and exhausted to the atmosphere by the blower 56. In this embodiment, compressor 28 is a variable capacity compressor and preferably an infinitely adjustable screw type compressor with a slide valve. As is understood in the art the volume through the screws in such a compressor is varied by adjusting the slide valve and thus the volume of gas entering the screw is varied. This varies the compressor's output capacity. Alternatively a time proportioned scroll compressor, a variable speed scroll or piston type compressor may be used to circulate the refrigerant in line 29 through a closed system including an expansion device 31 between the condenser coil 58 and the evaporator or cooling coil 52. It has been found that by using a single non variable compressor in refrigeration systems, the compressor does more work than needs to be done with the results that the desired set point of the system may be over shot. By using variable compressors as described the system can modulate to provide a constant outlet condition over a range of inlet air conditions and volumes. That is, the operation of the compressor is controlled in response to one or more conditions. As a result, for example, one can maintain a desired usable and selectable humidity condition leaving the desiccant wheel by modulating the compressor capacity. Such modulation can be achieved by using more than one compressor or variable compressors, such as the time proportional compressor offered by Copeland, or variable frequency compressors which use synchronous motors whose speed may be varied by varying the hertz input to the motor, which causes variation in work output. The refrigeration system described above can be modulated or controlled to provide a constant outlet condition over a range of inlet conditions and volumes. It allows the system to be used in make-up air applications to meet requirements for ventilation, pressurization or air quality (e.g., in restaurants where make-up air is required to replace kitchen exhaust air). Thus control of the delivered make-up air volume can be made dependent on pressure (through use of pressure sensors for clean rooms and the like), CO2 content (through use CO2 sensors) to control quality, or based on occupancy (using room temperature sensors). Such sensors would control make-up air volume using known techniques to control, for example, the speed of blower 50 or air diverter valves (not shown) in duct 51. The system, using the variable compressor, can still be modulated to accommodate the variation of temperature or humidity caused by the addition of make-up air in order to maintain the desired environmental conditions. According to this invention a desired delivered air temperature and humidity level for the supply air to the enclosure or space 57 can be maintained within the ASHRAE comfort zone discussed above. From those temperatures and humidity conditions the corresponding wet bulb temperature can be determined, establishing the desired conditions represented at Point 3 on the psychrometric chart of FIG. 2. This wet bulb temperature is used as the target set point for the cooling and drying of the supply air (whether it is return air alone or mixed with make-up air as described above). Utilizing the variable capacity of the compressor 28, the capacity of the cooling coil 52 is controlled to maintain the supply air temperature leaving the coiling coil at a temperature which will allow the conditioning of Point 3 to be attained after the air passes through the process segment 54 of the desiccant wheel. This temperature will be slightly lower than the calculated wet bulb temperature of the desired delivered air. Thus, as shown in FIG. 2, supply air (in this case ambient air as shown in FIG. 1) which will typically have a temperature range of between 650 and 95° F. DBT and above and a moisture content of between 90-180 grains/lb. enters the cooling coil 52 at 95° F. Dry Bulb Temperature (“DBT”), 78.5° F. Web Bulb Temperature (“WBT”) and a moisture content of 120 grains/lb. (Point 1 on FIG. 2). As the air passes through coil 52 its conditions move along the dotted line in FIG. 2 from Point 1 at relatively constant humidity until it reaches saturation and its humidity is then reduced with temperature along the saturation line to Point 2 where it leaves the coil in a saturated condition of between 50°-68° DBT and 30-88 grains/lb. moisture content, in this case at 61° DBT and 80.4 grains/lb. The air then enters the process segment 54 of the desiccant wheel. As it passes through the wheel the air is dried and heated adiabatically, following the approximate path of the wet bulb line. It is further dried to its leaving condition of between 68-81° F. DBT, 50-65° F. WBT, and 30-88 grains/lb. moisture content, in this case at Point 3 of 77° F. DBT, 61.5° WBT and 57 grains/lb. Of course it is understood that the compressor is operated in response to the temperature of the air leaving the cooling coil at Point C in FIG. 1 to achieve the desired final air temperature. The length of travel down the line from Point 2 to Point 3 depends on the regeneration conditions of wheel 55. In accordance with this invention the regeneration air temperature is increased to provide a longer path down the wet bulb line, i.e., more drying, and reduced to provide less movement, i.e., less drying. In this manner the appropriate drying of the wheel also can be achieved so that the supply air leaving condition (Point 3) will equal the intended design condition. As will be understood, given the capacity demanded from the cooling side set point, the condensing coil 58 will need to eject varying amounts of heat to the ambient air stream entering that coil depending on conditions at Point E (FIG. 1). The variable heat flux entering at Point E would, under normal conditions, result in an uncontrolled regeneration temperature F entering the wheel 55. According to the present invention the volume of air flow through coil 58 is varied by the use of a bypass or exhaust fan 70 in order to achieve the appropriate regeneration temperature entering wheel 55. This is done by sensing the temperature of air entering the wheel and controlling the fan 70 to selectively increase or decrease the volume of air drawn through coil 58 with blower 56 in order to control the temperature of air entering the wheel. Any unnecessary volume of air is then dumped to the atmosphere by fan 70. Airflow is increased to reduce the temperature and reduced to increase the temperature. The remaining air is then drawn through the desiccant wheel to provide the appropriate desiccant dryness required to achieve the desired drying results, i.e., the movement from Point 2 to Point 3 in FIG. 7. By dumping excess air passing coil 58 when the air quantity required to maintain the desired regeneration temperature exceeds the air flow needed to regenerate the desiccant total, energy is conserved by not exposing the incremental air flow to the pressure drop associated with the desiccant wheel. It also means a smaller blower 56 may be used. This system allows compressor 28 to operate at the highest suction pressure necessary to obtain the leaving air condition, i.e., the temperature of air leaving the wheel 55. When this is done the compressor operates against the minimum pressure ratio possible to produce the intended result. Thus the performance of the cycle is maximized, reducing energy consumption. When it is required to obtain additional sensible cooling a secondary cooling coil 52′ may be used to further cool air leaving the desiccant wheel. This coil may be supplied with refrigerant from the same compressor 28. As shown in FIGS. 1A and 1B this additional coil 52′ can be placed on either side of blower 50. In the position shown in FIG. 1A, coil 52′ allows for reduction in the supply air temperatures after a slight rise in the air temperature occurring from its passage through blower 50. In the position shown in FIG. 1B, coil 52′ is upstream of blower 50 in the case where the temperature increase from the blower is immaterial. Since the cooling coil performs more efficiently on the suction side of a fan this is the preferred embodiment where added blower heat is not a factor. As an alternative to the control system described above, control also can be achieved without the calculation of wet bulb temperature by controlling the capacity of the cooling side of the device to provide the desired cooling capacity for the space, i.e., controlling the compressor using the desired space temperature and allowing the condensing side of the system to modulate accordingly. In this case the volume of air drawn through the condenser 58 is controlled to achieve the required regeneration temperature, within limits of acceptable condensing pressure, and thus also achieve the required regeneration capacity. The regeneration temperature is increased to reduce outlet humidity ratio, and decreased to reduce drying capacity, within acceptable pressure limits. This system is shown in FIG. 3, wherein ambient air at Point 1, 95° F. DBT 78.5° F. WBT, 120 grains/lb. enters the cooling coil. It follows the dotted line to the saturated curve as it passes the cooling coil to Point 2 at 50° F. saturated and 64.60 grains/lb. This air then enters the process segment 54 of the desiccant wheel. As the air passes through the wheel it dries and is heated adiabatically following the approximate path of the wet bulb line to Point 3 which is its leaving condition at 69° F. DBT; 52° F. WBT, 30 grams/lb. The combined effect of minimizing and controlling the precooled temperature and regeneration temperatures as described above achieves the target leaving conditions within the ASHRAE comfort zone. The length of travel down the wet bulb line depends on the regeneration condition. As noted above the regeneration temperature is increased to provide a longer path down the line, or more drying, and is reduced in order to produce less drying. In the alterative control system first described the sensible cooling capacity is increased allowing the equipment to provide cooling of the space. FIG. 13 shows a schematic plan view of an air conditioning/dehumidifying unit 10 according to FIG. 1 wherein the components bear the same reference numerals. As seen therein the unit 10 is contained in a housing 100 in an arrangement which eliminates the need for the duct work 51, 61 described above. Housing 10 is a rectangular box like structure which defines an internal plenum 100 that is divided by an internal wall 102 into plenum sections 104, 106. The desiccant wheel is rotatably mounted in wall 102 so that its process segment or sector 54 is located in plenum 104 and its regeneration segment 60 is in plenum 106. Blower 70 is located at one side 108 of plenum 106 to draw supply air through apertures (not shown) in the opposite side 110 over and through coil 58. That air flows over the compressor 28 to cool that as well and is discharged through apertures in wall 108 to the atmosphere. Blower 50 is located in plenum 104 near the process segment of wheel 55 in a sub plenum 112 defined by a wall 114 in plenum 104. Blower 50 draws supply air through openings (not shown) in end wall 116 over and through evaporator coil 52 and then through the process segment 54 into plenum 112. From there the supply air is discharged through openings (not shown) in wall 110 at sub plenum 112 to the enclosure of separate duct work leading to the enclosure 57. Blower 56 is mounted in plenum 106 adjacent the downstream side of the regeneration segment 54 of the desiccant wheel. A baffle or other separating or channel means 118 is positioned in plenum 106 adjacent wheel 55 and extends part way towards wall 108. As described above, blower 56 draws some of the air leaving coil 58 through the regeneration segment 60 of the desiccant wheel to regenerate the wheel. The baffle 118 prevents recirculation of air leaving the wheel from recirculating back around the wheel. That air then either mixes with air being expelled from the plenum by fan 70 to the atmosphere or it may be separately ducted, in whole or in part, to the supply air line. This structure has numerous advantages including its compact size, elimination of duct work, and reduction in condenser and regeneration fan/blower horsepower. It also eliminates the use for any anti-back draft louvers on the condenser circuit. Another embodiment of the invention is illustrated in FIG. 4. In this embodiment the system is adapted to treat make-up air and recover enthalpy from a return air stream. Return air is often available in applications where fresh air is provided due to high space make-up air requirements resulting from occupant capacity, and where a large amount of air is not required for space pressurization for infiltration load minimization. This type of design is typically used for schools, theaters, arenas and other commercial spaces where humidity need not be controlled to below normal level (such as is required in supermarkets and ice rinks, which see energy and quality benefits from lower humidity conditions.) Moreover such large spaces use large volumes of air which have substantial heat value in them. The system 80 of this embodiment comprises a cooling coil 52 for treatment of an outdoor ambient supply air stream A followed by a desiccant wheel 55 and blower 50 for conveying the supply air stream to the space or enclosures. This air stream constitutes the make-up air. The evaporator or cooling coil 52 is connected to a plurality of DX refrigerant compressor circuits. This is illustrated in FIG. 4 as two coils 52, 52′ and their associated compressors 28 and 28′. However it is to be understood that the cooling circuit containing coil 52 and compressor 28 may consist of more than two separately operable circuits containing separate coils and compressors. A second or regeneration air stream E is drawn from the space 82 and is of a quantity approximately equal to 50 to 100% of the make-up air in the first air stream A. This air first flows through the condensing coil 58, then through the regeneration segment of desiccant wheel 55, and is ejected from the enclosure to ambient. The refrigeration circuit for this system is designed such that the required heat rejected (i.e., given up) in the condenser to the air stream does not exceed the heat carrying capacity of the second air stream between its return air temperature and the maximum refrigeration circuit condensing temperature of approximately 130° F. The refrigerant from this coil 58 is then used to cool the first (supply) air stream. As also seen in FIG. 4 one or more additional compressors are connected to the cooling coil of the supply air stream. These are sized to provide the additional cooling capacity to take the ambient make-up air stream from ambient conditions down to 57′-63° F. These additional cooling circuits possess their own condensing circuits that eject their heat directly to ambient. This is shown in FIG. 4 at condenser 58′ which treats ambient air drawn through it by fan 70. In this embodiment, desiccant wheel 55 is equipped with a drive motor arrangement that enables the desiccant wheel to rotate selectively at high revolutions, namely 10-30 rpm, and at low revolutions, namely 4-30 rph. In the high speed mode the desiccant rotor will act as an enthalpy exchanger and will transfer latent and sensible heat between the regeneration and make-up air stream. In the winter an enthalpy wheel heats and humidifies the make-up air, and in the summer it will cool and dehumidify. The system of this embodiment can operate in five different modes. As described hereinafter, the compressors and wheel speed states are changed to adapt the performance of the system to the space requirements. The system can run in any or a combination of the five modes. The main five modes are: Cooling only mode; Dehumidification only mode; Cooling and dehumidification mode; Enthalpy exchange mode; and Fresh air mode. Operation of this system in the cooling only mode is illustrated on the psychrometric chart of FIG. 5. In this mode desiccant wheel 55 is not operated and only the number of compressors necessary to provide sufficient cooling to the space are operating. However the compressor 28′ whose condenser coil 58 is in the return air line is not operating since the wheel is not operating. Operating in this manner, as seen in FIG. 5, ambient air in air stream A enters the bank of cooling coils at the conditions of Point 1, at 95° F. DBT, 78.5° F. WBT, and 120 grains/lb. moisture content. As it passes through the cooling/evaporator coils it moves along the dotted line to and then down the saturation curve to Point 2 at 65° F. saturated, 92.8 grains/lb. The air has been cooled and dehumidified at this point, but not necessarily to the ASHRAE comfort zone since no dehumidification from the wheel occurs. Heat absorbed in the condensing coil 58′ is simply rejected to the ambient air stream via the condenser and fan 70. Operation of the system of FIG. 4 in the dehumidification only mode is shown in the psychrometric chart of FIG. 6. In this mode the desiccant motor is operated at low speed mode (i.e., 4-30 rph) and the compressor 28′ which serves the condensing coil 58 in the return air stream E is operating to heat the regeneration air. The other refrigeration circuits, including compressors 28 and coils 58′, 52 are not operating. Thus, as seen in FIG. 6, ambient air A enters the bank of evaporation coils at the conditions of Point 1, at 95° F. DBT, 78.5° F. WBT, and 120 grain/lb. As this air passes coil 52, 52′ it is cooled in coil 52′ along the dotted line on the chart to and down the saturation line to Point 2 at 65° F. saturated, 92.8 grains/lb. Because the desiccant wheel is operating, air stream A is processed in the wheel where it is dried and heated adiabatically following the approximate path of the wet bulb line. It leaves the desiccant wheel and is supplied to enclosure 82 at the conditions of Point 3, at 79° F. DBT, 66° F. WBT and 75 grains/lb. In this example and in typical operation the regeneration air taken from the space 82 by blower 56 will be at conditions of about 80° F. DBT an 67° F. WBT, approximately the same condition as the supply air stream of ambient air. This regeneration air (i.e., the exhaust air from the space) is passed through condenser coil 58, receives heat rejected from that coil and then flows through wheel 55 to regenerate it. This is a substantial advantage, in this condition of operation, over the use of ambient air alone to regenerate the wheel since the exhaust air leaving the condenser coil will have lower relative humidity than if ambient air was used. Thus it will absorb more moisture from the wheel and improve desiccant performance over what is achievable with outside air alone. After passing the wheel it is vented to the atmosphere. Operation of the system of FIG. 4 in the cooling and dehumidification mode is illustrated on the psychrometric chart of FIG. 7. In this mode, as in the dehumidification only mode, desiccant wheel 55 is rotated slowly (4-30 rph) but additional cooling is provided by the additional cooling circuit or circuits containing coils 58′, 52 and compressor 28 which are operated, as they do in the cooling only mode. In this case the cooling and dehumidification modes work together. The first stage of refrigeration circuit containing coil 58, 52′ and compressor 28′ also operate and provide the reactivation energy source. Operating in this manner, supply air A (either all ambient or a mixture of ambient and some return air) enters the bank of cooling coils at Point 1 (FIG. 7) at 95° F. DBT, 78.5° F. WBT, 120 grains/lb. It again follows the dotted line and down the saturation line to Point 2, exiting coil 52′. Because the second or additional stages of cooling circuits are operating the condition of that air continues further down the saturation line arriving at Point 3 after exiting the secondary cooling stage 52. At that point the supply air stream conditions are 57° F. saturated, 69.5 grains/lb.rh. This air then enters the process segment 54 of the desiccant wheel 55 where it is dried and adiabatically heated. It follows generally the path of the wet bulb line and leaves the wheel at Point 4 at 74° F. DBT, 58° F. WBT, and 48 grains/lb. Operation of the system of FIG. 4 in the enthalpy exchange mode is illustrated in the psychrometric chart of FIG. 8. This mode is typically used in summer when the outside air is at a higher enthalpy than the indoor air, or in winter when indoor enthalpy exceeds outdoor enthalpy. In this case the desiccant wheel 55 is driven at high speed (10-30 rpm) and all the refrigeration circuits are off. As shown in FIG. 8, in winter, when 100% outside air is used having the conditions at Point 1 of 40° F. DBT, 32° F. WBT and 12.6 grains/lb. passage of the air through the process section 54 of the wheel will cause the conditions of the air exiting the wheel to move along the dotted line from Point 1 to Point 2 at 52.5° F. DBT, 44.5° F. WBT, and 30.5 grains/lb. From that point a conventional heater 80 can heat the air to the desired room temperature. The exhaust air drawn from the heater is supplied to section 60 to transfer heat and moisture thereto. In the summer condition using 100% outside air at Point 5, 82.5° F. DBT, 56° F. WBT and 42 grains/lb. the system will operate in a reverse manner by causing the air to move along the dotted line from Point 5 to Point 6, i.e., to 80° F. DBT, 61.5° F. WBT, 42 grains/lb., just at the ASHRAE comfort zone. Using the system of FIG. 4 in its enthalpy exchange mode with 50% ambient air and 50% return air will cause the air conditioning entering the desiccant wheel process section 54 to move from Point 3 to Point 4 on FIG. 8. The final, fresh air exchange mode of operation of the embodiment of FIG. 4 is shown on the psychrometric chart of FIG. 9. In this case all cooling circuits and the desiccant wheel are off, and only the blowers are on to constantly replenish fresh air. As a result the system delivers fresh ambient air without heat recovery, cooling or dehumidification. Preferably the compressors used in this embodiment are also of the variable type to provide more efficient operations. Yet another embodiment of the present invention is illustrated in FIG. 10. The system of this embodiment is similar to that of FIG. 1, except that two compressors 28 are used in the refrigeration circuit. As seen in the evaporator cross plot of FIG. 11 for a representative two compressor cooling circuit two operating conditions for the system are possible depending upon whether one or both compressors are operating. To minimize energy use, by increasing the coefficient of performance (COP) of the system it is desirable to operate the system at the highest suction pressures possible which permits the desired space humidity and temperature conditions to be achieved. Operating one compressor instead of two wherever possible also conserves energy. FIG. 8 shows two sloping lines rising to the right showing the capacity in BTUH of one and two compressors versus saturated suction temperature with the compressors operating at 100% capacity for that temperature. The term saturated suction temperature means the temperature of the coolant gas leaving the evaporator cooling coil 52 and entering the compressors. The three lines which slope upwardly and to the left in FIG. 11 represent the suction temperature of the refrigerant gas when the supply air stream is at one of three conditions noted on the graph and shows the corresponding capacity of the compressors at each temperature. Where the two sets of sloping lines cross, the evaporator and compressor are operating at the same conditions and therefore the most efficiency. Typically multiple compressors (as well as variable compressors) have been operated to cut in and out of operation based on either fixed pressure points detected in the refrigerant line or based on the temperature of the supply air leaving the evaporator/cooling coil. In the present invention, using a humidity control unit (i.e., desiccant wheel), the space humidity error can be used to control compressor operation. Thus “error” is the difference between the actual humidity sensed in the room or space and the humidity set point (i.e., the desired humidity level). This signal is then used to reset the suction pressure cut in point for the second compressor. If the error is large, which means humidity is not being reduced, the reset action will move the suction cut in pressure to a lower setting. On the other hand if the error is small, or the unit cycles on or off rapidity, reset will increase the suction pressure cut in. In this way the unit operates at the highest suction pressure possible producing the most stable conditions and increased energy savings. A still further embodiment of the present invention is illustrated in FIG. 12, which also allows operation of the unit in cooling or dehumidification, or in both modes simultaneously. Existing technology has traditionally controlled the discharge pressure of refrigeration systems (i.e., the pressure of gas leaving the evaporator or cooling coil) to prevent excessively low discharge pressure during winter. One common technique of head pressure regulation is to reduce condenser fan speed, which produces the beneficial side effect of reducing the power needed to operate the fan. For humidity control units reducing fan speed has the same effect and benefit at low temperatures. However, because cooling applications and the humidity control units as used in the present invention have the ability to operate in cooling, dehumidification, or both modes simultaneously, a variation on the industry-accepted practice of pressure head regulation is needed. When not limited by high outside ambient temperatures or a condenser's particular design criteria it is desirable to maintain the discharge pressure of the compressor at the equivalent of between 80° F. and 100° F. saturated discharge temperature. The control system of this embodiment will, in the cooling mode, optimize cooling performance by setting the head pressure set point within this range. Maximum efficiency is achieved at lower pressure ratios, which are characterized by higher suction pressures and lower discharge pressures. On the other hand a desiccant wheel humidity control unit relies on creating a sufficient difference between the supply air's entering relative humidity and the regeneration air's relative humidity. This is the force driving moisture transfer in the desiccant wheel. It also is beneficial to operate the refrigeration system across the lowest pressure ratio possible. This means that higher suction pressures and lower condensing pressures should be used. The system of the present invention balances the performance of the entire unit without giving preference to either the refrigeration system or the desiccant system. To accomplish this a humidity sensor 90 is placed in the regeneration air stream, after the heating condenser coil 58. An exemplary target RH value would be in the range of 10 to 30 percent RH. Assuming that saturation of the cooled air leaving the cooling coil 52 is achieved (Point 2 on the psychrometric charts) the space humidity sensor in space 57 would reset the head pressure to attain a specific RH sensed entering the wheel. The reset would be limited to keep the head pressure within a predefined range of conditions. For example, with R-22 refrigerant the range of head pressure limits would be from 168 psig (90° F.) to 360 psig (145° F.). These are generally accepted conditions of operation for known scroll compressors. This achieves a range of leaving air temperatures from the condenser coil or inlet to the wheel of 80° F. to 140° F. and avoids drawing up condenser head pressures with attendant loss of performance in the refrigeration system. Thus the compressor would run at the lowest head pressure while still producing the target relative humidity. The savings would be that the 45° F. leaving air temperature obtained with a head pressure of 260 psig reaches the target RH % at a lower pressure thereby reducing compressor power input while increasing refrigeration capacity. Another way of accomplishing the same result would be by utilizing the differential or elasticity of reactivation outlet or differential temperature to reactive inlet temperature. For example, the desiccant wheel will presumably have a lower outlet air temperature when the wheel is still wet. Conversely the outlet air temperature will begin to climb when the wheel is fully reactivated, i.e., dry. The temperature of the air on either side of the wheel could be detected by conventional temperature sensors 92 and continuously monitored. When air increase in reactivation inlet air temperature yields a nearly similar increase in outlet air temperature it indicates that the energy is not being used to displace moisture from the wheel and therefore that head pressure should be reduced by appropriate control of the compression. Alternatively the control could be set to maintain a target 20° F. differential in temperature across the wheel. This system reduces lost energy by matching reactivation energy to load to reduce reactivation temperatures which in turn reduces head pressure that results in improved refrigeration performance. Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, but that various changes and modifications can be effected therein by those skilled in the art without departing from the scope or spirit of this invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Field of the Invention The present invention relates to air conditioning and dehumidification equipment, and more particularly to an air conditioning method and apparatus using desiccant wheel technology. It is well known that traditional air conditioning designs are not well adapted to handle both the moisture load and the temperature loads of a building space. Typically, the major source of moisture load in a building space comes from the need to supply external make-up air to the space since that air usually has a higher moisture content than required in the building. In conventional air conditioning systems, the cooling capacity of the air conditioning unit therefore is sized to accommodate the latent (humidity) and sensible (temperature) conditions at peak temperature design conditions. When adequate cooling demand exists, appropriate dehumidification capacity is achieved. However, the humidity load on an enclosed space does not vary directly with the temperature load. That is, during morning and night times, the absolute humidity outdoors is nearly the same as during higher temperature midday periods. Thus, at those times there often is no need for cooling in the space and therefore no dehumidification takes place. Accordingly, preexisting air conditioning systems are poorly designed for those conditions. Those conditions, at times, lead to uncomfortable conditions within the building and can result in the formation of mold or the generation of other microbes within the building and its duct work, leading to what is known as Sick Building Syndrome. To overcome these problems, ASHRAE Draft Standard 62-1989 recommends the increased use of make-up air quantities and recommends limits to the relative humidity in the duct work. If that standard is properly followed, it actually leads to a need for even increased dehumidification capacity independent of cooling demands. A number of solutions have been suggested to overcome this problem. One solution, known as an “Energy Recovery Ventilator (ERV),” utilizes a conventional desiccant coated enthalpy wheel to transfer heat and moisture from the make-up air stream to an exhaust air stream. These devices are effective in reducing moisture load, but require the presence of an exhaust air stream nearly equal in volume to the make-up air stream in order to function efficiently. ERVs are also only capable of reducing the load since the delivered air will always be at a higher absolute humidity in the summer months than the return air. Without active dehumidification in the building, the humidity in the space will rise as the moisture entering the system exceeds the moisture leaving in the exhaust stream. However, ERVs are relatively inexpensive to install and operate. Other prior art systems use so-called cool/reheat devices in which the outside air is first cooled to a temperature corresponding to the desired building internal dew point. The air is then reheated to the desired temperature, most often using a natural gas heater. Occasionally, heat from a refrigerant condenser system is also used to reheat the cooled and dehumidified air stream. Such cool/reheat devices are relatively expensive and inefficient, because excess cooling of the air must be done, followed by wasteful heating of air in the summer months. A third category of prior art device has also been suggested using desiccant cooling systems in which supply air from the atmosphere is first dehumidified using a desiccant wheel or the like and the air is then cooled using a heat exchanger. The heat from this air is typically transferred to a regeneration air stream and is used to provide a portion of the desiccant regeneration power requirements. The make-up air is delivered to the space directly, or alternatively is cooled either by direct or indirect evaporative means or through more traditional refrigerant-type air conditioning equipment. The desiccant wheel is regenerated with a second air stream which originates either from the enclosure being air conditioned or from the outside air. Typically, this second air stream is used to collect heat from the process air before its temperature is raised to high levels of between 150° F. to 350° F. as required to achieve the appropriate amount of dehumidification of the supply air stream. Desiccant cooling systems of this type can be designed to provide very close and independent control of humidity and temperature, but they are typically more expensive to install than traditional systems. Their advantage is that they rely on low cost sources of heat for the regeneration of the desiccant material. U.S. Pat. No. 3,401,530 to Meckler, U.S. Pat. No. 5,551,245 to Carlton, and U.S. Pat. No. 5,761,923 to Maeda disclose other hybrid devices wherein air is first cooled via a refrigerant system and dried with a desiccant. However, in all of these disclosures high regeneration temperatures are required to adequately regenerate the desiccant. In order to achieve these high temperatures, dual refrigerant circuits are needed to increase or pump up the regeneration temperature to above 140° F. In the case of the Meckler patent, waste heat from an engine is used rather than condenser heat. U.S. Pat. No. 4,180,985 to Northrup discloses a device wherein refrigerant condensing heat is used to regenerate a desiccant wheel or belt. In the Northrup system, the refrigerant circuit cools the air after it has been dried. The invention as described in our parent application Serial No. 08/795,818 is particularly suited to take outside air of humid conditions, such as are typical in the South and Southeastern portions of the United States and in Asian countries and render it to a space neutral condition. This condition is defined as ASHRAE comfort zone conditions and typically consists of conditions in the range of 73-78° F. and a moisture content of between 55-71 gr/lb. or about 50% relative humidity. In particular, the system is capable of taking air of between 85-95° F. and 130-145 gr/lb. of moisture and reducing it to the ASHRAE comfort zone conditions. However, that system also works above and below these conditions, e.g., at temperatures of 65-85° F. or 95° F. and above and moisture contents of 90-130 gr/lb. or 145-180 gr/lb. As compared to conventional techniques the invention of the parent application has significant advantages over alternative techniques for producing air at indoor air comfort zone conditions from outside air. The most significant advantage being low energy consumption. That is, the energy required to treat the air with a desiccant assist is 25-45% less than that used in previously disclosed cooling technologies. That system uses a conventional refrigerant cooling system combined with a rotatable desiccant wheel. The refrigerant cooling system includes a conventional cooling coil, condensing coil and compressor. Means are provided for drawing a supply air stream, preferably an outdoor air stream over the cooling coil of the refrigerant system to reduce its humidity and temperature to a first predetermined temperature range. The thus cooled supply air stream is then passed through a segment of the rotary desiccant wheel to reduce its moisture content to a predetermined humidity level and increase its temperature to a second predetermined temperature range. Both the temperature and humidity ranges are within the comfort zone. This air is then delivered to the enclosure. The system also includes means for regenerating the desiccant wheel by passing a regeneration air stream, typically also from an outside air supply, over the condensing coil of the refrigerant system, thereby to increase its temperature to a third predetermined temperature range. The thus heated regeneration air is passed through another segment of the rotatable desiccant wheel to regenerate the wheel. It is an object of the present invention to treat outside supply air at any ambient condition and render it to practically any drier and cooler psychrometric condition with lower enthalpy. Yet another object of the present invention is to provide a desiccant based dehumidification and air conditioning system which is relatively inexpensive to manufacture and to operate. Another object of the present invention is to heat make-up air while recovering enthalpy from a return air stream. Yet another object of the present invention is to provide a desiccant based air conditioning and dehumidifying system using single, multiple and or variable compressors operating at the highest suction pressures possible to produce stable operating conditions and enhanced energy savings. A further object of the present invention is to utilize the exhaust air from the building as a regeneration air source. This air will be at an absolute moisture condition substantially lower than ambient air for a portion of the year. Using this air and adding heat from the condenser coil will produce a better sink for process air moisture removal. In accordance with an aspect of the present invention the system of the present invention includes an air conditioning or refrigeration circuit containing a condensing coil, a cooling or evaporation coil and a compressor and a desiccant wheel having a first segment receiving supply air from the cooling coil of the refrigeration circuit to selectively dry the supply air. A regeneration air path supplies regeneration air to a second segment of the desiccant wheel as it rotates through the regeneration air path. According to the invention this system is modulated to provide a constant outlet air condition from the process portion of the desiccant wheel over a wide range of inlet conditions and volumes. Preferably the system uses variable compressors whose output can be varied in response to air or refrigerant conditions at predetermined points in the system. In one embodiment the system may be operated in numerous different modes from fresh air supply only to supply of simultaneous cooled and dehumidified air. In addition a particularly simple and inexpensive housing structure for the system of the invention is provided. The above, and other objects, features and advantages of the present invention will be apparent in the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings, wherein: FIGS. 1, 1A and 1 B are schematic diagrams of a first embodiment of the basic system of the present invention; FIG. 2 is a psychrometric chart describing the cycle achieved by the embodiment of FIG. 1 ; FIG. 3 is a psychrometric chart describing the cycle achieved by the embodiment of FIG. 1 using a different control system. FIG. 4 is a schematic view of another embodiment of the present invention which is adapted to treat make-up air and recover enthalpy from the return air stream. FIG. 5 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the cooling only mode; FIG. 6 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the dehumidification only mode; FIG. 7 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in the dehumidification and cooling mode; FIG. 8 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in an enthalpy exchange mode; FIG. 9 is a psychrometric chart showing the cycle achieved with the system of FIG. 4 in a fresh air exchange mode; FIG. 10 is a schematic diagram of an embodiment similar to that of FIG. 1 , but utilizing two compressors; FIG. 11 is an evaporator cross plot for the system of FIG. 10 ; FIG. 12 is a schematic diagram similar to FIG. 1 showing yet another embodiment of the invention using a reactivation temperature control scheme; and FIG. 13 is a schematic plan view of a housing structure for use with the system of FIG. 1 . detailed-description description="Detailed Description" end="lead"? Referring now to the drawings in detail, and initially to FIG. 1 thereof, a simplified air conditioning and dehumidification system 10 according to the present invention is illustrated which utilizes a refrigerant cooling system and a rotating desiccant wheel dehumidification system. This system is a refinement of the system disclosed in our parent application. In this case the system takes air at any ambient condition and renders it to practically any drier and cooler psychrometric condition with a lower enthalpy. In system 10 , the refrigerant cooling system includes a refrigerant cooling circuit containing at least one cooling or evaporator coil 52 , at least one condenser coil 58 , and a compressor 28 for the liquid/gas refrigerant which is carried in connecting refrigerant lines 29 . In use, supply air from the atmosphere is drawn by a blower 50 , through duct work 51 or the like, over the cooling coil 52 of the refrigerant system where its temperature is lowered and it is slightly dehumidified. From there, the air passes through the process sector 54 of a rotating desiccant wheel 55 where its temperature is increased and it is further dehumidified. That air is then provided to the enclosure or space 57 . Desiccant wheel 55 of the dehumidification system is of known construction and receives regeneration air in a regeneration segment 60 from ducts 61 and discharges the same through duct 62 . The wheel 55 is regenerated by utilizing outside air drawn by a blower 56 over the condenser coil 58 of the air conditioning system. This outside air stream is heated as it passes over the condenser coil and is then supplied to regeneration segment 60 to regenerate the desiccant. The regeneration air is drawn into the system and exhausted to the atmosphere by the blower 56 . In this embodiment, compressor 28 is a variable capacity compressor and preferably an infinitely adjustable screw type compressor with a slide valve. As is understood in the art the volume through the screws in such a compressor is varied by adjusting the slide valve and thus the volume of gas entering the screw is varied. This varies the compressor's output capacity. Alternatively a time proportioned scroll compressor, a variable speed scroll or piston type compressor may be used to circulate the refrigerant in line 29 through a closed system including an expansion device 31 between the condenser coil 58 and the evaporator or cooling coil 52 . It has been found that by using a single non variable compressor in refrigeration systems, the compressor does more work than needs to be done with the results that the desired set point of the system may be over shot. By using variable compressors as described the system can modulate to provide a constant outlet condition over a range of inlet air conditions and volumes. That is, the operation of the compressor is controlled in response to one or more conditions. As a result, for example, one can maintain a desired usable and selectable humidity condition leaving the desiccant wheel by modulating the compressor capacity. Such modulation can be achieved by using more than one compressor or variable compressors, such as the time proportional compressor offered by Copeland, or variable frequency compressors which use synchronous motors whose speed may be varied by varying the hertz input to the motor, which causes variation in work output. The refrigeration system described above can be modulated or controlled to provide a constant outlet condition over a range of inlet conditions and volumes. It allows the system to be used in make-up air applications to meet requirements for ventilation, pressurization or air quality (e.g., in restaurants where make-up air is required to replace kitchen exhaust air). Thus control of the delivered make-up air volume can be made dependent on pressure (through use of pressure sensors for clean rooms and the like), CO 2 content (through use CO 2 sensors) to control quality, or based on occupancy (using room temperature sensors). Such sensors would control make-up air volume using known techniques to control, for example, the speed of blower 50 or air diverter valves (not shown) in duct 51 . The system, using the variable compressor, can still be modulated to accommodate the variation of temperature or humidity caused by the addition of make-up air in order to maintain the desired environmental conditions. According to this invention a desired delivered air temperature and humidity level for the supply air to the enclosure or space 57 can be maintained within the ASHRAE comfort zone discussed above. From those temperatures and humidity conditions the corresponding wet bulb temperature can be determined, establishing the desired conditions represented at Point 3 on the psychrometric chart of FIG. 2 . This wet bulb temperature is used as the target set point for the cooling and drying of the supply air (whether it is return air alone or mixed with make-up air as described above). Utilizing the variable capacity of the compressor 28 , the capacity of the cooling coil 52 is controlled to maintain the supply air temperature leaving the coiling coil at a temperature which will allow the conditioning of Point 3 to be attained after the air passes through the process segment 54 of the desiccant wheel. This temperature will be slightly lower than the calculated wet bulb temperature of the desired delivered air. Thus, as shown in FIG. 2 , supply air (in this case ambient air as shown in FIG. 1 ) which will typically have a temperature range of between 650 and 95° F. DBT and above and a moisture content of between 90-180 grains/lb. enters the cooling coil 52 at 95° F. Dry Bulb Temperature (“DBT”), 78.5° F. Web Bulb Temperature (“WBT”) and a moisture content of 120 grains/lb. (Point 1 on FIG. 2 ). As the air passes through coil 52 its conditions move along the dotted line in FIG. 2 from Point 1 at relatively constant humidity until it reaches saturation and its humidity is then reduced with temperature along the saturation line to Point 2 where it leaves the coil in a saturated condition of between 50°-68° DBT and 30-88 grains/lb. moisture content, in this case at 61° DBT and 80.4 grains/lb. The air then enters the process segment 54 of the desiccant wheel. As it passes through the wheel the air is dried and heated adiabatically, following the approximate path of the wet bulb line. It is further dried to its leaving condition of between 68-81° F. DBT, 50-65° F. WBT, and 30-88 grains/lb. moisture content, in this case at Point 3 of 77° F. DBT, 61.5° WBT and 57 grains/lb. Of course it is understood that the compressor is operated in response to the temperature of the air leaving the cooling coil at Point C in FIG. 1 to achieve the desired final air temperature. The length of travel down the line from Point 2 to Point 3 depends on the regeneration conditions of wheel 55 . In accordance with this invention the regeneration air temperature is increased to provide a longer path down the wet bulb line, i.e., more drying, and reduced to provide less movement, i.e., less drying. In this manner the appropriate drying of the wheel also can be achieved so that the supply air leaving condition (Point 3) will equal the intended design condition. As will be understood, given the capacity demanded from the cooling side set point, the condensing coil 58 will need to eject varying amounts of heat to the ambient air stream entering that coil depending on conditions at Point E ( FIG. 1 ). The variable heat flux entering at Point E would, under normal conditions, result in an uncontrolled regeneration temperature F entering the wheel 55 . According to the present invention the volume of air flow through coil 58 is varied by the use of a bypass or exhaust fan 70 in order to achieve the appropriate regeneration temperature entering wheel 55 . This is done by sensing the temperature of air entering the wheel and controlling the fan 70 to selectively increase or decrease the volume of air drawn through coil 58 with blower 56 in order to control the temperature of air entering the wheel. Any unnecessary volume of air is then dumped to the atmosphere by fan 70 . Airflow is increased to reduce the temperature and reduced to increase the temperature. The remaining air is then drawn through the desiccant wheel to provide the appropriate desiccant dryness required to achieve the desired drying results, i.e., the movement from Point 2 to Point 3 in FIG. 7 . By dumping excess air passing coil 58 when the air quantity required to maintain the desired regeneration temperature exceeds the air flow needed to regenerate the desiccant total, energy is conserved by not exposing the incremental air flow to the pressure drop associated with the desiccant wheel. It also means a smaller blower 56 may be used. This system allows compressor 28 to operate at the highest suction pressure necessary to obtain the leaving air condition, i.e., the temperature of air leaving the wheel 55 . When this is done the compressor operates against the minimum pressure ratio possible to produce the intended result. Thus the performance of the cycle is maximized, reducing energy consumption. When it is required to obtain additional sensible cooling a secondary cooling coil 52 ′ may be used to further cool air leaving the desiccant wheel. This coil may be supplied with refrigerant from the same compressor 28 . As shown in FIGS. 1A and 1B this additional coil 52 ′ can be placed on either side of blower 50 . In the position shown in FIG. 1A , coil 52 ′ allows for reduction in the supply air temperatures after a slight rise in the air temperature occurring from its passage through blower 50 . In the position shown in FIG. 1B , coil 52 ′ is upstream of blower 50 in the case where the temperature increase from the blower is immaterial. Since the cooling coil performs more efficiently on the suction side of a fan this is the preferred embodiment where added blower heat is not a factor. As an alternative to the control system described above, control also can be achieved without the calculation of wet bulb temperature by controlling the capacity of the cooling side of the device to provide the desired cooling capacity for the space, i.e., controlling the compressor using the desired space temperature and allowing the condensing side of the system to modulate accordingly. In this case the volume of air drawn through the condenser 58 is controlled to achieve the required regeneration temperature, within limits of acceptable condensing pressure, and thus also achieve the required regeneration capacity. The regeneration temperature is increased to reduce outlet humidity ratio, and decreased to reduce drying capacity, within acceptable pressure limits. This system is shown in FIG. 3 , wherein ambient air at Point 1, 95° F. DBT 78.5° F. WBT, 120 grains/lb. enters the cooling coil. It follows the dotted line to the saturated curve as it passes the cooling coil to Point 2 at 50° F. saturated and 64.60 grains/lb. This air then enters the process segment 54 of the desiccant wheel. As the air passes through the wheel it dries and is heated adiabatically following the approximate path of the wet bulb line to Point 3 which is its leaving condition at 69° F. DBT; 52° F. WBT, 30 grams/lb. The combined effect of minimizing and controlling the precooled temperature and regeneration temperatures as described above achieves the target leaving conditions within the ASHRAE comfort zone. The length of travel down the wet bulb line depends on the regeneration condition. As noted above the regeneration temperature is increased to provide a longer path down the line, or more drying, and is reduced in order to produce less drying. In the alterative control system first described the sensible cooling capacity is increased allowing the equipment to provide cooling of the space. FIG. 13 shows a schematic plan view of an air conditioning/dehumidifying unit 10 according to FIG. 1 wherein the components bear the same reference numerals. As seen therein the unit 10 is contained in a housing 100 in an arrangement which eliminates the need for the duct work 51 , 61 described above. Housing 10 is a rectangular box like structure which defines an internal plenum 100 that is divided by an internal wall 102 into plenum sections 104 , 106 . The desiccant wheel is rotatably mounted in wall 102 so that its process segment or sector 54 is located in plenum 104 and its regeneration segment 60 is in plenum 106 . Blower 70 is located at one side 108 of plenum 106 to draw supply air through apertures (not shown) in the opposite side 110 over and through coil 58 . That air flows over the compressor 28 to cool that as well and is discharged through apertures in wall 108 to the atmosphere. Blower 50 is located in plenum 104 near the process segment of wheel 55 in a sub plenum 112 defined by a wall 114 in plenum 104 . Blower 50 draws supply air through openings (not shown) in end wall 116 over and through evaporator coil 52 and then through the process segment 54 into plenum 112 . From there the supply air is discharged through openings (not shown) in wall 110 at sub plenum 112 to the enclosure of separate duct work leading to the enclosure 57 . Blower 56 is mounted in plenum 106 adjacent the downstream side of the regeneration segment 54 of the desiccant wheel. A baffle or other separating or channel means 118 is positioned in plenum 106 adjacent wheel 55 and extends part way towards wall 108 . As described above, blower 56 draws some of the air leaving coil 58 through the regeneration segment 60 of the desiccant wheel to regenerate the wheel. The baffle 118 prevents recirculation of air leaving the wheel from recirculating back around the wheel. That air then either mixes with air being expelled from the plenum by fan 70 to the atmosphere or it may be separately ducted, in whole or in part, to the supply air line. This structure has numerous advantages including its compact size, elimination of duct work, and reduction in condenser and regeneration fan/blower horsepower. It also eliminates the use for any anti-back draft louvers on the condenser circuit. Another embodiment of the invention is illustrated in FIG. 4 . In this embodiment the system is adapted to treat make-up air and recover enthalpy from a return air stream. Return air is often available in applications where fresh air is provided due to high space make-up air requirements resulting from occupant capacity, and where a large amount of air is not required for space pressurization for infiltration load minimization. This type of design is typically used for schools, theaters, arenas and other commercial spaces where humidity need not be controlled to below normal level (such as is required in supermarkets and ice rinks, which see energy and quality benefits from lower humidity conditions.) Moreover such large spaces use large volumes of air which have substantial heat value in them. The system 80 of this embodiment comprises a cooling coil 52 for treatment of an outdoor ambient supply air stream A followed by a desiccant wheel 55 and blower 50 for conveying the supply air stream to the space or enclosures. This air stream constitutes the make-up air. The evaporator or cooling coil 52 is connected to a plurality of DX refrigerant compressor circuits. This is illustrated in FIG. 4 as two coils 52 , 52 ′ and their associated compressors 28 and 28 ′. However it is to be understood that the cooling circuit containing coil 52 and compressor 28 may consist of more than two separately operable circuits containing separate coils and compressors. A second or regeneration air stream E is drawn from the space 82 and is of a quantity approximately equal to 50 to 100% of the make-up air in the first air stream A. This air first flows through the condensing coil 58 , then through the regeneration segment of desiccant wheel 55 , and is ejected from the enclosure to ambient. The refrigeration circuit for this system is designed such that the required heat rejected (i.e., given up) in the condenser to the air stream does not exceed the heat carrying capacity of the second air stream between its return air temperature and the maximum refrigeration circuit condensing temperature of approximately 130° F. The refrigerant from this coil 58 is then used to cool the first (supply) air stream. As also seen in FIG. 4 one or more additional compressors are connected to the cooling coil of the supply air stream. These are sized to provide the additional cooling capacity to take the ambient make-up air stream from ambient conditions down to 57′-63° F. These additional cooling circuits possess their own condensing circuits that eject their heat directly to ambient. This is shown in FIG. 4 at condenser 58 ′ which treats ambient air drawn through it by fan 70 . In this embodiment, desiccant wheel 55 is equipped with a drive motor arrangement that enables the desiccant wheel to rotate selectively at high revolutions, namely 10-30 rpm, and at low revolutions, namely 4-30 rph. In the high speed mode the desiccant rotor will act as an enthalpy exchanger and will transfer latent and sensible heat between the regeneration and make-up air stream. In the winter an enthalpy wheel heats and humidifies the make-up air, and in the summer it will cool and dehumidify. The system of this embodiment can operate in five different modes. As described hereinafter, the compressors and wheel speed states are changed to adapt the performance of the system to the space requirements. The system can run in any or a combination of the five modes. The main five modes are: Cooling only mode; Dehumidification only mode; Cooling and dehumidification mode; Enthalpy exchange mode; and Fresh air mode. Operation of this system in the cooling only mode is illustrated on the psychrometric chart of FIG. 5 . In this mode desiccant wheel 55 is not operated and only the number of compressors necessary to provide sufficient cooling to the space are operating. However the compressor 28 ′ whose condenser coil 58 is in the return air line is not operating since the wheel is not operating. Operating in this manner, as seen in FIG. 5 , ambient air in air stream A enters the bank of cooling coils at the conditions of Point 1, at 95° F. DBT, 78.5° F. WBT, and 120 grains/lb. moisture content. As it passes through the cooling/evaporator coils it moves along the dotted line to and then down the saturation curve to Point 2 at 65° F. saturated, 92.8 grains/lb. The air has been cooled and dehumidified at this point, but not necessarily to the ASHRAE comfort zone since no dehumidification from the wheel occurs. Heat absorbed in the condensing coil 58 ′ is simply rejected to the ambient air stream via the condenser and fan 70 . Operation of the system of FIG. 4 in the dehumidification only mode is shown in the psychrometric chart of FIG. 6 . In this mode the desiccant motor is operated at low speed mode (i.e., 4-30 rph) and the compressor 28 ′ which serves the condensing coil 58 in the return air stream E is operating to heat the regeneration air. The other refrigeration circuits, including compressors 28 and coils 58 ′, 52 are not operating. Thus, as seen in FIG. 6 , ambient air A enters the bank of evaporation coils at the conditions of Point 1, at 95° F. DBT, 78.5° F. WBT, and 120 grain/lb. As this air passes coil 52 , 52 ′ it is cooled in coil 52 ′ along the dotted line on the chart to and down the saturation line to Point 2 at 65° F. saturated, 92.8 grains/lb. Because the desiccant wheel is operating, air stream A is processed in the wheel where it is dried and heated adiabatically following the approximate path of the wet bulb line. It leaves the desiccant wheel and is supplied to enclosure 82 at the conditions of Point 3, at 79° F. DBT, 66° F. WBT and 75 grains/lb. In this example and in typical operation the regeneration air taken from the space 82 by blower 56 will be at conditions of about 80° F. DBT an 67° F. WBT, approximately the same condition as the supply air stream of ambient air. This regeneration air (i.e., the exhaust air from the space) is passed through condenser coil 58 , receives heat rejected from that coil and then flows through wheel 55 to regenerate it. This is a substantial advantage, in this condition of operation, over the use of ambient air alone to regenerate the wheel since the exhaust air leaving the condenser coil will have lower relative humidity than if ambient air was used. Thus it will absorb more moisture from the wheel and improve desiccant performance over what is achievable with outside air alone. After passing the wheel it is vented to the atmosphere. Operation of the system of FIG. 4 in the cooling and dehumidification mode is illustrated on the psychrometric chart of FIG. 7 . In this mode, as in the dehumidification only mode, desiccant wheel 55 is rotated slowly (4-30 rph) but additional cooling is provided by the additional cooling circuit or circuits containing coils 58 ′, 52 and compressor 28 which are operated, as they do in the cooling only mode. In this case the cooling and dehumidification modes work together. The first stage of refrigeration circuit containing coil 58 , 52 ′ and compressor 28 ′ also operate and provide the reactivation energy source. Operating in this manner, supply air A (either all ambient or a mixture of ambient and some return air) enters the bank of cooling coils at Point 1 ( FIG. 7 ) at 95° F. DBT, 78.5° F. WBT, 120 grains/lb. It again follows the dotted line and down the saturation line to Point 2, exiting coil 52 ′. Because the second or additional stages of cooling circuits are operating the condition of that air continues further down the saturation line arriving at Point 3 after exiting the secondary cooling stage 52 . At that point the supply air stream conditions are 57° F. saturated, 69.5 grains/lb.rh. This air then enters the process segment 54 of the desiccant wheel 55 where it is dried and adiabatically heated. It follows generally the path of the wet bulb line and leaves the wheel at Point 4 at 74° F. DBT, 58° F. WBT, and 48 grains/lb. Operation of the system of FIG. 4 in the enthalpy exchange mode is illustrated in the psychrometric chart of FIG. 8 . This mode is typically used in summer when the outside air is at a higher enthalpy than the indoor air, or in winter when indoor enthalpy exceeds outdoor enthalpy. In this case the desiccant wheel 55 is driven at high speed (10-30 rpm) and all the refrigeration circuits are off. As shown in FIG. 8 , in winter, when 100% outside air is used having the conditions at Point 1 of 40° F. DBT, 32° F. WBT and 12.6 grains/lb. passage of the air through the process section 54 of the wheel will cause the conditions of the air exiting the wheel to move along the dotted line from Point 1 to Point 2 at 52.5° F. DBT, 44.5° F. WBT, and 30.5 grains/lb. From that point a conventional heater 80 can heat the air to the desired room temperature. The exhaust air drawn from the heater is supplied to section 60 to transfer heat and moisture thereto. In the summer condition using 100% outside air at Point 5, 82.5° F. DBT, 56° F. WBT and 42 grains/lb. the system will operate in a reverse manner by causing the air to move along the dotted line from Point 5 to Point 6, i.e., to 80° F. DBT, 61.5° F. WBT, 42 grains/lb., just at the ASHRAE comfort zone. Using the system of FIG. 4 in its enthalpy exchange mode with 50% ambient air and 50% return air will cause the air conditioning entering the desiccant wheel process section 54 to move from Point 3 to Point 4 on FIG. 8 . The final, fresh air exchange mode of operation of the embodiment of FIG. 4 is shown on the psychrometric chart of FIG. 9 . In this case all cooling circuits and the desiccant wheel are off, and only the blowers are on to constantly replenish fresh air. As a result the system delivers fresh ambient air without heat recovery, cooling or dehumidification. Preferably the compressors used in this embodiment are also of the variable type to provide more efficient operations. Yet another embodiment of the present invention is illustrated in FIG. 10 . The system of this embodiment is similar to that of FIG. 1 , except that two compressors 28 are used in the refrigeration circuit. As seen in the evaporator cross plot of FIG. 11 for a representative two compressor cooling circuit two operating conditions for the system are possible depending upon whether one or both compressors are operating. To minimize energy use, by increasing the coefficient of performance (COP) of the system it is desirable to operate the system at the highest suction pressures possible which permits the desired space humidity and temperature conditions to be achieved. Operating one compressor instead of two wherever possible also conserves energy. FIG. 8 shows two sloping lines rising to the right showing the capacity in BTUH of one and two compressors versus saturated suction temperature with the compressors operating at 100% capacity for that temperature. The term saturated suction temperature means the temperature of the coolant gas leaving the evaporator cooling coil 52 and entering the compressors. The three lines which slope upwardly and to the left in FIG. 11 represent the suction temperature of the refrigerant gas when the supply air stream is at one of three conditions noted on the graph and shows the corresponding capacity of the compressors at each temperature. Where the two sets of sloping lines cross, the evaporator and compressor are operating at the same conditions and therefore the most efficiency. Typically multiple compressors (as well as variable compressors) have been operated to cut in and out of operation based on either fixed pressure points detected in the refrigerant line or based on the temperature of the supply air leaving the evaporator/cooling coil. In the present invention, using a humidity control unit (i.e., desiccant wheel), the space humidity error can be used to control compressor operation. Thus “error” is the difference between the actual humidity sensed in the room or space and the humidity set point (i.e., the desired humidity level). This signal is then used to reset the suction pressure cut in point for the second compressor. If the error is large, which means humidity is not being reduced, the reset action will move the suction cut in pressure to a lower setting. On the other hand if the error is small, or the unit cycles on or off rapidity, reset will increase the suction pressure cut in. In this way the unit operates at the highest suction pressure possible producing the most stable conditions and increased energy savings. A still further embodiment of the present invention is illustrated in FIG. 12 , which also allows operation of the unit in cooling or dehumidification, or in both modes simultaneously. Existing technology has traditionally controlled the discharge pressure of refrigeration systems (i.e., the pressure of gas leaving the evaporator or cooling coil) to prevent excessively low discharge pressure during winter. One common technique of head pressure regulation is to reduce condenser fan speed, which produces the beneficial side effect of reducing the power needed to operate the fan. For humidity control units reducing fan speed has the same effect and benefit at low temperatures. However, because cooling applications and the humidity control units as used in the present invention have the ability to operate in cooling, dehumidification, or both modes simultaneously, a variation on the industry-accepted practice of pressure head regulation is needed. When not limited by high outside ambient temperatures or a condenser's particular design criteria it is desirable to maintain the discharge pressure of the compressor at the equivalent of between 80° F. and 100° F. saturated discharge temperature. The control system of this embodiment will, in the cooling mode, optimize cooling performance by setting the head pressure set point within this range. Maximum efficiency is achieved at lower pressure ratios, which are characterized by higher suction pressures and lower discharge pressures. On the other hand a desiccant wheel humidity control unit relies on creating a sufficient difference between the supply air's entering relative humidity and the regeneration air's relative humidity. This is the force driving moisture transfer in the desiccant wheel. It also is beneficial to operate the refrigeration system across the lowest pressure ratio possible. This means that higher suction pressures and lower condensing pressures should be used. The system of the present invention balances the performance of the entire unit without giving preference to either the refrigeration system or the desiccant system. To accomplish this a humidity sensor 90 is placed in the regeneration air stream, after the heating condenser coil 58 . An exemplary target RH value would be in the range of 10 to 30 percent RH. Assuming that saturation of the cooled air leaving the cooling coil 52 is achieved (Point 2 on the psychrometric charts) the space humidity sensor in space 57 would reset the head pressure to attain a specific RH sensed entering the wheel. The reset would be limited to keep the head pressure within a predefined range of conditions. For example, with R-22 refrigerant the range of head pressure limits would be from 168 psig (90° F.) to 360 psig (145° F.). These are generally accepted conditions of operation for known scroll compressors. This achieves a range of leaving air temperatures from the condenser coil or inlet to the wheel of 80° F. to 140° F. and avoids drawing up condenser head pressures with attendant loss of performance in the refrigeration system. Thus the compressor would run at the lowest head pressure while still producing the target relative humidity. The savings would be that the 45° F. leaving air temperature obtained with a head pressure of 260 psig reaches the target RH % at a lower pressure thereby reducing compressor power input while increasing refrigeration capacity. Another way of accomplishing the same result would be by utilizing the differential or elasticity of reactivation outlet or differential temperature to reactive inlet temperature. For example, the desiccant wheel will presumably have a lower outlet air temperature when the wheel is still wet. Conversely the outlet air temperature will begin to climb when the wheel is fully reactivated, i.e., dry. The temperature of the air on either side of the wheel could be detected by conventional temperature sensors 92 and continuously monitored. When air increase in reactivation inlet air temperature yields a nearly similar increase in outlet air temperature it indicates that the energy is not being used to displace moisture from the wheel and therefore that head pressure should be reduced by appropriate control of the compression. Alternatively the control could be set to maintain a target 20° F. differential in temperature across the wheel. This system reduces lost energy by matching reactivation energy to load to reduce reactivation temperatures which in turn reduces head pressure that results in improved refrigeration performance. Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, but that various changes and modifications can be effected therein by those skilled in the art without departing from the scope or spirit of this invention. detailed-description description="Detailed Description" end="tail"?
20041025
20060523
20050310
92097.0
1
DOERRLER, WILLIAM CHARLES
DESICCANT REFRIGERANT DEHUMIDIFIER SYSTEMS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,971,298
ACCEPTED
Method and apparatus for treatment by ionizing radiation
A radiation therapy/surgery device optimised to meet the needs of the Neurosurgeon is provided, i.e. one for the treatment of tumours in the brain. It combines the qualities of a good penumbra and accuracy, simple prescription and operation, together with high reliability and minimal technical support. The device comprises a rotateable support, on which is provided a mount extending from the support out of the plane of the circle, and a radiation source attached to the mount via a pivot, the pivot having an axis which passes through the axis of rotation of the support, the radiation source being aligned so as to produce a beam which passes through the co-incidence of the rotation axis and the pivot. It will generally be easier to engineer the apparatus if the rotateable support is planar, and more convenient if the rotateable support is disposed in an upright position. The rotation of the rotateable support will be eased if this part of the apparatus is circular. A particularly preferred orientation is one in which the radiation source is spaced from the rotateable support, to allow it to pivot without fouling the latter. It is thus preferred that the mount extends transverse to the support. In this way, the pivot axis is spaced from the rotateable support providing free space in which the radiation source can pivot. Another way of expressing this preference is to state that the pivot axis is located out of the plane of the rotateable support. To simplify the geometry of the device and the associated arithmetic, it is preferred both that the pivot axis is substantially perpendicular to the rotation axis, and that the beam direction is perpendicular to the pivot axis. It is preferred that the radiation source is a linear accelerator. The output of the radiation source is preferably collimated to conform to the shape of the area to be treated.
1. A device for treating a patient with ionising radiation comprising: a support, on which is provided a mount, a radiation source attached to the mount; the support being rotateable about an support axis; the source being attached to the mount via a rotateable union having rotation axis which is non-parallel to the support axis; wherein the rotation axis of the mount passes through the support axis and the radiation source is collimated so as to produce a beam which passes through the co-incidence of the rotation and support axes. 2. The device for treating a patient with ionising radiation according to claim 1, in which the support is a ring centred on the support axis. 3. The device for treating a patient with ionising radiation according to claim 1, in which the support is disposed in an upright disposition. 4. The device for treating a patient with ionising radiation according to claim 1, in which the support and rotation axes are transverse. 5. The device for treating a patient with ionising radiation according to claim 1, in which the mount extends transverse to the support. 6. The device for treating a patient with ionising radiation according to claim 1, in which the rotation axis of the mount is located out of a plane of the support. 7. The device for treating a patient with ionising radiation according to claim 1, in which the rotation axis of the mount is substantially perpendicular to the support axis. 8. The device for treating a patient with ionising radiation according to claim 1, in which the beam direction is perpendicular to the rotation axis of the mount. 9. The device for treating a patient with ionising radiation according to claim 1, in which the radiation source is a linear accelerator. 10. The device for treating a patient with ionising radiation according to claim 1, in which the collimation of the radiation source is adjustable. 11. The device for treating a patient with ionising radiation according to claim 1, including a control means for programmably controlling the collimation of the radiation source in a manner correlated with a movement of the radiation source. 12. The device for treating a patient with ionising radiation according to claim 1, further including a patient support. 13. The device for treating a patient with ionising radiation according to claim 12, in which a position of the patient support is adjustable. 14. The device for treating a patient with ionising radiation according to claim 11, including a patient table having a position which is adjustable under the control of the control means, the control means being adapted to adjust the position of the patient table in a manner correlated with the movement of the radiation source. 15. The device for treating a patient with ionising radiation according to claim 1, in which an intensity of the radiation source is selectable as a function of a position of the radiation source. 16. The device for treating a patient with ionising radiation according to claim 11, in which an intensity of the radiation source is selectable by the control means, the control means being adapted to adjust the intensity in a manner correlated with at least one of the movement of the radiation source, the collimation of the radiation source, and a position of a patient table. 17. The device for treating a patient with ionising radiation according to claim 11, in which at least one rotation speed of the radiation source is controllable by the control means, the control means being adapted to adjust the at least one rotation speed in a manner correlated with at least one of the movement of the radiation source, the collimation of the radiation source, and the position of a patient table. 18. The device for treating a patient with ionising radiation according to claim 1, in which an integral imaging device is used to determine a position of the patient. 19. A method of treating a patient with a source that emits a beam of radiation in a direction emanating therefrom, comprising the steps of; i. providing a support for the source, the support permitting rotation about two axes each offset from the source, with both axes and the beam direction all being co-incident at a single isocentre ii. positioning the patient such that a diseased area of tissue is located at the isocentre; iii. activating the source; iv. causing rotation about the two axes thereby to achieve a greater dosage at the isocentre than around the isocentre. 20. A method according to claim 19 in which the source is activated by removing a shutter thereby permitting the beam to escape. 21. A method according to claim 19 in which the source is de-activated when the source is in specific positions relative to the two axes. 22. A method according to claim 19 in which the two axes are perpendicular. 23. The device for treating a patient with ionising radiation according to claim 11, including a patient table having a position which is adjustable under the control of the control means, the control means being adapted to adjust the position of the patient table in a manner correlated with the collimation of the radiation source.
FIELD OF THE INVENTION This invention relates to a device for treating a patient with ionising radiation. It is particularly suited to forms of radiosurgery and to certain forms of radiotherapy. BACKGROUND ART It is known that exposure of human or animal tissue to ionising radiation will kill the cells thus exposed. This finds application in the treatment of pathological cells. In order to treat tumours deep within the body of the patient, the radiation must however penetrate the healthy tissue in order to irradiate and destroy the pathological cells. In conventional radiation therapy, large volumes of healthy tissue can thus be exposed to harmful doses of radiation, resulting in prolonged recovery periods for the patient. It is, therefore, desirable to design a device for treating a patient with ionising radiation and treatment protocols so as to expose the pathological tissue to a dose of radiation, which will result in the death of these cells, whilst keeping the exposure of healthy tissue to a minimum. Several methods have previously been employed to achieve the desired pathological cell-destroying exposure whilst keeping the exposure of healthy cells to a minimum. Many methods work by directing radiation at a tumour from a number of directions, either simultaneously from multiple sources or multiple exposures from a single source. The intensity of radiation emanating from each source is therefore less than would be required to destroy cells, but where the radiation beams from the multiple sources converge, the intensity of radiation is sufficient to deliver a therapeutic dose. The point of intersection of the multiple radiation beams is herein referred to as the “target point”. The radiation field surrounding a target point is herein referred to as the “target volume”, the size of which can be varied by varying the size of the intersecting beams. A radiation device of this type is sold by the applicant as the Leksell Gamma Knife® (LGK). The LGK device is described in U.S. Pat. No. 4,780,898 and U.S. Pat. No. 5,528,651. In the LGK, a plurality of radiation sources are distributed around the head of the patient, in a hemispherical arrangement. By means of suitable collimators, the radiation beams from each source are focussed to a small volume in the brain. The LGK is commonly regarded as the ‘gold standard’ for delivering radiation to destroy pathological tissues in the brain, as a result of (i) the low background radiation away from the target volume as compared to the high radiation intensity within the target volume and (ii) the small dimensions of the target volume. This enables the surgeon to excise small areas accurately and swiftly, without damage to surrounding structures. An acknowledgement of the LGK appears at Nakagawa et al, Radiation Medicine, Vol 21, No. 4, pp 178-182, 2003. The LGK uses Magnetic Resonance Imaging (MRI), Computer Tomography (CT), PET and/or angiography to determine the exact location of the tumour, with the patient being held in a fixed position by the use of a reference frame, to construct a three-dimensional image of the target. The treatment parameters for each radiation beam are then determined such that the pathological tissue is treated to the necessary dose of radiation, whilst surrounding healthy tissue receives a minimal dose of radiation. The treatment may be spread over a number of days or weeks, thus requiring that the patient is placed in exactly the same position in relation to the point of intersection of the converging beams at each treatment, to avoid the risk that pathological tissue is missed or that surrounding healthy tissue is irradiated unintentionally. This is extremely important in the case where diseases in the brain are treated, which requires the radiation beam to be focussed with pinpoint accuracy to avoid damage to sensitive areas such as e.g. the optic nerve, which if irradiated will result in the patient losing their sight, even with only small doses. This method therefore calls for the presence of a highly skilled, specialist team of technical experts to provide radiation treatment using these appliances. A modification of the LGK has been proposed in the form of U.S. Pat. No. 5,757,886 (Song), which involves placing cobalt sources in a ring configuration. A group of different collimators for each source are mounted on a hemispherical support that can be rotated relative to the sources to bring one collimator of the group into register, for each source. This allows a wider choice of collimators, at the expense of fewer cobalt sources and correspondingly greater treatment times. Other forms of radiotherapy are delivered using linear-accelerator-based systems. A linear accelerator uses radio-frequency energy to create a varying magnetic & electrical field in a elongate accelerating chamber—hence a “linear” accelerator. Electrons are fed into the chamber and are accelerated to near light speed. The resulting beam can be used directly as a form of radiation, but it is more usual to direct this to a suitable “target”, a block of an appropriate heavy metal such as tungsten. The electron beam impinges on the tungsten block and causes it to emit a beam of x-radiation. The geometry of the electron beam and the tungsten surface are arranged so that the x-ray beam departs perpendicular to the incoming electron beam and can thus be directed towards a patient. The x-ray beam is collimated to a suitable shape and passes through the patient causing tissue damage. By suitable collimation and by moving the linear accelerator around the patient so that it approaches from a range of directions, such systems can minimise the dosage outside the tumour and maximise it within the tumour. The principal disadvantage with linear accelerator systems is that the accelerator is extremely heavy. To combine the necessary electrical and thermal properties requires the accelerator chamber to be constructed of large copper blocks. The production of x-rays also produces unwanted radiation, which has to be attenuated by large amounts of shielding material e.g. Tungsten, and this combined with the other components required to operate the linear accelerator will cause the apparatus as a whole to be extremely heavy. This weight must be supported, and the apparatus moved accurately so that the radiation beam can be directed towards the patient from a range of directions. For bodily tumours, the usual compromise is to mount the linear accelerator in an arm extending from a rotateable mount. The beam then exits from the end of the arm, directed inwardly towards the centreline of the mount. A patient supported at the intersection of the centreline and the beam can them be treated; as the mount rotates, the beam will meet the patient from a range of directions within the same plane. Such systems are not generally used for tumours of the brain. They are too inflexible, as the beam must approach the patient from a direction that is within a single plane. If that plane includes a sensitive structure, such as the optic nerve, severe damage could be caused. In the LGK, for example, beams approach from all directions and the element that would interfere with such a structure can be blocked. It is possible to mount a linear accelerator on a robotic arm, to allow a wide range of possible motions. Proposals of this type have been made, and these would, in theory, overcome this problem. However, the great weight of the linear accelerator structure means that it is extremely difficult to engineer such a robotic arm so that the movement is carried out with the precision required for tumours of the brain. Such tumours require placement accuracy of tens of thousandths of a inch or less, and to move an item weighing several tons at the end of an arm that may be several yards long to such levels of accuracy is a near impossible task. Thus, whilst such designs can be constructed and find application to bodily tumours, they are not sufficiently accurate for use with tumours of the brain. Nakagawa et al, cited above, proposes a system of this type in which some flexibility of movement is sacrificed in favour of greater accuracy. The linear accelerator is mounted on one end of a C-arm, which is (in turn) held in a rotateable support. The C-arm can move on its support; thus at its two extremities of motion it resembles more a U-arm or an inverted U. As it moves, the angle of entry of the radiation beam will change. Thus, combined with rotation of the support, will give the necessary range of motion. However, as the C-arm moves, the centre of gravity of the apparatus will shift, causing errors. To counteract this, Nakagawa et al require a complex system of retractable balance weights in order to prevent movement; this is a potential weakness in the accuracy of the apparatus. SUMMARY OF THE INVENTION Cells (and the living tissue that they make up) respond to ionizing radiation in a very complex manner. The radiation sensitivity of cells depends on a number of factors including histology and (for instance) on their oxygenation. Anoxic cells, common in central parts of tumours, are relatively radiation resistant as compared to otherwise similar well-oxygenated cells. A second important biological factor is the repair of radiation damage induced in the DNA strands of cells. A radiation dose delivered over a relatively longer period of time causes less damage to DNA as when the same dose is given over a relatively short time. The cell has more time to repair during a longer exposure, and is thus given a better chance to survive. If cells of normal tissue survive as a result of longer exposures, healthy tissue may be spared. On the other hand, if the surviving cells are malignant they may continue to divide and the patient may not be cured. Thus, an ideal irradiation apparatus will provide the largest possible freedom in the delivery of the radiation dose. The radiation must be delivered accurately and very selectively to small regions of delicate neurological and other tissue. This advanced irradiation procedure must be reproducible during the entire lifetime of the treatment unit. It is an object of the invention to provide a radiation therapy and/or surgery device thus optimised to meet the needs of the Neurosurgeon, i.e. for the treatment of pathological tissue in the brain or vicinity. It combines the qualities of a good penumbra and accuracy, simple prescription and operation, together with high reliability and minimal technical support. Preferred embodiments of the invention deliver radiation with high geometrical accuracy from a wide range of directions. The dose rate can be changed in a wide range with the irradiation direction. The cross section of the radiation beam can be changed in shape and size with irradiation direction. The present invention therefore provides a device for treating a patient with ionising radiation comprising a support, on which is provided a mount, a radiation source attached to the mount, the support being rotateable about an axis, the source being attached to the mount via a rotateable union having an axis of rotation which is non-parallel to the support axis, wherein the axis of the mount passes through the axis of the support and the radiation source is collimated so as to produce a beam which passes through the co-incidence of those axes. Patients generally prefer to lie down whilst being treated, and are more likely to remain still if doing so. It is therefore preferred that the rotateable support is disposed in an upright position. The rotation of the rotateable support will be eased if this part of the apparatus is circular. A preferred orientation is one in which the radiation source is spaced from the rotateable support, to allow it to pivot without fouling the latter. It is thus preferred that the mount extends transverse to the support. In this way, the pivot axis is spaced from the rotateable support providing free space in which the radiation source can pivot. Another way of expressing this preference is to state that the pivot axis is located out of the plane of the rotateable support. To simplify the geometry of the device and the associated arithmetic, it is preferred both that the pivot axis is substantially perpendicular to the rotation axis, and that the beam direction is perpendicular to the pivot axis. It is preferred that the radiation source is a linear accelerator. The output of the radiation source is preferably collimated, for example to conform to the shape of the area to be treated. The degree of collimation of the radiation source is preferably selectable or adjustable. It is preferred that a control means is provided, for programmably controlling the collimation of the radiation source in a manner correlated with the movement thereof. The apparatus will generally include a patient support. It is preferred that the position of the patient support is adjustable, particularly under the control of the control means, with the control means being adapted to adjust that position in a manner correlated with the movement of the radiation source and/or the collimation thereof. This will allow increased flexibility in treatment. It is also preferred that the intensity of the radiation source is selectable as a function of its position. Again, it is preferable for this to be under the control of the control means, adapted to adjust that intensity in a manner correlated with at least one of the movement of the radiation source, the collimation thereof, and the position of a patient table. An integral imaging device can be used to determine the position of the patient, for example by way of feedback to the control means. BRIEF DESCRIPTION OF THE DRAWINGS An embodiment of the present invention will now be described by way of example, with reference to the accompanying figures in which; FIGS. 1a to 1c and FIGS. 2a to 2c show the geometrical arrangement of the apparatus, in schematic terms. FIGS. 1a to 1c show the effect of rotation about the rotateable union, whereas FIGS. 2a to 2c show the effect of rotation of the support. FIG. 3 shows an external view of the apparatus prior to insertion of a patient; FIG. 4 shows the apparatus with the patient in a treatment position; FIG. 5 shows a perspective view of the internal structure of the apparatus from a foot end; FIG. 6 shows a perspective view of the internal structure of the apparatus from a head end in a first position; FIG. 7 shows the same apparatus in a second position; FIG. 8 shows a second embodiment of the device in a perspective view from the head end; FIG. 9 shows the beam orientation in the sectional view; FIG. 10 shows the beam orientation of FIG. 7 in plan view; FIG. 11 shows a perspective view from the head end of the internal structure of a second embodiment in a second position; FIG. 12 shows the beam structure in this position, in a perspective view; FIG. 13 shows the beam structure of FIG. 10 in plan view; FIG. 14 shows a vertical cross section through the device in a first position; FIG. 15 shows a vertical cross section of the device in a second position; FIG. 16 shows a perspective view of a third embodiment with the radiation source in one position; and FIG. 17 shows a corresponding view of the embodiment of FIG. 14 with the radiation source in a different position. DETAILED DESCRIPTION OF THE EMBODIMENTS FIGS. 1a, 1b and 1c, together with FIGS. 2a, 2b and 2c, show the general principle of operation according to the present invention. They show that the geometry adopted by the invention constrains the radiation source such that a wide variety of approach angles are possible, but that the source can only point towards the isocentre. Further, they illustrate how such an arrangement can be achieved using only rotateable joints. Thus, once the device is suitably supported or balanced around those joints, the problems inherent in the Nakagawa et al arrangement are avoided. There are two main rotation axes according to the invention. FIGS. 1a, 1b and 1c show the effect of rotation about one of the axes, while FIGS. 2a, ab and 2c show the effect of rotation about the other. It is envisaged that, in practice, both axes would be used simultaneously. FIG. 1a shows the device in a rest state in which a source 1 is supported by rigid members 2, 3 which are each attached to a base (not shown) so that they are rotateable about a vertical axis 4. In FIG. 1a, this axis coincides with the geometrical y axis. The specific shape of the members 2, 3 is not important to this explanation and they have therefore been shown as simple linear struts. The vertical axis 4 is offset from the source 1, whose output beam 5 points back towards the vertical axis. In its rest state, the beam points back along a line that can be adopted as the geometrical x axis, perpendicular to the y axis. The origin of the x and y axes is then the intersection of the vertical axis 4 and the beam 5, and is in fact the isocentre of the device (as will become apparent). FIG. 1b shows the effect of a small rotation around the vertical axis 4. This takes the source and beam away from the geometrical x axis towards the geometrical z axis, shown in FIG. 1b perpendicular to the x and y axes. The vertical axis about which the rotation is taking place co-incides with the beam 5, with the result is that the beam 5 continues to intersect with the vertical axis 4 at the same point—the isocentre. FIG. 1c then shows the effect of a still further rotation, taking the source 4 past the z axis and illustrating that the beam 5 continues to intersect with the vertical axis at the isocentre. Referring to FIG. 2a, the effect of the second axis of rotation called for by the present invention will now be discussed. This rotation allows wholesale rotation of the support to which the rigid strut members 2, 3 are attached. Accordingly, rotation about this second axis 6 will take with it all the parts discussed above, including the formerly “vertical” axis 4. The axis 6 of this rotation co-incides with the geometrical z axis illustrated in the figures; as a result, that axis passes through the isocentre. FIG. 2a shows the device prior to any rotation, in the same rest state as FIG. 1a. FIG. 2b shows a small rotation about the second axis 6. It should be noted that the first axis 4 is no longer co-incident with the geometrical y axis. Nevertheless, because the beam 5, “vertical” axis 4 and second axis 6 all co-incide at the isocentre, the beam continues to pass through the same isocentre despite this rotation. FIG. 2c shows the effect of a further rotation about the second axis 6. It can be seen that the beam still passes through the isocentre. As mentioned above, in practice both rotations will be used simultaneously. This will mean that, in principle, any direction of approach can be obtained. If the first axis 4 is fixed at an arbitrary rotation, then rotation about the second axis 6 will allow the beam to be directed towards the isocentre from any direction along a cone centred on the second axis; the angle at which the first axis is fixed will define the angle of the cone. Likewise, if the second axis 6 is fixed at an arbitrary rotation, then rotation about the first axis 4 will allow the beam to be directed towards the isocentre from any direction in the plane that includes the beam direction 5 and the second axis 6; the angle of that plane will be defined by the angle of rotation about the second axis. Thus, the invention proposes the use of a source mounted so as to be rotateable about two axes, with both axes and the beam direction all being co-incident at a single isocentre. This allows a device to be constructed that is inherently accurate in that the source can only point towards the isocentre. It will of course be apparent that the embodiment could be disposed in any suitable orientation, with the same geometrical result being obtained. Thus, in the above, whilst one axis has been referenced as being a “vertical” axis, this is only for reasons of clarity and does not infer that the specific directions are essential to operation of the device. FIG. 3 shows the general external appearance of a device according to the present invention. The device 10 comprises an enclosure in which is formed a concave recess 12. Between the enclosure and the recess 12 is provided the apparatus for producing a therapeutic beam of radiation, to be described later. The material defining the concave enclosure 12 will be of a material that is radio-transparent so as to allow transmission of the therapeutic beam into the enclosure. A patient table 14 is located outside the concave enclosure 12, on which is formed a moveable patient support 16. The patient 18 lies on the moveable support 16, which is then moved as shown in FIG. 4 to bring the patient inside the concave enclosure 12. In this position, the therapeutic beam of radiation can be directed at the relevant part of the patient 18. FIG. 5 shows the interior workings of the apparatus, ie. with the patient table and all exterior covers removed. A base 20 for the apparatus consists of a vertically aligned mounting ring of a substantial and solid material such as steel. This is mounted on suitable feet 22 so as to maintain it on a secure and fixed location. This ring, in use, lies around the patient and defines the extent of the concave recess 12. A second, rotateable, ring 24 is supported on the mounting ring 20 so as to be mutually rotateable. Thus, the second ring 24 can rotate around the patient 18. On the rotateable ring 24 are a pair of first and second mounting brackets 26, 28 located diametrically opposite each other. Each extends in a direction out of the plane of the rotateable ring 24 and provides a pivotal mounting point 30 spaced from that plane. The line passing between the mounting points 30 of the first and second mounting brackets 26, 28 passes directly through the axis of rotation of the rotateable ring 24. This point of intersection is at the same height as a patient lying on the patient table 16. A linear accelerator (linac) 32 is mounted on the pivotal mounting points 30 on a suitable housing 34. A motor 36 is provided to allow the linac housing 34 and thus the linac 32 to be rotated about the pivotal mounting points 30. The height of the linear accelerator 32 and its direction are set so that its beam axis passes through the point of intersection defined above. Thus, by use of the above relations, the linear accelerator can be manipulated in two directions, being the angle at which it approaches the patient 18 and the rotational direction from which it makes this approach. These can be adjusted independently, while the geometric properties of the mounting structure mean that its beam will always pass through its point of intersection. In this way, the point of intersection can be defined and the patient located relative thereto, and the linac can be moved freely so as to direct a dose at that point of intersection. In practice, this means that the linac can be moved continuously or stepwise so as to provide a minimal dose to areas outside the target volume and a maximum dose at the target. In this way, this apparatus can replicate the treatment profile of an LGK with the use of a single linear accelerator source. As the moving parts of the device are covered, they can be rotated at speeds up to approximately 15 rpm, which will allow the radiation source to cover the positions of all the sources of the LGK in approximately 20 seconds. Existing linear accelerator-based devices can provide similar functionality but do so via generic robotic arms. In such devices, the precision required of the device must be imposed by accurate software and by precision measurement. In the above-described embodiment, precision is engineered into the structure and therefore arises automatically. In addition, the general background dosage is less that that which would be encountered through the LGK, since there is only a single source. Thus, a shielding can be provided more easily and more inexpensively since only the main source needs to be shielded as opposed to the shielding of a large number of sources. This shielding is achieved by the enclosure 34, the beam stop 42 and the collimator 43 which will be formed of a material which is generally radiopaque so as to limit unnecessary exposure of staff and patients outside the device. The weight of such a reduced amount of shielding will also be significantly less. Moreover, in comparison to the existing LGK, the use of a linear accelerator allows dynamic changes to the intensity of the beam or its temporary interruption. These changes to the beam may be programmed to occur when the beam is passing through sensitive areas. This will permit the protection of sensitive areas such as the optic nerve without having to provide selective plugs to specific sources. Moreover, it is well known that to conform to irregular distributions of pathological tissue that combinations of beams collimated to different sizes are often required. As this device only has a single source a programmable collimator such as a multileaf collimator or selection of different sized collimators can be provided. The size of the collimator can be programmed to change at certain times in the treatment. The device can also be used for imaging by suitable variation of the output energy as (for example) shown in our previous patent application WO 01/11928 or otherwise. In this way, specific areas of the patient (such as the auditory canal) or known objects such as the head frame or calibration items placed on the head frame can be located through an imaging function. This can provide a check of the positioning of the patient, or a dynamic adjustment of the patient positioning via the patient table. Further, in the apparatus as described, the rotation speeds of the source can be varied. This allows the device to deal with biological factors such as the inhomogeneity of certain tumours in the resistance to radiation over their surface. In addition, the ability to vary the dose rate, collimation, and rotation speeds dynamically during treatment offers the ability to tailor the therapy or surgery in novel ways to achieve the maximum therapeutic benefit with the minimum side effects. At the same time, the patient position can be adjusted via the patient positioning system 14, 16. This can be carried out dynamically during treatment, or stepwise between treatments and can be in addition or alternative to adjustment of the beam collimation. A system which combines dynamic beam collimation with dynamic patient positioning will in practice provide a powerful and flexible treatment potential. FIG. 6 onwards show further detail of this and other embodiments. In FIG. 6 an arrangement is shown in which the mounting brackets 26, 28 are continued backwards and joined via a U-shaped link arm 38. This provides additional rigidity to the structure and enables a rotateable electrical connection 40 to be provided to bring power on to the rotateable structure. In FIG. 6, the device is shown with the pivot axis 30 vertical and the linear accelerator 32 at a low deflection of 5° relative to the patient axis. In FIG. 7, the same apparatus is shown at an increased accelerator angle of 35°. FIG. 8 shows the device of FIG. 5 at a low angle relative to the patient, of approximately 5°. FIG. 9 shows the general geometry of the device relative to the patient 18. In the arrangement shown in FIG. 9 (at 50 relative to the patient), it can be seen that there is ample space for an irradiation of the patient head 18a and that shielding 42 can be provided which will remain opposite the linear accelerator 44 and thus move with it. As a result, the shielding provided can be minimised thereby reducing the overall weight and cost of the device. FIG. 10 shows the same device as FIG. 9, in plan. FIG. 11 shows the general arrangement as shown in FIG. 8 but with the linear accelerator at an increased angle of 35°. FIG. 12 shows the arrangement of the parts within the device at this increased angle, from which it can be seen that the angle of up to 35° can be obtained without fouling other items such as the mounting ring 20 and without irradiating unintended areas such as the patient shoulder 18b. FIG. 13 shows this arrangement in plan form. As shown in FIGS. 14 and 15, by rotating the second (rotateable) ring 24 relative 24 to the mounting ring 20 through 90°, the linear accelerator 34 can be lifted (or lowered, not shown) into a vertical position relative to the patient and can then irradiate the relevant area of the patient from above, or indeed from any desired angle. FIG. 14 shows the linear accelerator at an angle relative to the vertical of 5° and FIG. 15 shows the same linear accelerator at an increased angle of 35°. FIGS. 16 and 17 show a third embodiment. In this alternative design, the base 100 carries a rotateable bearing 102, which supports a spindle 104 that is therefore rotateable. The spindle 104 carries a C-arm 106 at the ends of which are a pair of aligned pivots 108, 110. The pivots 108, 110 are aligned such that their shared axis is co-incident with the axis of rotation of the spindle. In this embodiment, the preferred arrangement of orthogonal co-incidence is illustrated. A radiation source support 112 is mounted on the pivots and consists of a concave enclosure on which is provided a radiation source 114 opposite a beam stop 116. The source is adapted to produce a collimated beam 118, which passes within the concave area, through the co-incidence point of the two axes, and ends at the beam stop 116. The entire structure is enclosed within a suitable enclosure, shown partly at 120. An aperture or recess 122 is provided in the enclosure to allow entry of a patient 124 into the concave enclosure of the radiation source support 112. In practice, the patient 124 will be supported on a moveable patient table 126 which can extend and retract the patient into and out of the concave enclosure. This embodiment will provide the same accuracy and alignment advantages as the embodiments described above, and can be operated in substantially the same manner. It will thus be appreciated that the present invention provides a versatile radio surgery device that is capable of precision work. It can retain both the accuracy and functionality of multiple source devices such as the LGK whilst achieving the increased flexibility and reduced weight of accelerator-based designs. Thus, the device described provides a powerful tool in radiosurgery and radiotherapy. It is applicable both (as described) to treatment of the cranial and nearby regions, and also to other parts of the body where these are susceptible to placement within the device. It will of course be understood that many variations may be made to the above-described embodiment without departing from the scope of the present invention.
<SOH> BACKGROUND ART <EOH>It is known that exposure of human or animal tissue to ionising radiation will kill the cells thus exposed. This finds application in the treatment of pathological cells. In order to treat tumours deep within the body of the patient, the radiation must however penetrate the healthy tissue in order to irradiate and destroy the pathological cells. In conventional radiation therapy, large volumes of healthy tissue can thus be exposed to harmful doses of radiation, resulting in prolonged recovery periods for the patient. It is, therefore, desirable to design a device for treating a patient with ionising radiation and treatment protocols so as to expose the pathological tissue to a dose of radiation, which will result in the death of these cells, whilst keeping the exposure of healthy tissue to a minimum. Several methods have previously been employed to achieve the desired pathological cell-destroying exposure whilst keeping the exposure of healthy cells to a minimum. Many methods work by directing radiation at a tumour from a number of directions, either simultaneously from multiple sources or multiple exposures from a single source. The intensity of radiation emanating from each source is therefore less than would be required to destroy cells, but where the radiation beams from the multiple sources converge, the intensity of radiation is sufficient to deliver a therapeutic dose. The point of intersection of the multiple radiation beams is herein referred to as the “target point”. The radiation field surrounding a target point is herein referred to as the “target volume”, the size of which can be varied by varying the size of the intersecting beams. A radiation device of this type is sold by the applicant as the Leksell Gamma Knife® (LGK). The LGK device is described in U.S. Pat. No. 4,780,898 and U.S. Pat. No. 5,528,651. In the LGK, a plurality of radiation sources are distributed around the head of the patient, in a hemispherical arrangement. By means of suitable collimators, the radiation beams from each source are focussed to a small volume in the brain. The LGK is commonly regarded as the ‘gold standard’ for delivering radiation to destroy pathological tissues in the brain, as a result of (i) the low background radiation away from the target volume as compared to the high radiation intensity within the target volume and (ii) the small dimensions of the target volume. This enables the surgeon to excise small areas accurately and swiftly, without damage to surrounding structures. An acknowledgement of the LGK appears at Nakagawa et al, Radiation Medicine, Vol 21, No. 4, pp 178-182, 2003. The LGK uses Magnetic Resonance Imaging (MRI), Computer Tomography (CT), PET and/or angiography to determine the exact location of the tumour, with the patient being held in a fixed position by the use of a reference frame, to construct a three-dimensional image of the target. The treatment parameters for each radiation beam are then determined such that the pathological tissue is treated to the necessary dose of radiation, whilst surrounding healthy tissue receives a minimal dose of radiation. The treatment may be spread over a number of days or weeks, thus requiring that the patient is placed in exactly the same position in relation to the point of intersection of the converging beams at each treatment, to avoid the risk that pathological tissue is missed or that surrounding healthy tissue is irradiated unintentionally. This is extremely important in the case where diseases in the brain are treated, which requires the radiation beam to be focussed with pinpoint accuracy to avoid damage to sensitive areas such as e.g. the optic nerve, which if irradiated will result in the patient losing their sight, even with only small doses. This method therefore calls for the presence of a highly skilled, specialist team of technical experts to provide radiation treatment using these appliances. A modification of the LGK has been proposed in the form of U.S. Pat. No. 5,757,886 (Song), which involves placing cobalt sources in a ring configuration. A group of different collimators for each source are mounted on a hemispherical support that can be rotated relative to the sources to bring one collimator of the group into register, for each source. This allows a wider choice of collimators, at the expense of fewer cobalt sources and correspondingly greater treatment times. Other forms of radiotherapy are delivered using linear-accelerator-based systems. A linear accelerator uses radio-frequency energy to create a varying magnetic & electrical field in a elongate accelerating chamber—hence a “linear” accelerator. Electrons are fed into the chamber and are accelerated to near light speed. The resulting beam can be used directly as a form of radiation, but it is more usual to direct this to a suitable “target”, a block of an appropriate heavy metal such as tungsten. The electron beam impinges on the tungsten block and causes it to emit a beam of x-radiation. The geometry of the electron beam and the tungsten surface are arranged so that the x-ray beam departs perpendicular to the incoming electron beam and can thus be directed towards a patient. The x-ray beam is collimated to a suitable shape and passes through the patient causing tissue damage. By suitable collimation and by moving the linear accelerator around the patient so that it approaches from a range of directions, such systems can minimise the dosage outside the tumour and maximise it within the tumour. The principal disadvantage with linear accelerator systems is that the accelerator is extremely heavy. To combine the necessary electrical and thermal properties requires the accelerator chamber to be constructed of large copper blocks. The production of x-rays also produces unwanted radiation, which has to be attenuated by large amounts of shielding material e.g. Tungsten, and this combined with the other components required to operate the linear accelerator will cause the apparatus as a whole to be extremely heavy. This weight must be supported, and the apparatus moved accurately so that the radiation beam can be directed towards the patient from a range of directions. For bodily tumours, the usual compromise is to mount the linear accelerator in an arm extending from a rotateable mount. The beam then exits from the end of the arm, directed inwardly towards the centreline of the mount. A patient supported at the intersection of the centreline and the beam can them be treated; as the mount rotates, the beam will meet the patient from a range of directions within the same plane. Such systems are not generally used for tumours of the brain. They are too inflexible, as the beam must approach the patient from a direction that is within a single plane. If that plane includes a sensitive structure, such as the optic nerve, severe damage could be caused. In the LGK, for example, beams approach from all directions and the element that would interfere with such a structure can be blocked. It is possible to mount a linear accelerator on a robotic arm, to allow a wide range of possible motions. Proposals of this type have been made, and these would, in theory, overcome this problem. However, the great weight of the linear accelerator structure means that it is extremely difficult to engineer such a robotic arm so that the movement is carried out with the precision required for tumours of the brain. Such tumours require placement accuracy of tens of thousandths of a inch or less, and to move an item weighing several tons at the end of an arm that may be several yards long to such levels of accuracy is a near impossible task. Thus, whilst such designs can be constructed and find application to bodily tumours, they are not sufficiently accurate for use with tumours of the brain. Nakagawa et al, cited above, proposes a system of this type in which some flexibility of movement is sacrificed in favour of greater accuracy. The linear accelerator is mounted on one end of a C-arm, which is (in turn) held in a rotateable support. The C-arm can move on its support; thus at its two extremities of motion it resembles more a U-arm or an inverted U. As it moves, the angle of entry of the radiation beam will change. Thus, combined with rotation of the support, will give the necessary range of motion. However, as the C-arm moves, the centre of gravity of the apparatus will shift, causing errors. To counteract this, Nakagawa et al require a complex system of retractable balance weights in order to prevent movement; this is a potential weakness in the accuracy of the apparatus.
<SOH> SUMMARY OF THE INVENTION <EOH>Cells (and the living tissue that they make up) respond to ionizing radiation in a very complex manner. The radiation sensitivity of cells depends on a number of factors including histology and (for instance) on their oxygenation. Anoxic cells, common in central parts of tumours, are relatively radiation resistant as compared to otherwise similar well-oxygenated cells. A second important biological factor is the repair of radiation damage induced in the DNA strands of cells. A radiation dose delivered over a relatively longer period of time causes less damage to DNA as when the same dose is given over a relatively short time. The cell has more time to repair during a longer exposure, and is thus given a better chance to survive. If cells of normal tissue survive as a result of longer exposures, healthy tissue may be spared. On the other hand, if the surviving cells are malignant they may continue to divide and the patient may not be cured. Thus, an ideal irradiation apparatus will provide the largest possible freedom in the delivery of the radiation dose. The radiation must be delivered accurately and very selectively to small regions of delicate neurological and other tissue. This advanced irradiation procedure must be reproducible during the entire lifetime of the treatment unit. It is an object of the invention to provide a radiation therapy and/or surgery device thus optimised to meet the needs of the Neurosurgeon, i.e. for the treatment of pathological tissue in the brain or vicinity. It combines the qualities of a good penumbra and accuracy, simple prescription and operation, together with high reliability and minimal technical support. Preferred embodiments of the invention deliver radiation with high geometrical accuracy from a wide range of directions. The dose rate can be changed in a wide range with the irradiation direction. The cross section of the radiation beam can be changed in shape and size with irradiation direction. The present invention therefore provides a device for treating a patient with ionising radiation comprising a support, on which is provided a mount, a radiation source attached to the mount, the support being rotateable about an axis, the source being attached to the mount via a rotateable union having an axis of rotation which is non-parallel to the support axis, wherein the axis of the mount passes through the axis of the support and the radiation source is collimated so as to produce a beam which passes through the co-incidence of those axes. Patients generally prefer to lie down whilst being treated, and are more likely to remain still if doing so. It is therefore preferred that the rotateable support is disposed in an upright position. The rotation of the rotateable support will be eased if this part of the apparatus is circular. A preferred orientation is one in which the radiation source is spaced from the rotateable support, to allow it to pivot without fouling the latter. It is thus preferred that the mount extends transverse to the support. In this way, the pivot axis is spaced from the rotateable support providing free space in which the radiation source can pivot. Another way of expressing this preference is to state that the pivot axis is located out of the plane of the rotateable support. To simplify the geometry of the device and the associated arithmetic, it is preferred both that the pivot axis is substantially perpendicular to the rotation axis, and that the beam direction is perpendicular to the pivot axis. It is preferred that the radiation source is a linear accelerator. The output of the radiation source is preferably collimated, for example to conform to the shape of the area to be treated. The degree of collimation of the radiation source is preferably selectable or adjustable. It is preferred that a control means is provided, for programmably controlling the collimation of the radiation source in a manner correlated with the movement thereof. The apparatus will generally include a patient support. It is preferred that the position of the patient support is adjustable, particularly under the control of the control means, with the control means being adapted to adjust that position in a manner correlated with the movement of the radiation source and/or the collimation thereof. This will allow increased flexibility in treatment. It is also preferred that the intensity of the radiation source is selectable as a function of its position. Again, it is preferable for this to be under the control of the control means, adapted to adjust that intensity in a manner correlated with at least one of the movement of the radiation source, the collimation thereof, and the position of a patient table. An integral imaging device can be used to determine the position of the patient, for example by way of feedback to the control means.
20041021
20071113
20050428
62333.0
1
LEYBOURNE, JAMES J
METHOD AND APPARATUS FOR TREATMENT BY IONIZING RADIATION
UNDISCOUNTED
0
ACCEPTED
2,004
10,971,303
ACCEPTED
Movable barrier operator auto-force setting method and apparatus
A movable barrier operator having a motor controller (10) and motor (11) that control selective movement of a movable barrier (12) also has an obstacle detector (14) that utilizes an automatically determined excess force threshold value to permit reliable detection of an obstacle under a wide variety of operational circumstances, including changing physical circumstances, aging components, temperature variations, and motor runtime. In a preferred embodiment, a characteristic force value for the system is frequently updated as a function of actual measured force requirements (and further compensated, pursuant to various embodiments, with respect to other conditions such as temperature and motor runtime). This characteristic force value is then utilized to determine the excess force threshold value.
1. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to at least one automatically determined excess force threshold value; and a motor controller operably coupled and responsive to the movable barrier obstacle detector; wherein the movable barrier operator has no user-initiable dedicated learning mode of operation. 2. The movable barrier operator of claim 1 wherein the movable barrier operator further has no user-accessible excess force value adjustment interface. 3. The movable barrier operator of claim 1 and further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output. 4. The movable barrier operator of claim 1 and further comprising a motor on-time sensor and wherein the at least one automatically determined excess force threshold value comprises an automatically determined motor on-time-compensated excess force threshold value. 5. A method for use with a movable barrier operator that has no user-initiable dedicated learning mode of operation, comprising: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move between at least a first position and a second position; automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator. 6. The method of claim 5 wherein the method does not comprise receiving user input that corresponds to an adjustment of the excess force threshold value. 7. The method of claim 5 wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; using an updated characteristic force value to determine a corresponding excess force threshold value. 8. The method of claim 5 and further comprising monitoring operation of a motor and wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value further includes using a motor operation compensation value to automatically change the excess force threshold value. 9. The method of claim 8 wherein monitoring operation of the motor includes monitoring a time duration when the motor is in at least one predetermined operational state. 10. The method of claim 9 wherein monitoring a time duration when the motor is in at least one predetermined operational state includes monitoring a time duration when the motor is in at least one of an on-state and an off-state. 11. A movable barrier operator having a user-selectable learning mode of operation and a normal mode of operation for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; an automatically determined excess force threshold value that is determined during the normal mode of operation; a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the automatically determined excess force threshold value; and a motor controller operably coupled and responsive to the movable barrier obstacle detector. 12. The movable barrier operator of claim 11 and further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output. 13. The movable barrier operator of claim 11 and further comprising a motor on-time sensor and wherein the automatically determined excess force threshold value further comprises an automatically determined motor on-time-compensated excess force threshold value. 14. A method for use with a movable barrier operator having a normal mode of operation and a user-initiable learning mode of operation, comprising: in the normal mode of operation and regardless of whether the user-initiable learning mode of operation has been previously initiated: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator. 15. The method of claim 14 and further comprising: determining only a single excess force threshold value for the movable barrier operator when the monitored at least one parameter meets a first predetermined criteria; determining a plurality of excess force threshold values for the movable barrier operator when the monitored at least one parameter does not meet the first predetermined criteria. 16. The method of claim 15 wherein monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move includes providing a representative function of the at least one parameter. 17. The method of claim 16 wherein determining a plurality of excess force threshold values for the movable barrier operator when the monitored at least one parameter does not meet the first predetermined criteria includes determining the plurality of excess force threshold values as a function, at least in part, of the representative function of the at least one parameter. 18. The method of claim 14 wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; and using an updated characteristic force value to determine a corresponding excess force threshold value. 19. A movable barrier operator having both a user-initiable dedicated learning mode of operation and a normal mode of operation for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to at least one automatically determined excess force threshold value that is at least partially determined during the normal mode of operation; and a motor controller operably coupled and responsive to the movable barrier obstacle detector. 20. The movable barrier operator of claim 19 and further comprising an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output that is substantially dependent on a difference between at least one previous characteristic force value output as provided during a previous normal mode of operation and a substantially present force value that is based, at least in part, on the at least one force sensor, and wherein the at least one automatically determined excess force threshold value is based, at least in part, on the characteristic force value output. 21. The movable barrier operator of claim 19 and further comprising a motor on-time sensor and wherein the at least one automatically determined excess force threshold value comprises an automatically determined motor on-time-compensated excess force threshold value. 22. A method for use with a movable barrier operator having both a user-initiable dedicated learning mode of operation and a normal mode of operation, comprising: during the normal mode of operation: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move between at least a first position and a second position; automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value; using the updated excess force threshold value and the monitored at least one parameter to determine when excess force is seemingly being applied to the movable barrier via the movable barrier operator; taking a predetermined action when excess force is seemingly being applied to the movable barrier via the movable barrier operator. 23. The method of claim 22 wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value includes: automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; using an updated characteristic force value to provide the updated excess force threshold value. 24. The method of claim 22 and further comprising monitoring operation of a motor and wherein automatically changing an excess force threshold value in response to the monitored at least one parameter to provide an updated excess force threshold value further includes using a motor operation compensation value to automatically change the excess force threshold value. 25. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output; a movable barrier obstacle detector that is at least partially responsive to the at least one force sensor and to the characteristic force value output; and a motor controller operably coupled and responsive to the movable barrier obstacle detector; wherein the characteristic force value output is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value that is based, at least in part, on the at least one force sensor. 26. The movable barrier operator of claim 25 wherein the characteristic force value output remains substantially unchanged when the difference does not exceed a minimum predetermined range. 27. The movable barrier operator of claim 25 wherein the characteristic force value output substantially comprises the more current force value when the difference is within a first predetermined range, and substantially comprises a previous characteristic force value output as combined with a predetermined amount when the difference is outside the first predetermined range. 28. The movable barrier operator of claim 25 wherein the characteristic force value output is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value pursuant to a first function when the difference has a first sign and is substantially dependent on a difference between at least one previous characteristic force value output and a more current force value pursuant to a second function, which second function is different than the first function, when the difference has a sign that is opposite of the first sign. 29. The movable barrier operator of claim 25 and further comprising a motor on-time sensor and wherein the automatic characteristic force value indicator is further responsive to the motor on-time sensor and wherein the characteristic force value output comprises a motor on-time-compensated characteristic force value output. 30. A method for use with a movable barrier operator, comprising: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter; using an updated characteristic force value to determine a corresponding excess force threshold value; determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; taking a predetermined action when excess force is seemingly being applied to the movable barrier. 31. The method of claim 30 wherein when the difference is within a minimum range the updated characteristic force value is substantially identical to the characteristic force value. 32. The method of claim 30 wherein when the difference is within a first range the updated characteristic force value is set to equate to the at least one parameter, and when the difference falls outside the first range the updated characteristic force value comprises the characteristic force value combined with an amount to thereby move the characteristic force value towards, but not attaining, a value that equates with the at least one parameter. 33. The method of claim 30 wherein automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value as a function of a difference between the characteristic force value and the at least one parameter includes automatically changing the characteristic force value pursuant to a first alteration function when the difference has a first sign and pursuant to a second alteration function, which second alteration function is different from the first alteration function, when the difference has a sign that is different from the first sign. 34. The method of claim 30 and further comprising monitoring operation of a motor and wherein using an updated characteristic force value to determine a corresponding excess force threshold value includes using an updated characteristic force value and a motor operation compensation value to determine a corresponding motor operation-compensated excess force threshold value. 35. The method of claim 34 wherein monitoring operation of the motor includes monitoring a time duration when the motor is in at least one predetermined operational state. 36. The method of claim 35 wherein monitoring a time duration when the motor is in at least one predetermined operational state includes monitoring a time duration when the motor is in at least one of an on-state and an off-state. 37. The method of claim 30 and further comprising determining that a predetermined operational status likely exists when the at least one parameter that corresponds to force as measured during a predetermined time period that corresponds to initial energization of a motor meets at least one predetermined criteria. 38. The method of claim 37 wherein determining that a predetermined operational status likely exists includes determining that a fault condition likely exists. 39. The method of claim 30 and further comprising: determining only a single force value to serve as a characteristic force value for the movable barrier operator when the at least one parameter meets a first predetermined criteria; determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the at least one parameter does not meet the first predetermined criteria. 40. The method of claim 39 wherein monitoring at least one parameter that corresponds to force includes providing a representative function of the at least one parameter. 41. The method of claim 40 wherein determining a plurality of force values to serve as a plurality of characteristic force values for the movable barrier operator when the at least one parameter does not meet the first predetermined criteria includes determining the plurality of force values as a function of the representative function of the at least one parameter. 42. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output, wherein the automatic characteristic force value indicator includes a characteristic force value updater responsive to a substantially current force measurement and to a substantially current characteristic force value, with the characteristic force value updater having an updated characteristic force value output substantially comprising one of: the substantially current force measurement when a first condition is met; and a value that is different than the substantially current force measurement and different than the substantially current characteristic force value when a second condition is met; an automatic excess force threshold value indicator responsive to the characteristic force value output and having an excess force threshold value output; a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the excess force threshold value output; and a motor controller operably coupled and responsive to the movable barrier obstacle detector. 43. The movable barrier operator of claim 42 wherein the first condition comprises a substantially current force measurement that exceeds a first predetermined threshold. 44. The movable barrier operator of claim 43 wherein the second condition comprises a substantially current force measurement that is less than the first predetermined threshold. 45. The movable barrier operator of claim 42 wherein the value that is different than the substantially current force measurement and different than the substantially current characteristic force value at least partially comprises the substantially current force measurement as combined with a predetermined value. 46. The movable barrier operator of claim 42 and further comprising at least one temperature sensor, wherein the characteristic force value updater is response to the at least one temperature sensor, and wherein the characteristic force value updater has an updated characteristic force value output substantially comprising one of: the substantially current force measurement when the first condition is met; and a value that is different than the substantially current force measurement and different than the substantially current characteristic force value when a second condition is met, except when a present temperature is substantially different in a predetermined way than a previously measured temperature, in which case the updated characteristic force value output substantially comprises the substantially current force measurement. 47. The movable barrier operator of claim 46 wherein the predetermined way comprises a present temperature being substantially less than the previously measured temperature. 48. A method for use with a movable barrier operator, comprising: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; automatically changing a characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value that substantially equals a first force measurement when a first condition is met; automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met; using the updated characteristic force value to determine a corresponding excess force threshold value; determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; and taking a predetermined action when excess force is seemingly being applied to the movable barrier. 49. The method of claim 48 wherein the first condition is met when the first force measurement exceeds a first threshold. 50. The method of claim 49 wherein the second condition is met when the first force measurement is less than the first threshold. 51. The method of claim 48 wherein incrementing the characteristic force value towards the first force measurement includes incrementing the characteristic force value by a predetermined step size. 52. The method of claim 48 wherein incrementing the characteristic force value towards the first force measurement includes incrementing the characteristic force value by a dynamically calculated step size. 53. The method of claim 48 and further comprising monitoring a temperature and wherein automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met further includes automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing a characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially different in a predetermined way from a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals the first force measurement. 54. The method of claim 53 wherein automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially different in a predetermined way from a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals the first force measurement includes automatically changing the characteristic force value in response to the monitored at least one parameter to provide an updated characteristic force value by incrementing the characteristic force value towards the first force measurement without reaching the first force measurement when a second condition is met, except when a present temperature is substantially less than a previous temperature, in which case the characteristic force value is changed to provide an updated characteristic force value that substantially equals the first force measurement. 55. A movable barrier operator for use with a movable barrier, which movable barrier is selectively moved through selective application of force via the movable barrier operator, the movable barrier operator comprising: at least one force sensor; an automatic characteristic force value indicator responsive to the at least one force sensor and having a characteristic force value output, wherein the automatic characteristic force value indicator includes a characteristic force value updater responsive to a current force measurement and to a current characteristic force value, with the characteristic force value updater having an updated characteristic force value output substantially comprising one of: an increased value determined pursuant to a first determination process when the current force measurement is greater than the current characteristic force value; and a decreased value determined pursuant to a second determination process, which second determination process is different from the first determination process, when the current force measurement is less than the current characteristic force value; an automatic excess force threshold value indicator responsive to the characteristic force value output and having an excess force threshold value output; a movable barrier obstacle detector that is at least partially responsive to at least one force sensor and to the excess force threshold value output; and a motor controller operably coupled and responsive to the movable barrier obstacle detector. 56. The movable barrier operator of claim 55 and further comprising a first threshold and a second threshold, and wherein the characteristic force value updater is further responsive to the first threshold and the second threshold. 57. The movable barrier operator of claim 56 wherein the first determination process comprises: using the current force measurement as an updated characteristic force value when the current force measurement exceeds the first threshold; and using a value that results from increasing the current characteristic force value by a first predetermined step value when the current force measurement exceeds the current characteristic force value but is less than the first threshold. 58. The movable barrier operator of claim 57 wherein the second determination process comprises: using a value that results from decreasing the current characteristic force value by a second predetermined step value, which second predetermined step value is less than the first predetermined step value, when the current force measurement is less than the second threshold. 59. A method for use with a movable barrier operator, comprising: monitoring at least one parameter that corresponds to force as applied to a movable barrier to selectively cause the movable barrier to move; automatically increasing a characteristic force value pursuant to a first determination process in response to the monitored at least one parameter to provide an updated characteristic force value when a first condition is met; automatically decreasing the characteristic force value pursuant to a second determination process, which second determination process is different from the first determination process, in response to the monitored at least one parameter to provide an updated characteristic force value when a second condition is met; using the updated characteristic force value to determine a corresponding excess force threshold value; determining when force in excess of the excess force threshold value is seemingly being applied to the movable barrier; and taking a predetermined action when excess force is seemingly being applied to the movable barrier. 60. The method of claim 59 and further comprising: providing a first threshold; and providing a second threshold; and wherein automatically increasing a characteristic force value pursuant to a first determination process in response to the monitored at least one parameter to provide an updated characteristic force value when a first condition is met includes: automatically providing an updated characteristic force value that substantially equals a current force measurement when the current force measurement exceeds the first threshold; and automatically providing an updated characteristic force value by incrementing by a first amount the characteristic force value when the current force measurement exceeds the current characteristic force value but does not exceed the first threshold. 61. The method of claim 60 wherein automatically decreasing the characteristic force value pursuant to a second determination process, which second determination process is different from the first determination process, in response to the monitored at least one parameter to provide an updated characteristic force value when a second condition is met includes automatically providing an updated characteristic force value by decrementing by a second amount, which second amount is different than the first amount, the characteristic force value when the current force measurement is less than the current characteristic force value and less than the second threshold. 62. A method for use with a movable barrier operator, comprising: monitoring a parameter that corresponds to force as the movable barrier operator causes a movable barrier to move from a first position to a second position; determining at least two values for the parameter as correspond to at least one of: two different times; two different positions of the movable barrier; and a time and a position of the movable barrier; determining at least one of a curve fit and a line fit as between the at least two values to provide a parameter curve; and using the parameter curve to detect when excess force is likely being used. 63. The method of claim 62 wherein determining at least one of a curve fit and a line fit includes selecting a particular curve fit from amongst a plurality of candidate curve fits. 64. A movable barrier operator for use with a movable barrier, comprising: at least one sensor to sense a parameter that corresponds to force as is apparently applied to at least attempt to move the movable barrier; a plurality of characteristic force values that have been at least partially determined as a function of a calculated curve fit between at least two sensed values of the parameter; an obstacle detector responsive to the at least one sensor and, with respect to at least one of time and position of the movable barrier, to the plurality of characteristic force values, and having an obstacle detected output that corresponds to an apparent application of excess force to the movable barrier. 65. The movable barrier operator of claim 64 wherein the at least two sensed values of the parameter comprise relative peak values of the parameter. 66. The movable barrier operator of claim 64 wherein the calculated curve fit is selected from amongst a plurality of candidate curve fits. 67. A method for use with a movable barrier operator, comprising: monitoring a parameter that corresponds to force as the movable barrier operator causes a movable barrier to move from a first position to a second position; determining a resonant characteristic of the parameter; determining a first and second value for the parameter as located proximal to opposing ends of the resonant characteristic; determining at least one curve fit as between the first and second values to provide a parameter curve; and using the parameter curve to detect when excess force is likely being used. 68. The method of claim 67 wherein determining the resonant characteristic of the parameter includes determining a ring time for the parameter. 69. A movable barrier operator for use with a movable barrier, comprising: at least one sensor to sense a parameter that corresponds to force as is apparently applied to at least attempt to move the movable barrier; a plurality of characteristic force values that have been at least partially determined as a function of a calculated curve fit between a first and second parameter value, wherein the first and second parameter values represent parameter values on either side of when the parameter tends to exhibit substantial resonance; an obstacle detector responsive to the at least one sensor and, with respect to at least one of time and position of the movable barrier, to the plurality of characteristic force values, and having an obstacle detected output that corresponds to an apparent application of excess force to the movable barrier.
CROSS REFERENCE TO RELATED APPLICATION This is a division of prior application Ser. No. 10/335,199, filed on Dec. 31, 2002, which is hereby incorporated herein by reference in its entirety. TECHNICAL FIELD This invention relates generally to movable barrier operators and more particularly to auto-force setting. BACKGROUND Many movable barrier operators monitor applied force (typically by monitoring a parameter that varies as a function of force) as corresponds to movement of a movable barrier and use such information to determine when the movable barrier has encountered an obstacle (such as a person or item of personal property). Upon sensing such an obstacle, the operator will typically initiate a predetermined action such as reversing the movement of the barrier. In particular, the operator usually compares present applied force against a threshold that represents excessive force to identify such an occurrence. Unfortunately, a factory-set static excessive force threshold will typically not provide satisfactory results under all operating conditions and/or for all installations. The reasons are numerous and varied. The physical dimensions of a given installation can vary dramatically (both with respect to barrier travel distance and barrier weight as well as other manifest conditions) and these physical conditions can and will in turn impact the amount of force required to move the barrier. The physical interface between the barrier and its corresponding track or pathway can also vary, sometimes considerably, over the length of barrier travel. Such variations can each, in turn, be attended by significantly varying force requirements. Temperature, too, can have a significant impact on necessary force, as temperature (and especially colder temperatures) can alter the physical relationships noted above and can also significantly impact upon at least the initial operating characteristics of a motor as is used to move the barrier. Force needs, measurements, and/or behaviors can also vary with respect to time, as the physical conditions themselves change, as the motor ages, and even with respect to how long a motor has been recently operating. To attempt to accommodate such circumstances, many movable barrier operators have a user-adjustment interface (usually one or two potentiometer-style knobs) that a user or installer can manipulate to adjust allowed applied force during one or more directions of barrier travel. Unfortunately, even when used correctly, force settings established in this way can become outdated. Another solution has been to provide a learning mode during which a movable barrier operator can monitor force conditions during movement of the barrier and use such information to automatically establish an excess-force threshold to be used during subsequent normal operations. Unfortunately, again, force setting values established in this way can become outdated (and sometimes within a short period of time). BRIEF DESCRIPTION OF THE DRAWINGS The above needs are at least partially met through provision of the movable barrier operator auto-force setting method and apparatus described in the following detailed description, particularly when studied in conjunction with the drawings, wherein: FIG. 1 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 2 comprises a flow diagram as configured in accordance with an embodiment of the invention; FIG. 3 comprises a graph depicting illustrative force behavior; FIG. 4 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 5 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 6 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 7 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 8 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 9 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 10 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 11 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 12 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 13 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 14 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 15 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 16 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 17 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 18 comprises a graph illustrating certain particulars in accord with an embodiment of the invention; FIG. 19 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 20 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 21 comprises a graph illustrating certain representative phenomena; FIG. 22 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 23 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 24 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 25 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 26 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 27 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 28 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; and FIG. 29 comprises a graph illustrating certain particulars as accord with an embodiment of the invention. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are typically not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. DETAILED DESCRIPTION Generally speaking, pursuant to these various embodiments, an automatic force-setting capability permits regular (or essentially constant) updating of one or more force thresholds that are used, for example, to detect an excess application of force as ordinarily associated with obstacle encounters. This capability exists compatibly with, or without, concurrent availability of an automatic force-setting learning mode of operation and/or user-manipulable force-setting controls. In general, actual exerted force (typically as ascertained via monitoring of a corresponding parameter, such as motor current) informs the automatic updating/changing of the force-setting(s) value(s) (in general, for ease of presentation, only a single force-setting value or threshold will typically be mentioned herein with it being understood that such a reference includes both the singular and plurality of such values or thresholds). As actual exerted force increases or decreases over time and/or with circumstances (such as changing physical conditions and/or ambient temperature), the force-setting value can be similarly changed to aid in ensuring that the force-setting value remains relevant to present operating circumstances. Such changes are effected in a variety of ways pursuant to these various embodiments. In one embodiment, no changes are made to a present force-setting value when a present force measurement is not sufficiently different from a present point of comparison. In another embodiment, the force-setting value is changed in substantially identical correlation to a given present force measurement (for example, by causing a characteristic force value that is used to determine an excess force-setting threshold to be rendered substantially equal to a present force measurement). Pursuant to yet another embodiment, such a characteristic force value (and/or a resultant excess force threshold) is altered in a step-fashion when, for example, a relatively significant gap exists between the characteristic force value and the present force measurement. So configured, an automatically determined force-setting value can track actual force changes while avoiding relatively pointless alterations and/or over-reacting to any particular anecdotal actual force measurement. In various embodiments, a single force threshold can be automatically determined for an entire length of travel, or multiple thresholds can be similarly calculated for corresponding portions of the travel time when significant differing force behaviors are detected. In yet other embodiments, a changing threshold mechanism can be provided through identification of a linear or non-linear curve that substantially fits and accommodates the behavior of the installation itself and/or through detection and corresponding accommodation of a ringing behavior that characterizes a given installation. In other embodiments, various other limits and/or thresholds can be utilized to control and/or detect conditions of possible concern. For example, an upper limit can be placed on the extent to which an excess force threshold can be adjusted pursuant to these various embodiments. Thresholds can also be used to detect stall conditions and/or likely component and/or system faults. In addition to (or supplemental thereto) automatically altering a force threshold or value as a function of actual perceived force readings, pursuant to other embodiments, such thresholds/values can be modified as a function of temperature and/or runtime history of the motor(s) that effect movement of the moveable barrier. Pursuant to a preferred embodiment, such alterations are substantially limited to use during lower temperature conditions, as higher temperatures tend to impact conditions of interest with less severity. Pursuant to another preferred approach, when a significant temperature drop of interest has occurred between a present setting and a previous occurrence of interest, a larger alteration to a force value or threshold may be permitted than under other circumstances to thereby more quickly accommodate likely normal behavior of the overall system. These various embodiments provide a variety of resultant combinations that readily suit a wide variety of expected operating conditions and design criteria. In general, these embodiments permit a force threshold value to be automatically calculated on a regular (or continuous) basis, in conjunction with or apart from a learning mode of operation, and in a fashion that tends to encourage relatively constant availability of a relevant and suitable threshold value. Various operating conditions can change slightly or significantly, suddenly or slowly, without unduly adversely impacting the availability of relevant and useful force setting or settings. Referring now to FIG. 1, a motor controller 10 couples to and selectively controls a motor 11. The motor 11 in turn couples via an appropriate mechanism (not shown) to one or more movable barriers 12 (such as, but not limited to, garage doors (both single-piece and segmented), sliding and swinging gates, rolling shutters, and so forth). The motor controller 10 comprises, in this embodiment, a programmable platform (having, for example, a microprocessor or programmable gate array or the like) that can be readily programmed to serve as described herein (of course an appropriately configured static platform can be utilized as well if desired). Such elements are generally well understood in the art and hence additional description will not be presented here for the sake of brevity and the preservation of focus. A force sensor 13 couples to monitor one or more parameters that are indicative of force as exerted by the motor 11 to effect desired movement of the movable barrier 12 (if desired, of course, a plurality of force sensors can be employed to provide either redundant monitoring capability and/or multi-point or multi-parameter monitoring). In this embodiment, the force sensor 13 comprises a mechanism (such as a current-sensing resistor) to detect current flow through the motor 11 (in general, current flow through a motor will correspond to loading and hence will tend to provide a relatively reliable indication of force being exerted by the motor). In alternate embodiments the force can be measured by velocity, a strain gauge, or any other force detection method. The output of the force sensor 13 couples to an obstacle detector 14 and further serves to inform an automatically determined excess force threshold value indicator 15 (as described below in more detail). So configured, the obstacle detector 14 can compare force as sensed by the force sensor 13 with an excess force threshold as provided by the excess force threshold value indicator 15 to detect when the motor 11 at least appears to be outputting excess force (thereby indicating the possible presence of an obstacle in the path of the movable barrier). In a preferred embodiment, the excess force threshold value indicator 15 automatically determines the threshold value in response to actual force as sensed by the force sensor 13. Such determinations can be made on a regular or irregular basis, but in a preferred embodiment are made at least once during each full traversal of the movable barrier. If desired, a typical user-initiable dedicated learning mode 16 can also be provided, such that an initial excess force threshold value can be initially determined via such an approach. Regardless, however, in a preferred embodiment, the excess force threshold value indicator 15 serves to determine initially (when needed) and to continually update thereafter during normal operating modes of operation the excess force threshold value. So configured, these teachings are suitable for use both with and without a platform having such a learning mode. Similarly, it should be noted that such a system could be provided with a user-accessible excess force threshold value adjustment interface (not shown) as well understood in the art. Though such an interface can be provided, when properly configured, these teachings should, at least in a significant number of instances, mitigate against the need to make any such provision. In a preferred embodiment, the excess force threshold value indicator 15 automatically determines a characteristic force value (in response, at least in part, to the force sensor) that corresponds to this given installation. The excess force threshold value can then be determined as a function, at least in part, of the characteristic force value. For example, the characteristic force value is summed with a predetermined offset in a preferred approach to thereby determine the excess force threshold value. So configured, the motor 11 can apply force in excess of the characteristic force value without the obstacle detector 14 interpreting such an event as an obstacle so long as the force over and above the characteristic force value does not exceed the predetermined offset. In a preferred embodiment, it is the characteristic force value that the operator automatically adjusts to reflect changing conditions regarding the application of force during normal operation. The predetermined measure is then readily combined with the frequently updated characteristic force value to yield a correspondingly updated excess force threshold value. So configured, and referring now to FIG. 2, during a normal mode of operation (and regardless of whether a user-initiable learning mode of operation has been earlier applied) the operator will monitor 21 a force parameter (as detected by the force sensor 13) and automatically update 22 the excess force threshold value. (As will be shown below in more detail, the operator may use a single threshold value or, in the alternative, a plurality of thresholds may be used and applied at different times during movement of the movable barrier. In a preferred embodiment, the update will occur at the end of a movement cycle, though another time or times could be utilized when and as appropriate to a given implementation.) As noted above, in a preferred embodiment, the operator will effect such updating by automatically changing a characteristic force value in response to the monitored force parameter and then using the updated characteristic force value as a basis for determining an updated excess force threshold value. The operator then uses 23 the updated excess force threshold value to determine when excess force appears to be applied by the motor 11. When the operator detects 24 the application of apparent excess force, one or more predetermined actions 25 are initiated (for example, movement of the movable barrier can be halted or reversed, alarms can be activated, an incident log can be updated, and so forth). With reference to FIG. 3, a not untypical force response 30 for a such a system will typically exhibit a significant peak 31 during an initial period 32 of activation (or, more particularly, the motor will initially spike in a manner as suggested due to inertia and other factors, therefore causing the apparent force to appear to reach a corresponding peak). For many purposes, it may be desired to essentially ignore the force response 30 for a predetermined period of time T1 (such as, for example, approximately one second) such that these peaks do not influence the resultant characteristic force value THc and/or the excess force threshold value. As depicted in FIG. 3, the characteristic force value THc comprises a single value that is used as described earlier to determine a corresponding excess force threshold value during the entire period of movement of the movable barrier (from, for example, an open position to a closed position or from a closed position to an open position). As depicted, the characteristic force value THc appears to be considerably larger than the bulk of the actual measured force response 30. Pursuant to these teachings, many of the embodiments taught herein would tend to reduce the characteristic force value THc over time to more closely approximate the actual force response 30 (presuming, of course, that the actual force response 30 itself did not change appreciably during this period of change and re-characterization). It is unlikely, of course, that such an actual force response 30 will be utterly flat; instead, there will usually be peaks and valleys. To the extent that such undulations, and especially the peaks, do not vary significantly from what otherwise amounts to an average value for the force response 30, there is no particular value in reflecting such minor variations in the characteristic force value THc or the resultant excess force threshold value. A process to permit such a result appears in FIG. 4. As noted above, the force response 30 will typically begin with a brief large peak. Therefore, the process will preferably begin by waiting 41 for a minimum time (such as time T1 as suggested in FIG. 3) before responding to the force response 30. Subsequent to this optional initial window of time, the process then detects the highest force response peak and measures 42 that peak force Fp. The process then determines 43 whether that peak force Fp falls within a predetermined small range. When true, meaning that only negligible peak excursions have been observed with respect to the characteristic force value THc, the update process can simply conclude 44 without any substantive change being made to the characteristic force value THc and/or the excess force threshold value. In this embodiment, the range is established as a small amount X that is added or subtracted from the characteristic force value THc. As shown in FIG. 5, this results in an upper limit 51 equal to the characteristic force value THc plus the amount X and a lower limit 52 equal to the characteristic force value THc less the amount X. So configured, when the highest peak of the actual force response 30 remains within this range, the update process can conclude without resultant change to the values of interest. With reference again to FIG. 4, when the actual force response 30 has a peak that falls outside the indicated range (being either higher than the upper limit 51 or less than the lower limit 52), the process can again automatically change 45 the characteristic force value THc as a function, at least in part, of the peak force Fp. This updated value can then be used 46 to determine when excess force is seemingly being exerted as related above either for this operation or for future operations. So configured, a movable barrier operator will effectively yield an updated characteristic force value THc that is substantially identical to the original characteristic force value THc when a difference as between the original characteristic force value THc and the force measurement parameter is within a predetermined minimum range. In a preferred embodiment, the value X can be, for example five percent (5%) of the total typical initial peak force response value as occurs during the initial period 32 of energization. As described, the value X serves to bound both the upper and lower limits 51 and 52 of this range. If desired, differing values can be used to specify the upper and lower limits (this may be appropriate, for example, when seeking to render the operator more or less sensitive to a peak excursion in a given direction away from the characteristic force value THc). When the actual force response includes a peak that exceeds the minimum range noted above, in a preferred embodiment the operator will use that information to automatically adjust the characteristic force value THc (to thereby effect a change of the excess force threshold value). One approach to guiding the adjustment process appears in FIG. 6. Initially, the operator determines 60 whether the peak force Fp exceeds the characteristic force value THc (in a preferred approach, the operator uses a first determination process 61 when the force peak Fp exceeds the characteristic force value THc and a second determination process 62 when the force peak Fp is less than the characteristic force value THc). Pursuant to the first determination process 61, the operator determines 63 whether the force peak Fp exceeds a first predetermined threshold. In this embodiment, and referring momentarily to FIG. 7, the first predetermined threshold 70 equals the characteristic force value THc summed with a first predetermined amount Y (wherein Y is larger than the value X that establishes the minimum range described earlier). Referring again to FIG. 6, when the force response 72 has a force peak 71 that is less than the first predetermined threshold, the operator adjusts 64 the characteristic force value THc by setting the adjusted characteristic force value THc to equal the current peak force Fp 71. So configured, the characteristic force value THc automatically directly tracks and corresponds to smaller force peak excursions. Therefore, as force requirements may change via small increments with circumstance or time, the characteristic force value THc will similarly change. This, of course, leads to a corresponding change of the excess force threshold value and hence aids in ensuring that obstacle detection remains likely accurate and calibrated to current operating conditions and circumstances. Referring again to FIG. 6, when the operator determines 63 that the force peak Fp exceeds the first predetermined threshold, the operator adjusts 65 the characteristic force value THc by incrementing the existing characteristic force value THc towards the current force measurement without actually reaching the current force measurement. In a preferred embodiment, this increment corresponds to a step of predetermined size or percentage (of either the difference or the absolute value and as either preset or dynamically calculated as desired). Therefore, and as illustrated in FIG. 8, when a given force response 80 has a force peak 81 that exceeds the first predetermined threshold 70, the characteristic force value THc is incremented by a predetermined amount K, such that the resultant value 82 will approach, but not necessarily reach the current force peak 81. So configured, the operator will tend to substantially closely track smaller force peaks and more loosely track larger force peaks when the force peaks exceed the characteristic force value THc (when coupled with the minimum range process described earlier, of course, the operator will essentially ignore minimal force peak variations). This approach permits the operator to automatically maintain an excess force threshold value that is substantially current and relevant while also avoiding possibly over-significant adjustments that are possibly only associated with anecdotal incidents that may not again occur in the near term. (Significant temperature variations can represent one potential exception to this approach, and additional embodiments described below are directed to accommodating that circumstance.) Referring again to FIG. 6, when the operator determines 60 that the force peak Fp does not exceed the characteristic force value THc, the operator utilizes a second determination process 62 to facilitate adjustment of the excess force threshold value. Pursuant to the second determination process 62, the operator determines 66 whether the force peak Fp is less than a second predetermined threshold. With momentary reference to FIG. 7, in a preferred embodiment, the second predetermined threshold 73 comprises the characteristic force value THc less a predetermined amount Y (in this embodiment, the same value Y is used to determine both the first and second predetermined thresholds 70 and 73; it would of course be possible to use different values to permit, for example, sensitizing or de-sensitizing the response of the process as desired to force response excursions). Referring again to FIG. 6, when the operator determines 66 that the present force peak Fp is not less than the second predetermined threshold, the operator sets the present force peak Fp value as the new characteristic force value THc. For example, as illustrated in FIG. 7, a force response 74 having a force peak 75 that falls between the present characteristic force value THc and the second predetermined threshold 73 will cause the adjusted characteristic force value THc to substantially equal the force peak 75. When the operator determines 66, however, that the force peak Fp is less than the second predetermined threshold, then as shown in FIG. 6, the operator adjusts 67 the characteristic force value THc by decrementing or changing the latter towards the current force peak Fp by a predetermined step size L. As illustrated in FIG. 8, a force response 83 having a peak 84 that is less than the second predetermined threshold 73 will cause the characteristic force value THc to be decremented or changed towards the force peak 84 by a step size L. In this embodiment, this step size L is smaller than the step size K used when incrementing the characteristic force value THc towards a larger value as described above, and it is at least this difference that distinguishes the second determination process 62 from the first determination process 61. So configured, the operator can track (closely or loosely, depending upon the nature of the force peak excursions) changing force needs and reflect those changes in the excess force threshold value (by, in these embodiments, adjusting a characteristic force value THc). These processes, however, permit more significant immediate increases in the characteristic force value THc than decreases. This preferred approach aids in ensuring that the operator does not quickly (and possibly inappropriately) reduce the excess force threshold value to a point where the movable barrier cannot be moved without triggering a false obstacle detection event. As described above, the operator can be configured to essentially automatically respond to only a single peak in the force response during movement of a movable barrier from a first position to a second position, such that adjustment of the characteristic force value THc (and/or the excess force threshold value) will be essentially based only on that one peak and value. For many situations, this approach will provide satisfactory results. In other instances, however, it may be desirable to detect and/or respond to more than just this one peak. For example, and referring now to FIG. 9, a given operator may detect a force response 90 that is more complex than the simpler responses illustrated above. As one illustration, in FIG. 9, the force response 90 has a first peak plateau 91 that is followed by a second plateau 92 and then by a third relative plateau 93. With such a force response 90, an excess force threshold value that tracks the force peak represented by the first peak plateau 91 may possibly be too high for one or more of the later plateau areas 92 or 93. Pursuant to one embodiment, the operator automatically segments or partitions the force response 90 as a function of time and determines characteristic force value THc's that correspond to each resultant time window. So configured, the resultant characteristic force values would then correspond to particular times during the time the operator moves the movable barrier and would, in a preferred embodiment, be recalled and utilized at such times. If desired, the number of threshold values (and hence the number of corresponding steps) can be fixed at a predetermined level. For example, and with continued reference to FIG. 9, during the time window 94 bounded by time T1 and T2, a force response peak that corresponds to the first force plateau 91 can be used as described above to adjust a characteristic force value THc for this first time window 94. In a similar fashion, during the next succeeding time window 95 (as bounded by time T2 and T3), a force response peak that corresponds to the second force plateau 92 can be used as described above to adjust a characteristic force value THc for this second time window 95. In a similar fashion, other characteristic force values THc can be determined for other corresponding windows of time. In a preferred embodiment, the number of resultant characteristic force values THc and the time windows to which such values correlate are dependent upon the force response itself as detected by the operator. For a simple response as illustrated earlier, a single characteristic force value THc can be automatically utilized as a satisfactory guide. For more complicated responses such as the one illustrated in FIG. 9, a plurality of such values can be automatically determined to more likely ensure ultimate provision of a relevant excess force threshold value. In another approach, the number of characteristic force values THc and/or the specific correlation of such values to specific times or barrier positions/locations can be previously determined and set by the manufacturer or installer and/or during a user-initiated learning mode of operation. In the embodiment above, multiple characteristic force values THc are determined with each such value being calculated as a specific function of a corresponding portion of the force response itself. Pursuant to another embodiment, a curve can be fit to match, to a greater or lesser extent, the force response. This curve can then be used to permit dynamic determination of a plurality of characteristic force values THc. To illustrate this approach, consider first a force response 100 as depicted in FIG. 10 that comprises a representative function of the force exerted by an operator to effect movement of a movable barrier from a first position to a second position. It can be seen that a first force peak P1 occurs at approximately time T1 and that a second relative peak P2 occurs at approximately time T2. These peaks P1 and P2 are then used to establish corresponding characteristic force values THc as described above. Between the two resultant values, however, a curve is fit to substantially connect such values. For example, with reference to FIG. 11, a curve 110 can be used to connect the two peak values P1 and P2. This curve 110 can then be used to permit determination of corresponding characteristic force values and/or excess force threshold values. In particular, at any given time between T1 and T2, the operator can utilize the curve 110 to ascertain a corresponding characteristic force value THc and then use that value as taught above to determine an excess force threshold value that corresponds to that particular time. Various curves can be used as desired, including exponential curves. In one embodiment, the operator may have only a single curve definition to use in this manner. Pursuant to another embodiment, the operator may have a plurality of curve definitions to choose from. By one preferred approach, the operator can compare these various resultant curves against the actual force response to identify a curve that best approximates the actual force response. The curve that best fits the present operating conditions would then be used as otherwise described above. With reference to FIG. 12, it would also be possible to utilize a line 120 to connect the peak values as otherwise described above. Again, such a line might represent a best fit under some operating conditions. Undue mechanical resonance (or ringing) can contribute to a resultant corresponding ringing force response that may not be satisfactorily accommodated by the various embodiments set forth above. Such ringing can occur, for example, when especially heavy barriers are moved. FIG. 13 depicts an illustrative ringing force response 130 characterized by a series of dampening resonant oscillations featuring consecutive peaks and valleys. Upon detecting such a condition (or upon otherwise being instructed to operate as now described), the operator then detects the peaks and valleys of the force response 130 and thereby ascertains a time Tx when the ringing phenomena has dampened sufficiently to no longer represent a significant concern. For example, when the distance between a consecutive peak and valley (or valley and peak) is less than a predetermined distance, the operator can conclude that the oscillation has dampened to a sufficient level. The operator can then select an appropriate curve 140 to represent the force response 130 between an initial time T1 and the time Tx as illustrated in FIG. 14. Again, various curves can be provided, such that alternative curves 141 can be sampled and compared to permit selection of a most appropriate curve. Once selected, the curve can then again be used as described above to permit adjustment of the characteristic force value THc and/or the excess force threshold value. As noted earlier, the initial portion of a force response tends to exhibit a significant transient peak. As already suggested, this initial peak can be essentially ignored when seeking to automatically set an appropriate threshold to detect an apparent application of excess force. The ordinary occurrence of this phenomena, however, can be used, if desired, to ascertain a likely status of the force monitoring sensor and/or the signal pathways that pertain thereto. During time periods subsequent to the initial peak, it is also possible that force response peaks can provide an indication of operational status other than the likely presence of an obstacle. With reference to FIG. 15, during a predetermined time period of interest 150 (comprising, in this example, the initial time period during which the transient force peak ordinarily occurs), the operator determines 151 whether the present force measurement exceeds some threshold TF. As suggested by FIG. 16, this threshold TF is set, in a preferred embodiment, considerably lower than the expected transient peak 160 (and preferably at a level that is less than the minimum force ordinarily needed to cause selective movement of the movable barrier). When the measured peak exceeds this threshold, the process can conclude 152 as set forth in FIG. 15. When, however, the initial peak 161 is less than the threshold TF, and referring again to FIG. 15, the operator can determine 153 a corresponding status and then optionally take a predetermined action 154. For example, the operator can conclude that the force sensor is faulty (such a greatly limited or reduced initial transient response would likely suggest, for example, a problem or fault with the current sensing resistor or other related electrical failure). The predetermined action 154 could include, for example, not automatically updating the characteristic force value THc at this time or as might otherwise be based upon present or immediately subsequent data. There also are other conditions that such monitoring of force can potentially reveal. To illustrate, FIG. 17 depicts a supportive embodiment. In this embodiment, the excess force threshold value is provided by an excess force threshold determination unit 171 as otherwise generally related above. In this embodiment, however, the excess force threshold determination unit 171 further utilizes a maximum force-setting limit 172. With momentary reference to FIG. 18, this maximum force-setting limit 172 comprises a limit beyond which the operator can not automatically drive the characteristic force value THc. This maximum adaptation limit is larger than either of the earlier adaptation thresholds 51 or 70 described earlier, but is also smaller than a physical limit 181 that would otherwise limit the characteristic force value THc (the physical limit 181 being such as the maximum force that the motor 11 can conceivably deliver under the most favorable of conditions). As a result, the excess force threshold value provided by the excess force threshold determination unit 171 essentially comprises a maximum force-setting limited excess force threshold value, in that the excess force threshold value itself becomes limited with respect to the maximum force-setting limit 172. The maximum force-setting limit can comprise a non-alterable limit or can be otherwise established, such as during a learning mode of operation as desired and appropriate to a given application. If desired, and referring again to FIG. 17, the motor controller 10 can also be made responsive to a fault/stall detector 173. The fault/stall detector 173 utilizes, in a preferred embodiment, one or more other thresholds to identify circumstances that likely indicate at least one of a fault condition and a stall condition. For example, with reference to FIG. 19, the detector 173 can optionally provide 191 a first fault/stall detected force indicia threshold and a second 192 fault/stall detected force indicia threshold. With reference to FIG. 20, the first such threshold 201 can more specifically comprise an Fstall threshold that corresponds to a level of force that likely indicates that the motor 11 is stalled. The second such threshold 202 can more specifically comprise an Ffault threshold that corresponds to a level of apparent force that likely indicates that one or more faults exist in the force-sensing signal path. Such thresholds can of course be set to correspond empirically to a given movable barrier opener. Referring again to FIG. 19, a maximum force-setting limit 172 can also be provided 193 as already earlier described. During normal operation, the operator then determines 194 an excess force threshold value (or values as described above) subject to the maximum force-setting limit 172 and provided also that the operator will now further determine 195 whether a fault/stall condition likely exists based, at least in part, on current force measurements. As illustrated in FIG. 20, the excess force threshold value FR can be determined 194 by combining the characteristic force value THc with a predetermined offset A (the value of A can be selected as appropriate to a given application but in general will serve to provide room for ordinary force peak excursions that are not likely indicative of an obstacle while also being small enough to likely ensure that an obstacle will be detected relatively soon following impact). As also illustrated (and as otherwise described above), the operator will automatically change the characteristic force value THc as a function, at least in part, of the actual force response. For example, the characteristic force value THE may be moved upwardly by an amount B to provide an updated characteristic force value THc 203 due to such circumstances. When this occurs, the predetermined offset A is again applied to establish an updated excess force threshold 204. So configured, the operator will automatically set an excess force threshold value as a function of the measured force response. When the force response exhibits a peak that exceeds either of the Fstall or Ffault thresholds, however, the operator will determine 195 that a corresponding stall or fault has occurred and then take an optional predetermined action 196. For example, and referring again to FIG. 20, when the force response exceeds the Fstall threshold 201, the operator can cause the motor 11 to reverse 205 and thereby move the movable barrier in an opposite direction. When the force response exceeds the Ffault threshold 202, the operator can cause the motor 11 to stop 206 and thereby stop movement (or attempted movement) of the moveable barrier. It can therefore be seen that a movable barrier operator can monitor force (typically by monitoring a parameter that itself varies in a way that corresponds to the apparent application of force) and use that measurement to automatically and dynamically modify an excess force threshold during normal operations. In addition, such force monitoring can be further used to detect various fault conditions and or stalled circumstances. As noted earlier, temperature can also significantly impact such processes, at least under some circumstances. For example, current flow requirements of a motor can increase as ambient temperature drops (at least during periods when the motor has not recently operated). Such phenomena is generally suggested in the illustration of FIG. 21. A force response 210 of a given motor at zero degrees Celsius will tend to be considerably lower than a force response 211 for that same motor at minus twenty-five degrees Celsius (note that in these illustrations the force responses 210 and 211 are only shown subsequent to the initial period of time during which the transient peak tends to be manifested). Unfortunately, the differences tend to be non-linear. That is, the difference 212 between the two force responses at one time T2 will tend to be different than the difference 213 between the two force responses at a later time T3. These temperature dependent behaviors present yet additional challenges to the provision of a successful automatic force-setting platform. Therefore, pursuant to another set of embodiments, and referring now to FIG. 22, any of the above embodiments can be modified to further accommodate monitoring 221 both force and temperature (such as ambient temperature proximal to the motor) and, in conjunction with determination 222 of the characteristic force value THc (and/or the excess force threshold value) a determination 223 can also be made of a temperature compensation factor to thereby yield a temperature compensated excess force threshold value. To facilitate this, and referring now to FIG. 23, a temperature sensor 232 can serve to provide current temperature information to an automatic characteristic force value indicator 231. So configured, the automatic characteristic force value indicator 231 can utilize the temperature information to appropriately compensate the characteristic force value THc and thereby facilitate the determination of a temperature compensated excess force threshold value. If desired, of course, it would also be possible to provide the temperature information to the automatic excess force threshold value indicator 15 and provide for temperature compensation directly to the latter. There are a number of ways to effect such an approach. With reference to FIG. 24, pursuant to one embodiment, current temperature is measured 241 and then compared 242 against a first condition. In this embodiment, the first condition prompts a determination as to whether the current temperature is less than a predetermined value, such as zero degrees Celsius. When true, the characteristic force value THc is immediately set 243 to the current peak force (regardless of whether smaller movements would have otherwise been utilized pursuant to any of the above embodiments). (The characteristic force value THc can be set in this fashion on either a temporary basis (such as only for the present operation) or until otherwise changed pursuant to the other teachings set forth herein as appropriate to a given application.) When the current temperature does not meet the first condition, the process next determines 244 whether the current temperature is substantially different than a previously measured temperature as corresponds to a previous force peak that was previously utilized to facilitate adjustment of the excess force threshold value. When true, thereby indicating that a substantial difference in temperature exists as between the present setting and a most recent prior setting, the process again sets the characteristic force value THc to equal the current force peak (as before, this change can be temporary, such as for only a single operation, or of a potentially more lasting nature). Otherwise, when the present temperature and prior temperature are not significantly different from one another, the characteristic force value THc is set to a different value, albeit one that may still be temperature compensated. In general, as the temperature drops, the temperature compensation will tend to comprise an ever-increasing additive value that the process combines with the characteristic force value THc (and/or the excess force threshold value) to thereby increase the resultant excess force threshold value. Pursuant to a preferred embodiment, the following equation can be utilized to determine the magnitude of this additive value when the characteristic force value THc is not otherwise simply set to equal the current force peak. Temperature ⁢ ⁢ compensation ⁢ ⁢ value = MTF - TH c 8 · Temp ⁡ ( diff ) K where: MTF=a maximum upper threshold boundary; THc=current characteristic force value; Temp(diff)=the current temperature less the previous temperature; and K=a constant that corresponds to the temperature sensor 232 itself (such as when the sensor comprises a thermistor). This equation will tend to produce a higher value as the ambient temperature drops quickly by a significant amount. Referring now to FIG. 25, in an alternative approach using temperature compensation, the operator first determines 251 whether the current temperature is less than a predetermined amount X (such as, in a preferred embodiment, zero degrees Celsius). If not, temperature differences often lend considerably less impact upon force and/or force sensing and hence normal 252 processing sans temperature compensation as described earlier will proceed. When the current temperature falls below the desired threshold, however, the operator measures 253 force. For purposes of this particular activity, the force need only be measured subsequent to the initial time period during which the characteristic transient peak ordinarily occurs. The operator then determines 254 whether the current measured force exceeds the current characteristic force value THc as combined with a current temperature compensation value (wherein the current temperature compensation value can be calculated or otherwise obtained as described above). When true, the process continues in normal fashion (wherein the characteristic force value THc is combined with the temperature compensation value and the excess force threshold value is determined accordingly). When the current peak force is less than the characteristic force value THc as combined with the temperature compensation value, however, this process then sets 255 the characteristic force value THc to equal the current force peak. So configured, the process will permit ordinary temperature compensation when significant differences are not present but will prompt rapid significant alteration when significant force differences are present under these conditions. With reference to FIG. 26, yet another temperature compensation approach has the operator again measure 261 the current temperature and determine 262 whether it is cold enough to warrant temperature compensation. If not cold enough, the temperature compensation process can simply conclude 263. When it is cold enough, however, the operator then determines 264 a temperature differential TEMP(delta) by determining a difference between a previous temperature TEMP(ref) (as ordinarily corresponds to a previously utilized force measurement) and the current temperature. The operator then determines 265 whether this difference exceeds a predetermined amount Y (such as, in a preferred approach, 2.5 degrees Celsius). If not, then ordinary temperature compensation via use of a temperature compensation adder value can continue as described above. When the difference exceeds this predetermined amount, the operator facilitates rapid force-setting compensation by adopting 266 the current force peak as the updated characteristic force value THc (while also establishing the current temperature as the reference temperature for use in a subsequent iteration of this same process). So configured, ordinary incremental temperature compensation can be utilized at colder temperatures with an immediate significant alteration to the characteristic force value when a significant shift in temperature during a colder interval occurs. In a preferred embodiment, such an immediate significant alteration will comprise the only force-setting alteration made during this corresponding cycle. As mentioned earlier, runtime for the motor 11 can also impact accurate assessment of force, and particularly so during colder temperatures. Pursuant to yet another embodiment the operator can compensate for such phenomena. With reference to FIG. 27, the operator can optionally determine 271 whether the current temperature is less than a predetermined threshold X (in a preferred embodiment, X equals zero degrees Celsius). With warmer temperatures, the operator can typically dispense with any need for running motor compensation and simply proceed with normal 272 automatic force-setting procedures as related herein. At colder temperatures, however, the operator then determines 273 whether the motor 11 has had a predetermined operational state for more than a predetermined period of time Y. In a preferred approach, the operator determines 274 whether the motor 11 has been off for more than the time Y (Y can be selected as appropriate to a given application and generally should be no less than a period of time, such as thirty to sixty minutes, during which a motor will reach a quiescent state with respect to these phenomena). When the motor 11 has been off for more than the time Y, the operator determines 274 an appropriate runtime adder value (or values as appropriate to the application). With momentary reference to FIG. 28, these adder values can be dynamically determined if desired or by access to an appropriate look-up table or similar mechanism. In general, these adder values comprise force values that are suitable to add to the characteristic force value to yield a suitably motor runtime compensated characteristic force value. Such adder values will vary with the current temperature and further vary over time (the length of time that the motor has been running). Two exemplary adder value curves are shown in this figure, comprising a first curve 281 for minus 40 degrees Celsius conditions and a second curve 282 for minus 20 degrees Celsius conditions. It can be seen that, in general, the adder value is larger at lower temperatures and at lower durations of runtime for the motor. When a motor has been off for the predetermined period of time, the adder value will begin at time zero and with a curve that most closely corresponds to the current temperature (a large number of such curves can be determined and stored or, in the alternative, a few such curves can be stored and interpolation utilized to determine specific adder values for a given current temperature). So configured, an appropriate adder value is determined for a specific point in time (for example, at minus forty degrees Celsius and at time Tn, a specific corresponding point 283 on the corresponding curve 281 will comprise the motor runtime adder value). Referring again to FIG. 27, when the motor has not been off for the predetermined period of time (meaning usually that the motor was just recently used), the operator determines 275 an appropriate offtime correction value. In particular, and referring now to FIG. 29, a similar set of curves are provided for various ambient temperature conditions (with one such curve 291 for minus forty degrees Celsius being shown in this illustration). So configured, an appropriate time location is determined (as corresponds to how long the motor has been off since having just recently been on), such as time Tn, and the corresponding point 292 on the appropriate curve 291 again utilized to determine an appropriate motor offtime correction value. Referring again to FIG. 27, the operator then uses the runtime adder value or the offtime correction value to determine 276 a characteristic force value that comprises a motor compensated characteristic force value. The latter can then be utilized as otherwise described above to permit eventual provision of a motor runtime compensated excess force threshold value. Pursuant to these various embodiments, a movable barrier operator can effect automatic force-setting with or without a user-initiated learning mode and/or a user manipulable force-setting interface. Such automatic force-setting can loosely or closely follow force peak excursions that do not otherwise appear to evince a problem. The force-setting process can be compensated to account for variations that are ordinarily associated with environmental conditions such as temperature as well as with operational status such as motor runtime. In addition, the operator can utilize such force measurements to ascertain other potential conditions of concern, including faulty components and stalling. Such benefits accrue with only a modest addition of corresponding sensor(s) and/or other components or programming and tend to assure that an auto-force setting movable barrier operator can reliably detect and respond to an obstacle under a variety of changing operational circumstances. Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.
<SOH> BACKGROUND <EOH>Many movable barrier operators monitor applied force (typically by monitoring a parameter that varies as a function of force) as corresponds to movement of a movable barrier and use such information to determine when the movable barrier has encountered an obstacle (such as a person or item of personal property). Upon sensing such an obstacle, the operator will typically initiate a predetermined action such as reversing the movement of the barrier. In particular, the operator usually compares present applied force against a threshold that represents excessive force to identify such an occurrence. Unfortunately, a factory-set static excessive force threshold will typically not provide satisfactory results under all operating conditions and/or for all installations. The reasons are numerous and varied. The physical dimensions of a given installation can vary dramatically (both with respect to barrier travel distance and barrier weight as well as other manifest conditions) and these physical conditions can and will in turn impact the amount of force required to move the barrier. The physical interface between the barrier and its corresponding track or pathway can also vary, sometimes considerably, over the length of barrier travel. Such variations can each, in turn, be attended by significantly varying force requirements. Temperature, too, can have a significant impact on necessary force, as temperature (and especially colder temperatures) can alter the physical relationships noted above and can also significantly impact upon at least the initial operating characteristics of a motor as is used to move the barrier. Force needs, measurements, and/or behaviors can also vary with respect to time, as the physical conditions themselves change, as the motor ages, and even with respect to how long a motor has been recently operating. To attempt to accommodate such circumstances, many movable barrier operators have a user-adjustment interface (usually one or two potentiometer-style knobs) that a user or installer can manipulate to adjust allowed applied force during one or more directions of barrier travel. Unfortunately, even when used correctly, force settings established in this way can become outdated. Another solution has been to provide a learning mode during which a movable barrier operator can monitor force conditions during movement of the barrier and use such information to automatically establish an excess-force threshold to be used during subsequent normal operations. Unfortunately, again, force setting values established in this way can become outdated (and sometimes within a short period of time).
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The above needs are at least partially met through provision of the movable barrier operator auto-force setting method and apparatus described in the following detailed description, particularly when studied in conjunction with the drawings, wherein: FIG. 1 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 2 comprises a flow diagram as configured in accordance with an embodiment of the invention; FIG. 3 comprises a graph depicting illustrative force behavior; FIG. 4 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 5 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 6 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 7 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 8 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 9 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 10 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 11 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 12 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 13 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 14 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 15 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 16 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 17 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 18 comprises a graph illustrating certain particulars in accord with an embodiment of the invention; FIG. 19 comprises a flow diagram illustrating detail in accordance with an embodiment of the invention; FIG. 20 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; FIG. 21 comprises a graph illustrating certain representative phenomena; FIG. 22 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 23 comprises a block diagram as configured in accordance with an embodiment of the invention; FIG. 24 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 25 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 26 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 27 comprises a flow diagram illustrating detail in accord with an embodiment of the invention; FIG. 28 comprises a graph illustrating certain particulars as accord with an embodiment of the invention; and FIG. 29 comprises a graph illustrating certain particulars as accord with an embodiment of the invention. detailed-description description="Detailed Description" end="lead"? Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are typically not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention.
20041022
20080304
20050721
62365.0
2
COLON SANTANA, EDUARDO
MOVABLE BARRIER OPERATOR AUTO-FORCE SETTING METHOD AND APPARATUS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,971,516
ACCEPTED
Dispenser assembly
A dispenser assembly is provided. The dispenser assembly includes a container having a bottom, an open top and a side wall extending between the bottom and the open top, and a mating arrangement, the side wall having an inner surface; at least one container passageway mounted on the inner surface of the side wall and extending from the open top of the container to a position proximate to the bottom of the container; and a pump cap having a cap body, a pump mechanism arranged within the cap body, a pump cap passageway coupled to the pump mechanism, and a coupling arrangement arranged on the pump cap body and configured to detachably couple to the mating arrangement of the container such that the container passageway aligns with and sealingly engages the pump cap passageway in a fluid connection when the pump cap is mounted to the container. In this manner, the dispenser permits a fluid arranged within the container to flow through the container passageway and the pump cap passageway when the pump mechanism of the pump cap is activated.
1. A dispenser assembly for, comprising: a container having a bottom, an open top and a side wall extending between the bottom and the open top, and a mating arrangement, the side wall having an inner surface; at least one container passageway mounted on the inner surface of the side wall and extending from the open top of the container to a position proximate to the bottom of the container; and a pump cap having a cap body, a pump mechanism arranged within the cap body, a pump cap passageway coupled to the pump mechanism, and a coupling arrangement arranged on the pump cap body and configured to detachably couple to the mating arrangement of the container only if the container passageway is aligned with the pump cap passageway, such that the container passageway sealingly engages the pump cap passageway in a fluid connection when the pump cap is mounted to the container; wherein a fluid arranged within the container flows through the container passageway and the pump cap passageway when the pump mechanism of the pump cap is activated. 2. The dispenser assembly of claim 1, wherein the pump cap passageway has an open end with a diameter greater than a diameter of the container passageway, the open end of the pump cap passageway receiving the container passageway when the pump cap is mounted to the container. 3. The dispenser assembly of claim 2, wherein the open end of the pump cap passageway is made of at least one of an elastic and a flexible material to improve the sealing engagement between the pump cap passageway and the container passageway. 4. The dispenser assembly of claim 2, wherein the pump cap further includes an insert constructed from at least one of an elastic and a flexible material to improve the sealing engagement between the pump cap passageway and the container passageway. 5. The dispenser assembly of claim 2, wherein the insert includes an O-ring. 6. The dispenser assembly of claim 1, wherein the container passageway protrudes from the top of the container to facilitate the sealing engagement with the pump cap passageway when the pump cap is mounted to the container. 7. The dispenser assembly of claim 1, wherein the coupling arrangement includes an annular tab and the mating arrangement includes an annular groove, the annular tab of the pump cap engaging the annular grove of the container when the pump cap is mounted to the container. 8. The dispenser assembly of claim 7, wherein the coupling arrangement includes a first screw thread and the mating arrangement includes a second screw thread, the first screw thread of the pump cap engaging the second screw thread of the container when the pump cap is rotated on top of the container to mount the pump cap to the container. 9. The dispenser assembly of claim 1, wherein the container passageway forms a cylindrical member that is coaxial with the container, the container passageway having an outer circumferential wall mounted to the inner surface of the side wall of the container side so that the container passageway is coaxial with the container. 10. The dispenser of claim 9, further comprising a plurality of brace members to mount the container passageway to the inner surface of the side wall of the container. 11. The dispenser assembly of claim 1, wherein the at least one container passageway includes a plurality of container passageways, the pump cap passageway sealingly engaging one of the container passageways in a fluid connection when the pump cap is mounted to the container. 12. The dispenser assembly of claim 11, wherein the pump cap passageway has an open end with a diameter greater than a diameter of the container passageway sealingly engaged with the pump cap passageway, the open end of the pump cap passageway receiving the container passageway when the pump cap is mounted to the container. 13. The dispenser assembly of claim 12, wherein the open end of the pump cap passageway is made of at least one of an elastic and a flexible material to improve the sealing engagement between the pump cap passageway and the container passageway. 14. The dispenser assembly of claim 12, wherein the pump cap further includes an insert constructed from at least one of an elastic and a flexible material to improve the sealing engagement between the pump cap passageway and the container passageway. 15. The dispenser assembly of claim 14, wherein the insert includes an O-ring. 16. The dispenser assembly of claim 1, wherein the coupling and mating arrangements are oval shaped. 17. A dispenser assembly, comprising: a container having a bottom, an open top and a side wall extending between the bottom and the open top, the side wall having an inner surface; at least one container passageway mounted on the inner surface of the side wall and extending from the open top of the container to a position proximate to the bottom of the container; a container trough coupled to the container passageway in a fluid connection and coupled to the container at a position proximate to the open top of the container; a pump cap having a cap body, a pump mechanism arranged within the cap body, and a pump passage member coupled to the pump mechanism, the pump cap being detachably mountable to the open top of the container, the pump passage member sealingly engaging the container trough in a fluid connection when the pump cap is mounted to the container, wherein a liquid arranged within the container flows through the container passageway and the pump cap passageway when the pump mechanism of the pump cap is activated. 18. The dispenser assembly of claim 16, wherein the container trough is formed integrally with the container. 19. The dispenser assembly of claim 16, wherein the pump cap further includes a coupling arrangement and the container further includes a mating arrangement configured to detachably couple with the coupling arrangement when the pump cap is mounted to the container. 20. The dispenser assembly of claim 18, wherein the coupling arrangement includes an annular tab and the mating arrangement includes an annular groove, the annular tab of the pump cap engaging the annular grove of the container when the pump cap is mounted to the container. 21. The dispenser assembly of claim 18, wherein the coupling arrangement includes a first screw thread and the mating arrangement includes a second screw thread, the first screw thread of the pump cap engaging the second screw thread of the container when the pump cap is rotated on top of the container to mount the pump cap to the container. 22. The dispenser assembly of claim 16, wherein the container passageway forms a cylindrical member that is coaxial with the container, the container passageway having an outer circumferential wall mounted to the inner surface of the side wall of the container side so that the container passageway is coaxial with the container. 23. The dispenser of claim 21, further comprising a plurality of brace members to mount the container passageway to the inner surface of the side wall of the container.
FIELD OF THE INVENTION The present invention relates to a liquid and a semi-liquid product dispensing assembly with a pump cap and a bottle on which the cap is mounted. BACKGROUND OF THE INVENTION Container and pump assemblies for products such as liquid soaps which are pumped, as well as products which are sprayed, such as household cleaners, hair spray and perfumes, etc. are known. Such conventional assemblies include a container having a neck and a pump connected to the neck. The pump has an elongated pick-up tube that extends down into the container for pulling up the liquid product stored within the container when the pump is operated. A problem with the prior art assemblies is that the pick-up tube is carried by the pump and the tube is of a length that it reaches the bottom of the container. As a result, when the pump is mounted on the container it must first be placed in an elevated position with the lower end of the pick-up tube above the entrance to the container mouth, after which the pump assembly must then be lowered and mounted to the container. This makes assembling the pump with the container a relatively slow process. In another type of assembly, as taught by U.S. Pat. No. 5,246,146, the pick-up tube is molded as an integral part of the container. The problem with this type of construction is that it allows the pump cap to only be mounted in a single orientation relative to the container. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a pump cap and container which avoid the problems mentioned above in connection with the prior art. Pursuant to this object, and others which will become apparent hereafter, one aspect of the present invention resides in a pump cap and container assembly having a container with a bottom, an open top end and a side wall that extends between the bottom and the top. At least one passage member, such as a tube, is mounted on the side wall so as to extend from the top of the container substantially to the bottom of the container. The pump cap includes a pump and is mounted to the top of the container so that the pump is in fluid communication with the passage member. In another embodiment of the invention, the pump cap has a tube with a first end connected to the pump and a second, free end that is dimensioned to sealingly engage with the upper end of the passage member that protrudes from the top of the container. In yet another embodiment of the invention, the container has a peripherally extending groove in its outer surface in the region of the open top. The pump cap has a body with an open bottom and a side wall extending from the open bottom to a top of the cap body. The inner surface of the cap side wall has a peripherally extending notch in a region of the open bottom. The notch is configured to engage in the groove of the container so as to hold the cap on the container. Rather than having tubes, in still a further embodiment of the invention, the passage member is a cylindrical member coaxial to the container and having an outer circumferential wall mounted to an inner surface of the container side wall and an inner wall mounted to the outer wall by intermittently spaced bracing members. Instead of the groove and notch arrangement, another embodiment of the invention provides an external thread at the top end of the container and an internal thread at the bottom end of the cap so that the cap can be mounted to the container by engagement of the threads. In still another embodiment of the invention, the passage member includes an annular trough mounted at the top of the container. A tube has a first end connected to the base of the trough and a second end that extends to substantially the bottom of the container. The pump cap has an annular inverted trough arranged within the cap in the region of the open bottom thereof. The inverted trough is dimensioned so as to fit over the trough of the container when the pump cap is mounted on the container. A conduit connects the pump and the inverted trough when the pump is in fluid communication with the inverted trough. The container and the cap can have any desired cross section which are complimentary to one another to allow the cap to be mounted to the top of the container. The construction according to the invention in which the passage member or tube is not initially connected to the pump cap allows for easier assembly of the pump cap to the container due to the reduced working space required. Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWING(S) FIG. 1 is a cross-sectional exploded view of a first exemplary dispenser assembly according to the present invention. FIG. 2 is a cross-sectional exploded view of a second exemplary dispenser assembly according to the present invention. FIGS. 3A and 3B show top and sectional views, respectively, of a first exemplary pump cap according to the present invention. FIG. 4 is a cross-sectional view of a third exemplary dispenser assembly according to the present invention. FIG. 5 is a perspective view of a trough member according to the present invention. FIGS. 6A and 6B show bottom and sectional views, respectively, of a second exemplary pump cap according to the present invention. DETAILED DESCRIPTION Referring to FIG. 1, there is seen a cross-sectional view of a first exemplary dispenser assembly 100 according to the present invention. Dispenser assembly 100 includes a pump cap 105 and a container 110 configured to sealingly engage with the pump cap according to the present invention to dispense a liquid enclosed within container 110. Container 110 includes a bottom 115, an open top 120, and a side wall 125 disposed between and formed integrally with open top 120 and bottom 115. It should be appreciated that side wall 110 need not be formed integrally with open top 120 and bottom 115, but rather may be formed of a separate piece that is coupled, attached, or otherwise bonded to open top 120 and bottom 115. It should also be appreciated that container 110 may have any desired shape, such as square, oval, round, triangular, etc. At least one passageway 130 is mounted to the inner surface of side wall 125 and extends from open top 120 to a position proximate bottom 115 of container 110. In the exemplary embodiment illustrated in FIG. 1, container 110 includes two passageways 130a, 130b extending from open top 120 to a position proximate bottom 115 on opposite sides of side wall 125, with upper ends 135a, 135b of the passageways 130a, 130b extending slightly above the upper edge of open top 120 so that upper ends 135a, 135b may sealingly mate with corresponding passageways of pump cap 105, as more fully described below. It should be appreciated, however, that passageways 130a, 130b need not be arranged on opposite sides of side wall 125, but rather may be arranged on the same side, adjacent sides, or at any position around the inner perimeter of side wall 125. It should also be appreciated that any number of passageways 130 may be mounted to the inner surface of side wall 125 (e.g., one passageway, three passageways, four passageways, etc.). It is also possible for passageway 130 to be a single passageway that is coaxial with container 110. In this regard, FIG. 2 illustrates a cross-sectional view of another exemplary dispenser assembly 200 according to the present invention, in which container 110 includes a single concentric and coaxial passageway 130. In this configuration, the outer wall of the passageway 130 is fastened to or formed by the interior surface of side wall 125 of container 110. The inner wall of passageway 130 is at a distance from the outer wall of passageway 130 so that container 110 essentially has a double wall configuration. The bottom of passageway 130 is open with respect to bottom 115 of container 110 so that the liquid contained within container 110 can be pumped between passageway 130 and the inner surface of side wall 125 into pump cap 105, in a manner more fully described below. The inner wall may be formed integral with side wall 125 or, for example, may be attached by a number of intermittently arranged braces 205a, 205b, 205c, . . . , 205n that hold the inner wall in place but do not block the liquid passage between passageway 130 and the inner surface of side wall 125. As shown in FIGS. 1, 2, 3A, and 3B pump cap 105 includes a cap body 145, a conventional pump mechanism 140 arranged within cap body 145, and a pump nozzle 147 extending through the top of cap body 145 and operatively coupled to pump mechanism 140 for dispensing a liquid enclosed within container 110. At least one passageway 150 extends from the bottom of pump mechanism 140 toward the open end of the cap body 145 facing container 110. The open end 155 of the passageway 150 is dimensioned so as to sealingly engage with an upper end 135 of a corresponding passageway 130 of container 110 when pump cap 105 is secured to open top 120 of container 110, in a manner more fully described below. For this purpose, open end 155 of passageway 150 may flange outwardly to have a larger diameter than that of upper end 135 of passageway 130, as shown in FIG. 1. To improve the sealing engagement between open end 155 of passageway 150 and upper end 135 of passageway 130, open end 155 of passageway 150 may be constructed from an elastic and/or flexible material (e.g., rubber, silicon, soft plastic, and/or any combination of these materials). Alternatively, open end 155 of passageway 150 may be fitted with an elastic and/or flexible insert (not shown), such as a rubber O-ring, operable to sealingly engage with upper end 135 of passageway 130 of container 110 when pump cap 105 is secured to open top 120 of container 110. It should be appreciated that pump cap 105 may include any number of passageways 150 for sealing engaging respective passageways 130 of container 110. For example, pump cap 105 may include two passageways (not shown) configured to sealing engage with two corresponding passageways 130a, 130b of container 110. Alternatively, as shown in FIG. 1, pump cap 105 may include a single passageway 150 configured to sealing engage with a corresponding passageway 130 of container 110. Cap body 145 includes a coupling arrangement 160 configured to detachable couple with a corresponding mating arrangement 165 arranged on container 110. In the exemplary embodiment illustrated in FIG. 1, coupling arrangement 160 of cap body 145 includes an annular tab 170 that extends around the entire inner periphery of cap body 145. Mating arrangement 165 of container 110 includes an annular groove 175 extending around the entire outer circumference of container 110 in an area adjacent to open top 120. When pump cap 10S is mounted to open top 120 of container 110, annular tab 170 of coupling arrangement 160 of cap body 145 engages with annular grove 175 of mating arrangement 165 of container 110, thereby detachably coupling pump cap 105 to container 110. When properly mounted to container 110, open end 155 of passageway 150 sealingly engages with upper end 135 of passageway 130. In this manner, a continuous conduit is formed to permit the liquid contained within container 110 to flow upwards through passageway 130, through passageway 150, and out through pump nozzle 147 when pump mechanism 140 is activated by a user. Since coupling arrangement 160 and mating arrangement 165 of the exemplary dispenser 100 of FIG. 1 are oval shaped, pump cap 105 is configured to detachably couple to container 110 in only one of two positions, so that open end 155 of passageway 150 sealingly engages with one of passageways 130a, 130b. As can be seen in FIG. 1, pump cap is orientated such that open end 155 of passageway 150 will sealingly engage with upper end 135a of passageway 130a when pump cap 105 is mounted to container 110. However, it should be appreciated that pump cap 105 may be oriented to align open end 155 of passageway 150 with upper end 135b of passageway 130b when pump cap 105 is mounted to container 110 by rotating pump cap 105 with respect to container 110 180 degrees before mounting pump cap 105 to container 110. As described above, in the exemplary embodiment illustrated in FIG. 1, the oval shape of the coupling and mating arrangements 160, 165 permits pump cap 105 to be detachably coupled to container 110 in only one of two positions, so that open end 155 of passageway 150 sealingly engages with one of passageways 130a, 130b. However, it should be appreciated that, although FIG. 1 shows oval-shaped coupling and mating arrangements 160, 165, coupling and mating arrangements 160, 165 may be of any shape that permits a “keying” of coupling arrangement 160 with mating arrangement 165, such that open end 155 of passageway 150 sealingly engages with at least one of passageways 130a, 130b. For example, coupling and mating arrangements 160, 165 may be rectangularly-shaped, triangularly-shaped, irregularly-shaped, etc. It should also be appreciated that additional structures may be incorporated into either or both of the coupling and mating arrangements 160, 165 to permit pump cap 105 to be detachably coupled to container 110 in only one position, rather than two positions. For example, coupling arrangement 160 may include a projection (not shown) structured to communicate with a corresponding groove (not shown) of mating arrangement 165 to ensure that oval-shaped coupling arrangement 160 is coupleable to mating arrangement 165 in only one position. For example, with respect to the exemplary embodiment illustrated in FIG. 1, if cap body 145 were rotated by 180 degrees, the groove of mating arrangement 165 would not align with the projection of coupling arrangement 160, thereby preventing coupling arrangement 160 from coupling to mating arrangement 165. It should also be appreciated that the components of the coupling and mating arrangements 160, 165 may be switched and/or interchanged. For example, mating arrangement 165 may include the annular tab 170 and coupling arrangement 160 may include the annular groove 175. In lieu of or in addition to the notch/grove and threaded arrangements discussed above, it should also be appreciated that coupling and mating arrangements 160, 165 may include any mechanism, device, construction, and/or shape that permits pump cap 105 to be detachably coupled to container 110. For example, coupling arrangement may include external or internal threads 905 configured to engage with corresponding screw threads 910 on container 110 when pump cap 105 is placed on top of container 110 and rotated. Alternatively, coupling and mating arrangements may include, for example, velcro, snaps, hooks, any combination of these elements, etc. Referring now to FIG. 4, there is seen yet another exemplary dispenser assembly 400 according to the present invention. Dispenser assembly 400 is similar to dispenser assemblies 100, 200, except that dispenser assembly 400 includes a container 110 having a single passageway 130 and a trough member 405 formed integrally with or coupled to open top 120 of container 110. A perspective view of trough member 405 can be seen in FIG. 5. Trough member 405 has an annular channel 505 that is formed therein and an exit channel 510 formed integrally with or coupled to annular channel 505 in a manner that permits fluid to pass through exit channel 510 into annular channel 505. Exit channel 510 is, in turn, in fluid connection with passageway 130 to permit the liquid contained within container 110 to pass up through passageway 130, through exit channel 510, and into the annular channel 505 of trough member 405. It should be appreciated that exit channel 510 may be formed as an integral piece with passageway 130. In the exemplary embodiment shown in FIGS. 4 and 5, trough member 405 is formed as a separate piece, which is configured to couple to container 110, as shown in FIG. 4. However, it should be appreciated that trough member 405 may be formed integrally with container 110 by any conventional method, such as by injection molding. Pump cap 105 of dispenser assembly 400 is similar to pump cap 105 of dispenser assemblies 100, 200, except that pump cap 105 of dispenser assembly 400 includes a pump passage member 605 in fluid connection with pump mechanism 140 via a conduit 610, in lieu of passageway 150, as shown in FIGS. 4, 6A, and 6B. Passage member 605 may be formed, for example, as an inverted annular channel or trough arranged within cap body 145 so that the open side of pump passage member 605 faces downward. The open side of pump passage member 605 is dimensioned to sealingly couple with annular channel 505 of trough member 405 when pump cap 105 is secured to container 110. When pump cap 105 is mounted to container 110, pump passage member 605 sealingly engages with annular channel 505 of trough member 405 so that when pump nozzle 147 is pushed, pump mechanism 140 is activated and causes suction through conduit 610. This causes the liquid within container 110 to flow up passageway 130, into exit channel 510, into annular channel 505, through pump passage member 605, through conduit 610, and into pump nozzle 147. Trough member 405 of dispenser assembly 400 permits pump cap 105 to be aligned with respect to container 110 in any rotational orientation, as both the annular channel 505 of trough member and pump passage member 605 are annularly symmetrical. In this manner, pump cap 105 may be mounted to container 110 in any orientation permitted by the shape of the pump cap and the container. Although the preferred embodiment of the invention has been specifically illustrated and described herein, it is to be understood that minor variations may be made in the associated elements of the container and the pump unit without departing from the spirit and scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Container and pump assemblies for products such as liquid soaps which are pumped, as well as products which are sprayed, such as household cleaners, hair spray and perfumes, etc. are known. Such conventional assemblies include a container having a neck and a pump connected to the neck. The pump has an elongated pick-up tube that extends down into the container for pulling up the liquid product stored within the container when the pump is operated. A problem with the prior art assemblies is that the pick-up tube is carried by the pump and the tube is of a length that it reaches the bottom of the container. As a result, when the pump is mounted on the container it must first be placed in an elevated position with the lower end of the pick-up tube above the entrance to the container mouth, after which the pump assembly must then be lowered and mounted to the container. This makes assembling the pump with the container a relatively slow process. In another type of assembly, as taught by U.S. Pat. No. 5,246,146, the pick-up tube is molded as an integral part of the container. The problem with this type of construction is that it allows the pump cap to only be mounted in a single orientation relative to the container.
<SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, it is an object of the present invention to provide a pump cap and container which avoid the problems mentioned above in connection with the prior art. Pursuant to this object, and others which will become apparent hereafter, one aspect of the present invention resides in a pump cap and container assembly having a container with a bottom, an open top end and a side wall that extends between the bottom and the top. At least one passage member, such as a tube, is mounted on the side wall so as to extend from the top of the container substantially to the bottom of the container. The pump cap includes a pump and is mounted to the top of the container so that the pump is in fluid communication with the passage member. In another embodiment of the invention, the pump cap has a tube with a first end connected to the pump and a second, free end that is dimensioned to sealingly engage with the upper end of the passage member that protrudes from the top of the container. In yet another embodiment of the invention, the container has a peripherally extending groove in its outer surface in the region of the open top. The pump cap has a body with an open bottom and a side wall extending from the open bottom to a top of the cap body. The inner surface of the cap side wall has a peripherally extending notch in a region of the open bottom. The notch is configured to engage in the groove of the container so as to hold the cap on the container. Rather than having tubes, in still a further embodiment of the invention, the passage member is a cylindrical member coaxial to the container and having an outer circumferential wall mounted to an inner surface of the container side wall and an inner wall mounted to the outer wall by intermittently spaced bracing members. Instead of the groove and notch arrangement, another embodiment of the invention provides an external thread at the top end of the container and an internal thread at the bottom end of the cap so that the cap can be mounted to the container by engagement of the threads. In still another embodiment of the invention, the passage member includes an annular trough mounted at the top of the container. A tube has a first end connected to the base of the trough and a second end that extends to substantially the bottom of the container. The pump cap has an annular inverted trough arranged within the cap in the region of the open bottom thereof. The inverted trough is dimensioned so as to fit over the trough of the container when the pump cap is mounted on the container. A conduit connects the pump and the inverted trough when the pump is in fluid communication with the inverted trough. The container and the cap can have any desired cross section which are complimentary to one another to allow the cap to be mounted to the top of the container. The construction according to the invention in which the passage member or tube is not initially connected to the pump cap allows for easier assembly of the pump cap to the container due to the reduced working space required. Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
20041022
20090217
20060427
79819.0
G01F1136
1
WILLIAMS, STEPHANIE ELAINE
DISPENSER ASSEMBLY
SMALL
0
ACCEPTED
G01F
2,004
10,971,755
ACCEPTED
Hand forming shuffler with on demand hand delivery
The present invention provides an apparatus and method for moving playing cards from a first group of cards into plural hands of cards, wherein each of the hands contains a random arrangement of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for moving the stack, a card-moving mechanism between the card receiver and the stack, and a microprocessor that controls the card-moving mechanism and the elevator so that an individual card is moved into an identified compartment. The number of compartments receiving cards and the number of cards moved to each compartment may be selected. An apparatus for feeding cards, comprising a surface for supporting a stack of cards, a feed roller with a frictional outer surface, a drive mechanism for causing rotation of the feed roller, a pair of speed-up rollers to advance the cards out of the feed roller, and a clutch mechanism for disengaging the feed roller from the drive mechanism as the card comes into contact with the speed up rollers.
1-35. (Cancelled) 36. An automatic card shuffling and hand forming device, comprising: a card receiver; a card shuffling mechanism; a card moving mechanism capable of moving cards from the card receiver into the card shuffling mechanism; a hand-forming mechanism; an output tray; a second card moving mechanism that moves formed hands into the output tray; and a processor for controlling the operation of the device, and when a first hand of randomized cards is delivered to output tray, and when the hand of cards is manually removed, another hand is automatically delivered to the output tray until either a maximum number of hands is delivered, or a signal is received by the processor to cease delivering hands. 37. The device of claim 36, and further comprising a dealer input button that generates the signal that causes the processor to instruct the device to cease delivering hands. 38. The device of claim 36, wherein a maximum number of hands is equal to a number of player positions on the table. 39. The device of claim 36, wherein a maximum number of hands is equal to a number of player positions on the table plus a dealer hand. 40. The device of claim 36, wherein the card infeed tray comprises a downwardly angled floor surface, and further comprising a sliding block to urge cards down the angled floor surface towards the card moving mechanism. 41. The device of claim 36, wherein the card shuffling mechanism comprises a vertically disposed stack including a plurality of horizontally disposed card-receiving compartments and an elevator capable of moving the stack generally vertically in order to align a compartment with the card moving mechanism. 42. The device of claim 36, wherein the output tray further comprises a sensor for sensing at least one of the absence and the presence of cards. 43. The device of claim 37, and when the dealer input button is activated, all remaining cards in the device are unloaded onto the output tray. 44. The device of claim 41, wherein the processor randomly selects or identifies the compartment to receive each card in an initial group of cards to be shuffled and formed into hands. 45. The device of claim 36, wherein the card moving mechanism comprises a card pick-up roller assembly. 46. The device of claim 45, and further comprising a speed-up system. 47. The device of claim 45, wherein the pick-up roller assembly further comprises a one-way clutch mechanism. 48. The device of claim 36, wherein the second card moving mechanism comprises an unloading pusher. 49. The device of claim 36, wherein a first hand of cards is delivered to the output tray in response to an operator input. 50. The device of claim 36, wherein a first hand of cards is delivered to the output tray automatically. 51. An automatic card shuffling and hand forming device, comprising: a card receiver; a card shuffling mechanism; a card moving mechanism capable of moving cards from the card receiver into the card shuffling mechanism; a hand-forming mechanism; an output tray; a second card moving mechanism that moves a formed hand as a group to the output tray; a dealer input; and a processor for controlling the operation of the device, wherein a first hand of randomized cards is automatically delivered to the output tray. 52. The device of claim 51, wherein when the first hand of cards is manually removed from the output tray, another hand of cards is automatically delivered to the output tray. 53. The device of claim 51, wherein the device automatically delivers subsequent hands of cards until the processor receives a second signal from the dealer input. 54. A method of randomizing and forming subgroups of cards from a larger group of cards, comprising: providing a larger group of cards to be randomized; providing a card-handling device capable of randomizing cards, forming subgroups of cards and delivering subgroups of cards to an output tray; inserting the larger group of cards into the device; randomizing an order of the cards; forming subgroups of cards; and automatically delivering a first subgroup of cards as a group to an output tray. 55. The method of claim 54 and further comprising the step of automatically delivering an additional group of cards after the first subgroup is manually removed. 56. The method of claim 55, and delivering additional subgroups of cards as previously delivered hands are removed until either a maximum number of hands has been delivered or an instruction is received from a dealer input device to cease forming hands. 57. The method of claim 56, wherein after the instruction is received, all remaining cards in the device are unloaded. 58. The method of claim 54, wherein the randomization and hand forming steps occur simultaneously. 59. The method of claim 54, wherein the subgroup of cards comprises a hand of cards. 60. The apparatus of claim 36, wherein the card moving mechanism moves cards individually from the card receiver into the card shuffling mechanism. 61. The device of claim 51, wherein the card moving mechanism moves cards individually from the card receiver into the card shuffling mechanism.
RELATED APPLICATIONS This application is a continuation-in-part of pending U.S. patent application Ser. No. 09/688,597, filed on Oct. 16, 2000, titled “DEVICE AND METHOD FOR FORMING HANDS OF RANDOMLY ARRANGED CARDS,” which is in turn a continuation-in-part of U.S. patent application Ser. No. 09/060,627, filed on Apr. 15, 1998, titled “DEVICE AND METHOD FOR FORMING HANDS OF RANDOMLY ARRANGED CARDS,” now U.S. Pat. No. 6,149,154. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards”. In particular, the invention relates to an electromechanical machine for organizing or arranging playing cards into a plurality of hands, wherein each hand is formed as a selected number of randomly arranged cards. The invention also relates to a mechanism for feeding cards into a shuffling apparatus and also to a method of delivering individual hands from the apparatus to individual players or individual player positions. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments such as casinos and the wagering games include card games wherein the symbols comprise familiar, common playing cards. Card games such as twenty-one or blackjack, poker and variations of poker and the like are excellent card games for use in casinos. Desirable attributes of casino card games are that the games are exciting, they can be learned and understood easily by players, and they move or are played rapidly to a wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of hands placed, reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to increase the amount of revenue generated by a game without changing games, particularly a popular game, without making obvious changes in the play of the game that affect the hold of the casino, and without increasing the minimum size of wagers. One approach to speeding play is directed specifically to the fact that playing time is decreased by shuffling and dealing events. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, thereby increasing playing time. Such devices also add to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,513,969 (Samsel, Jr.) and U.S. Pat. No. 4,515,367 (Howard) disclose automatic card shufflers. The Samsel, Jr. patent discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses an automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 3,897,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card-shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,240,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card-sorting devices that require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. No. 4,770,421 (Hoffman) discloses a card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a finite number of distribution schedules sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Each distribution schedule comprises a preselected distribution sequence that is fixed as opposed to random. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the microprocessor completes the execution of a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two-step shuffle, i.e., a program is required to select the order in which stacks are loaded and moved onto the second elevator and delivers a shuffled deck or decks. The Hoffman patent does not disclose randomly selecting a location within the vertical stack for delivering each card. Nor does the patent disclose a single stage process that randomly delivers hands of shuffled cards with a degree of randomness satisfactory to casinos and players. Further, there is no disclosure in the Hoffman patent about how to deliver a preselected number of cards to a preselected number of hands ready for use by players or participants in a game. Another card handling apparatus with an elevator is disclosed in U.S. Pat. No. 5,683,085 (Johnson et al.). U.S. Pat. No. 4,750,743 (Nicoletti) discloses a playing card dispenser including an inclined surface and a card pusher for urging cards down the inclined surface. Other known card shuffling devices are disclosed in U.S. Pat. No. 2,778,644 (Stephenson), U.S. Pat. No. 4,497,488 (Plevyak et al.), U.S. Pat. Nos. 4,807,884 and 5,275,411 (both Breeding) and U.S. Pat. No. 5,695,189 (Breeding et al.). The Breeding patents disclose machines for automatically shuffling a single deck of cards including a deck-receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. The Breeding single deck shufflers used in connection with LET IT RIDE® Stud Poker are programmed to first shuffle a deck of cards, and then sequentially deliver hands of a preselected number of cards for each player. LET IT RIDE® stud poker is the subject of U.S. Pat. Nos. 5,288,081 and 5,437,462 (Breeding), which are herein incorporated by reference. The Breeding single deck shuffler delivers three cards from the shuffled deck in sequence to a receiving rack. The dealer removes the first hand from the rack. Then, the next hand is automatically delivered. The dealer inputs the number of players, and the shuffler deals out that many hands plus a dealer hand. The Breeding single deck shufflers are capable of shuffling a single deck and delivering seven player hands plus a dealer hand in approximately 60 seconds. The Breeding shuffler is a complex electromechanical device that requires tuning and adjustment during installation. The shufflers also require periodic adjustment. The Breeding et al. device, as exemplified in U.S. Pat. Nos. 6,068,258; 5,695,189; and 5,303,921 are directed to shuffling machines for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none discloses or suggests a device and method for providing a plurality of hands of cards, wherein the hands are ready for play and wherein each comprises a randomly selected arrangement of cards, without first randomly shuffling the entire deck. A device and method which provides a plurality of ready-to-play hands of a selected number of randomly arranged cards at a greater speed than known devices without shuffling the entire deck or decks would speed and facilitate the casino play of card games. U.S. Pat. No. 6,149,154 describes an apparatus for moving playing cards from a first group of cards into plural groups, each of said plural groups containing a random arrangement of cards, said apparatus comprising: a card receiver for receiving the first group of unshuffled cards; a single stack of card-receiving compartments generally adjacent to the card receiver, said stack generally adjacent to and movable with respect to the first group of cards; and a drive mechanism that moves the stack by means of translation relative to the first group of unshuffled cards; a card-moving mechanism between the card receiver and the stack; and a processing unit that controls the card-moving mechanism and the drive mechanism so that a selected quantity of cards is moved into a selected number of compartments. SUMMARY OF THE INVENTION The present invention provides an electromechanical card handling apparatus and method for creating or generating a plurality of hands of cards from a group of unshuffled cards wherein each hand contains a predetermined number of randomly selected or arranged cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in homes, card clubs, or for handling or sorting sheet material generally. In one embodiment, an apparatus moves playing cards from a first group of unshuffled cards into shuffled hands of cards, wherein at least one and usually all of the hands contains a random arrangement or random selection of a preselected number of cards. In one embodiment, the total number of cards in all of the hands is less than the total number of cards in the first group of unshuffled cards (e.g., one or more decks of playing cards). In another embodiment, all of the cards in the first group of unshuffled cards are distributed into hands. The apparatus comprises a card receiver for receiving the first group of cards, a stack of card receiving compartments (e.g., a generally vertical stack of horizontally disposed card-receiving compartments or carousel of rotating stacks) generally adjacent to the card receiver (the vertical stack generally is vertically movable and a carousel is generally rotatable), an elevator for raising and lowering the vertical stack or a drive to rotate the carousel, a card-moving mechanism between the card receiver and the card receiving compartments for moving cards, one at a time, from the card receiver to a selected card-receiving compartment, and a microprocessor that controls the card-moving mechanism and the elevator or drive mechanism so that each card in the group of unshuffled cards is placed randomly into one of the card-receiving compartments. Sensors may monitor and may trigger at least certain operations of the apparatus, including activities of the microprocessor, card moving mechanisms, security monitoring, and the elevator or carousel. The controlling microprocessor, including software, randomly selects or identifies which slot or card-receiving compartment will receive each card in the group before card-handling operations begin. For example, a card designated as card 1 may be directed to a slot 5 (numbered here by numeric position within an array of slots), a card designated as card 2 may be directed to slot 7, a card designated as card 3 may be directed to slot 3, etc. Each slot or compartment may therefore be identified and treated to receive individual hands of defined numbers of randomly selected cards or the slots may be later directed to deliver individual cards into a separate hand forming slot or tray. In the first example, a hand of cards is removed as a group from an individual slot. In the second example, each card defining a hand is removed from more than one compartment (where one or more cards are removed from a slot), and the individual cards are combined in a hand-receiving tray to form a randomized hand of cards. Another feature of the present invention is that it provides a programmable card handling machine with a display and appropriate inputs for adjusting the machine to any of a number of games wherein the inputs include one or more of a number of cards per hand or the name of the game selector, a number of hands delivered selector and a trouble-shooting input. Residual cards after all designated hands are dealt may be stored within the machine, delivered to an output tray that is part of the machine, or delivered for collection out of the machine, usually after all hands have been dealt and/or delivered. Additionally, there may be an elevator speed or carousel drive speed adjustment and position sensor to accommodate or monitor the position of the elevator or carousel as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations, thereby reducing the number of back-up machines or units required at a casino. The display may include a game mode or selected game display, and use a cycle rate and/or hand count monitor and display for determining or monitoring the usage of the machine. Another feature of the present invention is that it provides an electromechanical playing card handling apparatus for more rapidly generating multiple random hands of playing cards as compared to known devices. The preferred device may complete a cycle in approximately 30 seconds, which is double the speed (half the time) of the Breeding single deck shuffler disclosed in U.S. Pat. No. 4,807,884, which has itself achieved significant commercial success. Although some of the groups of playing cards (including player and dealer hands and discarded or unused cards) arranged by the apparatus in accordance with the method of the present invention may contain the same number of cards, the cards within any one group or hand are randomly selected and placed therein. Other features of the invention include a reduction of set up time, increased reliability, lower maintenance and repair costs, and a reduction or elimination of problems such as card counting, possible dealer manipulation and card tracking. These features increase the integrity of a game and enhance casino security. Yet another feature of the card handling apparatus of the present invention is that it converts at least a single deck of unshuffled cards into a plurality of hands ready for use in playing a game. The hands converted from the at least a single deck of cards are substantially completely randomly ordered, i.e., the cards comprising each hand are randomly placed into that hand. To accomplish this random distribution, a preferred embodiment of the apparatus includes a number of vertically stacked, horizontally disposed card-receiving compartments one above another or a carousel arrangement of adjacent radially disposed stacks into which cards are inserted, one at a time, until an entire group of cards is distributed. In this preferred embodiment, each card-receiving compartment is filled (that is, filled to the assigned number of cards for a hand, with the residue of cards being fed into the discard compartment or compartments, or discharged from the apparatus at a card discharge port, for example), regardless of the number of players participating in a particular game. For example, when the card handling apparatus is being used for a seven-player game, at least seven player compartments, a dealer compartment and at least one compartment for cards not used in forming the random hands to be used in the seven-player game are filled. After the last card from the unshuffled group is delivered into these various compartments, the hands are ready to be removed from the compartments and put into play, either manually, automatically, or with a combined automatic feed and hand removal. For example, the cards in the compartments may be so disposed as they are removable by hand by a dealer (a completely manual delivery from the compartment), hands are discharged into a readily accessible region (e.g., tray or support) for manual removal (a combination of mechanical/automatic delivery and manual delivery), or hands are discharged and delivered to a specific player/dealer/discharge position (completely automatic delivery). The device can also be readily adapted for games that deal a hand or hands only to the dealer, such as David Sklansky's Hold 'Em Challenge™ poker game, described in U.S. Pat. No. 5,382,025. One type of device of the present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Generally, the operation of the card handling apparatus of the present invention will form at least a fixed number of hands of cards corresponding to the maximum number of players at a table, optionally plus a dealer hand (if there is a dealer playing in the game), and usually a discard pile. For a typical casino table having seven player stations, the device of the present invention would preferably have at least or exactly nine compartments (if there are seven players and a dealer) or at least or exactly eight compartments (if there are seven players and no dealer playing in the game) that are actually utilized in the operation of the apparatus in dealing a game, wherein each of seven player compartments contains the same number of cards. Depending upon the nature of the game, the compartments for the dealer hand may have the same or different number of cards as the player compartments, and the discard compartment may contain the same or different number of cards as the player compartments and/or the dealer compartment, if there is a dealer compartment. However, it is most common for the discard compartment to contain a different number of cards than the player and/or dealer compartments and examples of the apparatus having this capability enables play of a variety of games with a varying number of players and/or a dealer. In another example of the invention, more than nine compartments are provided and more than one compartment can optionally be used to collect discards. Providing extra compartments also increases the possible uses of the machine. For example, a casino might want to use the shuffler for an 8-player over-sized table. Most preferably, the device is programmed to deliver a fixed number of hands, or deliver hands until the dealer (whether playing in the game or operating as a house dealer) presses an input button. The dealer input tells the microprocessor that the last hand has been delivered (to the players or to the players and dealer), and then the remaining cards in the compartments (excess player compartments and/or discard compartment and/or excess card compartment) will be unloaded into an output or discard compartment or card collection compartment outside the shuffler (e.g., where players' hands are placed after termination or completion of play with their hands in an individual game). The discard, excess or unused card hand (i.e., the cards placed in the discard compartment or slot) may contain more cards than player or dealer hand compartments and, thus, the discard compartment may be larger than the other compartments. In a preferred embodiment, the discard compartment is located in the middle of the generally vertically arranged stack of compartments. In another example of the invention, the discard compartment or compartments are of the same size as the card receiving compartments. The specific compartment(s) used to receive discards or cards can also change from shuffle to shuffle. Another feature of the invention is that the apparatus of the present invention may provide for the initial top feeding or top loading of an unshuffled group of cards, thereby facilitating use by the dealer. The hand receiving portion of the machine may also facilitate use by the dealer, by having cards displayed or provided so that a dealer is able to conveniently remove a randomized hand from the upper portion of the machine or from a tray, support or platform extending from the machine to expose the cards to a vertical or nearly vertical access (within 0 to 30 or 50 degrees of horizontal, for example) by the dealer's hand. An additional feature of the card handling apparatus of the present invention is that it facilitates and significantly speeds the play of casino wagering games, particularly those games calling for a certain, fixed number of cards per hand (e.g., Caribbean Stud® poker, Let It Ride® poker, Pai Gow Poker, Tres Card™ poker, Three Card Poker®, Hold 'Em Challenge™ poker, stud poker games, wild card poker games, match card games and the like), making the games more exciting and less tedious for players, and more profitable for casinos. The device of the present invention is believed to deliver random hands at an increased speed compared to other shufflers, such as approximately twice the speed of known devices. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled or used group of cards into a plurality of hands, each hand containing the same number of randomly arranged cards. If the rules of the game require delivery of hands of unequal numbers of cards, the device of the present invention could be programmed to distribute the cards according to any preferred card count. It should be understood that the term ‘unshuffled’ is a relative term. A deck is unshuffled a) when it is being recycled after play and b) after previous mechanical or manual shuffling before a previous play of a game, as well as c) when a new deck is inserted into the machine with or without ever having been previously shuffled either manually or mechanically. The first step of this process is affected by the dealer placing the initial group of cards into a card receiver of the apparatus. The apparatus is started and, under the control of the integral microprocessor, assigns each card in the initial group to a compartment (randomly selecting compartments separately for each card), based on the selected number of hands, and a selected number of cards per hand. Each hand is contained in a separate compartment of the apparatus, and each is delivered (upon the dealer's demand or automatically) by the apparatus from that compartment to a hand receiver, hand support or hand platform, either manually or automatically, for the dealer to distribute it to a player. The number of hands created by the apparatus within each cycle is preferably selected to correspond to the maximum number of hands required to participate in a game (accounting for player hands, dealer hands, or house hands), and the number or quantity of cards per hand is programmable according to the game being played. The machine can also be programmed to form a number of hands corresponding to the number of players at the table. The dealer could be required to input the number of players at the table. The dealer would be required to input the number of players at the table, at least as often as the number of players change. The keypad input sends a signal to the microprocessor and then the microprocessor in turn controls the components to produce only the desired number of hands. Alternatively, bet sensors are used to sense the number of players present. The game controller communicates the number of bets placed to the shuffler, and a corresponding number of hands are formed. Each time a new group of unshuffled cards, hand shuffled cards, used cards or a new deck(s) of cards is loaded into the card receiver and the apparatus is activated, the operation of the apparatus involving that group of cards, i.e., the forming of that group of cards into hands of random cards, comprises a new cycle. Each cycle is unique and is effected by the microprocessor, which microprocessor is programmed with software to include random number generating capability. The software assigns a card number to the each card and then randomly selects or correlates a compartment to each card number. Under the control of the microprocessor, the elevator or carousel aligns the selected compartment with the card feed mechanism in order to receive the next card. The software then directs each numbered card to the selected slots by operating the elevator or carousel drive to position that slot to receive a card. The present invention also describes an alternative and optional unique method and component of the system for aligning the feed of cards into respective compartments and for forming decks of randomly arranged cards. The separators between compartments may have an edge facing the direction from which cards are fed, that edge having two acute angled surfaces (away from parallelism with the plane of the separator) so that cards may be deflected in either direction (above/below, left/right, top/bottom) with respect to the plane of the separator. When there are already one or more cards within a compartment, such deflection by the edge of the separator may insert cards above or below the card(s) in the compartment. The component that directs, moves, and/or inserts cards into the compartments may be controllably oriented to direct a leading edge of each card towards the randomly selected edge of a separator so that the card is inserted in the randomly selected compartment and in the proper orientation (above/below, left/right, top/bottom) with respect to a separator, the compartments, and card(s) in the compartments. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly costs and set up costs. The preferred device also has fewer parts, which should provide greater reliability than known devices. Another optional feature of the present invention is to have all compartments of equal size and fed into a final deck-forming compartment so that the handling of the cards effects a shuffling of the deck, without creating actual hands for play by players and/or the dealer. The equipment is substantially similar, with the compartments that were previously designated as hands or discards, having the cards contained therein subsequently stacked to form a shuffled deck(s). Another feature of the present invention is a mechanism that feeds cards into the compartments with a high rate of accuracy and that minimizes or eliminates wear on the cards, extending the useful life of the cards. The mechanism comprises a feed roller that remains in contact with the moving card (and possibly the subsequently exposed, underlying card) as cards are moved towards the second card-moving system (e.g., a pair of speed-up rollers), but advantageously disengages from the contact roller drive mechanism when a leading edge of the moving card contacts or is grasped and moved forward by the second card-moving system. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view depicting the apparatus of the present invention as it might be disposed ready for use in a casino on a gaming table. FIG. 2 is a rear perspective view depicting the apparatus of the present invention. FIG. 3 is a front perspective view of the card handling apparatus of the present invention with the exterior shroud removed. FIG. 4 is a side elevation view of the present invention with the shroud and other portions of the apparatus removed to show internal components. FIG. 5 is a side elevation view, largely representational, of the transport mechanism of the apparatus of the present invention. FIG. 5A is a detailed cross-sectional view of a shelf of one example of the invention. FIG. 5B is a cross-sectional view of a shelf with cards fully inserted. FIG. 6 is an exploded assembly view of the transport mechanism. FIG. 7 is a top plan view, partially in section, of the transport mechanism. FIG. 8 is a top plan view of the pusher assembly of the present invention. FIG. 9 is a front elevation view of a first rack and elevator assembly of the present invention. FIG. 10 is an exploded view of the rack and elevator assembly. FIG. 11 depicts an alternative embodiment of the shelves or partitions for forming the stack of compartments of the present invention. FIG. 12 depicts the card stop in an open position. FIG. 13 depicts the card stop in a closed position. FIG. 14 is a simplified side elevational view, largely representational, of the first card handler of the present invention. FIG. 15 is an exploded view of the hand receiving assembly of the apparatus of the present invention. FIG. 16 is a schematic diagram of an electrical control system for one embodiment of the present invention. FIG. 17 is a schematic diagram of the electrical control system. FIG. 18 is a schematic diagram of an electrical control system with an optically isolated bus. FIG. 19 is a detailed schematic diagram of a portion of the control system illustrated in FIG. 18. FIG. 20 schematically depicts an alternative embodiment of the apparatus of the present invention. FIG. 21 is a flow diagram, comprising two parts, parts 21a and 21b, depicting a homing sequence. FIG. 22 is a flow diagram, comprising three parts, parts 22a, 22b and 22c, depicting a sequence of operation of the present invention. FIG. 23 shows a side cutaway view of a rack comprising a series of compartments with separators having two acute surfaces on an edge of the separators facing a source of cards to be inserted into the compartments. FIG. 24 shows an explosion image of three adjacent acute surface edges of separators in the rack of separators. DETAILED DESCRIPTION OF THE INVENTION This detailed description is intended to be read and understood in conjunction with appended Appendices A, B and C, which are incorporated herein by reference. Appendix A provides an identification key correlating the description and abbreviation of certain non-limiting examples of motors, switches and photo eyes or sensors with reference character identifications of the same components in the Figures, and gives the manufacturers, addresses and model designations of certain components (motors, limit switches and sensors). Appendix B outlines steps in a homing sequence, part of one embodiment of the sequence of operations as outlined in Appendix C. With regard to mechanisms for fastening, mounting, attaching or connecting the components of the present invention to form the apparatus as a whole, unless specifically described as otherwise, such mechanisms are intended to encompass conventional fasteners such as machine screws, rivets, nuts and bolts, toggles, pins and the like. Other fastening or attachment mechanisms appropriate for connecting components include adhesives, welding and soldering, the latter particularly with regard to the electrical system of the apparatus. All components of the electrical system and wiring harness of the present invention may be conventional, commercially available components unless otherwise indicated, including electrical components and circuitry, wires, fuses, soldered connections, chips, boards, microprocessors, computers, and control system components. The software may be developed simply by hired programming without undue experimentation, the software merely directing physical performance without unique software functionality. Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as metal, metallic alloys, ceramics, plastics, fiberglass, composites and the like. In the following description, the Appendices and the claims, any references to the terms right and left, top and bottom, upper and lower and horizontal and vertical are to be read and understood with their conventional meanings and with reference to viewing the apparatus from whatever convenient perspective is available to the viewer, but generally from the front as shown in perspective in FIG. 1. One method according to the present invention relates to a card delivery assembly or subcomponent that comprises a preliminary card-moving element that temporarily disengages or stops its delivery action or card control action upon sensing or as a result of a card coming into contact with a second card moving or card delivery element, component or subcomponent, or in response to an increase in linear speed of the card. That is, a first card-moving component moves individual cards from a first location (e.g., the card-receiving stack) towards a second card-moving element or subcomponent (e.g., a set of speed up rollers) and the second card-moving element places the cards in a compartment after the card delivery assembly is brought into alignment with a selected component. When the second card-moving element, component or subcomponent intercepts an individual card or begins to grasp, guide or move an individual card, the first card-moving element, component or subcomponent must disengage its card-moving action to prevent that card-moving action from either jamming the apparatus, excessively directing or controlling an individual card, or moving too many cards (e.g., more than one card) at the same time. A general method of the invention provides for randomly mixing cards comprising: a) providing at least one deck of playing cards; b) removing cards one-at-a-time from the at least one deck of cards; c) randomly inserting each card removed one-at-a-time into one of a number of distinct storage areas, each storage area defining a distinct subset of cards; and d) at least one of the storage areas receives at least two randomly inserted cards one-at-a-time to form a random, distinct subset of at least two cards. Cards in random, distinct subsets may be removed from at least one of the distinct storage areas. The cards removed from at least one of the distinct storage areas may define a subset of cards that is delivered to a player as a hand. One set of the cards removed from at least one of the distinct storage areas may also define a subset of cards that is delivered to a dealer as a hand. Distinct subsets of cards may be removed from at least one distinct storage area and be delivered into a receiving area. Each distinct subset of cards may be removed from the storage area and delivered to a position on a gaming table that is distinct from a position where another removed subset is delivered. All removed subsets may be delivered to the storage area without removal of previous subsets being removed from the receiving area. At least one received subset may become a hand of cards for use in a game of cards. The subsets may be delivered, one-at-a-time to a subset delivery position or station (e.g., delivery tray, delivery support, delivery container or delivery platform). The hands are delivered from the subset compartments either by moving cards from the subset compartment one-at-a-time, multiple cards at-a-time, or complete subsets at a single time. Moving single cards at a time can be accomplished with pick-off rollers, for example. The movement of a complete subset of cards can be accomplished by pushing the group out of the compartment with a pushing mechanism, as described below in the section entitled “Second Card Moving Mechanism.” Referring to the Figures, particularly FIGS. 1, 3 and 4, the card handling apparatus 20 of the present invention includes a card receiver 26 for receiving a group of cards, a single stack of card-receiving compartments 28 (see FIGS. 3 and 4) generally adjacent to the card receiver 26, a card moving or transporting mechanism 30 between and linking the card receiver 26 and the compartments 28, and a processing unit, indicated generally at 32, that controls the apparatus 20. The apparatus 20 includes a second card mover 34 (see FIG. 4) for emptying the compartments 28 into a second receiver 36. Referring now to FIG. 1, the card handling apparatus 20 includes a removable, substantially continuous exterior housing, casing or shroud 40. The exterior design features of the device of the present invention are disclosed in U.S. Design Pa. No. D414,527. The shroud or casing 40 may be provided with appropriate vents 42 for cooling, if needed. The card receiver or initial loading region, indicated generally at 26, is at the top, rear of the apparatus 20, and a deck, card or hand receiving platform 36 is at the front of the apparatus 20. The platform 36 has a surface 35 for supporting a deck, card or hand. The surface 35 allows ready access by a dealer or player to the deck, card or hand handled, shuffled or discharged by the apparatus 20. Surface 35, in one example of the present invention, lies at an angle with respect to the base 41 of the apparatus 20. That angle is preferably approximately 5 degrees with respect to the horizontal, but may also conveniently be at an angle of from 0 to up to ±60 degrees with respect to the base 41, to provide convenience and ergonomic considerations to the dealer. Controls and/or display features 44 are generally located toward the rear or dealer-facing end of the machine 20. FIG. 2 provides a perspective view of the rear of the apparatus 20 and more clearly shows the display 44A and control inputs 44, including a power input module 45/switch 45A and a communication port. FIG. 3 depicts the apparatus 20 with the shroud 40 removed, as it might be for servicing or programming, whereby the internal components may be visualized. The apparatus is shown as including a generally horizontal frame floor 50 and internal frame supports for mounting and supporting operational components, such as upright 52. A control (input and display) module 56 is cantilevered at the rear of the apparatus 20, and is operably connected to the operational portions of the apparatus 20 by suitable wiring 58. The inputs and display portion 44, 44A of the module 56 are fitted to corresponding openings in the shroud 40, with associated circuitry and programming inputs located securely within the shroud 40 when it is in place as shown in FIGS. 1 and 2. Card Receiver The card-loading region 26 includes a card receiving well 60. The well 60 is defined by upright, generally parallel card guiding sidewalls 62 (although one or both walls may be sloped inwardly to guide the cards into position within the well) and a rear wall 64. The card-loading region includes a floor surface 66 which, in one example of the present invention, is preferably pitched or angled downwardly toward the front of the apparatus 20. Preferably, the floor surface is pitched from the horizontal at an angle ranging from approximately 5 to 20 degrees, with a pitch of about 7 degrees being preferred. A removable, generally rectangular weight or block 68 is generally freely movably received in the well 60 for free forward and rearward movement along the floor surface 66. Under the influence of gravity, the block 68 will tend to move toward the forward end of the well 60. The block 68 has an angled, card-contacting front face 70 for contacting the face (i.e., the bottom of the bottommost card) of the last card in a group of cards placed into the well, and urges cards (i.e., the top card of a group of cards) forward into contact with the card transporting mechanism 30. The card-contacting face 70 of the block 68 is at an angle complimentary to the floor surface 66 of the well 60, for example, an angle of between approximately 10 and 80 degrees, and this angle and the weight of the block keep the cards urged forwardly against the transport mechanism 30. In one embodiment, card-contacting face 70 is rough and has a high coefficient of friction. The selected angle of the floor 66 and the weight of the block 68 allow for the free floating rearward movement of the cards and the block 68 to compensate for the forces generated as the transport mechanism 30 contacts the front card to move it. In another embodiment, a spring is provided to maintain tension against block 68. As shown in FIG. 4, the well 60 includes a card present sensor 74 to sense the presence or absence of cards in the well 60. Preferably, the block 68 is mounted on a set of rollers 69 (FIG. 5) which allows the block to glide more easily along floor surface 66 and/or the floor surface 66 and floor contacting bottom of the block 68 may be formed of or coated with suitable low friction materials. Card Receiving Compartments A first preferred assembly or stack of card receiving compartments 28 is depicted in FIGS. 9 and 10, and for purposes of this disclosure this stack of card receiving compartments is also referred to as a rack assembly or rack. The rack assembly 28 is housed in an elevator and rack assembly housing 78 generally adjacent to the well 60, but horizontally spaced therefrom (see FIG. 4). An elevator motor 80 is provided to position the rack assembly 28 vertically under control of a microprocessor, which microprocessor is generally part of the module 32. The motor 80 is linked to the rack assembly 28 by a timing belt 82. Referring now to FIG. 10, the rack assembly 28 includes a bottom plate 92, a left hand rack 94 carrying a plurality of half shelves 96, a right hand rack 98 including a plurality of half shelves 100 and a top plate 102. Together the right and left hand racks 94, 98 and their respective half shelves 96, 100 form the individual plate-like shelf pieces 104 for forming the top and bottom walls of individual compartments 106. Not shown are carousel or partial carousel or fan arrangements of card or hand receiving compartments. A carousel arrangement of card receiving stacks or compartments, as known in the art, is a circular arrangement of compartments, with the compartments arranged in about 350-360 degrees, with from five to 52 or more compartments in the carousel. A partial carousel or fan arrangement would be a segment of a carousel (e.g., 30 degrees of a circle, 45 degrees, 60 degrees, 75 degrees, 90 degrees, 110 degrees, 120 degrees, 145 degrees, 180 degrees or more or less, with compartments distributed within the segment. This arrangement has an advantage over the carousel of enabling lower space or lower volumes for the card receiving compartments as a semicircle takes up less space than a complete carousel. Rather than rotating 360 degrees (or having a ±180 degree alternating movement capability), the partial carousel or fan arrangement may not need to rotate 360 degrees, and may alternatively rotate ±one half the total angular distribution of the partial carousel or fan. For example, if the partial carousel covers only sixty degrees of a circular carousel, the partial carousel needs to have a rotational capability of only about ±30 degrees from the center of the partial carousel to enable access to all compartments. In other words, it could be capable of rotating in two directions, reducing the distance in which the carousel must travel to distribute cards. Preferably, a vertical rack assembly 28 or the carousel or partial carousel assembly (not shown) has nine compartments 106. Seven of the nine compartments 106 are for forming player hands, one compartment 106 forms dealer hands and the last compartment 106 is for accepting unused or discard cards. It should be understood that the device the present invention is not limited to rack assembly with seven compartments 106. For example, although it is possible to achieve a random distribution of cards delivered to eight compartments with a fifty-two card deck or group of cards, if the number of cards per initial unshuffled group is greater than 52, more compartments than nine may be provided to achieve sufficient randomness in eight formed hands. Also, additional compartments may be provided to form hands for a gaming table having more than seven player positions. For example, some card rooms and casinos offer stud poker games to up to twelve people at a single table. The apparatus 20 may then have thirteen or more compartments, as traditional poker does not permit the house to play, with one or more compartments dedicated to collect unused cards. In one example of the invention, thirteen compartments are provided, and all compartments not used to form hands receive discard cards. For example, in a game in which seven players compete with a dealer, eight compartments are used to form hands and the five remaining compartments accept discards. In each example of the present invention, at least one stack of unused cards is formed which may not be sufficiently randomized for use in a card game. These unused cards should be combined if necessary, with the cards used in game play and returned to the card receiver for distribution in the next cycle. The rack assembly 28 is operably mounted to the apparatus 20 by a left side rack plate 107 and a linear guide 108. The rack assembly 28 is attached to the guide 108 by means of a guide plate 110. The belt 82 is driven by the motor 80 and engages a pulley 112 for driving the rack assembly 28 up and down. A hall effect switch assembly 114 is provided to sense the location of the rack assembly 28. The rack assembly 28 may include a card present sensor 116 mounted to an underside of plate 78 (see FIG. 4) and which is electrically linked to the microprocessor. FIG. 9 depicts a rack assembly 28 having nine individual compartments 106 including a comparatively larger central compartment 120 for receiving discard or unused cards. A larger discard rack is shown in this example because in a typical casino game, either three or five cards are delivered to seven players and optionally a dealer, leaving from 12 to 28 discards. In other examples of the invention, multiple discard racks of the same configuration and size as hand-forming compartments are provided instead of a larger discard rack. FIG. 7 provides a top plan view of one of the shelf members 104 and shows that each includes a pair of rear tabs 124. The tabs 124 align a leading edge of the card with the opening of the compartment so that the cards are moved from the transporting mechanism 30 into the rack assembly 28 without jamming. FIG. 11 depicts an alternative embodiment of plate-like shelf members 104 comprising a single-piece plate member 104′. An appropriate number of the single-piece plates, corresponding to the desired number of compartments 106 are connected between the sidewalls of the rack assembly 28. The plate 104′ depicted in FIG. 11 includes a curved or arcuate edge portion 126 on the rear edge 128 for removing cards or clearing jammed cards, and also includes the two bilateral tabs 124, also a feature of the shelf members 104 of the rack assembly 28 depicted in FIG. 7. The tabs 124 act as card guides and permit the plate-like shelf members 104 forming the compartments 106 to be positioned effectively as closely as possible to the card transporting mechanism 30 to ensure that cards are delivered into the selected compartment 106 (or 120) even though they may be warped or bowed. Referring back to FIG. 5, an advantage of the plates 104 (and/or the half plates 96, 100) forming the compartments 106 is depicted. Each plate 104 includes a beveled or angled underside rearmost surface 130 in the space between the shelves or plates 104, i.e., in each compartment 106, 120. The distance between the forward edge 132 of the bevel and the forward edge 134 of a shelf 104 preferably is less than the width of a typical card. As shown in FIG. 5A, the leading edge 136 of a card being driven into a compartment 106, 120 hits the beveled surface 130 and is driven onto the top of the stack of cards supported by next shelf member 104. As shown in FIG. 5B, when the cards are fully inserted, a trailing edge 133 of each card is positioned between edge 132 and edge 135. To facilitate forming a bevel 130 at a suitable angle 135 and of a suitable size, a preferred thickness 137 for the plate-like shelf members is approximately {fraction (3/32)} of an inch, but this thickness and/or the bevel angle can be changed or varied to accommodate different sizes and thicknesses of cards, such as poker and bridge cards. Preferably, the bevel angle 135 is between 10 degrees and 45 degrees, and most preferably between approximately 15 degrees and 20 degrees. Whatever bevel angle and thickness is selected, it is preferred that cards should come to rest with their trailing edge 133 rearward of the forward edge 132 of the bevel 130 (see FIG. 5). Referring now to the FIGS. 12 and 13, the front portion of the rack assembly 28 includes a solenoid or motor operated gate 144 and a door (card stop) 142 for controlling the unloading of the cards into the second receiver 36. Although a separate, vertically movable gate 144 and card door stop 142 are depicted, the function, stopping the forward movement of the cards, could be accomplished either by a lateral moving gate or card stop alone (not shown) or by other means. In FIG. 12, the gate 144 is shown in its raised position and FIG. 13 depicts it in its lowered open position. The position of the gate 144 and stop 142 is related by the microprocessor to the rack assembly 28 position. Card Moving Mechanism Referring now to FIGS. 4, 5 and 6, a preferred card transporting or moving mechanism 30 is positioned between the card receiving well 60 and the compartments 106, 120 of the rack assembly 28 and includes a card pickup roller assembly 149. The card pick-up roller assembly 149 includes a pick-up roller 150 and is located generally at the forward portion of the well 60. The pick-up roller 150 is supported by a bearing mounted axle 152 extending generally transversely across the well 60 whereby the card contacting surface of the roller 150 is in close proximity to the forward portion of the floor surface 66. The roller 150 is driven by a pick up motor 154 operably coupled to the axle 152 by a suitable continuous connector 156 such as a belt or chain. In operation, the front card in the well 60 is urged against the roller 150 by block 68 so that when the roller 150 is activated, the frictional surface draws the front card downwardly and forwardly. The internal operation and inter-component operation of the pick-up roller can provide important performance characteristics to the operation of the apparatus. As previously mentioned, one method according to the present invention relates to a card delivery subcomponent that comprises a preliminary card-moving element that temporarily disengages or stops its delivery action or card control action upon sensing, upon acceleration of the card by a second card moving mechanism or as a result of card contact with a second card moving or card delivery component or subcomponent. That is, a first card-moving component moves individual cards from a first location (e.g., the card-receiving stack) towards a second location (e.g., towards a hand receiving compartment) and a second card-moving component receives or intercepts the individual cards. When the second card-moving component intercepts an individual card or begins to guide or move an individual card, the first card-moving component must disengage its card-moving action to prevent that card-moving action from either jamming the apparatus, causing drag and excessive wear on the card, excessively directing or controlling an individual card, or moving too many cards (e.g., more than one card) at the same time. These methods are effected by the operation of the pick-up roller 150 and it's operating relationship with other card motivating or receiving components (such as rollers 162 and 164). For example, a dynamic clutch, slip clutch mechanism or release gearing may be provided within the pick-up roller 150. Alternatively a sensor, gearing control, clutch control or pick-up roller motor drive control may be provided to control the rotational speed, rotational drive or torque, or frictional engagement of the pick-up roller 150. These systems operate to reduce or essentially eliminate any adverse or significant drag forces that would be maintained on an individual card (C) in contact with pick-up roller 150 at the time when other card motivating components or subcomponents begin to engage the individual card (e.g., rollers 162 and 164). There are a number of significant and potential problems that can be engendered by multiple motivation forces on a single card and continuous motivating forces from the pick-up roller 150. If the pick-up roller stopped rotating without disengaging from the drive mechanism, the speed-up rollers 162 and 164 would need to apply a sufficient force on the card to overcome a drag caused by the stationary pick-up roller 150. The drag forces cause the cards to wear prematurely. If the pick-up roller 150 were to continuously provide torque or moving forces against surfaces of individual cards, the speed of rotation of that pick-up roller must be substantially identical to the speed of moving forces provided by any subsequent card moving components or subcomponents. If that were not the case, stress would be placed on the card or the surface of the card to deteriorate the card, abrade the card, compress the card, damage printing or surface finishes on the cards (even to a point of providing security problems with accidental card marking), and jam the apparatus. By a timely disengaging of forces provided by the pick-up roller against a card or card surface, this type of damage is reduced or eliminated. Additional problems from a configuration that attempts to provide continuous application of a driving force by the pick-up roller against cards is the inability of a pick-up roller to distinguish between one card and an underlying card or groups of cards. If driving forces are maintained by the pick-up roller against card surfaces, once card C passes out of control or contact with the pick-up roller 150, the next card is immediately contacted and moved, with little or no spacing between cards. In fact, after card C has immediately left contact with pick-up roller 150, because of its tendency to be positioned inwardly along card C and away from the edge of card C when firmly within the stack of cards (not shown) advanced by block 68, the pickup roller 150 immediately is pressed into engagement with the next card (not shown) underlying card C. This next underlying card may therefore be advanced along the same path as card C, even while card C still overlays the underlying card. This would therefore offer the distinct likelihood of at least two cards being transferred into the second card-moving components (e.g., rollers 162 and 164) at the same time, those two cards being card C and the next underlying card. These cards would also be offset, and not identically positioned. This could easily lead to multiple cards being inserted into individual compartments or cards jamming the apparatus as the elevator or carousel moves to another position to accept different cards. The sensors can also read multiple cards being fed as a single card, causing an error message, and leading to misdeals. The apparatus preferably counts the cards being arranged, and verifies that the correct number of cards are present in the deck. When multiple cards pass the sensors at the same time, the machine will produce an error message indicating that one or more cards is missing. Misdeals slow the play of the game, and reduce casino revenue. The practice of the present invention of disengaging the moving force of the pick-up roller when other individual card moving elements are engaging individual cards can be a very important function in the performance and operation of the hand delivering apparatus of this invention. This disengaging function may operate in a number of ways as described herein, with the main objective being the reduction or elimination of forward-moving forces or drag forces on the individual card once a second individual card moving element, component or subcomponent has begun to engage the individual card or will immediately engage the individual card. For example, the pick-up roller may be automatically disengaged after a specific number of revolutions or distance of revolutions of the roller (sensed by the controller or computer, and identifying the assumption that such degree of movement has impliedly engaged a second card moving system), a sensor that detects a specific position of the individual card indicating that the individual card has or is imminently about to engage a second card moving component, a timing system that allows the pick-up roller to operate for only a defined amount of time that is assumed to move the individual card into contact with the second card moving component, a tension detecting system on the pick-up roller that indicates either a pressure/tension increase (e.g., from a slowed movement of the individual card because of contact with a second card moving component) or a tension decrease (e.g., from an increased forward force or movement of the individual card as it is engaged by a more rapidly turning set of rollers 162 and 164), or any other sensed information (such as acceleration of the card) that would indicate that the individual card, especially while still engaged by the pick-up roller, has been addressed or treated or engaged or directed or moved by a second card-moving component or subcomponent. The disengagement may be effected in a number of different ways. It is reasonably assumed that all pick-up rollers have a drive mechanism that rotates the pick-up roller, such as an axel engaging drive or a roller engaging drive. These drives may be belts, contact rollers, gears, friction contact drives, magnetic drives, pneumatic drives, piston drives or the like. In one example of the invention, a dynamic clutch mechanism may be used that allows the drive mechanism to disengage from the roller or allows the roller to freely rotate at the same speed as the engaging drive element, the pick-up roller 150 will rotate freely or with reduced tension against the forward movement of the individual card, and the card can be freely moved by the second card-moving component. The use of a dynamic clutch advantageously keeps the card in motion compressed against the stack of cards being distributed, providing more control and virtually eliminating the misfeeding of cards into the second card moving components. This “positive control” enables the cards to be fed at faster speeds and with more accuracy than with other known card feed mechanisms. Clutch systems may be used to remove the engaging action of the drive mechanism against the pick-up roller 150. Gears may disengage, pneumatic or magnetic pressure/forces may be diminished, friction may be reduced or removed, or any other disengagement procedure may be used. A preferred mechanism is the use of a speed release clutch, also known in the art as a speed drop clutch, a drag clutch, a free-rolling clutch or a draft clutch. This type of clutch is used particularly in gear driven roller systems where, upon the occurrence of increased tension (or increased resistance) against the material being driven by a roller, a clutch automatically disengages the roller drive mechanism, allowing the roller to freely revolve so that the external roller surface actually increases its speed of rotation as the article (in this case, the playing card) is sped up by the action of the second card-moving component. At the same time, the pick-up roller 150 remains in contact with the card, causing a more reliable and positive feeding action into the second card moving components. The clutch may also be designed to release if there is increased resistance, so that the pick-up roller turns more slowly if the second card-moving element moves the individual card more slowly than does the pick-up roller. In one example of the invention, cards are moved in response to the microprocessor calling for the next card. The rate at which each card is fed is not necessarily or usually constant. Activation of the pick-up roller 150 is therefore intermittent. Although it is typical to rotate the axis 152 upon which pick-up roller 150 is mounted at one angular speed, the timing of the feeding of each individual card to each compartment may vary. Since a random number generator determines the location of insertion of each card into individual compartments, the time between initiation of each rotation of the pick-up roller and the insertion of each card into a compartment may vary. It is possible to impose a uniform time interval of initiation (e.g. equal to the maximum time interval possible between inserting a card into the uppermost compartment and then the lowermost compartment) of the movement of the rotation of the pick-up roller but the shuffling time would increase. Similarly, when the compartments are in a carousel-type arrangement, the operation of pick-up roller 150 is also intermittent-that is, not operating at a constant timed interval. Referring now to FIGS. 4 and 5, the preferred card moving mechanism 30 also includes a pinch roller card accelerator or speed-up system 160 located adjacent to the front of the well 60 between the well 60 and the rack assembly 28 and forwardly of the pick-up roller 150. The speed-up system 160 comprises a pair of axle supported, closely adjacent speed-up rollers, one above the other, including a lower roller 162 and an upper roller 164. The upper idling roller 164 is urged toward the lower roller 162 by a spring assembly 166. Alternatively, it may be weighted or drawn toward the lower roller by a resilient member (not shown). The lower roller 162 is driven by a speed-up motor 167 operably linked to the lower driven roller 162 by a suitable connector 168 such as a belt or a chain. The mounting bracket 170 for the speed-up rollers also supports a rearward card-in sensor 174 and a forward card-out sensor 176. When the individual card C is engaged by these rollers 162 and 164 that are rotating with a linear surface speed that exceeds the linear surface speed of the pick-up roller 150, the forward tension on the pick-up roller 150 exerted by card C is one characteristic that can be sensed by the controller to release the clutch (not shown) that releases the pick-up roller 150 and allows the pick-up roller 150 to rotate freely. In the event that a dynamic clutch is utilized, the increase in speed of the motivated card caused by the surface speed of rollers 162 and 164 relative to the surface speed of the motivated card effected by the pick-up roller 150 when axle 152 is being driven causes disengagement of the clutch. FIG. 5 is a largely representational view depicting the relationship between the card receiving well 60 and the card transporting mechanism 30, and also shows a card □C□ being picked up by the pick-up roller 150 moving in rotational direction 151 and being moved into the pinch roller system 160 for acceleration into a compartment 104 of the rack assembly 28. In a preferred embodiment, the pick-up roller 150 is not continuously driven, but rather indexes in response to instructions from the microprocessor and includes a one-way clutch mechanism. After initially picking up a card and advancing it into the pinch roller system 160, the motor 154 operably coupled to the pick-up roller 150 stops driving the roller, and the roller 150 free-wheels as the card is accelerated through the pinch roller system 160. The speed-up pinch roller system 160 is preferably continuous in operation once a hand-forming cycle starts and, when a card is sensed by the adjacent card out sensor 176, the pick-up roller 150 stops and free-wheels while the card is accelerated through the pinch roller system 160. When the trailing edge of the card is sensed by the card out sensor 176, the rack assembly 28 moves to the next position for the next card and the pick-up roller 150 is re-activated. Additional components and details of the transport mechanism 30 are depicted in FIG. 6, an exploded assembly view thereof. In FIG. 6 the inclined floor surface 66 of the well 60 is visible, as are the axle mounted pickup and pinch roller system 150, 160, respectively, and their relative positions. Referring to FIGS. 4 and 5, the transport assembly 30 includes a pair of generally rigid stopping plates including an upper stop plate and a lower stop plate, 180, 182, respectively. The plates 180, 182 are positioned between the rack assembly 28 and the speed-up system 160 immediately forward of and above and below the pinch rollers 162, 164. The stop plates 180, 182 stop the cards from rebounding or bouncing rearwardly, back toward the pinch rollers, as they are driven against and contact the gate 144 and/or the stop 142 at the front of the rack assembly 28. Processing/Control Unit FIG. 16 is a block diagram depicting an electrical control system that may be used in one embodiment of the present invention. The control system includes a controller 360, a bus 362, and a motor controller 364. Also represented in FIG. 16 are inputs 366, outputs 368, and a motor system 370. The controller 360 sends signals to both the motor controller 364 and the outputs 368 while monitoring the inputs 366. The motor controller 364 interprets signals received over the bus 362 from the controller 360. The motor system 370 is driven by the motor controller 364 in response to the commands from the controller 360. The controller 360 controls the state of the outputs 368 and the state of the motor controller 364 by sending appropriate signals over the bus 362. In a preferred embodiment of the present invention, the motor system 370 comprises motors that are used for operating components of the card handling apparatus 20. Motors operate the pick-up roller, the pinch, speed-up rollers, the pusher and the elevator. The gate and stop may be operated by a motor, as well. In such an embodiment, the motor controller 364 would normally comprise one or two controllers and driver devices for each of the motors used. However, other configurations are possible. The outputs 368 include, for example, alarm, start, and reset indicators and inputs and may also include signals that can be used to drive a display device (e.g., a LED display—not shown). Such a display device can be used to implement a timer, a card counter, or a cycle counter. Generally, an appropriate display device can be configured and used to display any information worthy of display. The inputs 366 are information from the limit switches and sensors described above. The controller 360 receives the inputs 366 over the bus 362. Although the controller 360 can be any digital controller or microprocessor-based system, in a preferred embodiment, the controller 360 comprises a processing unit 380 and a peripheral device 382 as shown in FIG. 17. The processing unit 380 in a preferred embodiment may be an 8-bit single-chip microcomputer such as an 80C52 manufactured by the Intel Corporation of Santa Clara, Calif. The peripheral device 382 may be a field programmable micro controller peripheral device that includes programmable logic devices, EPROMs, and input-output ports. As shown in FIG. 17, peripheral device 382 serves as an interface between the processing unit 380 and the bus 362. The series of instructions are stored in the controller 360 as shown in FIG. 17 as program logic 384. In a preferred embodiment, the program logic 384 is RAM or ROM hardware in the peripheral device 382. (Since the processing unit 380 may have some memory capacity, it is possible that some or all of the instructions may be stored in the processing unit 380.) As one skilled in the art will recognize, various implementations of the program logic 384 are possible. The program logic 384 could be either hardware, software, or a combination of both. Hardware implementations might involve hardwired code or instructions stored in a ROM or RAM device. Software implementations would involve instructions stored on a magnetic, optical, or other media that can be accessed by the processing unit 380. Under certain conditions, it is possible that a significant amount of electrostatic charge may build up in the card handler 20. Significant electrostatic discharge could affect the operation of the handler 20. It is preferable to isolate some of the circuitry of the control system from the rest of the machine. In a preferred embodiment of the present invention, a number of optically-coupled isolators are used to act as a barrier to electrostatic discharge. As shown in FIG. 18, a first group of circuitry 390 can be electrically isolated from a second group of circuitry 392 by using optically-coupled logic gates that have light-emitting diodes to optically (rather than electrically) transmit a digital signal, and photo detectors to receive the optically transmitted data. An illustration of electrical isolation through the use of optically-coupled logic gates is shown in FIG. 19, which shows a portion of FIG. 18 in greater detail. Four Hewlett-Packard HCPL-2630 optocouplers (labeled 394, 396, 398 and 400) are used to provide an 8-bit isolated data path to the output devices 368. Each bit of data is represented by both an LED 402 and a photo detector 404. The LEDs emit light when energized and the photo detectors detect the presence or absence of the light. Data may thus transmitted without an electrical connection. Second Card Moving Mechanism Referring to FIGS. 4 and 8, the apparatus 20 includes a second card moving mechanism 34 comprising, by way of example only, a reciprocating card compartment unloading pusher 190. The pusher 190 includes a substantially rigid pusher arm 192 in the form of a rack having a plurality of linearly arranged apertures 194 along its length. The arm 192 operably engages the teeth of a pinion gear 196 driven by an unloading motor 198, which is in turn controlled by the microprocessor 360. At its leading or card contacting end, the pusher arm 192 includes a blunt, enlarged card-contacting end portion 200. The end portion 200 is greater in height than the space between the shelf members 104 forming the compartments 106 to make sure that all the cards (i.e., the hand) contained in a selected compartment are contacted and pushed out as it is operated, even when the cards are bowed or warped. The second card moving mechanism 34 is operated intermittently (upon demand or automatically) to empty full compartments 106 at or near the end of a cycle. Second Card/Hand Receiver When actuated, the second card moving mechanism 190 empties a compartment 106, 120 by pushing the group of cards therein into a card receiving platform 36. The card receiving platform 36 is shown in FIGS. 1, 4, 14 and 16, among others. In this way, a complete hand is pushed out, with usually one hand at a time fed to the card receiving platform 36 (or more properly, card retrieving platform). The hands are then, usually, manually retrieved by a dealer and placed at player positions. In one example of the invention, the card receiving platform 36 has a card present sensor. As a hand of cards is removed, the sensor senses the absence of cards and sends a signal to the microprocessor. The microprocessor in turn instructs the device to deliver another hand of cards. Referring to FIG. 15, the second card or hand receiving platform 36 includes a shoe plate 204 and a solenoid assembly 206, including a solenoid plate 208, carried by a rear plate 210, which is also the front plate of the rack assembly 28. In an alternate embodiment, a motor drives the gate. The shoe plate 204 also carries an optical sensing switch 212 for sensing the presence or absence of a hand of cards and for triggering the microprocessor to drop the gate 144 and actuate the pusher 190 of the second transport assembly 34 to unload another hand of cards from a compartment 106, 120 when the hand receiver 36 is empty. In a first preferred embodiment, all hands are unloaded sequentially. In another embodiment, the dealer delivers cards to each player, and the dealer hand is delivered last, then he or she presses a button that instructs any remaining hands and the discard pile to unload. According to a third preferred embodiment, the microprocessor is programmed to randomly select and unload all player hands, then the dealer hand, and last the discard pile or piles. FIG. 14 is a largely representational view depicting the apparatus 20 and the relationship of its components including the card receiver 26 for receiving a group of cards for being formed into hands, including the well 60 and block 68, the rack assembly 28 and its single stack of card-receiving compartments 106, 120, the card moving or transporting mechanism 30 between and linking the card receiver 26 and the rack assembly 28, the second card mover 190 for emptying the compartments 106, 120, and the second receiver 36 for receiving hands of cards. Alternative Embodiments FIG. 20 represents an alternative embodiment of the present invention wherein the card handler 200 includes an initial staging area 230 for receiving a vertically stacked deck or group of unshuffled cards. Preferably beneath the stack is a card extractor 232 that picks up a single card and moves it toward a grouping device 234. The picked up card moves through a card separator 236, which is provided in case more than one card is picked up, and then through a card accelerator 238. The grouping device 234 includes a plurality of compartments 240 defined, in part, by a plurality of generally horizontally disposed, parallel shelf members 242. In one embodiment there are two more compartments than player positions at the table at which the device is being used. In one preferred embodiment the grouping device 234 includes nine compartments (labeled 1-9), seven of which correspond to the player positions, one that corresponds to the dealer□s position and the last for discards. The grouping device is supported by a generally vertically movable elevator 244, the height of which is controlled by a stepper motor 246, linked by means of a belt drive 248 to the elevator 244. A microprocessor 250 randomly selects the location of the stepper motor and instructs the stepper motor to move the elevator 244 to that position. The microprocessor 250 is programmed to deliver a predetermined number of cards to each compartment 240. After the predetermined number of cards is delivered to a compartment 240, no additional cards will be delivered to that compartment. Each time a group of unshuffled cards are handled by this embodiment of the present invention, the order in which the cards are delivered to the compartments 240 is different due to the use of a random number generator to determine which compartment receives each card in the group. Making hands of cards in this particular fashion serves to randomize the cards to an extent sufficient to eliminate the need to shuffle the entire deck prior to forming hands. A feature of the embodiment of the present invention depicted in FIG. 20 is a card pusher or rake 260A. The rake 260A may be either an arm with a head which pushes horizontally from the trailing edge of a card or group of cards, or a roller and belt arrangement 260B which propels a card or group of cards by providing frictional contact between one or more rollers and a lower surface of a card or the bottom-most card. In one other example of the invention, a spring device 261 holds the cards against the roller 260A causing one card at a time to be removed into tray 262. The purpose of the rake 260A is to move the cards toward an open end of the elevator. In this embodiment of the invention, the compartments are staggered so that if the card rake 260A only pushes the dealt cards a portion of the way out the dealer can still lift out each hand of cards and deliver the hand to a player. The rake 260A can also be set to push a hand of cards completely out of a compartment whereby the cards fall onto a platform 262. The hand delivered to platform 262 may be then removed and handed to the player. A sensor may be provided adjacent to the platform 262 whereby an empty platform is sensed so that the rake 260A pushes or propels another hand of cards onto the platform 262. In another embodiment the microprocessor 250 is programmed so that the card rake 260A moves the cards to a point accessible to the dealer and then, upon optional activation of a dealer control input, pushes the cards out of the compartment 240 onto the receiver 262. In a preferred embodiment of the device depicted in FIG. 20, although the microprocessor 250 can be programmed to deliver a different number of cards to the dealer compartment than to the player compartments, it is contemplated that the microprocessor will cause the apparatus to deliver the same number of cards to each compartment. The dealer, however, may discard cards until he or she arrives at the desired number of dealer cards for the particular game being played. For example, for the poker game known as the LET IT RIDE® game, the players and dealer initially receive a three-card hand. The dealer then discards or burns one of his cards and plays with the remaining two cards. With continued reference to FIG. 20, nine card compartments or slots are depicted. The card extractor/separator combination delivers a selected number of player cards into each of the compartments labeled 1-7. Preferably, the same number of dealer□s cards may be delivered into compartment 8. Alternatively, the microprocessor 250 can be programmed so that slot 8 will receive more than or fewer than the same number of cards as the players□compartments 1-7. In the embodiment depicted in FIG. 20, card-receiving compartment 9, which may or may not be larger than the others, receives all extra cards from a deck. Preferably, the MPU instructs the device 200 to form only the maximum number of player hands plus a dealer hand. The number of cards delivered to each position may depend upon the game and the number of cards required. Operation/Use With reference to FIGS. 21 and 22, and Appendix C, which depict an operational program flow of the method and apparatus of the present invention, in use, cards are loaded into the well 60 by sliding or moving the block 68 generally rearwardly. The group of cards to be formed into hands is placed into the well 60 generally sideways, with the plane of the cards generally vertical, on one of the long side edges of the cards. The block 68 is released or replaced to urge the cards into an angular position generally corresponding to the angle of the angled card contacting face of the block 68, and into contact with the pick-up roller 150. According to the present invention, the group of cards to be formed into hands is one or more decks of standard playing cards. Depending upon the game, the group of cards can contain one or more wild cards, can be a standard deck with one or more cards removed, can comprise a special deck such as a Canasta or Spanish 21® deck, for example, can include more than one deck, or can be a partial deck not previously recognized by those skilled in the art as a special deck. The present invention contemplates utilizing any group of cards suitable for playing a card game. For example, one use of the device of the present invention is to form hands for a card game that requires the use of a standard deck of cards with all cards having a face value of 2-5 removed. The card handling device of the present invention is well-suited for card games that deliver a fixed number of cards to each player. For example, the LET IT RIDE® stud poker game requires that the dealer deliver three cards to each player, and three cards to the dealer. For this application, the microprocessor is set so that only three card hands are formed. When the power is turned on, the apparatus 20 homes (see FIG. 21 and Appendix B). The start input is actuated and the process cycle begins. As the cards are picked-up, i.e., after the separation of a card from the remainder of the group of cards in the well 60 is started, a card is accelerated by the speed-up system 160 and spit or moved past the plates 180, 182 into a selected compartment 106, 120. Substantially simultaneously, movement of subsequent cards is underway. The rack assembly 28 position relative to the position of the transport mechanism 30 is monitored, selected and timed by the microprocessor whereby a selected number of cards is delivered randomly to selected compartments until the selected number of compartments 106 each contain a randomized hand of a selected number of cards. The remainder of the cards are delivered to the discard compartment 120, either before, during or after delivering the card forming hands. Because the order in which the cards are delivered is completely random, the device may or may not deliver all cards in the initial group of cards to all compartments before the first player hand is pushed out of its compartment. Before or when all the cards have been delivered to the compartments, upon demand or automatically, the pusher 190 unloads one randomly selected hand at a time from a compartment 106 into the second card receiving platform 36. The pusher 190 may be triggered by the dealer or by the hand present sensor 212 associated with the second receiver 36. When the last hand is picked up and delivered to players and/or dealer, the larger discard compartment 120 automatically unloads. It should be appreciated that each cycle or operational sequence of the machine 20 goes through an entire group or deck of cards placed in the well 60 each time, even if only two players, i.e., two hands, are used. FIG. 23 also shows a clearly optional method of controlling the entry of cards into the rack 3 of card-receiving compartments 13. A card delivery system 15 is shown wherein two nip rollers 17 accept individual cards 19 from a stack of cards 16 and direct the individual cards 19 into a single card-receiving compartment 13. As shown in a lower portion of FIG. 23, a single card 9 is directed into one of the card-receiving compartments so that the individual card 9 strikes one of the acute angle surfaces 21 of the separator 23. The single card 9 is shown with a double bend 11 caused by the forces from the single card 9 striking the acute angle surface 21 and then the top 11 of cards 7 already positioned within the card-receiving compartment. The card delivery system 15 and/or the rack 3 may move vertically (and/or angularly, as explained later) to position individual cards (e.g., 9) at a desired elevation and/or angle in front of individual card-receiving compartments 13. The specific distance or angle that the card delivery system 15 and/or rack 3 moves are controlled (when acute angle surfaces 21 of the separators 23 are available) to position the individual card 9 so that it deflects against a specific acute angle surface 21. An alternative method of assisting in the guidance of an individual card 9 against an acute angle surface 21 is the system shown that is enabled by bars 2 and 4. The bars 2 and 4 operate so that as they move relative to each other, the separators 23 may swivel around pins 6 causing the separators 23 to shift, changing the effective angle of the deflecting acute angle surfaces 21 with respect to individual cards 9. This is not as preferred as the mechanism by which the rack and/or the card delivery system 15 move relatively vertically to each other. FIG. 24 shows a blown-up view of a set of three separators 23. These separators are shown with acute angles (less than 90° with respect to horizontal or the plane of the separator 23 top surfaces 29) on both sides of the separators. An upward deflecting surface 27 and downward deflecting surface 25 is shown on each separator 23. In one section of FIG. 24, a single card 9a is shown impacting an upward deflecting surface 27, deflecting (and bending) individual card 9a in a two way bend 11a, the second section of the bend caused by the impact/weight of the cards 7 already within the compartment 13a. In a separate area of FIG. 24, a second individual card 9b is shown in compartment 13b, striking downward deflecting acute angle surface 25, with a double bend 11b caused by deflection off the surface 25 and then deflection off the approximately horizontal support surface 29 (or if cards are present, the upper surface of the top card) of the separator 23. The surface 29 does not have to be horizontal, but is shown in this manner for convenience. The card delivery system (not shown) moves relative to the separators (by moving the card delivery system and/or the rack (not shown in entirety) to position individual cards (e.g., 9a and 9b) with respect to the appropriate surfaces (e.g., 25 and 27). The capability of addressing or positioning cards into compartments at either the top or bottom of the compartment (and consequently at the top or bottom of other cards within the compartment) enables an effective doubling of potential positions where each card may be inserted into compartments. This offers the designer of the device options on providing available alternative insert positions without adding additional card-receiving compartments or additional height to the stack. More options available for placement of cards in the compartments further provides randomness to the system without increasing the overall size of the device or increasing the number of compartments. In this embodiment of the invention, the original rack has been replaced with rack 3 consisting of ten equally sized compartments. Cards are delivered in a random fashion to each rack. If the random number generator selects a compartment that is full, another rack is randomly selected. In this embodiment, each stack of cards is randomly removed and stacked in tray 36, forming a randomly arranged deck of cards. Although ten compartments is a preferred number of compartments for shuffling a fifty-two card deck, other numbers of compartments can be used to accomplish random or near random shuffling. If more than one deck is shuffled at a time, more compartments could be added, if needed. Although a description of preferred embodiments has been presented, various changes including those mentioned above could be made without deviating from the spirit of the present invention. It is desired, therefore, that reference be made to the appended claims rather than to the foregoing description to indicate the scope of the invention. APPENDIX A Item Name Description Switches and Sensors (Inputs) 212 SCPS Shoe Card Present Sensor Omron * EE-SPY 302 116 RCPS Rack Card Present Sensor Optek * OP598A OP506A RHS Rack Home Switch Microswitch * SS14A RPS Rack Position Sensor Omron * EE-SPZ401Y.01 UHS Unloader Home Switch Microswitch * SS14A DPS Door Present Switch Microswitch * SS14A PCPS Platform Card Omron * EE-SPY401 Present Sensor 170 CIS Card In Sensor Optek * OP506A 176 COS Card Out Sensor Optek * OP598A GUS Gate Up Switch Microswitch * SS14A 44 GDS Gate Up Switch Microswitch * SS14-A SS Start Switch EAO * 84-8512.5640 84- 1101.0 84-7111.500 Motors, Solenoid and Switches (Outputs) 154 POM Pick-off Motor Superior * M041-47103 166 SUM Speed-up Motor Superior * M041-47103 80 RM Rack Motor Oriental * C7009-9012K 198 UM Unloader Motor Superior * M041-47103 FM Fan Motor Mechatronics * F6025L24B 143 GS Gate Solenoid Shindengen * F10308H w/return spring GM Gate Motor NMB 14PM-MZ-02 SSV Scroll Switch - Vertical EAO * 18-187.035 18-982.8 18-920.1 SSH Scroll Switch - Horizontal EAO * 18-187.035 18-982.8 18-920.1 AL Alarm Light Dialight * 557-1505-203 Display Noritake * CU20025ECPB - UIJ Power Supply Shindengen * ZB241R8 Linear Guide THK * RSR12ZMUU + 145 M Comm. Port Digi * HR021 - ND Power Switch Digi * SW 323 - ND Power Entry Bergquist * LT - 101 - 3P APPENDIX B Homing/Power-up i. Unloader Home UHS Made Return unloader to home position. If it times out (jams), turn the alarm light on/off Display “UNLOADER NOT HOME”. “UHS FAULT”. ii. Door Present DPS Made Check door present switch (DPS). If it's not made, display “Door Open”, “DPS Fault” and turn the alarm light on/off. iii. Card Out Sensor (COS) Clear COS Made If card out sensor is blocked: A. Check if Rack Card Present Sensor (RCPS) is blocked. If it is, drive card back (reverse both Pick-off Motor (POM) and Speed-up Motor (SUM)) until COS is clear. Keep the card in the pinch. Align rack and load card into one of the shelves. Then go through the rack empty sequence (3 below). B. If Rack Card Present Sensor (RCPS) is clear, drive card back towards the input shoe. Turn both the Speed Up Motor (SUM) and the Pick Off Motor on (reverse) until Card Out Sensor is clear plus time delay to drive the card out of the pinch. iv. Gate Up GUS Made Move rack up until the rack position sensor sees the top rack (RPS on). Gate up switch should be made (GUS). If not, display “GATE NOT UP”, “GUS FAULT” and turn the alarm light on/off. v. Rack Empty and Home RCPS Check Rack Card Present Sensor (RCPS). If blocked, see emptying Made the racks. Return rack home when done. RHS Made INTERLOCK: Do not move rack if card out sensor is blocked (see 2 to clear) or when door is not present. Emptying the racks: Go through the card unload sequence. Move rack down to home position. Energize solenoid. Move rack through the unload positions and unload all the cards. vi. Input Shoe Empty SCPS Clear If Shoe/Card Present Sensor (SCPS) is blocked, display “remove card from shoe” or “SCPS fault” and turn the alarm light on/off. vii. Platform Empty PCPS Clear If Platform Card Present Sensor (PCPS) is blocked, display “remove card from platform” or “PCPS Fault” and turn alarm light on/off. viii. Card in Sensor (CIS) Clear. CIS Made If Card In Sensor (CIS) is blocked, display “remove card from shoe” or “CIS fault” and turn the alarm light on/off. Start Position Unloader Home UHS Made Rack Home RHS Made Rack Empty RCPS Made Door In Place DPS Made Card In Sensor Clear CIS Made Card Out Sensor Clear COS Made Gate Up GUS Made Platform Empty PCPS Clear Input Shoe Empty SCPS Clear Start Button Light On Appendix C Recovery Routine Problem: Card Jam—COS blocked too long. Recovery: 1. Stop rack movement. 2. Reverse both pick-off and speed-up motors until “COS” is unblocked. Stop motors. 3. If “COS” is unblocked, move rack home and back to the rack where the cards should be inserted. 4. Try again with a lower insertion point (higher rack) and slower insertion speed. If card goes in, continue insertion. If card jams, repeat with the preset positions, auto adjust to the new position. If jams become too frequent, display “check cards”, replace cards. If it does not, repeat 1 and 2. 5. If “COS” is unblocked, move rack up to the top position and display “Card Jam” and turn alarm light on/off. 6. If “COS” is not unblocked after 2 or 4, display “card jam” and turn . . . (do not move rack to up position). Problem: Unloader jams on the way out. Recovery: Move unloader back home. Reposition rack with a small offset up or down and try again, lower speed if necessary. If unloader jams, keep repeating at the preset location, set a new value based on the offset that works (auto adjust).
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards”. In particular, the invention relates to an electromechanical machine for organizing or arranging playing cards into a plurality of hands, wherein each hand is formed as a selected number of randomly arranged cards. The invention also relates to a mechanism for feeding cards into a shuffling apparatus and also to a method of delivering individual hands from the apparatus to individual players or individual player positions. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments such as casinos and the wagering games include card games wherein the symbols comprise familiar, common playing cards. Card games such as twenty-one or blackjack, poker and variations of poker and the like are excellent card games for use in casinos. Desirable attributes of casino card games are that the games are exciting, they can be learned and understood easily by players, and they move or are played rapidly to a wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of hands placed, reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to increase the amount of revenue generated by a game without changing games, particularly a popular game, without making obvious changes in the play of the game that affect the hold of the casino, and without increasing the minimum size of wagers. One approach to speeding play is directed specifically to the fact that playing time is decreased by shuffling and dealing events. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, thereby increasing playing time. Such devices also add to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,513,969 (Samsel, Jr.) and U.S. Pat. No. 4,515,367 (Howard) disclose automatic card shufflers. The Samsel, Jr. patent discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses an automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 3,897,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card-shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,240,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card-sorting devices that require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. No. 4,770,421 (Hoffman) discloses a card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a finite number of distribution schedules sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Each distribution schedule comprises a preselected distribution sequence that is fixed as opposed to random. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the microprocessor completes the execution of a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two-step shuffle, i.e., a program is required to select the order in which stacks are loaded and moved onto the second elevator and delivers a shuffled deck or decks. The Hoffman patent does not disclose randomly selecting a location within the vertical stack for delivering each card. Nor does the patent disclose a single stage process that randomly delivers hands of shuffled cards with a degree of randomness satisfactory to casinos and players. Further, there is no disclosure in the Hoffman patent about how to deliver a preselected number of cards to a preselected number of hands ready for use by players or participants in a game. Another card handling apparatus with an elevator is disclosed in U.S. Pat. No. 5,683,085 (Johnson et al.). U.S. Pat. No. 4,750,743 (Nicoletti) discloses a playing card dispenser including an inclined surface and a card pusher for urging cards down the inclined surface. Other known card shuffling devices are disclosed in U.S. Pat. No. 2,778,644 (Stephenson), U.S. Pat. No. 4,497,488 (Plevyak et al.), U.S. Pat. Nos. 4,807,884 and 5,275,411 (both Breeding) and U.S. Pat. No. 5,695,189 (Breeding et al.). The Breeding patents disclose machines for automatically shuffling a single deck of cards including a deck-receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. The Breeding single deck shufflers used in connection with LET IT RIDE® Stud Poker are programmed to first shuffle a deck of cards, and then sequentially deliver hands of a preselected number of cards for each player. LET IT RIDE® stud poker is the subject of U.S. Pat. Nos. 5,288,081 and 5,437,462 (Breeding), which are herein incorporated by reference. The Breeding single deck shuffler delivers three cards from the shuffled deck in sequence to a receiving rack. The dealer removes the first hand from the rack. Then, the next hand is automatically delivered. The dealer inputs the number of players, and the shuffler deals out that many hands plus a dealer hand. The Breeding single deck shufflers are capable of shuffling a single deck and delivering seven player hands plus a dealer hand in approximately 60 seconds. The Breeding shuffler is a complex electromechanical device that requires tuning and adjustment during installation. The shufflers also require periodic adjustment. The Breeding et al. device, as exemplified in U.S. Pat. Nos. 6,068,258; 5,695,189; and 5,303,921 are directed to shuffling machines for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none discloses or suggests a device and method for providing a plurality of hands of cards, wherein the hands are ready for play and wherein each comprises a randomly selected arrangement of cards, without first randomly shuffling the entire deck. A device and method which provides a plurality of ready-to-play hands of a selected number of randomly arranged cards at a greater speed than known devices without shuffling the entire deck or decks would speed and facilitate the casino play of card games. U.S. Pat. No. 6,149,154 describes an apparatus for moving playing cards from a first group of cards into plural groups, each of said plural groups containing a random arrangement of cards, said apparatus comprising: a card receiver for receiving the first group of unshuffled cards; a single stack of card-receiving compartments generally adjacent to the card receiver, said stack generally adjacent to and movable with respect to the first group of cards; and a drive mechanism that moves the stack by means of translation relative to the first group of unshuffled cards; a card-moving mechanism between the card receiver and the stack; and a processing unit that controls the card-moving mechanism and the drive mechanism so that a selected quantity of cards is moved into a selected number of compartments.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides an electromechanical card handling apparatus and method for creating or generating a plurality of hands of cards from a group of unshuffled cards wherein each hand contains a predetermined number of randomly selected or arranged cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in homes, card clubs, or for handling or sorting sheet material generally. In one embodiment, an apparatus moves playing cards from a first group of unshuffled cards into shuffled hands of cards, wherein at least one and usually all of the hands contains a random arrangement or random selection of a preselected number of cards. In one embodiment, the total number of cards in all of the hands is less than the total number of cards in the first group of unshuffled cards (e.g., one or more decks of playing cards). In another embodiment, all of the cards in the first group of unshuffled cards are distributed into hands. The apparatus comprises a card receiver for receiving the first group of cards, a stack of card receiving compartments (e.g., a generally vertical stack of horizontally disposed card-receiving compartments or carousel of rotating stacks) generally adjacent to the card receiver (the vertical stack generally is vertically movable and a carousel is generally rotatable), an elevator for raising and lowering the vertical stack or a drive to rotate the carousel, a card-moving mechanism between the card receiver and the card receiving compartments for moving cards, one at a time, from the card receiver to a selected card-receiving compartment, and a microprocessor that controls the card-moving mechanism and the elevator or drive mechanism so that each card in the group of unshuffled cards is placed randomly into one of the card-receiving compartments. Sensors may monitor and may trigger at least certain operations of the apparatus, including activities of the microprocessor, card moving mechanisms, security monitoring, and the elevator or carousel. The controlling microprocessor, including software, randomly selects or identifies which slot or card-receiving compartment will receive each card in the group before card-handling operations begin. For example, a card designated as card 1 may be directed to a slot 5 (numbered here by numeric position within an array of slots), a card designated as card 2 may be directed to slot 7 , a card designated as card 3 may be directed to slot 3 , etc. Each slot or compartment may therefore be identified and treated to receive individual hands of defined numbers of randomly selected cards or the slots may be later directed to deliver individual cards into a separate hand forming slot or tray. In the first example, a hand of cards is removed as a group from an individual slot. In the second example, each card defining a hand is removed from more than one compartment (where one or more cards are removed from a slot), and the individual cards are combined in a hand-receiving tray to form a randomized hand of cards. Another feature of the present invention is that it provides a programmable card handling machine with a display and appropriate inputs for adjusting the machine to any of a number of games wherein the inputs include one or more of a number of cards per hand or the name of the game selector, a number of hands delivered selector and a trouble-shooting input. Residual cards after all designated hands are dealt may be stored within the machine, delivered to an output tray that is part of the machine, or delivered for collection out of the machine, usually after all hands have been dealt and/or delivered. Additionally, there may be an elevator speed or carousel drive speed adjustment and position sensor to accommodate or monitor the position of the elevator or carousel as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations, thereby reducing the number of back-up machines or units required at a casino. The display may include a game mode or selected game display, and use a cycle rate and/or hand count monitor and display for determining or monitoring the usage of the machine. Another feature of the present invention is that it provides an electromechanical playing card handling apparatus for more rapidly generating multiple random hands of playing cards as compared to known devices. The preferred device may complete a cycle in approximately 30 seconds, which is double the speed (half the time) of the Breeding single deck shuffler disclosed in U.S. Pat. No. 4,807,884, which has itself achieved significant commercial success. Although some of the groups of playing cards (including player and dealer hands and discarded or unused cards) arranged by the apparatus in accordance with the method of the present invention may contain the same number of cards, the cards within any one group or hand are randomly selected and placed therein. Other features of the invention include a reduction of set up time, increased reliability, lower maintenance and repair costs, and a reduction or elimination of problems such as card counting, possible dealer manipulation and card tracking. These features increase the integrity of a game and enhance casino security. Yet another feature of the card handling apparatus of the present invention is that it converts at least a single deck of unshuffled cards into a plurality of hands ready for use in playing a game. The hands converted from the at least a single deck of cards are substantially completely randomly ordered, i.e., the cards comprising each hand are randomly placed into that hand. To accomplish this random distribution, a preferred embodiment of the apparatus includes a number of vertically stacked, horizontally disposed card-receiving compartments one above another or a carousel arrangement of adjacent radially disposed stacks into which cards are inserted, one at a time, until an entire group of cards is distributed. In this preferred embodiment, each card-receiving compartment is filled (that is, filled to the assigned number of cards for a hand, with the residue of cards being fed into the discard compartment or compartments, or discharged from the apparatus at a card discharge port, for example), regardless of the number of players participating in a particular game. For example, when the card handling apparatus is being used for a seven-player game, at least seven player compartments, a dealer compartment and at least one compartment for cards not used in forming the random hands to be used in the seven-player game are filled. After the last card from the unshuffled group is delivered into these various compartments, the hands are ready to be removed from the compartments and put into play, either manually, automatically, or with a combined automatic feed and hand removal. For example, the cards in the compartments may be so disposed as they are removable by hand by a dealer (a completely manual delivery from the compartment), hands are discharged into a readily accessible region (e.g., tray or support) for manual removal (a combination of mechanical/automatic delivery and manual delivery), or hands are discharged and delivered to a specific player/dealer/discharge position (completely automatic delivery). The device can also be readily adapted for games that deal a hand or hands only to the dealer, such as David Sklansky's Hold 'Em Challenge™ poker game, described in U.S. Pat. No. 5,382,025. One type of device of the present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Generally, the operation of the card handling apparatus of the present invention will form at least a fixed number of hands of cards corresponding to the maximum number of players at a table, optionally plus a dealer hand (if there is a dealer playing in the game), and usually a discard pile. For a typical casino table having seven player stations, the device of the present invention would preferably have at least or exactly nine compartments (if there are seven players and a dealer) or at least or exactly eight compartments (if there are seven players and no dealer playing in the game) that are actually utilized in the operation of the apparatus in dealing a game, wherein each of seven player compartments contains the same number of cards. Depending upon the nature of the game, the compartments for the dealer hand may have the same or different number of cards as the player compartments, and the discard compartment may contain the same or different number of cards as the player compartments and/or the dealer compartment, if there is a dealer compartment. However, it is most common for the discard compartment to contain a different number of cards than the player and/or dealer compartments and examples of the apparatus having this capability enables play of a variety of games with a varying number of players and/or a dealer. In another example of the invention, more than nine compartments are provided and more than one compartment can optionally be used to collect discards. Providing extra compartments also increases the possible uses of the machine. For example, a casino might want to use the shuffler for an 8-player over-sized table. Most preferably, the device is programmed to deliver a fixed number of hands, or deliver hands until the dealer (whether playing in the game or operating as a house dealer) presses an input button. The dealer input tells the microprocessor that the last hand has been delivered (to the players or to the players and dealer), and then the remaining cards in the compartments (excess player compartments and/or discard compartment and/or excess card compartment) will be unloaded into an output or discard compartment or card collection compartment outside the shuffler (e.g., where players' hands are placed after termination or completion of play with their hands in an individual game). The discard, excess or unused card hand (i.e., the cards placed in the discard compartment or slot) may contain more cards than player or dealer hand compartments and, thus, the discard compartment may be larger than the other compartments. In a preferred embodiment, the discard compartment is located in the middle of the generally vertically arranged stack of compartments. In another example of the invention, the discard compartment or compartments are of the same size as the card receiving compartments. The specific compartment(s) used to receive discards or cards can also change from shuffle to shuffle. Another feature of the invention is that the apparatus of the present invention may provide for the initial top feeding or top loading of an unshuffled group of cards, thereby facilitating use by the dealer. The hand receiving portion of the machine may also facilitate use by the dealer, by having cards displayed or provided so that a dealer is able to conveniently remove a randomized hand from the upper portion of the machine or from a tray, support or platform extending from the machine to expose the cards to a vertical or nearly vertical access (within 0 to 30 or 50 degrees of horizontal, for example) by the dealer's hand. An additional feature of the card handling apparatus of the present invention is that it facilitates and significantly speeds the play of casino wagering games, particularly those games calling for a certain, fixed number of cards per hand (e.g., Caribbean Stud® poker, Let It Ride® poker, Pai Gow Poker, Tres Card™ poker, Three Card Poker®, Hold 'Em Challenge™ poker, stud poker games, wild card poker games, match card games and the like), making the games more exciting and less tedious for players, and more profitable for casinos. The device of the present invention is believed to deliver random hands at an increased speed compared to other shufflers, such as approximately twice the speed of known devices. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled or used group of cards into a plurality of hands, each hand containing the same number of randomly arranged cards. If the rules of the game require delivery of hands of unequal numbers of cards, the device of the present invention could be programmed to distribute the cards according to any preferred card count. It should be understood that the term ‘unshuffled’ is a relative term. A deck is unshuffled a) when it is being recycled after play and b) after previous mechanical or manual shuffling before a previous play of a game, as well as c) when a new deck is inserted into the machine with or without ever having been previously shuffled either manually or mechanically. The first step of this process is affected by the dealer placing the initial group of cards into a card receiver of the apparatus. The apparatus is started and, under the control of the integral microprocessor, assigns each card in the initial group to a compartment (randomly selecting compartments separately for each card), based on the selected number of hands, and a selected number of cards per hand. Each hand is contained in a separate compartment of the apparatus, and each is delivered (upon the dealer's demand or automatically) by the apparatus from that compartment to a hand receiver, hand support or hand platform, either manually or automatically, for the dealer to distribute it to a player. The number of hands created by the apparatus within each cycle is preferably selected to correspond to the maximum number of hands required to participate in a game (accounting for player hands, dealer hands, or house hands), and the number or quantity of cards per hand is programmable according to the game being played. The machine can also be programmed to form a number of hands corresponding to the number of players at the table. The dealer could be required to input the number of players at the table. The dealer would be required to input the number of players at the table, at least as often as the number of players change. The keypad input sends a signal to the microprocessor and then the microprocessor in turn controls the components to produce only the desired number of hands. Alternatively, bet sensors are used to sense the number of players present. The game controller communicates the number of bets placed to the shuffler, and a corresponding number of hands are formed. Each time a new group of unshuffled cards, hand shuffled cards, used cards or a new deck(s) of cards is loaded into the card receiver and the apparatus is activated, the operation of the apparatus involving that group of cards, i.e., the forming of that group of cards into hands of random cards, comprises a new cycle. Each cycle is unique and is effected by the microprocessor, which microprocessor is programmed with software to include random number generating capability. The software assigns a card number to the each card and then randomly selects or correlates a compartment to each card number. Under the control of the microprocessor, the elevator or carousel aligns the selected compartment with the card feed mechanism in order to receive the next card. The software then directs each numbered card to the selected slots by operating the elevator or carousel drive to position that slot to receive a card. The present invention also describes an alternative and optional unique method and component of the system for aligning the feed of cards into respective compartments and for forming decks of randomly arranged cards. The separators between compartments may have an edge facing the direction from which cards are fed, that edge having two acute angled surfaces (away from parallelism with the plane of the separator) so that cards may be deflected in either direction (above/below, left/right, top/bottom) with respect to the plane of the separator. When there are already one or more cards within a compartment, such deflection by the edge of the separator may insert cards above or below the card(s) in the compartment. The component that directs, moves, and/or inserts cards into the compartments may be controllably oriented to direct a leading edge of each card towards the randomly selected edge of a separator so that the card is inserted in the randomly selected compartment and in the proper orientation (above/below, left/right, top/bottom) with respect to a separator, the compartments, and card(s) in the compartments. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly costs and set up costs. The preferred device also has fewer parts, which should provide greater reliability than known devices. Another optional feature of the present invention is to have all compartments of equal size and fed into a final deck-forming compartment so that the handling of the cards effects a shuffling of the deck, without creating actual hands for play by players and/or the dealer. The equipment is substantially similar, with the compartments that were previously designated as hands or discards, having the cards contained therein subsequently stacked to form a shuffled deck(s). Another feature of the present invention is a mechanism that feeds cards into the compartments with a high rate of accuracy and that minimizes or eliminates wear on the cards, extending the useful life of the cards. The mechanism comprises a feed roller that remains in contact with the moving card (and possibly the subsequently exposed, underlying card) as cards are moved towards the second card-moving system (e.g., a pair of speed-up rollers), but advantageously disengages from the contact roller drive mechanism when a leading edge of the moving card contacts or is grasped and moved forward by the second card-moving system. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.
20041022
20060711
20050310
91820.0
2
LAYNO, BENJAMIN
HAND FORMING SHUFFLER WITH ON DEMAND HAND DELIVERY
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,972,133
ACCEPTED
Apparatus, system, and method for down-converting and up-converting electromagnetic signals
Methods, systems, and apparatuses, for down-converting and up-converting an electromagnetic signal. In embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate the bias signal. The output of the switch is filtered, and the desired harmonic is output.
1. An apparatus for down-converting an electromagnetic signal, comprising: a first and second capacitor each having a first and second port; a first and second switching device each having a first, second, and third port; and a first and second impedance device each having a first and second port, wherein the second port of the first capacitor is electrically coupled to the second port of the first switching device and the second port of the first impedance device, the second port of the second capacitor is electrically coupled to the second port of the second switching device and the second port of the second impedance device, and the first port of the first switching device is electrically coupled to the first port of the second switching device and the first port of the first and second impedance device, and wherein a first switching signal is applied to the third port of the first switching device, and a second switching signal is applied to the third port of the second switching device. 2. The apparatus of claim 1, wherein the first capacitor discharges between six percent to fifty percent of the total charge stored therein during a period of time that the first switching device is open, and the second capacitor discharges between six percent to fifty percent of the total charge stored therein during a period of time that the second switching device is open. 3. The apparatus of claim 1, wherein the first capacitor discharges between six percent to twenty-five percent of the total charge stored therein during a period of time that the first switching device is open, and the second capacitor discharges between six percent to twenty-five percent of the total charge stored therein during a period of time that the second switching device is open. 4. The apparatus of claim 1, wherein the first capacitor discharges between ten percent to twenty percent of the total charge stored therein during a period of time that the first switching device is open, and the second capacitor discharges between ten percent to twenty percent of the total charge stored therein during a period of time that the second switching device is open. 5. The apparatus of claim 1, wherein the first capacitor discharges between fifteen percent to twenty-five percent of the total charge stored therein during a period of time that the first switching device is open, and the second capacitor discharges between fifteen percent to twenty-five percent of the total charge stored therein during a period of time that the second switching device is open. 6. The apparatus of claim 1, wherein the first impedance device is an input impedance of a first amplifier and the second impedance device is an input impedance of a second amplifier. 7. The apparatus of claim 1, wherein the first and second switching devices are transistors. 8. The apparatus of claim 1, wherein the first and second switching devices are FETs. 9. The apparatus of claim 1, wherein the first and second switching devices are JFETs. 10. The apparatus of claim 1, wherein the first and second switching devices are MOSFETs. 11. The apparatus of claim 1, wherein the first port of the first switching device, the first port of the second switching device, and the first port of the first and second impedance device are each coupled to an AC ground. 12. The apparatus of claim 1, further comprising: a first low-pass filter having an input coupled to the second port of the first capacitor, the second port of the first switching device, and the second port of the first impedance device; and a second low-pass filter having an input coupled to the second port of the second capacitor, the second port of the second switching device, and the second port of the second impedance device; wherein the first and second low-pass filters remove a carrier signal from first and second down-converted signals, respectively. 13. The apparatus of claim 12, wherein the first and second low-pass filters are incorporated into first and second amplifiers, respectively. 14. The apparatus of claim 1, further comprising: a first aperture generator having an input coupled to a first clock signal; and a second aperture generator having an input coupled to a second clock signal; wherein the first and second aperture generators generate the first and second switching signals, respectively. 15. The apparatus of claim 14, wherein the second clock signal is approximately one hundred eighty degrees out of phase with respect to the first clock signal. 16. The apparatus of claim 1, wherein a period of the first switching signal includes at least one of a third or a fifth harmonic of an information signal, and wherein a period of the second switching signal includes at least one of a third or a fifth harmonic of an inverted information signal. 17. The apparatus of claim 1, wherein the first switching device is closed for approximately one-half of a cycle of an information signal per a period of the first switching signal, and wherein the second switching device is closed for approximately one-half of a cycle of an inverted information signal per a period of the second switching signal. 18. A method for down-converting an electromagnetic signal, comprising the steps of: (1) receiving an information signal; (2) inverting the information signal to generate an inverted information signal; (3) electrically coupling the information signal to a first capacitor and the inverted information signal to a second capacitor; (4) controlling a charging and discharging cycle of the first and second capacitors with first and second switching devices electrically coupled to the first and second capacitors, respectively; and (5) performing a plurality of charging and discharging cycles of the first and second capacitors to generate first and second down-converted information signals across first and second impedance devices, respectively; wherein the information signal is used to store a charge on the first capacitor when the first switching device is closed and the inverted information signal is used to store a charge on the second capacitor when the second switching device is closed. 19. The method of claim 18, wherein the first capacitor discharges between six percent to fifty percent of the total charge stored therein during a period of time that the first switching device is open, and wherein the second capacitor discharges between six percent to fifty percent of the total charge stored therein during a period of time that the second switching device is open 20. The method of claim 18, wherein the first capacitor discharges between ten percent to twenty-five percent of the total charge stored therein during a period of time that the first switching device is open, and wherein the second capacitor discharges between ten percent to twenty-five percent of the total charge stored therein during a period of time that the second switching device is open. 21. The method of claim 18, wherein the first capacitor discharges between fifteen percent to thirty percent of the total charge stored therein during a period of time that the first switching device is open, and wherein the second capacitor discharges between fifteen percent to thirty percent of the total charge stored therein during a period of time that the second switching device is open. 22. The method of claim 18, further comprising the step of: amplifying the first and second down-converted information signals. 23. The method of claim 18, further comprising the step of: removing a carrier signal from the first and second down-converted information signals.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional of pending application Ser. No. 09/855,851, filed on May 16, 2001, which is a continuation-in-part of pending U.S. patent application Ser. No. 09/550,644, filed Apr. 14, 2000, which are each herein incorporated by reference in their entireties, and U.S. patent application Ser. No. 09/855,851 claims the benefit of U.S. Provisional Application 60/204,796, filed May 16, 2000, U.S. Provisional Application 60/213,363, filed Jun. 21, 2000, and U.S. Provisional Application 60/272,043, filed Mar. 1, 2001, all of which are herein incorporated by reference in their entireties. The following patents and patent applications of common assignee are related to the present application, and are herein incorporated by reference in their entireties: U.S. Pat. No. 6,061,551, entitled “Method and System for Down-Converting Electromagnetic Signals,” filed Oct. 21, 1998 and issued May 9, 2000. U.S. Pat. No. 6,091,940, entitled “Method and System for Frequency Up-Conversion,” filed Oct. 21, 1998 and issued Jul. 18, 2000. U.S. Pat. No. 6,061,555, entitled “Method and System for Ensuring Reception of a Communications Signal,” filed Oct. 21, 1998 and issued May 9, 2000. U.S. Pat. No. 6,049,706, entitled “Integrated Frequency Translation And Selectivity,” filed Oct. 21, 1998 and issued Apr. 11, 2000. “Applications of Universal Frequency Translation,” Ser. No. 09/261,129, filed Mar. 3, 1999. “Method, System, and Apparatus for Balanced Frequency Up-Conversion of a Baseband Signal,” Ser. No. 09/525,615, filed Mar. 14, 2000. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to the down-conversion and up-conversion of an electromagnetic signal using a universal frequency translation module. 2. Related Art Various communication components exist for performing frequency down-conversion, frequency up-conversion, and filtering. Also, schemes exist for signal reception in the face of potential jamming signals. SUMMARY OF THE INVENTION Briefly stated, the present invention is directed to methods, systems, and apparatuses for down-converting and/or up-converting an electromagnetic signal, and applications thereof. In an embodiment, the invention down-converts the electromagnetic signal to an intermediate frequency signal. In another embodiment, the invention down-converts the electromagnetic signal to a demodulated baseband information signal. In another embodiment, the electromagnetic signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. In one embodiment, the invention uses a stable, low frequency signal to generate a higher frequency signal with a frequency and phase that can be used as stable references. In another embodiment, the present invention is used as a transmitter. In this embodiment, the invention accepts an information signal at a baseband frequency and transmits a modulated signal at a frequency higher than the baseband frequency. In an embodiment, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations are typically performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. The methods and systems of transmitting vary slightly depending on the modulation scheme being used. For some embodiments using frequency modulation (FM) or phase modulation (PM), the information signal is used to modulate an oscillating signal to create a modulated intermediate signal. If needed, this modulated intermediate signal is “shaped” to provide a substantially optimum pulse-width-to-period ratio. This shaped signal is then used to control a switch that opens and closes as a function of the frequency and pulse width of the shaped signal. As a result of this opening and closing, a signal that is harmonically rich is produced with each harmonic of the harmonically rich signal being modulated substantially the same as the modulated intermediate signal. Through proper filtering, the desired harmonic (or harmonics) is selected and transmitted. For some embodiments using amplitude modulation (AM), the switch is controlled by an unmodulated oscillating signal (which may, if needed, be shaped). As the switch opens and closes, it gates a reference signal, which is the information signal. In an alternate implementation, the information signal is combined with a bias signal to create the reference signal, which is then gated. The result of the gating is a harmonically rich signal having a fundamental frequency substantially proportional to the oscillating signal and an amplitude substantially proportional to the amplitude of the reference signal. Each of the harmonics of the harmonically rich signal also has amplitudes proportional to the reference signal, and is thus considered to be amplitude modulated. Just as with the FM/PM embodiments described above, through proper filtering, the desired harmonic (or harmonics) is selected and transmitted. The invention is applicable to any type of electromagnetic signal, including but not limited to, modulated carrier signals (the invention is applicable to any modulation scheme or combination thereof) and unmodulated carrier signals. Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. BRIEF DESCRIPTION OF THE FIGURES The invention shall be described with reference to the accompanying figures, wherein: FIG. 1A is a block diagram of a universal frequency translation (UFT) module according to an embodiment of the invention. FIG. 1B is a more detailed diagram of a universal frequency translation (UFT) module according to an embodiment of the invention. FIG. 1C illustrates a UFT module used in a universal frequency down-conversion (UFD) module according to an embodiment of the invention. FIG. 1D illustrates a UFT module used in a universal frequency up-conversion (UFU) module according to an embodiment of the invention. FIG. 2 is a block diagram of a universal frequency translation (UFT) module according to an alternative embodiment of the invention. FIGS. 3A and 3G are example aliasing modules according to embodiments of the invention. FIGS. 3B-3F are example waveforms used to describe the operation of the aliasing modules of FIGS. 3A and 3G. FIG. 4 illustrates an energy transfer system with an optional energy transfer signal module according to an embodiment of the invention. FIG. 5 illustrates an example aperture generator. FIG. 6A illustrates an example aperture generator. FIG. 6B illustrates an oscillator according to an embodiment of the present invention. FIGS. 7A-B illustrate example aperture generators. FIG. 8 illustrates an aliasing module with input and output impedance match according to an embodiment of the invention. FIG. 9 illustrates an example energy transfer module with a switch module and a reactive storage module according to an embodiment of the invention. FIG. 10 is a block diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention. FIG. 11 is a more detailed diagram of a universal frequency up-conversion (UFU) module according to an embodiment of the invention. FIG. 12 is a block diagram of a universal frequency up-conversion (UFU) module according to an alternative embodiment of the invention. FIGS. 13A-13I illustrate example waveforms used to describe the operation of the UFU module. FIG. 14 illustrates a unified down-converting and filtering (UDF) module according to an embodiment of the invention. FIG. 15 illustrates an exemplary I/Q modulation embodiment of a receiver according to the invention. FIG. 16A is an example two-switch receiver according to an embodiment of the invention. FIGS. 16B-16G are example waveforms used to describe the operation of the example two-switch receiver of FIG. 16A. FIG. 16H is an example two-switch receiver according to an embodiment of the invention. FIGS. 16I-16N are example waveforms used to describe the operation of the example two-switch receiver of FIG. 16H. FIG. 16O is a two-switch receiver and optional amplifier according to an embodiment of the invention. FIG. 17 is an example two-switch receiver according to an embodiment of the invention. FIG. 18A is an example one-switch receiver according to an embodiment of the invention. FIGS. 18B-18E are example waveforms used to describe the operation of the example one-switch receiver of FIG. 18A. FIG. 19 is an example one-switch receiver according to an embodiment of the invention. FIG. 20A is an example one-switch receiver according to an embodiment of the invention. FIGS. 20B-20D are example waveforms used to describe the operation of the example one-switch receiver of FIG. 20A. FIG. 20E is an example one-switch receiver according to an embodiment of the invention. FIG. 20F is an example one-switch receiver according to an embodiment of the invention. FIG. 21 is an example one-switch receiver according to an embodiment of the invention. FIGS. 22-23 illustrate exemplary block diagrams of a transmitter operating in an I/Q modulation mode, according to embodiments of the invention. FIG. 24A is an example two-switch transmitter according to an embodiment of the invention. FIGS. 24B-24K are example waveforms used to describe the operation of the example two-switch transmitter of FIG. 24A. FIG. 25A is an example two-switch transmitter according to an embodiment of the invention. FIGS. 25B-25F are example waveforms used to describe the operation of the example two-switch transmitter of FIG. 25A. FIG. 26A is an example two-switch transmitter according to an embodiment of the invention. FIGS. 26B-26F are example waveforms used to describe the operation of the example two-switch transmitter of FIG. 26A. FIG. 27A is an example one-switch transmitter according to an embodiment of the invention. FIGS. 27B-27E are example waveforms used to describe the operation of the example one-switch transmitter of FIG. 27A. FIG. 28 illustrates a block diagram of a transceiver implementation according to an embodiment of the present invention. FIG. 29 illustrates an exemplary receiver using UFD conversion techniques according to an embodiment of the present invention. FIG. 30 illustrates an exemplary transmitter according to an embodiment of the present invention. FIGS. 31A, 31B, and 31C illustrate an exemplary transmitter according to an embodiment of the present invention in a transceiver circuit with a universal frequency down conversion receiver operating in a half-duplex mode for an FM and PM modulation embodiment. FIG. 32 illustrates an exemplary half-duplex mode transceiver implementation according to an embodiment of the present invention. FIG. 33 illustrates an exemplary full-duplex mode transceiver implementation according to an embodiment of the present invention. FIG. 34 is an example one-switch transceiver according to an embodiment of the invention. FIG. 35 is an example digital aperture generator circuit according to an embodiment of the invention. FIG. 36 is an example modulated carrier signal. FIG. 37 is an example control signal for a conventional receiver. FIG. 38 is an example control signal according to the invention. FIG. 39 illustrates an aperture and a voltage signal for a conventional receiver. FIG. 40 illustrates an aperture and a voltage signal according to an embodiment of the invention. FIG. 41 illustrates voltage signals according to embodiments of the invention. FIG. 42 is a plot of FET drain current as a function of drain-source voltage in embodiments of the invention. FIG. 43 illustrates how FET linearity is enhanced by increasing drain-source voltage in embodiments of the invention. FIG. 44 illustrates how FET linearity is enhanced when gate-source voltage is made proportional to drain-source voltage in embodiments of the invention. FIGS. 45A-E illustrates how FET drain current distortion is reduced in embodiments of the invention. FIGS. 46-53 further illustrate how FET linearity is enhanced in embodiments of the invention. FIGS. 54-56 illustrate example processor embodiments according to the present invention. FIG. 57 illustrates the relationship between beta and the output charge of a processor according to an embodiment of the present invention. FIG. 58 illustrates an RC processor according to an embodiment of the present invention coupled to a load resistance. FIG. 59 illustrates an example implementation of the present invention. FIG. 60 illustrates an example charge/discharge timing diagram according to an embodiment of the present invention. FIG. 61 illustrates example energy transfer pulses (control signal) according to an embodiment of the present invention. FIG. 62 illustrates a flowchart of a method for down-converting an electromagnetic signal according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION Table of Contents 1. Introduction 2. Universal Frequency Translation 2.1 Frequency Down-Conversion 2.2 Optional Energy Transfer Signal Module 2.3 Impedance Matching 2.4 Frequency Up-Conversion 2.5 Enhanced Signal Reception 2.6 Unified Down-Conversion and Filtering 3. Example Embodiments of the Invention 3.1 Receiver Embodiments 3.1.1 In-Phase/Quadrature-Phase (I/Q) Modulation Mode Receiver Embodiments 3.1.2 Receiver Embodiments Having Two Aliasing Modules 3.1.3 Enhanced Single-Switch Receiver Embodiments 3.1.4 Other Receiver Embodiments 3.2 Transmitter Embodiments 3.2.1 In-Phase/Quadrature-Phase (I/Q) Modulation Mode Transmitter Embodiments 3.2.2 Enhanced Multi-Switch Transmitter Embodiments 3.2.3 Enhanced One-Switch Transmitter Embodiments 3.2.4 Other Transmitter Embodiments 3.3 Transceiver Embodiments 3.3.1 Example Half-Duplex Mode Transceiver 3.3.2 Example Full-Duplex Mode Transceiver 3.3.3 Enhanced Single Switch Transceiver Embodiment 3.3.4 Other Embodiments 4. Enhanced Operating Features of the Invention 4.1 Enhanced Power and Information Extraction Features 4.2 Charge Transfer and Correlation 4.3 Load Resistor Consideration 4.4 Enhancing the Linear Operating Features of Embodiments of the Invention 5. Example Method Embodiment of the Invention 6. Conclusion 1. Introduction The present invention is directed to the down-conversion and up-conversion of an electromagnetic signal using a universal frequency translation (UFT) module, transforms for same, and applications thereof. The systems described herein each may include one or more receivers, transmitters, and/or transceivers. According to embodiments of the invention, at least some of these receivers, transmitters, and/or transceivers are implemented using universal frequency translation (UFT) modules. The UFT modules perform frequency translation operations. Embodiments of the present invention are described below. Systems that transmit and receive EM signals using UFT modules exhibit multiple advantages. These advantages include, but are not limited to, lower power consumption, longer power source life, fewer parts, lower cost, less tuning, and more effective signal transmission and reception. These systems can receive and transmit signals across a broad frequency range. The structure and operation of embodiments of the UFT module, and various applications of the same are described in detail in the following sections, and in the referenced documents. 2. Universal Frequency Translation The present invention is related to frequency translation, and applications of same. Such applications include, but are not limited to, frequency down-conversion, frequency up-conversion, enhanced signal reception, unified down-conversion and filtering, and combinations and applications of same. FIG. 1A illustrates a universal frequency translation (UFT) module 102 according to embodiments of the invention. (The UFT module is also sometimes called a universal frequency translator, or a universal translator.) As indicated by the example of FIG. 1A, some embodiments of the UFT module 102 include three ports (nodes), designated in FIG. 1A as Port 1, Port 2, and Port 3. Other UFT embodiments include other than three ports. Generally, the UFT module 102 (perhaps in combination with other components) operates to generate an output signal from an input signal, where the frequency of the output signal differs from the frequency of the input signal. In other words, the UFT module 102 (and perhaps other components) operates to generate the output signal from the input signal by translating the frequency (and perhaps other characteristics) of the input signal to the frequency (and perhaps other characteristics) of the output signal. An example embodiment of the UFT module 103 is generally illustrated in FIG. 1B. Generally, the UFT module 103 includes a switch 106 controlled by a control signal 108. The switch 106 is said to be a controlled switch. As noted above, some UFT embodiments include other than three ports. For example, and without limitation, FIG. 2 illustrates an example UFT module 202. The example UFT module 202 includes a diode 204 having two ports, designated as Port 1 and Port 2/3. This embodiment does not include a third port, as indicated by the dotted line around the “Port 3” label. Other embodiments, as described herein, have more than three ports. The UFT module is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications. For example, a UFT module 115 can be used in a universal frequency down-conversion (UFD) module 114, an example of which is shown in FIG. 1C. In this capacity, the UFT module 115 frequency down-converts an input signal to an output signal. As another example, as shown in FIG. 1D, a UFT module 117 can be used in a universal frequency up-conversion (UFU) module 116. In this capacity, the UFT module 117 frequency up-converts an input signal to an output signal. These and other applications of the UFT module are described below. Additional applications of the UFT module will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. In some applications, the UFT module is a required component. In other applications, the UFT module is an optional component. 2.1 Frequency Down-Conversion The present invention is directed to systems and methods of universal frequency down-conversion, and applications of same. In particular, the following discussion describes down-converting using a Universal Frequency Translation Module. The down-conversion of an EM signal by aliasing the EM signal at an aliasing rate is fully described in U.S. Pat. No. 6,061,551 entitled “Method and System for Down-Converting Electromagnetic Signals,” the full disclosure of which is incorporated herein by reference. A relevant portion of the above-mentioned patent is summarized below to describe down-converting an input signal to produce a down-converted signal that exists at a lower frequency or a baseband signal. The frequency translation aspects of the invention are further described in other documents referenced above, such as application Ser. No. 09/550,644, entitled “Method and System for Down-converting an Electromagnetic Signal, and Transforms for Same, and Aperture Relationships.” FIG. 3A illustrates an aliasing module 300 for down-conversion using a universal frequency translation (UFT) module 302 which down-converts an EM input signal 304. In particular embodiments, aliasing module 300 includes a switch 308 and a capacitor 310 (or integrator). (In embodiments, the UFT module is considered to include the switch and integrator.) The electronic alignment of the circuit components is flexible. That is, in one implementation, the switch 308 is in series with input signal 304 and capacitor 310 is shunted to ground (although it may be other than ground in configurations such as differential mode). In a second implementation (see FIG. 3G), the capacitor 310 is in series with the input signal 304 and the switch 308 is shunted to ground (although it may be other than ground in configurations such as differential mode). Aliasing module 300 with UFT module 302 can be tailored to down-convert a wide variety of electromagnetic signals using aliasing frequencies that are well below the frequencies of the EM input signal 304. In one implementation, aliasing module 300 down-converts the input signal 304 to an intermediate frequency (IF) signal. In another implementation, the aliasing module 300 down-converts the input signal 304 to a demodulated baseband signal. In yet another implementation, the input signal 304 is a frequency modulated (FM) signal, and the aliasing module 300 down-converts it to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. Each of the above implementations is described below. In an embodiment, the control signal 306 includes a train of pulses that repeat at an aliasing rate that is equal to, or less than, twice the frequency of the input signal 304. In this embodiment, the control signal 306 is referred to herein as an aliasing signal because it is below the Nyquist rate for the frequency of the input signal 304. Preferably, the frequency of control signal 306 is much less than the input signal 304. A train of pulses 318 as shown in FIG. 3D controls the switch 308 to alias the input signal 304 with the control signal 306 to generate a down-converted output signal 312. More specifically, in an embodiment, switch 308 closes on a first edge of each pulse 320 of FIG. 3D and opens on a second edge of each pulse. When the switch 308 is closed, the input signal 304 is coupled to the capacitor 310, and charge is transferred from the input signal to the capacitor 310. The charge stored during successive pulses forms down-converted output signal 312. Exemplary waveforms are shown in FIGS. 3B-3F. FIG. 3B illustrates an analog amplitude modulated (AM) carrier signal 314 that is an example of input signal 304. For illustrative purposes, in FIG. 3C, an analog AM carrier signal portion 316 illustrates a portion of the analog AM carrier signal 314 on an expanded time scale. The analog AM carrier signal portion 316 illustrates the analog AM carrier signal 314 from time to to time ti. FIG. 3D illustrates an exemplary aliasing signal 318 that is an example of control signal 306. Aliasing signal 318 is on approximately the same time scale as the analog AM carrier signal portion 316. In the example shown in FIG. 3D, the aliasing signal 318 includes a train of pulses 320 having negligible apertures that tend towards zero (the invention is not limited to this embodiment, as discussed below). The pulse aperture may also be referred to as the pulse width as will be understood by those skilled in the art(s). The pulses 320 repeat at an aliasing rate, or pulse repetition rate of aliasing signal 318. The aliasing rate is determined as described below. As noted above, the train of pulses 320 (i.e., control signal 306) control the switch 308 to alias the analog AM carrier signal 316 (i.e., input signal 304) at the aliasing rate of the aliasing signal 318. Specifically, in this embodiment, the switch 308 closes on a first edge of each pulse and opens on a second edge of each pulse. When the switch 308 is closed, input signal 304 is coupled to the capacitor 310, and charge is transferred from the input signal 304 to the capacitor 310. The charge transferred during a pulse is referred to herein as an under-sample. Exemplary under-samples 322 form down-converted signal portion 324 (FIG. 3E) that corresponds to the analog AM carrier signal portion 316 (FIG. 3C) and the train of pulses 320 (FIG. 3D). The charge stored during successive under-samples of AM carrier signal 314 form the down-converted signal 324 (FIG. 3E) that is an example of down-converted output signal 312 (FIG. 3A). In FIG. 3F, a demodulated baseband signal 326 represents the demodulated baseband signal 324 after filtering on a compressed time scale. As illustrated, down-converted signal 326 has substantially the same “amplitude envelope” as AM carrier signal 314. Therefore, FIGS. 3B-3F illustrate down-conversion of AM carrier signal 314. The waveforms shown in FIGS. 3B-3F are discussed herein for illustrative purposes only, and are not limiting. The aliasing rate of control signal 306 determines whether the input signal 304 is down-converted to an IF signal, down-converted to a demodulated baseband signal, or down-converted from an FM signal to a PM or an AM signal. Generally, relationships between the input signal 304, the aliasing rate of the control signal 306, and the down-converted output signal 312 are illustrated below: (Freq. of input signal 304)=n●(Freq. of control signal 306)±(Freq. of down-converted output signal 312) For the examples contained herein, only the “+” condition will be discussed. Example values of n include, but are not limited to, n={0.5, 1, 2, 3, 4, . . . } When the aliasing rate of control signal 306 is off-set from the frequency of input signal 304, or off-set from a harmonic or sub-harmonic thereof, input signal 304 is down-converted to an IF signal. This is because the under-sampling pulses occur at different phases of subsequent cycles of input signal 304. As a result, the under-samples form a lower frequency oscillating pattern. If the input signal 304 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the down-converted IF signal. For example, to down-convert a 901 MHZ input signal to a 1 MHZ IF signal, the frequency of the control signal 306 would be calculated as follows: (Freqinput−FreqIF)/n=Freqcontrol (901 MHZ−1 MHZ)/n=900/n For n={0.5, 1, 2, 3, 4, . . . }, the frequency of the control signal 306 would be substantially equal to 1.8 GHz, 900 MHZ, 450 MHZ, 300 MHZ, 225 MHZ, etc. Alternatively, when the aliasing rate of the control signal 306 is substantially equal to the frequency of the input signal 304, or substantially equal to a harmonic or sub-harmonic thereof, input signal 304 is directly down-converted to a demodulated baseband signal. This is because, without modulation, the under-sampling pulses occur at the same point of subsequent cycles of the input signal 304. As a result, the under-samples form a constant output baseband signal. If the input signal 304 includes lower frequency changes, such as amplitude, frequency, phase, etc., or any combination thereof, the charge stored during associated under-samples reflects the lower frequency changes, resulting in similar changes on the demodulated baseband signal. For example, to directly down-convert a 900 MHZ input signal to a demodulated baseband signal (i.e., zero IF), the frequency of the control signal 306 would be calculated as follows: (Freqinput−FreqIF)/n=Freqcontrol (900 MHZ−0 MHZ)/n=900 MHZ/n For n={0.5, 1, 2, 3, 4, . . .}, the frequency of the control signal 306 should be substantially equal to 1.8 GHz, 900 MHZ, 450 MHZ, 300 MHZ, 225 MHZ, etc. Alternatively, to down-convert an input FM signal to a non-FM signal, a frequency within the FM bandwidth must be down-converted to baseband (i.e., zero IF). As an example, to down-convert a frequency shift keying (FSK) signal (a sub-set of FM) to a phase shift keying (PSK) signal (a subset of PM), the mid-point between a lower frequency F, and an upper frequency F2 (that is, [(F1+F2)÷2]) of the FSK signal is down-converted to zero IF. For example, to down-convert an FSK signal having F1 equal to 899 MHZ and F2 equal to 901 MHZ, to a PSK signal, the aliasing rate of the control signal 306 would be calculated as follows: Frequency ⁢ ⁢ of ⁢ ⁢ the ⁢ ⁢ input = ( F 1 + F 2 ) ÷ 2 = ( 899 ⁢ ⁢ MHZ + 901 ⁢ ⁢ MHZ ) ÷ 2 = 900 ⁢ ⁢ MHZ Frequency of the down-converted signal=0 (i.e., baseband) (Freqinput−FreqIF)/n=Freqcontrol (900 MHZ−0 MHZ)/n=900 MHZ/n For n={0.5, 1, 2, 3, 4 . . . }, the frequency of the control signal 306 should be substantially equal to 1.8 GHz, 900 MHZ, 450 MHZ, 300 MHZ, 225 MHZ, etc. The frequency of the down-converted PSK signal is substantially equal to one half the difference between the lower frequency F1 and the upper frequency F2. As another example, to down-convert a FSK signal to an amplitude shift keying (ASK) signal (a subset of AM), either the lower frequency F1 or the upper frequency F2 of the FSK signal is down-converted to zero IF. For example, to down-convert an FSK signal having F1 equal to 900 MHZ and F2 equal to 901 MHZ, to an ASK signal, the aliasing rate of the control signal 306 should be substantially equal to: (900 MHZ−0 MHZ)/n=900 MHZ/n, or (901 MHZ−0 MHZ)/n=901 MHZ/n. For the former case of 900 MHZ/n, and for n={0.5, 1, 2, 3, 4, . . . }, the frequency of the control signal 306 should be substantially equal to 1.8 GHz, 900 MHZ, 450 MHZ, 300 MHZ, 225 MHZ, etc. For the latter case of 901 MHZ/n, and for n={0.5, 1, 2, 3, 4, . . . }, the frequency of the control signal 306 should be substantially equal to 1.802 GHz, 901 MHZ, 450.5 MHZ, 300.333 MHZ, 225.25 MHZ, etc. The frequency of the down-converted AM signal is substantially equal to the difference between the lower frequency F1 and the upper frequency F2 (i.e., 1 MHZ). In an embodiment, the pulses of the control signal 306 have negligible apertures that tend towards zero. This makes the UFT module 302 a high input impedance device. This configuration is useful for situations where minimal disturbance of the input signal may be desired. In another embodiment, the pulses of the control signal 306 have non-negligible apertures that tend away from zero. This makes the UFT module 302 a lower input impedance device. This allows the lower input impedance of the UFT module 302 to be substantially matched with a source impedance of the input signal 304. This also improves the energy transfer from the input signal 304 to the down-converted output signal 312, and hence the efficiency and signal to noise (s/n) ratio of UFT module 302. Exemplary systems and methods for generating and optimizing the control signal 306, and for otherwise improving energy transfer and s/n ratio, are disclosed in U.S. Pat. No. 6,061,551 entitled “Method and System for Down-Converting Electromagnetic Signals.” When the pulses of the control signal 306 have non-negligible apertures, the aliasing module 300 is referred to interchangeably herein as an energy transfer module or a gated transfer module, and the control signal 306 is referred to as an energy transfer signal. Exemplary systems and methods for generating and optimizing the control signal 306 and for otherwise improving energy transfer and/or signal to noise ratio in an energy transfer module are described below. 2.2 Optional Energy Transfer Signal Module FIG. 4 illustrates an energy transfer system 401 that includes an optional energy transfer signal module 408, which can perform any of a variety of functions or combinations of functions including, but not limited to, generating the energy transfer signal 406. In an embodiment, the optional energy transfer signal module 408 includes an aperture generator, an example of which is illustrated in FIG. 5 as an aperture generator 502. The aperture generator 502 generates non-negligible aperture pulses 508 from an input signal 412. The input signal 412 can be any type of periodic signal, including, but not limited to, a sinusoid, a square wave, a saw-tooth wave, etc. Systems for generating the input signal 412 are described below. The width or aperture of the pulses 508 is determined by delay through the branch 506 of the aperture generator 502. Generally, as the desired pulse width increases, the difficulty in meeting the requirements of the aperture generator 502 decrease (i.e., the aperture generator is easier to implement). In other words, to generate non-negligible aperture pulses for a given EM input frequency, the components utilized in the example aperture generator 502 do not require reaction times as fast as those that are required in an under-sampling system operating with the same EM input frequency. The example logic and implementation shown in the aperture generator 502 are provided for illustrative purposes only, and are not limiting. The actual logic employed can take many forms. The example aperture generator 502 includes an optional inverter 510, which is shown for polarity consistency with other examples provided herein. An example implementation of the aperture generator 502 is illustrated in FIG. 6A. Additional examples of aperture generation logic are provided in FIGS. 7A and 7B. FIG. 7A illustrates a rising edge pulse generator 702, which generates pulses 508 on rising edges of the input signal 412. FIG. 7B illustrates a falling edge pulse generator 704, which generates pulses 508 on falling edges of the input signal 412. These circuits are provided for example only, and do not limit the invention. In an embodiment, the input signal 412 is generated externally of the energy transfer signal module 408, as illustrated in FIG. 4. Alternatively, the input signal 412 is generated internally by the energy transfer signal module 408. The input signal 412 can be generated by an oscillator, as illustrated in FIG. 6B by an oscillator 602. The oscillator 602 can be internal to the energy transfer signal module 408 or external to the energy transfer signal module 408. The oscillator 602 can be external to the energy transfer system 401. The output of the oscillator 602 may be any periodic waveform. The type of down-conversion performed by the energy transfer system 401 depends upon the aliasing rate of the energy transfer signal 406, which is determined by the frequency of the pulses 508. The frequency of the pulses 508 is determined by the frequency of the input signal 412. The optional energy transfer signal module 408 can be implemented in hardware, software, firmware, or any combination thereof. 2.3 Impedance Matching The example energy transfer module 300 described in reference to FIG. 3A, above, has input and output impedances generally defined by (1) the duty cycle of the switch module (i.e., UFT 302), and (2) the impedance of the storage module (e.g., capacitor 310), at the frequencies of interest (e.g. at the EM input, and intermediate/baseband frequencies). Starting with an aperture width of approximately ½ the period of the EM signal being down-converted as an example embodiment, this aperture width (e.g. the “closed time”) can be decreased (or increased). As the aperture width is decreased, the characteristic impedance at the input and the output of the energy transfer module increases. Alternatively, as the aperture width increases from ½ the period of the EM signal being down-converted, the impedance of the energy transfer module decreases. One of the steps in determining the characteristic input impedance of the energy transfer module could be to measure its value. In an embodiment, the energy transfer module's characteristic input impedance is 300 ohms. An impedance matching circuit can be utilized to efficiently couple an input EM signal that has a source impedance of, for example, 50 ohms, with the energy transfer module's impedance of, for example, 300 ohms. Matching these impedances can be accomplished in various manners, including providing the necessary impedance directly or the use of an impedance match circuit as described below. Referring to FIG. 8, a specific example embodiment using an RF signal as an input, assuming that the impedance 812 is a relatively low impedance of approximately 50 Ohms, for example, and the input impedance 816 is approximately 300 Ohms, an initial configuration for the input impedance match module 806 can include an inductor 906 and a capacitor 908, configured as shown in FIG. 9. The configuration of the inductor 906 and the capacitor 908 is a possible configuration when going from a low impedance to a high impedance. Inductor 906 and the capacitor 908 constitute an L match, the calculation of the values which is well known to those skilled in the relevant arts. The output characteristic impedance can be impedance matched to take into consideration the desired output frequencies. One of the steps in determining the characteristic output impedance of the energy transfer module could be to measure its value. Balancing the very low impedance of the storage module at the input EM frequency, the storage module should have an impedance at the desired output frequencies that is preferably greater than or equal to the load that is intended to be driven (for example, in an embodiment, storage module impedance at a desired 1 MHz output frequency is 2K ohm and the desired load to be driven is 50 ohms). An additional benefit of impedance matching is that filtering of unwanted signals can also be accomplished with the same components. In an embodiment, the energy transfer module's characteristic output impedance is 2K ohms. An impedance matching circuit can be utilized to efficiently couple the down-converted signal with an output impedance of, for example, 2K ohms, to a load of, for example, 50 ohms. Matching these impedances can be accomplished in various manners, including providing the necessary load impedance directly or the use of an impedance match circuit as described below. When matching from a high impedance to a low impedance, a capacitor 914 and an inductor 916 can be configured as shown in FIG. 9. The capacitor 914 and the inductor 916 constitute an L match, the calculation of the component values being well known to those skilled in the relevant arts. The configuration of the input impedance match module 806 and the output impedance match module 808 are considered in embodiments to be initial starting points for impedance matching, in accordance with embodiments of the present invention. In some situations, the initial designs may be suitable without further optimization. In other situations, the initial designs can be enhanced in accordance with other various design criteria and considerations. As other optional optimizing structures and/or components are utilized, their affect on the characteristic impedance of the energy transfer module should be taken into account in the match along with their own original criteria. 2.4 Frequency Up-Conversion The present invention is directed to systems and methods of frequency up-conversion, and applications of same. An example frequency up-conversion system 1000 is illustrated in FIG. 10. The frequency up-conversion system 1000 is now described. An input signal 1002 (designated as “Control Signal” in FIG. 10) is accepted by a switch module 1004. For purposes of example only, assume that the input signal 1002 is a FM input signal 1306, an example of which is shown in FIG. 13C. FM input signal 1306 may have been generated by modulating information signal 1302 onto oscillating signal 1304 (FIGS. 13A and 13B). It should be understood that the invention is not limited to this embodiment. The information signal 1302 can be analog, digital, or any combination thereof, and any modulation scheme can be used. The output of switch module 1004 is a harmonically rich signal 1006, shown for example in FIG. 13D as a harmonically rich signal 1308. The harmonically rich signal 1308 has a continuous and periodic waveform. FIG. 13E is an expanded view of two sections of harmonically rich signal 1308, section 1310 and section 1312. The harmonically rich signal 1308 may be a rectangular wave, such as a square wave or a pulse (although, the invention is not limited to this embodiment). For ease of discussion, the term “rectangular waveform” is used to refer to waveforms that are substantially rectangular. In a similar manner, the term “square wave” refers to those waveforms that are substantially square and it is not the intent of the present invention that a perfect square wave be generated or needed. Harmonically rich signal 1308 is comprised of a plurality of sinusoidal waves whose frequencies are integer multiples of the fundamental frequency of the waveform of the harmonically rich signal 1308. These sinusoidal waves are referred to as the harmonics of the underlying waveform, and the fundamental frequency is referred to as the first harmonic. FIG. 13F and FIG. 13G show separately the sinusoidal components making up the first, third, and fifth harmonics of section 1310 and section 1312. (Note that in theory there may be an infinite number of harmonics; in this example, because harmonically rich signal 1308 is shown as a square wave, there are only odd harmonics). Three harmonics are shown simultaneously (but not summed) in FIG. 13H. The relative amplitudes of the harmonics are generally a function of the relative widths of the pulses of harmonically rich signal 1006 and the period of the fundamental frequency, and can be determined by doing a Fourier analysis of harmonically rich signal 1006. According to an embodiment of the invention, the input signal 1306 may be shaped to ensure that the amplitude of the desired harmonic is sufficient for its intended use (e.g., transmission). An optional filter 1008 filters out any undesired frequencies (harmonics), and outputs an electromagnetic (EM) signal at the desired harmonic frequency or frequencies as an output signal 1010, shown for example as a filtered output signal 1314 in FIG. 13I. FIG. 11 illustrates an example universal frequency up-conversion (UFU) module 1101. The UFU module 1101 includes an example switch module 1004, which comprises a bias signal 1102, a resistor or impedance 1104, a universal frequency translator (UFT) 1150, and a ground 1108. The UFT 1150 includes a switch 1106. The input signal 1002 (designated as “Control Signal” in FIG. 11) controls the switch 1106 in the UFT 1150, and causes it to close and open. Harmonically rich signal 1006 is generated at a node 1105 located between the resistor or impedance 1104 and the switch 1106. Also in FIG. 11, it can be seen that an example optional filter 1008 is comprised of a capacitor 1110 and an inductor 1112 shunted to a ground 1114. The filter is designed to filter out the undesired harmonics of harmonically rich signal 1006. The invention is not limited to the UFU embodiment shown in FIG. 11. For example, in an alternate embodiment shown in FIG. 12, an unshaped input signal 1201 is routed to a pulse shaping module 1202. The pulse shaping module 1202 modifies the unshaped input signal 1201 to generate a (modified) input signal 1002 (designated as the “Control Signal” in FIG. 12). The input signal 1002 is routed to the switch module 1004, which operates in the manner described above. Also, the filter 1008 of FIG. 12 operates in the manner described above. The purpose of the pulse shaping module 1202 is to define the pulse width of the input signal 1002. Recall that the input signal 1002 controls the opening and closing of the switch 1106 in switch module 1004. During such operation, the pulse width of the input signal 1002 establishes the pulse width of the harmonically rich signal 1006. As stated above, the relative amplitudes of the harmonics of the harmonically rich signal 1006 are a function of at least the pulse width of the harmonically rich signal 1006. As such, the pulse width of the input signal 1002 contributes to setting the relative amplitudes of the harmonics of harmonically rich signal 1006. Further details of up-conversion as described in this section are presented in U.S. Pat. No. 6,091,940, entitled “Method and System for Frequency Up-Conversion,” incorporated herein by reference in its entirety. 2.5 Enhanced Signal Reception The present invention is directed to systems and methods of enhanced signal reception (ESR), and applications of same, which are described in the above-referenced U.S. Pat. No. 6,061,555, entitled “Method and System for Ensuring Reception of a Communications Signal,” incorporated herein by reference in its entirety. 2.6 Unified Down-Conversion and Filtering The present invention is directed to systems and methods of unified down-conversion and filtering (UDF), and applications of same. In particular, the present invention includes a unified down-converting and filtering (UDF) module that performs frequency selectivity and frequency translation in a unified (i.e., integrated) manner. By operating in this manner, the invention achieves high frequency selectivity prior to frequency translation (the invention is not limited to this embodiment). The invention achieves high frequency selectivity at substantially any frequency, including but not limited to RF (radio frequency) and greater frequencies. It should be understood that the invention is not limited to this example of RF and greater frequencies. The invention is intended, adapted, and capable of working with lower than radio frequencies. FIG. 14 is a conceptual block diagram of a UDF module 1402 according to an embodiment of the present invention. The UDF module 1402 performs at least frequency translation and frequency selectivity. The effect achieved by the UDF module 1402 is to perform the frequency selectivity operation prior to the performance of the frequency translation operation. Thus, the UDF module 1402 effectively performs input filtering. According to embodiments of the present invention, such input filtering involves a relatively narrow bandwidth. For example, such input filtering may represent channel select filtering, where the filter bandwidth may be, for example, 50 KHz to 150 KHz. It should be understood, however, that the invention is not limited to these frequencies. The invention is intended, adapted, and capable of achieving filter bandwidths of less than and greater than these values. In embodiments of the invention, input signals 1404 received by the UDF module 1402 are at radio frequencies. The UDF module 1402 effectively operates to input filter these RF input signals 1404. Specifically, in these embodiments, the UDF module 1402 effectively performs input, channel select filtering of the RF input signal 1404. Accordingly, the invention achieves high selectivity at high frequencies. The UDF module 1402 effectively performs various types of filtering, including but not limited to bandpass filtering, low pass filtering, high pass filtering, notch filtering, all pass filtering, band stop filtering, etc., and combinations thereof. Conceptually, the UDF module 1402 includes a frequency translator 1408. The frequency translator 1408 conceptually represents that portion of the UDF module 1402 that performs frequency translation (down conversion). The UDF module 1402 also conceptually includes an apparent input filter 1406 (also sometimes called an input filtering emulator). Conceptually, the apparent input filter 1406 represents that portion of the UDF module 1402 that performs input filtering. In practice, the input filtering operation performed by the UDF module 1402 is integrated with the frequency translation operation. The input filtering operation can be viewed as being performed concurrently with the frequency translation operation. This is a reason why the input filter 1406 is herein referred to as an “apparent” input filter 1406. The UDF module 1402 of the present invention includes a number of advantages. For example, high selectivity at high frequencies is realizable using the UDF module 1402. This feature of the invention is evident by the high Q factors that are attainable. For example, and without limitation, the UDF module 1402 can be designed with a filter center frequency fC on the order of 900 MHZ, and a filter bandwidth on the order of 50 KHz. This represents a Q of 18,000 (Q is equal to the center frequency divided by the bandwidth). It should be understood that the invention is not limited to filters with high Q factors. The filters contemplated by the present invention may have lesser or greater Qs, depending on the application, design, and/or implementation. Also, the scope of the invention includes filters where Q factor as discussed herein is not applicable. The invention exhibits additional advantages. For example, the filtering center frequency fC of the UDF module 1402 can be electrically adjusted, either statically or dynamically. Also, the UDF module 1402 can be designed to amplify input signals. Further, the UDF module 1402 can be implemented without large resistors, capacitors, or inductors. Also, the UDF module 1402 does not require that tight tolerances be maintained on the values of its individual components, i.e., its resistors, capacitors, inductors, etc. As a result, the architecture of the UDF module 1402 is friendly to integrated circuit design techniques and processes. The features and advantages exhibited by the UDF module 1402 are achieved at least in part by adopting a new technological paradigm with respect to frequency selectivity and translation. Specifically, according to the present invention, the UDF module 1402 performs the frequency selectivity operation and the frequency translation operation as a single, unified (integrated) operation. According to the invention, operations relating to frequency translation also contribute to the performance of frequency selectivity, and vice versa. According to embodiments of the present invention, the UDF module generates an output signal from an input signal using samples/instances of the input signal and/or samples/instances of the output signal. More particularly, first, the input signal is under-sampled. This input sample includes information (such as amplitude, phase, etc.) representative of the input signal existing at the time the sample was taken. As described further below, the effect of repetitively performing this step is to translate the frequency (that is, down-convert) of the input signal to a desired lower frequency, such as an intermediate frequency (IF) or baseband. Next, the input sample is held (that is, delayed). Then, one or more delayed input samples (some of which may have been scaled) are combined with one or more delayed instances of the output signal (some of which may have been scaled) to generate a current instance of the output signal. Thus, according to a preferred embodiment of the invention, the output signal is generated from prior samples/instances of the input signal and/or the output signal. (It is noted that, in some embodiments of the invention, current samples/instances of the input signal and/or the output signal may be used to generate current instances of the output signal.). By operating in this manner, the UDF module 1402 preferably performs input filtering and frequency down-conversion in a unified manner. Further details of unified down-conversion and filtering as described in this section are presented in U.S. Pat. No. 6,049,706, entitled “Integrated Frequency Translation And Selectivity,” filed Oct. 21, 1998, and incorporated herein by reference in its entirety. 3. Example Embodiments of the Invention As noted above, the UFT module of the present invention is a very powerful and flexible device. Its flexibility is illustrated, in part, by the wide range of applications and combinations in which it can be used. Its power is illustrated, in part, by the usefulness and performance of such applications and combinations. Such applications and combinations include, for example and without limitation, applications/combinations comprising and/or involving one or more of: (1) frequency translation; (2) frequency down-conversion; (3) frequency up-conversion; (4) receiving; (5) transmitting; (6) filtering; and/or (7) signal transmission and reception in environments containing potentially jamming signals. Example receiver, transmitter, and transceiver embodiments implemented using the UFT module of the present invention are set forth below. 3.1 Receiver Embodiments In embodiments, a receiver according to the invention includes an aliasing module for down-conversion that uses a universal frequency translation (UFT) module to down-convert an EM input signal. For example, in embodiments, the receiver includes the aliasing module 300 described above, in reference to FIG. 3A or FIG. 3G. As described in more detail above, the aliasing module 300 may be used to down-convert an EM input signal to an intermediate frequency (IF) signal or a demodulated baseband signal. In alternate embodiments, the receiver may include the energy transfer system 401, including energy transfer module 404, described above, in reference to FIG. 4. As described in more detail above, the energy transfer system 401 may be used to down-convert an EM signal to an intermediate frequency (IF) signal or a demodulated baseband signal. As also described above, the aliasing module 300 or the energy transfer system 401 may include an optional energy transfer signal module 408, which can perform any of a variety of functions or combinations of functions including, but not limited to, generating the energy transfer signal 406 of various aperture widths. In further embodiments of the present invention, the receiver may include the impedance matching circuits and/or techniques described herein for enhancing the energy transfer system of the receiver. 3.1.1 In-Phase/Quadrature-Phase (I/Q) Modulation Mode Receiver Embodiments FIG. 15 illustrates an exemplary I/Q modulation mode embodiment of a receiver 1502, according to an embodiment of the present invention. This I/Q modulation mode embodiment is described herein for purposes of illustration, and not limitation. Alternate I/Q modulation mode embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), as well as embodiments of other modulation modes, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. Receiver 1502 comprises an I/Q modulation mode receiver 1538, a first optional amplifier 1516, a first optional filter 1518, a second optional amplifier 1520, and a second optional filter 1522. I/Q modulation mode receiver 1538 comprises an oscillator 1506, a first UFD module 1508, a second UFD module 1510, a first UFT module 1512, a second UFT module 1514, and a phase shifter 1524. Oscillator 1506 provides an oscillating signal used by both first UFD module 1508 and second UFD module 1510 via the phase shifter 1524. Oscillator 1506 generates an “I” oscillating signal 1526. “I” oscillating signal 1526 is input to first UFD module 1508. First UFD module 1508 comprises at least one UFT module 1512. First UFD module 1508 frequency down-converts and demodulates received signal 1504 to down-converted “I” signal 1530 according to “I” oscillating signal 1526. Phase shifter 1524 receives “I” oscillating signal 1526, and outputs “Q” oscillating signal 1528, which is a replica of “I” oscillating signal 1526 shifted preferably by 90 degrees. Second UFD module 1510 inputs “Q” oscillating signal 1528. Second UFD module 1510 comprises at least one UFT module 1514. Second UFD module 1510 frequency down-converts and demodulates received signal 1504 to down-converted “Q” signal 1532 according to “Q” oscillating signal 1528. Down-converted “I” signal 1530 is optionally amplified by first optional amplifier 1516 and optionally filtered by first optional filter 1518, and a first information output signal 1534 is output. Down-converted “Q” signal 1532 is optionally amplified by second optional amplifier 1520 and optionally filtered by second optional filter 1522, and a second information output signal 1536 is output. In the embodiment depicted in FIG. 15, first information output signal 1534 and second information output signal 1536 comprise a down-converted baseband signal. In embodiments, first information output signal 1534 and second information output signal 1536 are individually received and processed by related system components. Alternatively, first information output signal 1534 and second information output signal 1536 are recombined into a single signal before being received and processed by related system components. Alternate configurations for I/Q modulation mode receiver 1538 will be apparent to persons skilled in the relevant art(s) from the teachings herein. For instance, an alternate embodiment exists wherein phase shifter 1524 is coupled between received signal 1504 and UFD module 1510, instead of the configuration described above. This and other such I/Q modulation mode receiver embodiments will be apparent to persons skilled in the relevant art(s) based upon the teachings herein, and are within the scope of the present invention. 3.1.2 Receiver Embodiments having two Aliasing Modules As described herein, certain receiver embodiments of the present invention are implemented using two or more aliasing modules 300. These embodiments are described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 16A illustrates an exemplary receiver 1602 having two aliasing modules 300 (or, as generally the case herein, having energy transfer modules 404) according to an embodiment of the present invention. Receiver 1602 comprises an UFD module 1638, a first optional amplifier 1620, a first low-pass filter 1622, a second optional amplifier 1624, and a second low-pass filter 1626. As illustrated in FIG. 16A, UFD module 1638 comprises two aliasing modules 1632 and 1634 and two impedances 1616 and 1618. Aliasing modules 1632 and 1634 are similar to the aliasing module shown in FIG. 3G, whose operation is described herein. The output of aliasing module 1632 is coupled to impedance 1616 at a node 1605. The output of aliasing module 1634 is coupled to impedance 1618 at a node 1607. In an embodiment, impedances 1616 and 1618 are resistors. Impedances 1616 and 1618 are coupled together at a node 1609. A bias voltage is applied to node 1609. Impedances 1616 and 1618 are illustrative, and not intended to limit the invention. In some embodiments, impedances 1616 and 1618 are a part of optional amplifiers 1620 and 1624, and thus there are no separate impedance devices 1616 and 1618 (see FIG. 16O). Similarly, in some embodiments, optional amplifiers 1620 and 1624 act as filters to the carrier signal riding on top of the down-converted signals 1650 and 1652, and thus there is no need to include filters 1622 and 1626 (see FIG. 16O), as would be understood by a person skilled in the relevant arts given the description of the invention herein. Aliasing module 1632 comprises a capacitor 1604 and a switching device 1608 controlled by an aperture generator 1612. One end of switching device 1608 is connected to node 1609, as shown in FIG. 16A. FIG. 35 illustrates one embodiment for aperture generator 1612. In an embodiment, an input signal 1642 is provided to the input of aliasing module 1632. Input signal 1642 and an example control signal 1646 are illustrated in FIG. 16B. An output signal 1650 of aliasing module 1632, for input signal 1642, is illustrated in FIG. 16C. In FIG. 16C, slope 1651 represents a down-converted signal. Slope 1654 represents the rate of discharge of capacitor 1604 between apertures. In some embodiments of the invention, low-pass filter 1622 is used to remove the carrier signal from the down-converted signal. Similarly, in some embodiments optional amplifier 1620 removes the carrier signal from the down-converted signal. Aliasing module 1634 comprises a capacitor 1606 and a switching device 1610 controlled by an aperture generator 1614. One end of switching device 1610 is connected to node 1609, as shown in FIG. 16A. FIG. 35 illustrates one embodiment for aperture generator 1612. An input signal 1644 is provided to the input of aliasing module 1634. Input signal 1644 is generated in some embodiments of the invention by inverting signal 1642. Input signal 1644 and an example control signal 1648 are illustrated in FIG. 16B. As shown in FIG. 16B, the apertures of signal 1648 do not overlap the apertures of signal 1646. Note that the apertures of signals 1646 and 1648 are illustrative. Other portions of input signals 1642 and 1644 could be sampled in accordance with the invention to form a down-converted signal, which would involve using apertures other than the apertures shown in FIG. 16B, as will be understood by a person skilled in the relevant arts given the description of the invention herein. An output signal 1652 of aliasing module 1634, for input signal 1644, is illustrated in FIG. 16D. In FIG. 16D, slope 1653 represents the down-converted signal. Slope 1655 represents the rate of discharge of capacitor 1606 between apertures. As described above, in some embodiments, low-pass filter 1626 is used to remove the carrier signal from the down-converted signal. In some embodiments, optional amplifier 1642 removes the carrier signal. The output signal for UFD module 1638 (receiver 1602) is a differential output signal. FIGS. 16E and 16F illustrate an example differential output signal of UFD module 1638 (i.e., the sum of signals 1650 and 1652). An illustrative differential output signal for receiver 1602 is shown in FIG. 16G (i.e., the sum of signals 1670 and 1672). As illustrated by signals 1670 and 1672, embodiments of receiver 1602 can be used to receive and down-convert any communications signal. Carrier amplitude and phase changes relative to the sample aperture(s) are reflected in the output signals 1670 and 1672 as illustrated in FIG. 16G. FIG. 16G demonstrates the differential output when the input signal and aperture generator(s) are not related by an exact frequency multiple. As will be understood by a person skilled in the relevant arts, the sample aperture(s) roll over the input signal and capture different portions of the input signal. By illustrating that the aperture(s) can capture any amplitude and/or phase of an input signal, it is demonstrated that embodiments of receiver 1602 can be used to receive and down-convert any communications signal. In an embodiment, the capacitors 1604 and 1606 are selected in accordance with the criteria described in section 4 below. In an embodiment, capacitors 1604 and 1606 are selected so that they discharge at a rate of between six percent to fifty percent between apertures of the control signals. However, different ranges apply to other embodiments, depending on the particular application, requirements, implementation, purpose, etc. The impedances 1616 and 1618 typically have similar values (e.g., impedances 1616 and 1618 may be resistors having the same nominal values but different actual values). In an embodiment, the period of control signals 1646 and 1648 operate at a third or a fifth harmonic of the input carrier signal (i.e., input signals 1642 and 1644). In an embodiment, switching device 1608 is closed for approximately one-half cycle of the input signal 1642 each period of control signal 1646. Similarly, switching device 1610 is closed for approximately one-half cycle of the input signal 1644 each period of control signal 1648. In an embodiment, aperture generator 1614 is coupled to a clock signal that is 180 degrees out of phase with respect to the clock signal coupled to aperture generator 1612. In an embodiment, the clock signal coupled to aperture generator 1614 has the same period as the clock signal coupled to aperture generator 1612. The operation of receiver 1602 will now be described. A modulated carrier signal 1642 is input to the carrier(+) port of receiver 1602. The modulated carrier signal causes a charge to be stored on capacitor 1604 when switching device 1608 is closed. Switching device 1608 is opened and closed by control signal 1646. Aperture generator 1612 generates control signal 1646. The modulated carrier signal 1642 is inverted to generate a signal 1644. Signal 1644 is input to the carrier(−) port of receiver 1602. Signal 1644 causes a charge to be stored on capacitor 1606 when switching device 1610 is closed. Switching device 1610 is opened and closed by control signal 1648. Aperture generator 1614 generates control signal 1648. When switching device 1608 is open, capacitor 1604 discharges. This causes a voltage signal to be generated across impedance 1616. Similarly, when switching device 1610 is open, capacitor 1606 discharges. This causes a voltage signal to be generated across impedance 1618. The opening and closing of switching devices 1608 and 1610 in accordance with the invention causes a down-converted signal 1650 (one-half of the output of receiver 1602) to be formed across impedance 1616 and a down-converted signal 1652 (one-half of the output of receiver 1602) to be formed across impedance 1618. Signals 1650 and 1652 are 180 degrees out of phase. The total output of receiver 1602 is the differential output, or the sum of signals 1650 and 1652. Filters 1622 and 1626 are used to remove the carrier from the down-converted signal. As described herein, in embodiments, optional amplifiers 1620 and 1624 are band limited, and thus act as filters and remover the carrier. As will be understood by a person skilled in the relevant arts, given the description of the invention herein, UFD module 1638 has several features that make it particularly well adapted for certain applications. It is a feature of UFD module 1638 that it has an impedance in a range of about 50-75 ohms for certain control signals. UFD module 1638 can thus be coupled to other circuit devices that comprise receiver 1602 without using an impedance matching circuit as described herein (although one could optionally be used). This feature of UFD module 1638 allows for a high power or energy transfer, and it minimizes or eliminates interfacing requirements. Another feature of UFD module 1638 is that it may be implemented on a single chip using CMOS technology. This feature of UFD module 1638 is a feature applicable to apparatus embodiments of the invention in general. FIG. 16H illustrates another embodiment of a UFD module 1688 according to the invention. In the embodiment of FIG. 16H, aliasing modules of the type shown in FIG. 3A are used. This embodiment of the invention operates similarly to UFD module 1638, except that the carrier signal is removed from the down converted signal by capacitors 1604 and 1606 during down-conversion. FIG. 16I illustrates one possible relationship between example input signals 1643 and 1645 and example control signals 1647 and 1649. As described about, the apertures of signals 1647 and 1649 are illustrative. Other portions of input signals 1643 and 1644 could be sampled in accordance with the invention to form a down-converted signal, which would involve using apertures other than the apertures shown in FIG. 16I, as will be understood by a person skilled in the relevant arts given the description of the invention herein. FIGS. 16J-16L illustrate down-converted signals for the receiver of FIG. 16H. FIG. 16J illustrates a down-converted signal 1651, for input signal 1643. As can be seen in FIG. 16J, down-converted signal 1651 is similar to down-converted signal 1652 (note that the carrier has not been removed from signal 1652 and is riding on top of the down-converted signal). Similarly, FIG. 16K illustrates a down-converted signal 1653, for input signal 1645. As can be seen in FIG. 16K, down-converted signal 1653 is similar to down-converted signal 1651 (note that the carrier has not been removed from signal 1651 and is riding on top of the down-converted signal). Signals 1651 and 1653 are plotted together with control signals 1647 and 1649 in FIG. 16L. FIG. 16M illustrates the outputs of the UFD module 1688 in FIG. 16H. FIG. 16M is similar to FIG. 16F. One significant difference, however, as can be seen between FIGS. 16M and 16F, however, is that signals 1651 and 1653 do not go to zero during each period of the control signals 1647 and 1649. This is not the case for the UFD module 1638 in FIG. 16A, as can be see by looking at signals 1650 and 1652. When the switching devices 1608 and 1610, as configured in FIG. 16H, are closed, the output of UFD module 1688 is not connected to a bias point (AC ground). FIG. 16N illustrates the filtered output of the receiver of FIG. 16H. As can be seen by comparing FIGS. 16G and 16N, the filtered outputs of the receiver embodiments shown in FIGS. 16A and 16H are the same, thereby demonstrating the interchangeability of embodiments of aliasing modules and/or energy transfer modules according to the invention in embodiments of the invention. As illustrated by signals 1671 and 1673, in FIG. 16N, embodiments of the receiver of FIG. 16H can be used to receive and down-convert any communications signal. Carrier amplitude and phase changes relative to the sample aperture(s) are reflected in the output signals 1671 and 1673 as illustrated in FIG. 16N. FIG. 16N demonstrates the differential output when the input signal and aperture generator(s) are not related by an exact frequency multiple. As will be understood by a person skilled in the relevant arts, the sample aperture(s) roll over the input signal and capture different portions of the input signal. By illustrating that the aperture(s) can capture any amplitude and/or phase of an input signal, it is demonstrated that embodiments of the receiver of FIG. 16H can be used to receive and down-convert any communications signal. The operation of the receiver of FIG. 16H is similar to that of receiver 1602, and thus is not repeated here. A person skilled in the relevant art will understand how the receiver of FIG. 16H operates given the description of the invention herein. FIG. 17 illustrates a receiver 1702 according to an embodiment of the invention having two aliasing modules. Receiver 1702 is similar to receiver 1602. Like receiver 1602, example receiver 1702 is implemented using aliasing modules similar to the embodiment shown in FIG. 3G. Receiver 1702 comprises a UFD 1738, an inverter 1703, two optional amplifiers 1720 and 1724, and two low-pass filters 1722 and 1726. The aliasing modules of UFD 1738 are implemented using switches 1708 and 1710. In the embodiment of FIG. 17, switches 1708 and 1710 are formed using complementary enhancement type MOSFETs. A bias voltage 1711 is coupled to a node 1709 of UFD 1738. A modulated carrier signal is supplied to one of the input ports of UFD module 1738. An inverter 1703 is used to invert the modulated carrier signal and thereby produce a carrier(−) signal. An uninverted modulated carrier signal is referred to herein as a carrier(+) signal. The output of inverter 1703 is supplied to a second input port of UFD module 1738, as shown in FIG. 17. As will be understood by a person skilled in the relevant arts, UFD module 1738 operates in a manner similar to that described herein, for example, for UFD module 1638. The various signals of receiver 1702 are similar to the signals illustrated in FIGS. 16B-G. The operation of receiver 1702 is also similar to that of receiver 1602, and thus is not repeated here. A person skilled in the relevant art will understand how receiver 1702 operates given the description of the invention herein. 3.1.3 Enhanced Single-Switch Receiver Embodiments As described herein, single-switch receiver embodiments of the present invention are enhanced to maximize both power transfer and information extraction. These embodiments are described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 18A illustrates an exemplary one-switch receiver 1802 according to an embodiment of the invention. Receiver 1802 comprises a UFD module 1832, a first optional amplifier 1820, a first low-pass filter 1822, a second optional amplifier 1824, and a second low-pass filter 1826. As illustrated in FIG. 18A, UFD module 1832 comprises two capacitors 1804 and 1806, a switching device 1808, a switching signal generator 1812, and two impedance devices 1816 and 1818. In an embodiment, impedance devices 1816 and 1818 are resistors. Impedance devices 1816 and 1818 are coupled together at a node 1809. A bias voltage is applied to node 1809. Impedances 1816 and 1818 are illustrative, and not intended to limit the invention. In some embodiment, impedances 1816 and 1818 are a part of optional amplifiers 1820 and 1824, and thus there are no separate impedance devices 1816 and 1818. Similarly, in some embodiments, optional amplifiers 1820 and 1824 act as filters to the carrier signal riding on top of the down-converted signals 1850 and 1852, and thus there is no need to include filters 1822 and 1826, as would be understood by a person skilled in the relevant arts given the description of the invention herein. FIG. 35 illustrates one embodiment for switching device (aperture generator) 1812. An example control signal 1846 is illustrated in FIG. 18B. FIGS. 18B-18E illustrate example waveforms for receiver 1802. The waveforms are for an embodiment of the invention wherein capacitors 1804 and 1806 have a nominal value of 11 pf and impedance devices 1816 and 1818 are resistors having a nominal value of 547 ohms. The waveforms illustrated are for a 1 GHz input carrier signal. In an embodiment, the capacitors 1804 and 1806 are selected in accordance with the criteria described in section 4 below. Capacitors 1804 and 1806 are selected so that they discharge at a rate of between six percent to fifty percent between apertures of the switching (control) signal. In an embodiment, the period of control signal 1846 operates at a third or a fifth harmonic of the input carrier signal (i.e., input signals 1842 and 1844). As described herein, the received carrier signal is referred to as a carrier(+) signal, and an inverted version of the received signal is referred to as a carrier(−) signal. Switching device 1808 is closed for approximately one-half cycle of the input signal 1842 each period of control signal 1846. FIG. 18B illustrates a switching signal (aperture generator signal) 1846. Also shown in FIG. 18B is a voltage signal 1860 across capacitor 1804, and a voltage signal 1862 across capacitor 1806. The voltage across capacitors 1804 and 1806 increases when switch 1808 is closed. The voltage across capacitors 1804 and 1806 decreases when switch 1808 is open. Slope 1861 in FIG. 18B illustrates the discharge of capacitor 1806 between the apertures of switching (control) signal 1846. A similar discharge occurs for capacitor 1804, as can be seen from signal 1860. FIG. 18C illustrates the output(+) signal 1850 of UFD module 1832 and the output(−) signal 1852 of UFD module 1832. These signals contain both a down-converted (information) signal and the carrier signal. Switching signal 1842 is also shown as a point of reference. Slope 1851 in FIG. 18C is due to the discharge of capacitor 1804, and illustrates that energy is being transferred in accordance with the invention. FIG. 18D illustrates the output signal of UFD module 1832 after the carrier signal has been removed using low-pass filters 1822 and 1826. Signal 1870 shows the output of filter 1822. Signal 1872 shows the output of filter 1826. Switching signal 1846 is shown in FIG. 18D for reference. FIG. 18E shows the output of receiver 1802 for an extended period of time, as illustrated by switching signal 1846. In FIG. 18E, the input carrier signal has a frequency of 1 GHz, but the period of switching signal 1846 has been extended from 3.000 ns (as is the case for the waveforms of FIGS. 18B-D) to 3.003 ns. Thus, the phase of the input carrier signal is slowly varying relative to switching signal 1846. Signal 1870 in FIG. 18E is the output of filter 1822. Signal 1872 is the output of filter 1826. As illustrated by signals 1870 and 1872, embodiments of receiver 1802 can be used to receive and down-convert any communications signal. Carrier amplitude and phase changes relative to the sample aperture(s) are reflected in the output signals 1870 and 1872 as illustrated in FIG. 18E. FIG. 18E demonstrates the differential output when the input signal and aperture generator are not related by an exact frequency multiple. As will be understood by a person skilled in the relevant arts, the sample aperture(s) roll over the input signal and capture different portions of the input signal. By illustrating that the aperture(s) can capture any amplitude and/or phase of an input signal, it is demonstrated that embodiments of receiver 1802 can be used to receive and down-convert any communications signal. The operation of receiver 1802 will now be described. A modulated carrier signal 1642 is input to the carrier(+) port of receiver 1802. The modulated carrier signal causes a charge to be stored on capacitor 1804 when switching device 1808 is closed, thereby generating a voltage signal 1860 across capacitor 1804. Switching device 1808 is opened and closed by control signal 1846. Aperture generator 1812 generates control signal 1846. The modulated carrier signal 1642 is inverted to generate a signal 1644. Signal 1644 is input to the carrier(−) port of receiver 1802. Signal 1644 causes a charge to be stored on capacitor 1806 when switching device 1808 is closed, thereby generating a voltage signal 1862 across capacitor 1806. When switching device 1808 is opened, both capacitor 1804 and capacitor 1806 begin to discharge. This causes a voltage signal 1850 to be generated across impedance 1816, and a voltage signal 1852 to be generated across impedance 1818. The opening and closing of switching device 1808 in accordance with the invention causes a down-converted signal 1850 (one-half of the output of receiver 1802) to be formed across impedance 1816 and a down-converted signal 1852 (one-half of the output of receiver 1802) to be formed across impedance 1818. Signals 1850 and 1852 are 180 degrees out of phase. The total output of receiver 1802 is the differential output, or the sum of signals 1850 and 1852. Filters 1822 and 1826 are used to remove the carrier from the down-converted signal. In embodiments, optional amplifiers 1820 and 1824 are band limited, and thus act as filters and remover the carrier. As will be understood by a person skilled in the relevant arts, given the description of the invention herein, UFD module 1832 has several features that make it particularly well adapted for certain applications. It is a feature of UFD module 1832 that it provides exceptional linearity per milliwatt. For example, rail to rail dynamic range is possible with minimal increase in power. In an example integrated circuit embodiment, UFD module 1832 provides +55 dmb IP2, +15 dbm IP3, at 3.3V, 4.4 ma, −15 dmb LO. GSM system requirements are +22 dbm IP2, −10.5 dmb IP3. CDMA system requirements are +50 dmb IP2, +10 dbm IP3. Accordingly, the invention satisfies these standards. Another feature of UFD module 1832 is that it only requires one switching device 1808 and one aperture generator 1812. A further feature of UFD module 1832 is that it may be implemented on a single chip using CMOS technology. As described herein, this feature of UFD module 1832 is a feature applicable to apparatus embodiments of the invention in general. Additional features of UFD module 1832 are described elsewhere herein. FIG. 19 is another example of a one-switch receiver 1902 having a UFD module 1938 according to an embodiment of the invention. As illustrated in FIG. 19, UFD module 1938 comprises two capacitors 1904 and 1906, a CMOS switching device 1908, two switching signal generators 1912A and 1912B, and two impedance devices 1916 and 1918. In an embodiment, impedance devices 1916 and 1918 are resistors. Impedance devices 1916 and 1918 are coupled together at a node 1909. A bias voltage 1911 (AC Ground) having a nominal value of one-half Vdd is applied to node 1909. As illustrated in FIG. 19, in an embodiment, a transformer 1960 is used to couple an input signal to UFD module 1938. As already described herein, impedances 1916 and 1918 are illustrative, and not intended to limit the invention. In some embodiment, impedances 1916 and 1918 are a part of optional amplifiers (not shown), and thus there are no separate impedance devices 1916 and 1918. Similarly, in some embodiments, optional amplifiers (not shown) act as filters to the carrier signal riding on top of the down-converted signals, and thus there is no need to include filters with receiver 1902. As will be understood by a person skilled in the relevant arts, UFD module 1938 operates in a manner similar to that described herein, for example, for UFD module 1832. Features of UFD module 1938 are also described below in section 4. In particular, the enhanced linear features of UFD module 1938 are described in detail below. The operation of receiver 1902 is similar to that of receiver 1802, and thus is not repeated here. A person skilled in the relevant art will understand how receiver 1902 operates given the description of the invention herein. FIG. 20A is an example one-switch receiver 2001 having an aliasing module 2032 according to an embodiment of the invention and an impedance device 2016. Aliasing module 2032 is of the type illustrated in FIG. 3G. Impedance 2016 is illustrative, and not intended to limit the invention. In some embodiment, impedance 2016 is a part of an optional amplifier (not shown), and thus there is no separate impedance device 2016. As illustrated in FIG. 20A, UFD module 2032 comprises a capacitor 2004, a switching device 2008 and an aperture generator 2012. Impedance device 2016 is coupled to switching device 2008, as shown in FIG. 20A. A bias voltage (AC ground) is applied to a node 2009. As will be apparent to a person skilled in the relevant arts, generally speaking, receiver 2001 comprises one-half of receiver 1602. In an embodiment, capacitor 2004 is selected in accordance with the criteria described in section 4 below. Capacitor 2004 is selected so that it discharges at a rate of between six percent to fifty percent between apertures of switching (control) signal 2046. The period of control signal 2046 operates at a third or a fifth harmonic of the input carrier signal. Switching device 2008 is closed for approximately one-half cycle of the input signal during each period of control signal 2046. FIGS. 20B-20D illustrate example waveforms for receiver 2001. The waveforms are for an embodiment of the invention, wherein capacitor 2004 has a nominal value of 11 pf and impedance device 2016 is resistor having a nominal value of 547 ohms. The waveforms illustrated are for a 1 GHz input carrier signal. FIG. 20B illustrates a switching signal (aperture generator signal) 2046. Also shown in FIG. 208B is a voltage signal 2060 across capacitor 2004. The voltage across capacitor 2004 increases when switch 2008 is closed. The voltage across capacitor 2004 decreases when switch 2008 is open. A periodic slope in signal 2060 illustrates the discharge of capacitor 2004 between the apertures of switching (control) signal 2046. Signal 2050 illustrates the output of receiver 2001. As can be seen, the output comprises both a down-converter signal and the carrier. The carrier can be removed using a filter (not shown). FIG. 20C illustrates the output signal 2070 of UFD module 2032 after the carrier signal has been removed. Switching signal 2046 is shown in FIG. 20C for reference. FIG. 20D shows the output of receiver 2001 for an extended period of time, as illustrated by switching signal 2046. In FIG. 20D, the input carrier signal has a frequency of 1 GHz, but the period of switching signal 2046 has been extended from 3.000 ns (as is the case for the waveforms of FIGS. 20B-20C) to 3.003 ns. Thus, the phase of the input carrier signal is slowly varying relative to switching signal 2046. Signal 2070 in FIG. 20D is the output of UFD module 2032 after the carrier has been removed by low-pass filtering. As illustrated by signal 1870, in FIG. 29D, embodiments of receiver 2001 can be used to receive and down-convert any communications signal. Carrier amplitude and phase changes relative to the sample aperture(s) are reflected in the output signal 2070 as illustrated in FIG. 20D. FIG. 20D demonstrates the output when the input signal and aperture generator are not related by an exact frequency multiple. As will be understood by a person skilled in the relevant arts, the sample aperture(s) roll over the input signal and capture different portions of the input signal. By illustrating that the aperture(s) can capture any amplitude and/or phase of an input signal, it is demonstrated that embodiments of receiver 2001 can be used to receive and down-convert any communications signal. The operation of receiver 2001 is similar to that of other receiver embodiments already described herein. A modulated carrier signal is input to the carrier port of receiver 2101. The modulated carrier signal causes a charge to be stored on capacitor 2104 and capacitor 2106 when switching device 2108 is closed, thereby generating a voltage signal across capacitors 2104 and 2106. Switching device 2108 is opened and closed by control signal having apertures similar to other control signals illustrated herein. Aperture generator 2112 generates the control signal. A difference between receiver 2101 and receiver 1802, for example, is that the modulated carrier signal is not inverted to input to a carrier(−) port. As can be seen in FIG. 21, the second input port of receiver 2101 is coupled to a ground. When switching device 2108 is opened, both capacitor 2104 and capacitor 2106 begin to discharge. This causes a voltage to be generated across impedance 2116, and a voltage to be generated across impedance 2118. The opening and closing of switching device 2108 in accordance with the invention causes a down-converted signal (one-half of the output of receiver 2101) to be formed across impedance 2116 and a down-converted signal (one-half of the output of receiver 2101) to be formed across impedance 2118. The total output of receiver 2101 is the differential output, or the sum of signals. Filters (not shown) are used to remove the carrier from the down-converted signal. In embodiments, optional amplifiers (not shown) are band limited, and thus act as filters and remover the carrier. As will be understood by a person skilled in the relevant arts, given the description of the invention herein, receiver 2001 has several features that make it particularly well adapted for certain applications. For example, it is a feature of receiver 2001 that it may be implemented using fewer devices than other embodiments and that it may be implemented on a single chip using CMOS technology. FIG. 20E illustrates a signal switch receiver 2002 having an aliasing module 2032 according to an embodiment of the invention and an impedance device 2016. Aliasing module 2032 is of the type illustrated in FIG. 3G. As illustrated in FIG. 20E, UFD module 2032 comprises a capacitor 2004, a switching device 2008 and two aperture generators 2012A and 2012B. Impedance device 2016 is coupled to switching device 2008, as shown in FIG. 20A. A bias voltage (AC ground) is applied to a node 2009. Receiver 2002 is similar to receiver 2001. The operation of receiver 2002 is similar to that of other receiver embodiments already described herein, and thus is not repeated here. A person skilled in the relevant art will understand how receiver 2001 operates given the description of the invention herein. FIG. 20F illustrates another embodiment of a single switch receiver 2003 having an aliasing module 2032 according to the invention. In the embodiment of FIG. 20F, an aliasing module of the type shown in FIG. 3A is used. This embodiment of the invention operates similarly to receiver 2001, except that the carrier signal is removed from the down converted signal by capacitor 2004 during down-conversion. Since the operation of receiver 2003 is similar to that of other receiver embodiments already described herein, it is not repeated here. A person skilled in the relevant art will understand how receiver 2003 operates given the description of the invention herein. FIG. 21 is another example one-switch receiver 2101 according to an embodiment of the invention. Receiver 2101 comprises a UFD module 2138, similar to UFD module 1832, described above. As seen in FIG. 21, one of the input ports of UFD module 2138 is coupled to ground. It is a feature of receiver 2101 that no carrier(−) input signal is required. The operation of receiver 2101 is similar to that of other receiver embodiments already described herein, and thus is not repeated here. A person skilled in the relevant art will understand how receiver 2101 operates given the description of the invention herein. 3.1.4 Other Receiver Embodiments The receiver embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments include, but are not limited to, down-converting different combinations of modulation techniques in an “I/Q” mode. Other embodiments include those shown in the documents referenced above, including but not limited to U.S. patent application Ser. Nos. 09/525,615 and 09/550,644. Such alternate embodiments fall within the scope and spirit of the present invention. For example, other receiver embodiments may down-convert signals that have been modulated with other modulation techniques. These would be apparent to one skilled in the relevant art(s) based on the teachings disclosed herein, and include, but are not limited to, amplitude modulation (AM), frequency modulation (FM), pulse width modulation, quadrature amplitude modulation (QAM), quadrature phase-shift keying (QPSK), time division multiple access (TDMA), frequency division multiple access (FDMA), code division multiple access (CDMA), down-converting a signal with two forms of modulation embedding thereon, and combinations thereof. 3.2 Transmitter Embodiments The following discussion describes frequency up-converting signals transmitted according to the present invention, using a Universal Frequency Up-conversion Module. Frequency up-conversion of an EM signal is described above, and is more fully described in U.S. Pat. No. 6,091,940 entitled “Method and System for Frequency Up-Conversion,” filed Oct. 21, 1998 and issued Jul. 18, 2000, the full disclosure of which is incorporated herein by reference in its entirety, as well as in the other documents referenced above (see, for example, U.S. patent application Ser. No. 09/525,615). Exemplary embodiments of a transmitter according to the invention are described below. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. In embodiments, the transmitter includes a universal frequency up-conversion (UFU) module for frequency up-converting an input signal. For example, in embodiments, the system transmitter includes the UFU module 1000, the UFU module 1101, or the UFU module 1290 as described, above, in reference to FIGS. 10, 11 and 12, respectively. In further embodiments, the UFU module is used to both modulate and up-convert an input signal. 3.2.1 In-Phase/Quadrature-Phase (I/Q) Modulation Mode Transmitter Embodiments In FIG. 22, an I/Q modulation mode transmitter embodiment is presented. In this embodiment, two information signals are accepted. An in-phase signal (“I”) is modulated such that its phase varies as a function of one of the information signals, and a quadrature-phase signal (“Q”) is modulated such that its phase varies as a function of the other information signal. The two modulated signals are combined to form an “I/Q” modulated signal and transmitted. In this manner, for instance, two separate information signals could be transmitted in a single signal simultaneously. Other uses for this type of modulation would be apparent to persons skilled in the relevant art(s). FIG. 22 illustrates an exemplary block diagram of a transmitter 2202 in an I/Q modulation mode. In FIG. 22, a baseband signal comprises two signals, first information signal 2212 and second information signal 2214. Transmitter 2202 comprises an I/Q transmitter 2204 and an optional amplifier 2206. I/Q transmitter 2204 comprises at least one UFT module 2210. I/Q transmitter 2204 provides I/Q modulation to first information signal 2212 and second information signal 2214, outputting I/Q output signal 2216. Optional amplifier 2206 optionally amplifies I/Q output signal 2216, outputting up-converted signal 2218. FIG. 23 illustrates a more detailed circuit block diagram for I/Q transmitter 2204. I/Q transmitter 2204 is described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. I/Q transmitter 2204 comprises a first UFU module 2302, a second UFU module 2304, an oscillator 2306, a phase shifter 2308, a summer 2310, a first UFT module 2312, a second UFT module 2314, a first phase modulator 2328, and a second phase modulator 2330. Oscillator 2306 generates an “I”-oscillating signal 2316. A first information signal 2212 is input to first phase modulator 2328. The “I”-oscillating signal 2316 is modulated by first information signal 2212 in the first phase modulator 2328, thereby producing an “I”-modulated signal 2320. First UFU module 2302 inputs “I”-modulated signal 2320, and generates a harmonically rich “I” signal 2324 with a continuous and periodic wave form. The phase of “I”-oscillating signal 2316 is shifted by phase shifter 2308 to create “Q”-oscillating signal 2318. Phase shifter 2308 preferably shifts the phase of “I”-oscillating signal 2316 by 90 degrees. A second information signal 2214 is input to second phase modulator 2330. “Q”-oscillating signal 2318 is modulated by second information signal 2214 in second phase modulator 2330, thereby producing a “Q” modulated signal 2322. Second UFU module 2304 inputs “Q” modulated signal 2322, and generates a harmonically rich “Q” signal 2326, with a continuous and periodic waveform. Harmonically rich “I” signal 2324 and harmonically rich “Q” signal 2326 are preferably rectangular waves, such as square waves or pulses (although the invention is not limited to this embodiment), and are comprised of pluralities of sinusoidal waves whose frequencies are integer multiples of the fundamental frequency of the waveforms. These sinusoidal waves are referred to as the harmonics of the underlying waveforms, and a Fourier analysis will determine the amplitude of each harmonic. Harmonically rich “I” signal 2324 and harmonically rich “Q” signal 2326 are combined by summer 2310 to create harmonically rich “I/Q” signal 2334. Summers are well known to persons skilled in the relevant art(s). Optional filter 2332 filters out the undesired harmonic frequencies, and outputs an I/Q output signal 2216 at the desired harmonic frequency or frequencies. It will be apparent to persons skilled in the relevant art(s) that an alternative embodiment exists wherein the harmonically rich “I” signal 2324 and the harmonically rich “Q” signal 2326 may be filtered before they are summed, and further, another alternative embodiment exists wherein “I”-modulated signal 2320 and “Q”-modulated signal 2322 may be summed to create an “I/Q”-modulated signal before being routed to a switch module. Other “I/Q”-modulation embodiments will be apparent to persons skilled in the relevant art(s) based upon the teachings herein, and are within the scope of the present invention. Further details pertaining to an I/Q modulation mode transmitter are provided in co-pending U.S. Pat. No. 6,091,940 entitled “Method and System for Frequency Up-Conversion,” filed Oct. 21, 1998 and issued Jul. 18, 2000, which is incorporated herein by reference in its entirety. 3.2.2 Enhanced Multi-Switch Transmitter Embodiments As described herein, multi-switch transmitter embodiments of the present invention are enhanced to maximize both power transfer and information transmission. These embodiments are described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 24A is an example two-switch transmitter 2402 according to an embodiment of the invention. Transmitter 2402 comprises two switching devices 2408 and 2410, two aperture generators 2412 and 2414, an impedance device 2419, and two amplifiers 2432 and 2434. As shown in FIG. 24A, amplifiers 2432 and 2434, and impedance device 2419 are coupled together to form a node 2409. Node 2409 is an AC ground. In an embodiment, impedance device 2419 is an inductor. Impedance device 2419 comprises a feedback path that passes DC signals to the inputs of amplifiers 2432 and 2434, thereby removing the DC signals from the output of transmitter 2402. The output ports of amplifiers 2432 and 2434 are coupled to switching devices 2408 and 2410. Switching devices 2408 and 2410, and impedance device 2419 are coupled together to form a node 2405. The output of transmitter 2402 is generated at node 2405, across a load impedance 2470. Load impedance 2470 is illustrative, and not intended to limit the invention. In an embodiment, optional energy storage devices (capacitors) 2431 and 2433 are coupled to transmitter 2402, as shown in FIG. 24A, in order to increase the efficiency of transmitter 2402. Energy storage devices 2431 and 2433. These devices store energy when switches 2408 and 2410 are open, thereby enhancing the energy transmitted when switches 2408 and 2410 close. Energy storage devices 2431 and 2433 can be coupled to any bias (AC ground). It is a feature of example transmitter 2402, as well as a feature of other embodiments of the invention, that no power summer is needed at node 2405 so long as the apertures of switching devices 2408 and 2410 do not overlap. A simple wire can be used to couple transmitter 2402 to load impedance 2470. Other approaches may also be used. The operation of transmitter 2402 will now be described with reference to the waveforms illustrated in FIGS. 24B-24F. An information signal 2442 to be up-converted is provided to the input(+) port of amplifier 2442 (see FIG. 24E). As shown in FIG. 24E, information signal 2442 is a sine wave. An inverted version of information signal 2442 (i.e., signal 2444) is provided to the input(−) port of amplifier 2434. Signal 2444 is shown in FIG. 24E. Input signals 2442 and 2444 are operated on by amplifiers 2432 and 2434 in a manner that would be known to a person skilled in the relevant art to produce signals at the outputs of amplifiers 2432 and 2434 that are a function of (i.e., proportional to) the input signals 2442 and 2444. When switch 2408 is closed, the output signal of amplifier 2432 is coupled to load impedance 2470, and thereby produces a positive voltage at the input of impedance 2470 such as, for example, voltage 2405B shown in FIG. 24C. Similarly, when switch 2410 is closed, the output signal of amplifier 2434 is coupled to load impedance 2470, and thereby produces a negative voltage at the input of impedance 2470 such as, for example, voltage 2405A shown in FIG. 24C. The operation of switching devices 2408 and 2410 are controlled by control signals 2446 and 2448. These signals are illustrated in FIGS. 24B and 24C. Control signal 2446 controls the switching of switching device 2408. Control signal 2448 controls the switching of switching device 2410. As can be seen in FIG. 24B, the opening and closing of switching devices 2408 and 2410 produce a harmonically rich up-converted signal 2405. Up-converted signal 2405 is also illustrated in FIGS. 24D and 24E. In particular, FIG. 24E illustrates the relationship between input signals 2442 and 2444 and up-converted signal 2405. FIG. 24F illustrates a portion of Fourier transform of up-converted signal 2405. As illustrated in FIG. 24F, signal 2405 of transmitter 2402 is a harmonically rich signal. The particular portion of signal 2405 that is to be transmitted can be selected using a filter. For example, a high Q filter centered at 1.0 GHz can be used to select the 3rd harmonic portion of signal 2405 for transmission. A person skilled in the relevant arts will understand how to do this given the description of the invention herein. In embodiments, the output signal 2405 is routed to a filter (not shown) to remove the unwanted frequencies that exist as harmonic components of the harmonically rich signal. A desired frequency is optionally amplified by an amplifier module (not shown) and then optionally routed to a transmission module (not shown) for transmission. As described herein, optional energy storage devices 2431 and 2433 as well as impedance matching techniques can be used to improve the efficiency of transmitter 2402. FIGS. 24G-24K further illustrate the operation of transmitter 2402 when transmitter 2402 is used, for example, to transmit digital information represented by the input signals shown in FIGS. 24G and 24H. FIG. 24G illustrates an example digital signal 2442 that represents a bit sequence of “1011.” The inverse of signal 2442 (i.e., 2444) is illustrated in FIG. 24H. Input signals 2442 and 2444 are input to amplifiers 2432 and 2434, as described above. FIG. 24I illustrates an example control 2446. FIG. 24J illustrates an example control signal 2448. A harmonically rich up-converted signal 2405, for the input signals 2442 and 2444 (shown in FIGS. 24G and 24H), is shown in FIG. 24K. Signal 2405 of FIG. 24K s obtain in the manner described above. The example waveforms of FIGS. 24B-24K are illustrative, and not intended to limit the invention. Waveforms other than those illustrated in FIGS. 24B-24K are intended to be used with the architecture that comprises transmitter 2402. FIG. 25A is an example two-switch transmitter 2502 according to an embodiment of the invention. Transmitter 2502 comprises two switching devices 2508 and 2510, two aperture generators 2512 and 2514, three impedance devices 2519, 2533, and 2535, and two amplifiers 2532 and 2534. As shown in FIG. 25A, amplifiers 2532, 2534, switching devices 2508, 2510, and impedance device 2519 are coupled together to form a node 2509. Node 2509 is an AC ground. In an embodiment, impedance device 2519 is an inductor. Impedance device 2519 comprises a feedback path that passes DC signals to the inputs of amplifiers 2532 and 2534, thereby removing the DC signals from the output of transmitter 2502. The output ports of amplifiers 2532 and 2534 are coupled to impedance devices 2533 and 2535. Impedance devices 2533 and 2535 represent one or more impedance devices that act as an AC choke (low pass filter). Impedance devices 2533, 2535, switching devices 2508, 2510, and impedance device 2519 are also coupled together to form a node 2505. The output of transmitter 2502 is generated at node 2505, across a load impedance 2570. The operation of switching devices 2508 and 2510 is controlled by control signals 2546 and 2548. Example control signals are illustrated in FIGS. 25D and 25E. Control signal 2546 controls the switching of switching device 2508. Control signal 2548 controls the switching of switching device 2510. The operation of transmitter 2502 is similar to that of transmitter 2402, and thus is not repeated here. A person skilled in the relevant art will understand how transmitter 2502 operates given the description of the invention herein. FIGS. 25B-25F illustrate the operation of transmitter 2502 when transmitter 2502 is used, for example, to transmit digital information represented by the input signals shown in FIGS. 25B and 25C. The example waveforms of FIGS. 25B-25F are illustrative, and not intended to limit the invention. Waveforms other than those illustrated in FIGS. 25B-25F are intended to be used with the architecture that comprises transmitter 2502. FIG. 25B illustrates an example digital signal 2542 that represents a bit sequence of “1011.” The inverse of signal 2542 (i.e., 2544) is illustrated in FIG. 25C. Input signals 2542 and 2544 are input to amplifiers 2532 and 2534. FIG. 25D illustrates an example control 2546. FIG. 25E illustrates an example control signal 2548. A harmonically rich up-converted signal 2550, for the input signals 2542 and 2544 is shown in FIG. 25F. As described herein for transmitter 2402, optional energy storage devices (not shown) as well as impedance matching techniques can be used to improve the efficiency of transmitter 2502. How this is achieved in accordance with will be understood by a person skilled in the relevant arts given the description herein. FIG. 26A is example of a multi-switch transmitter 2602 according to an embodiment of the invention. Transmitter 2602 comprises four switching devices 2608A, 2608B, 2610A, and 2610B, two aperture generators 2612 and 2614, and two amplifiers 2632 and 2634. Transmitter 2602 is shown having two optional energy storage devices 2613 and 2615. The operation of transmitter 2602 is similar to that of transmitter 2402. An information signal to be up-converted is provided to the input(+) port of amplifier 2642. An inverted version of information signal 2642 (i.e., signal 2644) is provided to the input(−) port of amplifier 2634. Input signals 2642 and 2644 are operated on by amplifiers 2632 and 2634 in a manner that would be known to a person skilled in the relevant art to produce signals at the outputs of amplifiers 2632 and 2634 that are a function of (i.e., proportional to) the input signals 2642 and 2644. When switches 2608A or 2610B are closed, the output signal of amplifier 2632 is coupled to load impedance 2670, and thereby produces a voltage across load impedance 2670. Similarly, when switches 2608B or 2610A are closed, the output signal of amplifier 2634 is coupled to load impedance 2670, and thereby produces a voltage across load impedance 2670. The operation of switching devices 2608A, 2608B, 2610A and 2610B are controlled by control signals 2646 and 2648, as shown in FIG. 26A. Control signal 2646 controls the switching of switching devices 2408A and 2608B. Control signal 2648 controls the switching of switching devices 2610A and 2610B. As described herein, the opening and closing of switching devices 2608A, 2608B, 2610A and 2610B produce a harmonically rich up-converted signal. In embodiments, the up-converted signal is routed to a filter (not shown) to remove the unwanted frequencies that exist as harmonic components of the harmonically rich signal. A desired frequency is optionally amplified by an amplifier module (not shown) and then optionally routed to a transmission module (not shown) for transmission. As described herein, optional energy storage devices 2613 and 2615 as well as impedance matching techniques can be used to improve the efficiency of transmitter 2602. As seen in FIG. 26A, the architecture of receiver 2602 enhances the amount of energy transferred to the load by using four switches and differential load configurations. Thus, there is about a 3 db gain in the output of transmitter 2602 over that of transmitter 2402. A person skilled in the relevant art will understand how transmitter 2502 operates given the description of the invention herein. FIGS. 26B-26F are example waveforms that illustrate the operation of transmitter 2602. An information signal 2642 to be up-converted is provided to the input(+) port of amplifier 2632. As shown in FIG. 26B, information signal 2642 is a series of digital bits (1011). An inverted version of information signal 2642 (i.e., signal 2644) is provided to the input(−) port of amplifier 2634. Signal 2644 is shown in FIG. 26C. The operation of switching devices 2608A, 2608B, 2610A and 2610B are controlled by control signals 2646 and 2648. These signals are illustrated in FIGS. 26D and 26E. Control signal 2646 controls the switching of switching devices 2608A and 2608B. Control signal 2648 controls the switching of switching devices 2610A and 2610B. FIG. 26F illustrates the output signal 2672 of transmitter 2602 for input signals 2642 and 2644. The up-converted signal is obtain from the output signal of transmitter 2602 in a manner similar to that described herein, for example, for a harmonically rich signal. 3.2.3 Enhanced One-Switch Transmitter Embodiments As described herein, one-switch transmitter embodiments of the present invention are enhanced to maximize both power transfer and information transmission. These embodiments are described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 27A is an example one-switch transmitter 2702 according to an embodiment of the invention. Transmitter 2702 comprises one switching device 2708, an aperture generator 2712, two capacitors 2704 and 2706, two impedance devices 2716 and 2718, and two amplifiers 2732 and 2734. The operation of transmitter 2702 is similar to that of the other transmitters described above. An input signal 2742 is supplied to amplifier 2732. Input signal 2732 is inverted by an inverter 2703 and the output of inverter 2703 is supplied to the input of amplifier 2734. Amplifiers 2732 and 2734 operate on input signals 2742 and 2744 in a manner that would be known to a person skilled in the relevant arts to produce signals at the outputs of amplifiers 2732 and 2734. When switching device 2708 is open, energy is transferred from the outputs of amplifiers 2732 and 2734 to energy storage devices (capacitors) 2704 and 2706. When switching device 2708 is closed, energy storage devices 2704 and 2706 discharge, thereby transferring energy to load impedance 2770. This causes an output signal 2772 (e.g., as shown in FIG. 27E) to be generated across load impedance 2770. Impedance devices 2716 and 2718 operate as AC chokes (filters). FIGS. 27B-27E are example waveforms that illustrate the operation of transmitter 2702. An information signal 2742 to be up-converted shown in FIG. 27B. As shown in FIG. 27B, information signal 2742 is a series of digital bits (1011). An inverted version of information signal 2742 (i.e., signal 2744) is shown in FIG. 27C. The operation of switching device 2708 is controlled by control signal 2746. This signal is illustrated in FIG. 27D. FIG. 27E illustrates the output signal 2772 of transmitter 2702, which is generated across load impedance 2770. The up-converted signal is obtained from the output signal of transmitter 2702 in a manner similar to that described elsewhere herein for a harmonically rich signal. 3.2.4 Other Transmitter Embodiments The transmitter embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments include, but are not limited to, combinations of modulation techniques in an “I/Q” mode. Such embodiments also include those described in the documents referenced above, such as U.S. patent application Ser. Nos. 09/525,615 and 09/550,644. Such alternate embodiments fall within the scope and spirit of the present invention. For example, other transmitter embodiments may utilize other modulation techniques. These would be apparent to one skilled in the relevant art(s) based on the teachings disclosed herein, and include, but are not limited to, amplitude modulation (AM), frequency modulation (FM), pulse width modulation, quadrature amplitude modulation (QAM), quadrature phase-shift keying (QPSK), time division multiple access (TDMA), frequency division multiple access (FDMA), code division multiple access (CDMA), embedding two forms of modulation onto a signal for up-conversion, etc., and combinations thereof. 3.3 Transceiver Embodiments An exemplary embodiment of a transceiver system 2800 of the present invention is illustrated in FIG. 28. Transceiver 2802 frequency down-converts first EM signal 2808 received by antenna 2806, and outputs down-converted baseband signal 2812. Transceiver 2802 comprises at least one UFT module 2804 at least for frequency down-conversion. Transceiver 2802 inputs baseband signal 2814. Transceiver 2802 frequency up-converts baseband signal 2814. UFT module 2804 provides at least for frequency up-conversion. In alternate embodiments, UFT module 2804 only supports frequency down-conversion, and at least one additional UFT module provides for frequency up-conversion. The up-converted signal is output by transceiver 2802, and transmitted by antenna 2806 as second EM signal 2810. First and second EM signals 2808 and 2810 may be of substantially the same frequency, or of different frequencies. First and second EM signals 2808 and 2810 may have been modulated using the same technique, or may have been modulated by different techniques. Further example embodiments of receiver/transmitter systems applicable to the present invention may be found in U.S. Pat. No. 6,091,940 entitled “Method and System for Frequency Up-Conversion,” incorporated by reference in its entirety. These example embodiments and other alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the example embodiments described herein) will be apparent to persons skilled in the relevant art(s) based on the referenced teachings and the teachings contained herein, and are within the scope and spirit of the present invention. The invention is intended and adapted to include such alternate embodiments. 3.3.1 Example Half-Duplex Mode Transceiver An exemplary receiver using universal frequency down conversion techniques is shown in FIG. 29 and described below. An antenna 2902 receives an electromagnetic (EM) signal 2920. EM signal 2920 is routed through a capacitor 2904 to a first terminal of a switch 2910. The other terminal of switch 2910 is connected to ground 2912 in this exemplary embodiment. A local oscillator 2906 generates an oscillating signal 2928, which is routed through a pulse shaper 2908. The result is a string of pulses 2930. The selection of the oscillator 2906 and the design of the pulse shaper 2908 control the frequency and pulse width of the string of pulses 2930. The string of pulses 2930 control the opening and closing of switch 2910. As a result of the opening and closing of switch 2910, a down converted signal 2922 results. Down converted signal 2922 is routed through an amplifier 2914 and a filter 2916, and a filtered signal 2924 results. In a preferred embodiment, filtered signal 2924 is at baseband, and a decoder 2918 may only be needed to convert digital to analog or to remove encryption before outputting the baseband information signal. This then is a universal frequency down conversion receiver operating in a direct down conversion mode, in that it receives the EM signal 2920 and down converts it to baseband signal 2926 without requiring an IF or a demodulator. In an alternate embodiment, the filtered signal 2924 may be at an “offset” frequency. That is, it is at an intermediate frequency, similar to that described above for the second IF signal in a typical superheterodyne receiver. In this case, the decoder 2918 would be used to demodulate the filtered signal so that it could output a baseband signal 2926. An exemplary transmitter using the present invention is shown in FIG. 30. In the FM and PM embodiments, an information signal 3002 modulates an oscillating signal 3006 which is routed to a pulse shaping circuit 3010 which outputs a string of pulses 3011. The string of pulses 3011 controls the opening and closing of the switch 3012. One terminal of switch 3012 is connected to ground 3014, and the second terminal of switch 3012 is connected through a resistor 3030 to a bias/reference signal 3008. In some FM and PM modes, bias/reference signal 3008 is preferably a non-varying signal, often referred to simply as the bias signal. In some AM modes, the oscillating signal 3006 is not modulated, and the bias/reference signal 3008 is a function of the information signal 3004. In one embodiment, information signal 3004 is combined with a bias voltage to generate the reference signal 3008. In an alternate embodiment, the information signal 3004 is used without being combined with a bias voltage. Typically, in the AM mode, this bias/reference signal is referred to as the reference signal to distinguish it from the bias signal used in the FM and PM modes. The output of switch 3012 is a harmonically rich signal 3016 which is routed to an optional “high Q” filter which removes the unwanted frequencies that exist as harmonic components of harmonically rich signal 3016. Desired frequency 3020 is optionally amplified by an optional amplifier module 3022 and routed to transmission module 3024, which outputs a transmission signal 3026. Transmission signal is output by antenna 3028 in this embodiment. For the FM and PM modulation modes, FIGS. 31A, 31B, and 31C show the combination of the present invention of the transmitter and the universal frequency down-conversion receiver in the half-duplex mode according to an embodiment of the invention. That is, the transceiver can transmit and receive, but it cannot do both simultaneously. It uses a single antenna 3102, a single oscillator 3144/3154 (depending on whether the transmitter is in the FM or PM modulation mode), a single pulse shaper 3138, and a single switch 3120 to transmit and to receive. In the receive function, “Receiver/transmitter” (R/T) switches 3106, 3108, and 3146/3152 (FM or PM) would all be in the receive position, designated by (R). The antenna 3102 receives an EM signal 3104 and routes it through a capacitor 3107. In the FM modulation mode, oscillating signal 3136 is generated by a voltage controlled oscillator (VCO) 3144. Because the transceiver is performing the receive function, switch 3146 connects the input to the VCO 3144 to ground 3148. Thus, VCO 3144 will operate as if it were a simple oscillator. In the PM modulation mode, oscillating signal 3136 is generated by local oscillator 3154, which is routed through phase modulator 3156. Since the transceiver is performing the receive function, switch 3152 is connected to ground 3148, and there is no modulating input to phase modulator. Thus, local oscillator 3154 and phase modulator 3156 operate as if they were a simple oscillator. One skilled in the relevant art(s) will recognize based on the discussion contained herein that there are numerous embodiments wherein an oscillating signal 3136 can be generated to control the switch 3120. Oscillating signal 3136 is shaped by pulse shaper 3138 to produce a string of pulses 3140. The string of pulses 3140 cause the switch 3120 to open and close. As a result of the switch opening and closing, a down converted signal 3109 is generated. The down converted signal 3109 is optionally amplified and filtered to create a filtered signal 3113. In an embodiment, filtered signal 3113 is at baseband and, as a result of the down conversion, is demodulated. Thus, a decoder 3114 may not be required except to convert digital to analog or to decrypt the filtered signal 3113. In an alternate embodiment, the filtered signal 3113 is at an “offset” frequency, so that the decoder 3114 is needed to demodulate the filtered signal and create a demodulated baseband signal. When the transceiver is performing the transmit function, the R/T switches 3106, 3108, and 3146/3152 (FM or PM) are in the (T) position. In the FM modulation mode, an information signal 3150 is connected by switch 3146 to VCO 3144 to create a frequency modulated oscillating signal 3136. In the PM modulation mode switch 3152 connects information signal 3150 to the phase modulator 3156 to create a phase modulated oscillating signal 3136. Oscillation signal 3136 is routed through pulse shaper 3138 to create a string of pulses 3140, which in turn cause switch 3120 to open and close. One terminal of switch 3120 is connected to ground 3142 and the other is connected through switch R/T 3108 and resistor 3123 to a bias signal 3122. The result is a harmonically rich signal 3124 which is routed to an optional “high Q” filter 3126 which removes the unwanted frequencies that exist as harmonic components of harmonically rich signal 3124. Desired frequency 3128 is optionally amplified by amplifier module 3130 and routed to transmission module 3132, which outputs a transmission signal 3134. Again, because the transceiver is performing the transmit function, R/T switch 3106 connects the transmission signal to the antenna 3102. In the AM modulation mode, the transceiver operates in the half duplex mode as shown in FIG. 32. The only distinction between this modulation mode and the FM and PM modulation modes described above, is that the oscillating signal 3136 is generated by a local oscillator 3202, and the switch 3120 is connected through the R/T switch 3108 and resistor 3123 to a reference signal 3206. Reference signal 3206 is generated when information signal 3150 and bias signal 3122 are combined by a summing module 3204. It is well known to those skilled in the relevant art(s) that the information signal 3150 may be used as the reference signal 3206 without being combined with the bias signal 3122, and may be connected directly (through resistor 3123 and R/T switch 3108) to the switch 3120. 3.3.2 Example Full-Duplex Mode Transceiver The full-duplex mode differs from the half-duplex mode in that the transceiver can transmit and receive simultaneously. Referring to FIG. 33, to achieve this, the transceiver preferably uses a separate circuit for each function. A duplexer 3304 is used in the transceiver to permit the sharing of an antenna 3302 for both the transmit and receive functions. The receiver function performs as follows. The antenna 3302 receives an EM signal 3306 and routes it through a capacitor 3307 to one terminal of a switch 3326. The other terminal of switch 3326 is connected to ground 3328, and the switch is driven as a result of a string of pulses 3324 created by local oscillator 3320 and pulse shaper 3322. The opening and closing of switch 3326 generates a down converted signal 3314. Down converted signal 3314 is routed through a amplifier 3308 and a filter 3310 to generate filtered signal 3316. Filtered signal 3316 may be at baseband and be demodulated or it may be at an “offset” frequency. If filtered signal 3316 is at an offset frequency, decoder 3312 will demodulate it to create the demodulated baseband signal 3318. In a preferred embodiment, however, the filtered signal 3316 will be a demodulated baseband signal, and decoder 3312 may not be required except to convert digital to analog or to decrypt filtered signal 3316. This receiver portion of the transceiver can operate independently from the transmitter portion of the transceiver. The transmitter function is performed as follows. In the FM and PM modulation modes, an information signal 3348 modulates an oscillating signal 3330. In the AM modulation mode, the oscillating signal 3330 is not modulated. The oscillating signal is shaped by pulse shaper 3332 and a string of pulses 3334 is created. This string of pulses 3334 causes a switch 3336 to open and close. One terminal of switch 3336 is connected to ground 3338, and the other terminal is connected through a resistor 3347 to a bias/reference signal 3346. In the FM and PM modulation modes, bias/reference signal 3346 is referred to as a bias signal 3346, and it is substantially non-varying. In the AM modulation mode, an information signal 3350 may be combined with the bias signal to create what is referred to as the reference signal 3346. The reference signal 3346 is a function of the information signal 3350. It is well known to those skilled in the relevant art(s) that the information signal 3350 may be used as the bias/reference signal 3346 directly without being summed with a bias signal. A harmonically rich signal 3352 is generated and is filtered by a “high Q” filter 3340, thereby producing a desired signal 3354. The desired signal 3354 is amplified by amplifier 3342 and routed to transmission module 3344. The output of transmission module 3344 is transmission signal 3356. Transmission signal 3356 is routed to duplexer 3304 and then transmitted by antenna 3302. This transmitter portion of the transceiver can operate independently from the receiver portion of the transceiver. Thus, as described above, the transceiver embodiment the present invention as shown in FIG. 33 can perform full-duplex communications in all modulation modes. 3.3.3 Enhanced Single Switch Transceiver Embodiment As described herein, one-switch transceiver embodiments of the present invention are enhanced to maximize power transfer and information extraction and transmission. These embodiments are described herein for purposes of illustration, and not limitation. Alternate embodiments (including equivalents, extensions, variations, deviations, etc., of the embodiments described herein), will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. The invention is intended and adapted to include such alternate embodiments. FIG. 34 is an example one-switch transceiver 3402 according to an embodiment of the invention The operation of this embodiment as a receiver is described above with regard to FIGS. 18A-E. The operation of this embodiment as a transmitter is described above with regard to FIGS. 27A-E. Also described above is a means for coupling receiver and transmitter embodiments of the invention to an antenna. Thus, given the description herein, a person skilled in the relevant arts will understand the operation of transceiver 3402. 3.3.4 Other Embodiments The embodiments described above are provided for purposes of illustration. These embodiments are not intended to limit the invention. Alternate embodiments, differing slightly or substantially from those described herein, will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Such alternate embodiments fall within the scope and spirit of the present invention. 4 Enhanced Operating Features of the Invention As described herein, embodiments of the present invention have enhanced operating features. These enhanced features enable receivers and transceivers according to the invention to down-convert a modulated carrier signal while extracting power from the carrier signal. This is in contrast to conventional receivers and transceivers, which ideally extract zero power from a received carrier signal (i.e., conventional receivers are typically designed to operate as impulse samplers). These enhanced features of the present invention also enable the linear operating ranges for embodiments of the invention to be extended. 4.1 Enhanced Power and Information Extraction Features Enhanced features of the invention enable the invention to down-convert a modulated carrier signal while extracting power from the signal. These features are not found in conventional receivers. As described herein, embodiments of the invention are implemented using one or more aliasing modules 300 (see for example FIGS. 3A and 3G). Differences between receiver embodiments according to the present invention and conventional receivers are illustrated in FIG. 36-41. For example, consider aliasing module 300 as shown in FIG. 3A. Aliasing module 300 down-converts an input signal 304 to form an output signal 312 as described herein. FIG. 36 illustrates a modulated carrier signal 3602 that can be down converted using either an aliasing module 300 or a conventional receiver. Signal 3602 has a period of TC. In this example, to down convert signal 3602 using a conventional receiver, signal 3602 is sampled using a control signal 3702 illustrated in FIG. 37. Control signal 3702 comprises a plurality of sampling impulses 3704. Each impulse 3704 ideally has a zero-width aperture. The sampling period of control signal 3700 must satisfy Nyquests' sampling criteria (i.e., it must be equal to or less than one-half TC). In contrast to a conventional receiver, to down convert signal 3602 according to the invention, a control signal, for example control signal 3802 shown in FIG. 38, is used. As can be seen in FIG. 38, control signal 3802 comprises sampling apertures having significant width compared to zero-width sampling impulses 3704 of control signal 3702. The width of the sampling apertures of control signal 3802 are TA. Control signal 3802 is shown having both positive magnitude apertures and negative magnitude apertures. In embodiments of the invention having two aliasing modules 300, the positive magnitude apertures control one aliasing module 300, and the negative magnitude apertures control another aliasing module 300, as described above. For embodiments of the invention having only one aliasing module 300, a control signal having only the positive magnitude apertures or the negative magnitude apertures of control signal 3802 can be used, as described herein. The period of time between two adjacent positive magnitude apertures or two adjacent negative magnitude apertures is TD. As shown in FIG. 38, TD is greater than TC. 4.2 Charge Transfer and Correlation The description of the invention that follows teaches one skilled in the relevant arts how to determine a value for one or more capacitors to be used in embodiments of the invention. As described herein, a significant difference between conventional communications systems and the present invention is that conventional communications systems are not intended to transfer non-negligible amounts of energy from a carrier signal to be used in forming a down-converted information signal (i.e., conventional communications system do not exhibit the capacitor discharge feature of the present invention). As illustrated in FIG. 39, the voltage signal across a capacitor, for example, of a conventional sample and hold communications system ideally remains constant (i.e., there is no energy transfer or intended discharge of the charge stored by the capacitor.) In contrast, as illustrated in FIG. 40, and as described herein with regards to embodiments of the invention, energy transfer is a feature of the present invention and capacitors (such as capacitor 310 in FIG. 3A and capacitor 310 in FIG. 3G) used in embodiments of the invention are sized to achieve a percent discharge between apertures of a switching (control) signal. In embodiments of the invention such as, for example, aliasing modules 300, one or more capacitors are sized to discharge between about six percent to about fifty percent of the total charge stored therein during a period of time that a switching device is open (i.e., between apertures). It is noted that this range is provided for illustrative purposes. Other embodiments of the invention exhibit other discharge percentages. FIG. 41 illustrates the voltage across a capacitor sized according to the invention for different rates of discharge (i.e., charge transfer). The basic equation for charge transfer is: ⅆ q ⅆ t = C ⁢ ⅆ v ⅆ t , ( assuming ⁢ ⁢ C ⁢ ⁢ is ⁢ ⁢ constant ⁢ ⁢ over ⁢ ⁢ time ) EQ . ⁢ ( 2 ) q = CV Similarly the energy u stored by a capacitor can be found from: u = ∫ 0 q ⁢ q x C ⁢ ⁢ ⅆ q x = q 2 2 ⁢ C EQ . ⁢ ( 3 ) From EQs. (2) and (3): u = Cv 2 2 EQ . ⁢ ( 4 ) Thus, the charge stored by a capacitor is proportional to the voltage across the capacitor, and the energy stored by the capacitor is proportional to the square of the charge or the voltage. Hence, by transferring charge, voltage and energy are also transferred. If little charge is transferred, little energy is transferred, and a proportionally small voltage results unless C is lowered. The law of conversation of charge is an extension of the law of the conservation of energy. EQ. (2) illustrates that if a finite amount of charge must be transferred in an infinitesimally short amount of time then the voltage, and hence voltage squared, tends toward infinity. Furthermore, V c = 1 C ⁢ ∫ 0 T A ⁢ i ⁢ ⁢ ⅆ t EQ . ⁢ ( 5 ) This implies an infinite amount of current must be supplied to create the infinite voltage, if TA is infinitesimally small. As will be understood by a person skilled in the relevant art, such a situation is impractical, especially for a device without gain. Generally speaking, in radio communications systems, the antenna produces a small amount of power available for the first conversion, even with amplification from an LNA. Hence, if a finite voltage and current restriction do apply to the front end of a radio then a conversion device, which is an impulse sampler, must by definition possess infinite gain. This would not be practical for a switch. What is usually approximated in practice is a fast sample time, charging a small capacitor, then holding the value acquired by a hold amplifier, which preserves the voltage from sample to sample (i.e., a sample and hold system is used). The analysis that follows shows that given a finite amount of time for energy transfer through a conversion device, the impulse response of the ideal processor, which transfers energy to a capacitor when the input voltage source is a sinusoidal carrier and possesses a finite source impedance, is achieved by embodiments of the present invention. If a significant amount of energy can be transferred in the sampling process, the tolerance on the charging capacitor can be reduced and the requirement for a hold amplifier is significantly reduced or even eliminated. In embodiments, the maximum amount of energy available over a half sine pulse can be found from: u = ∫ 0 T A ⁢ S i 2 ⁡ ( t ) ⁢ ⁢ ⅆ t = A 2 ⁢ T A 2 ⁢ ⁢ ( A 2 ⁢ π / 2 ⁢ ⁢ for ⁢ ⁢ ω c = 1 ) EQ . ⁢ ( 6 ) This points to a correlation processor or matched filter processor. If energy is of interest then a useful processor, which transfers all of the half sine energy, is revealed in EQ. (5), where TA is an aperture equivalent to the half sine pulse. In embodiments, EQ. (6) provides the insight to an enhanced processor. Consider the following equation sequence: ∫ 0 ∞ ⁢ h ⁡ ( τ ) ⁢ S i ⁡ ( t - τ ) ⁢ ⁢ ⅆ τ ⇒ ∫ 0 T A ⁢ kS i 2 ⁡ ( T A - τ ) ⁢ ⁢ ⅆ τ ⇒ ∫ - 0 T A ⁢ S i 2 ⁡ ( t ) ⁢ ⅆ t EQ . ⁢ ( 7 ) where h()=Si(TA−) and t=TA−. This is a matched filter equation with the far most right hand side revealing a correlator implementation, which is obtained by a change of variables as indicated. Note that the correlator form of the matched filter is a statement of the desired signal energy. Therefore a matched filter/correlator accomplishes acquisition of all the energy available across a finite duration aperture. Such a matched filter/correlator can be implemented as shown in FIG. 54. In embodiments, when configured for enhanced operation, the example matched filter/correlator of FIG. 54 operates in synchronism with the half sine pulse Si(t) over the aperture TA. Phase skewing and phase roll will occur for clock frequencies, which are imprecise. Such imprecision can be compensated for by a carrier recovery loop, such as a Costas Loop. A Costas Loop can develop the control for the acquisition clock, which also serves as a sub-harmonic carrier. However, phase skew and non-coherency does not invalidate the enhanced form of the processor provided that the frequency or phase errors are small, relative to T−1A. Non-coherent and differentially coherent processors may extract energy from both I and Q with a complex correlation operation followed by a rectifier or phase calculator. It has been shown that phase skew does not alter the optimum SNR processor formulation. The energy that is not transferred to I is transferred to Q and vice versa when phase skew exists. This is an example processor for a finite duration sample window with finite gain sampling function, where energy or charge is the desired output. Some matched filter/correlator embodiments according to the present invention might, however, be too expensive and complicated to build for some applications. In such cases, other processes and processors according to embodiments of the invention can be used. The approximation to the matched filter/correlator embodiment shown in FIG. 55 is one embodiment that can be used in such instances. The finite time integrator embodiment of FIG. 55 requires only a switch and an integrator. This embodiment of the present invention has only a 0.91 dB difference in SNR compared to the matched filter/correlator embodiment. Another low cost and easy to build embodiment of the present invention is an RC processor. This embodiment, shown in FIG. 56, utilizes a low cost integrator or capacitor as a memory across the aperture. If C is suitably chosen for this embodiment, its performance approaches that of the matched filter/correlator embodiment, shown in FIG. 54. Notice the inclusion of the source impedance, R, along with the switch and capacitor. This embodiment nevertheless can approximate the energy transfer of the matched filter/correlator embodiment. When maximum charge is transferred, the voltage across the capacitor 5604 in FIG. 56 is maximized over the aperture period for a specific RC combination. Using EQs. (2) and (5) yields: q = C · 1 C ⁢ ∫ 0 T A ⁢ i c ⁢ ⁢ ⅆ t EQ . ⁢ ( 8 ) If it is accepted that an infinite amplitude impulse with zero time duration is not available or practical, due to physical parameters of capacitors like ESR, inductance and breakdown voltages, as well as currents, then EQ. (8) reveals the following important considerations for embodiments of the invention: The transferred charge, q, is influenced by the amount of time available for transferring the charge; The transferred charge, q, is proportional to the current available for charging the energy storage device; and Maximization of charge, q, is a function of ic, C, and TA. Therefore, it can be shown that for embodiments: q max = Cv max = C ⁡ [ 1 C ⁢ ∫ 0 T A ⁢ i c ⁢ ⁢ ⅆ t ] max EQ . ⁢ ( 9 ) The impulse response for the RC processing network is; h ⁡ ( t ) = ⅇ - τ RC RC ⁡ [ u ⁡ ( τ ) - u ⁡ ( τ - T A ) ] EQ . ⁢ ( 10 ) Suppose that TA is constrained to be less than or equal to ½ cycle of the carrier period. Then, for a synchronous forcing function, the voltage across a capacitor is given by EQ. (11). V 0 ⁡ ( t ) = ∫ - ∞ t ⁢ sin ⁡ ( π ⁢ ⁢ f A ⁢ τ ) · ⅇ - ( t - τ ) RC RC ⁢ ⅆ τ EQ . ⁢ ( 11 ) Maximizing the charge, q, requires maximizing V0 (t) with respect to t and β. ∂ 2 ⁢ V 0 ⁡ ( t ) ∂ t ⁢ ∂ β = 0 EQ . ⁢ ( 12 ) It is easier, however, to set R=1, TA=1, A=1, fA=TA−1 and then calculate q=cV0 from the previous equations by recognizing that q = β - 1 R ⁢ ⁢ V 0 = cV 0 , which produces a normalized response. FIG. 57 illustrates that increasing C is preferred in various embodiments of the invention. It can be seen in FIG. 57 that as C increases (i.e., as∃ decreases) the charge transfer also increases. This is what is to be expected based on the optimum SNR solution. Hence, for embodiments of the present invention, an optimal SNR design results in optimal charge transfer. As C is increased, bandwidth considerations should be taken into account. In embodiments, EQ. (6) establishes TA as the entire half sine for an optimal processor. However, in embodiments, optimizing jointly for t and β reveals that the RC processor response creates an output across the energy storage capacitor that peaks for tmax≅0.75 TA, and βmax≅2.6, when the forcing function to the network is a half sine pulse. In embodiments, if the capacitor of the RC processor embodiment is replaced by an ideal integrator then tmax→TA. βTA≃1.95 EQ. (13) where ∃=(RC)−1 For example, for a 2.45 GHz signal and a source impedance of 50Ω, EQ. (13) above suggests the use of a capacitor of ≅2 pf. This is the value of capacitor for the aperture selected, which permits the optimum voltage peak for a single pulse accumulation For practical realization of some embodiments of the present invention, the capacitance calculated by EQ. (13) is a minimum capacitance. SNR is not considered optimized at βTA≃1.95. A smaller β yields better SNR and better charge transfer. In embodiments, it turns out that charge can also be enhanced if multiple apertures are used for collecting the charge. In embodiments, for the ideal matched filter/correlator approximation, βTA is constant and equivalent for both consideration of enhanced SNR and enhanced charge transfer, and charge is accumulated over many apertures for most practical designs. Consider the following example, β=0.25, and TA=1. Thus βTA=0.25. At 2.45 GHz, with R=50Ω, C can be calculated from: C ≧ T A R ⁡ ( .25 ) ≥ 16.3 ⁢ pf EQ . ⁢ ( 14 ) The charge accumulates over several apertures, and SNR is simultaneously enhanced melding the best of two features of the present invention. Checking CV for βTA≃1.95 vs. βTA=0.25 confirms that charge is enhanced for the latter. 4.3 Load Resistor Consideration FIG. 58 illustrates an example RC processor embodiment 5802 of the present invention having a load resistance 5804 across a capacitance 5806. As will be apparent to a person skilled in the relevant arts given the description of the invention herein, RC processor 5802 is similar to an aliasing module and/or an energy transfer module according to the invention. The transfer function of An RC processing embodiment 5802 of the invention (without initial conditions) can be represented by the following equations:. H ⁡ ( s ) = 1 - ⅇ - sT A s ⁢ ( 1 sCR + k ) EQ . ⁢ ( 15 ) k = ( R R L + 1 ) EQ . ⁢ ( 16 ) h ⁡ ( t ) = ( ⅇ - t · k RC RC ) ⁢ [ u ⁡ ( t ) - ( t - T A ) ] EQ . ⁢ ( 17 ) From the equations, it can be seen that RL 5804, and therefore k, accelerate the exponential decay cycle. V 0 ⁡ ( t ) = ∫ - ∞ t ⁢ sin ⁡ ( π ⁢ ⁢ f a ⁢ τ ) · ⅇ - k ⁡ ( t - τ ) RC RC ⁢ ⅆ τ EQ . ⁢ ( 18 ) V 0 ⁡ ( t ) = ⁢ ( 1 k 2 + ( π ⁢ ⁢ f A ) 2 ) ⁢ [ k · sin ⁡ ( π ⁢ ⁢ f A ⁢ t ) - π ⁢ ⁢ f A ⁢ RC · cos ⁡ ( π ⁢ ⁢ f A ⁢ t ) + RC ⁢ ⁢ ⅇ - kt RC ] ⁢ 0 ≤ t ≤ T A EQ . ⁢ ( 19 ) This result is valid over the acquisition aperture. After the switch is opened, the final voltage that occurred at the sampling instance t≅TA becomes an initial condition for a discharge cycle across RL 5804. The discharge cycle possesses the following response: V D = V A · ⅇ - t R L ⁢ C R L ⁢ C ⁢ u ⁡ ( t - T A ) ⁢ ( single event discharge ) EQ . ⁢ ( 20 ) VA is defined as V0(t≅TA). Of course, if the capacitor 5806 does not completely discharge, there is an initial condition present for the next acquisition cycle. FIG. 59 illustrates an example implementation of the invention, modeled as a switch S, a capacitor Cs, and a load resistance R. FIG. 61 illustrates example energy transfer pulses, having apertures A, for controlling the switch S. FIG. 60 illustrates an example charge/discharge timing diagram for the capacitor CS, where the capacitor CS charges during the apertures A, and discharges between the apertures A. Equations (21) through (35) derive a relationship between the capacitance of the capacitor CS(CS(R)), the resistance of the resistor R, the duration of the aperture A (aperture width), and the frequency of the energy transfer pulses (freq LO) in embodiments of the invention. EQ. (31) illustrates that in an embodiment optimum energy transfer occurs when x=0.841 (i.e., in this example, the voltage on the capacitor at the start of the next aperture (charging period) is about 84.1 percent of the voltage on the capacitor at the end of the preceding aperture (charging period)). Based on the disclosure herein, one skilled in the relevant art(s) will realize that values other that 0.841 can be utilized (See, for example, FIG. 41). ϕ = 1 C ⁢ ∫ i ⁡ ( t ) ⁢ ∂ t + Ri ⁡ ( t ) EQ . ⁢ ( 21 ) ∂ ∂ t ⁢ ϕ = ∂ ∂ t ⁡ [ 1 C ⁢ ∫ i ⁡ ( t ) ⁢ ∂ t + Ri ⁡ ( t ) ] EQ . ⁢ ( 22 ) ϕ = i ⁡ ( t ) C s + R ⁢ ∂ i ⁡ ( t ) ∂ t EQ . ⁢ ( 23 ) ϕ = 1 C s + R · s EQ . ⁢ ( 24 ) s = - 1 C s · R , by ⁢ ⁢ definition ⁢ : ⁢ ⁢ i init ⁡ ( t ) = V C s ⁢ init R EQ . ⁢ ( 25 ) i ⁡ ( t ) = ( V C s ⁢ init R ) · ⅇ ( - t C s · R ) EQ . ⁢ ( 26 ) V out ⁡ ( t ) = R · i ⁡ ( t ) = V C s ⁢ init · e ⁡ ( - t C s · R ) EQ . ⁢ ( 27 ) Maximum power transfer occurs when: Power_Final = 1 2 · Peak_Power EQ . ⁢ ( 28 ) Power_Peak = ( V C s ⁢ peak ) 2 R EQ . ⁢ ( 29 ) Power_Final = ( x · V C s ⁢ peak ) 2 R EQ . ⁢ ( 30 ) Using substitution: ( x · V C s ⁢ peak ) 2 R = ( V C s ⁢ peak ) 2 R · 1 2 EQ . ⁢ ( 31 ) Solving for “x” yields: x=0.841. Letting VCsinit=1 yields Vout(t)=0.841 when t = 1 freqLO - Aperture_Width . EQ . ⁢ ( 32 ) Using substitution again yields: 0.841 = 1 · ⅇ ( 1 freqLO - Aperture_Width C s · R ) EQ . ⁢ ( 33 ) ln ⁡ ( 0.841 ) = ( 1 freqLO - Aperture_Width C s · R ) EQ . ⁢ ( 34 ) This leads to the following EQ. (35) for selecting a capacitance. C s ⁡ ( R ) = ( 1 freqLO - Aperture_Width - ln ⁡ ( 0.841 ) · R ) EQ . ⁢ ( 35 ) The following equation according to the invention can be solved to find an expression for the energy accumulated over a bit time, Eb, as shown below. D = ∫ 0 T A ⁢ ( u ⁡ ( t ) - u ⁡ ( t - T A ) ) · A ⁢ ⁢ sin ⁡ ( 2 ⁢ ⁢ π ⁢ ⁢ ft + θ ) ⁢ ⅆ t EQ . ⁢ ( 36 ) D = A ⁢ ⁢ cos ⁡ ( θ ) · ( - cos ⁡ ( 2 ⁢ ⁢ π ⁢ ⁢ ft ) ) ( 2 ⁢ ⁢ π ) ⁢ f ⁢ ⁢ ( Evaluated from 0 to ⁢ T A ) EQ . ⁢ ( 37 ) where u(t), u(t−TA), and A are in volts, and D is expressed in Volts*Volts/Hz. Realizing the f equals 1/t, D can be written as: D = A ⁢ ⁢ cos ⁡ ( θ ) · ( - cos ⁡ ( 2 ⁢ ⁢ π ⁢ ⁢ ft ) ⁢ t ) ( 2 ⁢ ⁢ π ) EQ . ⁢ ( 38 ) where D is now expressed in volts*volts*seconds. Dividing D by the complex impedance Z of an RC processor according to the invention, when the switch (aperture) is closed, results in: D Z = A ⁢ ⁢ cos ⁡ ( θ ) · ( - cos ⁡ ( 2 ⁢ ⁢ π ⁢ ⁢ ft ) ⁢ t ) ( 2 ⁢ ⁢ π ) ⁢ Z ⁢ ⁢ ( Evaluated from 0 to ⁢ T A ) EQ . ⁢ ( 39 ) Since (volts*volts)/Z equals power, and since power equals joules/second, D/Z has units of (joules/second)/second. Thus, D/Z is the amount of energy accumulated over a bit time (Eb). A more useful expression for the energy accumulated over a bit time (Eb) is: E b = ∑ n = 1 aperturep_per ⁢ _bit ⁢ A n ⁢ cos ⁡ ( θ n ) ⁢ ( - cos ⁡ ( 2 ⁢ ⁢ π ⁢ ⁢ ft ) ⁢ t 2 ⁢ ⁢ π ⁢ ⁢ Z n ) ⁢ ⁢ ( Evaluated from 0 to ⁢ T A ) EQ . ⁢ ( 40 ) where Eb is expressed in joules per bit. Referring to the following equation, from above, it can be seen that there is a 2Bf term in the denominator. D = A · cos ⁡ ( ϕ ) · ( - cos ⁡ ( 2 · π · f · t ) ) ( 2 · π ) · f EQ . ⁢ ( 41 ) Analysis reveals that this term, and other terms, have physical units that allow a person skilled in the relevant art, given the discussion herein, to understand and relate the resultant quantity in a manner consistent with actual measurements of implementations of the present invention. Note that as the aperture time Ta becomes smaller, the absolute value of the energy accumulated over a single aperture period is less. However, what is equally important is the fact that the energy continues to accumulate over multiple aperture periods. The number of aperture periods required to reach an optimum value is dependent on two factors: (1) the aperture period, and (2) the complex impedance (Z) of C and R when the switch is closed, as described elsewhere herein. The values of C and R can, therefore, be selected to optimize the energy transfer during the half sine sample period. By including the Z term in the equation, a person skilled in the relevant art can calculate the Energy per Bit (i.e., Eb) directly and relate the results back to embodiments of the present invention, e.g., hardware performance. This analysis can also be used to show that the optimum system performance in terms of bandwidth and power transfer occurs when the aperture period is equal to one-half of a carrier frequency cycle. 4.4 Enhancing the Linear Operating Features of Embodiments of the Invention The analysis and description that follow explain how to enhance the linearity of embodiments of the invention. As described herein, embodiments of the present invention provide exceptional linearity per milliwatt. For example, rail to rail dynamic range is possible with minimal increase in power. In an example integrated circuit embodiment, the present invention provides +55 dmb IP2, +15 dbm IP3, @3.3V, 4.4 ma, −15 dmb LO. GSM system requirements are +22 dbm IP2, −10.5 dmb IP3. CDMA system requirements are +50 dmb IP2, +10 dbm IP3. As described herein, embodiments of the invention can be implemented using MOSFETs (although the invention is not limited to this example). Thus, for purposes of analysis, it is assumed that an embodiment of the invention is implemented using one or more enhancement MOSFETs having the following parameter: a channel width (W) equal to 400 microns; a channel length (L) of 0.5 microns; a threshold voltage (Vt) equal to 2 volts; and a k value equal to 0.003 (W/L), or k equal to 0.24. The drain current (ID) for an N-Channel Enhancement MOSFET is given by the following 2nd order equation: i D ⁡ ( v GS , v DS ) := | K · [ 2 · ( v GS - V t ) · v DS - v DS 2 ] if ⁢ ⁢ v DS ≤ v GS - V t [ K · ( v GS - V t ) 2 ] otherwise EQ . ⁢ ( 42 ) Note that since EQ. 42 is only a second order equation, we analyze second order distortion. FIG. 42 is a plot of drain current (ID) as a function of drain-source voltage (VDS) for three different gate-source voltages (i.e., Vgs equal to 3V, 4V, and 5V). As evident from the iD versus vDS plot in FIG. 42, the larger the gate-source voltage is, the larger the linear region (larger “ohmic” or “triode” region) is for vDS. The linear region is represented by the sloped lines (linear resistances) just to the left of the knee of the curves. The drain current distorts when vDS starts swinging beyond the sloped line, into the knee of the curve. FIG. 43 is a plot of the drain current of a typical FET as a function of drain-source voltage and gate-source voltage. It illustrates how linearity is improved by increasing the gate-source voltage. Of particular note, FIG. 43 shows that a FET becomes increasingly linear with increasing vGS. FIG. 43 shows how the drain current of a FET distorts when a sinusoid VDS(t) is applied across the drain and source junction. Therefore, biasing the FET with a larger VGS improves linearity. FIG. 44 illustrates what happens when, instead of having a large constant VGS, VGS is made to change proportionally to VDS. In FIG. 44, three different constants of proportionality have been plotted to illustrate what happens to the linearity when VGS is made to change proportionally to VDS. Each of the curves is plotted with the same DC bias of 3 volts on VGS. The first curve has a constant of proportionality of zero (i.e., no change of VGS with VDS). As illustrated by the curves in FIG. 44, in embodiments, one can get an additional, significant linearity improvement over the large and constant VGS case, if one makes VGS change proportionally to VDS. Furthermore, as shown in FIG. 44, there is an optimum constant of proportionality (i.e., 0.5) in embodiments of the invention. FIGS. 45A-E are plots of the FFTs of the FET drain currents for different constants of proportionality (CPs). These plots illustrate how second order distortion is affected when using different constants of proportionality. The second order distortion in FIG. 45A (PC=0) is −12.041 dBc. The second order distortion in FIG. 45B (PC=0.25) is −18.062 dBc. The second order distortion in FIG. 45C (PC=0.5) is −318.443 dBc. The second order distortion in FIG. 45D (PC=0.75) is −18.062 dBc. The second order distortion in FIG. 45E (PC=1) is −12.041 dBc. The plots in FIGS. 45A-E show that there is a significant linearity improvement by making VGS change proportional to VDS over the case where VGS is constant. The optimum constant of proportionality is 0.5, or when VGS is proportional to VDS by a factor of 0.5. It can be shown that choosing constants of proportionality greater than 1 will make the FET linearity worse than having a constant VGS (PC=0). FIGS. 45A-E show, as expected, that the DC term increases as the second order distortion gets worse (i.e., second order distortion produces a DC term). FIG. 46 shows two sets of curves. One set of curves is a plot of the FET drain current with a constant VGS. The other set of curves is a plot of the FET drain current with a VGS signal proportional to one half VDS. The FET linearization effect can be seen in FIG. 46. The FET linearization effect can also be seen mathematically by substituting VGS=Vbias+0.5VDS into the FET's drain current equation above to obtain: i D ⁡ ( v DS ) := | K · [ 2 · [ ( V bias + 0.5 · v DS ) - V t ] · v DS - v DS 2 ] if ⁢ ⁢ v DS ≤ V bias + 0.5 · v DS - V t [ K · ( V bias + 0.5 · v DS - V t ) 2 ] otherwise EQ . ⁢ ( 43 ) Simplifying this expression yields: i D ⁡ ( v DS ) := ❘ ⁢ [ 2. · K · ( v bias - v t ) ] · v DS ⁢ ⁢ if ⁢ ⁢ v DS ≤ 2 · ( v bias - v t ) ⁢ 0.25 · K · [ v DS + 2 · ( v bias - v t ) ] 2 ⁢ ⁢ otherwise EQ . ⁢ ( 44 ) Thus, for vDS less than or equal to 2(Vbias−Vt), the drain current is a linear function of vDS with a slope of 2K(Vbias−Vt). In this region, making VGS equal to half of VDS, cancels the square term (VDS)2, leaving only linear terms. As described herein, embodiments of the invention (see, for example, the embodiments illustrated in FIGS. 18A and 19) exhibit enhanced linearity properties. The enhanced linearity properties are achieved where: (1) |VGS|≧0.5* Vdd (i.e., the instantaneous differential voltage |VGS| is made as large as possible for both NMOS and PMOS devices, thus ensuring that voltage differential |VGS| does not swing below (0.5* Vdd)), (2) |VGS|=|0.5* VDS|+0.5* Vdd (i.e., as the RF signal across the drain and source gets larger, the voltage differential |VGS| gets larger by a proportionality factor of 0.5—when the RF signal gets large and one needs more linearity, VGS automatically increases to give more linearity), and/or (3) The drain and source of the NMOS and PMOS devices swap every half RF cycle so that (1) and (2) above are always satisfied. If an amplitude imbalance occurs, for example, across the FETS in FIG. 19, it will degrade the 2nd order linearity performance of receiver 1902. This is because the amplitude imbalance will change the constant of proportionality relating vGS to vDS from the optimum value of 0.5 to some other value. However, the only amplitude imbalance possible is at RF because the configuration of receiver 1902 guarantees that the baseband waveform will have perfect phase and amplitude balance. In addition to the advantages already described herein, additional advantages of receiver 1902 include: lower LO to RF reradiation, lower DC offset, and lower current (only one switch). Furthermore, the architecture of receiver 1902 ensures that the baseband differential signals will be amplitude and phase balanced, regardless of the imbalance at the input of the circuit at RF. This is because when the FET switch turns on, the two input capacitors are shorted together in series with a differential voltage across them. The capacitors have no ground reference and thus do not know there is an imbalance. As will be apparent to a person skilled in the relevant arts, the advantages to the configuration of receiver 1902 and UFD module 1938 are significant. In practice, the differential configuration of UFD 1938 has yielded high linearity that is repeatable. In summary, to enhance the linearity of embodiments of the invention, one should: (1) maintain the instantaneous voltage differential VGS as large as possible for both the NMOS and PMOS devices; and/or (2) make the voltage differential VGS change proportional to VDS so that |VGS|=Vbias+0.5*|VDS|. The enhanced linearity features described herein are also applicable to single-switch embodiments of the invention. Consider, for example, the embodiment shown in FIG. 20E. For this embodiment, VGS increases with VDS over half of an RF cycle. During the other half of the cycle VGS is constant. During the half RF cycle that VGS does increase with VDS, it increases at the same rate as VDS. The magnitude of VGS is given by EQ. 45 and EQ. 46. |VGS|=|VDS|+0.5* Vdd (for negative half of RF cycle) EQ. (45) |VGS|=0.5* Vdd (for positive half of RF cycle) EQ. (46) FIGS. 47-53 further illustrate the enhanced linearity features of embodiments of the invention. FIG. 47 shows additional plots that illustrate how the linearity of switching devices are enhance, for example, by the architecture of FIG. 19. FIG. 19 shows the current of the switching device when used according to the architecture of a conventional receiver and the architecture of receiver 1902. As described herein, the current of a typical FET switching device is given by EQ. 47 below, and the current of the FET switching device when used according to the embodiment shown in FIG. 19 is given by EQ. 48. id ⁡ ( vgs , vds ) := ❘ ⁢ K · [ 2 · ( vgs - vt ) · vds - vds 2 ] ⁢ ⁢ if ⁢ ⁢ vds ≤ vgs - vt ⁢ [ K · ( vgs - vt ) 2 ] ⁢ ⁢ otherwise EQ . ⁢ ( 47 ) id1 ⁡ ( vgs , vds ) := ❘ ⁢ K · ⌊ 2 · ( vgs + c · vds - vt ) · vds - vds 2 ⌋ ⁢ ⁢ if ⁢ ⁢ vds ≤ ( vgs + c · vds - vt ) ⁢ [ K · ( vgs + c · vds - vt ) 2 ] ⁢ ⁢ otherwise EQ . ⁢ ( 48 ) where k=0.24, vt=1.2 volts, c=0.5, and Vds=0 to 5 volts. FIG. 47 illustrates the current of a typical FET switching device when used in a conventional receiver (id), when used in receiver 1902 (id1), and when used in receiver 2002 (id2). EQ. 49 describes the current in a typical FET switching device. EQ. 50 describes the current in a FET of receiver 1902. EQ. 51 describes the current in a FET of receiver 2002. id ⁡ ( vgs , vds , t ) := ❘ ⁢ K · [ 2 · ( vgs - vt ) · vds ⁡ ( t ) - vds ⁡ ( t ) 2 ] ⁢ ⁢ if ⁢ ⁢ vds ⁡ ( t ) ≤ vgs - vt ⁢ [ K · ( vgs - vt ) 2 ⁢ ⁢ otherwise EQ . ⁢ ( 49 ) FIG. 49 illustrates the voltage relationship between Vgs and the aperture voltage for receiver 1902. FIGS. 50-53 illustrate the frequency spectrums for the currents of FIG. 48. FIGS. 50-53 are logarithmic plots. FIG. 50 is a combined plot of the frequency spectrum for all three of the current plots of FIG. 48. FIG. 51 is a plot of the frequency spectrum for the current of a FET switching device of receiver 1902. FIG. 52 is a plot of the frequency spectrum for the current of a FET switching device of receiver a typical FET switching device. FIG. 53 is a plot of the frequency spectrum for the current of a FET switching device of receiver 2002. As can be seen in the plots, there is an absence of second order distortion for the FET switching device of receiver 1902. As will be understood by a person skilled in the relevant arts, these plots herein demonstrate the enhanced linearity features of embodiments of the invention. 5 Example Method Embodiment of the Invention FIG. 62 illustrates a flowchart of a method 6200 for down-converting an electromagnetic signal according to an embodiment of the present invention. This method can be implemented using any of the receiver and/or transceiver embodiments of the present invention described herein. Method 6200 is described with reference to the embodiment illustrated in FIG. 16O. As described below, method 6200 comprises five steps. In step 6202, a RF information signal is received. The RF signal can be received by any known means, for example, using an antenna or a cable. In embodiments, the RF signal may be amplified using a low-noise amplifier and/or filtered after it is received. These steps, however, are not required in accordance with method 6200. In step 6204, the received RF information signal is electrically coupled to a capacitor. For the receiver shown in FIG. 16O, the RF signal is electrically coupled to the carrier(+) port of receiver 1602 and capacitor 1604. When used herein, the phrase “A is electrically coupled to B” does not foreclose the possibility that there may be other components physically between A and B. For receiver 1602, the received RF signal is inverted (e.g., using an inverter as shown in FIG. 17), and the inverted RF signal is coupled to the carrier(−) port and capacitor 1606. In embodiments (e.g., 2001), there is no need to invert the received RF information signal. Thus, the step of inverting the received RF signal is not required in accordance with method 6200. In accordance with method 6200, the RF information signal may also be electrically coupled to a capacitor using a switching device coupled to the capacitor. For example, for receiver 1688 shown in FIG. 16H, the received RF signal is coupled to capacitor 1604 through switching device 1608. Similarly, the inverted RF signal is coupled to capacitor 1606 through switching device 1610. Thus, as will be understood by a person skilled in the relevant arts, two or more devices can be electrically coupled yet not physically coupled. In step 6206, a switching device, electrically coupled to the capacitor, is used to control a charging and discharging cycle of the capacitor. In FIG. 160, switching device 1608 is used to control the charging and discharging of capacitor 1604. As described above, when switching device 1608 is closed, the RF signal coupled to capacitor 1604 causes a charge to be stored on capacitor 1604. This charging cycle is control by the apertures of control signal 1646, as described herein. During a period of time that switching device 1608 is open (i.e., between the apertures of control signal 1646), a percentage of the total charge stored on capacitor 1604 is discharged. As described herein, capacitor 1604 is sized in accordance with embodiments of the invention to discharge between about six percent to about fifty percent of the total charge stored therein during a period of time that switching device 1608 is open (although other ranges apply to other embodiments of the invention). In a similar manner, switching device 1614 is used to control the charging and discharging of capacitor 1606 so that between about six percent to about fifty percent of the total charge stored therein is discharged during a period of time that switching device 1610 is open. In step 6208, a plurality of charging and discharging cycles of the capacitor is performed in accordance with the techniques and features of the invention described herein, thereby forming a down-converted information signal. The number of charging and discharging cycles needed to down-convert a received information signal is dependent on the particular apparatus used and the RF signal received, as well as other factors. Method 6200 ends at step 6210 when the received RF information signal has been down-converted using the techniques and features of the invention described herein. In embodiments of the invention, the down-converted signal has a carrier signal riding on top of the down-converted signal. Thus, as described herein, this carrier signal can be removed, for example, by filtering the down-converted signal or by amplifying the down-converted signal with a band-limited amplifier. For the embodiment of the invention shown in FIG. 16O, the carrier signal riding on the down-converted signal is removed using amplifiers 1620 and 1624. As will be understood by a person skilled in the relevant arts, amplifiers 1620 and 1624 are intended to operate on signals having a lower range of frequencies than carrier signals. Thus, amplifiers 1620 and 1624 act as filters to a carrier signal riding on top of a down converted signal. In embodiments of the invention, a low pass filter is used to remove the carrier signal as described herein, and as would be known to a person skilled in the relevant arts. 6 Conclusion While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates generally to the down-conversion and up-conversion of an electromagnetic signal using a universal frequency translation module. 2. Related Art Various communication components exist for performing frequency down-conversion, frequency up-conversion, and filtering. Also, schemes exist for signal reception in the face of potential jamming signals.
<SOH> SUMMARY OF THE INVENTION <EOH>Briefly stated, the present invention is directed to methods, systems, and apparatuses for down-converting and/or up-converting an electromagnetic signal, and applications thereof. In an embodiment, the invention down-converts the electromagnetic signal to an intermediate frequency signal. In another embodiment, the invention down-converts the electromagnetic signal to a demodulated baseband information signal. In another embodiment, the electromagnetic signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal. In one embodiment, the invention uses a stable, low frequency signal to generate a higher frequency signal with a frequency and phase that can be used as stable references. In another embodiment, the present invention is used as a transmitter. In this embodiment, the invention accepts an information signal at a baseband frequency and transmits a modulated signal at a frequency higher than the baseband frequency. In an embodiment, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations are typically performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. The methods and systems of transmitting vary slightly depending on the modulation scheme being used. For some embodiments using frequency modulation (FM) or phase modulation (PM), the information signal is used to modulate an oscillating signal to create a modulated intermediate signal. If needed, this modulated intermediate signal is “shaped” to provide a substantially optimum pulse-width-to-period ratio. This shaped signal is then used to control a switch that opens and closes as a function of the frequency and pulse width of the shaped signal. As a result of this opening and closing, a signal that is harmonically rich is produced with each harmonic of the harmonically rich signal being modulated substantially the same as the modulated intermediate signal. Through proper filtering, the desired harmonic (or harmonics) is selected and transmitted. For some embodiments using amplitude modulation (AM), the switch is controlled by an unmodulated oscillating signal (which may, if needed, be shaped). As the switch opens and closes, it gates a reference signal, which is the information signal. In an alternate implementation, the information signal is combined with a bias signal to create the reference signal, which is then gated. The result of the gating is a harmonically rich signal having a fundamental frequency substantially proportional to the oscillating signal and an amplitude substantially proportional to the amplitude of the reference signal. Each of the harmonics of the harmonically rich signal also has amplitudes proportional to the reference signal, and is thus considered to be amplitude modulated. Just as with the FM/PM embodiments described above, through proper filtering, the desired harmonic (or harmonics) is selected and transmitted. The invention is applicable to any type of electromagnetic signal, including but not limited to, modulated carrier signals (the invention is applicable to any modulation scheme or combination thereof) and unmodulated carrier signals. Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.
20041025
20090224
20050421
61591.0
2
PHU, SANH D
DOWN-CONVERTING ELECTROMAGNETIC SIGNALS, INCLUDING CONTROLLED DISCHARGE OF CAPACITORS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,972,572
ACCEPTED
Method for connection reconfiguration in cellular radio network
The invention relates to a method for reconfiguring a cellular radio network connection comprising a network part having a connection to a mobile station through at least one radio bearer. According to the invention, a first party of the connection, i.e. the network part or the mobile station, sends a second party of the connection, i.e. the mobile station or the network part, a reconfiguration request message concerning at least one radio bearer. The second party of the connection possibly replies to this by sending the first party of the connection a reply message to the radio bearer reconfiguration request message. The radio bearer reconfiguration request message comprises at least one radio bearer identifier and, for example, bearer quality of service of the radio bearer in question. The possible reply message comprises at least one radio bearer identifier and possibly also bearer quality of service assigned to the radio bearer in question, or a cause for a failed reconfiguration of the radio bearer in question.
1. A cellular radio network comprising: a protocol software of a network layer of a network part arranged to establish a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station arranged to establish a connection to the network part through at least one radio bearer; the protocol software of the network layer of the network part is further arranged to transmit to the protocol software of the network layer of the mobile station a radio bearer reconfiguration request message concerning at least one radio bearer; and the protocol software of the network layer of the mobile station is further arranged to transmit to the protocol software of the network layer of the network part a reply message to the radio bearer recognition request message, wherein the radio bearer reconfiguration request message comprises at least one radio bearer identifier and bearer quality of service of the radio bearer in question. 2. A cellular radio network comprising: a protocol software of a network layer of a network part arranged to establish a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station arranged to establish a connection to the network part through at least one radio bearer; the protocol software of the network layer of the network part is further arranged to transmit to the protocol software of the network layer of the mobile station a radio bearer reconfiguration request message concerning at least one radio bearer; and the protocol software of the network layer of the mobile station is further arranged to transmit to the protocol software of the network layer of the network part a reply message to the radio bearer reconfiguration request message, wherein the reply message comprises at least one radio bearer identifier and a cause for a failed reconfiguration of the radio bearer in question. 3. A cellular radio network according to claim 1, wherein the bearer quality of service is indicated by at least one parameter. 4. A cellular radio network according to claim 3, wherein the parameter is selected from a group consisting of bit error rate, maximum transmission delay, transmission delay deviation, priority, security and data loss at handover. 5. A cellular radio network according to claim 3, wherein the parameter is at least one LLC sublayer parameter. 6. A cellular radio network according to clam 3, wherein the parameter is at least one RLC sublayer parameter. 7. A cellular radio network according to claim 1, wherein the radio bearer is arranged to be used for signalling. 8. A cellular radio network according to claim 1, wherein the radio bearer is arranged to be used for communication. 9. A cellular radio network comprising: a protocol software of a network layer of a network part arranged to establish a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station arranged to establish a connection to the network part through at least one radio bearer; the protocol software of the network layer of the mobile station is further arranged to transmit to the protocol software of the network layer of the network part a radio bearer reconfiguration request message concerning at least one radio bearer; the protocol software of the network layer of the network part is further arranged to transmit to the protocol software of the network layer of the mobile station a reply message to the radio bearer reconfiguration request message, wherein the radio bearer reconfiguration request message comprises at least one radio bearer identifier and bearer quality of service of the radio bearer in question. 10. A cellular radio network according to claim 9, wherein the reply message comprises at least one radio bearer identifier, and a cause for a failed reconfiguration of the radio bearer in question. 11. A cellular radio network according to claim 9, wherein the bearer quality of service is indicated by at least one parameter. 12. A cellular radio network according to claim 11, wherein the parameter is selected from a group consisting of bit error rate, maximum transmission delay, transmission delay deviation, priority, security and data loss at handover. 13. A cellular radio network according to claim 11, wherein the parameter is at least one LLC sublayer parameter. 14. A cellular radio network according to claim 11, wherein the parameter is at least one RLC sublayer parameter. 15. As cellular radio network according to claim 9, wherein the radio bearer is arranged to be used for signalling. 16. A cellular radio network according to claim 9, wherein the radio bearer is arranged to be used for communication. 17. A network part of a cellular network, the network part comprising: protocol software of a network layer of the network part arranged to have a connection to a mobile station of the cellular network through at least one radio bearer; the protocol software of the network layer of the network part is further arranged to transmit a radio bearer reconfiguration request to a protocol software of a network layer of the mobile station; and the radio bearer reconfiguration request message comprises at least one radio bearer identifier and a bearer quality of service of the radio bearer in question. 18. A mobile station of a cellular network, the mobile station comprising: protocol software of a network layer of the mobile station arranged to have a connection to a network part of the cellular network through at least one radio bearer; the protocol software of a network layer of the mobile station is further arranged to transmit to a protocol software of a network layer of the network part a reply message to a radio bearer reconfiguration request message; and the reply message comprises at least one radio bearer identifier and a cause for a failed reconfiguration of the radio bearer in question.
This is a divisional application of U.S. Ser. No. 09/627,526, filed Jul. 28, 2000. The disclosure of the prior application is hereby incorporated by reference. FIELD OF THE INVENTION The invention relates to a method for reconfiguring a cellular radio network connection. The reconfiguration particularly concerns a radio bearer providing a connection between a network part and a mobile station. BACKGROUND OF THE INVENTION In the GSM system connection reconfiguration concerns the modifying of a call mode. The procedure is known as in-call modification. The term ‘mode’ means the operational status of a call; it can be for instance a standard speech mode, data mode, fax mode, an alternating speech/data mode or an alternating speech/fax mode. When a connection is reconfigured, its mode can thus be changed e.g. from a speech mode to a data mode. In case the channel used for the connection does not support the required characteristics, channel configuration can be changed. The solution known from the GSM system is not, however, applicable for use in UMTS (Universal Mobile Telephone System) described below. The reason for this is that in the UMTS a single connection can simultaneously use one or more radio bearers. The characteristics of the radio bearers may have to be modified upon establishment of or during a connection. The term ‘radio bearer’ refers to a service provided by a network layer. Multimedia service typically uses a plural number of radio bearers simultaneously for providing a service. Video telephony, for example, may require four different radio bearers: transmission of speech and image both use separate radio bearers for uplink and downlink. A multimedia service, such as video telephony, can also be implemented by using only one radio bearer per transmission direction, thereby avoiding the problem of synchronization between radio bearers of the same transmission direction. Radio bearer parameters comprise most of the first and second layer operational parameters. A radio bearer user, however, does not know the parameters of lower layers. Therefore the radio bearer user is not aware of how the radio bearer provides its services, i.e. whether it uses a half of a TDMA time slot, one time slot or a plural number of them, or one or more CDMA spreading codes. A radio bearer is defined by a set of parameters or attributes that concern the traffic or quality characteristics of a service provided. A radio bearer is not to be considered similar to a logical channel, which is a service provided by a data link layer. BRIEF DESCRIPTION OF THE INVENTION An object of the invention is therefore to provide a method and an equipment implementing the method in such a way that the above problems can be solved. This is achieved with the method described below, which is a method for reconfiguring a cellular radio network connection comprising a network part, the network part having a connection to a mobile station through at least one radio bearer. According to the method, a first party of the connection sends to a second party of the connection a radio bearer reconfiguration request message involving at least one radio bearer; the second party of the connection sends to the first party of the connection a reply message to the radio bearer reconfiguration request message. The invention also relates to a cellular radio network comprising: a protocol software of a network layer of a network part, the software being arranged to have a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station, the software being arranged to have a connection to the network part through at least one radio bearer. The protocol software of the network layer of the network part is arranged to transmit to the protocol software of the network layer of the mobile station a radio bearer reconfiguration request message involving at least one radio bearer; the protocol software of the network layer of the mobile station is arranged to transmit to the protocol software of the network layer of the network part a reply message to the radio bearer reconfiguration request message. The invention further relates to a cellular radio network comprising: a protocol software of a network layer of a network part, the software being arranged to have a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station, the software being arranged to have a connection to the network part by means of at least one radio bearer. The protocol software of the network layer of the mobile station is arranged to transmit to the protocol software of the network layer of the network part a radio bearer reconfiguration request message involving at least one radio bearer; the protocol software of the network layer of the network part is arranged to transmit to the protocol software of the network layer of the mobile station a reply message to the radio bearer reconfiguration request message. The invention further relates to a method for reconfiguring a cellular radio network connection comprising a network part, the network part having a connection to a mobile station through at least one radio bearer. A first party of a connection transmits to a second party of the connection a radio bearer reconfiguration request message involving at least one radio bearer. The preferred embodiments of the invention are disclosed in the dependent claims. The invention is based on that either of the communicating parties can request, when needed, a radio bearer reconfiguration. A method and system of the invention provide several advantages. The solution enables reconfiguration to be flexibly implemented in a system employing radio bearers. A plural number of radio bearers can be simultaneously reconfigured, the number of messages needed being thereby reduced, which in turn decreases the load on radio resources. When necessary, reconfiguration of radio bearers used for signalling can be carried out at connection set-up, thus avoiding a reallocation of signalling radio bearers that would perhaps otherwise be needed. BRIEF DESCRIPTION OF THE DRAWINGS In the following the invention will be described in greater detail in connection with preferred embodiments and with reference to the attached drawings, in which FIG. 1 illustrates an example of a cellular radio network structure; FIG. 2 illustrates a transceiver structure; FIG. 3 illustrates cellular radio network protocol stacks; FIG. 4A is a message sequence diagram illustrating a reconfiguration procedure of the invention initiated by a mobile station; FIG. 4B is a message sequence diagram illustrating a reconfiguration procedure of the invention initiated by a network part; FIG. 5 illustrates protocol stacks of an embodiment. DETAILED DESCRIPTION OF THE INVENTION With reference to FIG. 1, a typical cellular radio network structure of the invention will be described. FIG. 1 only comprises the blocks that are essential for the description of the invention, although it is apparent to a person skilled in the art that a common cellular radio network also comprises other functions and structures which need not be discussed in greater detail here. The examples describe a cellular radio network employing TDMA (Time Division Multiple Access), the invention not being, however, restricted to it. The invention can be applied to GSM-based cellular radio networks, in other words, to systems that are at least partially based on GSM specifications. One example is the UMTS (Universal Mobile Telephone System). A cellular radio network typically comprises a fixed network infrastructure, i.e. a network part 128, and mobile stations 150, which may be fixedly mounted, vehicle mounted or hand-held portable terminals. The network part 128 comprises base stations 100. A plural number of base stations 100 are, in turn, controlled in a centralized manner by a base station controller 102 communicating with them. A base station 100 comprises transceivers 114. A base station 100 typically comprises 1-16 transceivers 114. In TDMA radio systems, for example, a transceiver 114 offers radio capacity to one TDMA frame, i.e. typically to eight time slots. The base station 100 comprises a control unit 118 which controls the operation of the transceivers 114 and a multiplexer 116. The multiplexer 116 arranges traffic and control channels used by a plural number of transceivers 114 on a single data link 160. The transceivers 114 of the base station 100 have a connection to an antenna unit 112 which is used for providing a bi-directional radio connection 170 to a mobile station 150. The structure of the frames transmitted in the bi-directional radio connection 170 is also determined in detail and the connection is referred to as an air interface. FIG. 2 illustrates in greater detail the structure of a transceiver 114. A receiver 200 comprises a filter blocking frequencies outside a desired frequency band. A signal is then converted to an intermediate frequency or directly to baseband, and in this form the signal is sampled and quantized in an analog-to-digital converter 202. An equalizer 204 compensates for interference caused for instance by multi-path propagation. From the equalized signal, a demodulator 206 takes a bit stream, which is transmitted to a demultiplexer 208. The demultiplexer 208 separates the bit stream from the separate time slots into its logical channels. A channel codec 216 decodes the bit stream of the separate logical channels, i.e. decides whether the bit stream is signalling data, which is transmitted to a control unit 214, or whether the bit stream is speech, which is transmitted 240 to a speech codec 122 of the base station controller 102. The channel codec 216 also performs error correction. The control unit 214 performs internal control functions by controlling different units. A burst former 228 adds a training sequence and a tail to the data arriving from the speech codec 216. A multiplexer 226 assigns a specific time slot to each burst. A modulator 224 modulates digital signals to a radio frequency carrier. This operation has an analog nature, therefore a digital-to-analog converter 222 is needed for performing it. A transmitter 220 comprises a filter restricting the bandwidth. In addition, the transmitter 220 controls the output power of a transmission. A synthesizer 212 arranges the necessary frequencies for the different units. The synthesizer 212 comprises a clock which may be locally controlled or it can be centrally controlled from somewhere else, for instance from the base station controller 102. The synthesizer 212 creates the necessary frequencies by means of a voltage controlled oscillator, for example. As shown in FIG. 2, the structure of the transceiver can be further divided into radio frequency parts 230 and a digital signal processor including software 232. The radio frequency parts 230 comprise the receiver 200, the transmitter 220 and the synthesizer 212. The digital signal processor including software 232 comprises equalizer 204, demodulator 206, demultiplexer 208, channel codec 216, control unit 214, burst former 228, multiplexer 226 and modulator 224. The analog-to-digital converter 202 is needed for converting an analog radio signal to a digital signal and, correspondingly, the digital-to-analog converter 222 is needed for converting a digital signal to an analog signal. The base station controller 102 comprises a group switching field 120 and a control unit 124. The group switching field 120 is used for switching speech and data and for connecting signalling circuits. The base station 100 and the base station controller 102 form a Base Station System 126 which additionally comprises a transcoder 122. The transcoder 122 is usually located as close to a mobile switching centre 132 as possible because this allows speech to be transmitted between the transcoder 122 and the base station controller 102 in a cellular radio network form, which saves transmission capacity. In the UTMS the base station controller 102 can be referred to as an RNC (Radio Network Controller). The transcoder 122 converts different digital speech coding modes used between a public switched telephone network and a cellular radio network, to make them compatible, for instance from the 64 kbit/s fixed network form to another form (such as 13 kbit/s) of the cellular radio network, and vice versa. The control unit 124 carries out call control, mobility management, collection of statistical data and signalling. The UMTS uses an IWU 190 (Interworking Unit) to make the base station system 126 interwork with a second generation GSM mobile switching centre 132 or a second generation packet transmission network support node 180. The IWU is not needed when the base station system is connected to an UMTS mobile switching centre or to an UMTS support node. As shown in FIG. 1, a circuit-switched connection can be established from the mobile station 150 via the mobile switching centre 132 to a telephone 136 connected to a PSTN (Public Switched Telephone Network) 134. A packet-switched connection, such as GSM phase 2+ packet transmission, i.e. GPRS (General Packet Radio Service), can also be used in a cellular radio network. The connection between a packet network 182 and the IWU 190 is created by a support node 180 (SGSN=Serving GPRS Support Node). The function of the support node 180 is to transfer packets between the base station system and a gateway node (GGSN=Gateway GPRS Support Node) 184 and to keep record of the mobile station's 150 location within its area. The IWU 190 can be a physically separate device, as in FIG. 1, or it can be integrated as part of the base station controller 102 or the mobile switching centre 132. As FIG. 1 shows, when transcoding of the data to be transferred is not allowed, packet transmission data is not necessarily transferred through the transcoder 122 between the IWU 190 and the group switching field 120. The gateway node 184 connects the packet network 182 and a public packet network 186. The interface can be provided by an Internet protocol or an X.25 protocol. The gateway node 184 encapsulates the internal structure of the packet network 182, thus masking it from the public packet network 186, so for the public packet network 186 the packet network 182 looks like a sub-network, and the public packet network can address packets to a mobile station 150 located in the sub-network and receive packets from it. A typical packet network 182 is a private network applying an Internet protocol and conveying signalling and tunnelled user data. The structure of the network 182 can vary according to operator, both as regards its architecture and its protocols below the Internet protocol layer. The public packet network 186 can be for instance a global Internet network into which a terminal 188, for instance a server, with a connection to the network wants to transmit packets addressed to the mobile station 150. The mobile switching centre 132 is connected to an OMC (Operations and Maintenance Centre) controlling and monitoring the operation of a radio telephone system. The OMC 132 is usually a fairly efficient computer provided with a specific software. The control can also involve separate parts of the system, because control channels needed for control data transfer can be arranged on data transmission connections established between different parts of the system. Further, the personnel installing a network and controlling the operations possibly have a portable computer including an EM (Element Manager) 140 at their disposal for the management of separate network elements. The Figure shows an example in which the device 140 is connected to a data transmission port located in the control unit 118 of the base station 100, thus enabling the operation of the base station 100 to be monitored and controlled, for instance by examining and changing the values of parameters regulating the operation of the base station. The structure of the mobile station 150 can be described utilizing the description of the transceiver 114 in FIG. 2. The structural parts of the mobile station 150 are operationally the same as those of the transceiver 114. The mobile station 150 additionally comprises: a duplex filter between the antenna 112 and the receiver 200 and between the antenna 112 the transmitter 220, interface parts and a speech codec. The speech codec is connected to a channel codec 216 via a bus 240. Since the present invention relates to the processing of protocols used in a cellular radio network, an example illustrating the implementation of the necessary protocol stacks will be described with reference to FIG. 3. The left-most protocol stack in FIG. 3 is a protocol stack located at the mobile station 150. The next protocol stack is in the base station system 126. A third protocol stack is located in the IWU 190. The right-most protocol stack is located in the mobile switching centre 132. The air interface 170 provided by means of the radio connection 170 between the mobile station 150 and the base station system can also be referred to as an Um interface. An interface 162 between the base station system 126 and the mobile switching centre 132 is called an A interface. The interface between the base station system 126 and the IWU is an lu interface 300. The protocol stacks are formed according to an OSI (Open Systems Interconnection) model of the ISO (International Standardization Organization). In the OSI model protocol stacks are divided into layers. There can be seven layers. A layer in each device 150, 126, 190, 132 communicates logically with a layer in another device. Only the lowest, physical layers communicate with each other directly. Other layers always use services provided by the layer below. A message must therefore physically travel in a vertical direction between the layers, and only in the lowest layer the message travels horizontally between the layers. The actual bit level data transmission takes place through the lowest (the first) layer, i.e. a physical layer Layer 1. In the physical layer are determined mechanical, electronic and operational characteristics for connecting to a physical transmission link. The physical layer in the air interface 170 of the GSM is provided by means of TDMA technology. In the UMTS the physical layer is provided by using WCDMA and TD/CDMA. The physical layer provides a second layer with transport services on transport channels. The transport channels are RACH (Random Access Channel), FACH (Forward Access Channel), PCH (Paging Channel), BCH (Broadcast Channel) and DCH (Dedicated Channel). Transport channels determine the method and the parameters for transferring data in the physical layer. Transport channel parameters include: encoding, i.e. outer and inner coding, interleaving, bit rate and mapping to physical channels. In WCDMA the physical channel used by the transport channels is determined by codes. A channelization code, i.e. spreading code, determines the spreading ratio, thus determining also the maximum bit rate to be used. The channelization code is separately determined for uplink and downlink and, depending on the bit rate needed, one or more parallel codes can be simultaneously used. A scrambling code, in turn, separates different mobile stations from one another on uplink and different cells or sectors of cells on downlink. The next (the second) layer, i.e. a data link layer, uses the services of the physical layer to provide reliable data transmission, which includes correction of transmission errors, for example. The data link provides upper layers with data transmission services on logical channels. The logical channels comprise CCCH (Common Control Channel), PCCH (Paging Control Channel), BCCH (Broadcast Control Channel), DCCH (Dedicated Control Channel) and DTCH (Dedicated Traffic Channel). The logical channels determine the data to be transmitted, unlike transport channels, which determine the method and the parameters to be used for transferring data. The DTCH provides services to upper layers of a user plane, all the other logical channels to upper protocol layers of a control plane. The data link layer at the air interface 170 is divided into an RLC/MAC sublayer and an LLC sublayer. In the RLC/MAC sublayer, the RLC part is responsible for segmenting and collecting the data to be transmitted. In addition, the RLC part masks quality fluctuations in the radio interface 170 of the physical layer from the upper layers. A sublayer RRC, to be described later, controls the allocation, reconfiguration and releasing of physical code channels and the transport channels provided by the physical layer. The MAC part carries out the actual allocation/configuration/releasing by command of the RRC sublayer. The MAC part can also indicate to the RRC sublayer that allocation is needed. On the user plane the LLC sublayer controls the data flow at the interface between the second and the third layer. The LLC transfers the received data flow on the radio connection 170 through error detection and correction levels required by the quality of service of the offered service. On the control plane, a radio network sublayer described below communicates directly with the RLC/MAC sublayer. The third layer, i.e. the network layer, offers to the upper level independence of data transmission and switching techniques taking care of the connection between mobile stations. The network layer carries out connection set-up, maintenance and releasing, for example. A GSM network layer is also known as a signalling layer. It has two main functions: to route messages and to provide for the possibility of a plural number of independent, simultaneous connections between two entities. The network layer of a common GSM system comprises a connection management sublayer CM, a mobility management sublayer MM and a radio resource management sublayer. The radio resource management sublayer is responsible for frequency spectrum management and for the reactions of the system to changing radio circumstances. It is further responsible for maintaining a high-quality channel, e.g. by taking care of channel selection, the releasing of a channel, possible frequency hopping sequences, power adjustment, timing, reception of mobile station measurement reports, adjustment of a timing advance, ciphering settings, handover between cells. Messages of this sublayer are transferred between the mobile station 150 and the base station controller 102. The mobility management sublayer MM handles such consequences caused by the mobility of a mobile station user which do not directly relate to the operation of the radio resource management sublayer. In a fixed network this sublayer would take care of checking user authorities and connecting the user to the network. In cellular radio networks the sublayer in question thus supports user mobility, registration and management of data caused by mobility. The sublayer also checks mobile station identity and the identities of the services allowed. Data transmission concerning the sublayer takes place between the mobile station 150 and the mobile switching centre 132. The connection management sublayer CM manages all operations associated with circuit-switched call management. The operations involved are provided by a call management entity. In addition, other services, such as SMS (Short Message Service), are provided by separate entities. The connection management sublayer does not detect user mobility. The GSM connection management sublayer operations are therefore almost directly inherited from the ISDN (Integrated Services Digital Network) of the fixed network. The call management entity sets up, maintains and releases calls. It has specific procedures which it applies to calls originated by and terminating to the mobile station 150. Also in this sublayer messages are transferred between the mobile station 150 and the mobile switching centre 132. The TDMA technique employed in an ordinary physical GSM layer is replaced in the UMTS by a broadband CDMA technique (Code Division Multiple Access) when different frequency bands are used for uplink and for downlink and by a broadband combination of CDMA and TDMA techniques when one and the same frequency band based on a time division duplex method is used for both uplink and downlink. In this case the GSM radio resources management sublayer can not be re-used in the UMTS, but it is replaced by a radio network sublayer RNL providing corresponding services upward. The radio network sublayer can be divided into RBC (Radio Bearer Control) and RRC (Radio Resource Control) sublayers, but it can also be kept as a single entity. When kept as a single entity, it can also be called an RRC sublayer. If the division into sublayers is applied, then the RRC sublayer performs e.g. broadcasting and paging of cell data, processing of mobile station 150 measurement results, and handovers. The RBC sublayer provides the logic connection establishment, thereby determining e.g. radio bearer bit rate, bit/error ratio and whether the transmission concerned is packet-switched or circuit-switched. When upper protocol layers of second generation systems are used as such, the mobile station 150 needs a UAL (UMTS Adaptation Layer) sublayer between the mobility management and radio network sublayers, the UAL sublayer changing the primitives of a upper mobility management sublayer to primitives of a lower radio network sublayer. The UAL layer enables a plural number of separate mobility management sublayers (such as GPRS and GSM mobility management sublayers) to be arranged into one and the same radio network sublayer. The only network sublayers processed in the base station system 126 are the radio network sublayer; messages of the connection management and mobility management sublayers are transparently processed, in other words, they are simply transferred back and forth through specific sublayers. A RANAP sublayer (Radio Access Network Application Part) provides procedures for negotiating and managing both circuit-switched and packet-switched connections. It corresponds to BSSAP (Base Station System Application Part) in the GSM, BSSAP comprising BSSMAP (Base Station System Management Part) and DTAP (Direct Transfer Application Part). Lower layers of the lu interface 300 can be implemented for instance by means of ATM (Asynchronous Transfer Mode) protocols: SAAL/SS7 (Signalling ATM Adaptation Layer/Signalling System Number 7), AAL (ATM Adaptation Layer). The IWU 190 comprises RANAP, SAAL/SS7, AAL sublayers and physical layers corresponding to those of the base station system 126. The IWU 190 and the mobile switching centre 132 further comprise a BSSMAP sublayer through which data associated with a particular mobile station 150 and control data associated with the base station system 126 are transferred between the IWU 190 and the mobile switching centre 132. In the A interface the first and the second sublayer are implemented by means of MTP and SCCP sublayers (Message Transfer Part, Signalling Connection Control Part). Their structure is simpler than in the air interface 170, because mobility management, for example, is not needed. As we have now described, with reference to FIGS. 1, 2 and 3, an example of a system and system protocols where the invention can be used, we can proceed to describe the actual method of the invention. The above protocol description showed that the operation according to the invention takes place in the radio network sublayer RNL in particular, and specifically in its RBC sublayer, if the sublayer division in question is applied. If the division into sublayers is not applied, then there is no RBC sublayer and therefore the radio network sublayer RNL can be termed an RRC sublayer, according to its only sublayer; protocol stacks of a preferred embodiment based on this are illustrated in FIG. 5. Since the invention mainly concerns the control plane, FIG. 5 only shows control plane protocol stacks. The main parts of a mobile phone system are a core network, a UMTS terrestrial radio access network UTRAN and a mobile station MS. The mobile station can also be referred to as a UE (User Equipment). The interface between the core network and UTRAN is called lu and the air interface between UTRAN and a mobile station is called Uu. UTRAN comprises radio network subsystems. A radio network subsystem comprises a radio network controller and one or more so-called B nodes, i.e. base stations, so it is approximately similar to a GSM base station system. The core network comprises a mobile phone system infrastructure outside UTRAN, such as a mobile switching centre. FIG. 5 illustrates protocol stacks used by the mobile station MS, the radio access network UTRAN and the mobile switching centre MSC. Unlike in FIG. 3, the IWU is not shown because it is assumed that the mobile switching centre MSC employed is designed for the UMTS. The physical layer in the air interface Uu is implemented by means of a broadband CDMA technique WCDMA LI. The RLC and MAC sublayers follow next. The LLC sublayer is not used on the control plane, the RRC sublayer being directly connected to the RLC/MAC sublayer. Lower transport layers TRANSPORT LAYERS of the lu interface are not illustrated in such detail as in FIG. 3, because they can be implemented in various ways. Otherwise the description of FIG. 3 also applies, to the extent appropriate, to FIG. 5. FIG. 4A is a message sequence diagram illustrating how the mobile station radio network sublayer MS RNL communicates with the network part radio network sublayer NP RNL when performing radio bearer reconfiguration. FIG. 4A does not show all details of the communication, i.e. how messages travel in lower data link layers and physical layers. The communication illustrated is known as a peer-to-peer communication. The reconfiguration request message is a radio network sublayer message. Radio bearer reconfiguration can be initiated by 1. an upper layer, after service parameters are negotiated on a call control plane; 2. the RRC sublayer, by applying algorithms guiding the use of radio resources; 3. even a lower level, such as a MAC sublayer, because of its traffic volume monitoring, or a physical layer, after it has reached the maximum transmission power limit. The reason for reconfiguration may be an overload situation or degradation of the radio bearer quality, for example. Radio bearer reconfiguration can be requested both by the sender and the receiver: the sender when needing for instance additional capacity, and the receiver when detecting that the quality is too low. In FIG. 4A the mobile station radio network sublayer MS RNL sends 400A a reconfiguration request message BEARER_RECONF_REQ to the network part radio network sublayer. The message comprises a radio Bearer Identifier BID and Quality of Service BEARER QOS of the bearer in question. The message may comprise more than one BID/BEARER QOS pair, i.e. one message can be used for requesting the reconfiguration of a plural number of separate radio bearers. The requested reconfiguration 402A is carried out in the network part. If the reconfiguration is successful, the network part sends 404A a reply message BEARER_COMPL informing that the reconfiguration succeeded. The reply message comprises the radio bearer identifier BID and the quality of service BEARER QOS provided. Depending on the implementation, parameters of the LLC sublayer and/or the RLC sublayer can also be transferred. Another option is that the mobile station decodes from the quality of service parameter BEARER QOS the LLC sublayer and/or RLC sublayer parameters concerned, in which case they need not be transferred in the reply message BEARER_COMPL. If the reconfiguration fails, the network part sends 406A a reply message BEARER_FAIL informing that the reconfiguration failed. In this case the reply message comprises the radio bearer identifier BID and a cause CAUSE for the failure of the reconfiguration. If the radio network sublayer MS RNL requested in the reconfiguration request message BEARER_RECONF_REQ the reconfiguration of several radio bearers and in case all the reconfigurations succeed, the reply message BEARER_COMPL is sent, all the above described parts being repeated in the message for each radio bearer. Likewise, in case all the reconfigurations fail, the above described reply message BEARER_FAIL is sent, the above described parts, i.e. the radio bearer identifier BID and the cause CAUSE for the failure of its reconfiguration, being repeated in the message for each radio bearer. In case some of the reconfigurations succeed and others fail, separate reply messages are sent for the successful reconfigurations and for the failed ones, or only one message combining the structures of the successful reconfiguration reply message BEARER_COMPL and the failed reconfiguration reply message BEARER_FAIL is sent. In this case the structure of the reply message is for instance the following: (BID, BEARER QOS[LLC, RLC], BID, CAUSE]. Let us assume that three separate radio bearers having identifiers bid1, bid2 and bid3 were to be configured. Let us further assume that the reconfiguration of bid1 was successful whereas the reconfiguration of the others failed. In this case a single reply message comprises the following: bid1, bid1 qos[bid1 llc, bid1 rlc], bid2, bid2 cause, bid3, bid3 cause. Having received the reply message the protocol software of the mobile station changes either its transmission or its reception parameters as a result of the successful reconfiguration, or it starts to plan its next procedure as a result of a failed reconfiguration. Another way to carry out radio bearer reconfiguration initiated by a mobile station is one in which the mobile station signals on a call control plane to the mobile switching centre that parameters of a user service need to be reconfigured. The mobile switching centre transmits the service parameters to the radio network controller where they are changed into radio bearer parameters. The actual reconfiguration is then carried out in the same way as if the network part had initiated it, i.e. as shown in FIG. 4B. FIG. 4B illustrates a reconfiguration procedure initiated by the network part. The network part radio network sublayer NP RNL sends 400B a reconfiguration request message BEARER_RECONF_REQ to the peer MS RNL located at the mobile station. Again, the reconfiguration request message BEARER_RECONF_REQ comprises one or more radio bearer identifiers BID and corresponding quality of service BEARER QOS parameters. Since the LLC sublayer and RLC sublayer parameters are decided in the network part, the network part radio network sublayer NP RNL can directly transfer the parameters LLC, RLC in question in the reconfiguration message BEARER_RECONF_REQ. The mobile station radio network sublayer MS RNL initiates the reconfiguration 402B. After a successful reconfiguration the mobile station sends 404B the reply message BEARER_COMPL, the only parameter of which is the radio bearer identifier BID. After a failed reconfiguration the mobile station sends 406B the reply message BEARER_FAIL comprising the radio bearer identifier BID and the cause CAUSE of the failure as parameters. As described in connection with FIG. 4A, a plural number of radio beares can be simultaneously reconfigured and, similarly, the reply message can be a combination of reply messages to a successful and a failed reconfiguration. In a preferred embodiment, a completed reconfiguration does not require a separate reply message to be sent, instead, the parties observe the success or failure of the reconfiguration by detecting the synchronization of the first layer after the operation has been carried out. Therefore the reply message normally sent after synchronization is left out. In a preferred embodiment the BEARER_RECONF_REQ parameters comprise at least one of the following parameters: radio bearer identifier BID; radio bearer quality of service BEARER QOS of the bearer concerned; radio bearer cipher parameters, such as cipher mode on/off, optionally a cipher algorithm or key; RLC/MAC sublayer processing parameters, such as: RLC protocol unit size, temporary mobile station identity or a transport format set, the MAC sublayer selecting from the transport format set one transport format for each physical layer frame of ten milliseconds on the basis of the bit rate needed at a particular moment; physical layer processing parameters, such as a downlink channelization code, optionally an uplink channelization code; time of change indicator, i.e. the number of the frame from which on the reconfiguration is to be carried out. A difference in the principle of the reconfiguration methods illustrated in FIGS. 4A and 4B is that the network part has more power of decision. In a method according to FIG. 4A the network part can change the quality of service requested by the mobile station, whereas a mobile station according to FIG. 4B can only either approve or reject the quality of service determined by the network part. When the mobile station has to reject the reconfiguration requested by the network part, it possibly starts to release the radio bearer or to perform handover. Reconfiguration can be carried out both for signalling radio bearers and communication radio bearers. The radio bearer quality of service BEARER QOS can be indicated in various ways. The most typical way is to use at least one parameter indicating the quality of service. The parameter may well guide the operation of the protocols directly, by providing the LLC and the RLC sublayers directly with operational parameters, for example. A parameter can also denote different quality aspects, such as a maximum bit error rate, a maximum transmission delay allowed, a transmission delay deviation, radio bearer priority, radio bearer security, data loss at handover, i.e. whether it is allowed to lose data in connection with handover. The invention is advantageously implemented by software, the invention thus requiring functions in the protocol processing software located in the control unit 124 of the base station controller 102 and into the protocol processing software located in the transceiver processor 214 of the mobile station 150. Even though the invention is described above with reference to an example shown in the attached drawings, it is apparent that the invention is not restricted to it, but can vary in many ways within the inventive idea disclosed in the attached claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>In the GSM system connection reconfiguration concerns the modifying of a call mode. The procedure is known as in-call modification. The term ‘mode’ means the operational status of a call; it can be for instance a standard speech mode, data mode, fax mode, an alternating speech/data mode or an alternating speech/fax mode. When a connection is reconfigured, its mode can thus be changed e.g. from a speech mode to a data mode. In case the channel used for the connection does not support the required characteristics, channel configuration can be changed. The solution known from the GSM system is not, however, applicable for use in UMTS (Universal Mobile Telephone System) described below. The reason for this is that in the UMTS a single connection can simultaneously use one or more radio bearers. The characteristics of the radio bearers may have to be modified upon establishment of or during a connection. The term ‘radio bearer’ refers to a service provided by a network layer. Multimedia service typically uses a plural number of radio bearers simultaneously for providing a service. Video telephony, for example, may require four different radio bearers: transmission of speech and image both use separate radio bearers for uplink and downlink. A multimedia service, such as video telephony, can also be implemented by using only one radio bearer per transmission direction, thereby avoiding the problem of synchronization between radio bearers of the same transmission direction. Radio bearer parameters comprise most of the first and second layer operational parameters. A radio bearer user, however, does not know the parameters of lower layers. Therefore the radio bearer user is not aware of how the radio bearer provides its services, i.e. whether it uses a half of a TDMA time slot, one time slot or a plural number of them, or one or more CDMA spreading codes. A radio bearer is defined by a set of parameters or attributes that concern the traffic or quality characteristics of a service provided. A radio bearer is not to be considered similar to a logical channel, which is a service provided by a data link layer.
<SOH> BRIEF DESCRIPTION OF THE INVENTION <EOH>An object of the invention is therefore to provide a method and an equipment implementing the method in such a way that the above problems can be solved. This is achieved with the method described below, which is a method for reconfiguring a cellular radio network connection comprising a network part, the network part having a connection to a mobile station through at least one radio bearer. According to the method, a first party of the connection sends to a second party of the connection a radio bearer reconfiguration request message involving at least one radio bearer; the second party of the connection sends to the first party of the connection a reply message to the radio bearer reconfiguration request message. The invention also relates to a cellular radio network comprising: a protocol software of a network layer of a network part, the software being arranged to have a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station, the software being arranged to have a connection to the network part through at least one radio bearer. The protocol software of the network layer of the network part is arranged to transmit to the protocol software of the network layer of the mobile station a radio bearer reconfiguration request message involving at least one radio bearer; the protocol software of the network layer of the mobile station is arranged to transmit to the protocol software of the network layer of the network part a reply message to the radio bearer reconfiguration request message. The invention further relates to a cellular radio network comprising: a protocol software of a network layer of a network part, the software being arranged to have a connection to a mobile station through at least one radio bearer; a protocol software of a network layer of the mobile station, the software being arranged to have a connection to the network part by means of at least one radio bearer. The protocol software of the network layer of the mobile station is arranged to transmit to the protocol software of the network layer of the network part a radio bearer reconfiguration request message involving at least one radio bearer; the protocol software of the network layer of the network part is arranged to transmit to the protocol software of the network layer of the mobile station a reply message to the radio bearer reconfiguration request message. The invention further relates to a method for reconfiguring a cellular radio network connection comprising a network part, the network part having a connection to a mobile station through at least one radio bearer. A first party of a connection transmits to a second party of the connection a radio bearer reconfiguration request message involving at least one radio bearer. The preferred embodiments of the invention are disclosed in the dependent claims. The invention is based on that either of the communicating parties can request, when needed, a radio bearer reconfiguration. A method and system of the invention provide several advantages. The solution enables reconfiguration to be flexibly implemented in a system employing radio bearers. A plural number of radio bearers can be simultaneously reconfigured, the number of messages needed being thereby reduced, which in turn decreases the load on radio resources. When necessary, reconfiguration of radio bearers used for signalling can be carried out at connection set-up, thus avoiding a reallocation of signalling radio bearers that would perhaps otherwise be needed.
20041026
20091006
20050421
65290.0
1
NGO, NGUYEN HOANG
METHOD FOR CONNECTION RECONFIGURATION IN CELLULAR RADIO NETWORK
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,972,639
ACCEPTED
Vehicle partition
A vehicle security partition for use in vehicles to form a barrier between front and rear occupant areas.
1. A security partition for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor, the partition comprising: a front panel; first and second vertically extending uprights, the first upright being positioned proximate the passenger side and the second upright positioned proximate the driver side, the first upright being connected to the front panel; a laterally extending upper member extending between the first and second uprights; and at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. 2. The security partition of claim 1, further comprising a side panel extending substantially perpendicular relative to the front panel in the rear occupant area. 3. The security partition of claim 1, further comprising a vertically extending intermediate upright positioned between the first and second uprights. 4. The security partition of claim 3, wherein the at least one laterally extending lower member comprises a first strut extending between the first upright and the intermediate upright and a second strut extending between the second upright and the intermediate upright. 5. The security partition of claim 4, further comprising a clearance area defined between the second upright and the intermediate upright, wherein the vehicle includes a front driver seat having a pivotable seat back positioned within the front occupant area proximate the driver side, and the clearance area has a vertical dimension and a lateral dimension sufficient to allow passage of the driver seat back through the clearance area. 6. The security partition of claim 1, further comprising a pillar clamp supporting the front panel and including a rear clamping member and a front clamping member supported by the rear clamping member, the rear clamping member and the front clamping member adapted for positioning on opposing sides of a pillar of the vehicle for releasably securing the front panel to the pillar. 7. The security partition of claim 6, wherein the pillar clamp includes a breakaway device for detaching the frame from the pillar upon application of a predetermined force. 8. The security partition of claim 1, further comprising a gun rack including an elongated support defining a longitudinal axis, the elongated support positioned with the longitudinal axis extending substantially vertical. 9. The security partition of claim 8, wherein the gun rack includes a trigger guard provided proximate an end of the elongated support, the trigger guard including: a base having two spaced apart side walls which extend upward from the base to form a channel for receiving a trigger assembly of a weapon; and an insert secured in the channel and including a slot in an upper surface thereof for receiving a trigger and trigger guard of the weapon, the insert having a height which is substantially less than a height of each of the two side walls so that the two side walls extend upward beyond the insert to receive a portion of a weapon therebetween. 10. The security partition of claim 8, wherein the gun rack includes: a barrel rest provided adjacent one end of the elongated support for receiving a barrel of a weapon; a lock mechanism provided at a central portion of the elongated support for receiving and securing the weapon therein; and a weapon trigger guard provided on another end of the elongated support for receiving a trigger portion of the weapon therein, the weapon trigger guard including, a base having two spaced apart side walls which extend upward from the base to form a channel for receiving a trigger assembly of the weapon, and an insert secured in the channel and including a slot in an upper surface thereof for receiving a trigger and trigger guard of the weapon. 11. The security partition of claim 1, further comprising first and second foot mountings supported by the floor of the vehicle, wherein the first and second uprights comprise tubular members which slidably receive the first and second foot mountings. 12. The security partition of claim 11, wherein the second foot mounting is supported by a unshaped hump coupling.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a divisional of U.S. patent application Ser. No. 10/747,858 filed Dec. 29, 2003, which is a divisional of U.S. patent application Ser. No. 10/290,568 filed Nov. 8, 2002 (now issued as U.S. Pat. No. 6,669,259), which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/348,218 filed Nov. 9, 2001, the disclosures of which are expressly incorporated by reference herein. BACKGROUND AND SUMMARY OF THE INVENTION The present invention relates generally to a vehicle security partition which forms a barrier between the front and rear occupant areas of a vehicle. More particularly, the present invention relates to such a partition which separates portions of the rear occupant area. The present invention further relates to support structures and mounting devices for vehicle partitions. Vehicle partitions are often utilized to separate the front and rear occupant areas of vehicles, such as police cars and taxi cabs, in order to prevent access to the front seat by someone located in the rear seat. These partitions typically include a dividing panel located between the front and rear seats which forms a barrier between the front and rear occupant areas. Since vehicles using these partitions often transport a single passenger, isolating the entire rear occupant area from the front occupant area results in a significant waste of space, particularly potential storage space in the rear seat. The present invention relates to a security partition for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor. In an illustrated embodiment of the present invention, a security partition includes a front panel extending laterally within the rear occupant area of the vehicle. A side panel extends substantially perpendicular relative to the front panel within the rear occupant area. A pillar clamp supports the front panel and includes a rear clamping member and a front clamping member coupled to the rear clamping member. The rear clamping member and the front clamping member are configured to be positioned on opposing sides of a pillar of the vehicle for releasably securing the front panel to the pillar. More particularly, the front clamping member is releasably secured to the rear clamping member wherein the pillar is clamped between the rear and front clamping members. The security partition illustratively further includes a frame connected to the front panel, the frame including first and second vertically extending uprights supporting a laterally extending upper member. The frame may form a substantially U-shaped rollbar wherein the upper member is configured to contact the roof of the vehicle. Illustratively, the frame includes at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. The frame illustratively includes a vertically extending intermediate upright positioned between the first and second uprights, wherein the at least one laterally extending lower member includes a first strut extending between the first upright and the intermediate upright and a second strut extending between the second upright and the intermediate upright. Further illustratively, the security partition includes a gun rack having an elongated support defining a longitudinal axis, the elongated support positioned with the longitudinal axis extending substantially vertical. The gun rack illustratively includes a barrel rest provided adjacent one end of the elongated support for receiving a barrel of a weapon, and a lock mechanism provided at a central portion of the elongated support for receiving and securing the weapon therein. The gun rack may further include a weapon trigger guard provided on another end of the elongated support for receiving a trigger portion of the weapon therein, the weapon trigger guard including a base having two spaced apart side walls which extend upward from the base to form a channel for receiving a trigger assembly of the weapon. The trigger guard may further include an insert secured in the channel and including a slot in an upper surface thereof for receiving a trigger and trigger guard of the weapon. In another illustrative embodiment of the present invention, a security partition is provided for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the floor and the roof. The partition includes a front panel, and first and second vertically extending uprights, wherein the first upright is connected to the front panel. The partition further includes a laterally extending upper member extending between the first and second uprights, and at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. A vertically extending intermediate upright is illustratively positioned between the first and second uprights, wherein the at least one laterally extending lower member comprises a first strut extending between the first upright and the intermediate upright, and a second strut extending between the second upright and the intermediate upright. A clearance area is defined between the second upright and the intermediate upright. The vehicle includes a front driver seat positioned within the front occupant area proximate the driver side, wherein the clearance area has a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of a pivotably mounted seat back of the driver seat therethrough. In a further illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor, wherein the front occupant area includes a driver seat having a pivotally mounted seat back. The partition includes a frame having first and second vertically extending uprights, and a front panel supported by the frame and extending laterally within the rear occupant area. A clearance area is defined between the second upright and the front panel, the clearance area having a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of the front driver seat therethrough. In yet another illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including passenger and driver sides, front and rear occupant areas, a floor, a roof, and laterally spaced passenger side and driver side pillars coupled to the roof. The partition includes a front panel, and a first upright positioned adjacent the passenger side of the vehicle in the rear occupant area, wherein the first upright is connected to the front panel. The partition further includes a second upright positioned adjacent the driver side of the vehicle in the rear occupant area, wherein the second upright is disposed in spaced relation to the first upright. A first pillar coupler attaches the first upright to the passenger side pillar and a second pillar coupler attaches the second upright to the driver side pillar. The second pillar coupler includes a breakaway device for detaching the second upright from the driver side pillar upon application of a predetermined force. Illustratively, both the first pillar coupler and the second pillar coupler each include a rear clamping member and a front clamping member supported by the rear clamping member, the rear clamping member and the front clamping member adapted for positioning on opposite sides of the passenger side pillar and driver side pillar, respectively, for releasably securing the frame thereto. The breakaway device of the second pillar coupler is illustratively disposed intermediate the front clamping member and the rear clamping member such that the predetermined force releases the front clamping member from the rear clamping member. Illustratively, the front and rear clamping members of the first and second pillar couplers each include a body portion having inwardly facing locking lips. The locking lips of the front and rear clamping members cooperate to secure the pillar coupler from movement relative to one of the passenger side pillar and driver side pillar. Additional features and advantages of the present invention will become apparent to those skilled in the art upon a consideration of the following detailed description of an illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived. BRIEF DESCRIPTION OF THE DRAWINGS The detailed description of the drawings particularly refers to the accompanying figures in which: FIG. 1 is a partial perspective view with a cut-away, illustrating a security partition of the present invention in a typical installation within a vehicle; FIG. 2 is an exploded perspective view of the security partition of FIG. 1; FIG. 3 is a detail perspective view of a pillar clamp of the present invention illustrating the pillar clamp attached to the pillar of a vehicle; FIG. 4 is a perspective view with a cut-away, illustrating a gun rack supported by the security partition of FIG. 1; FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4 illustrating a weapon received in the gun rack; FIG. 6 is a cross-sectional view taken along line 6-6 of FIG. 5 illustrating a weapon received in the gun rack; FIG. 7 is a perspective view of a further embodiment of the security partition of the present invention, illustrating a clearance area providing for the rearward passage of a driver seat through the frame; FIG. 8 is a perspective view similar to FIG. 7 illustrating a further embodiment of the security partition of the present invention; FIG. 9 is a rear elevational view of the front panel and frame of the security partition of FIG. 7; FIG. 10 is a detail perspective view of a breakaway pillar clamp of the present invention, illustrating a normal use position in phantom line and a breakaway position in solid line; FIG. 11 is an exploded perspective view illustrating a further embodiment of the side panel of the present invention; FIG. 12 is a perspective view similar to FIG. 8 illustrating another embodiment of the security partition of the present invention; FIG. 13 is a perspective view similar to FIG. 12 illustrating a further embodiment of the security partition of the present invention; FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 13 illustrating a side panel receiving channel; and FIG. 15 is a perspective view similar to FIG. 13 illustrating a further embodiment of the security partition of the present invention. DETAILED DESCRIPTION OF THE DRAWINGS Referring now to the drawings, FIG. 1 illustrates an embodiment of the security partition 10 of the present invention as installed in a conventional vehicle 12. The vehicle 12 may comprise any conventional automobile including, but not limited to, a police car or a taxicab. The vehicle 12 illustratively includes longitudinally extending driver and passenger sides 14 and 16 and laterally extending front and rear occupant areas 18 and 20. The front occupant area 18 illustratively includes a conventional driver seat 22 proximate the driver side 14 of the vehicle 12 and a conventional passenger seat 24 positioned proximate the passenger side 16 of the vehicle 12. While it is envisioned that the front seats 22 and 24 comprise individually adjustable, or bucket seats, the invention of FIGS. 1-2 will find equal applicability with other seating arrangements, including conventional bench seats. The rear occupant area 20 illustratively includes a conventional rear bench seat 26 extending laterally between the driver side 14 and passenger side 16 of the vehicle 12. The vehicle 12 further includes a floor 28 and a roof 30 supported by a plurality of pillars, including laterally spaced door or “B” pillars 32 and 34 disposed proximate the driver and passenger sides 14 and 16, respectively (FIGS. 1 and 7). The pillars 32 and 34 extend between the floor 28 and the roof 30, and are generally positioned intermediate the front and rear occupant areas 18 and 20. The security partition 10 is installed between the front and rear occupant areas 18 and 20 in order to form a barrier and protect occupants in the front driver and passenger seats 22 and 24 from a person transported in the rear seat 26. The security partition 10 of FIGS. 1 and 2 illustratively includes a frame 40 including a pair of uprights 42 and 44 extending vertically upwardly from proximate the floor 28 of the vehicle 12. Passenger side upright 42 is illustratively positioned proximate the passenger pillar 34, while center or intermediate upright 44 is positioned laterally proximate the longitudinal center axis of the vehicle 12 intermediate the driver and passenger pillars 30 and 34. The frame 40 further includes a laterally extending upper member 46 supported by the pair of uprights 42 and 44. The uprights 42 and 44 and the upper member 46 may be formed from an integral tubular steel member bent into a substantially U-shaped rollbar which is inverted such that the uprights 42 and 44 extend downwardly from the upper member 46. A protective sleeve or cover 47 may be received over a portion of the frame 40 in order to protect the vehicle occupants and to provide an enhanced contact surface with the roof 30 of the vehicle 12. As such, the cover 47 is illustratively formed of a durable and resilient material, such as foamed rubber, plastic or polymeric material. A front guard panel 48 is attached to the frame 40, intermediate the pillars 32 and 34. The front panel 48 may comprise a rigid sheet material such as cold rolled steel which is spot welded to the frame 40. As illustrated in FIGS. 1 and 2, the front panel 48 may include a laterally extending bend 49 in order to accommodate the shape of the rear of the front passenger seat 24. The front panel 48 may support a window 50 to facilitate observation of a passenger in the rear seat 26 without compromising security. The window 50 illustratively comprises a transparent impact resistant material such a thermoplastic material. The window 50 is illustratively supported within the front panel 48 by conventional fasteners, such as bolts 51. Alternatively, the window 50 may comprise any number of widely available barrier components, including wire mesh with holes small enough to substantially prevent finger access to the front occupant area 18. A side guard panel 52 extends substantially perpendicularly relative to the front panel 48 such that the security partition 10 forms a substantially L-shaped arrangement as observed in a top plan view. The side panel 52 is supported proximate to the rear seat 26 and extends longitudinally rearwardly from the upright 44 adjacent the front panel 48 to proximate a rear window 54 of the vehicle 12. A plurality of mounting flanges or tabs 56, 58 and 60 are attached to the upright 44 and cooperate with conventional fasteners, such as bolts 62 threadably engaging nuts 63, to secure the side panel 52 to the frame 40. The side panel 52 illustratively is formed of a transparent impact resistant material, such as a thermoplastic. Alternatively, the side panel 52 may be formed of other commonly known barrier materials including sheet metal or wire mesh. The side panel 52 illustratively includes a vent 64 having a plurality of apertures 66. A vent plate 68 is secured to an outer surface 69 of the side panel 52 through conventional fasteners, such as bolts 70 threadably received within nuts 72. Spacers 74 are illustratively utilized to position the vent plate 68 in spaced relation to the outer surface 69 of the side panel 52 thereby providing an air passageway for the flow of air through the apertures 66. The uprights 42 and 44 of the frame 40 are illustratively mounted to the floor 28 of the vehicle 12 by a side floor mount 76 and a center floor mount 78. The side floor mount 76 includes a mounting plate foot 80 including a floor mount portion 82, which is secured to a first portion 88 of an elongated mounting strap 92 by conventional fasteners, such as bolts 84 threadably engaging nuts 86. A second portion 89 of the mounting strap 92, in turn, is connected to the conventional outer seat rail 94 of the front passenger seat 24 illustratively by a nut 90 threadably engaging the preexisting seat mounting stud 91. The second portion 89 of the mounting strap 92 is positioned generally above the first portion 88 by a connecting portion 93. A mounting foot 96 is fixed to the mounting plate foot 80 using conventional fasteners, such as bolts 98. The mounting foot 96 includes an upwardly extending tubular member 100 and a spacer 102 which is concentrically received over the tubular member 100. The tubular member 100 is concentrically received within the open lower end 104 of the tubular passenger upright 42, while the spacer 102 positions the lower end 104 above the mounting foot plate 80. As may be readily appreciated, the passenger upright 42 is attached to the floor 28 of the vehicle 12 without requiring deformation of the vehicle's interior, such as by drilling holes, since the side floor mount 76 utilizes the existing conventional seat rail 94 and mounting stud 91. The center floor mount 78 is configured to be supported above the conventional drive shaft hump 106 in the rear occupant area 20 of the vehicle 12. As such, the center floor mount 78 includes a substantially U-shaped hump bracket 108 including first and second legs 110 and 112 meeting at an apex 114. The first and second legs 110 and 112 support an upwardly extending tubular member 116 which is concentrically received within the open lower end 117 of the tubular center upright 44. The hump bracket 108 is connected to the floor 28 of the vehicle 12 by first and second elongated mounting straps 118 and 120. More particularly, a first end of each mounting strap 118 and 120 is coupled to the first and second legs 110 and 112 of the hump bracket 108 through conventional fasteners, such as bolts 84 threadably receiving nuts 86. Second ends of the mounting straps 118 and 120 are attached to the inner seat rail 122 of the front passenger seat 24 and the inner seat rail 124 of the driver seat 22, respectively, by a pre-existing seat mounting stud 123 threadably receiving a nut 125. Illustratively, the side panel 52 is coupled to the rear seat 26 through a center seat coupling 126. The center seat coupling 126 includes an upwardly extending flange 128 supported by a base 130. The base 130 includes apertures 132 and 134 proximate its opposing ends and which are attached to the pre-existing seat belt studs 136 and 138 of the conventional rear seat 26. Alternatively, if the conventional rear seat 26 is replaced with one specifically adapted for prisoner transfer, as is known in the art, the center seat coupling 126 may be modified, as necessary, for attachment thereto. Such a replacement rear seat may comprise Prisoner Rear Seat Model No. 356001FG which is available from Pro-Gard Industries of Indianapolis, Ind. The side panel 52 is further illustratively attached to a conventional package shelf 139 of the vehicle 12 by way of a package shelf coupling 140. The package shelf coupling 140 includes a base 142 which is attached to the package shelf 139 through conventional fasteners, such as screws 144. The base 142 supports an upwardly extending flange 146 which is fastened to the side panel 52, again through bolts 84 threadably engaging nuts 86. Referring now to FIGS. 2 and 3, a passenger side pillar coupler 150 is illustrated for attachment of the upright 42 to the passenger side pillar 34 of the vehicle 12. The pillar coupler 150 includes a rear clamping member 152 coupled to a front clamping member 154. A mounting flange or tab 156 is supported by the upright 44 and releasably supports the rear clamping member 152, illustratively through conventional fasteners, such as bolts 158 threadably engaging nuts 159. The rear clamping member 152 and the front clamping member 154 are adapted for positioning on opposing sides of the pillar 34, thereby releasably securing the frame 40 and the front panel 48 to the pillar 34. The rear clamping member 152 includes a laterally and longitudinally extending body portion 160 having an inwardly facing locking lip 162. Likewise, the front clamping member 154 includes a laterally and longitudinally extending body portion 164 having an inwardly facing locking lip 166, wherein the locking lips 162 and 166 face each other to cooperate therebetween by wrapping around at least a portion of the “B” pillar 34, thereby securing the coupler 150 from movement relative thereto. A releasable securing device, such as bolts 168 threadably engaging nuts 169, are utilized to secure the front coupling 154 to the rear coupling 152. As shown in FIGS. 1 and 2, side mounting tabs 170 may be used in combination with mounting tabs 156 to support a gap panel (not shown). The gap panel may be of the type well known in the art and provides a barrier between the edge of the upright 42 and the pillar 34. The security partition 10 may illustratively support a gun rack 200 as shown in FIGS. 4-6. The gun rack 200 includes a barrel rest 202, a lock mechanism 204, and a weapon trigger guard 206, all of which are coupled to an elongated support 208. The elongated support 208 is configured to be coupled to an interior surface in the vehicle 12. More particularly, the gun rack 200 as illustrated in FIG. 4 is coupled to the security partition 10 such that a longitudinal axis 210 of the elongated support 208 is disposed substantially vertical. The elongated support 208 illustratively includes a base 212 and a side wall 214, each of which may include mounting holes 216 and/or slots 218 through which mechanical fasteners, such as bolts 220, may be inserted or extend to secure the gun rack 200 in the vehicle 12. In FIG. 4, the base 212 is secured to an L-shaped coupling 222 which, in turn, is secured to at least one of the mounting tabs 56, 58, and 60 of the side panel 52. Each of the barrel rest 202, the lock mechanism 204 and the weapon trigger guard 206 may be coupled to either or both of the base 212 and side wall 214 of the elongated support 208. Such coupling is adjustable as desired by utilizing the mounting slots 218 and mechanical fasteners, such as bolts 220 which threadably receive nuts 224. According to one embodiment, the barrel rest 202 and the lock mechanism 204 may be mounted to the side wall 214, with the position of the barrel rest 202 being adjustable, and the weapon trigger guard 206 may be mounted in an adjustable manner to the base 212. The barrel rest 202 is configured to receive and cradle a front portion of a weapon 226. The barrel rest 202 can be a U-shaped metal coupling 228 having a leg (not shown) which is secured to the side wall 214 of the elongated support 208. The U-shaped metal coupling 228 can be provided with a layer of padding material 232 such as rubber, dense foamed rubber or plastic or polymeric material. The lock mechanism 204 includes a base 234 having a padded, e.g. felt, covered channel 236 for receiving the weapon 226 and a pivotal cover 238 coupled to the base 234. When the pivotal cover 238 of the lock mechanism 204 is in an open position as depicted in FIG. 4, the weapon 226 may be placed in the channel 236. Once the weapon 226 is positioned in the channel 236, the pivotal cover 238 may be pivoted into a closed position. When the pivotal cover 238 is pivoted into its closed position, the internal locking mechanism provided in the base 234 locks the pivotal cover 238 in its closed position. The internal locking mechanism used in the present invention may comprise an electrically operated lock mechanism 240 having a key override. Such a lock mechanism is illustratively described in U.S. Pat. No. 4,949,559, the complete disclosure of which is hereby expressly incorporated by reference and is available from Pro-Gard Industries of Indianapolis, Ind. However, it should be understood that any conventional gun lock may be used in accordance with the present invention. The lock mechanism 240 may be coupled to the elongated support 208 by a conventional coupling (not shown) which is provided beneath the base 212. The coupling 242 includes a blocking tab 244 which projects in front of the lock mechanism 240 so as to provide an abutment that limits rearward movement of the weapon 226. With further reference to FIGS. 5 and 6, the weapon trigger guard 206 comprises a U-shaped structure having a pair of spaced apart side walls 246 which define a channel 248 therebetween. As depicted in FIG. 6, the side walls 246 are wide enough to extend beyond the rear and front of the trigger assembly 250 of the weapon 226. As depicted in FIG. 5, the side walls 246 can be tall enough to cradle and shield the portion of the weapon 226 above the trigger assembly 250. The weapon trigger guard 206 includes an inset 252 that comprises a block of material which is secured within the channel 248, and which includes a closed ended slot 254 configured and positioned in an upper surface 256 thereof to receive the trigger assembly 250. The insert 252 is formed of a padding material which is sufficiently dense to prevent unauthorized persons from gaining access to the trigger assembly 250 by digging their fingers into the insert 252. Suitable materials include hard foamed rubbers having densities of about 3-5 pounds per cubic foot and higher, with minimum densities of about 4 pounds per cubic foot being preferred. In alternative embodiments, the insert 252 could be a solid structure formed from a plastic, resinous or polymeric material. In further embodiments, the insert 252 could be formed from a rigid material such as a metal, wood, fiberglass, etc., in which case the upper surface 256 of the insert 252 and the slot 254 could be provided with a layer of padding such as felt to avoid scratching or marring the weapon 226. The insert 252 can be secured in weapon trigger guard 206 by mechanical and/or chemical means. For example, the insert 252 can be chemically bonded to the bottom 258 and the side walls 246 of the channel 248 by means of any suitable glue, cement, epoxy, etc. Mechanical means such as pins, rivets, bolts, flanges formed on the side walls 246, etc. can also be used to secure the insert 252 in the weapon trigger guard 206. The barrel rest 202 receives the arm 260 and the barrel 262 of the weapon 226. The lock mechanism 204 receives a portion of the weapon 226 which is located between the arm 260 and the chamber housing 264. The weapon trigger guard 206 receives the trigger assembly 250 as depicted in FIGS. 5 and 6. When secured in the gun rack 200, the weapon 226 is prevented from being moved axially due to the abutment between the blocking tab 244 and the arm 260 and between the chamber housing 264 and the lock mechanism 240. By preventing such axial movement, the trigger assembly 250 cannot be slid out of the weapon trigger guard 206. In addition, by blocking movement of the arm 260 by the blocking tab 244, the loading mechanism cannot be operated to load a round into the firing chamber of the weapon 226. The axis of the weapon 226 is non-parallel to the axis 210 of the elongated support 208. Accordingly, the top surface of inset 252 can be sloped to match the lower surfaces of the weapon 226. According to one embodiment of the present invention, the barrel rest 202 can be vertically adjustable on the side wall 214 of the elongated support 208 and the weapon trigger guard 206 can be horizontally adjustable along two axes on the base 212 of the elongated support 208. Such adjustment will enable the gun rack 200 to be adapted for use in conjunction with different weapons. Turning now to FIGS. 7-9, an alternative embodiment of the security partition 300 of the present invention is illustrated. In the following description, it should be noted that similar reference numerals refer to similar components as described above with respect to the embodiment of FIGS. 1-3. The security partition 300 of FIG. 7 differs from the security partition 10 of FIG. 1 in that the partition 300 includes a frame 340 which extends substantially across the entire interior width of the vehicle 12 between the passenger side 16 and the driver side 14. More particularly, the frame 340 includes a passenger side upright 342 disposed adjacent the passenger side door and “B” pillar 34 of the vehicle 12 and a driver side upright 343 positioned adjacent the driver side door and “B” pillar 32 of the vehicle 12. The frame 340 further comprises an intermediate or center upright 344 disposed proximate the center of the vehicle 12 between the passenger side upright 342 and the driver side upright 343. The uprights 342, 343, and 344 support a laterally extending upper member 346, wherein the uprights 342, 343, and 344 and the upper member 346 illustratively define a substantially W-shaped rollbar which is inverted such that the uprights 342, 343, and 344 extend downwardly from the upper member 346. More particularly, the upper member 346 is configured to contact the roof 30 of the vehicle 12 and may provide additional structural support to the roof 30. Both the passenger side upright 342 and the driver side upright 343 are illustratively secured to the floor 28 by side floor mounts 76 of the type described above. Further, the intermediate upright 344 is illustratively attached to the floor 28 by the center floor mount 78 of the type described above. A pair of laterally extending members or struts 302 and 304 are positioned below the upper member 346 to provide added rigidity and structural support to the entire frame 340. The first strut 302 extends between the passenger side upright 342 and the intermediate upright 344, while the second strut 304 extends between the driver side upright 343 and the intermediate upright 344. In the illustrated embodiment of FIG. 7, the passenger side upright 342, the driver side upright 343, and the upper member 346 are formed into a substantially U-shape from an integral piece of tubular steel. The intermediate upright 344 may also comprise a tubular steel member which is welded to the upper member 346. A protective cover (not shown) may be positioned over a portion of the frame 340 in a manner similar to the cover 50 of FIG. 1, as described above. Referring further to FIGS. 7-9, a clearance area 306 is defined between the driver side upright 343 and the intermediate upright 344 in a lateral, horizontal direction, and between the upper member 346 and the second strut 304 in a vertical direction. Typically, the seat back 308 of the driver seat 22 is pivotably mounted relative to the base 310 of the seat 22, wherein the seat back 308 may be reclined and locked in a plurality of positions through the use of a handle or lever (not shown) in a manner well known in the art. In certain circumstances, particularly during an impact to the rear of the vehicle 12, the seat back 308 of the driver seat 22 releases in order to freely pivot rearwardly. This release of the seat back 308 effectively adsorbs some of the energy from the impact in order to protect the driver. In an illustrative embodiment of the security partition 300, the clearance area 306 is defined to permit passage of the pivoting seat back 308 between the driver side upright 343 and the intermediate upright 344, and the upper member 346 and second strut 304. More particularly, the lateral, horizontal dimension “h” and the vertical dimension “v” of the clearance area 306 are defined in a manner to provide for the free, unimpeded rearward passage of the pivoting driver seat back 308 as illustrated in phantom in FIG. 7. Referring to the alternative embodiment of FIG. 8, a driver side guard panel 312 may be supported by the frame 340 adjacent to the clearance area 306. The guard panel 312 may comprise any conventional barrier material, such as thermoplastic material, sheet metal or wire mesh. In FIG. 9, wire mesh having holes small enough to substantially prevent finger access therethrough is illustrated for exemplary purposes. The guard panel 312 is attached in a conventional manner, for example by welding, to a plurality of mounting flanges or tabs 314 extending inwardly toward the clearance area 306 from proximate a rear surface 315 of the frame 340. Each mounting tab 314, in turn, is secured to the frame 340 illustratively, again, by welding. The attachment between the guard panel 312 and the mounting tabs 314 is designed such that the panel 312 will detach from the tabs 314 upon the application of a predetermined force in a rearward direction as represented by arrow 317 in FIG. 8. As such, when the driver seat back 308 impacts the guard panel 312 with at least the predetermined force, the attachment between the mounting tabs 314 and the guard panel 312 releases, thereby permitting the guard panel 312 to move rearwardly and not substantially inhibit rearwardly pivoting movement of the driver seat back 308. The value of the predetermined force is a function of the number of mounting tabs 314 and the attachment strength between each mounting tab 314 and the panel 312. A first or passenger side pillar coupler 150 is utilized to attach the passenger side upright 342 to the passenger side pillar 34 in the manner detailed above with respect to FIGS. 1-3. In one illustrative embodiment, a substantially identical pillar coupler 150 is utilized to attach the driver side upright 343 to the driver side pillar 32. In a further illustrative embodiment as shown in FIG. 10, a second or driver side, breakaway pillar coupler 316 is utilized to attach the driver side upright 343 to the driver side pillar 32. The second pillar coupler 316 includes a breakaway device 318 which facilitates detachment of the driver side upright 343 from the driver side pillar 32 upon application of a predetermined force. In such a circumstance, should the driver seat back 308 move rearwardly into contact with the driver side upright 343 with at least a predetermined force, then the second pillar coupler 316 releases the frame 340 from the driver side pillar 32. As such, rearward movement of the seat back 308 of the driver seat 22 will not be substantially impeded by the frame 340. Referring further to FIG. 10, the second pillar coupler 316 illustratively includes a rear clamping member 320 supporting a front clamping member 322. The rear clamping member 320 is secured to the driver side upright 343 through conventional fasteners, such as bolts 324 passing through mounting apertures 325 formed within the upright 343 (FIG. 9) and threadably received within nuts 326. The front clamping member 322 is releasably secured to the rear clamping member 320 by the breakaway device 318. In the illustrative embodiment, the breakaway device 318 comprises a pair of bolts 328 passing through a connection plate 330 of the rear clamping member 320 and a connection plate 332 of the front clamping member 322 and then threadably received within nuts 334. The connection plates 330 and 332 are configured to be disposed parallel to and juxtaposed with each other. Upon the application of a predetermined force on the driver side upright 343 in a longitudinal direction as represented by arrow 335, the bolts 328 will shear thereby releasing the rear clamping member 320 from the front clamping member 322. The predetermined force required to shear the bolts 328 is based upon the minor thread diameter, type of material and grade of material of the bolts 328. The rear clamping member 320 includes a laterally and longitudinally extending body portion 336 having an inwardly facing locking lip 337, while the front mounting member 322 likewise includes a body portion 338, extending laterally and longitudinally, having an inwardly facing locking lip 339. The locking lips 337 and 339 of the rear and front clamping members 320 and 322 are spaced longitudinally on opposite sides of the driver side pillar 32 and cooperate to securely clamp the driver side pillar coupler 316 to the driver side pillar 32. Turning now to FIGS. 11 and 12, a further illustrative embodiment of the security partition 400 of the present invention is illustrated. In the following description, it should be noted that similar reference numerals refer to similar components as described above with respect to the embodiments of FIGS. 1-3 and 7-10. The security partition 400 of FIGS. 11 and 12 differs from the security partition 300 of FIGS. 7-9 in the mounting structures utilized to couple the partition 400 to the vehicle 12. More particularly, the center floor mount 78 is removed in its entirety such that the frame 40 is supported by the side floor mounts 76 coupled to the passenger side upright 342 and the driver side upright 343. The security partition 400 in FIGS. 11 and 12 further differs from the security partition 300 in that the center seat coupling 126 is likewise removed in its entirety. Instead a pair of seat back couplings 402 and 404 are configured to secure a rear edge 406 of the side panel 52 to the back 408 of the rear seat 26. In the embodiment of FIGS. 11 and 12, the security partition 400 is specifically adapted for use with replacement prisoner transfer seats having a substantially rigid surface to which the seat back couplings 402 and 404 may be secured. Such a prisoner transfer seat, as detailed above, may comprise a prisoner rear seat Model No. 3S6001FG available from Pro-Gard Industries of Indianapolis, Ind. Each of the seat back couplings 402 and 404 includes a first flange 410 configured to be secured to the side panel 52 by conventional bolt 412 which threadably receives a nut 414. The seat back coupling 402 and 404 each further include a second flange 416 disposed substantially perpendicular to the first flange 410 thereby defining a substantially L-shape. The second flange 416 is configured to be secured to the back 408 of the seat 26 again through the use of conventional bolts 418 which threadably receive nuts 420. Turning now to FIGS. 13-14, a further illustrative embodiment of the security partition 500 is illustrated. Again, it should be noted that in the following description, similar reference numerals refer to similar components as described above with respect to the previous embodiments of FIGS. 1-3 and 7-12. The security partition 500 of FIGS. 13 and 14 differs from the previous embodiments in that no coupling, such as the center seat coupling 126 or the seat back couplings 402 and 404, fixes the side panel 52 to the rear seat 26. Instead, in the embodiment of FIGS. 12 and 13, a channel 502 is molded in the thermoplastic rear seat 26. Again, as with the security partition 400, the security partition 500 is configured to be utilized with a specially designed prisoner transfer rear seat which replaces the conventional OEM rear seat. The channel 502 is defined by first and second walls 504 and 506 which extend rearwardly from proximate a front edge of the seat to the seat back 508. A lower edge 510 of the side panel 52 is retained within the channel 502 to prevent lateral movement thereof. Furthermore, the first and second walls 504 and 506 provide a barrier to prevent the passage of fluids beneath the side panel 52. Referring now to FIG. 15, in a further alternative embodiment, the first channel 502 may be defined by a U-shaped member 512 including first and second upstanding walls 514 and 516 extending from a base 518. Illustratively, the base 518 may be secured to the seat 26 through the use of conventional fasteners, such as bolts 524. It should be further noted that the security partition of the present invention may be utilized not only in combination with replacement prisoner transfer seats as identified above, but with prisoner transfer floor pans. The floor pans are positioned on the floor of the vehicle intermediate the front and rear seats. Floor pans facilitate containment of fluids and cleaning of the rear passenger compartment. Furthermore, the floor pan may include drainage holes to assist in the removal of fluids. Such a floor pan is available as Model No. 3S6051FG from Pro-Gard Industries of Indianapolis, Indiana. While the invention has been described in detail with reference to certain illustrative embodiments, variations and modifications exist within the spirit and scope of the invention as defined in the following claims.
<SOH> BACKGROUND AND SUMMARY OF THE INVENTION <EOH>The present invention relates generally to a vehicle security partition which forms a barrier between the front and rear occupant areas of a vehicle. More particularly, the present invention relates to such a partition which separates portions of the rear occupant area. The present invention further relates to support structures and mounting devices for vehicle partitions. Vehicle partitions are often utilized to separate the front and rear occupant areas of vehicles, such as police cars and taxi cabs, in order to prevent access to the front seat by someone located in the rear seat. These partitions typically include a dividing panel located between the front and rear seats which forms a barrier between the front and rear occupant areas. Since vehicles using these partitions often transport a single passenger, isolating the entire rear occupant area from the front occupant area results in a significant waste of space, particularly potential storage space in the rear seat. The present invention relates to a security partition for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor. In an illustrated embodiment of the present invention, a security partition includes a front panel extending laterally within the rear occupant area of the vehicle. A side panel extends substantially perpendicular relative to the front panel within the rear occupant area. A pillar clamp supports the front panel and includes a rear clamping member and a front clamping member coupled to the rear clamping member. The rear clamping member and the front clamping member are configured to be positioned on opposing sides of a pillar of the vehicle for releasably securing the front panel to the pillar. More particularly, the front clamping member is releasably secured to the rear clamping member wherein the pillar is clamped between the rear and front clamping members. The security partition illustratively further includes a frame connected to the front panel, the frame including first and second vertically extending uprights supporting a laterally extending upper member. The frame may form a substantially U-shaped rollbar wherein the upper member is configured to contact the roof of the vehicle. Illustratively, the frame includes at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. The frame illustratively includes a vertically extending intermediate upright positioned between the first and second uprights, wherein the at least one laterally extending lower member includes a first strut extending between the first upright and the intermediate upright and a second strut extending between the second upright and the intermediate upright. Further illustratively, the security partition includes a gun rack having an elongated support defining a longitudinal axis, the elongated support positioned with the longitudinal axis extending substantially vertical. The gun rack illustratively includes a barrel rest provided adjacent one end of the elongated support for receiving a barrel of a weapon, and a lock mechanism provided at a central portion of the elongated support for receiving and securing the weapon therein. The gun rack may further include a weapon trigger guard provided on another end of the elongated support for receiving a trigger portion of the weapon therein, the weapon trigger guard including a base having two spaced apart side walls which extend upward from the base to form a channel for receiving a trigger assembly of the weapon. The trigger guard may further include an insert secured in the channel and including a slot in an upper surface thereof for receiving a trigger and trigger guard of the weapon. In another illustrative embodiment of the present invention, a security partition is provided for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the floor and the roof. The partition includes a front panel, and first and second vertically extending uprights, wherein the first upright is connected to the front panel. The partition further includes a laterally extending upper member extending between the first and second uprights, and at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. A vertically extending intermediate upright is illustratively positioned between the first and second uprights, wherein the at least one laterally extending lower member comprises a first strut extending between the first upright and the intermediate upright, and a second strut extending between the second upright and the intermediate upright. A clearance area is defined between the second upright and the intermediate upright. The vehicle includes a front driver seat positioned within the front occupant area proximate the driver side, wherein the clearance area has a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of a pivotably mounted seat back of the driver seat therethrough. In a further illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor, wherein the front occupant area includes a driver seat having a pivotally mounted seat back. The partition includes a frame having first and second vertically extending uprights, and a front panel supported by the frame and extending laterally within the rear occupant area. A clearance area is defined between the second upright and the front panel, the clearance area having a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of the front driver seat therethrough. In yet another illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including passenger and driver sides, front and rear occupant areas, a floor, a roof, and laterally spaced passenger side and driver side pillars coupled to the roof. The partition includes a front panel, and a first upright positioned adjacent the passenger side of the vehicle in the rear occupant area, wherein the first upright is connected to the front panel. The partition further includes a second upright positioned adjacent the driver side of the vehicle in the rear occupant area, wherein the second upright is disposed in spaced relation to the first upright. A first pillar coupler attaches the first upright to the passenger side pillar and a second pillar coupler attaches the second upright to the driver side pillar. The second pillar coupler includes a breakaway device for detaching the second upright from the driver side pillar upon application of a predetermined force. Illustratively, both the first pillar coupler and the second pillar coupler each include a rear clamping member and a front clamping member supported by the rear clamping member, the rear clamping member and the front clamping member adapted for positioning on opposite sides of the passenger side pillar and driver side pillar, respectively, for releasably securing the frame thereto. The breakaway device of the second pillar coupler is illustratively disposed intermediate the front clamping member and the rear clamping member such that the predetermined force releases the front clamping member from the rear clamping member. Illustratively, the front and rear clamping members of the first and second pillar couplers each include a body portion having inwardly facing locking lips. The locking lips of the front and rear clamping members cooperate to secure the pillar coupler from movement relative to one of the passenger side pillar and driver side pillar. Additional features and advantages of the present invention will become apparent to those skilled in the art upon a consideration of the following detailed description of an illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
<SOH> BACKGROUND AND SUMMARY OF THE INVENTION <EOH>The present invention relates generally to a vehicle security partition which forms a barrier between the front and rear occupant areas of a vehicle. More particularly, the present invention relates to such a partition which separates portions of the rear occupant area. The present invention further relates to support structures and mounting devices for vehicle partitions. Vehicle partitions are often utilized to separate the front and rear occupant areas of vehicles, such as police cars and taxi cabs, in order to prevent access to the front seat by someone located in the rear seat. These partitions typically include a dividing panel located between the front and rear seats which forms a barrier between the front and rear occupant areas. Since vehicles using these partitions often transport a single passenger, isolating the entire rear occupant area from the front occupant area results in a significant waste of space, particularly potential storage space in the rear seat. The present invention relates to a security partition for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor. In an illustrated embodiment of the present invention, a security partition includes a front panel extending laterally within the rear occupant area of the vehicle. A side panel extends substantially perpendicular relative to the front panel within the rear occupant area. A pillar clamp supports the front panel and includes a rear clamping member and a front clamping member coupled to the rear clamping member. The rear clamping member and the front clamping member are configured to be positioned on opposing sides of a pillar of the vehicle for releasably securing the front panel to the pillar. More particularly, the front clamping member is releasably secured to the rear clamping member wherein the pillar is clamped between the rear and front clamping members. The security partition illustratively further includes a frame connected to the front panel, the frame including first and second vertically extending uprights supporting a laterally extending upper member. The frame may form a substantially U-shaped rollbar wherein the upper member is configured to contact the roof of the vehicle. Illustratively, the frame includes at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. The frame illustratively includes a vertically extending intermediate upright positioned between the first and second uprights, wherein the at least one laterally extending lower member includes a first strut extending between the first upright and the intermediate upright and a second strut extending between the second upright and the intermediate upright. Further illustratively, the security partition includes a gun rack having an elongated support defining a longitudinal axis, the elongated support positioned with the longitudinal axis extending substantially vertical. The gun rack illustratively includes a barrel rest provided adjacent one end of the elongated support for receiving a barrel of a weapon, and a lock mechanism provided at a central portion of the elongated support for receiving and securing the weapon therein. The gun rack may further include a weapon trigger guard provided on another end of the elongated support for receiving a trigger portion of the weapon therein, the weapon trigger guard including a base having two spaced apart side walls which extend upward from the base to form a channel for receiving a trigger assembly of the weapon. The trigger guard may further include an insert secured in the channel and including a slot in an upper surface thereof for receiving a trigger and trigger guard of the weapon. In another illustrative embodiment of the present invention, a security partition is provided for use in a vehicle including driver and passenger sides, front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the floor and the roof. The partition includes a front panel, and first and second vertically extending uprights, wherein the first upright is connected to the front panel. The partition further includes a laterally extending upper member extending between the first and second uprights, and at least one laterally extending lower member positioned below the upper member and extending between the first and second uprights. A vertically extending intermediate upright is illustratively positioned between the first and second uprights, wherein the at least one laterally extending lower member comprises a first strut extending between the first upright and the intermediate upright, and a second strut extending between the second upright and the intermediate upright. A clearance area is defined between the second upright and the intermediate upright. The vehicle includes a front driver seat positioned within the front occupant area proximate the driver side, wherein the clearance area has a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of a pivotably mounted seat back of the driver seat therethrough. In a further illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including front and rear occupant areas, a floor, a roof, and a pair of laterally spaced pillars extending between the roof and the floor, wherein the front occupant area includes a driver seat having a pivotally mounted seat back. The partition includes a frame having first and second vertically extending uprights, and a front panel supported by the frame and extending laterally within the rear occupant area. A clearance area is defined between the second upright and the front panel, the clearance area having a vertical dimension and a lateral, horizontal dimension sufficient to allow passage of the front driver seat therethrough. In yet another illustrated embodiment of the present invention, a security partition is provided for use in a vehicle including passenger and driver sides, front and rear occupant areas, a floor, a roof, and laterally spaced passenger side and driver side pillars coupled to the roof. The partition includes a front panel, and a first upright positioned adjacent the passenger side of the vehicle in the rear occupant area, wherein the first upright is connected to the front panel. The partition further includes a second upright positioned adjacent the driver side of the vehicle in the rear occupant area, wherein the second upright is disposed in spaced relation to the first upright. A first pillar coupler attaches the first upright to the passenger side pillar and a second pillar coupler attaches the second upright to the driver side pillar. The second pillar coupler includes a breakaway device for detaching the second upright from the driver side pillar upon application of a predetermined force. Illustratively, both the first pillar coupler and the second pillar coupler each include a rear clamping member and a front clamping member supported by the rear clamping member, the rear clamping member and the front clamping member adapted for positioning on opposite sides of the passenger side pillar and driver side pillar, respectively, for releasably securing the frame thereto. The breakaway device of the second pillar coupler is illustratively disposed intermediate the front clamping member and the rear clamping member such that the predetermined force releases the front clamping member from the rear clamping member. Illustratively, the front and rear clamping members of the first and second pillar couplers each include a body portion having inwardly facing locking lips. The locking lips of the front and rear clamping members cooperate to secure the pillar coupler from movement relative to one of the passenger side pillar and driver side pillar. Additional features and advantages of the present invention will become apparent to those skilled in the art upon a consideration of the following detailed description of an illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
20041025
20060110
20050324
73312.0
1
PATEL, KIRAN B
VEHICLE PARTITION
SMALL
1
CONT-ACCEPTED
2,004
10,972,899
ACCEPTED
Method and apparatus for reducing timing pessimism during static timing analysis
One embodiment of the present invention provides a system that reduces timing pessimism during Static Timing Analysis (STA). During operation, the system receives parametric variation data which describes the on-chip variation of timing-related parameters. Next, the system computes region-specific derating factors using the parametric variation data. The system then identifies a set of worst-case violating paths using the region-specific derating factors. Next, the system computes path-specific derating factors for one or more paths in the set of worst-case violating paths using the parametric variation data and the path properties. Finally, the system identifies zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors.
1. A method for reducing timing pessimism during Static Timing Analysis (STA), the method comprising: receiving parametric variation data which describes the variation of timing-related parameters over a chip; computing region-specific derating factors using the parametric variation data; identifying a set of worst-case violating paths using the region-specific derating factors; computing path-specific derating factors for one or more paths in the set of worst-case violating paths using the parametric variation data; and identifying zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors; wherein the method reduces the timing pessimism because the method identifies realistic-case violating paths using the fine-grained path-specific derating factors instead of using the coarse-grained region-specific derating factors; wherein the method saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. 2. The method of claim 1, wherein a parameter in the parametric variation data can be: a distance-independent parameter; or a distance-dependent parameter. 3. The method of claim 1, wherein computing region-specific derating factors involves computing a global derating factor. 4. The method of claim 1, wherein computing path-specific derating factors involves identifying a reference-path, which is used as a reference while computing the delays for other paths. 5. The method of claim 1, wherein computing path-specific derating factors involves: receiving a set of user-specified instructions; and computing the path-specific derating factors using the set of user-specified instructions. 6. The method of claim 1, wherein computing path-specific derating factors involves calling an external subroutine provided by the user. 7. The method of claim 1, wherein computing path-specific derating factors involves computing a bounding box, which encloses the launch and capture paths that are being analyzed. 8. The method of claim 1, wherein computing path-specific derating factors involves computing a distance between two cells within the chip, wherein the distance can be computed using an electrical distance, a topological distance, or a layout distance. 9. The method of claim 1, wherein identifying zero or more realistic-case violating paths can involve: identifying the realistic-case violating paths one at a time on a first processing unit; identifying the realistic-case violating paths in parallel on a second processing unit; or identifying the realistic-case violating paths in parallel on a set of processing units. 10. A computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method for reducing timing pessimism during Static Timing Analysis (STA), the method comprising: receiving parametric variation data which describes the variation of timing-related parameters over a chip; computing region-specific derating factors using the parametric variation data; identifying a set of worst-case violating paths using the region-specific derating factors; computing path-specific derating factors for one or more paths in the set of worst-case violating paths using the parametric variation data; and identifying zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors; wherein the method reduces the timing pessimism because the method identifies realistic-case violating paths using the fine-grained path-specific derating factors instead of using the coarse-grained region-specific derating factors; wherein the method saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. 11. The computer-readable storage medium of claim 10, wherein a parameter in the parametric variation data can be: a distance-independent parameter; or a distance-dependent parameter. 12. The computer-readable storage medium of claim 10, wherein computing region-specific derating factors involves computing a global derating factor. 13. The computer-readable storage medium of claim 10, wherein computing path-specific derating factors involves identifying a reference-path, which is used as a reference while computing the delays for other paths. 14. The computer-readable storage medium of claim 10, wherein computing path-specific derating factors involves: receiving a set of user-specified instructions; and computing the path-specific derating factors using the set of user-specified instructions. 15. The computer-readable storage medium of claim 10, wherein computing path-specific derating factors involves calling an external subroutine provided by the user. 16. The computer-readable storage medium of claim 10, wherein computing path-specific derating factors involves computing a bounding box, which encloses the launch and capture paths that are being analyzed. 17. The computer-readable storage medium of claim 10, wherein computing path-specific derating factors involves computing a distance between two cells within the chip, wherein the distance can be computed using an electrical distance, a topological distance, or a layout distance. 18. The computer-readable storage medium of claim 10, wherein identifying zero or more realistic-case violating paths can involve: identifying the realistic-case violating paths one at a time on a single processing unit; identifying the realistic-case violating paths in parallel on a single processing unit; or identifying the realistic-case violating paths in parallel on multiple processing units. 19. An apparatus for reducing timing pessimism during Static Timing Analysis (STA), the apparatus comprising: a receiving mechanism configured to receive parametric variation data which describes the variation of timing-related parameters over a chip; a region-specific computing mechanism configured to compute region-specific derating factors using the parametric variation data; a worst-case identifying mechanism configured to identify a set of worst-case violating paths using the region-specific derating factors; a path-specific computing mechanism configured to compute path-specific derating factors for one or more paths in the set of worst-case violating paths using the parametric variation data; and a realistic-case identifying mechanism configured to identify zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors; wherein the apparatus reduces the timing pessimism because the apparatus identifies realistic-case violating paths using the fine-grained path-specific derating factors instead of using the coarse-grained region-specific derating factors; wherein the apparatus saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. 20. The apparatus of claim 19, wherein a parameter in the parametric variation data can be: a distance-independent parameter; or a distance-dependent parameter. 21. The apparatus of claim 19, wherein the region-specific computing mechanism is further configured to compute a global derating factor. 22. The apparatus of claim 19, wherein the path-specific computing mechanism is configured to identify a reference-path, which is used as a reference while computing the delays for other paths. 23. The apparatus of claim 19, wherein the path-specific computing mechanism further comprises: a instruction-receiving mechanism configured to receive a set of user-specified instructions; and a second path-specific computing mechanism configured to compute the path-specific derating factors using the set of user-specified instructions. 24. The apparatus of claim 19, the path-specific computing mechanism is further configured to call an external subroutine provided by the user. 25. The apparatus of claim 19, wherein the path-specific computing mechanism is configured to compute a bounding box, which encloses launch and capture the paths that are being analyzed. 26. The apparatus of claim 19, wherein the path-specific computing mechanism is further configured to compute a distance between two cells within the chip using an electrical distance, a topological distance, or a layout distance. 27. The apparatus of claim 19, wherein the realistic-case identifying mechanism can include: a first processing-unit configured to identify the realistic-case violating paths one at a time; a second processing-unit configured to identify the realistic-case violating paths in parallel; or a set of processing units configured to identify the realistic-case violating paths in parallel.
FIELD OF THE INVENTION This invention relates to the process of verifying timing constraints in an integrated circuit. More specifically, this invention relates to the process of reducing timing pessimism during static timing analysis. BACKGROUND RELATED ART Rapid advances in computing technology have made it possible to perform trillions of computational operations each second on data sets that are sometimes as large as trillions of bytes. These advances can be largely attributed to the exponential increase in the size and complexity of integrated circuits. Due to the increase in size and complexity of integrated circuits, it has become necessary to use sophisticated tools to verify timing constraints. Before the advent of Static Timing Analysis (STA), timing constraints were typically verified using simulation-based techniques. As the complexity of integrated circuits grew, using simulation-based techniques to verify timing constraints became impractical because of their long runtimes, low capacities, and incomplete analyses. Unlike simulation-based techniques, STA verifies timing by computing the worst-case delays without enumerating all possible paths. Because of this, STA can perform a thorough timing analysis for large integrated circuits within a reasonable amount of time. As a result, STA has emerged as the method of choice for verifying timing constraints for large integrated circuits. A number of factors must be considered while performing STA. The design and fabrication of integrated circuits involve complex physical and chemical processes, which cause on-chip variation of timing-related parameters. Typically, STA techniques model this on-chip variation using a global derating factor, which is used to change (or derate) delays to reflect on-chip variation. Since a global derating factor is globally applied to every delay, it ignores the context or location where each delay occurs. Consequently, present STA techniques usually solve for the worst case scenario for on-chip variation, which typically results in a safe but pessimistic timing analysis. Unfortunately, due to the continuing miniaturization of feature sizes, timing constraints for integrated circuits are becoming increasingly stringent. As a result, it is becoming extremely difficult to design integrated circuits using present STA techniques due to their overly pessimistic timing analyses. Hence, what is needed is a method and apparatus that reduces timing pessimism during STA without significantly increasing the computational time. SUMMARY One embodiment of the present invention provides a system that reduces timing pessimism during Static Timing Analysis (STA). During operation, the system receives parametric variation data which describe the on-chip variation of timing-related parameters. Next, the system computes region-specific derating factors using the parametric variation data. The system then identifies a set of worst-case violating paths using the region-specific derating factors. Next, the system computes path-specific derating factors for one or more paths in the set of worst-case violating paths using the region-specific derating factors as well as the properties of the paths themselves (e.g., distances between their cells, path lengths, etc.). Finally, the system identifies zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors. Note that the timing pessimism is reduced because the system identifies realistic-case violating paths using the fine-grained path-specific derating factors instead of using the coarse-grained region-specific derating factors. Moreover, the system saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. In a variation on this embodiment, a parameter in the parametric variation data can be a distance-independent parameter, or a distance-dependent parameter. In a variation on this embodiment, computing region-specific derating factors involves computing a global derating factor. In a variation on this embodiment, the system computes path-specific derating factors by identifying a reference-path, which is used as a reference while computing the delays for other paths. In a variation on this embodiment, the system computes path-specific derating factors by first receiving a set of user-specified instructions. The system then computes the path-specific derating factors using the set of user-specified instructions. In a variation on this embodiment, the system computes path-specific derating factors by computing a bounding box, which encloses all the paths that are being analyzed. In a variation on this embodiment, the system computes path-specific derating factors by computing a distance between two cells within the chip. Note that the distance can be a electrical distance, a topological distance, or a layout distance. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 illustrates the various steps in the design and fabrication of an integrated circuit in accordance with an embodiment of the present invention. FIG. 2 presents a flowchart that illustrates how STA is typically used during the design and implementation of integrated circuits in accordance with an embodiment of the present invention. FIG. 3 illustrates on-chip variation of timing-related parameters in accordance with an embodiment of the present invention. FIG. 4 illustrates the distribution of the on-chip variation and the characterization point for three libraries in accordance with an embodiment of the present invention. FIG. 5 presents a plot of a derating factor, which is composed of various distance-independent and distance-dependent parameters in accordance with an embodiment of the present invention. FIG. 6 illustrates a circuit schematic with a launch path and a capture path in accordance with an embodiment of the present invention. FIG. 7 illustrates a diagonal of a bounding box that encloses a group of cells in accordance with an embodiment of the present invention. FIG. 8 illustrates a circuit schematic with three paths in accordance with an embodiment of the present invention. FIG. 9 presents a flowchart that illustrates the process of finding realistic-case violating paths, thereby reducing timing pessimism during STA in accordance with an embodiment of the present invention. DETAILED DESCRIPTION Static Timing Analysis FIG. 1 illustrates the various steps in the design and fabrication of an integrated circuit in accordance with an embodiment of the present invention. The process starts with a product idea (step 100). Next, the product idea is realized by an integrated circuit, which designed using Electronic Design Automation (EDA) software (step 110). Once the design is finalized in software, it is taped-out (step 140). After tape-out, the process goes through fabrication (step 150), packaging, and assembly (step 160). The process eventually culminates with the production of chips (step 170). The EDA software design step 110, in turn, includes a number of sub-steps, namely, system design (step 112), logic design and function verification (step 114), synthesis and design for test (step 116), design planning (step 118), netlist verification (step 120), physical implementation (step 122), analysis and extraction (step 124), timing verification (step 125), physical verification (step 126), resolution enhancement (step 128), and mask data preparation (step 130). Static Timing Analysis (STA) typically takes place during the timing verification step 125, in which the netlist is checked for compliance with timing constraints and for correspondence with the VHDL/Verilog source code. Note that the PrimeTime® product from Synopsys, Inc. can be used for STA. Before the advent of STA, timing was typically verified using simulation-based techniques. Unfortunately, as the complexity of integrated circuits grew, using simulation-based techniques to verify timing constraints became impractical because of their long runtimes, low capacities, and incomplete analyses. Unlike simulation-based techniques, STA verifies timing by computing the worst-case and best-case delays without enumerating all possible paths. Because of this, STA can perform a thorough timing analysis for large integrated circuits within a reasonable amount of time. As a result, STA has emerged as the method of choice for performing timing verification for large integrated circuits. FIG. 2 presents a flowchart that illustrates how STA is typically used during the design and implementation of integrated circuits in accordance with an embodiment of the present invention. First an integrated circuit is designed (step 202). Next, the parasitics are extracted (step 204). Static timing analysis is then performed (step 206). If timing violations are found (step 208), the process goes back to the circuit design step 202, so that the circuit can be tweaked to fix the timing violations. On the other hand, if no timing violations are found, the process continues to the next step in the fabrication process. Location-Aware On-Chip Variation FIG. 3 illustrates on-chip variation of timing-related parameters in accordance with an embodiment of the present invention. The design and fabrication of integrated circuits involve complex physical and chemical processes, which cause on-chip variation of timing-related parameters. For example, the voltage, temperature, and process parameters (e.g., channel length) can vary over the chip 302. Specifically, the voltage, temperature, and process parameters in region 304 can be 3.2V, 72° F., and 0.26μ, respectively. Likewise, the voltage, temperature, and process parameters in region 306 can be 3.4V, 68° F., and 0.24μ, respectively. Due to on-chip variation, a cell in region 304, such as cell 308, can have a different delay from a cell in region 306, such as cell 310, even if the designer intended them to be identical. In one embodiment of the present invention, on-chip variation can be modeled using multiple cell libraries. For example, FIG. 4 illustrates the distribution of the on-chip variation and the characterization point for three libraries, namely, a fast library 402, a typical library 404, and a slow library 406 in accordance with an embodiment of the present invention. STA typically uses derating factors to model on-chip variation. Note that present STA techniques typically use a global derating factor, which is not sensitive to the context or location. This results in an overly pessimistic timing analysis. For example, suppose cell 312 is also in the same region as cell 308, namely, region 304. Moreover, suppose they are the same type of cells with the same size. During STA, these two cells—cell 308 and 312—can be assigned widely different delay values during the worst case analysis. But, due to their close physical proximity, the delay values for these cells are expected to be approximately the same. The present invention remedies this problem by using location-aware on-chip variation. In one embodiment of the present invention, a derating factor can be composed of two types of parameters: (a) distance-independent parameters, or (b) distance-dependent parameters. Note that distance-independent parameters do not have a unit, while distance-dependent parameters are specified in per-unit-distance. Furthermore, in one embodiment of the present invention, the derating factor can be a linear combination of a plurality of parameters. Specifically, the derating factor for a cell can be computed using the expression F = 1 + ∑ i = 1 n ⁢ ( f i - 1 ) + ∑ j = 1 m ⁢ d j × ( f j ′ - 1 ) , where F is the derating factor, fi is the ith distance-independent parameter, dj is the distance of the cell, and fj is the jth distance-dependent parameter. Note that the distance of the cell dj can be computed in a number of ways. For example, in one embodiment of the present invention, the distance dj is computed in reference to a common point. In another embodiment of the present invention, the distance dj is computed in reference to another cell. Furthermore, the distance dj can represent the electrical distance, the topological distance, or the layout distance. FIG. 5 presents a plot of a derating factor, which is composed of various distance-independent and distance-dependent parameters in accordance with an embodiment of the present invention. Composite derate curve 502, which plots the maximum percentage difference in cell delay against the distance between the cells, is a linear combination of four curves, namely, process curve 504, voltage curve 506, temperature curve 508, and random curve 510. Furthermore, note that the random parameter (which corresponds to the random curve 510) is a distance-independent parameter. On the other hand, the process parameter (which corresponds to the process curve 504), the voltage parameter 506 (which corresponds to the voltage curve 506), and the temperature curve 508 (which corresponds to the temperature curve 508) are all distance-dependent parameters. Furthermore, in one embodiment of the present invention, a derating factor can be specified for a design, a library cell, a hierarchical cell, a leaf cell, or a net. For example, if a cell is in proximity of a hot bus, a larger derating factor can be specified for that particular cell. A derating factor can also be specific to a pin-to-pin arc or a metal layer. Note that it is possible to have an instance for which multiple derating factors have been specified. For example, a derating factor can be specified for a net and another derating factor can be specified for the hierarchical net that contains the net. In one embodiment of the present invention, if multiple derating factors are applicable to an instance, a user-defined priority order can be used to select the highest priority derating factor. The highest priority derating factor can then be used in the STA computations. In one embodiment of the present invention, the priority order (from highest to lowest) for cell derating factors can be: (a) instance, (b) hierarchical-cell, (c) library-cell, and (d) global (or design). Furthermore, the priority order (from highest to lowest) for net derating factors can be: (a) net, (b) hierarchical-net, and (c) global (or design). FIG. 6 illustrates a circuit schematic with a launch path 602 and a capture path 604 in accordance with an embodiment of the present invention. Note that the path delays on these two paths can be different. If the difference in the path delays is more than a threshold (called a setup or hold time), it can cause the circuit to malfunction. STA allows a circuit designer to identify all such violating paths in a circuit that may cause the circuit to malfunction. Unfortunately, present STA techniques consider the worst-case scenario while computing the delay difference due to on-chip variation. For example, suppose the delay of capture path 604 is more than the delay of the launch path 602. If the on-chip variation is ±10%, present STA techniques typically compute the worst case scenario as follows: they reduce the path delay of the capture path 604 by 10% and increase the path delay of the launch path by 10%. As a result, the total difference in the path delays increases by 20%, which can cause the circuit to malfunction. Consequently, present STA techniques would report these paths as violating paths if the difference is more than the corresponding threshold. Note that, in reality, these paths may physically be next to one another, and hence it may be impossible for one path to have a +10% variation while the other to have a −10% variation. The present invention computes a set of static derate values that safely bound the analysis in a more realistic manner. In one embodiment of the present invention, the on-chip variation is computed using distance-dependent derating factors, thereby taking into account the paths' physical proximity or lack thereof. Note that the distance of a cell on a path can be computed using various techniques. For example, the distance of a cell can be the electrical distance (which is computed by adding the propagation delays), the topological distance (which is computed by counting the number of cells, nets or stages), or the layout distance (which is computed by finding the Euclidean distance). Specifically, in one embodiment of the present invention, the layout distance of a cell is computed by determining the Euclidean distance of the cell from a set of reference cells. In another embodiment of the present invention, the layout distance of a cell is computed by determining the Euclidean distance of the cell from a reference point. Note that the distance between two cells can be computed by finding the Euclidean distance between a point in the first cell and a point in the second cell. In one embodiment of the present invention, the distance between two cells is equal to the distance between the centers of the two cells. In one embodiment of the present invention, the layout distance of a cell in a group of cells is determined by finding the length of a diagonal of a bounding box that encloses the group of cells. Specifically, in one embodiment of the present invention, the bounding box encloses the launch and capture paths that are being analyzed. FIG. 7 illustrates a diagonal 704 of a bounding box 702 that encloses a group of cells in accordance with an embodiment of the present invention. In another embodiment of the present invention, the cell common to the launching and capturing paths in FIG. 7 is included in the bounding box. Note that the Euclidean distance between any two cells within the bounding box is less than the length of the diagonal 704 of the bounding box 702. Furthermore, using the length of the diagonal 704 to compute the on-chip variation is more conservative than finding the Euclidean distances between every pair of cells in the group of cells. Consequently, the set of violating paths found using the bounding box are a superset of the set of violating paths found using the Euclidean distances between every pair of cells. In one embodiment of the present invention, the on-chip-variation can be computed by multiple distance metrics. For example, the variation magnitude can be proportional to the layout distance. But, the variation magnitude could be lower due to cancellation effects if the path's topological distance is long. Such complex or customized computation styles are handled by allowing the path-specific derating factors to be computed by a user-supplied subroutine such as a Tcl script. Furthermore, computing the Euclidean distances between every pair of cells requires O(n2) computation time, where n is the number of cells. On the other hand, using a bounding box to compute the set of violating paths requires less computation. Note that, the amount of derate that is applied to a cell depends on the specific set of paths being analyzed. FIG. 8 illustrates a circuit schematic with three paths, namely, path 802, 804, and 806, in accordance with an embodiment of the present invention. Suppose that path 806 is physically closer to path 804 than path 802. Consequently, the on-chip variation between paths 802 and 806 is expected to be larger than the on-chip variation between paths 804 and 806. Accordingly, different derating factors can be used for the cells in path 806 depending on the paths that are being compared. For example, in one embodiment of the present invention, a derating factor of 10% can be applied to the cells in path 806 while comparing paths 802 and 806. On the other hand, a derating factor of 5% can be applied to the cells in path 806 while comparing paths 804 and 806. Note that it is computationally infeasible to perform STA by enumerating each path and computing a path-specific derating factor based on each pair of paths. Hence, the present invention first computes a set of worst-case violating paths, and then computes the path-specific derating factors for one or more paths in the set of worst-case violating paths. Process for Reducing Timing Pessimism During STA FIG. 9 presents a flowchart that illustrates the process of finding realistic-case violating paths, thereby reducing timing pessimism during STA in accordance with an embodiment of the present invention. The process begins with receiving parametric variation data (step 902). Recall that the parametric variation data can have both distance-independent and distance-dependent parameters. Moreover, recall that the parametric variation data can be specified for a particular instance, such as, a library cell, a hierarchical cell, a leaf cell, or a net. Furthermore, the parametric variation data can also be specified for a particular pin-to-pin arc or a particular metal layer. In addition, the parametric variation data can be given using a file input or a command-line input. Next, the system computes a set of region-specific derating factors using the parametric variation data (step 904). In one embodiment of the present invention, a region can encompass the whole chip. In this case, the region-specific derating factor is essentially a global derating factor. The system then identifies a set of worst-case violating paths (step 906). Note that the system uses the region-specific derating factors to compute the set of worst-case violating paths. Furthermore, note that computing a set of worst-case violating paths using region-specific derating factors is computationally less expensive than directly computing a set of realistic-case violating paths using path-specific derating factors. Next, the system computes path-specific derating factors for one or more paths in the set of worst-case violating paths (step 908). In one embodiment of the present invention, the system receives a set of user-specified instructions. Next, the system computes the path-specific derating factors using the user-specified instructions. Furthermore, in another embodiment of the present invention, the system computes the path-specific derating factors by calling an external subroutine provided by the user. Finally, the system identifies zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors (step 910). In one embodiment of the present invention, the system identifies zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors and using the properties of the violating paths, e.g., distances between their cells, path lengths, etc. In one embodiment of the present invention, the system identifies the realistic-case violating paths one at a time on a single processing unit. In another embodiment of the present invention, the system identifies the realistic-case violating paths in parallel on a single processing unit. In yet another embodiment of the present invention, the system identifies the realistic-case violating paths in parallel on a set of processing units. Note that the system reduces the timing pessimism because the method identifies violating paths using the fine-grained path-specific derating factors instead of the coarse-grained region-specific derating factors. Furthermore, note that the system saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. CONCLUSION The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims. Furthermore, the data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any type of device or medium that can store code and/or data for use by a computer system. This includes, but is not limited to, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs) and DVDs (digital versatile discs or digital video discs), and computer instruction signals embodied in a transmission medium (with or without a carrier wave upon which the signals are modulated). For example, the transmission medium may include a communications network, such as the Internet.
<SOH> BACKGROUND <EOH>
<SOH> SUMMARY <EOH>One embodiment of the present invention provides a system that reduces timing pessimism during Static Timing Analysis (STA). During operation, the system receives parametric variation data which describe the on-chip variation of timing-related parameters. Next, the system computes region-specific derating factors using the parametric variation data. The system then identifies a set of worst-case violating paths using the region-specific derating factors. Next, the system computes path-specific derating factors for one or more paths in the set of worst-case violating paths using the region-specific derating factors as well as the properties of the paths themselves (e.g., distances between their cells, path lengths, etc.). Finally, the system identifies zero or more realistic-case violating paths from the set of worst-case violating paths using the path-specific derating factors. Note that the timing pessimism is reduced because the system identifies realistic-case violating paths using the fine-grained path-specific derating factors instead of using the coarse-grained region-specific derating factors. Moreover, the system saves computational time by first identifying a set of worst-case violating paths and then identifying the realistic-case violating paths from the set of worst-case violating paths, instead of directly identifying the realistic-case violating paths from the set of all possible paths. In a variation on this embodiment, a parameter in the parametric variation data can be a distance-independent parameter, or a distance-dependent parameter. In a variation on this embodiment, computing region-specific derating factors involves computing a global derating factor. In a variation on this embodiment, the system computes path-specific derating factors by identifying a reference-path, which is used as a reference while computing the delays for other paths. In a variation on this embodiment, the system computes path-specific derating factors by first receiving a set of user-specified instructions. The system then computes the path-specific derating factors using the set of user-specified instructions. In a variation on this embodiment, the system computes path-specific derating factors by computing a bounding box, which encloses all the paths that are being analyzed. In a variation on this embodiment, the system computes path-specific derating factors by computing a distance between two cells within the chip. Note that the distance can be a electrical distance, a topological distance, or a layout distance.
20041022
20070626
20060427
63723.0
G06F1750
1
GARBOWSKI, LEIGH M
METHOD AND APPARATUS FOR REDUCING TIMING PESSIMISM DURING STATIC TIMING ANALYSIS
UNDISCOUNTED
0
ACCEPTED
G06F
2,004
10,972,922
ACCEPTED
Method and apparatus for using optical signal time-of-flight information to facilitate obstacle detection
One or more optical signals (wherein at least some of a plurality of optical signals are at different angles of travel with respect to one another and are directed towards an area comprising a movable barrier-controlled point of passage) create reflections when striking passageway boundaries as correspond to a given movable barrier. Obstacles in the pathway also give rise to reflections. By determining a time-of-flight for such reflections, one can detect a likely presence of an obstacle in such a pathway. Pursuant to one approach, such time-of-flight information can further provide information regarding a likely size of such an obstacle.
1. A method comprising: sourcing a plurality of optical signals, wherein: at least some of the plurality of optical signals are at different angles of travel from one another; at least some of the plurality of optical signals are directed towards an area comprising a movable barrier-controlled point of passage; detecting reflections of at least some of the plurality of optical signals; determining a time of flight for at least some of the optical signals; using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier. 2. The method of claim 1 wherein sourcing a plurality of optical signals further comprises sourcing the plurality of optical signals substantially in parallel with one another. 3. The method of claim 2 wherein sourcing the plurality of optical signals substantially in parallel with one another further comprises using a plurality of discrete optical signal emitters. 4. The method of claim 3 wherein using a plurality of discrete optical signal emitters further comprises using a plurality of discrete lasers. 5. The method of claim 1 wherein sourcing a plurality of optical signals further comprises: emitting a plurality of optical signals from at least one optical signal emitter; moving, over time, an angle of emission for at least some of the plurality of optical signals with respect to the movable barrier-controlled point of passage. 6. The method of claim 5 wherein emitting a plurality of optical signals from at least one optical signal emitter further comprises emitting a series of periodic optical signals from at least one optical signal emitter. 7. The method of claim 6 wherein moving, over time, an angle of emission for at least some of the plurality of optical signals with respect to the movable barrier-controlled point of passage further comprises moving the at least one optical signal emitter with respect to the movable barrier-controlled point of passage. 8. The method of claim 6 wherein moving, over time, an angle of emission for at least some of the plurality of optical signals with respect to the movable barrier-controlled point of passage further comprises moving an optical signal pathway adjuster with respect to the movable barrier-controlled point of passage. 9. The method of claim 8 wherein moving an optical signal pathway adjuster further comprises moving a reflective surface. 10. The method of claim 1 wherein sourcing a plurality of optical signals, wherein at least some of the plurality of optical signals are directed towards an area comprising a movable barrier-controlled point of passage further comprises sourcing a plurality of optical signals, wherein at least some of the plurality of optical signals are directed towards an area comprising at least one boundary area for the movable barrier-controlled point of passage. 11. The method of claim 10 wherein sourcing a plurality of optical signals, wherein at least some of the plurality of optical signals are directed towards an area comprising at least one boundary area for the movable barrier-controlled point of passage further comprises sourcing a plurality of optical signals, wherein at least some of the plurality of optical signals are directed towards a floor as corresponds to the movable barrier-controlled point of passage. 12. The method of claim 11 wherein the movable-barrier controlled point of passage comprises an opening to a garage. 13. The method of claim 1 wherein determining a time of flight for at least some of the optical signals further comprises determining a time of flight from a time of being sourced to a time of detecting the reflection thereof. 14. The method of claim 1 wherein using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier further comprises using the time of flight as corresponds to a plurality of the optical signals. 15. The method of claim 14 wherein using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier further comprises using the time of flight to determine a size of the obstacle. 16. The method of claim 14 wherein using the time of flight to detect a likely presence of an object in a pathway of the movable barrier further comprises determining how many of the optical signals so detect the obstacle to determine a size of the obstacle. 17. The method of claim 15 wherein using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier further comprises providing an obstacle-detected signal in response to detecting a likely presence of an obstacle that is larger than a predetermined size and not providing the obstacle-detected signal in response to detecting a likely presence of an obstacle that is smaller than the predetermined size. 18. The method of claim 15 wherein using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier further comprises providing an obstacle-detected signal in response to detecting a likely presence of an obstacle that is larger than a predetermined size and not providing the obstacle-detected signal in response to detecting a likely presence of an obstacle that is smaller than the predetermined size. 19. The method of claim 1 wherein sourcing a plurality of optical signals comprises sourcing a first plurality of optical signals from a first location. 20. The method of claim 19 wherein sourcing a plurality of optical signals further comprises sourcing a second plurality of optical signals from a second location, which second location is distal to the first location. 21. The method of claim 20 wherein the first location and the second location are each proximal to opposite sides of the movable barrier-controlled point of passage. 22. The method of claim 1 wherein detecting reflections of at least some of the plurality of optical signals further comprises detecting at least one indicia that identifies a given one of the reflections as corresponding to a specific one of the plurality of optical signals. 23. The method of claim 22 wherein the at least one indicia comprises a modulation characteristic. 24. The method of claim 1 and further comprising, upon detecting a likely presence of an obstacle in a pathway of the movable barrier, automatically ceasing the sourcing of the plurality of optical signals. 25. The method of claim 24 wherein automatically ceasing the sourcing of the plurality of optical signals further comprises automatically ceasing the sourcing of the plurality of optical signals for at least a predetermined period of time. 26. The method of claim 24 wherein automatically ceasing the sourcing of the plurality of optical signals further comprises automatically ceasing the sourcing of the plurality of optical signals until detecting at least one predetermined event. 27. The method of claim 26 wherein detecting at least one predetermined event further comprises detecting assertion of a user interface. 28. The method of claim 1 and further comprising: detecting at least a partial attenuation of a pathway for at least one of the plurality of optical signals that does not likely correspond to the presence of an obstacle in a pathway of the movable barrier. 29. The method of claim 28 and further comprising: providing a signal responsive to detecting the at least a partial attenuation of the pathway. 30. The method of claim 1 and further comprising: manipulating at least one of the plurality of optical signals to facilitate a display of at least one cosmetic graphic element on a surface. 31. The method of claim 30 wherein the at least one cosmetic graphic element comprises at least a part of a street address. 32. The method of claim 30 wherein the surface comprises at least a part of the movable barrier. 33. A method for use with a movable barrier operator that controls a movable barrier with respect to a position of the movable barrier within a passageway, wherein the passageway has at least one physical boundary, comprising: sourcing a plurality of optical beams, wherein: at least some of the plurality of optical beams are non-coaxial with respect to one another; at least some of the plurality of optical beams are directed towards the at least one physical boundary; detecting paths of travel for corresponding ones of at least some of the optical beams, which paths of travel each comprise an original optical beam and at least one reflection thereof; determining a time of flight for at least some of the paths of travel; using the time of flight to detect a likely presence of an obstacle in the passageway. 34. The method of claim 33 wherein the passageway comprises a garage door opening and the movable barrier comprises a garage door. 35. The method of claim 33 wherein the passageway comprises a gate opening and the movable barrier comprises a barrier gate. 36. The method of claim 33 wherein the physical boundary comprises a floor surface. 37. The method of claim 33 wherein the physical boundary comprises a surface that is proximal to a fully closed position for the movable barrier in the passageway. 38. The method of claim 37 wherein the surface comprises a sidewall of the passageway. 39. The method of claim 33 wherein sourcing a plurality of optical beams further comprises sourcing the plurality of optical beams using a plurality of optical beam emitters. 40. The method of claim 33 wherein sourcing a plurality of optical beams further comprises sourcing the plurality of optical beams using a single optical beam emitter. 41. The method of claim 33 wherein sourcing a plurality of optical beams further comprises sourcing the plurality of optical beams from a substantially common area. 42. The method of claim 41 wherein the substantially common area comprises an area that is proximal to a boundary of the passageway. 43. The method of claim 42 wherein the area comprises a corner of the passageway. 44. The method of claim 43 wherein the corner comprises an upper corner of the passageway. 45. The method of claim 33 wherein sourcing a plurality of optical beams further comprises sourcing at least one optical beam from a first area and at least one optical beam from a second area that is substantially distal to the first area. 46. The method of claim 45 wherein the first area and the second area are both proximal to a boundary of the passageway. 47. The method of claim 46 wherein the first area comprises a first corner of the passageway and the second area comprises a second corner of the passageway that is different than the first corner. 48. The method of claim 41 wherein the substantially common area further comprises a substantially central position with respect to the passageway. 49. The method of claim 48 wherein the substantially central position comprises an upper position with respect to the passageway. 50. The method of claim 48 wherein the substantially central position comprises a lower position with respect to the passageway. 51. The method of claim 41 wherein the substantially common area further comprises an area that is external to the passageway. 52. A movable barrier operator obstacle detector comprising: an optical beam emitter having an output providing a plurality of non-coaxially aligned optical beams; an optical beam receiver positioned to receive reflections of the non-coaxially aligned optical beams; a time-of-flight calculator that is operably coupled to the optical beam emitter and the optical beam receiver and having an optical beam pathway time of flight value output as corresponds to individual ones of the optical beams and their corresponding reflections; an obstacle detector having an input operably coupled to the optical beam pathway time of flight value output. 53. The movable barrier operator obstacle detector of claim 52 wherein the optical beam emitter comprises a single optical beam emitter. 54. The movable barrier operator obstacle detector of claim 52 wherein the optical beam emitter comprises a plurality of discrete optical beam emitters. 55. The movable barrier operator obstacle detector of claim 52 wherein the optical beam receiver is positioned to facilitate detection of a reflection of the plurality of non-coaxially aligned optical beams from an obstacle in a path of a movable barrier. 56. The movable barrier operator obstacle detector of claim 52 wherein the time-of-flight calculator further comprises calculation means for determining a duration of time from when a given one of the plurality of non-coaxially aligned optical beams is sourced by the optical beam emitter and when a reflection as corresponds to the given one of the plurality of non-coaxially aligned optical beams is detected by the optical beam receiver. 57. The movable barrier operator obstacle detector of claim 52 wherein the obstacle detector further comprises means for using optical beam pathway time of flight values from the time-of-flight calculator to determine when an obstacle is likely in a path of a movable barrier. 58. The movable barrier operator obstacle detector of claim 57 wherein the means is further for determining when the obstacle is of sufficient size to warrant altering operation of the movable barrier. 59. The movable barrier operator obstacle detector of claim 57 wherein the means is further for determining when the obstacle is present for a sufficient length of time to warrant altering operation of the movable barrier. 60. A method comprising: sourcing an optical signal, wherein the optical signal is directed towards an area comprising a movable barrier-controlled point of passage; detecting reflections of the optical signal; determining a time of flight as corresponds to the optical signal; using the time of flight to detect a likely presence of an obstacle in a pathway of the movable barrier. 61. A method for use with a movable barrier operator that controls a movable barrier with respect to a position of the movable barrier within a passageway, wherein the passageway has at least one physical boundary, comprising: sourcing an optical beam, wherein the optical beam is directed towards the at least one physical boundary; detecting a path of travel as corresponds to the optical beam, which path of travel comprises an original optical beam and at least one reflection thereof; determining a time of flight for the path of travel; using the time of flight to detect a likely presence of an obstacle in the passageway. 62. A movable barrier operator obstacle detector comprising: an optical beam emitter having an output providing an optical beam; an optical beam receiver positioned to receive a reflection of the optical beam; a time-of-flight calculator that is operably coupled to the optical beam emitter and the optical beam receiver and having an optical beam pathway time of flight value output as corresponds to the optical beam and its corresponding reflection; an obstacle detector having an input operably coupled to the optical beam pathway time of flight value output.
TECHNICAL FIELD This invention relates generally to movable barrier operators and more particularly to obstacle detection. BACKGROUND Movable barrier operators of various kinds are known in the art. Such operators typically serve to effect the selective and controlled movement of a corresponding movable barrier. Various kinds of movable barriers are known, including but not limited to single panel and segmented garage doors, horizontally or vertically pivoting or sliding doors or gates, cross arms, rolling shutters and the like. In general, such movable barriers are selectively moved as between two primary positions (usually a fully opened position and a fully closed position). For various reasons an obstacle can become positioned in the pathway of such a movable barrier. For example, the rear-end of a vehicle that has not been completely disposed within a garage can extend into the path of travel of a garage door. Automated movement of a garage door under such circumstances can lead to damage of both the vehicle and the garage door and/or the movable barrier operator mechanism itself. As another example, a child or pet may move into the path of a closing movable barrier and risk injury. Modern movable barrier operators typically make use of one or more techniques to facilitate automated detection of such obstacles. Common techniques include the use of an infrared beam disposed to likely detect the presence, when the beam is broken, of an obstacle in the pathway of the movable barrier. At least one difficulty associated with this technique is a requirement of having an emitter and detector on opposing sides of the movable barrier. This requires both mounting facilities for both sides of the movable barrier and the routing of wires to both sides of the barrier. Another technique proposes the use of a pressure sensitive surface disposed along a leading edge of the movable barrier itself to facilitate detection of an obstacle through contact with that obstacle. This technique requires that the object being protected be impacted for the protection can occur. Therefore with this technique presents a possibility that the protection only limits the damage and does not eliminate it. BRIEF DESCRIPTION OF THE DRAWINGS The above needs are at least partially met through provision of the method and apparatus for using optical signal time-of-flight information to facilitate obstacle detection described in the following detailed description, particularly when studied in conjunction with the drawings, wherein: FIG. 1 comprises a block diagram as configured in accordance with various embodiments of the invention; FIG. 2 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 3 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 4 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 5 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 6 comprises a comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 7 comprises a schematic view of a movable optical signal emitter as configured in accordance with various embodiments of the invention; FIG. 8 comprises a schematic view of a non-moving optical signal emitter as configured in accordance with various embodiments of the invention; FIG. 9 comprises a timing diagram as configured in accordance with various embodiments of the invention; FIG. 10 comprises a flow diagram as configured in accordance with various embodiments of the invention; FIG. 11 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 12 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 13 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 14 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 15 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 16 comprises a flow diagram as configured in accordance with various embodiments of the invention; FIG. 17 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention FIG. 18 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; and FIG. 19 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will also be understood that the terms and expressions used herein have the ordinary meaning as is usually accorded to such terms and expressions by those skilled in the corresponding respective areas of inquiry and study except where other specific meanings have otherwise been set forth herein. DETAILED DESCRIPTION Generally speaking, pursuant to these various embodiments, one or a plurality of optical signals are sourced wherein with the plurality at least some of the optical signals are at different angles of travel from one another and at least some of the plurality of optical signals are directed towards an area comprising a movable barrier-controlled point of passage. Reflections of these optical signals are detected and used to determine a time-of-flight for at least one of the optical signals. These embodiments then use that time-of-flight information to detect a likely presence of an obstacle in the pathway of a corresponding movable barrier. Depending upon the needs of a given application, the optical signals are sourced by a plurality of optical signal emitters or by a single optical signal emitter (when employing, for example, a movable optical signal emitter or an optical signal pathway adjuster such as a movable reflective surface or as a direct replacement for present day photobeam systems). These optical signals can be sourced from a substantially common area (such as, but not limited to, an upper corner of a movable barrier passageway) or can be sourced from a plurality of areas that are substantially distal from one another. In a preferred embodiment at least some of these optical signals are directed towards a physical boundary that serves to define, at least in part, a periphery or boundary of the movable barrier passageway. For example, such optical signals can be usefully directed towards a floor surface and/or a sidewall of such a passageway. Such time-of-flight information can serve to not only indicate the presence of an obstacle but can also, if desired, provide other useful information. For example, such time-of-flight information can serve to facilitate a determination regarding a size of the obstacle. This information, in turn, can serve to facilitate a determination regarding whether the obstacle is smaller than a predetermined size and hence whether the detected obstacle in fact presents a genuine concern meriting an operational response. These and many other benefits may become more evident upon making a thorough review and study of the following detailed description. Referring now to the drawings, and in particular to FIG. 1, an illustrative embodiment of a movable barrier operator 10 configured and arranged in accord with these teachings includes an optical beam emitter 11 and an optical beam receiver 12. These elements 11 and 12 can be deployed as discrete components (as suggested by the illustration) or as an integral platform 13. Viewed generally, the optical beam emitter 11 can comprise an output that provides a plurality of non-coaxially aligned optical beams. The optical beams themselves are preferably laser beams as are well understood in the art, but other types of optical emitters could also be employed if desired and as may better suit the needs of a given application. Pursuant to one approach, the optical beam emitter 11 comprises a plurality of discrete optical beam emitters such as the discrete optical beam emitters 21 depicted in the illustration provided at FIG. 2. In this illustrative embodiment, the multiple discrete optical beam emitters 21 are radially oriented with respect to a curved surface such that the resultant optical beams in fact issue at other than in a parallel alignment with one another. By this approach, a plurality of so-oriented laser emitters 21 serve to source the plurality of non-coaxially aligned optical beams. Pursuant to one approach, and referring momentarily to FIG. 3, at least some of this plurality of optical signals are directed towards an area comprising a movable barrier-controlled point of passage 30. More particularly, and pursuant to a preferred approach, at least some of these optical signals are directed towards one or more areas that comprise a boundary area for the movable barrier-controlled point of passage 30. For example, when the movable barrier comprises a garage door and the movable barrier-controlled point of passage 30 comprises a garage opening defined in general by a floor surface 31, two sidewalls 32 and 33, and an upper surface 34, the optical signals 34 can be usefully directed towards a floor surface 31 (or other surface that is proximal to a fully closed position for the movable barrier), a sidewall 33 of the passage 30, or such other surface (or combination of surfaces) as may prove useful in a given application. Providing the optical signals in a non-parallel deployment offers numerous advantages. For example, this permits considerable latitude with respect to locating the optical beam emitter 11 itself. In this particular illustrative example, the optical beam emitter 11 has been located in an area comprising a corner 35 (and more particularly an upper corner) of the passageway 30. Other locations can be used as well with some alternatives being depicted herein. The optical beam receiver 12 is generally positioned to receive reflections of the non-coaxially aligned optical beams. With momentary reference to FIG. 4, the optical beam receiver 12 can comprise, if desired, a plurality of discrete optically sensitive receivers 41 such as prior art reception devices that are sensitive and responsive to the laser's wavelength of energy. Pursuant to one approach and as suggested by the illustrative embodiment depicted in FIG. 4, these optically sensitive receivers 41 may essentially correspond to the spacing, alignment, and placement of a corresponding plurality of discrete optical beam emitters 21 as described above with respect to FIG. 2. By juxtaposing such a grouping of emitters 21 and receivers 41 in close proximity to one another, and depending upon the reflective properties attending a given passageway, the receivers 41 may be usefully placed to detect sufficient reflective information regarding the optical beams sourced by the emitters 21 to meet the needs of these teachings as are described below in more detail. (Numerous other configurations are of course possible and may possibly be preferable in a given setting. As one illustrative example, and referring momentarily to FIG. 5, a given unified platform 13 may include both optical signal emitters and receivers 51 in very close relationship to one another. Or, if desired, the emitters and receivers may alternate ever other node in such an embodiment. As yet another example, it may be desirable to dispose some or all of the receivers 12 at some distance from the emitters 11 (in order to accommodate, for example, a situation when the surfaces that define the boundaries of the passageway are such that reflections of the optical signals do not reliably return to the general area of origination with sufficient energy to permit reliable detection thereof).) To illustrate this point, refer momentarily to FIG. 6. For purposes of clarity, only a single optical signal 61 is shown. This optical signal 61 travels towards a specified boundary of the passageway 30 (in this illustration, that boundary comprises the floor 31), makes contact with that surface, and reflects therefrom. In many cases, this reflection comprises at least a portion 62 that returns relatively proximal to the point of origin with sufficient energy to permit its reliable detection. As will be described below in more detail, this permits determining a time-of-flight for such an optical signal 61 and its reflection 62 by determining a duration of time between the original sourcing of the optical signal to a time of detecting its corresponding reflection. In the embodiments described above, the plurality of optical signals are owing to a corresponding plurality of emitters. If desired, however, some or all of this plurality of signals can be sourced by a single optical beam emitter 11. Pursuant to one approach, and referring momentarily to FIG. 7, this single optical beam emitter 11 can comprise a movable optical beam emitter 11 as is known in the art. By sourcing optical signals in synchronicity with various positions of the movable optical beam emitter 11, a corresponding plurality of non-coaxially aligned optical beams will result. For example, the optical signal that will issue when the movable optical beam emitter 11 assumes a first orientation 71 with respect to a pivoting axis will have a different angle of flight than the optical signal that will issue when the movable optical beam emitter 11 assumes a second orientation 72 with respect to that pivoting axis. As another illustrative example, and referring momentarily to FIG. 8, a single optical beam emitter 11 may be stationary but its light beams may impinge upon an optical signal pathway adjuster 81 (such as, for example, a reflective surface such as a flat or curved mirror surface). By selectively moving this optical signal pathway adjuster 81, the resultant reflections can exhibit non-corresponding angles of reflection and hence non-corresponding pathways to the boundary surfaces of the passageway. For example, as illustrated, a reflected light beam as corresponds to a first position 82 of the optical signal pathway adjuster 81 proceeds at a different angle as compares to a reflected light beam that corresponds to a second position 83 of the optical signal pathway adjuster 81. When using a single optical signal emitter, it will typically be preferred to pulse the emitter to thereby cause emission of a series of light pulses. For example, and referring momentarily to FIG. 9, a series 90 of optical signals 91 may be sourced over time, with each pulse varying with respect to its ultimate angle of travel with respect to the passageway. The duration of such periodic optical signals and/or the periodicity itself can and likely will vary with the needs and/or capabilities of a given setting and platform choice. These and other optical signal emitters and receivers are known in the art, and others will likely be developed in the future. Because such devices and their manner of deployment and use is well understood, and further because the present teachings are not particularly sensitive to the use of any specific technology or methodology in this regard, for the sake of brevity no further elaboration will be provided here. Referring again to FIG. 1, the optical beam emitter 11 and the optical beam receiver 12 are operably coupled to a time-of-flight calculator 14. In a preferred embodiment, the time-of-flight calculator 14 has an optical beam pathway time-of-flight value output for each of a plurality of individual optical beams and their corresponding reflections. This may preferably include a calculation capability that facilitates determination of a duration of time from when a given one of the plurality of non-coaxially aligned optical beams is sourced by the optical beam emitter 11 and when a reflection as corresponds to that given one of the plurality of non-coaxially aligned optical beams is detected by the optical beam receiver 12. The time-of-flight calculator 14 in turn operably couples to an input of an obstacle detector 15. This obstacle detector 15 serves, in a preferred embodiment, to use the optical beam pathway time of flight values from the time-of-flight calculator to determine when an obstacle is likely in the path of a movable barrier. This can include, pursuant to at least one approach, a determination of whether a given sensed obstacle is of sufficient size (and/or is present for a sufficient length of time) to warrant altering operation of a corresponding movable barrier. The obstacle detector 15 then typically operably couples to a movable barrier controller 16 as is well understood in the art. The latter can then make use of the obstacle detection information to effect a corresponding response strategy of choice. For purposes of explanation, the time-of-flight calculator 14, the obstacle detector 15, and the movable barrier controller 16 are depicted as being discrete elements. In fact, if desired, a given embodiment can comprise such an architecture. More typically, however, the movable barrier controller 16 for a given movable barrier operator 10 will comprise a partially or wholly programmable platform. In such a configuration, it may be desirable and appropriate to include the described functionality of the time-of-flight calculator 14 and the obstacle detector 15 in the platform that comprises and supports the movable barrier controller 16 as well. Such architectural options will be well understood by those skilled in the art and merit no further elaboration here. The embodiments described above will serve to effect the teachings set forth below, though it will be understood that the following process(es) can likely be readily implemented via other enabling platforms as well, and that the scope of their teachings should not be considered as being limited to the illustrative options presented in the preceding materials. Referring now to FIG. 10, a process 100 for effecting obstacle detection can first comprise sourcing 101 a plurality of optical signals, wherein at least some of the plurality of optical signals are at different angles of travel from one another and at least some of the plurality of optical signals are directed towards an area that comprises a movable barrier-controlled point of passage. As noted earlier, this plurality of optical signals can be sourced from a first location (or at least form a substantially common area) from an area that is proximal to a boundary of the passageway such as an upper corner of a garage door opening. For example, as illustrated in FIG. 11, the optical signal emitter(s) 11 can be disposed in a substantially common area that comprises a substantially central position 111 with respect to the passageway 30 such as a central position 111 in an upper position proximal to the upper boundary 34. So positioned, optical beams 112 are readily directed towards various areas that comprise the movable barrier-controlled point of passage 30 including the floor 31 and sidewalls 32 and 33 thereof. As yet another illustrative example, and referring momentarily to FIG. 12, the optical signal emitter(s) 11 can be disposed in a substantially common area that comprises a lower position 121 proximal to the lower boundary 31. So positioned, optical beams 122 are again readily directed towards various areas that comprise the movable barrier-controlled point of passage 30 including the floor 31 and both sidewalls 32 and 33. The particular position selected for a given application may of course depend up numerous factors that are not necessarily relevant to these teachings. For example, a floor-mounted installation may not be appropriate in a setting where occluding materials (such as snow or dirt) may be expected on a regular basis and available maintenance will be unlikely to assure its timely removal. In the examples provided above, the optical signals are sourced, at least for the most part, from a substantially common area. If desired, however, such optical signals can be sourced from more than one such location. For example, such optical signals can be sourced from both a first and a second location, wherein the second location is distal to the first location. For example, and referring momentarily to FIG. 13, some optical beams 132 can be sourced from a first area such as a first corner 35, of the passageway 30 and other optical beams 133 can be sourced from a second area such as a second corner 131 that is different from the first corner 35 and that, in this illustrative embodiment, comprises a corner 131 on the opposite side of the movable barrier-controlled point of passage 30 from the first corner 35. Regardless of whether such optical signals emanate from a single substantially common area or are sourced from a plurality of discrete areas distally positioned with respect to one another, these optical signals may be sourced from an area that is external to the passageway, internal to the passageway, or both. In either case, it will likely be preferable to source these optical signals from an area that is relatively proximal to the passageway itself, but for some applications it may be desirable to initiate beam travel from a more distal position. Also regardless of whether such optical signals are sourced from a common area or from separated multiple areas, and further regardless of whether the optical beam emitter 11 comprises a single emitter or a plurality of emitter devices, it may be desirable for some applications to facilitate an ability to distinguish one optical signal from another. For example, it may be possible or even likely under some operating conditions or by some installation constraints that a given receiver 12 will be able to detect more than one optical signal (or, more correctly, the reflections as correspond to more than one optical signal). This, in turn, can lead to potential ambiguity regarding which reflection corresponds to which optical signal (particularly when optical signals are continually sourced in parallel with one another and/or when pulsed optical signals are pulsed with a relatively rapid periodicity). Therefore, if desired, at least some of the optical signals can be provided with a unique identifying indicia that, when detected, permits identifying a given one of the reflections as corresponding to a specific one of the plurality of optical signals. For example, each optical signal can comprise a unique wavelength and the receivers 12 can be filtered and/or otherwise configured and arranged to only likely respond and detect a particular optical signal wavelength. As another illustrative example, some or all of the optical signals can be combined with one or more unique modulation characteristics. Upon detecting and/or decoding each reflection to ascertain the presence and nature of such modulation characteristics, a determination can be made regarding the respective identity of some or all of the optical signals. Referring again to FIG. 10, the obstacle detection process 100 then detects the reflections of at least some of the plurality of optical signals. More particularly, this process 100 detects reflections of the optical signals from the boundary surfaces of the passageway and/or from an obstacle or other object as may be present within the passageway. Upon detecting such reflections, the process 10 can readily determine 103 a time-of-flight for at least some of the optical signals which time-of-flight comprises a duration of time that begins with origination of the optical beam and reception of the reflection of the optical beam (it is possible that under some operating circumstances, more than one reflection of a given optical signal will reach a given receiver due to multiple reflections off of various available surfaces in the area of the passageway; under such circumstances it will usually be preferable to utilize a first received reflection and to essentially ignore other subsequent reflections of a given optical signal). This time-of-flight information then informs a process to detect 104 a likely presence of an obstacle in the pathway for a movable barrier. Such a detection process 104 will typically benefit from a use of historical information. That is, the detection process can make good use of time-of-flight information as corresponds to particular optical signals (with respect to their point and/or relative time of origin) during conditions when no obstacles are present. Such historical information can then be used as a point of comparison with presently available time-of-flight information. When present information includes times-of-flight that are shorter in duration than the corresponding historical data, a determination can be drawn that an obstacle is now likely present, as the obstacle is now causing an earlier reflection of the optical beam than would ordinarily occur. In addition to being usable to detect the presence of an obstacle, such time-of-flight information for a plurality of optical signals can also serve to permit a determination regarding a size of the obstacle (or obstacles). For example, and referring momentarily to FIG. 14, when a relatively small object 141 (such as a small leaf) comprises the detected obstacle, most of the optical signals 142 will miss the object 141 and produce only an expected reflection and only a few optical signals 143 will actually impinge upon the object 141 and produce a reflection bearing a shortened time-of-flight. By noting how many of the optical signals effectively detect the obstacle, a ready determination can usually be drawn regarding the size of the object itself. As another illustrative example, and referring now momentarily to FIG. 15, a larger object 151 will cause an earlier reflection of a relatively larger number of optical signals 152. This relatively larger number of optical signals that will give rise to a larger number of reduced time-of-flight values can serve to indicate the presence of a larger obstacle. Such information can be employed by the process 100 to optionally detect 105 whether a sufficiently sized obstacle is present that warrants being identified as an “obstacle.” Sufficiently small objects, such as a snowflake or leaf, may be safely ignored under at least some operating circumstances while larger objects may warrant recognition as an obstacle that requires a corresponding response. (Note that much the same analysis and consideration can be provided with respect to the temporal presence of an object in the passageway of a movable barrier; i.e., an object that is only present for a brief moment of time may not warrant a response under at least some operating conditions, or at least may only warrant a tempered response as versus a universal stop and/or stop-and-reverse response.) Upon detecting an obstacle (and particularly upon detecting an obstacle of concern such as a large object), the process 100 can provide 106 a corresponding signal. This signal can be recorded in a historical data record if desired and will usually be provided to a corresponding movable barrier controller to permit an appropriate response by the latter. For example, upon detecting an obstacle, it may be appropriate to effect an automatic stopping or reversal of a presently moving movable barrier. Or, when the movable barrier is not presently moving, a warning tone or other signal may be provided to provide an alert that an obstacle is presently in the pathway of the movable barrier. Concentrated light may pose varying degrees of irritation risk according to the intensity. It may therefore be helpful and/or appropriate to optionally provide for an automated cessation 107 of the sourcing of the optical signals upon detecting an obstacle. So configured, the process 100 can at least ameliorate risk of irritation of an individual person or animal when the detected obstacle in fact comprises a person or animal such as a pet. Resumption of optical signal emissions can begin on an automated basis or can require manual resetting by an operator (for example, through assertion of a corresponding user interface such as a reset switch) or some other predetermined event 108, depending upon the requirements of a given application. So configured, a movable barrier operator that controls a movable barrier with respect to a position of the movable barrier within a passageway having one or more physical boundaries can effect and control or at least be informed by the sourcing of a plurality of optical beams (wherein at least some of the plurality of optical beams are non-coaxial with respect to one another and are directed towards the at least one physical boundary) by detecting paths of travel for corresponding ones of at least some of the optical beams, which paths of travel each comprise an original optical beam and at least one reflection thereof. A time-of-flight for at least some of these paths of travel is then determined and used to detect a likely presence of an obstacle in the passageway. Such an approach can be used with various movable barriers and passageways including but not limited to garage doors and their corresponding garage door openings, a barrier gate, and so forth. There are times, of course, when obstacle detection does not comprise a primary concern. For example, the movable barrier of interest may be fully closed. In such a state, the odds are usually remote that an obstacle may become inadvertently placed in the pathway of the movable barrier. During such times it may be desirable to manipulate at least one of the plurality of optical signals to facilitate a display of at least one cosmetic element on a surface such as the movable barrier itself as optical beams, and particularly movable laser beams, are well understood in the art to be manipulable in this fashion. Referring now to FIG. 16, a corresponding process 160 can ascertain 161 from time to time or pursuant to such other trigger criteria as may be appropriate in a given setting whether the movable barrier of interest is open to some degree of concern. When true, the process 160 can continue with an obstacle detection process 100 such as that described above. When not true, however, the process 160 can effect provision of one or more cosmetic elements as suggested above. This process 160 can optionally include a determination 162 regarding whether a user has selected such a display mode (for example, through appropriate manipulation and assertion of a corresponding user interface). When a user has selected, given the opportunity, to not effect a cosmetic display process, the process 160 can simply conclude for the moment. When selected, however, the process 160 can select 163 a given cosmetic graphic element (as selected, for example, from amongst a plurality of candidate cosmetic graphic elements 164) and effect corresponding manipulation 165 of one or more of the optical signals to display the selected cosmetic graphic element. To illustrate this concept, and referring now to FIG. 17, an exterior mounted emitter 11 can effect such optical signal manipulation to cause the display of, for example, a street address number 171 onto the exterior surface of a movable barrier 170 such as a garage door. Such a cosmetic graphic display can be realized in any number of ways as will be understood by those skilled in the art. In a preferred approach, and particularly when the optical beam emitter 11 comprises at least one movable laser beam emitter, the pulsing and tracking of the resultant beam can be suitably controlled in accordance with well understood prior art technique to yield such a display. It would also be possible to utilize movable or otherwise selectable sources, filters, screens, and so forth to yield a corresponding display of interest. The cosmetic graphic elements themselves can be many and varied as desired and/or as appropriate to the needs of a given application. The elements can include fully or partially alphanumeric content (such as a partial or complete street address, a personal greeting to an expected visitor or passersby, a seasonal greeting, and so forth) and/or pictorial content (such as a seasonal depiction, a sports team logo, a depiction as correlates to a hobby interest, and so forth). The candidates can comprise a set selection or can be rendered exchangeable and/or downloadable or otherwise upgradable as desired and in accord with well understood prior art technique. It would also be possible, presuming the provision of a suitable user interface, to permit a user the opportunity and ability to create, edit, or otherwise modify such display content. Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept. For example, gradual partial attenuation of the strength of a received reflection over time may be noted and compared against one or more threshold values to permit detection of when maintenance may be advisable. Upon detecting a suitably partially attenuated signal pathway, for example, a signal can be provided to an operator to clean or otherwise service the emitter and/or receiver. As another example, when employed with a movable barrier such as a sliding or pivoting gate, it is possible that there will be no reflections for at least some optical signals. For example, when the optical signals are aimed upwardly in an exterior setting, some or all of the optical signals may simply continuing moving upwards into the sky in the absence of an obstacle to cause their reflection. In such a setting these teachings can be modified as appropriate to accommodate and accept the possibility that no reflection may occur by, for example, concluding a time-of-flight calculation for a given optical signal once a particular time limit has been reached. This same accommodation can be used in other settings where, for whatever reason, a reflection may not be expected for some or all of the optical signals during normal operations. As yet another example, the descriptions provided above employ a plurality of optical beams. These same teachings can also be deployed in a simpler design of the system that utilizes only a single optical beam. To illustrate, and referring now to FIG. 18, a single beam optical beam emitter 11 and a corresponding optical beam receiver 12 are located just above the floor 31. A reflector 181, such as a mirrored surface, is positioned opposite the optical beam emitter 11 such that a light beam 182 traversing the movable barrier opening 30 will reflect from the reflector 181 and at least a part of a reflected optical beam will return to the optical beam receiver 12. By measuring the corresponding time-of-flight, the distance the optical beam has traveled and therefore the distance to an intervening object is again readily detected. Such a system could again record the normal distance to the reflector and store that value in memory. Then, during use, whenever the reflection distance it is less than the distance to the reflector the system can interpret this reading as indicating that an object is within the movable barrier opening 30. In alternative embodiment, and referring now to FIG. 19, the reflector can be removed from the system. This approach works in a similar manner as described earlier with an optical beam 191 being emitted from optical beam emitter 11. The optical beam 191 then travels across the opening 30. The system is trained to essentially ignore any reflections that occur at a distance greater then the opening's distance. Such training can occur in various ways. As one example, one might simply set a specific distance for the opening as a user-calibrated setting. As another example, the system could assess a measurement to a nearest opposing wall 192 as a calibration point and then back off from that distance to establish a viable obstacle-detected range.
<SOH> BACKGROUND <EOH>Movable barrier operators of various kinds are known in the art. Such operators typically serve to effect the selective and controlled movement of a corresponding movable barrier. Various kinds of movable barriers are known, including but not limited to single panel and segmented garage doors, horizontally or vertically pivoting or sliding doors or gates, cross arms, rolling shutters and the like. In general, such movable barriers are selectively moved as between two primary positions (usually a fully opened position and a fully closed position). For various reasons an obstacle can become positioned in the pathway of such a movable barrier. For example, the rear-end of a vehicle that has not been completely disposed within a garage can extend into the path of travel of a garage door. Automated movement of a garage door under such circumstances can lead to damage of both the vehicle and the garage door and/or the movable barrier operator mechanism itself. As another example, a child or pet may move into the path of a closing movable barrier and risk injury. Modern movable barrier operators typically make use of one or more techniques to facilitate automated detection of such obstacles. Common techniques include the use of an infrared beam disposed to likely detect the presence, when the beam is broken, of an obstacle in the pathway of the movable barrier. At least one difficulty associated with this technique is a requirement of having an emitter and detector on opposing sides of the movable barrier. This requires both mounting facilities for both sides of the movable barrier and the routing of wires to both sides of the barrier. Another technique proposes the use of a pressure sensitive surface disposed along a leading edge of the movable barrier itself to facilitate detection of an obstacle through contact with that obstacle. This technique requires that the object being protected be impacted for the protection can occur. Therefore with this technique presents a possibility that the protection only limits the damage and does not eliminate it.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The above needs are at least partially met through provision of the method and apparatus for using optical signal time-of-flight information to facilitate obstacle detection described in the following detailed description, particularly when studied in conjunction with the drawings, wherein: FIG. 1 comprises a block diagram as configured in accordance with various embodiments of the invention; FIG. 2 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 3 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 4 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 5 comprises a detail schematic view as configured in accordance with various embodiments of the invention; FIG. 6 comprises a comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 7 comprises a schematic view of a movable optical signal emitter as configured in accordance with various embodiments of the invention; FIG. 8 comprises a schematic view of a non-moving optical signal emitter as configured in accordance with various embodiments of the invention; FIG. 9 comprises a timing diagram as configured in accordance with various embodiments of the invention; FIG. 10 comprises a flow diagram as configured in accordance with various embodiments of the invention; FIG. 11 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 12 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 13 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 14 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 15 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; FIG. 16 comprises a flow diagram as configured in accordance with various embodiments of the invention; FIG. 17 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention FIG. 18 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention; and FIG. 19 comprises a side elevational schematic view as configured in accordance with various embodiments of the invention. detailed-description description="Detailed Description" end="lead"? Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will also be understood that the terms and expressions used herein have the ordinary meaning as is usually accorded to such terms and expressions by those skilled in the corresponding respective areas of inquiry and study except where other specific meanings have otherwise been set forth herein.
20041025
20070522
20060427
57477.0
G06M700
0
PHAM, TOAN NGOC
METHOD AND APPARATUS FOR USING OPTICAL SIGNAL TIME-OF-FLIGHT INFORMATION TO FACILITATE OBSTACLE DETECTION
UNDISCOUNTED
0
ACCEPTED
G06M
2,004
10,973,025
ACCEPTED
Systems and processes for scheduling and conducting audio/video communications
Disclosed herein are methods of scheduling and conducting video visits, as well as computer architecture for providing such scheduling and conducting, where the participants in the visit are not required or able to interact with the audio/video equipment for the initial connection to start the video visit. In some embodiments, participants are also not able to interact with the equipment during the actual visit, and thus the equipment employed during the video visit may be isolated from physical contact by the participants. To initiate or terminate a video visit, a data center establishes a data connection with each participant, and thus the flow of data between the participants moves across a computer network and via the data center. The visit may be monitored in virtually real-time by splitting the data transmitted between the participants and sending it to a monitoring terminal, rather than establishing a separate connection for the monitoring.
1. (canceled) 2. (canceled) 3. (canceled) 4. (canceled) 5. (canceled) 6. (canceled) 7. (canceled) 8. (canceled) 9. (canceled) 10. (canceled) 11. (canceled) 12. A method of monitoring a video visit between at least a first participant and a second participant located at distinct endpoints, the method comprising: establishing a first data connection from a data center and the first participant at a scheduled time; establishing a second data connection from the data center and the second participant at the scheduled time, the first and second participants visiting via the first and second data connections; capturing video and audio as communications data from the first and second participants; transmitting the communications data to and from the first and second participants across a computer network via the data center; splitting the communications data transmitted from one of the first and second participants to the data center, or splitting the communications data transmitted to the one of the first and second participants from the data center; and monitoring the video visit by receiving the split communications data at a monitoring station substantially simultaneously with the transmitting of the communications data to and from the one of the first and second participants. 13. At method according to claim 12, wherein the copying comprises copying the communications data with a multiplexing means. 14. A method according to claim 13, wherein the first and second participants are positioned at respective first and second geographic locations, and the data center is positioned at a third geographic location. 15. A method according to claim 14, wherein the multiplexing means is positioned at the first, second, or third geographic location. 16. A method according to claim 15, wherein the monitoring further comprises monitoring at the location of the multiplexing means. 17. A method according to claim 12, further comprising recording the communication data by copying the communications data transmitted between the first and second participants, and receiving the copied communications data with recording equipment. 18. A method according to claim 17, wherein the copying comprises copying the communications data with a multiplexing means. 19. A method according to claim 18, wherein the recording equipment is positioned at the location of the multiplexing means. 20. A method according to claim 19, wherein the recording equipment is located with the data center. 21. A method according to claim 12, wherein the scheduled time is determined based on an availability of the first or second participant. 22. A method according to claim 12, wherein the second participant is a prison innate and the first participant is visitor of the prison inmate. 23. A method according to claim 12, wherein the monitoring further comprises monitoring a plurality of video visits at the same time. 24. A method according to claim 23, further comprising selecting audio from one of the plurality of video visits during the monitoring. 25. A method according to claim 12, wherein the computer network is a packet-based computer network. 26. A method according to claim 25, wherein the packet-based computer network is the Internet. 27. A method according to claim 12, wherein the first and second data connections comprise wired or wireless high-speed data communications links. 28. A method according to claim 27, wherein the high-speed data communications links are selected from the group consisting of a T1 line, a T3 line, a T4 line, DSL, SHDSL, DS3, OC3, and a satellite communications link. 29. A method according to claim 12, further comprising determining whether the second participant is authorized to communicate with the first participant before establishing the first and second data connections. 30. A method according to claim 12, further comprising verifying the identity of the first or second participant before establishing the first and second data connections. 31. A method according to claim 30, further comprising verifying the identity of the first or second participant using a biometric device. 32. A method according to claim 31, wherein the biometric device is selected from the group consisting of a finger print reader, a retina scan reader, a face mapping device, a voice recognition device, and a signature comparison device. 33. A method according to claim 12, further comprising determining if sufficient monetary funds have been paid for the video visit before establishing the first and second data connections. 34. A method according to claim 33, wherein the funds have been paid by the first participant or second participant. 35. A method according to claim 33, wherein the funds have been paid using at least one selected from the group consisting of wire transfers, electronic fund transfers, currency, bank draft, and money order. 36. A method according to claim 12, further comprising displaying rules for participating in the video visit to the first and second participants during the video visit. 37. A method according to claim 36, wherein the rules pertain to prohibited conduct during the video visit. 38. A method according to claim 37, wherein the monitoring further comprises terminating the video visit based on a rules violation. 39. A method according to claim 38, further comprising noting the termination on a status of the second participant, the noting affecting availability of the second participant to engage in a future video visit. 40. A method according to claim 12, wherein transmitting further comprises transmitted encrypted communications data. 41. A system for monitoring a video visit between at least a first participant and a second participant located at distinct endpoints, the system comprising: a data center connected to a computer network; a first terminal associated with the first participant and configured to capture video and audio as communications data from the first participant during the video visit; a second terminal associated with the second participant and configured to capture video and audio as communications data from the second participant during the video visit; a first data connection between the data center and the first terminal established by the data center at a scheduled time; a second data connection between the data center and the second terminal established by the data center at the scheduled time; transmitting means configured to transmit the communications data to and from the first and second participants across the computer network and via the data center; multiplexing means configured to split the communications data transmitted from one of the first or second participants to the data center, or the communications data transmitted to the one of the first or second participants from the data center; and a third terminal connected to the multiplexing means and configured to receive the split communications data substantially simultaneously with the transmitting of the communications data to and from the one of the first and second participants for use in monitoring the video visit. 42. A system according to claim 41, wherein the first and second participants are positioned at respective first and second geographic locations, and the data center is positioned at a third geographic location. 43. A system according to claim 42, wherein the first terminal is connected to the data center via a first local area network, and the second terminal is connected to the data center via a second local area network. 44. A system according to claim 43, wherein the multiplexing means is positioned at the first, second, or third geographic location. 45. A system according to claim 44, wherein the third terminal is positioned proximate to the location of the multiplexing means. 46. A system according to claim 41, further comprising recording equipment configured to receive and record the copied communications data. 47. A system according to claim 46, further comprising another multiplexing means for copying the communications data transmitted to the recording equipment. 48. A system according to claim 47, wherein the recording equipment is positioned at the location of the multiplexing means. 49. A system according to claim 48, wherein the recording equipment is located with the data center. 50. A system according to claim 41, wherein the scheduled time is determined based on an availability of the first or second participant. 51. A system according to claim 41 wherein the second participant is a prison inmate and the first participant is visitor of the prison inmate. 52. A system according to claim 41, wherein the third terminal is configured to receive communications data comprising a plurality of video visits at the same time. 53. A system according to claim 52, wherein the third terminal is further configured to selectively provide audio from only one of the plurality of video visits during monitoring. 54. A system according to claim 41, wherein the computer network is a packet-based computer network. 55. A system according to claim 54, wherein the packet-based computer network is the Internet. 56. A system according to claim 41, wherein the first and second data connections comprise wired or wireless high-speed data communications links. 57. A system according to claim 56, wherein the high-speed data communications links are selected from the group consisting of a T1 line, a T3 line, a T4 line, DSL, SHDSL, DS3, OC3, and a satellite communications link. 58. A system according to claim 41, wherein the data center further comprises managing equipment configured to determine whether the second participant is authorized to communicate with the first participant before the first and second data connections are established. 59. A system according to claim 41, wherein the data center further comprises authentication equipment configured to verify the identity of the first or second participant before the first and second data connections are established. 60. A system according to claim 59, wherein the authentication equipment comprises a biometric device. 61. A system according to claim 60, wherein the biometric device is selected from the group Consisting of a finger print reader, a retina scan reader, a face mapping device, a voice recognition device, and a signature comparison device. 62. A system according to claim 41, wherein the data center further comprises payment equipment configured to determine if sufficient monetary funds have been paid for the video visit before establishing the first and second data connections. 63. A system according to claim 62, wherein the funds have been paid by the first participant or the second participant. 64. A system according to claim 62, wherein the funds have been paid using at least one selected from the group consisting of wire transfers, electronic fund transfers, currency, bank craft, and money order. 65. A system according to claim 41, wherein the multiplexing means is embodied in hardware, software, or a combination of both. 66. A system according to claim 41, wherein the communications data is encrypted communications data.
TECHNICAL FIELD Disclosed embodiments herein relate generally to audio and video communications, and more particularly to scheduling and conducting monitored or unmonitored video visits, as well as the computer architecture for providing such scheduling and conducting of video visits between any number of endpoints. BACKGROUND When two parties want to communicate in real-time over great distances, the telephone has been the traditional communications device of choice. Advancements in technologies over the years have now permitted both audio and video communications between parties over great distances. This form of communications is commonly referred to as video conferencing, and depending on the complexity (and associated expense) of the equipment involved may provide nearly real-time communications among two or more parties. In traditional form, video conferencing includes some type of local equipment associated with each person seeking to participate in the conference. When the conference is to be started, the equipment at each location is employed to call in (e.g., “conference in”) to a call center. As each of these endpoints establishes a connection with the central location, the video and audio signals may then be accessed by all of the participants so that a conversation with both audio and video can take place. Among the various types of video conferencing equipment, one of the most common employs specialty dedicated equipment at each geographic location of the participants. This equipment typically employs an ISDN or similar data connection to transmit and receive audio/video communications data during the video conference. Unfortunately, conventionally available video conferencing equipment has a common characteristic: each system requires endpoint initiation (and termination) for each participant in the conference. Such a requirement has several disadvantages, including the high cost associated with such specialty equipment, and the freedom (or burden) to control the equipment at each corresponding endpoint. Regarding expense, many companies or individuals are financially prohibited from enjoying such video conferencing because they either cannot afford the special equipment, or perhaps cannot justify the expense for equipment not regularly used. Regarding endpoint control, the difficulty in operating such specialty equipment is a burden many people would like to be without. In addition, situations exist where initiation of the video conference and control of the video conferencing equipment by one or more of the participants is not desired. An example of a situation where endpoint control is not desirable is in the prison system. Many times, a prison inmate is housed in a location a great distance from his family or friends, which results in visitation of the inmate being inconvenient or even impossible due to travel time and expense. As such, a video conference with the inmate would seem a perfect answer; however, as mentioned above, the expense and complexity of the necessary equipment may be prohibitive. Perhaps more important is the potential security risk if endpoint control is permitted in a video conference with an inmate. Even in conventional face-to-face visits, conversations between inmates and their visitors are monitored to ensure that no greater security risk is created than already exists with an outsider's presence in the prison. However, if endpoint control in such a visitation scenario were permitted, it would be difficult to effectively monitor the visit to ensure security. Potential security breaches include, but are not limited to, coded dialog between the inmate and a visitor, as well as hand and facial gestures used to communicate improper information. While traditional video conferencing equipment could potentially be used in the prison scenario, the above-mentioned problems would still be present. More specifically, conventional video conferencing requires endpoint control to initiate and terminate the conversation. As a result, an overseer may not be capable of ending the visit if conduct violations occur during the visit. In addition, with endpoint control of the equipment, a prison inmate can easily damage the equipment if he has access to it, and may lack the technical knowledge to even operate the equipment at all. Although a security officer or technician may be given control of the equipment so that it is not accessible by the inmate, another disadvantage is created by requiring the services of an employee, whose time is probably better served elsewhere. Perhaps the most important reason why traditional video conferencing would not be workable for prison visitation and other similar situations is the lack of synchronicity between data connections during the conference. More specifically, as each participant in the video conference connects to the conversation, a new data connection, or path, is created. In a prison situation, at least three data paths would be present: one for the inmate, one for the visitor, and one for the overseer monitoring the conversation. Unfortunately, an inherent latency exists between these multiple connections that poses a significant security risk for the prison. Because of latency in the data path during data transmission, communication is not instantaneous; the delay is a function of all intermediate equipment and media along the data path. Because different routes may be taken along each data path, there may exist a difference in latency and the delay experienced by each if each party is connected with a separate data path. Unfortunately, this difference in latency among multiple simultaneous data paths poses a significant security risk for a prison. As a result, the visitor or inmate may engage in an improper communication during the visit, but the difference in latency between connections prevents the overseer from learning of the improper conduct in time to prevent it or further improper conduct from occurring. Accordingly, what is needed is a video visitation system for permitting video visits between participants that is not endpoint controlled and that does not suffer from the deficiencies found in the prior art. BRIEF SUMMARY Disclosed herein are methods of scheduling and conducting monitored or non-monitored video visits, as well as computer architecture for providing such scheduling and conducting of video visits, where the participants in the video visit are not required or able to interact with the audio/video equipment for the initial connection to start the video visit. In addition, in some embodiments participants are also not able to interact with the equipment during the actual visit. Whether they can interact with the equipment during the visit or not (e.g., voice-actuated volume control, etc.), the audio/video equipment employed during the video visit may be isolated from physical contact by the first participant or second participant, and therefore may be located at fixed or mobile geographic locations where such equipment connections and operations may be maintained. In one embodiment of a method of scheduling such a video visit, the method includes assigning an individual ID code to a first participant and second participant in the video visit, for example, a caller and a receiver in a video visit. Of course, any number of participants may participate in the visit. In this example, to schedule a visit between these two participants, the first participant contacts a data center and enters the ID code of the second participant he is trying to visit with. In a more specific embodiment, the second participant is a prison inmate and the first participant is a family member of the inmate desiring a visit with the inmate using audio/video communications equipment, however, any types of participants may be present. When the ID code for the second participant is entered, the data center may then conduct a check to determine whether second participant is permitted to receive video visits. Also, the first participant's ID code may also be submitted to the data center and checked to determine if the first participant is permitted to be in contact with the second participant. In another embodiment, devices may be employed to verify the identity of the first participant, such as biometric devices. Such biometric technologies are defined as automated devices/methods for identifying or authenticating the identity of a living person based on a physiological or behavioral characteristic. For example, fingerprint reading devices, retina scanning devices, voice identification devices, face mapping devices, signature comparison devices and the like may be employed to further ensure security during the video visit by authenticating the identity of the first participant. Moreover, if the participants are being charged for making the video visit, the data center may also determine if sufficient funds (or credit) for the visit have been paid. One advantage to the disclosed video visits is that the first participant may visit with the second participant over long distances that may otherwise prevent their communication. As such, in one embodiment, the data center may prompt the participant making the reservation for his geographic location(s), and then present several locations near the first participant's location for conducting the visit. Once a suitable location is selected, the visit may be scheduled and then conducted at the appropriate time. In addition, other participants may also be given the option to select desirable geographic locations for them to participate in the video visit. In one embodiment of a method of conducting a video visit, the method includes connecting the first participant and second participant at the scheduled time using the data center and without any action taken by the first participant or second participant, or anyone associated with their geographic locations, to initiate the visit. Once the video visit begins, in some embodiments, certain rules for the visit may be displayed for the participants to read. For example, if the visit is between a prison inmate and one or more of his family members, the rules may discuss how the visit is being monitored by appropriate personnel and that perhaps “secret” communications between the parties (e.g., hand signals, facial gestures, movements, etc.) are not permitted during the visit. In such an embodiment, the method also includes an overseer actively monitoring the visit between the parties. In a related embodiment, the overseer may be simultaneously monitoring multiple such video visits, and may have the ability to select the audio communications of any particular visit for closer monitoring and inspection, as well as zoom in on one of the particular video feeds should the need arise. Examples of other potential violations may be hand-signs, gestures, or even expressly saying certain words or phrases. If the overseer determines a rules violation has or is occurring, he may intervene with a warning to one or both of the parties. Continued rules violations may lead to termination of the visit, or the overseer, or perhaps automated equipment, may determine that the violation is of the sort that requires the visit to be terminated immediately. In addition, a notation of the incident(s) may be made in the video visit records associated with either or both of the first participant and second participant, which may in turn affect the permission required for the two to conduct another visit in the future. Conversely, if the visit is concluded without incident, the appropriate records may also be updated as such. In another aspect, a system for conducting a video visit is also disclosed. In one embodiment, the system includes a data center configured to initiate and terminate an audio/video communication between first and second participants. The system also includes a first terminal coupled to the data center for use by the first participant to visit with the second participant, and a second terminal coupled to the data center for use by the second participant to visit with the first participant. In a specific embodiment, the data center is coupled to the first and second terminals via a computer network, for example, a packet-based network such as the Internet. Each of the first and second terminals may also be coupled to the computer network via their own local area network. In a broad aspect, the system also includes a multiplexing means, which may be embodied in hardware, software, of a combination of both, that is configured to receive communication data, encrypted or unencrypted, sent between the first and second participants during the audio/video communication, and to generate copied data based on the communication data. In addition, such a system would include an overseer coupled to the multiplexing means and configured to receive the copied data and to monitor the audio/video communication between the first and second participants using the received copied data. In an exemplary embodiment, the multiplexing means is geographically proximate to the first terminal and configured to provide the communication data to the first terminal and the copied data to the overseer. In an alternative embodiment, the multiplexing means may be geographically proximate to the data center and configured to provide the communication data to the first and second terminals and the copied data to the overseer. In yet other embodiments, recording equipment configured to receive the copied data for data storage and retrieval is also included in the system, perhaps via the same or a second multiplexing means. BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of this disclosure, and the advantages of the systems and methods herein, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which: FIG. 1 illustrates a conceptual view of one embodiment of a system for providing monitored video visits in accordance with the principles disclosed herein; FIG. 2 illustrates one embodiment of the architecture for a computer network for providing the monitored video visits discussed above; FIGS. 3A & 3B illustrate a flow diagram that sets forth one embodiment of a process for scheduling a video visit between a visitor and a prison inmate; FIG. 4 illustrates a flow diagram that sets forth one embodiment of a process for conducting a video visit between a visitor and a prison inmate, such as the visit scheduled with reference to FIGS. 3A & 3B; and FIG. 5 illustrates a flow diagram that sets forth one embodiment of a process for recording and playing back a video visit conducted according to the disclosed principles. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Referring initially to FIG. 1, illustrated is a conceptual view of one embodiment of a system 100 for providing monitored or unmonitored video visits in accordance with the principles disclosed herein. The system 100 includes a group of first participants 105, which in the illustrated embodiment is a group of visitors 105 seeking to have a video visit with inmates in a prison 110. While many embodiments described herein are discussed in terms of prison inmates and visitors of those inmates, nothing herein should be interpreted to limit the disclosed systems and methods to only the prison visitation scenario. Instead, the disclosed systems and methods are easily employable in any situation where two or more participants wish to conduct a video visit. For example, the disclosed systems and methods may be implanted not only for video prison visits, but also for such uses as real-time video visits among government officials or business personnel, for medical diagnostics and possibly assisting in performing procedures from afar (e.g., “tele-medicine”), business video meetings, and even for educational purposes, such as transmitting a live session to a group of students connected to the same local network. In short, the disclosed principles are useful in any situation where two or more parties wish to communicate using video and audio equipment. The system 100 also includes a visit office 115 where a visitor may go to conduct his side of the video visit. Linked between the visit office 115 and the prison 110 is a data center 120, which provides the connection between the visit office 115 and the prison 110. In non-prison scenarios, the prison 110 may be another location where a second participant may go to conduct his side of the video visit, for example, another visit office. In the illustrated embodiment, both the visit office 115 and the prison 110 contain visit terminals 125 for participating in a video visit conducted as disclosed herein. Specifically, the terminals 125 may each include a video display (e.g., TV, computer/video screen, computer terminal, etc.), and video camera for capturing the image of the participant, and a microphone for capturing audio from the participant at that location. In a more specific embodiment, these different components are housed in a single structure comprising the terminal 125. Of course, in other embodiments, these devices may be structurally separated from each other. Whether located in a single device or not, it should be especially noted that the terminals 125 do not include any type of interactive input device accessible by the participant at that location. As a result, the participants at these visit endpoints are not responsible, or even capable, of initiating the video visit. Instead, the video visit is initiated at a scheduled time by the data center, as discussed in further detail below. This elimination of endpoint interactive control makes the disclosed system especially useful in scenarios where the participants are ill-equipped to operate devices for initiating a video visit, or where the participants are not trusted to operate such devices, either for the safety of the equipment or the security of the location of the participant. As such, the system 100 is especially useful in prison situations where inmate operation of video visit equipment is discouraged, either because they are ignorant of such equipment or for the protection of the equipment itself from damage or theft. Moreover, with scheduled video visits that are initiated by a central data center, there can be no argument about lost visit times caused by, for example, delays in connecting or problems with equipment operation. Looking again at FIG. 1, the data center 120 houses the equipment 130 used to schedule and conduct the video visits. More specifically, the data center 120 includes Directory Services and User Authentication equipment 130a. This equipment 130a provides identification and authentication services for the participants in the video visit, such as through stored lists of available participants and identification (ID) codes associated with them. In addition, this equipment 130a can be configured to provide reminder calls to participants to remind them of an upcoming scheduled video visit, as well as to inform participants of changes in the availability of other scheduled participants, such as the revocation of visitation privileges of a prison inmate. The data center 120 also includes Scheduler and Visit Management equipment 130b, which coordinates the scheduling of video visits between participants. In addition, this equipment 130b also provides participant (e.g., inmate) identification, determines eligibility for video visits of certain participants, generating and sending lists of scheduled visits (e.g., daily schedules for the visit centers established in a prison), and controls the initiation and terminal of the visit. The data center 120 also includes Recording equipment (130c), which is configured to record video visits for later use. Also, the data center 120 includes data storage equipment 130d for storing recordings of video visits, as well as any other useful information or lists for use in scheduling or conducting video visits. The data center 120 still further includes Reservations and Payment equipment 130e for performing accounting duties for video visits, such as interactive scheduling by participants, receiving payments, providing payment and account information or status to other system 100 components, as well as participants in the visits. For example, both visitors 105 and inmates in a prison scenario may interact with this equipment 130e to schedule their video visit, make payments, and receive cancellation notices and information for rescheduling the cancelled visit. In fact, in all embodiments disclosed herein, scheduling, paying for, canceling or receiving notice of a cancellation, rescheduling, etc. may be done by any of the participants of a video visit. Also illustrated in FIG. 1 is external equipment 135 also configured to work with the Reservations and Payment equipment 130e. The external equipment 135 may be any type of equipment that assists participants with services or transactions related to the system 100, such as a particular method for making payment for a video visit. For example, the external equipment 135 may be accessed by potential participants of a visit for making payment via any available method, such as an electronic payment service (EPS). In such an embodiment, the participant would provide payment to a vendor (potentially the company's equipment) with the EPS equipment 135 and the EPS equipment 135 would transfer information to the Reservations and Payment equipment 130e indicating the payment had been made and by and/or for whom. Of course, the external equipment 135 is not necessary for the operation of a system 100 like the one illustrated in FIG. 1. It should also be noted that the term “equipment” as used above to discuss parts of the data center 120 is not limited to simply hardware, but may also include software capable of providing the described functions. When conducting the video visits, the data center 120 initiates, typically at a scheduled time, two high-speed data connections. In this embodiment, one connection is with a terminal 125 in the visit office 115 and the other connection is with a terminal in the prison 110. This allows communication to occur between a participant at a terminal 125 in the visit office 115 and a participant at a terminal 125 in the prison 110 via the data center 120. In an advantageous embodiment, the high-speed connections are provided using conventionally available high-speed data connections, such as a TI connection. Of course, other types of data connections are also possible. To greatly reduce, and in most cases eliminate, difference in latency in transmissions/streams used in conventional video conferencing, multiplexing means 140a, b are provided at strategic points proximate to endpoints of the communication path where two or more connections are needed or desired. For example, in the prison scenario an overseer may be assigned to monitor the video visit of an inmate participant for security purposes. Now, it should be noted that the reduction or elimination of latency in transmissions discussed herein is not an elimination of latency in the transmission provided by a single data stream. Instead, this refers to a reduction or elimination of the difference in latency that typically exists between two or more parallel data streams. In traditional video conferencing systems, the visitor, the inmate, and the overseer would connect into a Multi-point Control Unit (MCU) such that three distinct data connections are made with a central location. Unfortunately, for any number of reasons, such as the distance of each participant from the central location, differences in equipment among the participants, potential connection or transmission problems with one of more of the connections, latency between any two or more connections usually occurs. Thus, the time involved in transmitting from one endpoint to another endpoint may be exactly the same as with conventional video conferencing, but the difference in latency that exists between multiple streams in video conferencing is reduced or eliminated since only a single stream is present across the network 205. In contrast, in accordance with the disclosed principles, the multiplexing means 140a, b receives a single, unicast connection from the data center, and then generates a copied data signal based on the communication data (e.g., communications data representing the video and audio signals, and which may be encrypted or unencrypted) in the unicast connection. As a result, the multiplexing means 140a associated with the prison 110 in this example will generate two identical data streams during the video visit with a terminal 125 at the visit office 120, with one stream going to a terminal 125 in the prison (where the inmate can use it for the visit) and the other stream going to the overseer's terminal 145. Thus, virtually no significant latencies exist between the signals, and therefore between what the inmate sees, hears, or does, and what the overseer receives on his terminal. Some inconsequential latencies that could occur would simply be caused, for example, by differences in lengths of cables/connections of the overseer's terminal versus the inmate's terminal, and other inconsequential delays. Such latencies are rarely more than a few milliseconds, which is typically far too short a time for a security violation to occur. Thus, the overseer 145 can monitor the inmate (and the visitor) during the video visit in real-time, keeping a watchful eye for any security problems. In addition to providing multiplexing functions at specific locations (e.g., by splitting communications signals to participants and overseers), a multiplexing means 140b may also be provided at the data center 120. This multiplexing means 140b is similar in design and operation as the multiplexing means 140a used to control or eliminate latencies between participants and overseers, and may be employed to split communications signals of the video visit among the various functions and equipment in the data center 120. For example, the multiplexing means 140b can be employed, as illustrated, to split the communications signals associated with the video visit between the Scheduler & Visit Management equipment 130b and the Recording equipment 130c. In this example, no significant latency exists between these split signals when the communications signals are split using the multiplexing means 140b. In all embodiments, the disclosed multiplexing means 140a, b may be embodied in hardware, software, of a combination of both, and no limitation to any particular structure or design is intended or should be implied. The use of such multiplexing means are discussed in greater detail below. Turning now to FIG. 2, illustrated is one embodiment of the architecture for a video visit system 200 for providing the monitored video visits discussed above. The system 200 illustrated in FIG. 2 is constructed around a large computer network 205. The computer network 205 may be a packet-based network, such as the Internet, capable of transmitting communications signals used in conducting the video visits via data packets. The system 200 also includes components similar to several of those described in the conceptual layout of FIG. 1, including a data center 210 having a Scheduling Database 215 and a Master Controller 220 for conducting and controlling a video visit between first and second participants 225, 230 in their respective video visits. In this embodiment, there are illustrated four first participants 225 each having a separate video visit with a corresponding one of the second participants 230. Of course, these four first participants 225 may alternatively be participating in a single video visit with one or more of the second participants 230. Any type or speed of connection may be employed with the disclosed principles in order to accommodate the number of video visits or number of participants in any one video visit. Examples include T1, T3, T4, DSL, SHDSL, DS3, OC3, a satellite link, and other types of wired or wireless high-speed data communications links. Also as illustrated, in this embodiment the first participants 225 are connected to the computer network 205 via a private network, such as a Local Area Network (LAN) 235. Similarly, the second participants 230 are connected to the computer network 205 via their own private LAN 240. Both of the LANs 235, 240 may be conventional computer networks that link related personnel and equipment, such as the computer network of a business or in modern prisons. In other embodiments, the LAN (e.g., 235) may be specifically created for hosting participants in video visits, such as the visit office 115 discussed above with respect to FIG. 1. The system 200 also includes an overseer monitor stations/terminal 245 associated with the second participants 230. In such embodiments, the second participants 230 may be inmates in a prison, as discussed above, and the overseer(s) 245 may be monitoring each of the inmates' video visits for security purposes. In an exemplary embodiment, a single overseer may be tasked with monitoring multiple video visits at one time. For example, the overseer's terminal 245 may be capable of displaying multiple sets of participants at one time. In such embodiments, the overseer may be able select any one of the video visits to focus on and listen to the dialog taking place. In fact, the principles disclosed herein for conducting such video visits would permit the overseer job to be out-sourced, for example, overseas. So long as the overseers receive communications data of the video visit(s) copied from a single connection between the participants, monitoring behavior could be just as effective as a local overseer. In other embodiments, it may be better to employ local overseers familiar with, for example, a prison inmate, since that overseer may be very familiar with the habits and conduct of the particular inmate participating in the video visit. As discussed in detail above, a system 200 for providing video visits in accordance with the disclosed principles has the distinct advantage over conventional video conferencing of no significant latencies between the communications signals transmitted and received by the terminals of the inmates 230 and those transmitted and received by the overseer 245. As before, the elimination of significant signal latencies is provided by a multiplexing means 250. As illustrated, the multiplexing means 250 couples the second participants 230 and the overseer 245 to that location's LAN 240; however, the multiplexing means 250 may also simply provide a direct connection to the computer network 205 without the use of a LAN. In some embodiments, the multiplexing means 250 is a physical device, similar in function to a router, but is configured to copy or split the signal rather than redirect it. In other embodiments, however, the multiplexing means 250 may be entirely software-based, such as a software daemon. In such embodiments, multiplexing means 250 could be a piece of code that runs on a networking server, or a cluster of servers. For example, the code embodying the multiplexing means 250 may be running on servers that are located in the local LAN. The system 200 further includes Recording equipment 255, which may be configured to receive a copied/split data stream with the communications data of a video visit, via another multiplexing means 260. More specifically, since a video visit is only initiated and terminated by the master controller 220 in the data center 210 and cannot be initiated or terminated by any of the endpoints of the system 200 (e.g., client terminals, overseer terminals, recording equipment, etc.), the communications data flows back and forth between the first and second participants via the data center 210. As a result, the other multiplexing means 260 may be interposed in the transmission path of the data center 210 to copy or split the data signal. Thus, the Recording equipment 255 receives the same communications data as the data center 210, with no significant latencies between those data streams. The recorded data may then be stored in a data storage unit 265 associated with the Recording equipment 255. Depending on the data formats employed, transmission times and storage size can be controlled. In embodiments, where copies of the recorded video visits will often be desired by one of more of the participants, the recorded communications data may be converted to a commonly playable format and stored in the data storage unit 265 in that format. As such, the recordings may be quickly accessible and copied to transportable media (e.g., VCD, DVD, etc.) for purchase by the participant. However, in embodiments where copies of recordings are not likely to be sought very often, the data may be stored in the data storage unit 265 in a raw format that is less computationally expensive to create/store, therefore decreasing equipment costs. Then, if a copy is desired, the raw data may be converted to the desired format for playback. In an advantageous embodiment, the transmission of communications data from one terminal to another is accomplished by employing the well-known Real-time Transmission Protocol (RTP). Within such RTP transmissions, any number of video and audio encoding technologies may be employed based, for example, on available bandwidth, desired video and audio quality, and the like. Based on current experience, the transmission of the communications data of the video visits across the computer network 205 (e.g., the Internet) is the most expensive part of the visit from a bandwidth standpoint. This is because the transmissions in RTP format during the actual visits are streaming data. Moreover, the streaming data is also typically the slowest and least reliable, which means that these streams will induce the most latency in the transmission. In contrast, however, bandwidth on LANs is, for all intents and purposes, free, and is typically faster and more reliable because it is a privately operated and maintained network. Thus, because streaming data across the public computer network 205 is the most problematic (and likely the most expensive) part of conducting the video visit, the communications data is split by the multiplexing means 250 locally, rather than creating multiple data streams (one for each participant's, overseer's, and recording equipment's use) across the network 205, as is done with traditional video conferencing. As a result, since there is only a single data stream across the network 205 for each video visit, the latency problem between multiple streams is a non-issue. In addition, since the data stream for the visit is being split locally by a multiplexing means 250, 260, the geographic location of the overseer may be distal from that of the inmates 230, without the concern of security breaches to occur during latency periods between two or more data streams. This is illustrated by overseer 270 being located proximate to the recording equipment rather than at the prison. Alternatively, the overseer may be located with the visitor of an inmate, rather than with the inmate. Similarly, the recording equipment may also have a different geographic location than the data center 210, so long as it can receive a split signal from one of the multiplexing means. Moreover, because the data stream between the terminals associated with the first and second participants still flows through the data center 210, security is maintained. Still further, it should be noted that the disclosed principles are by no means limited to only two participants, a visitor and the visited. In contrast, video visits conducted in accordance with the disclosed principles can support any number of participants, for example, multiple first participants 225 visiting with a single second participant 230, a single first participant 225 visiting with multiple second participants 230, or even one or more third participants 270 communicating with both the first and second participants 225, 230 through their own separate LAN 275. In addition, an overseer, recording equipment, etc. may be located proximate to any one of these locations. Looking now at FIGS. 3A & 3B, illustrated is a flow diagram 300 that sets forth one embodiment of a process for scheduling a video visit between a visitor and a prison inmate. FIG. 3A includes a database (DB) 302 of all inmates and allowed visitors for those inmates. Each of these parties is a participant in the video visit, and as mentioned above each has an identification code assigned to them. The DB 302 includes the lists of participants, as well as their corresponding ID codes, names, and other personal information, as well as specialized information associated with each participant, such as their status on the being able to participate in video visits, the preferred language for conducting a video visit, and the like. To schedule a video visit, one of the participants, for example, either an inmate or a visitor in the prison scenario, contacts the scheduler, such as the scheduler discussed with reference to FIG. 1. As an initial matter, the process may allow the participant to select their language of choice at block 304. Next, the participant scheduling the video visit may be connected with a live operator or perhaps an automated voice response system, as shown at block 306. For example, an Interactive Voice Response System (IVR System) may be employed to solicit entries by the participant to schedule the visit. In alternative embodiments, a live human operator may be employed, which may be preferred in embodiments where the individuals using the scheduling process are ill-equipped to operate an IVR system. In embodiments where the participants do not handle that kind of automation very well, fewer mistakes in the scheduling process may be made if human operators are involved. Also at block 306, the scheduler enters his ID number or code, and then enters the ID code for the inmate (or other participant) he wishes to visit. At block 308, the ID codes entered are validated, while at block 310, the operator or IVR system can communicate to the scheduler that an entered ID code is invalid when the situation arises. At block 311, the process may optionally validate the identity of the scheduler. For example, biometric devices, such as finger print reading devices, retina scanning devices, voice identification devices and the like may be employed to verify that the scheduler actually is the person to whom the ID code for scheduling visits has been assigned. Such verification data may also be stored in internal databases for future reference. The system may then inform the scheduler if a proper match is not found, and terminate the scheduling process. If at block 308 it is determined that valid ID codes have been entered, it is then determined at block 312 whether the inmate with which a video visit is desired is allowed to participate in a video visit. If it is determined that the inmate is not allowed to participate in a video visit at the time, that information may be given to the scheduler, as well as the earliest date when the inmate is permitted a visit. At block 316, once the identity of all potential visitors is verified, their ID codes are entered into the system. Then, at block 318, it is determined whether the inmate is allowed a visit by all the potential visitors entered into the system. For example, in the prison scenario, an inmate may not be allowed visits by certain people, such as any of his known criminal cohorts. If such an unapproved visitor is identified, the scheduler is informed of that information at block 320, and that a visit may not be scheduled at this time for that reason. If all potential visitors are approved to visit the inmate, it is next determined at block 322 whether the scheduler has a “session key.” More specifically, when a prior video visit session had been terminated, not for cause but for technical reasons or some other problems, a session key may be issued to that visitor so that that person can come in and not have to pay for another visit. If a session key is not present, the process moves on to block 324 where it is determined whether the scheduler has paid the appropriate fee for the visit. At block 326, if no payment is found to be on file, the scheduler may be informed of the various options for making payment. In one example, a money order payment system may be employed at block 328 to make the proper payment for the visit, which results in an electronic transfer notice from a money order vendor at block 330. If it is determined at block 324 that a payment is on file, it may next be determined whether enough funds exist in the payment file for the scheduled video visit. If the funds on file are inadequate, the scheduler may be directed towards the money order system, again at block 328, where sufficient payment may be made. Of course, any type of payment system may be employed when scheduling a video visit in accordance with the disclosed principles, such as credit cards, wire transfers, prison cafeteria account, cash, checks, etc., and no limitation to any particular method of payment is intended. Once it is determined that adequate funds have been paid, the process moves to block 334 where the scheduler is asked to enter his ZIP code. Alternatively, if a session key had been detected back at block 322, the scheduler would have jumped ahead to block 334, since no further payment would be required. Based on the ZIP code of the scheduler, he is then presented with a list of the geographic locations, either close to his location or not. The visitor/scheduler may then come to a video visit location and use one of a number of available video stations to conduct the visit. Thus, at block 336 in FIG. 3B, the scheduler selects the geographic location he would like to use, and is allowed to select an available time for the visit. At block 338, it is determined whether the time entered by the scheduler is available, either based on the availability of the inmate, or perhaps the availability of the video visit location or station terminal. After a time and location for the video visit have been approved, the visit is scheduled in the system at block 340. In addition, a debit for payment of the scheduled visit is made at block 342, and the payment system is accordingly updated at block 344. Assuming no changes in status of any of the scheduled participants occurs, the visit will occur at the scheduled time. However, in the case of a prison, the ability of an inmate to receive visitors may change. Thus, at block 346, if such a status change for the inmate occurs, the visitor is contacted at block 348 so that the visit may be rescheduled. If no future visits will be allowed, the visitor may then simply be given a refund of any payment. Such checks into the status of an inmate may be conducted on a regular basis, e.g., daily, since the status of any participant can change at any time. In other embodiments, although blocks 346 and 348 refer to a change in status of an inmate and the rescheduling by a visitor, the disclosed methods and systems are not so limited. Thus, in the prison scenario an inmate may be notified of a need to reschedule based on the change in status of the visitor, while in a nonprison scenario, any participant may become unavailable and any participant may reschedule a visit or be notified of a rescheduling by another participant. However, if no change in status has occurred, current status reports and schedules may be generated at block 350, and a confirmation may be sent to the visitor and/or inmate, as shown in block 352. In addition, in the prison scenario, several video visits with different inmates may be scheduled on any given day. As such, a daily schedule of scheduled visits may be distributed to the prisons, as shown in block 354. As the date for the scheduled video visit approaches, a list of the visits scheduled for the next couple of days may be generated at block 356. This list may then be used to place reminder calls to the scheduler of these approaching visits. Thus, the process may provide a courtesy call to the scheduler at block 358 to remind him of the upcoming visit. Finally, looking back at block 350, an “Autostart” process for the scheduled video visit is updated with the appropriate information for conducting the visit. As discussed above, the Autostart process is the automated process employed to actually initiate the video visit at the scheduled time, without human intervention by any of the participants. Referring now to FIG. 4, illustrated is a flow diagram 400 that sets forth one embodiment of a process for conducting a video visit between a visitor and a prison inmate, such as the visit scheduled with reference to FIGS. 3A & 3B. Based on the locations, schedule, time, terminal, etc. scheduled by the visitor, all of the participants know or are informed of where exactly they should be at the scheduled visit time. In addition, an overseer, if employed to monitor the video visit, is also informed of the scheduled visit time and of the participants, and any limitations associated with the participants. For example, the overseer will be informed of certain hand signals, gestures, or perhaps direct language that may be used between the visitor and the inmate to inappropriately communicate during the video visit. At block 401, before the video visit between all the participants begins, the identity of one or all of the participants may be verified. As before, biometric devices, such as finger print reading devices, retina scanning devices, voice identification devices and the like, may be employed to verify such identities. Also as before, such verification data may also be stored in internal databases for future reference. The system may then detect if a proper match is not found, and terminate the scheduled video visit before it even begins. Once any necessary identities have been verified, at block 402 the system begins the video visit at the scheduled time, and the visit may be recorded for future use. At block 404, it is determined if everyone scheduled to participate in the visit is present. If everyone scheduled is not present, it is determined if a valid reason for rescheduling is present, at block 406. A valid reason for not making the scheduled visit may be, for example, that the visitor had a car accident prior to the scheduled visit and therefore cannot make the scheduled time. Another reason may be illness or perhaps the death of a loved one. If a valid reason is present, a session key may be issued to the visitor at block 408, which allows the visit to be rescheduled at no additional charge. Once the visitor has rescheduled the visit, the appropriate records may be updated with the new information at block 410. If no valid reason has been determined at block 406, the appropriate visit records are updated at block 412, and the present visit is terminated at block 414. Back at block 404, if it was determined that all proper participants are in fact present at the scheduled time and in their respective appropriate locations, the visit process moves on to block 416 where required rules for the video visit are then displayed to all of the participants, typically in the selected preferred language of the participants. More specifically, the rules inform the participants that if they misbehave during the visit, the visit may be terminated and no refund is given. In addition, the rules may inform the participants that inappropriate behavior may be reported to the appropriate authorities, which may result in sanctions beyond the loss of a video visit. Furthermore, the participants may also be informed that the video visit is being recorded, and that they could be prosecuted for any misbehavior that happens as a part of this visit. In some embodiments of the visit process, the visit rules and remaining time for the visit are constantly displayed to the participants on their respective video terminals, as shown at block 418, so that there can be no mistake as to such items during the visit. Accordingly, the video visit is conducted among the participants, during which time, at block 420, an overseer randomly monitors the visit, and possibly other visits occurring at the same time. In addition, the overseer may specifically direct his attention to any one video visit occurring in order to more closely monitor the goings on in a particular visit. At block 422, it is determined whether any violations are occurring in a particular video visit. If a rules violation is observed, the overseer may interrupt the video visit at block 424. At block 426, it is determined whether a rules violation(s) is persisting. If violations are continuing, the visit record for the participants is updated, at block 428, and the visit may be terminated at block 430. Once terminated, the recording of the video visit and any associated visit records are archived at block 445. If rules violations do not continue, the visit is permitted to continue in the typical fashion. While the video visit is occurring, technical check-ups may be periodically conducted to ensure the visit continues without unnecessary interruption. At block 432, if a technical problem is detected, a session key may be issued to the visitor, at block 434, which allows the visit to be rescheduled at no additional charge. In addition, at block 436, the appropriate record in the scheduling equipment may be updated. However, if no technical problems occur, and no rules violations result in the termination of the visit, the process moves to block 440, which illustrates that the video visit has been successfully completed. Then, the appropriate visit records are updated at block 438 with, for example, the date and time of the visit, which may be recorded accurately to the second. Then, once the video visit has finished, the recording of the video visit and any associated visit records are archived at block 445. The archived visit recording and records may then be available by appropriate personnel in the future. For example, copies of the recording of the video visit may be sold to the participants or other authorized persons as a commemorative remembrance of the visit. In other embodiments, the recordings and/or records may be subpoenaed or otherwise acquired by authorities for evidential purposes, if needed. Turning finally to FIG. 5, illustrated is a flow diagram 500 that sets forth one embodiment of a process for recording and playing back a video visit conducted according to the disclosed principles. At block 502, the autostart process begins the video visit and the recording of the visit, in the manner discussed above with reference to FIG. 4. At the conclusion of the video visit, the recording and any associated records are stored for future use. In one embodiment, a computer database is used to store the recordings in digital format, as discussed above. Of course, any type of storage devices may be used, including the storing of analog recordings made on conventional video cassette tapes. In some embodiments using digital media storage for the recordings, the visits are stored in their raw data format, for example, in H.263 video and G.711 audio formats. In such embodiments, the data may be compressed and quickly stored without employing time and resources to convert the data to a typical playable format. In other embodiments, the data may be converted before storage to a playable format, such as the popular MPEG, MPEG2, MPEG4, .mov, or .avi formats. No matter what format the recordings are stored in, whether now known or later developed, the files may be identified for storage and retrieval using corresponding keys, which may be based on participant ID codes, date/time, or other identifying information, at block 504. At block 506, the storage keys and recordings (data) are stored. When a requested stored recording of a prior video visit is desired or otherwise sought, a request for access to a copy of the recording is first received at a block 508. As mentioned above, copies of the recordings may be requested by participants themselves, friends of the participants, or perhaps family members of a participant as a commemorative remembrance of the visit. In other embodiments, copies of the recordings may also be requested via court order, such as with a subpoena if needed for a judicial proceeding. When a request is received, it is determined whether the requester is authorized to access the information at block 510. For example, in the prison scenario the requestor may be the warden of the prison housing the inmate, where the warden is authorized (in most situations) to view the recordings in the interest of prison security. However, in other embodiments, the video visit may have been between an inmate and his attorney. In such embodiments, the warden may not be authorized to view the recording of the video visit because of attorney-client privilege issues. Thus, in order to determine if a requester is authorized to access the recording, a directory of authorized persons and accessible records may be queried, as shown in block 512. In addition to selectively allowing access to only certain requesters, the identity of the requestor may also be verified, as in the manner discussed above with reference to FIGS. 3A and 3B. Once the requestor has been authorized to view recordings, the requestor may then enter, at block 514, the ID code of the inmate and the date the video visit occurred. In some embodiments, if the exact date of a recording is not known, or if the past visits of a particular inmate are simply be reviewed for security purposes, a range of dates for all visits that occurred within that time period may be entered by the requestor. The stored recordings are then searched and the appropriate files retrieved at block 516. Also at block 516, if the recording was stored in its raw format it may then be converted to an appropriate playback format, such as those exemplary formats set forth above. In other embodiments, the recording may simply be converted from one format to a different format that is desired by the requestor. For example, if the recording of the visit was stored in MPEG format but the requestor would like it in .avi format, such format conversion may be provided as a service for the requestor. In yet other embodiments, copies of the recordings may be provided on common playable formats, such as on a DVD disc, for the convenience of the requestor. Of course, in most if not all embodiments, obtaining a copy of the recording would be at a cost to the requestor. At block 518, the data comprising the recording may then be provided to the requestor, for example, via a download across a computer network for viewing on the requestor's computer terminal. Alternatively, the recording may be provided on portable media, such a disc, as mentioned above. While various embodiments of scheduling and conducting monitored video visits according to the principles disclosed herein, as well as the architecture for providing such scheduling and conducting of video visits, have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the invention(s) should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages. Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” such claims should not be limited by the language chosen under this heading to describe the so-called technical field. Further, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Brief Summary” to be considered as a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
<SOH> BACKGROUND <EOH>When two parties want to communicate in real-time over great distances, the telephone has been the traditional communications device of choice. Advancements in technologies over the years have now permitted both audio and video communications between parties over great distances. This form of communications is commonly referred to as video conferencing, and depending on the complexity (and associated expense) of the equipment involved may provide nearly real-time communications among two or more parties. In traditional form, video conferencing includes some type of local equipment associated with each person seeking to participate in the conference. When the conference is to be started, the equipment at each location is employed to call in (e.g., “conference in”) to a call center. As each of these endpoints establishes a connection with the central location, the video and audio signals may then be accessed by all of the participants so that a conversation with both audio and video can take place. Among the various types of video conferencing equipment, one of the most common employs specialty dedicated equipment at each geographic location of the participants. This equipment typically employs an ISDN or similar data connection to transmit and receive audio/video communications data during the video conference. Unfortunately, conventionally available video conferencing equipment has a common characteristic: each system requires endpoint initiation (and termination) for each participant in the conference. Such a requirement has several disadvantages, including the high cost associated with such specialty equipment, and the freedom (or burden) to control the equipment at each corresponding endpoint. Regarding expense, many companies or individuals are financially prohibited from enjoying such video conferencing because they either cannot afford the special equipment, or perhaps cannot justify the expense for equipment not regularly used. Regarding endpoint control, the difficulty in operating such specialty equipment is a burden many people would like to be without. In addition, situations exist where initiation of the video conference and control of the video conferencing equipment by one or more of the participants is not desired. An example of a situation where endpoint control is not desirable is in the prison system. Many times, a prison inmate is housed in a location a great distance from his family or friends, which results in visitation of the inmate being inconvenient or even impossible due to travel time and expense. As such, a video conference with the inmate would seem a perfect answer; however, as mentioned above, the expense and complexity of the necessary equipment may be prohibitive. Perhaps more important is the potential security risk if endpoint control is permitted in a video conference with an inmate. Even in conventional face-to-face visits, conversations between inmates and their visitors are monitored to ensure that no greater security risk is created than already exists with an outsider's presence in the prison. However, if endpoint control in such a visitation scenario were permitted, it would be difficult to effectively monitor the visit to ensure security. Potential security breaches include, but are not limited to, coded dialog between the inmate and a visitor, as well as hand and facial gestures used to communicate improper information. While traditional video conferencing equipment could potentially be used in the prison scenario, the above-mentioned problems would still be present. More specifically, conventional video conferencing requires endpoint control to initiate and terminate the conversation. As a result, an overseer may not be capable of ending the visit if conduct violations occur during the visit. In addition, with endpoint control of the equipment, a prison inmate can easily damage the equipment if he has access to it, and may lack the technical knowledge to even operate the equipment at all. Although a security officer or technician may be given control of the equipment so that it is not accessible by the inmate, another disadvantage is created by requiring the services of an employee, whose time is probably better served elsewhere. Perhaps the most important reason why traditional video conferencing would not be workable for prison visitation and other similar situations is the lack of synchronicity between data connections during the conference. More specifically, as each participant in the video conference connects to the conversation, a new data connection, or path, is created. In a prison situation, at least three data paths would be present: one for the inmate, one for the visitor, and one for the overseer monitoring the conversation. Unfortunately, an inherent latency exists between these multiple connections that poses a significant security risk for the prison. Because of latency in the data path during data transmission, communication is not instantaneous; the delay is a function of all intermediate equipment and media along the data path. Because different routes may be taken along each data path, there may exist a difference in latency and the delay experienced by each if each party is connected with a separate data path. Unfortunately, this difference in latency among multiple simultaneous data paths poses a significant security risk for a prison. As a result, the visitor or inmate may engage in an improper communication during the visit, but the difference in latency between connections prevents the overseer from learning of the improper conduct in time to prevent it or further improper conduct from occurring. Accordingly, what is needed is a video visitation system for permitting video visits between participants that is not endpoint controlled and that does not suffer from the deficiencies found in the prior art.
<SOH> BRIEF SUMMARY <EOH>Disclosed herein are methods of scheduling and conducting monitored or non-monitored video visits, as well as computer architecture for providing such scheduling and conducting of video visits, where the participants in the video visit are not required or able to interact with the audio/video equipment for the initial connection to start the video visit. In addition, in some embodiments participants are also not able to interact with the equipment during the actual visit. Whether they can interact with the equipment during the visit or not (e.g., voice-actuated volume control, etc.), the audio/video equipment employed during the video visit may be isolated from physical contact by the first participant or second participant, and therefore may be located at fixed or mobile geographic locations where such equipment connections and operations may be maintained. In one embodiment of a method of scheduling such a video visit, the method includes assigning an individual ID code to a first participant and second participant in the video visit, for example, a caller and a receiver in a video visit. Of course, any number of participants may participate in the visit. In this example, to schedule a visit between these two participants, the first participant contacts a data center and enters the ID code of the second participant he is trying to visit with. In a more specific embodiment, the second participant is a prison inmate and the first participant is a family member of the inmate desiring a visit with the inmate using audio/video communications equipment, however, any types of participants may be present. When the ID code for the second participant is entered, the data center may then conduct a check to determine whether second participant is permitted to receive video visits. Also, the first participant's ID code may also be submitted to the data center and checked to determine if the first participant is permitted to be in contact with the second participant. In another embodiment, devices may be employed to verify the identity of the first participant, such as biometric devices. Such biometric technologies are defined as automated devices/methods for identifying or authenticating the identity of a living person based on a physiological or behavioral characteristic. For example, fingerprint reading devices, retina scanning devices, voice identification devices, face mapping devices, signature comparison devices and the like may be employed to further ensure security during the video visit by authenticating the identity of the first participant. Moreover, if the participants are being charged for making the video visit, the data center may also determine if sufficient funds (or credit) for the visit have been paid. One advantage to the disclosed video visits is that the first participant may visit with the second participant over long distances that may otherwise prevent their communication. As such, in one embodiment, the data center may prompt the participant making the reservation for his geographic location(s), and then present several locations near the first participant's location for conducting the visit. Once a suitable location is selected, the visit may be scheduled and then conducted at the appropriate time. In addition, other participants may also be given the option to select desirable geographic locations for them to participate in the video visit. In one embodiment of a method of conducting a video visit, the method includes connecting the first participant and second participant at the scheduled time using the data center and without any action taken by the first participant or second participant, or anyone associated with their geographic locations, to initiate the visit. Once the video visit begins, in some embodiments, certain rules for the visit may be displayed for the participants to read. For example, if the visit is between a prison inmate and one or more of his family members, the rules may discuss how the visit is being monitored by appropriate personnel and that perhaps “secret” communications between the parties (e.g., hand signals, facial gestures, movements, etc.) are not permitted during the visit. In such an embodiment, the method also includes an overseer actively monitoring the visit between the parties. In a related embodiment, the overseer may be simultaneously monitoring multiple such video visits, and may have the ability to select the audio communications of any particular visit for closer monitoring and inspection, as well as zoom in on one of the particular video feeds should the need arise. Examples of other potential violations may be hand-signs, gestures, or even expressly saying certain words or phrases. If the overseer determines a rules violation has or is occurring, he may intervene with a warning to one or both of the parties. Continued rules violations may lead to termination of the visit, or the overseer, or perhaps automated equipment, may determine that the violation is of the sort that requires the visit to be terminated immediately. In addition, a notation of the incident(s) may be made in the video visit records associated with either or both of the first participant and second participant, which may in turn affect the permission required for the two to conduct another visit in the future. Conversely, if the visit is concluded without incident, the appropriate records may also be updated as such. In another aspect, a system for conducting a video visit is also disclosed. In one embodiment, the system includes a data center configured to initiate and terminate an audio/video communication between first and second participants. The system also includes a first terminal coupled to the data center for use by the first participant to visit with the second participant, and a second terminal coupled to the data center for use by the second participant to visit with the first participant. In a specific embodiment, the data center is coupled to the first and second terminals via a computer network, for example, a packet-based network such as the Internet. Each of the first and second terminals may also be coupled to the computer network via their own local area network. In a broad aspect, the system also includes a multiplexing means, which may be embodied in hardware, software, of a combination of both, that is configured to receive communication data, encrypted or unencrypted, sent between the first and second participants during the audio/video communication, and to generate copied data based on the communication data. In addition, such a system would include an overseer coupled to the multiplexing means and configured to receive the copied data and to monitor the audio/video communication between the first and second participants using the received copied data. In an exemplary embodiment, the multiplexing means is geographically proximate to the first terminal and configured to provide the communication data to the first terminal and the copied data to the overseer. In an alternative embodiment, the multiplexing means may be geographically proximate to the data center and configured to provide the communication data to the first and second terminals and the copied data to the overseer. In yet other embodiments, recording equipment configured to receive the copied data for data storage and retrieval is also included in the system, perhaps via the same or a second multiplexing means.
20041025
20070814
20060427
96978.0
H04N714
1
RAMAKRISHNAIAH, MELUR
SYSTEMS AND PROCESSES FOR SCHEDULING AND CONDUCTING AUDIO/VIDEO COMMUNICATIONS
UNDISCOUNTED
0
ACCEPTED
H04N
2,004
10,973,612
ACCEPTED
Transmission of wide bandwidth signals in a network having legacy devices
A method for transmitting wide bandwidth signals in a network that includes legacy devices begins by determining channel bandwidth of a channel that supports the wide bandwidth signals in the network. The method continues by determining overlap of legacy channel bandwidth with the channel bandwidth of the channel. The method continues by providing a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel.
1. A method for transmitting wide bandwidth signals in a network that includes legacy devices, the method comprises: determining channel bandwidth of a channel that supports the wide bandwidth signals in the network; determining overlap of legacy channel bandwidth with the channel bandwidth of the channel; and providing a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel. 2. The method of claim 1 further comprises: utilizing at least a portion of payload spectrum of the channel that for packet header transmission, wherein the packet header transmission includes at least a portion of the legacy readable preamble. 3. The method of claim 2, wherein the utilizing the at least a portion of the payload spectrum comprises at least one of: utilizing a same power spectral density for the packet header transmission and for the payload; and utilizing a different power spectral density for the packet header transmission and for the payload. 4. The method of claim 1 further comprises: interpreting, by the legacy devices, the legacy readable preamble such that the legacy devices appropriately defer transmissions and decode a portion of the wide bandwidth signals within a channel spectrum of the legacy devices. 5. The method of claim 1 further comprises: generating a wide-bandwidth preamble of the wide bandwidth signals for at least one of: Carrier detection; Gain control; Frequency offset estimation; Channel estimation; Transmission Deference; and Data demodulation. 6. A method for generating a preamble of a frame for a wide-bandwidth channel wireless communication, the method comprises: generating a legacy carrier detect field; generating a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field; and generating a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field. 7. The method of claim 6 further comprises: generating at least one additional channel sounding field that includes a second plurality of tones; and generating another signal field, wherein the at least one additional channel sounding field follows, in time, the legacy signal field, and the another signal field follows the at least one additional channel sounding field. 8. The method of claim 6 comprises: generating the legacy carrier detect field in accordance with a legacy wireless protocol, wherein a legacy channel of the legacy wireless protocol has a first channel bandwidth and wherein the wide-bandwidth channel includes at least two legacy channels; generating a first portion of the channel sounding field in accordance with the legacy wireless protocol, wherein the first portion of the channel sounding field corresponds to the first set of the plurality of tones; and generating a second portion of the channel sounding field in accordance with a current wireless protocol, wherein the second portion of the channel sounding field corresponds to remaining tones of the plurality of tones. 9. The method of claim 8 further comprises: generating a short training sequence as the legacy carrier detect field in accordance with a legacy version of an IEEE 802.11 protocol; generating a long training sequence as the first portion of the channel sounding field in accordance with a legacy version of an IEEE 802.11 protocol; and repeating the long training sequence as at least part of the second portion of the channel sounding field in accordance with a current version of an IEEE 802.11 protocol. 10. The method of claim 9, wherein generating the second portion of the channel sounding field further comprises: generating tones within a guard band field between the at least two legacy channels of the wide-bandwidth channel. 11. The method of claim 8 further comprises: combining the at least two legacy channels for a single input single output (SISO) wireless communication. 12. The method of claim 8 further comprises: processing the at least two legacy channels in parallel for a multiple input multiple output (MIMO) wireless communication. 13. A radio frequency (RF) transmitter comprises: a baseband processing module operably coupled to convert outbound data into an outbound symbol stream; and a transmitter section operably coupled to convert the outbound symbol stream into outbound RF signals, wherein the baseband processing module is operably coupled to: determine channel bandwidth of a channel that supports the wide bandwidth signals in the network; determine overlap of legacy channel bandwidth with the channel bandwidth of the channel; and provide a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel. 14. The RF transmitter of claim 13, wherein the baseband processing module is further operably coupled to: utilize at least a portion of payload spectrum of the channel that for packet header transmission, wherein the packet header transmission includes at least a portion of the legacy readable preamble. 15. The RF transmitter of claim 14, wherein the baseband processing module is further operably coupled to utilize the at least a portion of the payload spectrum by at least one of: utilizing a same power spectral density for the packet header transmission and for the payload; and utilizing a different power spectral density for the packet header transmission and for the payload. 16. The RF transmitter of claim 13, wherein the baseband processing module is further operably coupled to: generate a wide-bandwidth preamble of the wide bandwidth signals for at least one of: Carrier detection; Gain control; Frequency offset estimation; Channel estimation; Transmission Deference; and Data demodulation. 17. A radio frequency (RF) transmitter comprises: a baseband processing module operably coupled to convert outbound data into an outbound symbol stream; and a transmitter section operably coupled to convert the outbound symbol stream into outbound RF signals, wherein the baseband processing module is operably coupled to: generate a legacy carrier detect field; generate a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field; and generate a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field. 18. The RF transmitter of claim 17, wherein the baseband processing module is further operably coupled to: generate at least one additional channel sounding field that includes a second plurality of tones; and generate another signal field, wherein the at least one additional channel sounding field follows, in time, the legacy signal field, and the another signal field follows the at least one additional channel sounding field. 19. The RF transmitter of claim 17, wherein the baseband processing module is further operably coupled to: generate the legacy carrier detect field in accordance with a legacy wireless protocol, wherein a legacy channel of the legacy wireless protocol has a first channel bandwidth and wherein the wide-bandwidth channel includes at least two legacy channels; generate a first portion of the channel sounding field in accordance with the legacy wireless protocol, wherein the first portion of the channel sounding field corresponds to the first set of the plurality of tones; and generate a second portion of the channel sounding field in accordance with a current wireless protocol, wherein the second portion of the channel sounding field corresponds to remaining tones of the plurality of tones. 20. The RF transmitter of claim 19, wherein the baseband processing module is further operably coupled to: generate a short training sequence as the legacy carrier detect field in accordance with a legacy version of an IEEE 802.11 protocol; generate a long training sequence as the first portion of the channel sounding field in accordance with a legacy version of an IEEE 802.11 protocol; and repeat the long training sequence as at least part of the second portion of the channel sounding field in accordance with a current version of an IEEE 802.11 protocol. 21. The RF transmitter of claim 17, wherein the baseband processing module is further operably coupled to generate the second portion of the channel sounding field by: generating tones within a guard band field between the at least two legacy channels of the wide-bandwidth channel. 22. The RF transmitter of claim 19, wherein the baseband processing module is further operably coupled to: combine the at least two legacy channels for a single input single output (SISO) wireless communication. 23. The RF transmitter of claim 19, wherein the baseband processing module is further operably coupled to: process the at least two legacy channels in parallel for a multiple input multiple output (MIMO) wireless communication.
This patent application is claiming priority under 35 USC § 119 to six co-pending patent applications: The first is entitled CONFIGURABLE SPECTRAL MASK FOR USE IN A HIGH DATA THROUGHPUT WIRELESS COMMUNICATION, having a Ser. No. 10/778,754, and a filing date of Feb. 13, 2004; the second is entitled FRAME FORMAT FOR HIGH DATA THROUGHPUT WIRELESS LOCAL AREA NETWORK TRANSMISSIONS having a Ser. No. 10/778,751, and a filing date of Feb. 13, 2004; the third is entitled HIGH DATA THROUGHPUT WIRELESS LOCAL AREA NETWORK RECEIVER, having a Ser. No. 10/779,245, and a filing date of Feb. 13, 2004; the fourth is entitled MULTIPLE PROTOCOL WIRELESS COMMUNICATIONS IN A WLAN, having a provisional Ser. No. 60/544,605 and a filing date of Feb. 13, 2004 , the fifth is entitled WIRELESS COMMUNICATION BETWEEN STATIONS OF DIFFERING PROTOCOLS, having a provisional Ser. No. 60/546,622 and a filing date of Feb. 20, 1004; and the sixth has the same title as the present patent application, a provisional Ser. No. 60/575,954, and a provisional filing date of Jun. 1, 2004. BACKGROUND OF THE INVENTION TECHNICAL FIELD OF THE INVENTION This invention relates generally to wireless communication systems and more particularly to supporting multiple wireless communication protocols within a wireless local area network. DESCRIPTION OF RELATED ART Communication systems are known to support wireless and wire lined communications between wireless and/or wire lined communication devices. Such communication systems range from national and/or international cellular telephone systems to the Internet to point-to-point in-home wireless networks. Each type of communication system is constructed, and hence operates, in accordance with one or more communication standards. For instance, wireless communication systems may operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, advanced mobile phone services (AMPS), digital AMPS, global system for mobile communications (GSM), code division multiple access (CDMA), local multi-point distribution systems (LMDS), multi-channel-multi-point distribution systems (MMDS), and/or variations thereof. Depending on the type of wireless communication system, a wireless communication device, such as a cellular telephone, two-way radio, personal digital assistant (PDA), personal computer (PC), laptop computer, home entertainment equipment, et cetera communicates directly or indirectly with other wireless communication devices. For direct communications (also known as point-to-point communications), the participating wireless communication devices tune their receivers and transmitters to the same channel or channels (e.g., one of the plurality of radio frequency (RF) carriers of the wireless communication system) and communicate over that channel(s). For indirect wireless communications, each wireless communication device communicates directly with an associated base station (e.g., for cellular services) and/or an associated access point (e.g., for an in-home or in-building wireless network) via an assigned channel. To complete a communication connection between the wireless communication devices, the associated base stations and/or associated access points communicate with each other directly, via a system controller, via the public switch telephone network, via the Internet, and/or via some other wide area network. For each wireless communication device to participate in wireless communications, it includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver (e.g., a station for in-home and/or in-building wireless communication networks, RF modem, etc.). As is known, the transmitter includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard. The one or more intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals. The power amplifier amplifies the RF signals prior to transmission via an antenna. As is also known, the receiver is coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives inbound RF signals via the antenna and amplifies then. The one or more intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals. The filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals. The data recovery stage recovers raw data from the filtered signals in accordance with the particular wireless communication standard. As is further known, the standard to which a wireless communication device is compliant within a wireless communication system may vary. For instance, as the IEEE 802.11 specification has evolved from IEEE 802.11 to IEEE 802.11b to IEEE 802.11a and to IEEE 802.11g, wireless communication devices that are compliant with IEEE 802.11b may exist in the same wireless local area network (WLAN) as IEEE 802.11g compliant wireless communication devices. As another example, IEEE 802.11a compliant wireless communication devices may reside in the same WLAN as IEEE 802.11g compliant wireless communication devices. When legacy devices (i.e., those compliant with an earlier version of a standard) reside in the same WLAN as devices compliant with later versions of the standard, a mechanism is employed to insure that legacy devices know when the newer version devices are utilizing the wireless channel as to avoid a collision. For instance, backward compatibility with legacy devices has been enabled exclusively at either the physical (PHY) layer (in the case of IEEE 802.11b) or the Media-Specific Access Control (MAC) layer (in the case of 802.11g). At the PHY layer, backward compatibility is achieved by re-using the PHY preamble from a previous standard. In this instance, legacy devices will decode the preamble portion of all signals, which provides sufficient information for determining that the wireless channel is in use for a specific period of time, thereby avoid collisions even though the legacy devices cannot fully demodulate and/or decode the transmitted frame(s). At the MAC layer, backward compatibility with legacy devices is enabled by forcing devices that are compliant with a newer version of the standard to transmit special frames using modes or data rates that are employed by legacy devices. For example, the newer devices may transmit Clear to Send/Ready to Send (CTS/RTS) exchange frames and/or CTS to self frames as are employed in IEEE 802.11g. These special frames contain information that sets the NAV (network allocation vector) of legacy devices such that these devices know when the wireless channel is in use by newer stations. As future standards are developed (e.g., IEEE 802.11n and others), it may be desirable to do more than just avoid collisions between newer version devices and legacy devices. For instance, it may be desirable to allow newer version devices to communication with older version devices. Therefore, a need exists for a method and apparatus that enables communication between devices of multiple protocols within a wireless communication system, including wireless local area networks. BRIEF SUMMARY OF THE INVENTION The transmission of wide bandwidth signals in a network having legacy devices of the present invention substantially meets these needs and others. In one embodiment a method for transmitting wide bandwidth signals in a network that includes legacy devices begins by determining channel bandwidth of a channel that supports the wide bandwidth signals in the network. The method continues by determining overlap of legacy channel bandwidth with the channel bandwidth of the channel. The method continues by providing a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel. In another embodiment, a method for generating a preamble of a frame for a wide-bandwidth channel wireless communication begins by generating a legacy carrier detect field. The method continues by generating a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field. The method continues by generating a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS FIG. 1 is a schematic block diagram of a wireless communication system in accordance with the present invention; FIG. 2 is a schematic block diagram of a wireless communication device in accordance with the present invention; FIG. 3 is a schematic block diagram of another wireless communication device in accordance with the present invention; FIG. 4 is a diagram of a configurable spectral mask in accordance with the present invention; FIG. 5 is a diagram of example spectral masks in accordance with the present invention; FIG. 6 is a diagram of a wide bandwidth channel with respect to legacy channels in accordance with the present invention; FIG. 7 is a schematic block diagram of a wide bandwidth communication in accordance with the present invention; FIG. 8 is a schematic block diagram of another wide bandwidth communication in accordance with the present invention; FIG. 9 is a schematic block diagram of yet another wide bandwidth communication in accordance with the present invention; FIG. 10 is a diagram of wide bandwidth signal transmissions in accordance with the present invention; FIG. 11 is a diagram of other wide bandwidth signal transmissions in accordance with the present invention; FIG. 12 is a frequency diagram of sub-carriers of a wide bandwidth signal in accordance with the present invention; FIG. 13 is a logic diagram of a method for wireless communication in accordance with the present invention; and FIG. 14 is a logic diagram of another method for wireless communication in accordance with the present invention. DETAILED DESCRIPTION OF THE INVENTION FIG. 1 is a schematic block diagram illustrating a communication system 10 that includes a plurality of base stations and/or access points 12 and 16, a plurality of wireless communication devices 18-32 and a network hardware component 34. The wireless communication devices 18-32 may be laptop host computers 18 and 26, personal digital assistant hosts 20 and 30, personal computer hosts 24 and 32 and/or cellular telephone hosts 22 and 28. The details of at least some of the wireless communication devices will be described in greater detail with reference to FIGS. 2 and/or 3. The base stations or access points 12-16 are operably coupled to the network hardware 34 via local area network connections 36, 38 and 40. The network hardware 34, which may be a router, switch, bridge, modem, system controller, et cetera provides a wide area network connection 42 for the communication system 10. Each of the base stations or access points 12 and 16 has an associated antenna or antenna array to communicate with the wireless communication devices in its regional area, which is generally referred to as a basic service set (BSS) 11, 13. Typically, the wireless communication devices register with a particular base station or access point 12 or 16 to receive services from the communication system 10. Typically, base stations are used for cellular telephone systems and like-type systems, while access points are used for in-home or in-building wireless networks. Regardless of the particular type of communication system, each wireless communication device includes a built-in radio and/or is coupled to a radio. The radio includes a highly linear amplifier and/or programmable multi-stage amplifier as disclosed herein to enhance performance, reduce costs, reduce size, and/or enhance broadband applications. Wireless communication devices 22, 23, and 24 are located in an area of the wireless communication system 10 where they are not affiliated with an access point. In this region, which is generally referred to as an independent basic service set (IBSS) 15, the wireless communication devices communicate directly (i.e., point-to-point or point-to-multiple point), via an allocated channel to produce an ad-hoc network. FIG. 2 is a schematic block diagram illustrating a wireless communication device that includes the host device 18-32 and an associated radio, or station, 60. For cellular telephone hosts, the radio 60 is a built-in component. For personal digital assistants hosts, laptop hosts, and/or personal computer hosts, the radio 60 may be built-in or an externally coupled component. In this embodiment, the station may be compliant with one of a plurality of wireless local area network (WLAN) protocols including, but not limited to, IEEE 802.11n. As illustrated, the host device 18-32 includes a processing module 50, memory 52, radio interface 54, input interface 58 and output interface 56. The processing module 50 and memory 52 execute the corresponding instructions that are typically done by the host device. For example, for a cellular telephone host device, the processing module 50 performs the corresponding communication functions in accordance with a particular cellular telephone standard. The radio interface 54 allows data to be received from and sent to the radio 60. For data received from the radio 60 (e.g., inbound data), the radio interface 54 provides the data to the processing module 50 for further processing and/or routing to the output interface 56. The output interface 56 provides connectivity to an output display device such as a display, monitor, speakers, et cetera such that the received data may be displayed. The radio interface 54 also provides data from the processing module 50 to the radio 60. The processing module 50 may receive the outbound data from an input device such as a keyboard, keypad, microphone, et cetera via the input interface 58 or generate the data itself. For data received via the input interface 58, the processing module 50 may perform a corresponding host function on the data and/or route it to the radio 60 via the radio interface 54. Radio, or station, 60 includes a host interface 62, a baseband processing module 64, memory 66, a plurality of radio frequency (RF) transmitters 68-72, a transmit/receive (T/R) module 74, a plurality of antennas 82-86, a plurality of RF receivers 76-80, and a local oscillation module 100. The baseband processing module 64, in combination with operational instructions stored in memory 66, execute digital receiver functions and digital transmitter functions, respectively. The digital receiver functions include, but are not limited to, digital intermediate frequency to baseband conversion, demodulation, constellation demapping, decoding, de-interleaving, fast Fourier transform, cyclic prefix removal, space and time decoding, and/or descrambling. The digital transmitter functions include, but are not limited to, scrambling, encoding, interleaving, constellation mapping, modulation, inverse fast Fourier transform, cyclic prefix addition, space and time encoding, and/or digital baseband to IF conversion. The baseband processing modules 64 may be implemented using one or more processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions. The memory 66 may be a single memory device or a plurality of memory devices. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, and/or any device that stores digital information. Note that when the processing module 64 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory storing the corresponding operational instructions is embedded with the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. In operation, the radio 60 receives outbound data 88 from the host device via the host interface 62. The baseband processing module 64 receives the outbound data 88 and, based on a mode selection signal 102, produces one or more outbound symbol streams 90. The mode selection signal 102 will indicate a particular mode as are illustrated in the mode selection tables, which appear at the end of the detailed discussion. For example, the mode selection signal 102 may indicate a frequency band of 2.4 GHz, a channel bandwidth of 20 or 22 MHz and a maximum bit rate of 54 megabits-per-second. In this general category, the mode selection signal will further indicate a particular rate ranging from 1 megabit-per-second to 54 megabits-per-second. In addition, the mode selection signal will indicate a particular type of modulation, which includes, but is not limited to, Barker Code Modulation, BPSK, QPSK, CCK, 16 QAM and/or 64 QAM. The baseband processing module 64, based on the mode selection signal 102 produces the one or more outbound symbol streams 90 from the output data 88. For example, if the mode selection signal 102 indicates that a single transmit antenna is being utilized for the particular mode that has been selected, the baseband processing module 64 will produce a single outbound symbol stream 90. Alternatively, if the mode select signal indicates 2, 3 or 4 antennas, the baseband processing module 64 will produce 2, 3 or 4 outbound symbol streams 90 corresponding to the number of antennas from the output data 88. Depending on the number of outbound streams 90 produced by the baseband module 64, a corresponding number of the RF transmitters 68-72 will be enabled to convert the outbound symbol streams 90 into outbound RF signals 92. The transmit/receive module 74 receives the outbound RF signals 92 and provides each outbound RF signal to a corresponding antenna 82-86. When the radio 60 is in the receive mode, the transmit/receive module 74 receives one or more inbound RF signals via the antennas 82-86. The T/R module 74 provides the inbound RF signals 94 to one or more RF receivers 76-80. The RF receiver 76-80, which will be described in greater detail with reference to FIG. 4, converts the inbound RF signals 94 into a corresponding number of inbound symbol streams 96. The number of inbound symbol streams 96 will correspond to the particular mode in which the data was received. The baseband processing module 60 receives the inbound symbol streams 90 and converts them into inbound data 98, which is provided to the host device 18-32 via the host interface 62. For a further discussion of an implementation of the radio, or station, 60 refer to co-pending patent application entitled WLAN TRANSMIITER HAVING HIGH DATA THROUGHPUT, having a provisional Ser. No. 60/545,854, and a provisional filing date of Feb. 19, 2004 and co-pending patent application entitled WLAN RECEIVER HAVING AN ITERATIVE DECODER, having a provisional Ser. No. 60/546,051 and a provisional filing date of Feb. 19, 2004. As one of average skill in the art will appreciate, the wireless communication device of FIG. 2 may be implemented using one or more integrated circuits. For example, the host device may be implemented on one integrated circuit, the baseband processing module 64 and memory 66 may be implemented on a second integrated circuit, and the remaining components of the radio 60, less the antennas 82-86, may be implemented on a third integrated circuit. As an alternate example, the radio 60 may be implemented on a single integrated circuit. As yet another example, the processing module 50 of the host device and the baseband processing module 64 may be a common processing device implemented on a single integrated circuit. Further, the memory 52 and memory 66 may be implemented on a single integrated circuit and/or on the same integrated circuit as the common processing modules of processing module 50 and the baseband processing module 64. FIG. 3 is a schematic block diagram illustrating a wireless communication device that includes the host device 18-32 and an associated radio 61. For cellular telephone hosts, the radio 61 is a built-in component. For personal digital assistants hosts, laptop hosts, and/or personal computer hosts, the radio 61 may be built-in or an externally coupled component. The host device 18-32 operates as discussed above with reference to FIG. 2. Radio 61 includes a host interface 62, baseband processing module 64, an analog-to-digital converter 111, a filter module 109, an IF mixing down conversion stage 107, a receiver filter 101, a low noise amplifier 103, a transmitter/receiver switch 73, a local oscillation module 74, memory 66, a digital transmitter processing module 76, a digital-to-analog converter 78, a filter module 79, an IF mixing up conversion stage 81, a power amplifier 83, a transmitter filter module 85, and an antenna 86. The antenna 86 may be a single antenna that is shared by the transmit and receive paths as regulated by the Tx/Rx switch 73, or may include separate antennas for the transmit path and receive path. The antenna implementation will depend on the particular standard to which the wireless communication device is compliant. The baseband processing module 64 functions as described above and performs one or more of the functions illustrated in FIGS. 5-19. In operation, the radio 61 receives outbound data 88 from the host device via the host interface 62. The host interface 62 routes the outbound data 88 to the baseband processing module 64, which processes the outbound data 88 in accordance with a particular wireless communication standard (e.g., IEEE 802.11 Bluetooth, et cetera) to produce outbound time domain baseband (BB) signals. The digital-to-analog converter 77 converts the outbound time domain baseband signals from the digital domain to the analog domain. The filtering module 79 filters the analog signals prior to providing them to the IF up-conversion module 81. The IF up conversion module 81 converts the analog baseband or low IF signals into RF signals based on a transmitter local oscillation 83 provided by local oscillation module 100. The power amplifier 83 amplifies the RF signals to produce outbound RF signals 92, which are filtered by the transmitter filter module 85. The antenna 86 transmits the outbound RF signals 92 to a targeted device such as a base station, an access point and/or another wireless communication device. The radio 61 also receives inbound RF signals 94 via the antenna 86, which were transmitted by a base station, an access point, or another wireless communication device. The antenna 86 provides the inbound RF signals 94 to the receiver filter module 101 via the Tx/Rx switch 73. The Rx filter 71 bandpass filters the inbound RF signals 94 and provides the filtered RF signals to the low noise amplifier 103, which amplifies the RF signals 94 to produce amplified inbound RF signals. The low noise amplifier 72 provides the amplified inbound RF signals to the IF down conversion module 107, which directly converts the amplified inbound RF signals into inbound low IF signals or baseband signals based on a receiver local oscillation 81 provided by local oscillation module 100. The down conversion module 70 provides the inbound low IF signal or baseband signal to the filtering/gain module 68. The filtering module 109 filters the inbound low IF signals or the inbound baseband signals to produce filtered inbound signals. The analog-to-digital converter 111 converts the filtered inbound signals into inbound time domain baseband signals. The baseband processing module 64 decodes, descrambles, demaps, and/or demodulates the inbound time domain baseband signals to recapture inbound data 98 in accordance with the particular wireless communication standard being implemented by radio 61. The host interface 62 provides the recaptured inbound data 92 to the host device 18-32 via the radio interface 54. As one of average skill in the art will appreciate, the wireless communication device of FIG. 3 may be implemented using one or more integrated circuits. For example, the host device may be implemented on one integrated circuit, the baseband processing module 64 and memory 66 may be implemented on a second integrated circuit, and the remaining components of the radio 61, less the antenna 86, may be implemented on a third integrated circuit. As an alternate example, the radio 61 may be implemented on a single integrated circuit. As yet another example, the processing module 50 of the host device and the baseband processing module 64 may be a common processing device implemented on a single integrated circuit. Further, the memory 52 and memory 66 may be implemented on a single integrated circuit and/or on the same integrated circuit as the common processing modules of processing module 50 and the baseband processing module 64. In the communication system of FIG. 1, the communication device may be newer devices as described with references to FIGS. 2 and 3 or may be legacy devices (e.g., compliant with an earlier version or predecessor of IEEE 802.11n standard). For the newer devices, they may configure the channel bandwidth in numerous ways as illustrated in FIGS. 4 and 5. FIG. 4 is a diagram of a configurable spectral mask 130 that includes a channel pass region 112, a transition region 114, and a floor region 116. The transition region 114 includes a first attenuation region 118, a second attenuation region 120, and a third attenuation region 122. Such a spectral mask 130 promotes interoperability, coexistence, and system capacity by limiting interference to adjacent and other channels for a wide variety of applications and/or standards. The out of band mask (e.g., the transition region 114 and the floor region 116) places a lower bound on interference levels that can be expected in receivers regardless of their particular implementation. In an effort to minimize the interference energy that appears on top of the desired signal, the out of band regions are made as small as possible. To facilitate the above objective, the channel pass region 112, which encompasses the desired signal, is of a value as close to the channel bandwidth as feasible. The transition region 114, which bounds the adjacent channel interference and is limited by the bandwidth of the baseband processing module 64 of FIG. 3 and the intermediate frequency mixing stage of the up-conversion module 81, is selected to minimize such interference (i.e., post IF inter-modulation distortion (IMD)). The floor region 116, which bounds other channel interference, which is outside the range of the filters and IMD limits and is generally limited by the local oscillation 100 phase noise, is selected based on achievable phase noise levels. For instance, the transition region 114 should have a roll off based on the shoulder height of IMD, which may be assumed to be produced by a 3rd order compressive non-linearity. Based on this assumption, the distorted transmit signal y(t) as a function of the ideal transmit signal x(t) can be expressed as: y(t)=x(t)−f(Ax3(t)), where f( ) is a bandpass filter that removes any DC or harmonic signals produced by the non-linearity and A=4/3(1/OIP3)2, where OIP represents “Output 3rd order intercept point”, and in the frequency domain Y(f)=X(f)−AX(F)*X(f)*X(f). As such, the distorted signal bandwidth will be no greater than three times the ideal signal bandwidth. The floor region 116, which is limited by the local oscillator phase noise, may be based on L(f) convolved with the power spectral density of the ideal transmit signal, where L(f) is defined in IEEE std. 1139-1999 as the normalized phase noise spectral density and where y(t)=x(t)l(t) and Y(f)=X(f)*L(f), where x(t) represents the ideal RF signal, l(t) is a model of the phase nose generated in the local oscillator, y(t) represents the resulting signal, and Y(f) is the resulting signal in the frequency domain. Note that at 10 MHz or more from the carrier, phase noise spectrum is relatively flat. From this, a −123 dBc/Hz noise floor may be achieved for 20 MHz channels and a −126 dBc/Hz noise floor may be achieved for 40 MHz channels. FIG. 5 is a table illustrating a few examples of values for a configurable spectral mask 100. While the table includes channel widths of 10, 20, and 40 MHz, one of average skill in the art will appreciate; other channel widths may be used. Further, the transition region may include more or less attenuation regions than the three shown in FIG. 4. FIG. 6 is a diagram of a wide bandwidth channel 130 (e.g., 40 MHz) with reference to two legacy channels 132, 134 (e.g., 20 MHz channel N and 20 MHz channel N+1) and a legacy guard interval 136. To construct a wide bandwidth signal 130 without regard as to whether legacy devices are present, the overlapping legacy portions of the two channels 132, 134 are considered when establishing the format for the wide bandwidth channel 130. In one embodiment, the preamble of the wide bandwidth signal 130 includes a legacy header portion (e.g., a preamble in accordance with an earlier version or predecessor of IEEE 802.11n) within the header spectral portion of the first channel 132 (e.g., Channel N) and/or in the second channel 134 (e.g., Channel N+1). As such, legacy devices will be able to recognize the frame and, based on the information contained within the preamble, refrain from transmission until the wide bandwidth signal 130 has been transmitted. For newer communication devices (i.e., those capable of transceiving the wide bandwidth signals), they transmit data and/or header information within the guard band 136 of legacy channels and in the channels. This expands the amount of data that may be transmitted within frame. In one embodiment, the preamble and packet header of the wide-bandwidth signal 130 uses the same spectrum that the payload of the wide-bandwidth signal 130 will use to provide a legitimate preamble and packet headers that can be transmitted in the portion of the spectrum used by legacy devices. Further, energy of the signal is transmitted in the legacy guard bands 136 so that the receiver may perform reliable preamble processing (carrier detection, gain control, channel estimation, etc.) on the wide-bandwidth signal 130. In an embodiment, the multiple-channel legacy preambles and packet headers will allow legacy-station reception of the preamble and reliable carrier detection, gain control, and channel estimation over the legacy channels 132, 134. The guard-band 136 transmission allows for reliable carrier detection, gain control, and channel estimation for the remainder of the spectrum (which will be used for transmission of the wide-bandwidth payload). Further, legacy stations are generally tolerant of adjacent channel transmissions which are at the same power as the desired signal. Still further, legacy stations will see legitimate preambles and packet headers so that they will be able to detect that a signal is present, perform gain control, channel estimation, and other preamble processing, and/or decode the packet header and thereby defer transmission until the end of the wide-band transmission. Yet further, the energy transmitted in the guard band 136 will be disregarded by the receiver and will therefore not hinder the reception of the legacy components of the wide-band signal. For the newer devices (e.g., IEEE 802.11n compliant), the devices will have more energy for carrier detection, be able to perform a better estimate of received power, thereby being able to do better gain control on the packet, be able to estimate the channel response in the guard band (for use during payload demodulation), and have full access to the medium since legacy stations can see the transmission and defer until its end. FIG. 7 is a diagram depicting a wireless communication between two wireless communication devices 100 and 102 that are in a proximal region where the only protocol that is used is IEEE 802.11n. The wireless communication may be direct (i.e., from wireless communication device to wireless communication device), or indirect (i.e., from a wireless communication device to an access point to a wireless communication device). In this example, wireless communication device 100 is providing frame 104 to wireless communication device 102. The frame 104 includes a wireless communication set-up information field 106 and a data portion 108. The wireless communication set-up information portion 106 includes a short training sequence 157 that may be 8 microseconds long, a 1st supplemental long training sequence 159 that may be 4 microseconds long, which is one of a plurality of supplemental long training sequences 161, and a signal field 163 that may be 4 microseconds long. Note that the number of supplemental long training sequences 159, 161 will correspond to the number of transmit antennas being utilized for multiple input multiple output radio communications. The data portion of the frame 104 includes a plurality of data symbols 165, 167, 169 each being 4 microseconds in duration. The last data symbol 169 also includes a tail bits and padding bits as needed. FIG. 8 is a diagram of a wireless communication between two wireless communication devices 100 and 102, each of which is compliant with IEEE 802.11n. Such a communication is taking place within a proximal area that includes 802.11n compliant devices, 802.11a compliant devices and/or 802.11g compliant devices. In this instance, the wireless communication may be direct or indirect where a frame 110 includes a legacy portion of the set-up information 112, remaining set-up information portion 114, and the data portion 108. The legacy portion of the set-up information 112 includes a short training sequence 157, which is 8 microseconds in duration, a long training sequence 171, which is 8 microseconds in duration, and a signal field 173, which is 4 microseconds in duration. The signal field 173, as is known, includes several bits to indicate the duration of the frame 110. As such, the IEEE 802.11a compliant devices within the proximal area and the 802.11g compliant devices within the proximal area will recognize that a frame is being transmitted even though such devices will not be able to interpret the remaining portion of the frame. In this instance, the legacy devices (IEEE 802.11a and IEEE 802.11g) will avoid a collision with the IEEE802.11n communication based on a proper interpretation of the legacy portion of the set-up information 112. The remaining set-up information 114 includes additional supplemental long S k = [ s 10 , k s 11 , k s 12 , k s 20 , k s 21 , k s 22 , k s 30 , k s 31 , k s 32 , k ] = [ s 00 , k s 00 , k ⁢ ⅇ ⅈ · θ k s 00 , k · ⅇ ⅈ · ϕ k s 00 , k s 00 , k · ⅇ ⅈ · ( θ k - 4 · π 3 ) s 00 , k · ⅇ ⅈ · ( ϕ k - 2 · π 3 ) s 00 , k s 00 , k · ⅇ ⅈ · ( θ k - 2 · π 3 ) s 00 , k · ⅇ ⅈ · ( ϕ k - 4 · π 3 ) ] θ k = π · k / ( 4 · N subcarriers ) ϕ k = π · ( k + 4 ) / ( 2 · N subcarriers ) training sequences 159, 161, which are each 4 microseconds in duration. The remaining set-up information further includes a high data signal field 163, which is 4 microseconds in duration to provide additional information regarding the frame. The data portion 108 includes the data symbols 165, 167, 169, which are 4 microseconds in duration as previously described with reference to FIG. 7. In this instance, the legacy protection is provided at the physical layer. FIG. 9 is a diagram of a wireless communication between two wireless communication devices 100 and 102 that are both IEEE 802.11n compliant. The wireless communication may be direct or indirect within a proximal area that includes IEEE 802.11 compliant devices, IEEE 802.11a, 802.11b and/or 802.11g devices. In this instance, the frame 111 includes a legacy portion of the set-up information 112, remaining set-up information 114 and the data portion 108. As shown, the legacy portion of the set-up information 112, or legacy frame, includes an IEEE 802.11 PHY preamble (i.e., STS 157, LTS 171, and signal field 173) and a MAC partitioning frame portion 175, which indicates the particulars of this particular frame that may be interpreted by legacy devices. In this instance, the legacy protection is provided at the MAC layer. The remaining set-up information 114 includes a plurality of supplemental long training sequences 159, 161 and the high data signal field 163. The data portion 108 includes a plurality of data symbols 165, 167, 169 as previously described. FIG. 10 is a diagram of a wide bandwidth signal transmission. In this embodiment, two legacy channels 132, 134 (channel N and channel N+1) and a guard band 136 are aggregated together to produce a composite wide bandwidth signal 130-1 for a single input single output transmission. As one of average skill in the art will appreciate, three or more legacy channels with multiple guard bands may be combined in a similar manner to produce a wider bandwidth composite signal. FIG. 11 is a diagram of a wide bandwidth signal 130-2 multiple input multiple output transmission. In this embodiment, two legacy channels 132, 134 (channel N and channel N+1) and a guard band 136 are simultaneously transmitted on a channel and are combined via the transmission medium. As one of average skill in the art will appreciate, three or more legacy channels with multiple guard bands may be combined in a similar manner to produce a wider bandwidth composite signal. FIG. 12 is a diagram of the wide bandwidth channel 130 of FIGS. 10 and 11 in the frequency domain. In this illustration, the subcarriers of channel N 132, the guard band 136, and channel N+1 134 comprise the wide bandwidth channel 130. FIG. 13 is a logic diagram of a method for transmitting wide bandwidth signals in a network that includes legacy devices that begins at step 140 where an RF transmitter determines channel bandwidth of a channel that supports the wide bandwidth signals in the network. The method then proceeds to step 142 where the RF transmitter determines overlap of legacy channel bandwidth with the channel bandwidth of the channel. The method then continues to step 144 where the RF transmitter provides a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel. The method of FIG. 13 may further includes utilizing at least a portion of payload spectrum of the channel that for packet header transmission, wherein the packet header transmission includes at least a portion of the legacy readable preamble. In such an embodiment, the utilization of the at least a portion of the payload spectrum may further include utilizing a same power spectral density for the packet header transmission and for the payload and/or utilizing a different power spectral density for the packet header transmission and for the payload. The method of FIG. 13 may further include, interpreting, by the legacy devices, the legacy readable preamble such that the legacy devices appropriately defer transmissions and decode a portion of the wide bandwidth signals within a channel spectrum of the legacy devices. The method of FIG. 13 may further include generating a wide-bandwidth preamble of the wide bandwidth signals for at least one of: carrier detection, gain control, frequency offset estimation, channel estimation, transmission deference, and data demodulation. FIG. 14 is a logic diagram of a method for generating a preamble of a frame for a wide-bandwidth channel wireless communication that begins at step 150 where an RF transmitter generates a legacy carrier detect field. The method then proceeds to step 152 where the RF transmitter generates a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field. The method then proceeds to step 154 where the RF transmitter generates a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field. The method of FIG. 14 may further include the RF transmitter generating at least one additional channel sounding field that includes a second plurality of tones and generating another signal field, wherein the at least one additional channel sounding field follows, in time, the legacy signal field, and the another signal field follows the at least one additional channel sounding field. The method of FIG. 14 may further include the RF transmitter generating the legacy carrier detect field in accordance with a legacy wireless protocol, wherein a legacy channel of the legacy wireless protocol has a first channel bandwidth and wherein the wide-bandwidth channel includes at least two legacy channels. Next, the RF transmitter generates a first portion of the channel sounding field in accordance with the legacy wireless protocol, wherein the first portion of the channel sounding field corresponds to the first set of the plurality of tones. Next, the RF transmitter generates a second portion of the channel sounding field in accordance with a current wireless protocol, wherein the second portion of the channel sounding field corresponds to remaining tones of the plurality of tones. In accordance with the preceding paragraph, the method of FIG. 14 may further include the RF transmitter generating a short training sequence as the legacy carrier detect field in accordance with a legacy version of an IEEE 802.11 protocol. Next, the RF transmitter generates a long training sequence as the first portion of the channel sounding field in accordance with a legacy version of an IEEE 802.11 protocol. Next, the RF transmitter repeats the long training sequence as at least part of the second portion of the channel sounding field in accordance with a current version of an IEEE 802.11 protocol. The RF transmitter may further generate the second portion of the channel sounding field further by generating tones within a guard band field between the at least two legacy channels of the wide-bandwidth channel. As one of average skill in the art will appreciate, the term “substantially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. As one of average skill in the art will further appreciate, the term “operably coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As one of average skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “operably coupled”. As one of average skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1. The preceding discussion has presented various embodiments for wide bandwidth communications in a network that includes legacy devices. As one of average skill in the art will appreciate, other embodiments may be derived from the teachings of the present invention without deviating from the scope of the claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The transmission of wide bandwidth signals in a network having legacy devices of the present invention substantially meets these needs and others. In one embodiment a method for transmitting wide bandwidth signals in a network that includes legacy devices begins by determining channel bandwidth of a channel that supports the wide bandwidth signals in the network. The method continues by determining overlap of legacy channel bandwidth with the channel bandwidth of the channel. The method continues by providing a legacy readable preamble section within the channel where the legacy channel bandwidth overlaps the channel bandwidth of the channel. In another embodiment, a method for generating a preamble of a frame for a wide-bandwidth channel wireless communication begins by generating a legacy carrier detect field. The method continues by generating a channel sounding field, wherein the channel sounding field includes a plurality of tones within the wide-bandwidth channel, wherein a first set of the plurality of tones corresponds to tones of a legacy channel sounding field. The method continues by generating a legacy signal field, wherein, in time, the legacy signal field follows the channel sounding field, which follows the legacy carrier detect field.
20041026
20080715
20050901
78187.0
1
LE, DANH C
TRANSMISSION OF WIDE BANDWIDTH SIGNALS IN A NETWORK HAVING LEGACY DEVICES
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,973,876
ACCEPTED
Athletic training device
A training device for figure skaters and other athletes includes an elongate bungee-type cord, and a clipping mechanism with two normally closed loops secured to one end of the cord. At the other end, the cord is secured to itself to form a loop designed to accommodate the user's wrist. With the loop on the wrist and with the other end of the cord secured to the skate or other footwear by the clipping mechanism, the user practices gliding, spinning, twisting, or jumping maneuvers. The elasticity of the cord is selected to provide a gentle tensile force that guides the relative positioning of the linked hand and foot as the maneuvers are performed, to positively reinforce the correct positioning for the maneuvers.
1. A training device for reinforcing a desired relative positioning of extremities during a gliding, spinning, twisting or jumping maneuver, including: an elongate tension member having a nominal length when in a relaxed state, with the nominal length selected relative to a user for an extension of the tension member, when in the relaxed state, from the user's foot at least to the user's waist; a first coupling structure adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of the user; a second coupling structure adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and selected foot through the tension member; wherein the tension member is extensible elastically, through relative movement of the selected hand and the selected foot when so operatively linked, at least to a predetermined level of elongation corresponding to a maximum distance between the selected hand and the selected foot during a maneuver, and wherein the tension member exerts a tensile force that increases with tension member elongation to an upper-level tensile force corresponding to the predetermined level of elongation; and wherein the tension member has an elasticity selected such that the upper-level tensile force is less than a tensile force necessary for any substantial muscle exercise or muscle stress, whereby the tension member when elongated during the maneuver, tends to guide the selected hand and the selected foot toward a desired relative positioning with minimal impact on freedom of movement. 2. The device of claim 1 wherein: the tension member comprises a resilient cord. 3. The device of claim 1 wherein: the first coupling structure comprises a clipping mechanism having at least one spring-loaded closure member. 4. The device of claim 3 wherein: the clipping mechanism has a plurality of the spring-loaded closure members and a plurality of associated loops, each closure member being biased to close its associated loop. 5. The device of claim 1 wherein: the second coupling structure comprises a loop formed at the second end of the coupling structure. 6. The device of claim 5 wherein: said loop is resilient, and sized to accommodate a wrist of the user when in a relaxed state. 7. The device of claim 1 wherein: the tension member at said predetermined level of elongation has an extended length of at most about 1.8 times the nominal length. 8. The device of claim 1 wherein: the tension member when extended to a length of 1.8 times the nominal length, exerts a tensile force of less than fifteen pounds. 9. The device of claim 8 wherein: the tension member, when so extended, exerts a tensile force less than five pounds. 10. The device of claim 1 wherein: the tension member, when extended to a length exceeding the nominal length by one-third, generates a tensile force in the range of about one pound to about five pounds. 11. A training device for reinforcing a desired relative positioning of extremities during a gliding, spinning, twisting or jumping maneuver, including: an elongate elastically extensible tension member having a nominal length when in a relaxed state; a first coupling structure adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of a user; a second coupling structure adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and foot; wherein the tension member is elastically extensible at least to a predetermined length of 1.8 times the nominal length, exerts a tensile force that increases with tension member elongation, and has an elasticity selected such that when at the predetermined length, the tension member exerts a tensile force of less than fifteen pounds. 12. The device of claim 11 wherein: the tension member comprises a resilient cord. 13. The device of claim 11 wherein: the first coupling structure comprises a clipping mechanism having at least one spring- loaded closure member. 14. The device of claim 13 wherein: the clipping mechanism has a plurality of the spring-loaded closure members and a plurality of associated loops, each closure member being biased to close its associated loop. 15. The device of claim 11 wherein: the second coupling structure comprises a loop formed at the second end of the coupling structure. 16. The device of claim 15 wherein: said loop is resilient, and sized to accommodate a wrist of the user when in a relaxed state. 17. The device of claim 1 wherein: the nominal length of the tension member is selected relative to the user whereby the tension member in the relaxed state extends from the user's foot at least to the user's waist. 18. The device of claim 17 wherein: the tension member is extensible to an intermediate length selected for correspondence with a maximum distance between the selected hand and the selected foot during a maneuver performed by the user with the selected hand and selected foot operatively linked through the tension member, and the selected intermediate length is at most about 1.65 times the nominal length. 19. The device of claim 11 wherein: the tension member at the predetermined length generates a tensile force of less than nine pounds. 20. The device of claim 19 wherein: the tension member at the predetermined length generates a tensile force of less than five pounds. 21. The device of claim 11 wherein: the tension member, when extended to a length exceeding the nominal length by one-third, generates a tensile force in the range of about one pound to about five pounds. 22. A process for practicing an athletic maneuver involving a predetermined relative positioning of the extremities, including: selecting a first tension member having a relaxed-state length sufficient for extension from a user's foot to at least the user's waist, elastically extensible and thereby generating a tensile force that increases with elongation, and having a selected elasticity such that the tensile force at eighty percent elongation is less than fifteen pounds; releasably securing a first end of the first tension member proximate to and with respect to a first foot of the user; releasably securing a second end of the first tension member proximate to and with respect to a first hand of the user, to operatively link the first foot and the first hand; with the first foot and first hand operatively linked, repeating an athletic maneuver involving a relative positioning of the first selected hand and the first selected foot that requires an elongation of the first tension member. 23. The process of claim 22 wherein: releasably coupling the first end of the first tension member comprises wrapping the first tension member about the first foot and capturing a portion of the first tension member within a loop disposed at the first end with the first tension member surrounding the first selected foot. 24. The process of claim 23 wherein: releasably securing the first end comprises wrapping the first tension member about the first foot at least twice. 25. The process of claim 22 wherein: releasably securing the second end of the first tension member comprises placing a loop disposed at said second end about the wrist associated with the first hand. 26. The process of claim 22 wherein: the first hand and first foot are on the same side of the user's body. 27. The process of claim 22 wherein: the first foot and first hand are opposite one another. 28. The process of claim 27 wherein: the first tension member extends across the front of the user's body when the first hand and first foot are operatively linked. 29. The process of claim 27 wherein: the first tension member is disposed behind the user's body when the first and first foot are operatively linked. 30. The process of claim 22 further including: selecting a second tension member substantially identical to the first tension member; releasably securing a first end of the second tension member proximate to and with respect to a second foot of the user, and releasably securing a second end of the second tension member proximate to and with respect to a second hand of the user, to operatively link the second hand and the second foot; wherein the athletic maneuver further involves a predetermined relative positioning of the second hand and the second foot that requires elongation of the second tension member. 31. The process of claim 30 wherein: the first hand and first foot are opposite the second hand and second foot. 32. The process of claim 30 wherein: the first hand is opposite a first foot, and the second hand is opposite the second foot.
This application claims the benefit of priority based on Provisional Application No. 60/515,589 entitled “Athletic Training Device,” filed Oct. 30, 2003. BACKGROUND OF THE INVENTION Advances in the figure skating and other sports have been achieved through improved coaching techniques, better equipment, sports medicine and nutrition. In figure skating, primary emphasis is now placed on the use of training techniques and fixed equipment intended to reinforce the skater's proper upper and lower body position, and the use of the skater's muscle memory. To date, skaters have relied on the ability of a coach to observe their movements and effectively communicate (typically verbally) suggestions for improvement. This after-the-fact feedback from a coach requires frequent and intensive time with the coach. Also, training harnesses have been used to a certain extent. A variety of exercising devices are known to involve couplings between the hands and feet of users. Examples are seen in the following U.S. patents: U.S. Pat. No. 2,160,722 (Cunningham); U.S. Pat. No. 3,752,474 (Macabet, et al.); U.S. Pat. No. 4,121,827 (Weider); U.S. Pat. No. 5,263,916 (Bobich); and U.S. Pat. No. 5,545,113 (Bobich). The exercise device in the '113 patent features clips for convenient attachment to laced athletic shoes of the user. Other devices featuring loops or handles at the opposite ends of an elastic cord or other elongate member, include: U.S. Pat. No. 3,589,721 (Cronauer); U.S. Pat. No. 3,838,852 (Gury); Des. No. 263,613 (Henry); Des. 368,501 (Woodruff); and Des. 396,077 (Heine). The devices described in the foregoing patents typically use resistance cords to strengthen muscles and provide aerobic workouts. The resistance of the cord is a substitute for a physical weight. Although these patents do not specify the tensile strength of their cords, the purpose of muscle strengthening typically requires cord sizes (particularly diameters) greater than ½ inch (12.7 mm), increasing with the desired amount of resistance. The sizes of end members such as handles and wrist straps in these devices are consistent with a relatively high tensile force in the cord or other resilient member. Other patents show the use of a resilient cord said to teach muscle memory and influence the position of an athlete toward a desired correct position. Specifically, U.S. Pat. No. 4,955,608 (Dougherty et al.) discloses an athletic movement trainer including a belt and ankle straps that hold a resilient, bungee-type cord in place to add resistance for the lower body and leg muscle groups. The Dougherty device is directed to maintaining a bent-knee position with the feet firmly in place on a playing surface (e.g. for tennis). The cord is connected to the waist through a ring, and is then stretched down the back of the legs to the ankle straps. The cord is slack while the user maintains the correct position, but becomes tensioned when the user deviates from that position. The device is connected to both legs, and is confined to lower body training needs. Dougherty does not mention gliding sports such as figure skating, or stretching and twisting sports such as figure skating, dance, gymnastics, or diving. U.S. Pat. No. 6,551,221 (Marco) is directed to a device intended to encourage a bent-knee position for gliding sports, such as skating. This device includes a belt and clips to mount bungee-type cords to the belt clips. Similar clips mount the cords to skates or other footwear. The Marco device places the cords in front of the athlete. The bungee-type cord is functionally focused on the lower body, and would interfere with movements and positions used in most figure skating maneuvers such as single foot-straight leg glides, jumps or spins. Although the foregoing devices may be well suited for their respective purposes, they either involve the high levels of tensile resistance associated with muscular exercise and stress; or, as in the case of Dougherty and Marco, they use cord tension to discourage deviation from a desired position associated with a slack cord. Thus, they fail to provide an alignment or placement of a properly tensioned resilient cord in a manner that affords a high degree of freedom of movement while reinforcing and teaching proper positioning in the performance of jumps, spins, single foot-straight leg glides, and other movements intended to exhibit grace and style. Therefore, it is an object of the present invention to provide a training device for reinforcing correct relative positioning of the extremities during maneuvers that emphasize grace and style, and accordingly require considerable freedom of movement. Another object is to provide an athletic training device that can be attached quickly and conveniently to or close to a user's hand and foot, and that is simple and easy to use in practicing a wide variety of athletic maneuvers involving glides, jumps, twists, or spins. A further object is to provide a process for practicing athletic maneuvers that affords freedom of movement yet gives the user immediate feedback and encouragement toward correct relative positioning of the extremities for each maneuver being practiced. Yet another object is to provide a training device that incorporates an elastically extensible component adapted to exert a substantially uniform, low-level tensile force over multiple repetitions of a given maneuver. SUMMARY OF THE INVENTION To achieve these and other objects, there is provided a training device for reinforcing a desired relative positioning of extremities during a gliding, spinning, twisting or jumping maneuver. The device includes an elongate tension member having a nominal length when in a relaxed state. The nominal length is selected relative to a user for an extension of the tension member, when in the relaxed state, from the user's foot at least to the user's waist. A first coupling structure is adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of the user. A second coupling structure is adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and selected foot through the tension member. The tension member is extensible elastically, through relative movement of the selected hand and the selected foot when so operatively linked, at least to a predetermined level of elongation corresponding to a maximum distance between the selected hand and the selected foot during a maneuver. The tension member exerts a tensile force that increases with tension member elongation to an upper-level tensile force corresponding to the predetermined level of elongation. The tension member has an elasticity selected such that the upper-level tensile force is less than a tensile force necessary for any substantial muscle exercise or muscle stress, whereby the tension member when elongated during the maneuver, tends to guide the selected hand and the selected foot toward a desired relative positioning with minimal impact on freedom of movement. The purpose of the training device is to guide an athlete into the proper body position while the athlete is performing a maneuver, without restricting movement. To this end, the device provides slight resistance, through a bungee cord or other tension member attached with respect to the extremities. When the hands and feet are in a position of least resistance, the athlete has achieved the proper body position. In this manner the device provides an alignment “reminder” to maintain proper positioning of the upper body, lower body, and extremities. After repeated use of this device, the athlete's muscles “remember” the proper position and tend to return to that position while the maneuver is being performed. Once the athlete achieves initial understanding and control, more advanced maneuvers can be performed with strength and style. The capability to guide and train skaters and other athletes in this manner results from providing bungee-type cords or other elongate tension members with the correct length and resilience. With regard to cord length, the tension member in the relaxed state should reach from the foot to the user's waist or slightly beyond. If a given tension member is too long, it is conveniently adjusted in length, simply by winding the tension member an additional turn about the foot. With regard to resilience, the device of the present invention utilizes a cord or other tension member with a tensile force much lower than that considered necessary for muscle strengthening and exercising applications. For example, a cord constructed according to the present invention may require a force of less than five pounds, more preferably less than three pounds, and even more preferably one pound of tensile force to achieve a one-foot (30.5 cm) elongation in a cord with a relaxed-state length of three feet (91.5 cm). In other words, a one-third (approximately 33%) elongation may require in the range of one to five pounds of tensile force. More generally, resilient cords or other tension members exhibiting relatively low levels of tensile force, while not constructed to exert forces sufficient for significant muscle strengthening, are particularly well suited for encouraging the skater or other athlete by guiding him or her toward the correct positions in a variety of maneuvers. It has been found, in connection with a variety of athletic maneuvers but particularly for the spins, glides and jumps in figure skating, that the proper positions of the arms and legs, and of feet and hands relative to each other, substantially coincide with minimum levels of tension in the cord or other tension member. Thus, the natural tendency to move the arms and legs toward reduced tension, also moves the arms and legs toward the desired position in the maneuver. When elongated, the tension member generates or exerts a tensile force that increases with elongation. In other words, an internal elastic restoring force acts lengthwise along the cord, tending to draw the cord back to the nominal, relaxed-state length. When operatively linking an athlete's hand and foot, the tension member when elongated tends to draw the linked hand and foot toward one another. The present training device uses tension in a positive manner to guide the user toward a correct relative positioning of the extremities, specifically an operatively linked hand and foot. The “relative positioning” takes into account not only the positions of the hand and foot relative to each other, but also their positions with respect to the user's body. The positive use of tension is counterintuitive, and represents a significant departure from conventional devices in which tension is used negatively, i.e. to discourage departure from a correct position associated with slack in the tension member. A key factor facilitating the positive use of tension is the selection of tension members with low elastic moduli, i.e. elasticities that allow substantial elongation while generating a low tensile forces. The much higher tension levels in muscle exercising devices, while suitable for their intended purposes, would exert unduly high levels of tension upon skaters and other athletes attempting spins, twists, glides and leaping maneuvers, and thus would run counter to the type of training achieved by the present device, which affords maximum freedom of movement in combination with a relatively gentle application of tensile force. An additional advantage is that the present athletic training device is comfortable to wear, quick and easy to attach, and simple and uncomplicated to use. This enhances the potential of the device to increase the athlete's awareness of posture, alignment, and stretch, while avoiding unnecessary restrictions on the movement of the athlete as he or she engages in a wide variety of movement based sports. The training device is particularly well suited for skaters. In this regard, the resilient cord or other tension member is adapted at one end to receive a clip, preferably with at least two spring-loaded closure members, each tending to close a loop but movable against the spring force to open the loop. In use, a first one of the loops is releasably attached to the laces of the user's skate. Then, the cord is wrapped about the skate, threaded through the opening above the blade and below the boot portion of the skate, and releasably received into the second loop of the clip. This approach to attachment achieves an advantageous combination of convenience and stability. The loop attached to the laces is not relied upon for cord-securing strength, but simply to prevent the clip from sliding with respect to (and possibly off) the skate. The primary holding force is exerted by the cord itself, enhanced by its threading through the other loop of the clip. The result is a convenient attachment to the skate without exerting undue force upon the laces. Further in accordance with the present invention, there is provided a training device for reinforcing a desired relative positioning of extremities during a gliding, spinning or jumping maneuver. The device includes an elongate elastically extensible tension member having a nominal length when in a relaxed state. A first coupling structure is adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of a user. A second coupling structure is adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and foot. The tension member is elastically extensible at least to a predetermined length of 1.8 times the nominal length, exerts a tensile force that increases with tension member elongation, and has an elasticity selected such that when at the predetermined length, the tension member generates a tensile force of less than fifteen pounds. Another aspect of the present invention is a process for practicing an athletic maneuver involving a predetermined relative positioning of the extremities, including: a. selecting a first tension member having a relaxed-state length sufficient for extension from a user's foot to at least the user's waist, elastically extensible and thereby generating a tensile force that increases with elongation, and having a selected elasticity such that the tensile force at eighty percent elongation is less than fifteen pounds; b. releasably securing a first end of the first tension member proximate to and with respect to a first foot of the user; c. releasably securing a second end of the first tension member proximate to and with respect to a first hand of the user, to operatively link the first foot and the first hand; and d. with the first foot and first hand operatively linked, repeating an athletic maneuver involving a relative positioning of the first selected hand and the first selected foot that requires an elongation of the first tension member. Thus in accordance with the present invention, a tension member operatively coupled between a user's hand and foot applies a light tensile force tending to guide the hand and foot toward a desired relative positioning in a gliding, jumping or spinning maneuver. The device makes use of the natural tendency to move the arm and leg toward the reduced-tension positions, which coincide with the positions desired in performing various maneuvers. Repetition develops the memory of the muscles, so that after multiple repetitions, the arm and leg tend to return to their intended positions, even in the absence of the device. IIN THE DRAWINGS For a further understanding of the above features and advantages, reference is made to the following detailed description and to the drawings, in which: FIG. 1 is a top plan view of a training device constructed in accordance with the invention; FIG. 2 illustrates an attachment of a lower section of the device to an ice skate; FIG. 3 illustrates an attachment of the training device to footwear without laces; FIG. 4 illustrates an alternative, length-reducing attachment of the training device; FIGS. 5-8 illustrate alternative uses of a single athletic training device in accordance with the invention; and FIGS. 9-11 illustrate alternative uses for a pair of the athletic training devices. DETAILED DESCRIPTIO OF THE PREFERRED EMBOIMENTS Turning now to the drawings, there is shown in FIG. 1 an athletic training device 16 including a resilient cord or other element 18, preferably a bungee-type cord. Cord 18 is secured to itself at each end, with a fastener 20 to form a larger loop 22, and with a fastener 24 to form a smaller loop 26. Fasteners 20 and 24 preferably are metal sleeves that can be plastically deformed, i.e. squeezed together or crimped to secure the connection. As an alternative to sleeves, fasteners 20 and 24 can include D-rings, knots, sewn connections, or circular rings, preferably formed of metal but alternatively formed of plastic, wood, or ceramic material. Larger loop 22 is expandable to accommodate an athlete's hand therethrough, and in a relaxed (unstretched) state is sized to comfortably accommodate the wrist of the athlete. Smaller loop 26 connects the cord to a clipping mechanism 28. The clipping mechanism includes an S-shaped frame 30, and two spring-loaded closure members 32 and 34 pivotally mounted to the frame. Closure members 32 and 34 are biased into respective notches 36 and 38 formed in frame 30, and cooperate with their associated segments of the frame to form respective normally closed loops 40 and 42. Each closure member can be pivoted inwardly against the spring force in the direction indicated by the arrow 44, to open its associated loop. FIG. 2 shows clipping mechanism 28 attached to the laces 46 of an ice skate 48. One of the loops of clipping mechanism 28, preferably loop 42 to which cord 18 is attached, is opened (by moving closure member 34) to admit laces 46. Cord 18 loops under a boot 50 of the skate but above a blade 52 (see FIG. 7), and re-enters clipping mechanism 28 forming a skate-surrounding loop with the cord. This is accomplished by manipulating closure member 32 of clip 28, to admit cord 18 into normally closed loop 40 of the clip, i.e. the one not containing laces 46. The mode of attachment is particularly convenient, because it facilitates directing cord 18 through the opening between blade 52 and the boot 50, where (unlike the case of a shoe or slipper) the loop surrounding the skate cannot simply be slipped over the toe. Further, this mode of attachment ensures that the connection derives its strength from the skate-surrounding loop, rather than depending on the connection to laces 46. The cord 18 then continues to the wrist loop. This is the recommended configuration for connecting the training device to ice skate 50. Cord 18 can be quickly and conveniently detached from the skate, by opening the cord-accommodating loop 40 to release the cord, opening the adjacent loop 42 to free the clip from laces 46, then pulling the cord away from the skate through the opening between the boot and blade. FIG. 3 shows how the quick attach and release clipping mechanism 28 is used to attach device 16 to a moccasin 54. A similar approach can be used with a shoe, a ballet slipper, or even the bare foot. Cord 18 is looped under the moccasin, slipper or shoe as indicated at 56, and re-clips into clipping mechanism 28 forming a loop with the cord. As before, closure member 32 is manipulated to insert cord 18 into loop 40 which is adjacent loop 42 connected to loop 26 at the end of the cord. It is readily apparent that the cord is secured to the moccasin or other footwear by virtue of the tension in cord 18, and does not require laces or any other portion of the footwear to establish a satisfactory releasable connection. Cord 18 then continues to the wrist loop. This is. the recommended configuration for connecting the device to bare feet, moccasins, ballet slippers or unlaced shoes. FIG. 4 shows an alternative attachment of device 16 to moccasin 54 or a slipper, shoe, or bare foot. Cord 18 is looped under moccasin 54 as indicated at 56, then looped or wrapped around the moccasin a second time as indicated at 58. Then, cord 18 is inserted into the clipping mechanism, this time forming a double loop around the moccasin with the cord. This effectively decreases the length of the cord continuing to the wrist loop. This is the recommended configuration for connecting and shorting the length of the device to moccasin 54, or to a skate, shoe, bare foot, or slipper. FIG. 5 illustrates the recommended configuration for operatively linking the same side hand and foot in front of the athlete's body. Cord 18 runs from loop 22 surrounding the athlete's left wrist to left skate 48 which is surrounded by the cord. The quick attach and release clipping mechanism 28 attaches to laces of the skate as previously described, which in effect attaches the lower cord to the lower extremity (i.e. the foot). This configuration may be used for practicing camel spins or spirals. FIG. 6 illustrates the recommended configuration for connecting the opposite hand and foot in front of the body. Cord 18 runs from loop 22 surrounding the right wrist to left skate 48 which is surrounded by the cord. Clipping mechanism 28 attaches to laces of the skate, which in effect attaches the cord to the lower extremity (i.e. the foot). This configuration may be used to practice back camels, jumps or spins. FIG. 7 illustrates the recommended configuration for connecting the opposite hand and foot, with cord 18 disposed in back of the body. Cord 18 extends from loop 22 at the left wrist loop downwardly behind the back to a right skate 48 which is surrounded by the cord. Clipping mechanism 28 attaches to laces 46 of the skate, which in effect attaches the cord to the right foot. FIG. 8 illustrates the recommended configuration for connecting the same side hand and foot while disposing the cord back of the body. Cord 18 extends from loop 22 at the left wrist loop downwardly behind the back to the left skate which is surrounded by the cord. Clipping mechanism 28 attaches to laces of the skate, which in effect attaches the lower end of the cord to the left foot. With a shortened cord, this configuration may be used to practice laybacks and spirals. FIG. 9 illustrates the configuration for connecting two cords to the opposite hands and feet in front of the athlete's body. Cord 18 runs from the upper extremity, the right wrist, to the left foot loop formed by the cord. Clipping mechanism 28 attaches to laces of the left skate. A cord 60 is attached by loop 62 to the left wrist, and extends to the right skate where an associated clipping mechanism 64 is attached to the skate laces, with the cord wrapped around the skate as previously described. FIG. 10 illustrates a configuration for connecting two cords to the opposite hands and feet with one cord in front of the athlete's body and the other behind the body. Cord 18 extends from the right wrist in front of the body to the left foot loop formed by the cord. The clipping mechanism attaches to laces of the left skate. Second cord 60 runs from loop 62 at the left wrist, then behind the body to the right skate where the lower end of the cord is secured about the skate using clipping mechanism 64 as previously described. FIG. 11 illustrates a configuration for connecting two cords to the same-side hands and feet. First cord 18 runs from the right wrist to the right foot loop formed by the cord. Clipping mechanism 28 attaches to laces of the right skate. Second cord 60 extends from loop 62 surrounding the left wrist, to a bottom portion clipped to and surrounding the left skate in the manner previously described. This configuration may be used to practice stroking, crossovers, and split jumps. The preferred resilient tension member is a cord such as a bungee-type cord. Suitable alternatives include bands, springs, and monofilament or multifilament cables. The cord is secured to itself at both ends forming loops with a fastener. The larger loop accommodates an athlete's upper extremity (wrist), typically connecting the cord to the wrist. The smaller loop provides a connection for the cord to a clipping mechanism. The clipping mechanism has spring-loaded closure members as described above for attaching to the skate, shoe, slipper or to itself to form a loop for the lower extremity (foot). An alternative clip has a generally triangular main body, and three spring-loaded closure members. The means for securing the cord to itself to form the loops can include clips, D-rings, sleeves, knots, sewing, or circular rings or other means of securing an end of a cord to itself. These can be formed from a variety of materials including metals, plastics, wood, or ceramics. The length of the cord can be adjusted, or cords may be provided in different lengths to accommodate the athletes with different heights and arm spans. The tensile strength of the correctly configured bungee-type cord is sufficient to provide constant tension without providing enough resistance for any substantial exercise or stress to the muscles. The large loop 22 (upper extremity/wrist connection) may be replaced with an article other than a loop, such as a strap, band, handle, or bracelet—either resilient or inextensible. The clipping mechanism used to attach the cord to the skate, other footwear or bare foot, can include a carabiner, D-ring, circular ring, or any other means of attaching ends of cords. Materials for this component can include metal, plastic, wood, or ceramics. Releasable attachment means such as clamps, buttons, zippers, and VELCRO hook-and-loop closures may be used in lieu of the clipping mechanism. Use of the training device to practice skating maneuvers begins with selecting a tension member having a relaxed-state length sufficient for extension from the user's foot to the user's waist or slightly above the waist. If a cord or other tension member is too long, it can be wrapped around the skate as previously described. Then, the selected cord is secured releasably at one end to the user's skate, and at the other end about the user's wrist as illustrated in FIGS. 5-8. Alternatively, two of the cords are secured according to one of the approaches illustrated in FIGS. 9-11. As the athlete performs a maneuver such as a jump in figure skating, tension in the cord is greater if the athlete's body is out of position. The position with the least amount of resilient cord tension is the proper position for the maneuver. As the athlete repeatedly practices the maneuver with the cord, the muscles memorizes the proper position, growing accustomed to the correct feel of the maneuver. A salient feature of the invention is that the cords are provided with a length and flexibility particularly well suited to guide figure skaters and other athletes toward proper positioning of their hands and feet when practicing a variety of maneuvers. With reference to figure skating, the cords generally are provided at or adjusted to a length such that each cord in a relaxed state extends from the foot to about the waist as noted above. For example, the cord used by a younger athlete may be about three feet long, and for a more mature athlete may be about three feet eight inches long. Then, extension of the arm above the head when the athlete is wearing the cord involves an extension or elongation in the range of 2-3 feet beyond the relaxed length of the cord. Elongation may be in the range of sixty-five percent to eighty percent of the relaxed-state length. In other words, the extended length may range from 1.65 times to 1.8 times the relaxed-state length. Of course, extended lengths will vary with users and maneuvers. Preferably, the tensile force in the cord, even when extended up to eighty percent beyond its relaxed-state length, is less than 15 pounds, more preferably less than 9 pounds, and most preferably less than 5 pounds. As a result, the cord allows significant freedom of movement for performing a wide variety of maneuvers, yet also provides a difference in tension sufficient to guide the athlete toward adopting the correct posture and position in connection with each maneuver. A feature of the present invention is that cords 18 and 60 are adapted to guide the extremities toward correct relative positioning as they elongate. In other words, the guidance function of each cord coincides with an increase in tensile force during elongation. This is in contrast to previous devices in which tension is used to discourage the user from moving away from a predetermined position, such as a bent-knee position. A primary factor enabling the use of cord tension to guide rather than restrain, is the selection of tension members with low elasticities, i.e. tension members that experience substantial elongation in response to low axial force levels, as indicted above. An added benefit is that under normal use, cords 18 and 60 are not elongated to their full elongation capabilities. For example, a cord capable of over one hundred percent elongation is elongated in actual use only up to about eighty percent, and more preferably up to about sixty-five percent. Thus, elongation of each cord during use is well below the elastic limit. Even after multiple uses, cords 18 and 60 substantially retain their original elasticities, and the tensile force generated by a given amount of cord elongation remains substantially constant. One suitable version of cord 18 is made of an elastomer (e.g. rubber) sheathed in nylon, and has a diameter of about ⅛ inch (3.2 mm). For a better appreciation of the difference between this cord and the larger-diameter cords used in muscle strengthening applications, it is noted that a cord identical to this cord, except for having a diameter of ½ inch (12.7 mm), would exert sixteen times the tensile force of the smaller cord at a given amount of axial elongation. The placement of the resilient cord makes the device applicable to many sports, and the simplicity of the device allows for the athlete to use the device across the front or back of the body, from the hand either to the same foot or opposite foot. In addition, a second cord can be secured to the other hand and foot, to further assist the athlete. Once the athlete is used to the feeling of the tensile forces occasioned by stretching the cord or cords, he or she can create a desired visual effect or style. Whether in figure skating, dancing, gymnastics, diving, in-line skating, or other positioning and alignment sports, the athlete using this device has the option of using a single cord (same hand and foot, or opposite hand and foot) crossing in front of, or behind, the body. Alternatively, two cords (same hand and foot, or opposite hand and foot) can be used. Again, the cords can cross in front of or behind the athlete. The device is quickly attached and detached. The resilient sections are easily and quickly shortened for the smaller or younger athlete.
<SOH> BACKGROUND OF THE INVENTION <EOH>Advances in the figure skating and other sports have been achieved through improved coaching techniques, better equipment, sports medicine and nutrition. In figure skating, primary emphasis is now placed on the use of training techniques and fixed equipment intended to reinforce the skater's proper upper and lower body position, and the use of the skater's muscle memory. To date, skaters have relied on the ability of a coach to observe their movements and effectively communicate (typically verbally) suggestions for improvement. This after-the-fact feedback from a coach requires frequent and intensive time with the coach. Also, training harnesses have been used to a certain extent. A variety of exercising devices are known to involve couplings between the hands and feet of users. Examples are seen in the following U.S. patents: U.S. Pat. No. 2,160,722 (Cunningham); U.S. Pat. No. 3,752,474 (Macabet, et al.); U.S. Pat. No. 4,121,827 (Weider); U.S. Pat. No. 5,263,916 (Bobich); and U.S. Pat. No. 5,545,113 (Bobich). The exercise device in the '113 patent features clips for convenient attachment to laced athletic shoes of the user. Other devices featuring loops or handles at the opposite ends of an elastic cord or other elongate member, include: U.S. Pat. No. 3,589,721 (Cronauer); U.S. Pat. No. 3,838,852 (Gury); Des. No. 263,613 (Henry); Des. 368,501 (Woodruff); and Des. 396,077 (Heine). The devices described in the foregoing patents typically use resistance cords to strengthen muscles and provide aerobic workouts. The resistance of the cord is a substitute for a physical weight. Although these patents do not specify the tensile strength of their cords, the purpose of muscle strengthening typically requires cord sizes (particularly diameters) greater than ½ inch (12.7 mm), increasing with the desired amount of resistance. The sizes of end members such as handles and wrist straps in these devices are consistent with a relatively high tensile force in the cord or other resilient member. Other patents show the use of a resilient cord said to teach muscle memory and influence the position of an athlete toward a desired correct position. Specifically, U.S. Pat. No. 4,955,608 (Dougherty et al.) discloses an athletic movement trainer including a belt and ankle straps that hold a resilient, bungee-type cord in place to add resistance for the lower body and leg muscle groups. The Dougherty device is directed to maintaining a bent-knee position with the feet firmly in place on a playing surface (e.g. for tennis). The cord is connected to the waist through a ring, and is then stretched down the back of the legs to the ankle straps. The cord is slack while the user maintains the correct position, but becomes tensioned when the user deviates from that position. The device is connected to both legs, and is confined to lower body training needs. Dougherty does not mention gliding sports such as figure skating, or stretching and twisting sports such as figure skating, dance, gymnastics, or diving. U.S. Pat. No. 6,551,221 (Marco) is directed to a device intended to encourage a bent-knee position for gliding sports, such as skating. This device includes a belt and clips to mount bungee-type cords to the belt clips. Similar clips mount the cords to skates or other footwear. The Marco device places the cords in front of the athlete. The bungee-type cord is functionally focused on the lower body, and would interfere with movements and positions used in most figure skating maneuvers such as single foot-straight leg glides, jumps or spins. Although the foregoing devices may be well suited for their respective purposes, they either involve the high levels of tensile resistance associated with muscular exercise and stress; or, as in the case of Dougherty and Marco, they use cord tension to discourage deviation from a desired position associated with a slack cord. Thus, they fail to provide an alignment or placement of a properly tensioned resilient cord in a manner that affords a high degree of freedom of movement while reinforcing and teaching proper positioning in the performance of jumps, spins, single foot-straight leg glides, and other movements intended to exhibit grace and style. Therefore, it is an object of the present invention to provide a training device for reinforcing correct relative positioning of the extremities during maneuvers that emphasize grace and style, and accordingly require considerable freedom of movement. Another object is to provide an athletic training device that can be attached quickly and conveniently to or close to a user's hand and foot, and that is simple and easy to use in practicing a wide variety of athletic maneuvers involving glides, jumps, twists, or spins. A further object is to provide a process for practicing athletic maneuvers that affords freedom of movement yet gives the user immediate feedback and encouragement toward correct relative positioning of the extremities for each maneuver being practiced. Yet another object is to provide a training device that incorporates an elastically extensible component adapted to exert a substantially uniform, low-level tensile force over multiple repetitions of a given maneuver.
<SOH> SUMMARY OF THE INVENTION <EOH>To achieve these and other objects, there is provided a training device for reinforcing a desired relative positioning of extremities during a gliding, spinning, twisting or jumping maneuver. The device includes an elongate tension member having a nominal length when in a relaxed state. The nominal length is selected relative to a user for an extension of the tension member, when in the relaxed state, from the user's foot at least to the user's waist. A first coupling structure is adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of the user. A second coupling structure is adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and selected foot through the tension member. The tension member is extensible elastically, through relative movement of the selected hand and the selected foot when so operatively linked, at least to a predetermined level of elongation corresponding to a maximum distance between the selected hand and the selected foot during a maneuver. The tension member exerts a tensile force that increases with tension member elongation to an upper-level tensile force corresponding to the predetermined level of elongation. The tension member has an elasticity selected such that the upper-level tensile force is less than a tensile force necessary for any substantial muscle exercise or muscle stress, whereby the tension member when elongated during the maneuver, tends to guide the selected hand and the selected foot toward a desired relative positioning with minimal impact on freedom of movement. The purpose of the training device is to guide an athlete into the proper body position while the athlete is performing a maneuver, without restricting movement. To this end, the device provides slight resistance, through a bungee cord or other tension member attached with respect to the extremities. When the hands and feet are in a position of least resistance, the athlete has achieved the proper body position. In this manner the device provides an alignment “reminder” to maintain proper positioning of the upper body, lower body, and extremities. After repeated use of this device, the athlete's muscles “remember” the proper position and tend to return to that position while the maneuver is being performed. Once the athlete achieves initial understanding and control, more advanced maneuvers can be performed with strength and style. The capability to guide and train skaters and other athletes in this manner results from providing bungee-type cords or other elongate tension members with the correct length and resilience. With regard to cord length, the tension member in the relaxed state should reach from the foot to the user's waist or slightly beyond. If a given tension member is too long, it is conveniently adjusted in length, simply by winding the tension member an additional turn about the foot. With regard to resilience, the device of the present invention utilizes a cord or other tension member with a tensile force much lower than that considered necessary for muscle strengthening and exercising applications. For example, a cord constructed according to the present invention may require a force of less than five pounds, more preferably less than three pounds, and even more preferably one pound of tensile force to achieve a one-foot (30.5 cm) elongation in a cord with a relaxed-state length of three feet (91.5 cm). In other words, a one-third (approximately 33%) elongation may require in the range of one to five pounds of tensile force. More generally, resilient cords or other tension members exhibiting relatively low levels of tensile force, while not constructed to exert forces sufficient for significant muscle strengthening, are particularly well suited for encouraging the skater or other athlete by guiding him or her toward the correct positions in a variety of maneuvers. It has been found, in connection with a variety of athletic maneuvers but particularly for the spins, glides and jumps in figure skating, that the proper positions of the arms and legs, and of feet and hands relative to each other, substantially coincide with minimum levels of tension in the cord or other tension member. Thus, the natural tendency to move the arms and legs toward reduced tension, also moves the arms and legs toward the desired position in the maneuver. When elongated, the tension member generates or exerts a tensile force that increases with elongation. In other words, an internal elastic restoring force acts lengthwise along the cord, tending to draw the cord back to the nominal, relaxed-state length. When operatively linking an athlete's hand and foot, the tension member when elongated tends to draw the linked hand and foot toward one another. The present training device uses tension in a positive manner to guide the user toward a correct relative positioning of the extremities, specifically an operatively linked hand and foot. The “relative positioning” takes into account not only the positions of the hand and foot relative to each other, but also their positions with respect to the user's body. The positive use of tension is counterintuitive, and represents a significant departure from conventional devices in which tension is used negatively, i.e. to discourage departure from a correct position associated with slack in the tension member. A key factor facilitating the positive use of tension is the selection of tension members with low elastic moduli, i.e. elasticities that allow substantial elongation while generating a low tensile forces. The much higher tension levels in muscle exercising devices, while suitable for their intended purposes, would exert unduly high levels of tension upon skaters and other athletes attempting spins, twists, glides and leaping maneuvers, and thus would run counter to the type of training achieved by the present device, which affords maximum freedom of movement in combination with a relatively gentle application of tensile force. An additional advantage is that the present athletic training device is comfortable to wear, quick and easy to attach, and simple and uncomplicated to use. This enhances the potential of the device to increase the athlete's awareness of posture, alignment, and stretch, while avoiding unnecessary restrictions on the movement of the athlete as he or she engages in a wide variety of movement based sports. The training device is particularly well suited for skaters. In this regard, the resilient cord or other tension member is adapted at one end to receive a clip, preferably with at least two spring-loaded closure members, each tending to close a loop but movable against the spring force to open the loop. In use, a first one of the loops is releasably attached to the laces of the user's skate. Then, the cord is wrapped about the skate, threaded through the opening above the blade and below the boot portion of the skate, and releasably received into the second loop of the clip. This approach to attachment achieves an advantageous combination of convenience and stability. The loop attached to the laces is not relied upon for cord-securing strength, but simply to prevent the clip from sliding with respect to (and possibly off) the skate. The primary holding force is exerted by the cord itself, enhanced by its threading through the other loop of the clip. The result is a convenient attachment to the skate without exerting undue force upon the laces. Further in accordance with the present invention, there is provided a training device for reinforcing a desired relative positioning of extremities during a gliding, spinning or jumping maneuver. The device includes an elongate elastically extensible tension member having a nominal length when in a relaxed state. A first coupling structure is adapted to releasably couple a first end of the tension member proximate to and with respect to a selected foot of a user. A second coupling structure is adapted to releasably couple a second end of the tension member proximate to and with respect to a selected hand of the user and thereby cooperate with the first coupling structure to operatively link the selected hand and foot. The tension member is elastically extensible at least to a predetermined length of 1.8 times the nominal length, exerts a tensile force that increases with tension member elongation, and has an elasticity selected such that when at the predetermined length, the tension member generates a tensile force of less than fifteen pounds. Another aspect of the present invention is a process for practicing an athletic maneuver involving a predetermined relative positioning of the extremities, including: a. selecting a first tension member having a relaxed-state length sufficient for extension from a user's foot to at least the user's waist, elastically extensible and thereby generating a tensile force that increases with elongation, and having a selected elasticity such that the tensile force at eighty percent elongation is less than fifteen pounds; b. releasably securing a first end of the first tension member proximate to and with respect to a first foot of the user; c. releasably securing a second end of the first tension member proximate to and with respect to a first hand of the user, to operatively link the first foot and the first hand; and d. with the first foot and first hand operatively linked, repeating an athletic maneuver involving a relative positioning of the first selected hand and the first selected foot that requires an elongation of the first tension member. Thus in accordance with the present invention, a tension member operatively coupled between a user's hand and foot applies a light tensile force tending to guide the hand and foot toward a desired relative positioning in a gliding, jumping or spinning maneuver. The device makes use of the natural tendency to move the arm and leg toward the reduced-tension positions, which coincide with the positions desired in performing various maneuvers. Repetition develops the memory of the muscles, so that after multiple repetitions, the arm and leg tend to return to their intended positions, even in the absence of the device.
20041026
20070508
20050505
61307.0
1
CHHABRA, ARUN S
ATHLETIC TRAINING DEVICE
SMALL
0
ACCEPTED
2,004
10,973,985
ACCEPTED
Vented mold and method for producing molded article
The invention relates mold, particularly a mold for producing foam articles. In a preferred embodiment, the mold comprises a lid and a bowl releasingly engageable to define a mold cavity, the lid comprising: (i) a vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of grooves connected to the vent. The use of a plurality of grooves/slots in the mold cavity surface effectively acts as a siphon to draw gas away from the composition to be molded. The plurality of grooves/slots is connected to one or more vents which then allows for escape of the gas from the mold cavity to the exterior of the mold.
1. A mold for producing molded articles, the mold comprising a first mold and a second mold releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, a surface of the mold cavity comprising at least one groove connected to at least one vent, the at least one vent comprising a passageway for gas to escape from the mold cavity. 2. The mold defined in claim 1, wherein the vent is disposed in the first mold. 3. The mold defined in claim 1, wherein the vent is disposed in the second mold. 4. The mold defined in claim 1, wherein the vent is disposed in a partline between the first mold and the second mold. 5. The mold defined in claim 1, wherein the groove is connected to a plurality of vents. 6. The mold defined in claim 1, wherein the plurality of vents is disposed in the first mold. 7. The mold defined in claim 1, wherein the plurality of vents is disposed in the second mold. 8. The mold defined in claim 1, wherein the surface of the mold cavity comprises a plurality of grooves. 9. The mold defined in claim 1, wherein the surface of the mold cavity comprises a plurality of grooves disposed in the first mold. 10. The mold defined in claim 1, wherein the surface of the mold cavity comprises a plurality of grooves disposed in the second mold. 11. The mold defined in claim 8, wherein the plurality of grooves is arranged to define a network of grooves. 12. The mold defined in claim 8, wherein the plurality of grooves is connected to a plurality of vents. 13. The mold defined in claim 1, wherein the at least one groove is disposed in a periphery of the first mold. 14. The mold defined in claim 1, wherein the at least one groove is disposed in a periphery of the second mold. 15. The mold defined in claim 1, wherein the first mold comprises a lid and the second mold comprises a bowl. 16. The mold defined in claim 15, wherein the lid comprises a contoured surface. 17. The mold defined in claim 16, wherein the countered surface comprises at least one peak region and one valley region. 18. The mold defined in claim 17, wherein the at least one groove is disposed in the at least one peak region. 19. The mold defined in claim 17, wherein the at least one groove is disposed in the at least one valley region. 20. The mold defined in claim 17, wherein the at least one groove is disposed in the at least one peak region and the at least one valley region. 21. The mold defined in claim 17, wherein a first plurality of grooves is disposed in the at least one peak region and a second plurality of grooves is disposed in the at least one valley region. 22. The mold defined in claim 21, wherein the first plurality of grooves and the second plurality of grooves are interconnected. 23. The mold defined in claim 21, wherein the first plurality of grooves and the second plurality of grooves are isolated with respect to one another. 24. The mold defined in claim 17, wherein the at least one vent is disposed in the at least one peak region. 25. The mold defined in claim 17, wherein the at least one vent is disposed in the at least one valley region. 26. The mold defined in claim 17, wherein a first vent is disposed in the at least one peak region and a second vent is disposed in the at least one valley region. 27. The mold defined in claim 1, wherein the at least one groove comprises an curvilinear cross-section. 28. The mold defined in claim 1, wherein the at least one groove comprises a substantially U-shaped cross-section. 29. The mold defined in claim 1, wherein the at least one groove comprises a substantially semi-circular cross-section. 30. The mold defined in claim 1, wherein the at least one groove comprises an rectilinear cross-section. 31. The mold defined in claim 1, wherein the at least one groove comprises a substantially V-shaped cross-section. 32. The mold defined in claim 1, wherein the at least one groove has a cross-section comprising a pair of side walls interconnect by an apex portion. 33. The mold defined in claim 32, wherein the side walls are parallel. 34. The mold defined in claim 32, wherein the side walls are non-parallel. 35. The mold defined in claim 32, wherein the side walls are angled with respect to one another. 36. The mold defined in claim 32, wherein the side walls are angled with respect to one another to define an acute angle. 37. The mold defined in claim 32, wherein the side walls are angled with respect to one another to define an obtuse angle. 38. The mold defined in claim 32, wherein the side walls are angled with respect to one another to define right angle. 39. The mold defined in claim 32, wherein the apex portion is curved. 40. The mold defined in claim 32, wherein the apex portion is non-curved. 41. The mold defined in claim 32, wherein the apex portion is pointed. 42. The mold defined in claim 32, wherein the apex portion is flat. 43. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth and a width, the depth being greater than or equal to the width. 44. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth and a width, the depth being substantially equal to the width. 45. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth and a width, the depth being greater than the width. 46. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth of up to about 10 mm and a width of up to about 5 mm. 47. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth in the range of from about 3 mm to about 10 mm and a width in the range of from about 0.5 mm to about 5 mm. 48. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth in the range of from about 3 mm to about 7 mm and a width in the range of from about 1 mm to about 4 mm. 49. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth in the range of from about 4 mm to about 6 mm and a width in the range of from about 1.5 mm to about 2.5 mm. 50. The mold defined in claim 1, wherein the at least one groove is dimensioned to have a depth of about 5 mm and a width of about 2 mm. 51. The mold defined in claim 1, wherein the at least one vent comprises a passageway and an obstruction in the passageway, the obstruction and the passageway combining to form at least one opening. 52. The mold defined in claim 1, wherein the at least one vent comprises a passageway and an obstruction in the passageway, the obstruction and the passageway combining to form a plurality of openings. 53. The mold defined in claim 1, wherein the at least one opening has a substantially segment-shaped cross-section. 54. The mold defined in claim 51, wherein the passageway and the obstruction are movable between a retracted first position and an extended second position. 55. The mold defined in claim 54, wherein the at least one vent has a greater capacity to allow gas to escape from the mold cavity in the first position than in the second position. 56. The mold defined in claim 1, wherein the at least one vent comprises a passageway and an obstruction in the passageway, the passageway and the obstruction being movable with respect to one another between a first position in which gas is allowed to escape from the mold cavity and a second position in which the vent is substantially closed with respect to escape of gas from the mold cavity. 57. The mold defined in claim 1, wherein the at least one vent is disposed in a partline of first mold and the second mold to define an opening having maximum dimension and a minimum dimension. 58. The mold defined in claim 57, wherein the minor dimension is in the range of from about 0.05 mm (0.002 inches) to about 0.75 mm (0.030 inches). 59. The mold defined in claim 57, wherein the minor dimension is in the range of from about 0.13 mm (0.005 inches) to about 0.50 mm (0.020 inches). 60. The mold defined in claim 57, wherein the opening is rectangular in cross-section. 61. A mold for producing molded articles, the mold comprising a lid and a bowl releasingly engageable to define a mold cavity, the lid comprising: (i) a vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of grooves connected to the vent. 62. A device for producing molded articles, the device comprising a lid and a bowl releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, at least one of the lid and the bowl comprising: (i) a plurality of vents, each vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of interconnected grooves arranged to be in fluid communication with the plurality of vents. 63. A process for producing a molded part in the mold defined in claim 1, the process comprising the steps of: (i) dispensing a moldable composition in one of the first mold and the second mold; (ii) translating gas in the mold cavity to the least one groove, (iii) translating gas from the at least one groove to the passageway of the vent; (iv) substantially filling the mold cavity with the moldable composition, and (v) allowing gas to escape from the passageway of the vent to an exterior of the mold. 64. The process defined in claim 63, wherein the mold is in the open position during Step (i) and in the closed position during Step (iv). 65. A process for producing a molded part in the mold defined in claim 61, the process comprising the steps of: (i) dispensing a moldable composition in the bowl; (ii) translating gas in the mold cavity to the plurality of grooves, (iii) translating gas from the plurality of grooves to the passageway of the vent; (iv) substantially filling the mold cavity with the moldable composition, and (v) allowing gas to escape from the passageway of the vent to an exterior of the mold. 66. The process defined in claim 65, wherein the mold is in an open position during Step (i) and in a closed position during Step (iv). 67. A process for producing a molded part in the device defined in claim 62, the process comprising the steps of: (i) dispensing a moldable composition in the bowl; (ii) translating gas in the mold cavity to the plurality of interconnected grooves, (iii) translating gas from the plurality of interconnected grooves to the plurality of vents; (iv) substantially filling the mold cavity with the moldable composition, and (v) allowing gas to escape from the plurality of vents to an exterior of the device, 68. The process defined in claim 67, wherein the mold is in the open position during Step (i) and in the closed position during Step (iv). 69. The process defined in claim 63, wherein Step (i) comprises dispensing a liquid foamable composition. 70. The process defined in claim 63, wherein Step (i) comprises dispensing a liquid foamable polyurethane composition.
CROSS-REFERENCE TO RELATED APPLICATION The present application claims the benefit under 35 U.S.C. §119(e) of provisional patent application Ser. No. 60/570,075, filed May 12, 2004, the contents of which are hereby incorporated by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vented mold and to a method for producing a molded article. 2. Description of the Prior Art Many articles are manufactured by placing a raw material into a cavity in a mold wherein the raw material undergoes a physical change (e.g., it expands or foams) and the article produced thus acquires the shape of the cavity. In particular, this technique is commonly employed for producing foamed articles made from polymeric foams such as polyurethane foam, latex (e.g., natural and styrene-butadiene rubber) foam and the like. For example, automotive seats are commonly manufactured from polyurethane cushions which are molded to shape and then covered with a vinyl, cloth or leather finish cover (also known as a “trim cover”). Polyurethane foams are somewhat unique in that foaming and at least a portion of the polymerization process occur simultaneously. Thus, in the production of polyurethane foam using, for example, a conventional cold foam technique, a typical formulation comprises: 1. Polyol 2. Water 3. Tetramethyl ethane diamine 4. Dimethyl ethanol amine 5. Polyisocyanate The mixture is dispensed into a mold using a suitable mixing head, after which the mold is then closed to permit the expanding mass within it to be molded. Accordingly, it is convenient generally to refer to the mixture initially dispensed into the mold as “a liquid foamable polymeric composition” or, in this case, “a liquid foamable polyurethane composition”. As the composition expands in the mold, polymerization occurs and the polymer so formed becomes solidified. When molding a liquid foamable polymeric composition to form articles, such as polyurethane foam articles, it is conventional to use a clam-shell mold comprising a bottom mold and a top mold which, when closed, define a mold cavity. The mold is opened, the liquid foamable polyurethane composition is dispensed into the mold cavity and the mold is closed as a chemical reaction causes the composition to expand. After the mold is closed, the composition expands to fill the interior cavity of the mold. Alternatively, the composition may be dispensed into a closed mold. In either case, as the polymerization reaction is completed, the foam cures and permanently assumes the shape of the mold cavity. As is known to those of skill in the art, it is important during this process that the mold be adequately vented to allow the air present in the mold to exit the mold as the foamable composition expands. Further, it is important to allow a portion of the gases (typically CO2 in the production of polyurethane) generated during polymerization to exit the mold. Failure to adequately vent the mold results in defective molded articles exhibiting symptoms of improper foaming such as surface hardening (or foam densification) and/or void formation in the finished article due to trapped gas or air bubbles. At the other extreme, excess venting of the mold will also result in defective molded articles due to collapse of the foam prior to curing; this phenomenon is often referred to as the ‘soufflé’ effect. Thus, proper venting of a mold is an important factor in producing molded articles of acceptable quality. Typically, first generation clam-shell molds have been designed with drilled or cut passages in the top mold to provide vents. Locating, sizing and deciding upon the number of these vents is a matter of some skill on the part of mold designer and the production engineers, and is often an iterative procedure with more vents being added to various locations or other vents being blocked-off after test runs have been made. During molding operations some liquid foamable polymeric composition which moves into the vent is wasted. It is generally desired to minimize the amount of wasted material (also known as “flash”, “mushrooms”, “buds”, “pancakes” and the like) for two reasons, namely (1) the wasted material adds to the overall expense of chemicals required to produce the finished article, and (2) the wasted material must be removed from the molded article prior to the finish cover being applied, thereby necessitating additional labour and the costs associated therewith. As will be developed below, improvements to venting during such molding operations have advanced the art to a certain degree. However, mold designers and production engineers are continually striving to optimize the compromise between providing enough venting at the proper locations while avoiding excess venting and minimizing material wastage during venting and the number of vents needed to achieve adequate venting of the mold cavity. Further, as will be developed below, notwithstanding advances in the art pertaining to venting, there is still a problem with molded articles, particularly those made of polyurethane foam. Specifically, there is the problem of foam collapse (referred to above) and with voids and/or underfill which will be described in more detail below. Thus, there is an ongoing need in the art to improve venting techniques to solve the problem of foam collapse, voids and/or underfill. SUMMARY OF THE INVENTION It is an object of the present invention to obviate or mitigate at least one of the above-mentioned disadvantages of the prior art. Accordingly, in one of its aspects, the present invention provides a mold for producing molded articles, the mold comprising a first mold and a second mold releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, a surface of the mold cavity comprising at least one groove connected to at least one vent, the at least one vent comprising a passageway for gas to escape from the mold cavity. In another of its aspects, the present invention provides a mold for producing molded articles, the mold comprising a lid and a bowl releasingly engageable to define a mold cavity, the lid comprising: (i) a vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of grooves connected to the vent. In yet another of its aspects, the present invention provides a device for producing molded articles, the device comprising a lid and a bowl releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, at least one of the lid and the bowl comprising: (i) a plurality of vents, each vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of interconnected grooves arranged to be in fluid communication with the plurality of vents. Other aspects of the present invention relate to the production of a molded part, preferably a molded foam part, using the above molds and device. Thus, the present inventors have discovered a new approach to improving venting of mold, particularly molds for production of foam articles. The approach is quite different from that used in the past. The conventional approach of venting involved placement of a number of vents in areas of a mold where it was believed localized collection of gas would occur in the mold cavity. In many cases, placement of vents was done in an iterative manner. Specifically, as foam parts were made and surface defects were seen, the response would be simply to place a vent (e.g., one or both of a so-called “autovent” and “ribbon vent” discussed below) in the area of the mold corresponding to the position of the defect on the resulting foam part. The result was the provision of a large number of vents (40 or more) at the parting line of the mold and/or in the top mold or lid of the mold. Even following this approach, the occurrence of foam collapse and voids has not been overcome and the occurrence of underfill is only marginally better, in part due to the (wrong) assumption that the location of the defect in the final product is coterminous with the location of the gas to be vented during foam expansion. The approach used by the present inventors is to de-emphasize location of a great number vents in potential areas of concern in the mold. Rather, the present inventors have discovered that the use of one or more grooves/slots in the mold cavity surface effectively acts as a siphon to draw gas away from the composition to be molded. The at least one groove and/or slot is connected to one or more vents which then allows for escape of the gas from the mold cavity to the exterior of the mold. In a highly preferred embodiment, the one or more grooves/slots are provided in a so-called network or grid-like orientation to cover a substantial portion of the surface of the mold cavity as a web (e.g., a substantial portion of the surface of the mold cavity corresponding to the B-surface of the finished part). This allows for the use of significantly fewer vents and for de-emphasis on precise location of the vents in each potential area of concern in the mold cavity. Equally or more importantly, the provision of such a groove and/or slot, preferably in the network or grid-like fashion described herein, results in the significant advantage of production of molded articles that are free of the problem of foam collapse, voids and/or underfill. A number of other advantages accrue from the use of one or more grooves/slots in the mold cavity surface effectively as a siphon to draw gas away from the composition to be molded and to channel this gas to one or more vents. These advantages include: It is possible to produce foam parts having relatively low density while obviating and/or mitigating the risk of occurrence of foam collapse. Previously, one approach to manage the risk was to design the chemistry of the foamable composition to result in a relatively high density product. The potential to produce relatively low density products using the venting approach described herein would result in lighter weight products—this would be highly advantageous in vehicular applications given the increasing cost of fuel. It is possible to introduce heterogeneous elements to the composition to be molded while obviating and/or mitigating the risk of occurrence of foam collapse. For example, if a liquid foamable composition is dispensed in the mold cavity, the heterogeneous element might be one or more of a foam insert element (e.g., to produce a dual-hardness/firmness or multiple-hardness/firmness foam product) or a non-foam insert (e.g., a portion of a touch fastener system (also know as a Velcro™ fastener), a mechanical clip, a cloth insert and the like). Previously, the nature, size and/or position of such a heterogeneous element has been relatively limited owing to the risk of foam collapse. It is possible to solve collectively the problems of foam collapse and the occurrence of underfill and voids in the foam product. It is possible to significantly reduce the number of vents need to achieve adequate venting of the mold. This provides savings in capital costs and in maintenance. Further, the ability to use significantly fewer vents creates a predictable environment around the vents (and the mold). This creates the potential to manage the environment around the vents (and the mold) in a manner which obviates and/or mitigates uncontrolled release gas from the mold. The one or more grooves/slots in the mold cavity surface are effectively self-cleaning in that, after gases are vented from the mold, the mold cavity is filled and the resulting product is demolded with a “negative” of the one or more grooves/slots (e.g., in the form of one or more ridges). There is little or no fouling of grooves/slots either by the moldable composition and/or by any mold release agents initially sprayed on the mold cavity surfaces to facilitate demolding. Avoiding fouling by mold release agents is particularly advantageous since such agents are regularly used in the art and would be expected to be applied to the one or more grooves/slots. The use of one or more grooves/slots is active for siphoning or otherwise channeling gas (e.g., via a capillary effect) in the mold cavity as the internal pressure in the mold remains relatively low. The grooves and/or slots are connected to a vent which maybe a ribbon vent, an autovent or a so-called smart vent. It is preferred to have the one or more grooves/slots disposed in a “high point” of the lid of the mold since this will facilitate drawing of the gas from the top of the geometric feature which is to be vented. It also highly preferred to orient a slot/groove on the periphery of the mold cavity near the parting line. This peripheral groove/slot can be disposed in the lid or the bowl of the mold and depends, in part, of the shape of the article being produced. The approach of using grooves/slots is particularly applicable in a situation where the part to be molded is highly contoured. Thus, the groove/slot maybe disposed on the high point of a contour surface as discussed above and/or the tangent of radius of the edge or lip of a contour in the mold. When a peripheral groove/slot is used as described above, it is preferred to include one or more so-called connection grooves/slots to interconnect the peripheral groove/slot with, for example, a ribbon vent. For the surfaces of the mold cavity that are relatively flat, it is preferred to orient a number of grooves/slots in a network or grid-like fashion to provide a substantial checkerboard arrangement of grooves/slots with each square in the checkerboard having an area in the range of from about 4 in2 to about 16 in2. Of course, where the major surface of the mold cavity is slightly contoured, the grid may not necessarily need to contain grooves/slots arranged to define precise squares. In the event that the part to be produced is somewhat elongate, it is preferred to run a number of grooves/slots lengthwise on the surface of the mold cavity and couple this with pour pattern generally at one end of the mold cavity. By dispensing the foam composition at one end of the mold cavity, the foam needs to travel lengthwise to fill the mold cavity and this allows lengthwise orientation of the grooves/slots to run ahead of foam flow reliably moving gas from the mold cavity to the vent and out of the mold. As will be discussed below, it is possible to have one or more “mini” or isolated networks or grid-like orientation of grooves/slots to deal with highly contoured or raised sections of the mold cavity. It is also highly preferred to have one or more groove/slots oriented in a manner whereby the groove/slots have redundant paths to a number of vents disposed in the lid and/or parting line of the mold. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention will be described with reference to the accompanying drawings, wherein like reference numerals denote like parts, and in which: FIG. 1 illustrates a sectional view of a prior art mold; FIG. 2 illustrates a sectional view of a foam product made using the mold illustrated in FIG. 1; FIGS. 3 and 4 illustrated an enlarged perspective view of a portion of a prior art vent device; FIGS. 5 and 6 illustrate production of a molded article in a prior art mold; FIG. 7 illustrates a perspective view of a foam article made using the prior art mold illustrated in FIGS. 5 and 6; FIG. 8 illustrates a sectional view of a preferred embodiment of the present mold shown during production of a molded article; FIG. 9 illustrates a top view of the mold illustrated in FIG. 8, partially ghosted to show the contents of the mold; FIG. 10 illustrates a perspective view of the foam article made using the mold illustrated in FIGS. 8 and 9; FIG. 11 illustrates an enlarged sectional view of a modification of the mold illustrated in FIG. 8; FIG. 12 illustrates an enlarged portion of a foam product made using the mold illustrated in FIG. 11; FIGS. 13-16 illustrate various foam articles made according to variations in the network of grooves made to the present mold; FIG. 17 illustrates an enlarged sectional view of another embodiment of the present mold; FIG. 18 illustrates an enlarged view a foam product made using the mold illustrated in FIG. 17; FIG. 19 is an enlarged perspective view of installation of a vent in the present mold; FIG. 20 illustrates an enlarged sectional view of a vent in the present mold; FIG. 21 illustrates an enlarged perspective view of a first preferred vent installed in the present mold; FIG. 22 is a sectional view along line XXII-XXII in FIG. 21; FIG. 23 illustrates an enlarged perspective view of a second preferred vent in FIG. 20 installed in the present mold; FIG. 24 illustrates a sectional view along line XXIV-XXIV in FIG. 23; FIGS. 25-28 illustrate operation of the vent shown in FIGS. 21-22; and FIG. 29 illustrates an enlarged perspective view of a foam product made using the vents illustrated in FIGS. 20-28. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The most preferred liquid foamable polymeric composition is based upon polyurethane, which will be referred throughout this specification. However, it will be apparent to those of skill in the art that the present invention is applicable to other types of molding operations including, but not limited to, latex foam, neoprene foam, PVC foams and the like. A first generation prior art mold will first be discussed, with reference to FIGS. 1 and 2, and a second generation prior art mold will then be discussed, with reference to FIGS. 3 and 4. With reference to FIGS. 1 and 2, a typical clam-shell mold, similar to those used for forming an automotive seat cushion from polyurethane foam, is indicated generally at 20 in FIG. 1. Mold 20 includes a lower mold 24 (also known in the art as a “bowl”) and an upper mold 28 (also known in the art as a “lid”) which are joined by a conventional hinge or other means (not shown). Lower mold 24 and upper mold 28, when closed, define a cavity 32 which corresponds to the shape of the automotive seat cushion. In use, upper mold 28 is released from lower mold 24 and a pre-determined amount of liquid foamable polyurethane composition is dispensed into lower mold 24. Upper mold 28 and lower mold 24 are closed and engaged to seal the mold, and the liquid foamable polyurethane composition expands, displacing the air within cavity 32. This displaced air exits cavity 32 through a relatively large parting line vent 36 and through one or more top vent passages 38 in upper mold 28. Further, as the polyurethane composition expands, polymerization of the composition occurs along with the evolution of gaseous CO2 in cavity 32. This gaseous CO2 may also exit cavity 32 through parting line 36 and through top vent passages 38. As is well known to those of skill in the art (and beyond the scope of this discussion), the liquid foamable polymeric composition eventually completely polymerizes and cures, acquiring the shape of cavity 32. As is also known to those of skill in the art, the amount of liquid foamable polyurethane composition dispensed in cavity 32 must be selected to ensure that cavity 32 will be substantially completely filled, in order to avoid the occurrence of underfill-associate foam collapse, voids and other foaming defects in the molded article. While the determination of the proper amount of liquid foamable polyurethane composition for a particular mold may generally be calculated, when using a first generation mold such as mold 20, it has been required to dispense an excess amount of polymeric composition into the mold to compensate for material which moves through and exits parting line vent 36 and top vent passages 38. This excess, while assisting in ensuring that cavity 32 is filled to avoid the occurrence of underfill-associate foam collapse, voids and other foaming defects in the molded articles, is in fact simply a wastage of valuable raw material which must be laboriously removed in a further post-production step. In these first generation prior art molds, during the molding operation, air and the reaction gases produced from the expanding composition exit from cavity 32 through parting line vent 36 and top vent passages 38 until the foam reaches the level of their respective entrances. At this point, any further expansion of the foam results in movement of the foam into parting line vent 36 and/or top vent passages 38. In the simplest case of a cavity without irregularities, the foam reaches the level of the parting line vent and/or the vent passages at approximately the same time, which usually occurs at or near the maximum expansion point of the foam. Thus, provided that the proper amount of liquid foamable polyurethane composition has been dispensed into the cavity, only a small amount of foam enters the parting line vent and/or the vent passages as cavity 32 is completely filled. In practice, however, as shown in FIG. 1, most molds include irregularities in their cavities for various features required on the molded article. In such a case, the thickness and shape of cavity 32 typically varies across the cavity and the entrance to parting line vent 36 and top vent passages 38 in the mold may thus be located at different heights depending upon where they communicate with cavity 32. Further, localized areas of varying pressure also occur within cavity 32 due to the manner in which the foam and the gases produced collect in and move between the irregularities therein and thus the level of expanding foam mass in different parts of cavity 32 at different times may vary. Due to the above-mentioned factors, the foam in the cavity typically reaches the level of the parting line vents and/or different vent passages at different times while the foam is still expanding. For example, in a region wherein the top of cavity 32 is lower than surrounding regions, such as indicated at 40 in FIG. 1, the foam may quickly reach the top vent passages 38. As the foam is still rising in the rest of cavity 32 and has not yet cured, a relatively significant amount of foam may enter top vent passages 38 in this region. Again, as the amount of foam which enters parting line vents 36 and top vent passages 38 reduces the amount of foam remaining in cavity 32 by a like amount, it is necessary that the amount of liquid foamable polyurethane composition placed in cavity 32 include an amount in excess of that required to fill cavity 32 to offset the foam which entered the parting line and vents. This excess amount, while necessary for proper operation of the prior art mold, is essentially wasted material which must be laboriously removed in a further post-production step and thus adds to the cost of forming the article. Further, as shown in FIG. 2, the foam which enters top vent passages 38 forms “mushrooms” 54 (shown in ghosted line) of wasted material on the molded article 50. Further, the material which enters parting line vents 36 forms “pancakes” 55 of wasted material on the molded article 50. Typically, mushrooms 54 and pancakes 55 must be disconnected from article 50 and removed from the mold 20 prior to application of a finish cover to ensure a finished covered article which is of acceptable appearance and texture, and to prepare mold 20 for re-use. The necessity of removing mushrooms 54 and pancakes 55 results in an increased labour cost associated with manufacturing the molded product. In addition to the excess liquid foamable polyurethane composition which is added to offset the material extruded into the vents, excess liquid foamable polyurethane composition is also added to compensate for process variations due to changes in temperature, humidity, ambient pressure and minor changes in the composition of the liquid foamable polyurethane composition. Accordingly, in these first generation prior art molds, the wastage of material exiting the vents is inevitable. In U.S. Pat. Nos. 5,356,580 (Re. 36,413), 5,482,721 (Re. 36,572) and 5,587,183 [collectively referred to as “the Clark et al. patents”], there is disclosed a second generation mold. The second generation mold taught by the Clark et al. patents replaces parting line vents 36 in FIG. 1 described hereinabove with improved parting line vents. These improved parting line vents are highly efficient vents that achieve the bulk of venting of the mold cavity. The second generation mold taught by the Clark et al. patents replaces top vent passages 38 of FIG. 1 described hereinabove with an improved top vent system. As is known in the art, top vent systems are needed to vent isolated regions (i.e., from the parting line vents) of the mold cavity. With references to FIGS. 3 and 4 hereof, a discussion of the operation this improved top vent system second generation mold will follow. With reference to FIGS. 3 and 4, a top vent system 60 is illustrated. Top vent system 60 comprises a cylindrical bore 62 and a relief pin 64 disposed within cylindrical bore 62. The exterior of cylindrical bore 62 comprises a threaded portion 66 which engages a complementary threaded portion of the mold (not shown). In the illustrated embodiment, the portion of relief pin 64 nearest the opening of cylindrical bore 62 is hexagonal in cross-section. The six points of the hexagonal cross-section of relief pin 64 are in engagement with cylindrical bore 62 and define six segment-shaped vent passages 68. The proximal end (not shown) of relief pin 64 comprises a cross-section complementary to cylindrical bore 62. An opening (not shown) is provided between the distal end and the proximal end (not shown) of relief pin 64 to allow gases entering vent passages 68 to exit top vent system 60. Top vent system 60 is incorporated in a mold such as mold 20 (FIG. 1) where it would replace each of vent passages 38. In use, liquid foamable polyurethane composition is dispensed into cavity 32, and lower mold 24 and upper mold 28 are sealingly engaged. The air in cavity 32 and the gases produced by the chemical reaction occurring in the expanding composition are vented through vent passages 68. The viscosity of these gases are such that they flow relatively easily through vent passages 68. Once the level of foam in mold 20 reaches the entrance to vent passages 68, the foam enters vent passages 68. Due to the presentation of a restriction by vent passages 68 to the expanding composition, the latter can only move slowly through vent passages 68. Provided that the thickness of vent passages 68 has been properly selected, the liquid foamable polymeric composition will stop moving therein before it travels a significant distance along the vents and before it the exit opening (not shown) of top vent system 60. Once expansion of the foaming mass is complete, the foam article produced is demolded from mold 20. This is achieved by opening lower mold 24 and upper mold 28 and removing the foam article from lower mold 24. During mold opening, any foam material which has expanded in vent passages 68 will be torn from the foam article. Such torn material results in blockage of vent passages 68 and thus, must be removed prior to reuse of mold 20. This is achieved by sliding relief pin 64 toward and extending it out of the distal end of cylindrical bore 62 (FIG. 4). As described in the Clark et al. patents, this sliding operation results in the proximal end (not shown) of relief pin 64 (i.e., having a cross-section complementary to cylindrical bore 62) sweeping out of cylindrical bore 62 any foam material blocking vent passages 68. With reference to FIGS. 5-6, there is illustrated operation of a mold 100 similar to that taught by the Clark et. al patents. Thus, mold 100 comprises a lid 105 and bowl 110 which is realisably engageable with lid 105. Lid 105 includes a series of parting line or so-called “ribbon vents” disposed therein. Also disposed in lid 105 are a series of so-called autovents 120 similar to those taught by the Clark et. al patents. In use, a foamable composition (not shown) is disposed in bowl 110 via a dispenser 125. Lid 105 is then closed and the flowing mass is allowed to fill the mold cavity. Thereafter, lid 105 is swung open and a foam part 130 is removed from mold 100. Foam part 130 comprises a series of foam ribbons 135 which need not be trimmed and can simply be folded back during application of a trim cover to form part 130. Despite the advances made in the art by the teachings in the Clark et. al patents, there are situations where the quality of the product is less then desirable. Specifically, as discussed above, there are two defects which are seen from time to time: voids and underfill. Underfill is a surface phenomenon which manifests itself in foam product 130 in the form of surface cavities 140. Further, the formation of voids 145 within foam element 130 (“subsurface voids”) and on the surface of foam element 130 (not shown—“surface voids”) is another problem. Surface voids tend to be manifested in the foam product as a localized area of the foam part that has not been formed—e.g., the foam composition does not expand to completely occupy a highly contoured section of the mold lid such that the resulting foam part is missing a section corresponding to the void. In conventional molding techniques, lid 105 is used to mold the so-called B-surface of the foam part whereas the surface of bowl 110 is used is use to mold the so-called A-surface of foam part 130. While surface cavities 140 can occur on any surface of foam element 130, they can be regularly present under the B-surface of foam element 130. It has been conventional in the art to respond to observation of underfill surface cavities 140 by placement of another autovent 120 in the area of lid 105 corresponding to the location of void 140. In the result, for a single mold, it has become commonplace to use on the order of 40 (or more) vents made up of ribbon vents 115 and autovents 120 in a single mold 100. Even with provision of such a larger number of vents, appearance of underfill surface cavities 140 and voids 145 (surface voids or subsurface voids) still occurs. The present inventors have adapted a completely different approach to improving venting of gas formed as the foaming mass fills the mold cavity. Specifically, the present inventors have discovered that it is not necessary to have such a large number of vents nor is it necessary to rely on such vents for venting a localized portion of the mold cavity. Thus, the present inventors have discovered that one or more grooves (or slots) in the surface of the mold cavity can be used as a conduit to funnel, draw, siphon, etc. gas to be vented to a conventional vent without the need to place a vent in each area where gas is expected to be vented. In a highly preferred embodiment of the invention, these grooves or slots are disposed in a intersecting or a grid-like fashion combined with provision of at least one such groove/slot in the periphery of the mold cavity. These groove/slot function as siphons (e.g. via a capillary effect) to facilitate removal of gas from the mold cavity. Thus, in a preferred embodiment, the venting approach in the present mold relates to use of previous local vents as effective area vents by disposing a plurality of grooves/slots in the mold cavity surface. The capacity of these grooves/slots to transport gas effectively is a function of the interaction with the natural growth of the rising foam, the thickness of the area in which the grooves/slots are contained and the obstruction effect of the geometries in the path to the vents. Thus, the grooves-slots are effective for channeling gas to be vented to a vent. As will be developed further below, it is possible to connect this network or grid-like arrangement of grooves/slots to conventional vents such that those taught in the Clark et. al patent. The improvement is a significant reduction in the number of vents required to achieve proper venting and the ability to produce parts which are substantially free of voids and underfill—the provision of such parts is a particularly significant advantage of the present invention. With reference to FIG. 8, there is illustrated a mold 200 comprising a lid 205 and a bowl 210 which are releasably engageable in a manner similar to that described above with respect to mold 100. Four vents 220 are disposed in lid 205. Also disposed in lid 205 is a network 225 of grooves. Network 225 extends to a peripheral portion 230 of the mold cavity. As can be seen with reference to FIG. 9, network 225 is connected to vents 220. With further reference to FIG. 8, once a liquid formable composition 235 is dispensed into mold 200, composition 235 expands in the direction of arrows A. During this process, gas is produced and the pressure in mold cavity increases. The grooves/slots in network 225 are effectively disposed ahead of foam flow and are reliable to channel or funnel gas toward vents 220 even though vents 220 are not disposed throughout the entire surface of lid 205. The drawing out of gasses produced during expansion is facilitated by placement of vents 220 at or near the peak of the contours in lid 205. The resulting foam part 240 is shown in FIG. 10. By adopting the combination of network 225 and vents 220, foam part 240 can be produced with virtually no underfill or voiding. Further, as shown in FIG. 10 foam part 240 comprises a “negative” of network 225 on the B-surface thereof in the form of a network 245 of foam ridge. In essence, foam part 240 is completely trim-free and can be sent to trim cover operations without the need to remove flash or other excess materials. With reference to FIG. 11, there is illustrated adaptation of network 225 of grooves/slots to a parting line or so-called “ribbon vent”. In this case, vent 220 has been replaced with a ribbon vent 222 similar to the one described in Clark et al. patents discussed above. Further, network 225 of grooves/slots has been extended to rise to a peak 212 of the mold cavity. The resulting part 242 is shown in FIG. 12 where a “negative” 227 of network 225 has been produced—i.e., the “negative” is simply a network 227 of molded foam ridges which filled network 225 during expansion of foamable composition 235. As shown in FIG. 12, foam element 242 comprises a series of ribbons 235 produced in ribbons vents 220. With reference to FIGS. 13 and 14, there is illustrated sectional and enlarged sectional perspective views of a foam part 300 made in accordance with the present mold. For ease of illustration and understanding, the resulting foam part is illustrated. However, those of skill in the art will understand based on this specification that these foam parts were made using the network or grid-like orientation of groove/slots. Thus, foam part 300 comprises a lip (or raised edge) 305. As shown, network 325 of foam ridges includes a peripheral foam ridge 330 connected with network 325. In this case, a series of connecting foam ridges 332 interconnect peripheral ridge 330 to a number ribbons 335. Network 325, peripheral foam ridge 330 and connecting foam ridges 332 are produced by a complementary network of grooves/slots. With reference to FIG. 15, there is illustrated a foam element 400 comprising a lip portion 405 and a network 425 of ridges produced from complementary grooves/slots in a mold in accordance with the present invention. Foam part 400 further comprises a peripheral ridge 430 formed from a complementary groove/slot in a mold according to the present invention. Foam part 400 further comprises connecting ridges 432 formed from complementary grooves/slots which connect to ribbon vents (not shown) in the manner discussed above. These ribbon vents result in production of ribbons 435 as discussed above. The B-surface of foam part 400 comprises a raised section 440. Raised section 440 has a localized network 445 of ridges formed from a complementary network of grooves/slots in the mold according to the invention. Since network 445 is isolated from network 425, a vent (shown in ghosted outline above section 440) is used to facilitate venting of the mold cavity corresponding to the region defined by section 440. Provision of isolated network 445 and a separate vent allow for the production of raised section 440 without the occurrence of underfill or voids—i.e., this notwithstanding the fact that raised section 440 is highly contoured and is almost right-angled with respect to the major portion of the B-surface of foam part 400. Foam part 400 further comprises a raised section 450 which is shorter than raised section 440. To achieve proper venting of the section of the mold cavity corresponding to raised section 450 without the occurrence of voids or underfill, a portion of the network of grooves/slots in the mold is disposed on the portion of the mold cavity corresponding to raised portion 450 so that this portion of the mold cavity is vented via the network of grooves/slots resulting in the production of network 425. FIG. 16 illustrates a foam part 500 having a higher raised section 540 and a lower raised section 550 similar to those shown in FIG. 15 with respect to foam part 400. In the case of foam part 500, peripheral ridge 530 and the ridges of “main” network 525 and the ridges of network 545 are all interconnected thereby obviating the need for connecting ridges and ribbons, including obviating the need for ribbon vents in the mold used to produce foam part 500. Rather, autovent vents or the like can be used at the location shown in ghosted outline shown in FIG. 16 to achieve effective area venting of the mold cavity. FIG. 18 shows an enlarged portion of a slightly modified version of element 400 wherein “mini” network 447 of ridges has been slightly modified compared to “mini” network 445 in FIG. 15. FIG. 17 illustrates an enlarged section view of a portion of the mold used to produced element 400 shown in FIG. 18. Thus, a “main” network of grooves/slots is provided and is connected to a peripheral groove/slot, connected grooves/slots and ribbon vent as discussed above. Peak 212 of lid 205 is provided with a “mini” network 247 of grooves/slots which are interconnected and isolated with respect to “main” network 225. “Mini” network 247 of grooves-slots is connected to a vent 220 as discussed above. Thus, in operation, gases in the main portion of the mold cavity will be vented via “main” network 225 of grooves/slots, peripheral groove/slot, connection grooves/slots and ribbon vents (all not shown in FIG. 17 but referred to above) whereas gas that may b trapped in peak 212 will be vented via “mini” network 247 of grooves/slots and vent 220. With reference to FIG. 20, there is shown a schematic representation of connection of vent 220 to lid 205 of mold 200. Thus, vent 220 comprises a threaded portion 221. Lid 205 comprises an internally threaded portion 206 which compleents threaded portion 221 of vent 220. Thus, vent 220 is simply threaded into lid 205 via threaded portions 206 and 221. Vent 220 can take a number of different forms. Thus, with reference to FIG. 20, there is shown a large sectional view of a vent 600 disposed in lid 205. Vent 600 maybe constructed in a manner similar to vent assembly 98 described in the Clark et. al patents. With reference to FIGS. 21, 22 and 25-28, there is illustrated an alternate vent 700 which may be used in place of and/or in addition to one or both of vents 220 and 600 discussed above. Thus, vent 700 comprises a threaded section 721 which maybe engaged with a complementary threaded section (not shown) in lid 205 as discussed above with reference to FIG. 19. Vent 700 comprises a passageway 705 in which is disposed an obstruction 710. Branching off of passageway 705 is a conduit 715. Disposed below vent 700 is a pair of opposed sensor elements 720 (only one is shown in FIG. 21). Sensor element 720 maybe an optical sensor (e.g., infrared and the like), an acoustical sensor, a capacitance sensor and the like. The operation of vent 700 will now be discussed with reference to FIGS. 25-28. Thus, a liquid foamable composition 235 is dispensed in bowl 210 of mold 200 as discussed above with reference to FIG. 8. Lid 205 is then closed with respect to bowl 210. As foamable composition 235 expands, gases are produced and exit vent 700 via conduit 715 following the path of arrows B. As foamable composition 235 fills the mold cavity, it reaches sensors 720 in vent 700. When this happens, obstruction 710 is actuated to move in the direction of arrow C thereby effectively closing off escape of gas via conduit 715—i.e., vent 700 is, for all intents and purposes, closed (FIG. 27). Thereafter, obstruction 710 is moved in the direction of arrow D and the resulting foam part is demolded as discussed above. Alternatively, the resulting foam part can be demolded and then obstruction 710 can be moved in the direction of arrow D in readiness for production of next foam part. Thus, those of skill in the art will understand that vent 700 operates as a relatively high capacity vent which has a sensor-actuated shot off system effectively sealing off escape of gas through the vent. In other words, vents 700 is operable between a first position in which it operates as a high capacity vent and a second position in which the vent is effectively sealed. An alternative to this approach is illustrated with respect to a modification of vent 700 to vent 700a shown in FIGS. 23-24. In FIGS. 23-24, the only significant change in vent 700a is replacement of obstruction 710 with obstruction 710a. Obstruction 710a is similar to the obstruction appearing in vent 600 described above and vent assembly 98 described in the Clark et. al patents. Obstruction 710a is actuated in the same manner as described with reference to obstruction 710 in FIGS. 25-28. The resulting difference is that, unlike vent 700 illustrated in FIGS. 25-28, vent 700a illustrated in FIGS. 23-24 is operable between a first position in which the vent acts as a relatively high capacity, active vent and a second position in which the vent acts as low capacity, passive vent (i.e., in the second position the vent is not effectively sealed off as it is in the embodiment described with reference to FIGS. 25-28). The advantage of this approach is that the number of vents needed is reduced (as was the case with vent 700) since the vent in FIGS. 23-24 operates as a high capacity vent in the first position while, on the other hand, the need to use precise timing to close off the vent as shown in FIGS. 25-28 is alleviated with vent 700a shown in FIGS. 23-24 since gas will continue to escape the vent even after obstruction 705 is actuated to be in the second (low capacity, passive vent) position. In some cases, this can obviate the need for sensors 720 where the same part is being produced in the same mold. Specifically, a timing system can be used to move obstruction 710a from its first (high capacity, active vent) position to its second (low capacity, passive vent) position. With reference to FIG. 29, there is illustrated an enlarged view of a portion of foam part 240 (see also FIG. 10) comprising a portion of network 245 of foam ridge element formed by network 225 of grooves/slots in mold 200. Further, an extruded section 250 is shown where foam cured near vent 220, 600, 700 and/or 700a. While this invention has been described with reference to illustrative embodiments and examples, the description is not intended to be construed in a limiting sense. Thus, various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. For example, it is possible to modify lid 205 of mold 200 to modify the shape and/or dimension of extruded portion 250 in resulting foam part 240. Alternatively, it is possible to modify lid 205 of mold 200 to eliminate production of extruded portion 250 in resulting foam part 240. Still further, it is possible to modify interconnection of vents 220, 600, 700 and/or 700a to lid 205 such that the distal portion of vents 220, 600, 700 and/or 700a is substantially flush with the mold cavity surface of lid 205. Still further, it is possible to modify the network of grooves/slots 225 to have a different design. For example, it is possible to design a network of grooves/slots to include a diamond-shaped repeating pattern, optionally including a series of substantially parallel grooves/slots wherein each groove/slot bisects a row of diamonds in the repeating pattern. Alternatively, it is possible to design a network of grooves/slots to include a series of substantially parallel grooves/slots (i.e., in a so-called radiator type arrangement with a spacing between adjacent pairs of grooves/slots in the range of from about 2 cm to about 5 cm). In each case, it is preferred to included a perimeter groove/slot connected to the network of grooves/slots, more preferably connected to each groove/slot in the network. It is therefore contemplated that the appended claims will cover any such modifications or embodiments. All publications, patents and patent applications referred to herein are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a vented mold and to a method for producing a molded article. 2. Description of the Prior Art Many articles are manufactured by placing a raw material into a cavity in a mold wherein the raw material undergoes a physical change (e.g., it expands or foams) and the article produced thus acquires the shape of the cavity. In particular, this technique is commonly employed for producing foamed articles made from polymeric foams such as polyurethane foam, latex (e.g., natural and styrene-butadiene rubber) foam and the like. For example, automotive seats are commonly manufactured from polyurethane cushions which are molded to shape and then covered with a vinyl, cloth or leather finish cover (also known as a “trim cover”). Polyurethane foams are somewhat unique in that foaming and at least a portion of the polymerization process occur simultaneously. Thus, in the production of polyurethane foam using, for example, a conventional cold foam technique, a typical formulation comprises: 1. Polyol 2. Water 3. Tetramethyl ethane diamine 4. Dimethyl ethanol amine 5. Polyisocyanate The mixture is dispensed into a mold using a suitable mixing head, after which the mold is then closed to permit the expanding mass within it to be molded. Accordingly, it is convenient generally to refer to the mixture initially dispensed into the mold as “a liquid foamable polymeric composition” or, in this case, “a liquid foamable polyurethane composition”. As the composition expands in the mold, polymerization occurs and the polymer so formed becomes solidified. When molding a liquid foamable polymeric composition to form articles, such as polyurethane foam articles, it is conventional to use a clam-shell mold comprising a bottom mold and a top mold which, when closed, define a mold cavity. The mold is opened, the liquid foamable polyurethane composition is dispensed into the mold cavity and the mold is closed as a chemical reaction causes the composition to expand. After the mold is closed, the composition expands to fill the interior cavity of the mold. Alternatively, the composition may be dispensed into a closed mold. In either case, as the polymerization reaction is completed, the foam cures and permanently assumes the shape of the mold cavity. As is known to those of skill in the art, it is important during this process that the mold be adequately vented to allow the air present in the mold to exit the mold as the foamable composition expands. Further, it is important to allow a portion of the gases (typically CO 2 in the production of polyurethane) generated during polymerization to exit the mold. Failure to adequately vent the mold results in defective molded articles exhibiting symptoms of improper foaming such as surface hardening (or foam densification) and/or void formation in the finished article due to trapped gas or air bubbles. At the other extreme, excess venting of the mold will also result in defective molded articles due to collapse of the foam prior to curing; this phenomenon is often referred to as the ‘soufflé’ effect. Thus, proper venting of a mold is an important factor in producing molded articles of acceptable quality. Typically, first generation clam-shell molds have been designed with drilled or cut passages in the top mold to provide vents. Locating, sizing and deciding upon the number of these vents is a matter of some skill on the part of mold designer and the production engineers, and is often an iterative procedure with more vents being added to various locations or other vents being blocked-off after test runs have been made. During molding operations some liquid foamable polymeric composition which moves into the vent is wasted. It is generally desired to minimize the amount of wasted material (also known as “flash”, “mushrooms”, “buds”, “pancakes” and the like) for two reasons, namely (1) the wasted material adds to the overall expense of chemicals required to produce the finished article, and (2) the wasted material must be removed from the molded article prior to the finish cover being applied, thereby necessitating additional labour and the costs associated therewith. As will be developed below, improvements to venting during such molding operations have advanced the art to a certain degree. However, mold designers and production engineers are continually striving to optimize the compromise between providing enough venting at the proper locations while avoiding excess venting and minimizing material wastage during venting and the number of vents needed to achieve adequate venting of the mold cavity. Further, as will be developed below, notwithstanding advances in the art pertaining to venting, there is still a problem with molded articles, particularly those made of polyurethane foam. Specifically, there is the problem of foam collapse (referred to above) and with voids and/or underfill which will be described in more detail below. Thus, there is an ongoing need in the art to improve venting techniques to solve the problem of foam collapse, voids and/or underfill.
<SOH> SUMMARY OF THE INVENTION <EOH>It is an object of the present invention to obviate or mitigate at least one of the above-mentioned disadvantages of the prior art. Accordingly, in one of its aspects, the present invention provides a mold for producing molded articles, the mold comprising a first mold and a second mold releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, a surface of the mold cavity comprising at least one groove connected to at least one vent, the at least one vent comprising a passageway for gas to escape from the mold cavity. In another of its aspects, the present invention provides a mold for producing molded articles, the mold comprising a lid and a bowl releasingly engageable to define a mold cavity, the lid comprising: (i) a vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of grooves connected to the vent. In yet another of its aspects, the present invention provides a device for producing molded articles, the device comprising a lid and a bowl releasingly engageable between an open position and a closed position, the closed position defining a mold cavity, at least one of the lid and the bowl comprising: (i) a plurality of vents, each vent having a passageway for gas to escape from the mold cavity, and (ii) a plurality of interconnected grooves arranged to be in fluid communication with the plurality of vents. Other aspects of the present invention relate to the production of a molded part, preferably a molded foam part, using the above molds and device. Thus, the present inventors have discovered a new approach to improving venting of mold, particularly molds for production of foam articles. The approach is quite different from that used in the past. The conventional approach of venting involved placement of a number of vents in areas of a mold where it was believed localized collection of gas would occur in the mold cavity. In many cases, placement of vents was done in an iterative manner. Specifically, as foam parts were made and surface defects were seen, the response would be simply to place a vent (e.g., one or both of a so-called “autovent” and “ribbon vent” discussed below) in the area of the mold corresponding to the position of the defect on the resulting foam part. The result was the provision of a large number of vents (40 or more) at the parting line of the mold and/or in the top mold or lid of the mold. Even following this approach, the occurrence of foam collapse and voids has not been overcome and the occurrence of underfill is only marginally better, in part due to the (wrong) assumption that the location of the defect in the final product is coterminous with the location of the gas to be vented during foam expansion. The approach used by the present inventors is to de-emphasize location of a great number vents in potential areas of concern in the mold. Rather, the present inventors have discovered that the use of one or more grooves/slots in the mold cavity surface effectively acts as a siphon to draw gas away from the composition to be molded. The at least one groove and/or slot is connected to one or more vents which then allows for escape of the gas from the mold cavity to the exterior of the mold. In a highly preferred embodiment, the one or more grooves/slots are provided in a so-called network or grid-like orientation to cover a substantial portion of the surface of the mold cavity as a web (e.g., a substantial portion of the surface of the mold cavity corresponding to the B-surface of the finished part). This allows for the use of significantly fewer vents and for de-emphasis on precise location of the vents in each potential area of concern in the mold cavity. Equally or more importantly, the provision of such a groove and/or slot, preferably in the network or grid-like fashion described herein, results in the significant advantage of production of molded articles that are free of the problem of foam collapse, voids and/or underfill. A number of other advantages accrue from the use of one or more grooves/slots in the mold cavity surface effectively as a siphon to draw gas away from the composition to be molded and to channel this gas to one or more vents. These advantages include: It is possible to produce foam parts having relatively low density while obviating and/or mitigating the risk of occurrence of foam collapse. Previously, one approach to manage the risk was to design the chemistry of the foamable composition to result in a relatively high density product. The potential to produce relatively low density products using the venting approach described herein would result in lighter weight products—this would be highly advantageous in vehicular applications given the increasing cost of fuel. It is possible to introduce heterogeneous elements to the composition to be molded while obviating and/or mitigating the risk of occurrence of foam collapse. For example, if a liquid foamable composition is dispensed in the mold cavity, the heterogeneous element might be one or more of a foam insert element (e.g., to produce a dual-hardness/firmness or multiple-hardness/firmness foam product) or a non-foam insert (e.g., a portion of a touch fastener system (also know as a Velcro™ fastener), a mechanical clip, a cloth insert and the like). Previously, the nature, size and/or position of such a heterogeneous element has been relatively limited owing to the risk of foam collapse. It is possible to solve collectively the problems of foam collapse and the occurrence of underfill and voids in the foam product. It is possible to significantly reduce the number of vents need to achieve adequate venting of the mold. This provides savings in capital costs and in maintenance. Further, the ability to use significantly fewer vents creates a predictable environment around the vents (and the mold). This creates the potential to manage the environment around the vents (and the mold) in a manner which obviates and/or mitigates uncontrolled release gas from the mold. The one or more grooves/slots in the mold cavity surface are effectively self-cleaning in that, after gases are vented from the mold, the mold cavity is filled and the resulting product is demolded with a “negative” of the one or more grooves/slots (e.g., in the form of one or more ridges). There is little or no fouling of grooves/slots either by the moldable composition and/or by any mold release agents initially sprayed on the mold cavity surfaces to facilitate demolding. Avoiding fouling by mold release agents is particularly advantageous since such agents are regularly used in the art and would be expected to be applied to the one or more grooves/slots. The use of one or more grooves/slots is active for siphoning or otherwise channeling gas (e.g., via a capillary effect) in the mold cavity as the internal pressure in the mold remains relatively low. The grooves and/or slots are connected to a vent which maybe a ribbon vent, an autovent or a so-called smart vent. It is preferred to have the one or more grooves/slots disposed in a “high point” of the lid of the mold since this will facilitate drawing of the gas from the top of the geometric feature which is to be vented. It also highly preferred to orient a slot/groove on the periphery of the mold cavity near the parting line. This peripheral groove/slot can be disposed in the lid or the bowl of the mold and depends, in part, of the shape of the article being produced. The approach of using grooves/slots is particularly applicable in a situation where the part to be molded is highly contoured. Thus, the groove/slot maybe disposed on the high point of a contour surface as discussed above and/or the tangent of radius of the edge or lip of a contour in the mold. When a peripheral groove/slot is used as described above, it is preferred to include one or more so-called connection grooves/slots to interconnect the peripheral groove/slot with, for example, a ribbon vent. For the surfaces of the mold cavity that are relatively flat, it is preferred to orient a number of grooves/slots in a network or grid-like fashion to provide a substantial checkerboard arrangement of grooves/slots with each square in the checkerboard having an area in the range of from about 4 in 2 to about 16 in 2 . Of course, where the major surface of the mold cavity is slightly contoured, the grid may not necessarily need to contain grooves/slots arranged to define precise squares. In the event that the part to be produced is somewhat elongate, it is preferred to run a number of grooves/slots lengthwise on the surface of the mold cavity and couple this with pour pattern generally at one end of the mold cavity. By dispensing the foam composition at one end of the mold cavity, the foam needs to travel lengthwise to fill the mold cavity and this allows lengthwise orientation of the grooves/slots to run ahead of foam flow reliably moving gas from the mold cavity to the vent and out of the mold. As will be discussed below, it is possible to have one or more “mini” or isolated networks or grid-like orientation of grooves/slots to deal with highly contoured or raised sections of the mold cavity. It is also highly preferred to have one or more groove/slots oriented in a manner whereby the groove/slots have redundant paths to a number of vents disposed in the lid and/or parting line of the mold.
20041027
20090127
20051117
64612.0
1
EWALD, MARIA VERONICA
VENTED MOLD AND METHOD FOR PRODUCING MOLDED ARTICLE
UNDISCOUNTED
0
ACCEPTED
2,004
10,974,039
ACCEPTED
PROPORTIONAL PRESSURE CONTROL VALVE
This invention generally concerns electronically controlled hydraulic valves for use in electro-hydraulically controlled transmissions. The proportional pressure control valve 20 includes a hollow cage 42 pierced by cage tank ports 52, cage clutch ports 54, and cage pump ports 56. The cage pump ports 56 receive fluid from a pump. The cage clutch ports 54 supply fluid to a hydraulic actuator. The cage tank ports 52 return fluid from the valve 20 to a tank from where fluid circulates back to the pump. Main spool 112 controls fluid flow between cage clutch ports 54 and cage pump ports 56 or cage tank ports 52. An electro-magnetically operated pilot valve regulates fluid pressure applied to a control pressure surface 138. A feedback pressure passage 126, having feedback restriction orifice 128, restrains the rate fluid flows between the cage clutch ports 54 and the feedback pressure surface 114.
1-43. (canceled) 44. In a proportional pressure control cartridge valve that includes: a hollow cage having an axial direction and a radial direction that includes a wall pierced by a pump port that is adapted for receiving hydraulic fluid from a pump at a pressure established by the pump, the wall also being pierced by a clutch port that is adapted for supplying pressurized hydraulic fluid to a hydraulic actuator, and the wall also being pierced by a tank port that is adapted for supplying hydraulic fluid to a tank; the improvement comprising: said pump port piercing said wall of said cage in a direction substantially parallel to the radial direction of said cage; said clutch port and said tank port piercing said wall in a direction substantially parallel to said radial direction of said cage; a spool having an axial direction and radial direction, said axial direction of said spool being substantially parallel to said axial direction of said cage and said radial direction of said spool being substantially parallel to said radial direction of said cage, said spool being adapted to fit snugly within the cage in which location the spool is moveable relative to the cage in a direction substantially parallel to the axial direction of said cage for controlling a flow of hydraulic fluid passing between the clutch port in the cage and either the pump port or the tank port in the cage, the spool including a control pressure surface to which pressure may be applied for urging the spool to move within the cage to a position in which the spool allows a flow of hydraulic fluid to pass between the pump port and the clutch port, the spool also including a feedback pressure surface to which pressure may be applied for urging the spool to move within the cage to a position in which the spool allows a flow of hydraulic fluid to pass between the clutch port and the tank port, said spool further having a pilot valve supply passage formed therein that receives a flow of hydraulic fluid from the pump port of said cage in a direction substantially parallel to the radial direction of said cage, said pilot valve supply passage redirecting said flow of hydraulic fluid within said spool in a direction substantially parallel to the axial direction of said spool and toward said control pressure surface of said spool; a control pressure chamber located within the cage for receiving hydraulic fluid under pressure and applying the pressure of the hydraulic fluid to the control pressure surface of the spool; an electromagnetically operated pilot valve that receives a flow of hydraulic fluid passing through the pilot valve supply passage of said spool for supplying a regulated pressure of hydraulic fluid to the control pressure chamber responsive to an electrical control signal; a feedback pressure chamber located within the cage for receiving hydraulic fluid at a pressure and coupling the pressure of the hydraulic fluid to the feedback pressure surface of the spool; a clutch port pressure feedback passage for conducting hydraulic fluid between the clutch port in the cage and the feedback pressure chamber; and a feedback restriction orifice located in said clutch port pressure feedback passage of said spool between the clutch port in the cage and the feedback pressure chamber allowing the flow of hydraulic fluid between said clutch port and said feedback pressure chamber through said feedback restriction orifice and restraining the rate at which hydraulic fluid may flow between the clutch port in the cage and the feedback pressure chamber. 45. The proportional pressure control cartridge valve of claim 44 further comprising a fluid flow path that causes the flow of hydraulic fluid which enters through said pump port in a substantially radial direction to be redirected toward said feedback restriction orifice. 46. The proportional pressure control cartridge valve of claim 44 further comprising a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electromagnetically operated pilot valve restraining the rate at which hydraulic fluid flows from said control pressure chamber through the control pressure chamber outlet, and thereby regulating the pressure of the hydraulic fluid within said control pressure chamber. 47. The proportional pressure control cartridge valve of claim 46 further comprising a control pressure flow return passage for conducting the hydraulic fluid that flows out of said control pressure chamber through the control pressure chamber outlet to the tank port of the valve. 48. The proportional pressure control cartridge valve of claim 44 wherein said pilot valve supply passage directs the flow of hydraulic fluid in a direction substantially parallel to the axial direction of said cage for supplying a control pressure flow of hydraulic fluid from the pump port to said control pressure chamber; said control pressure chamber having a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electromagnetically operated pilot valve restraining the rate at which hydraulic fluid flows from said pilot valve supply passage into said control pressure chamber, and thereby regulating the pressure of the hydraulic fluid within said control pressure chamber. 49. The proportional pressure control cartridge valve of claim 44 further comprising a control flow restriction orifice located in said pilot valve supply passage of said spool restraining the rate at which hydraulic fluid may flow between the pump port and the control pressure chamber. 50. The proportional pressure control cartridge valve of claim 49 further comprising a removable screen located in said pilot valve supply passage between said pump port and said control flow restriction orifice. 51. The proportional pressure control cartridge valve of claim 44 wherein said pilot valve supply passage in said spool provides a control pressure flow of hydraulic fluid from the pump port to said control pressure chamber, said pilot valve supply passage including a control flow restriction orifice for restraining the flow rate of the control pressure flow of hydraulic fluid from said pilot valve supply passage to said control pressure chamber; said control pressure chamber having a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electronically operated pilot valve restraining the rate at which hydraulic fluid flows from said control pressure chamber through the control pressure chamber outlet, and thereby regulating the pressure of the hydraulic fluid within said control pressure chamber. 52. The proportional pressure control cartridge valve of claim 51 further comprising a control pressure flow return passage for conducting the hydraulic fluid that flows out of said control pressure chamber through the control pressure chamber outlet to the tank port of the valve. 53. The proportional pressure control cartridge valve of claim 51, wherein said pilot valve supply passage includes a removable screen located in said pilot valve supply passage between said pump port and said control flow restriction orifice. 54. In a proportional pressure control cartridge valve that includes: a hollow cage having an axial direction and a radial direction that includes a wall pierced by a pump port that is adapted for receiving hydraulic fluid from a pump at a pressure established by the pump, the wall also being pierced by a clutch port that is adapted for supplying pressurized hydraulic fluid to a hydraulic actuator, and the wall also being pierced by a tank port that is adapted for supplying hydraulic fluid to a tank; the improvement comprising: said pump port piercing said wall of said cage in a direction substantially parallel to the radial direction of said cage; said clutch port and said tank port piercing said wall in a direction substantially parallel to said radial direction of said cage; a spool having an axial direction and a radial direction, said axial direction of said spool being substantially parallel to said axial direction of said cage and said radial direction of said spool being substantially parallel to said radial direction of said cage, said spool being adapted to fit snugly within the cage in which location the spool is moveable relative to the cage in a direction substantially parallel to the axial direction of said cage for controlling a flow of hydraulic fluid passing between the clutch port in the cage and either the pump port or the tank port in the cage, said spool having a first axial end and a second axial end, the spool including a control pressure surface at said first axial end of said spool to which pressure may be applied for urging the spool to move within the cage in an axial direction toward said second axial end of said spool to a position in which the spool allows a flow of hydraulic fluid to pass between the pump port and the clutch port, the spool also including a feedback pressure surface at said second end of said spool to which pressure may be applied for urging the spool to move within the cage in an axial direction toward said first axial end of said spool to a position in which the spool allows a flow of hydraulic fluid to pass between the clutch port and the tank port, said spool further having a pilot valve supply passage formed in said spool and having an opening in the radial direction of said spool for receiving a flow of hydraulic fluid from the pump port of said cage and redirecting said flow of hydraulic fluid in the axial direction of said spool; a control pressure chamber located within the cage adjacent said control pressure surface for receiving hydraulic fluid under pressure and applying the pressure of the hydraulic fluid to the control pressure surface of the spool; an electromagnetically operated pilot valve that receives a flow of hydraulic fluid passing through the pilot valve supply passage of said spool for supplying a regulated pressure of fluid to the control pressure chamber responsive to an electrical control signal; a feedback pressure chamber located within the cage adjacent said feedback pressure surface for receiving hydraulic fluid at a pressure and coupling the pressure of the hydraulic fluid to the feedback pressure surface of the spool means; a clutch port pressure feedback passage for coupling the pressure of hydraulic fluid within the clutch port in the cage to the feedback pressure chamber; a feedback restriction orifice for restraining the rate at which hydraulic fluid may flow between the clutch port in the cage and the feedback pressure chamber; and a fluid flow path that permits the flow of hydraulic fluid which enters through said pump port in a substantially radial direction to be redirected toward said feedback pressure chamber through said feedback pressure passage and through said feedback restriction orifice. 55. The proportional pressure control cartridge valve of claim 54 further comprising a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electromagnetically operated pilot valve restraining the rate at which hydraulic fluid flows from said control pressure chamber through the control pressure chamber outlet, and thereby regulating the pressure of the hydraulic fluid within said control pressure chamber. 56. The proportional pressure control cartridge valve of claim 55 further comprising a control pressure flow return passage for conducting the hydraulic fluid that flows out of said control pressure chamber through the control pressure chamber outlet to the tank port of the valve. 57. The proportional pressure control cartridge valve of claim 54 wherein said pilot valve supply passage at said first axial end of said spool conducts the flow of hydraulic fluid in a direction substantially parallel to the axial direction of said cage for supplying a control pressure flow of hydraulic fluid from the pump port to said control pressure chamber; said control pressure chamber having a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electromagnetically operated pilot valve restraining the rate at which hydraulic fluid flows from said pilot valve supply passage into said control pressure chamber, and thereby regulating the pressure of the fluid within said control pressure chamber. 58. The proportional pressure control cartridge valve of claim 54 further comprising a pilot valve supply passage conducting the flow of hydraulic fluid at said first axial end of said spool in a direction substantially parallel to the axial direction of said cage for supplying a control pressure flow of hydraulic fluid from the pump port to said control pressure chamber, said pilot valve supply passage including a control flow restriction orifice for restraining the flow rate of the control pressure flow of hydraulic fluid; said control pressure chamber having a control pressure chamber outlet through which hydraulic fluid flows from said control pressure chamber; said electronically operated pilot valve restraining the rate at which hydraulic fluid flows from said control pressure chamber through the control pressure chamber outlet, and thereby regulating the pressure of the hydraulic fluid within said control pressure chamber. 59. The proportional pressure control cartridge valve of claim 58 further comprising a control pressure flow return passage for conducting the hydraulic fluid that flows out of said control pressure chamber through the control pressure chamber outlet to the tank port of the valve. 60. The proportional pressure control cartridge valve of claim 59, wherein said pilot valve supply passage includes a removable screen.
TECHNICAL FIELD The present invention relates generally to the technical field of hydraulic control devices and, more particularly, to electrically controlled hydraulic valves. BACKGROUND OF THE INVENTION Automobiles, trucks, tractors, earth-moving vehicles, and many other different types of vehicles (hereinafter collectively referred to as automotive vehicles) frequently include an internal combustion engine for powering their movement across the earth's surface. An automotive vehicle also includes a drive train for transmitting energy produced by the internal combustion engine into movement of the wheels, drive tracks or similar means by which the vehicle is driven across the earth's surface. To effectively accommodate the power characteristics of the internal combustion engine to the load of the vehicle that it must drive at various speeds over varying terrain, an automotive vehicle's drive train usually includes one or more transmissions. Each transmission in an automotive vehicle includes a transmission power input shaft that receives energy from the internal combustion engine's power output shaft, and a transmission power output shaft for transmitting the engine's energy onto the means for driving the vehicle across the earth's surface. Each transmission in an automotive vehicle also includes sets of gears, each one of which, when selected for coupling the transmission's power input shaft to its power output shaft, provides a different speed ratio between the rotation rates, respectively, of the transmission's power input and power output shafts. To facilitate selecting a particular gear ratio and for smoothly accelerating an automotive vehicle from a stationary start, its drive train usually includes a clutch located between the automotive vehicle's internal combustion engine and its transmission(s). This clutch selectively couples the internal combustion engine's power output shaft to the transmission's power input shaft. In one position of the clutch, it completely decouples the engine's power output shaft from the transmission's power input shaft. In another position, the clutch of an automotive vehicle provides a tight coupling between the internal combustion engine's power output shaft and the transmission's power input shaft. In this tightly coupled state, the internal combustion engine's power output shaft and the transmission's power input shaft rotate at the same speed. However, most clutches for automotive vehicles operating in this tightly coupled state are capable of passing only some maximum amount of torque from the internal combustion engine to the transmission without slippage occurring in the clutch. If a torque greater than this maximum amount is supplied to the clutch in its tightly coupled state, slippage occurs within the clutch that allows the power output shaft of the internal combustion engine to rotate at a speed different from that of the transmission's power input shaft. Between these two extremes of clutch operation, either of being decoupled or of being tightly coupled, the design of most clutches used in automotive vehicles permit progressively varying the tightness of coupling between the engine's power output shaft and the transmission's power input shaft. In intermediate states between these two extremes, the clutch will transmit an amount of torque to the transmission without slippage that is less than the maximum amount that it will transmit when tightly coupled. Controllably coupling differing amounts of torque from the internal combustion engine to the means for driving the vehicle across the earth's surface permits smoothly accelerating an automotive vehicle into motion. Controllably coupling different amounts of torque from the internal combustion engine to the means for driving the vehicle through the clutch is also useful, particularly for heavy industrial vehicles such as trucks, tractors and the like when shifting the transmission smoothly from a set of gears having one ratio to another set having a different ratio. Historically, a driver of an automotive vehicle usually operated its clutch through a direct mechanical linkage between the clutch and a clutch pedal located in the vehicle's passenger compartment near the driver. In some instances, a closed hydraulic system for operating the clutch by pressure on the clutch pedal replaces the direct mechanical linkage. More recently, to provide automatic electronic control of gear ratio selection, particularly in automotive vehicle's that include a microprocessor, it has become desireable to control clutch operation by means of an electrical signal rather than by the driver pressing on a clutch pedal. While some designs for clutches are known that permit an electrical current to directly effect coupling and uncoupling of the clutch, such clutches generally consume, and must therefore also dissipate, a significant amount of electrical power. Thus, even with microprocessor controlled operation of an automotive vehicle's transmission, it still appears desirable to continue controlling clutch operation indirectly by converting a control electrical signal from the microprocessor into a more powerful mechanical driving force for directly operating a conventional clutch. In pursuing this indirect electronic control of automotive vehicle clutches, some automotive vehicle manufacturers have chosen to employ electro-hydraulic transmissions having hydraulically operated clutches. In such electro-hydraulic transmissions, a hydraulic pump supplies pressurized hydraulic fluid for energizing a hydraulic actuator, for example a piston or a bellows, that directly operates the clutch. In one design for such a clutch, springs hold the clutch in its disengaged position and a carefully controlled pressure of the hydraulic fluid from the pump overcomes the springs' force to effect engagement of the clutch. When the hydraulic pressure is removed from this clutch, the springs once again move the clutch into its disengaged state. By using the spring pressure to effect clutch disengagement and hydraulic pressure to effect clutch engagement, the clutch inherently disconnects the engine from the transmission when the engine is not running to power the hydraulic fluid pump. Furthermore, this method of operating an electro-hydraulic clutch inherently avoids creating a hazardous condition if the hydraulic fluid pump fails. With such an electro-hydraulically operated clutch, smoothly accelerating the vehicle into motion and smoothly shifting transmission gear ratios require a hydraulic valve that controls the pressure of the hydraulic fluid supplied to the clutch precisely in response to changing values of the controlling electrical signal. U.S. Pat. No. 4,996,195 entitled “Transmission Pressure Regulator” issued on Oct. 30, 1990 to Ralph P. McCabe (“the McCabe patent”) and discloses a valve for controlling the pressure of a fluid medium that is adapted for use in a control system such as that of an automatic transmission of an automotive vehicle. The valve disclosed in the McCabe patent includes a cylindrically shaped, elongated, hollow aperture means or cage. Formed through the wall of the cage toward one end is a first set of apertures or ports. This first set of ports receives a supply pressure of hydraulic fluid, apparently from a pump (not depicted or described in the text or drawings of the McCabe patent). A second set of apertures or ports also passes through the wall of the aperture means or cage. The second set of ports is displaced laterally from the first set of ports along the length of the cage and located near the middle of the length of the cage. The hydraulic fluid in the second set of ports has a control pressure and, apparently, is supplied to the automatic transmission (not depicted or described in the McCabe patent). A third set of apertures or ports is formed in the wall of the cage. The third set of ports is displaced laterally along the length of the cage from both the first and second sets of ports and is located near the end of the cage furthest from the first set. The hydraulic fluid in this third set of ports has a sump or tank pressure, and appears to return from the valve to a tank (not depicted or described in the McCabe patent). The inner surface of the cage is formed in the shape of a right, circular cylinder and receives a snugly fitting main spool. The spool is much shorter than the cage and can, therefore, move laterally back and forth within the cage while remaining totally enclosed therein. A broad trough encircles the outer surface of the spool about its aid-section to establish a first chamber between the outer surface of the spool and the inner surface of the cage. The width of this trough along the length of the spool permits the first chamber to couple immediately adjacent pairs of sets of ports to each other while not simultaneously coupling all three sets of ports to each other. As depicted in FIGS. 1 and 2 of the McCabe patent, when the spool is fully displaced toward the right, the first chamber couples the second set of apertures, i.e., the clutch ports, to the third set of apertures, i.e., the tank ports. Alternatively, when the spool is fully displaced toward the left, the first chamber couples the first set of apertures, i.e., the pump ports, to the second set of apertures, i.e., the clutch ports. Thus, precisely controlled motion of the main spool laterally within the cage couples the set of clutch ports either to the set of pump ports or to the set of tank ports, and, as described in the McCabe patent, can thereby control the hydraulic fluid pressure in the clutch ports. As depicted in FIGS. 1 and 2 of the McCabe patent, the outer surface of the spool is also encircled by a narrow trough located near its left end. This narrow trough establishes a second chamber between the outer surface of the spool and the inner surface of the cage. The second chamber appears to be always open to a flow of hydraulic fluid from the pump through the pump ports through the wall of the cage. Located in the interior of the spool disclosed in the McCabe patent is a hollow first internal passage. The formation of this passage in the spool establishes a cup-shaped cavity that is open toward the right end of the spool and closed at the spool's left end. A passage, formed through the wall of the spool, connects this cup-shaped cavity to the second chamber. From FIGS. 1 and 2 of the McCabe patent, it appears that the first internal passage in the spool always receives a flow of hydraulic fluid from the pump through the pump ports in the cage and the second chamber regardless of the lateral position of the spool along the length of the cage. The spool disclosed in the McCabe patent also includes a second internal passage that pierces both the wall of the broad trough and the left end surface of the spool. This second internal passage couples the pressure of hydraulic fluid in the first chamber to a second cavity located at the left end of the spool between the spool and an end cap. The end cap closes the end of the cage to the left of the spool and seals the second cavity so that fluid may enter and leave it only through the second internal passage. Because the second cavity opens only into the second internal passage, the pressure within this second cavity always equals the pressure of fluid within the first chamber. The end cap also compresses a first coil spring between its inner surface and the left hand surface of the spool. In the absence of any other force on the spool, this first coil spring urges the spool toward the right end of the cage as depicted in FIGS. 1 and 2 of the McCabe patent. An annularly shaped poppet valve plate is located immediately to the right of the spool as depicted in FIGS. 1 and 2 of the McCabe patent, and partially obscures the right hand end of the cylindrically shaped interior of the cage. The full pressure of hydraulic fluid applied by the pump to the pump ports forces hydraulic fluid through the pump ports in the wall of the cage, the second chamber, and the first internal passage in the spool to the side of the poppet plate immediately adjacent to the right hand end of the spool. A second coil spring is compressed between the spool and the poppet plate at the right end of the spool and, according to the text of the McCabe patent, applies a force to the spool that is smaller than that applied by the first coil spring at the left end of the spool. Located to the right of the poppet plate is a movable armature that is surrounded by a solenoid coil. An electrical current flowing through the coil applies a magnetic force to the armature. In the valve depicted in FIG. 1 of the McCabe patent, this electromagnetic force on the armature urges it to move laterally toward the left which tends to close the opening in the center of the annularly shaped poppet valve. According to the text of the McCabe patent, closure of the poppet valve increases the pressure of the hydraulic fluid at the right end of the spool adjacent to the poppet plate with the spool urged to the right end of the cage by the first coil spring, an increase in hydraulic fluid pressure on the right end of the spool urges it to move laterally to the left away from the poppet plate. Movement of the spool to the left causes the first chamber to move laterally away from the tank ports toward the pump ports. Lateral movement of the first chamber over the pump ports permits hydraulic fluid to flow from the pump ports to the clutch ports thereby increasing the pressure of the hydraulic fluid in the clutch ports. Increased pressure of the hydraulic fluid in the clutch ports is coupled via the second internal passage to the second cavity thereby increasing the pressure of the hydraulic fluid in the second cavity at the left end of the spool. An increasing pressure in the second cavity urges the spool to halt its lateral movement to the left away from the poppet plate and urges it to begin moving back to the right toward the poppet plate. According to the text of the McCabe patent, “the spool . . . will move axially in relation to the poppet plate . . . until the sum of the forces on the spool . . . are in equilibrium.” The text of the McCabe patent also states that the second coil spring compressed between the poppet plate and the spool acts to reduce lateral oscillation of the spool due to changes in the pressure of hydraulic fluid at opposite ends of the spool. Thus, according to the McCabe patent, the combination of the poppet valve at the right end of the spool with the second internal passage in the spool and the second cavity at the left end of the spool along with the second coil spring, precisely controls the movement of the main spool laterally within the cage to adjust the pressure in the clutch ports. Based upon the preceding description of the operation of the valve depicted in FIG. 1 of the McCabe patent, that valve may be characterized as a normally closed valve that couples the clutch ports to the tank ports when no current flows through the coil. Conversely, the valve depicted in FIG. 2 of the McCabe patent includes a spring which biases the poppet valve closed, and a magnetic field generated by an electric current flowing through the coil urges the armature to move toward the right thereby opening the poppet valve. According to the text of the McCabe patent, the hydraulic pressure applied to the right end of the spool of the valve depicted in FIG. 2 when no current flows through the coil causes the spool to move to the left thereby causing the first chamber to couple the clutch ports to the pump ports. Thus the valve embodiment depicted in FIG. 2 of the McCabe patent may be characterized as a normally open valve that couples the clutch ports to the pump ports when no current flows through the coil. The text of the McCabe patent appears to lack an explanation of how closing and opening of the poppet valve depicted in the drawings of the patent may increase or decrease the pressure of hydraulic fluid present at the right end of the spool adjacent to the annularly shaped poppet plate. Accordingly, it appears that the valve disclosed in the McCabe patent may be commercially impractical for its intended purpose of controlling the pressure of hydraulic fluid in an automatic transmission of an automotive vehicle. U.S. Pat. No. 4,996,195 entitled “Pilot-Operated Valve With Load Pressure Feedback” issued on May 3, 1988 to Kenneth J. Stoss and Richard A Felland (“the Stoss et al. patent” discloses a pilot-operated electro-hydraulic valve adapted for use in controlling a transmission of an automotive vehicle. The valve disclosed in the Stoss et al. patent includes an electromagnetically controlled pilot valve that controls the operation of the valve's main spool. A pilot feedback passage couples the pressure of hydraulic fluid in the load or clutch port of the valve to a feedback chamber at one end of the pilot valve. The Stoss et al. patent discloses that a pilot feedback passage coupling the clutch port to the feedback chamber preferably includes a filtered orifice. The Stoss et al. patent appears to omit an explanation of the function provided by the filtered orifice. Neither the McCabe patent nor the Stoss et al. patent disclose or solve a problem that occurs in the operation of clutches in electro-hydraulic transmissions known as spiking. Spiking is a phenomenon that results from abruptly halting fluid flow through a hydraulic system. Fluid flowing through a hydraulic system has two types of energy. Those two different types of energy are potential energy and kinetic energy. Potential energy is energy that is present due to the pressure of hydraulic fluid. Kinetic energy is energy that is present due to the flow of fluid through the hydraulic system. When a clutch, or any other hydraulically operated device that is moving in response to a flow of hydraulic fluid reaches the mechanical limit of its travel, the hydraulic fluid flow through the system stops abruptly. This abrupt stopping of hydraulic fluid flow converts the fluid's kinetic energy into potential energy thereby producing a sudden and abnormal increase, or spike, in the pressure of the hydraulic fluid. Under appropriate circumstances, this pressure spike may be heard audibly as a disturbing or alarming noise, and the pressure increase may be so severe that it causes failure of the hydraulic system. SUMMARY OF THE INVENTION The present invention provides a commercially practical electrically energized, hydraulic proportional pressure control valve for use in electro-hydraulic transmissions having hydraulically operated clutches. An object of the present invention is to provide a fully operable electrically energized, hydraulic proportional pressure control valve for use in electro-hydraulic transmissions. Another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that controls the pressure in its clutch port precisely in response to changing values of the controlling electrical signal. Yet another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that relieves the abnormally high hydraulic fluid pressure spike that occurs when a flow of hydraulic fluid through the valve stops abruptly. Another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that reduces the abnormally high hydraulic fluid pressure spike that occurs when a flow of hydraulic fluid through the valve stops abruptly. Another object of the present invention is to provide a simpler electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide a more easily manufactured electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide a more economical electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide an electrically energized, proportional pressure control valve that, when used in conjunction with a clutch, provides improved and smooth engagement and disengagement of a load through precise control of fluid pressures within a hydraulic system. A further object of the present invention is to provide an electrically energized, proportional pressure control valve that has an improved pilot valve section allowing precise control of fluid pressures within a hydraulic system. Another object of the invention is to provide an electrically energized, proportional pressure control valve that has an improved ball type pilot valve section which allows precise control of fluid pressures within a hydraulic system and substantially reduces the cost of such a valve. A further object of the invention is to provide an electronically energized, proportional pressure control valve that includes improved feedback means to dampen oscillation within the valve. Briefly a proportional pressure control valve in accordance with the present invention includes a hollow cage having a wall that is pierced by a pump port, by a clutch port, and by a tank port. The pump port receives hydraulic fluid from a pump at a pressure provided by the pump. The clutch port is adapted for supplying pressurized hydraulic fluid to a hydraulic actuator at a pressure that is controlled by the proportional pressure control valve. The tank port of the cage returns hydraulic fluid from the proportional pressure control valve to a tank from which the fluid circulates back to the pump. The proportional pressure control valve also includes a main spool adapted to fit snugly within the cage. Contained within the cage, the main spool is movable along the length of the cage for controlling a flow of hydraulic fluid passing between the clutch port and either the pump port or the tank port. An electromagnetically operated pilot valve regulates a control pressure of hydraulic fluid that is present in a control pressure chamber of the proportional pressure control valve. The pressure of the fluid in the control pressure chamber is applied to a control pressure surface of the main spool. Pressure applied to the control pressure surface urges the main spool to move along the length of the cage to a position in which it allows hydraulic fluid to flow between the pump port and the clutch port. When disposed in such a position, the main spool obstructs any flow of hydraulic fluid between the clutch port and the tank port. A feedback pressure passage couples the pressure of hydraulic fluid in the clutch port of the proportional pressure control valve to a feedback pressure chamber. The feedback pressure chamber applies the pressure of hydraulic fluid in the clutch port to a feedback surface of the main spool. Pressure applied to the feedback pressure surface of the main spool urges the main spool to move within the cage to a position in which it allows a flow of hydraulic fluid to pass between the clutch port and the tank port. When disposed in such a position, the main spool obstructs any flow of hydraulic fluid between the pump port and the clutch port. The feedback pressure passage includes a feedback restriction orifice for restraining the rate at which fluid may flow between the clutch port and the feedback pressure chamber. An embodiment of the proportional pressure control valve of the present invention includes a pressure spike suppression check valve for relieving any abnormally high pressure that occurs in the clutch port of the cage. Such an abnormally high pressure may occur if a flow of hydraulic fluid through the clutch port stops abruptly. In the preferred form of this embodiment, the check valve allows hydraulic fluid to flow from the cage clutch port to the cage tank port when an abnormally high pressure occurs in the clutch port. A spike suppression orifice may also be included to restrain the rate at which fluid may flow through the check valve. These and other features, objects and advantages will be understood or apparent to those of ordinary skill in the art from the following detailed description of the preferred embodiment as illustrated in the various drawing figures. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, made up of FIGS. 1A and 1B, is an exploded, crosssectional plan view of a normally closed proportional pressure control valve constructed in accordance with the present invention that is adapted for control by an analog electrical control signal; FIG. 2 is a cross-sectional plan view of the assembled proportional pressure control valve depicted in FIG. 1; FIG. 3 is a plan view of a plunger included in the proportional pressure control valve depicted in FIGS. 1 and 2 taken along the line 3-3 in FIG. 1; FIG. 4A through 4D are cross-sectional plan views of a portion of the assembled proportional pressure control valve of FIGS. 1 and 2 illustrating motion of the main spool relative to the cage; FIG. 5, made up of FIGS. 5A and 5B, is an exploded, crosssectional plan view of a normally open proportional pressure control valve in accordance with the present invention that is adapted for control by a digital electrical control signal; FIG. 6 is a cross-sectional plan view of the assembles proportional pressure control valve depicted in FIG. 5; FIG. 7, made up of FIGS. 7A and 73, is an exploded, crosssectional plan view of a normally closed proportional pressure control valve in accordance with the present invention that is adapted for control by a digital electrical control signal; FIG. 8 is a cross-sectional plan view of the assembled proportional pressure control valve depicted in FIG. 7; and FIG. 9 is a cross-sectional plan view of a spool in accordance with the present invention including a pressure spike suppression check valve for relieving any abnormally high pressure that occurs in the clutch port of the cage; DETAILED DESCRIPTION OF THE INVENTION FIG. 2 depicts a cross-sectional plan view of a normally closed proportional pressure control valve referred to by the general reference character 20. FIG. 1, made up of FIGS. 1A and 1B, is an exploded, cross-sectional plan view depicting the various parts included in the proportional pressure control valve 20. The same reference characters are used to identify the same part of the proportional pressure control valve 20 both in FIG. 1 and in FIG. 2. The proportional pressure control valve 20 includes a body 22. Formed in the center of the body 22. symmetrically about a center line 24 that appears only in FIG. 1, is a cylindrically-shaped cavity 26. Surrounding the cavity 26 is a body wall 28 that is pierced by a body tank port 32 and a body clutch port 34. During normal operation of the proportional pressure control valve 20, the pressure of hydraulic fluid in the body tank port 32 is very low because the body tank port 32 connects to an unpressurized hydraulic fluid reservoir (not depicted in any of the FIGs.). The cavity 26 is formed to receive a cylindrically-shaped, elongated, hollow cage 42 having a cylindrically-shaped cage wall 44. Formed through the cage wall 44, toward one end of the cage 42, is a set of cage tank ports 52. Displaced laterally along the length of the cage 42 from the cage tank ports 52 and located approximately about the middle of the cage 42 is a set of cage clutch ports 54 that pass through the cage wall 44. Displaced even further laterally along the length of the cage 42 from the cage tank ports 52 than the cage clutch ports 54 is a set of cage pump ports 56 that also pass through the cage wall 44. The cage 30 wall 44 between the cage tank ports 52 and the cage clutch ports 54 includes a pair of raised lands 62 that encircle the cage 42. The lands 62 establish a U-shaped trough 64 that also encircles the cage 42 and receives an encircling O-ring 66. Similarly, the cage wall 44 between the cage clutch ports 54 and the cage pump ports 56 includes another pair of raised lands 72 that encircle the cage 42. The lands 72 establish another U-shaped trough 74 that encircles the cage 42 and receives another encircling O-ring 76. When the cage 42 is inserted into the cavity 26 in the body 22, the surface of the cavity 26 receives the raised outer surface of the lands 62 and 72, and the O-rings 66 and 76 seal between the surface of the cavity 26 and the outer surface of the cage wall 44. With the cage 42 disposed in this position within the body 22, the surface of the cavity 26 and the outer surface of the cage wall 44 between immediately adjacent lands 62 and 72 established a hollow, annularly-shaped clutch outlet chamber 82 that encircles the cage 42. Hydraulic fluid, that is applied to a hydraulic actuator (not depicted in any of the FIGs.), flows between the cage clutch ports 54 and the body clutch port 34 through the clutch outlet chamber 82. On the opposite side of the lands 72 from the clutch outlet chamber 82, the surface of the cavity 26 and the outer surface of the cage wall 44 establish a hollow, annularly-shaped pump inlet chamber 84 that also encircles the cage 42. The pump inlet chamber 84 receives pressurized hydraulic fluid from a pump (not depicted in any of the FIGs.) and supplies it to the interior of the cage 42 through the cage pump ports 56. A cup-shaped plug 92 fits snugly within the interior surface of the cage wall 44 at the end of the cage 42 nearest the cage pump ports 56. A U-shaped trough 94 encircles the plug 92 and receives an O-ring 96. The O-ring 96 seals between the inner surface of the cage wall 44 and the outer surface of the plug 92. The inner surface of the cage wall 44 immediately adjacent to the plug 92 includes a U-shaped groove 102. The groove 102 receives a snap ring 104 that mechanically retains the plug 92 within the cage 42. Secured in this location, the plug 92 closes the interior surface of the cage 42 between the plug 92 and the cage pump ports 56 formed through the cage wall 44. Received within the cage 42 abutting the plug 92 is a coil spring 108. The inner surface of the cage wall 44 is formed in the shape of a right, circular cylinder to receive a snugly fitting main spool 112. While the length of the main spool 112 is shorter than that of the cage 42, the main spool 112 nevertheless abuts the end of the coil spring 108 furthest from the plug 92 to compress the coil spring 108 between the plug 92 and a feedback pressure surface 114 of the main spool 112. The pressure of the coil spring 108 against the feedback pressure surface 114 urges the main spool 112 to move laterally along the length of the cage 42 away from the plug 92. When the main spool 112 is properly disposed within the cage 42, the plug 92, the feedback pressure surface 114 of the main spool 112, and the interior surface of the cage wall 44 between the plug 92 and the feedback pressure surface 114 establish a feedback pressure chamber 118. In addition to the coil spring 108, any hydraulic fluid pressure within the feedback pressure chamber 118 also urges the main spool 112 to move laterally along the length of the cage 42 away from the plug 92. A broad, U-shaped trough 122 encircles the outer surface of the main spool 112 about its mid-section. When the main spool 112 is properly disposed within the cage 42, the outer surface of the main spool 112 formed by the trough 122 and the inner surface of the cage wall 44 establish a hollow, annularly-shaped valving chamber 124 that encircles the main spool 112. A sufficiently large lateral movement of the main spool 112 toward the plug 92 allows hydraulic fluid to flow through valving chamber 124 between the cage pump ports 56 and the cage clutch ports 54 while the outer surface of the main spool 112 simultaneously obscures the cage tank ports 52 thereby obstructing hydraulic fluid flow through the cage tank ports 52. Alternatively, a sufficiently large lateral movement of the main spool 112 away from the plug 92 allows hydraulic fluid to flow through the valving chamber 124 between the cage clutch ports 54 and the cage tank ports 52 while the outer surface of the main spool 112 simultaneously blocks any substantial flow of hydraulic fluid between the cage pump ports 56 and the cage clutch ports 54. Thus, controlled movement of the main spool 112 laterally along the length of the cage 42 couples the cage clutch ports 54 either to the cage pump ports 56 or to the cage tank ports 52. A feedback pressure passage 126 is formed into the end of the main spool 112 adjacent to the coil spring 108 and the plug 92. A feedback restriction orifice 128, formed at the end of the feedback pressure passage 126 furthest from the coil spring 108 and the plug 92, passes through the surface of the trough 122 thereby coupling the feedback pressure passage 126 to valving chamber 124. Because the cage clutch ports 54 always open into the valving chamber 124, the feedback pressure passage 126 continuously couples the pressure of hydraulic fluid in the cage clutch ports 54 through the main spool 112 to establish a feedback pressure for the hydraulic fluid within the feedback pressure chamber 118. The feedback restriction orifice 128 in the feedback pressure passage 126 restrains the rate at which hydraulic fluid may flow between the valving chamber 124 and the feedback pressure chamber 118. The feedback restriction office 128 is sized dependant upon flow rate of fluid within the system as well as the size of the main spool 112 to provide acceptable overshoot spike suppression and operational stability of the system. To accomplish these intended purposes, feedback restriction orifice 128 is approximately about 0.020″ to about 0.040″ in diameter. The outer surface of the main spool 112 between the trough 122 and the feedback pressure surface 114 is also encircled by a narrow trough 132. This narrow trough 132 establishes a hollow, annularly-shaped pilot valve supply chamber 134 encircling the main spool 112 between the outer surface of the main spool 112 and the inner surface of the cage wall 44. Regardless of the lateral position of the main spool 112 along the length of the cage 42, the pilot valve supply chamber 134 is always open to a flow of hydraulic fluid from the pump through the cage pump ports 56 in the cage wall 44. One end of a pilot valve supply passage 136, formed through the interior of the main spool 112, is open to the trough 132 while the other end of the pilot valve supply passage 136 passes through a control pressure surface 138 on the outer surface of the main spool 112 furthest from the coil spring 108 and the plug 92. In the proportional pressure control valve 20 depicted in FIGS. 1 and 2, the pilot valve supply passage 136 immediately adjacent to the control pressure surface 138 receives a screen 142 and is threaded to receive a threaded control flow restriction orifice 144. The control flow restriction orifice 144 restrains the flow rate of a control pressure flow of hydraulic fluid that passes from the cage pump ports 56 through the trough 132, the pilot valve supply passage 136, and through the control pressure surface 138 of the main spool 112. The screen 142 catches particles in the hydraulic fluid to hinder blockage of the control flow restriction orifice 144 by such particles. An annularly-shaped stop 152 fits snugly within the interior surface of the cage wall 44 at the end of the cage 42 nearest the cage tank ports 52. A U-shaped trough 154 encircles the stop 152 and receives an O-ring 156. The O-ring 156 seals between the inner surface of the cage wall 44 and the outer surface of the stop 152. When the main spool 112 is properly disposed within the cage 42, the stop 152, the control flow restriction orifice 144, the control pressure surface 138 of the main spool 112, and the interior surface of the cage wall 44 between the stop 152 and the control pressure surface 138 establish a control pressure chamber 158. The pressure of hydraulic fluid within the control pressure chamber 158 urges the main spool 112 to move laterally along the length of the cage 42 away from the stop 152 toward the plug 92. Passing through the middle of the stop 152 is a hollow control pressure chamber outlet passage 162. Formed on the edge of the control pressure chamber outlet passage 162 furthest from the control pressure surface 138 of the main spool 112 is a beveled valve seat 164. Formed on the outer surface of the cage wall 44 surrounding the stop 152 are threads 172 adapted to mate with threads 174 formed on the interior surface of an annularly-shaped adaptor 176 of a tube assembly 178. Formed on the outer surface of the adaptor 176 are threads 182 adapted to mate with threads 184 formed at one end of the cavity 26 formed in the body 22. A U-shaped trough 186 encircles the adaptor 176 immediately adjacent to the threads 182 and receives an encircling O-ring 188. The O-ring 188 seals between the outer surface of the adaptor 176 and the surface of the cavity 26 in the body 22. With the adaptor 176 disposed in this position within the body 22 and mated with the cage 42, the surface of the cavity 26, the end surface of the adaptor 176, the outer surface of the cage wall 44 and the land 72 nearest to the adaptor 176 establish a hollow, annularly-shaped tank outlet chamber 192 encircling the cage 42. Hydraulic fluid flowing to the tank flows between the cage tank ports 52 and the body tank port 32 through the tank outlet chamber 192. A pair of control pressure flow return ports 194 pass through the adaptor 176 at the end of the threads 174 and 182 immediately adjacent to the trough 186 and the O-ring 188. A pair of elongated control pressure flow return slots 196 extend across the threads 182 from the control pressure flow return ports 194 away from the trough 186 and the O-ring 188. The control pressure flow return ports 194 and the control pressure flow return slots 196 provide a passage by which the control pressure flow of hydraulic fluid, that flows out of the control pressure chamber 158 through the control pressure chamber outlet passage 162, returns to the body tank port 32 and the cage tank ports 52, and thence to the tank. Projecting outward from the side of the annularly-shaped adaptor 176 opposite to the threads 174 and 182 is a hollow tube 202 included in the tube assembly 178. The tube 202 is rigidly attached to the adaptor 176 and sealed to it. Also rigidly attached and sealed to the tube 202 at its end furthest from the adaptor 176 is an annularly-shaped threaded tube plug 204 also included in the tube assembly 178. Received within the adaptor 176 and positioned at the end of the tube 202 nearest the adaptor 176 is an elongated, annularly-shaped pole piece 212. A raised land 214 encircles the outer surface of the pole piece 212. When the adaptor 176 is threaded onto the cage 42, the adaptor 176 presses the land 214 against the stop 152. Thus, threading the adaptor 176 onto the cage 42 forces the stop 152 into the cage 42 and holds it there. An annularly-shaped recess 216 is formed into the end of the pole piece 212 immediately adjacent to the stop 152. A pair of elongated slots 218 are formed along the entire length of the pole piece 212 and across the land 214 to open into the recess 216. The recess 216 and the ends of the slots 218 crossing the land 214 also form part of the passage by which the control pressure flow of hydraulic fluid, that flows out of the control pressure chamber 158 through the control pressure chamber outlet passage 162, returns to the body tank port 32 and cage tank ports 52, and thence to the tank. The slots 218 allow hydraulic fluid to flow past the pole piece 212 and fill the length of the tube 202 extending outward from the adaptor 176. Formed through the middle of the pole piece 212 is an elongated, cylindrically-shaped pin passage 222. An elongated pin 224 fits loosely within the pin passage 222 and slides freely back and forth within the length of the pin passage 222. The end of the pin passage 222 immediately adjacent to the recess 216 is formed with an enlarged diameter to provide a valve ball retaining chamber 226. The valve ball retaining chamber 226 receives a loosely fitting valve ball 228 that is free to move back and forth along the length of the valve ball retaining chamber 226. Within the proportional pressure control valve 20, the valve ball retaining chamber 226 supports the valve ball 228 in a position in which the pin 224 may urge the valve ball 228 into sealing engagement with the valve seat 164 of the stop 152. Loosely received within the tube 202 of the tube assembly 178 between the pole piece 212 and the threaded tube plug 204 is a plunger 232. The plunger 232 is free to move back and forth within the tube 202 between the pole piece 212 and the threaded tube plug 204. The end of the plunger 232 nearest the pole piece 212 contacts the end of the pin 224 that extends out of the pole piece 212 furthest from the valve ball 228. A spring cavity 234 is formed into the end of the plunger 232 nearest the threaded tube plug 204 to receive a light, minimum pressure coil spring 236. A partially threaded, central passage 238, that passes longitudinally through the middle of the threaded tube plug 204, receives the end of the spring 236 that projects out of the end of the plunger 232. As illustrated in the plan view of FIG. 3, the outer surface of the plunger 232 parallel to the center line 24 is not formed in the shape of a full right circular cylinder. Rather, portions of the outer surface of the plunger 232 parallel to the center line 24 are formed by planar surfaces 240. A preload adjusting screw 242 threads into the central passage 238 and contacts the end of the spring 236 within the central passage 238. Threading the preload adjusting screw 242 into the central passage 238 of the threaded tube plug 204 presses the spring 236 into the spring cavity 234 of the plunger 232. This force on the plunger 232 urges it into contact with the immediately adjacent end of the pin 224 whose far end contacts the valve ball 228. This force applied to the valve ball 228 by the preload adjusting screw 242 urges the valve ball 228 into a sealing contact with the valve seat 164 of the stop 152. A U-shaped trough 244 encircles the end of the preload adjusting screw 242 nearest the spring 236 and receives an O-ring 246. The O-ring 246 seals between the threaded tube plug 204 and the preload adjusting screw 242 to close the end of the tube assembly 178 furthest from the body 22. Because the tube assembly 178 is formed as a sealed unit, because the O-ring 246 seals between the preload adjusting screw 242 and the threaded tube plug 204, and because the O-ring 188 seals between the adaptor 176 and the body 22, hydraulic fluid normally enters the proportional pressure control valve 20 only through the pump inlet chamber 84 and normally leaves the proportional pressure control valve 20 only through the body tank port 32 and the body clutch port 34. The proportional pressure control valve 20 also includes an annularly-shaped solenoid coil 252 that loosely encircles the tube 202 of the tube assembly 178 immediately adjacent to the adaptor 176. An annularly-shaped spacer 254 also loosely encircles the tube 202 of the tube assembly 178 on side of the solenoid coil 252 furthest from the adaptor 176. A flux ring 253 is located between the coil shell and the adaptor 176 to enhance magnetic flux between the coil and the adaptor. A nut 256 threads onto the threaded tube plug 204 to contact the spacer 254 thereby urging it along the length of the tube assembly 178 toward the adaptor 176. Thus, force from the nut 256 holds the solenoid coil 252 in contact with the adaptor 176. The solenoid coil 252 includes a pair of electrically conductive leads 258. Applying an electrical control signal to the leads 258 produces a magnetic field within the tube 202 of the tube assembly 178. This magnetic field applies a force that pushes the plunger 232 along the length of the tube 202 toward the valve ball 228. Thus, in addition to the coil spring 236, an electric current flowing through the solenoid coil 252 also applies a force to the valve ball 228 that urges it into a sealing contact with the valve seat 164 of the stop 152. With no electric current passing through the solenoid coil 252 of the proportional pressure control valve 20 depicted in FIGS. 1 and 2, the pressure of the hydraulic fluid supplied by the pump to the pump inlet chamber 84 is transmitted substantially undiminished to the control flow restriction orifice 144 retained in the main spool 112. The control pressure flow of hydraulic fluid passing through the control flow restriction orifice 144 fills the control pressure chamber 158 and flows out of the control pressure chamber 158 through the control pressure chamber outlet passage 162. This control pressure flow of fluid through the control pressure chamber outlet passage 162 impinges upon the valve ball 228 urging it away from the valve seat 164 on the stop 152. The pressure applied to the plunger 232 by the spring 236 applies only a light force urging the valve ball 228 back toward the valve seat 164. Therefore, when no electrical current passes through the solenoid coil 252, it requires only a low pressure for fluid within the control pressure chamber 158 to overcome the force applied to the valve ball 228 by the coil spring 236 and to push the valve ball 228 away from the stop 152. With the valve ball 228 thus displaced away from the valve seat 164 against only the force applied by the spring 236, the control flow restriction orifice 144 located within the main spool 112 restrains the flow rate of the control pressure flow of hydraulic fluid passing through the pilot valve supply passage 136 to a low value. The resistance to this low rate of fluid flow past the valve ball 228 and through the control pressure flow return passage to the cage tank ports 52 provides a back-up pressure that is sufficiently low such that little force is applied by the fluid in the control pressure chamber 158 to the control pressure surface 138 of the main spool 112. Therefore, the force applied to the feedback pressure surface 114 of the main spool 112 by the coil spring 108 within the feedback pressure chamber 118 pushes the main spool 112 toward the stop 152. In the proportional pressure control valve 20 depicted in FIGS. 1 and 2, varying the pressure applied to the plunger 232 by the spring 236 adjusts the hydraulic fluid pressure present in the cage clutch ports 54 of the cage 42 to a predetermined pressure valve. This is accomplished by turning the preload adjusting screw 242 within the threaded tube plug 204. The coil spring 236, the central passage 238 in the plug 204 and the adjustable screw 242 may be eliminated in applications where back-up pressure is not required or is undesirable. Such an arrangement is illustrated in FIG. 6 and described below. When the control pressure surface 138 of the main spool 112 is located immediately adjacent to the stop 152, the main spool 112 spool blocks substantially all fluid flow through the cage pump ports 56 to the cage clutch ports 54 while the valving chamber 124 allows fluid to flow freely from the cage clutch ports 54 to the cage tank ports 52. Because the valving chamber 124 couples the cage clutch ports 54 to the cage tank ports 52, substantially the same low pressure of hydraulic fluid is present both in the body tank port 32 and in the body clutch port 34. Applying an electrical control signal to the leads 258 increases the force pushing the plunger 232 toward the stop 152. This increased force on the plunger 232 is applied by the pin 224 to the valve ball 228. The force from the plunger 232 urges the valve ball 228 toward the valve seat 164 thereby reducing the control pressure flow of fluid out of the control pressure chamber outlet passage 162 and increasing the pressure of fluid within the control pressure chamber 158. The increased fluid pressure within the control pressure chamber 158 presses against the control pressure surface 138, overcomes the force applied to the main spool 112 by the coil spring 108 located in the feedback pressure chamber 118, and moves the main spool 112 away from the stop 152 toward the plug 92 as illustrated in FIGS. 4A through 4D. Movement of the main spool 112 away from the stop 152 first causes the outer surface of the main spool 112 to occlude the cage tank ports 52 and then allows the valving chamber 124 to couple the cage clutch ports 54 to the cage pump ports 56. Coupling of the cage clutch ports 54 to the cage pump ports 56 increases the pressure of hydraulic fluid within the body clutch port 34. The increased pressure of fluid in the body clutch port 34 is coupled through the cage clutch ports 54, the valving chamber 124, feedback restriction orifice 128, and the feedback pressure passage 126 to the feedback pressure chamber 118. The pressure of fluid in the feedback pressure chamber 118 presses against the feedback pressure surface 114 of the main spool 112 to oppose the force applied to the control pressure surface 138 of the main spool 112 by the fluid in the control pressure chamber 158. When the forces applied to these opposite ends of the main spool 112 become equal the main spool 112 stops moving within the cage 42 and the proportional pressure control valve 20 maintains a constant fluid pressure within the body clutch port 34. Any inequality between the forces applied simultaneously to the control pressure surface 138 and to the feedback pressure surface 114 of the main spool 112 cause the main spool 112 to move laterally within the cage 42. In response to such unequal forces, the main spool 112 moves away from the end receiving the larger force and toward the end receiving the lesser force. Because the feedback restriction orifice 128 restrains the rate at which hydraulic fluid may flow from the valving chamber 124 to the feedback pressure chamber 118, it dampens out possible oscillation of the main spool 112 within the cage 42. Operated in this manner, the solenoid coil 252, the plunger 232, the pin 224, the valve ball 228, the stop 152, and the control flow restriction orifice 144 provide an electromagnetically operated pilot valve for supplying a regulated pressure of fluid to the control pressure chamber 158 responsive to an electrical control signal. Changing the electrical control signal so an electrical current no longer flows through the solenoid coil 252 again permits the fluid pressure from the cage pump ports 56 to overcome the force applied to the valve ball 228 and move it away from the valve seat 164 on the stop 152. Moving the valve ball 228 away from the valve seat 164 reduces the force applied to the control pressure surface 138 of the main spool 112 by fluid pressure within the control pressure chamber 158. With a lesser force being applied to the control pressure surface 138, both the force applied to the feedback pressure surface 114 by the coil spring 108 and any residual pressure in the feedback pressure chamber 118 urge the spool to move back toward the stop 152. Applying different levels of electrical control signals provides different solenoid forces and therefore different pressures in the control chamber and the clutch in proportion to electric signals. This type of signal control makes proportional pressure control and corresponding clutch torque control possible. FIG. 6 depicts a cross-sectional plan view of a proportional pressure control valve referred to by the general reference character 310. FIG. 5, made up of FIGS. 5A and 5B, is an exploded, cross-sectional plan view depicting the various parts included in the proportional pressure control valve 310. Those elements depicted in FIGS. 5 and 6 that are common to the proportional pressure control valve 20 depicted in FIGS. 1 and 2 carry the same reference numeral distinguished by a prime (“′”) designation. The same reference characters are used to identify the same part of the proportional pressure control valve 310 both in FIG. 5 and in FIG. 6. The proportional pressure control valve 310 depicted in FIGS. 5 and 6 is a normally open valve. The interior of the main spool 112′ of the proportional pressure control valve 310 differs from that of the proportional pressure control valve 20. Formed through the entire length of the interior of the main spool 112′ is a right circular cylindrically-shaped seat spool passage 322. When assembled into the proportional pressure control valve 310, the seat spool passage 322 of the main spool 112∝ receives a rod-shaped seat spool 324 having a length that is greater than that of the main spool 112′. The end of the seat spool 324 extending outward beyond the feedback pressure surface 114′ of the main spool 112′ contacts the inner surface of the plug 92 and is surrounded by the coil spring 108′. Thus, in the proportional pressure control valve 310 the coil spring 108′ presses against the feedback pressure surface 114′ of the main spool 112′ and not against the seat spool 324. The outer surface of the seat spool 324 enclosed within the main spool 112′ near its feedback pressure surface 114′ is encircled by a trough 326. The trough 326 establishes a hollow, annularly-shaped pilot valve supply coupling chamber 328 encircling the seat spool 324 between the outer surface of the seat spool 324 and the surface of the seat spool passage 322. The pilot valve supply coupling chamber 328 forms part of the pilot valve supply passage 136′ to couple the portion of the pilot valve supply passage 136′ passing through the main spool 112′ to the portion of the pilot valve supply passage 136′ passing through the interior of the seat spool 324. Thus, as in the proportional pressure control valve 20, the pilot valve supply passage 136′ of the proportional pressure control valve 310 is always open to a flow of hydraulic fluid from the pump through the cage pump ports 56′ in the cage wall 44′. Formed on the edge of the pilot valve supply passage 136′ passing through the seat spool 324 that extends outward through the control pressure surface 138′ of the main spool 112′ is a beveled valve seat 332. In the assembled proportional pressure control valve 310, a valve ball 336 is juxtaposed with the valve seat 332 of the seat spool 324. The digital control signal proportional pressure control valve 310 depicted in FIGS. 5 and 6 omits the screen 142 and the control flow restriction orifice 144 included in the proportional pressure control valve 20 depicted in FIGS. 1 and 2. The tube assembly 178′ of the proportional pressure control valve 310 differs from the tube assembly 178 of the proportional pressure control valve 20 by substituting a solid tube plug 342 for the annularly-shaped threaded tube plug 204. The proportional pressure control valve 310 omits the coil spring 236′ included in the proportional pressure control valve 20. Accordingly, the plunger 232′ of the digital normally open proportional pressure control valve 310 lacks the spring cavity 234 that is included in the plunger 232 of the analog normally closed proportional pressure control valve 20. In the assembled proportional pressure control valve 310, a long pin 346 and a short pin 348 extend outward coaxially from the plunger 232′ through the interior of the pole piece 212′ toward the seat spool 324. The long pin 346 is preferably made from a non-magnetic material such as stainless steel or the like. To resist wear at the point of contact between the short pin 348 and the valve ball 336, the short pin 348 is preferably made from a material such as hardened steel or a material having similar wear resistant properties. The end of the short pin 348 furthest from the plunger 232′ and nearest to the seat spool 324 is formed with a smaller diameter which allows it to enter freely into the control pressure chamber outlet passage 162′ of the stop 152′. As may be appreciated by those skolled in the art, this same two-piece pin configuration may be utilized in the system illustrated on FIG. 2 and previously described above. While in the proportional pressure control valve 20 the diameter of the control pressure chamber outlet passage 162 in the stop 152 has a uniform diameter throughout its entire length, the diameter of the control pressure chamber outlet passage 162′ of the stop 152′ in the proportional pressure control valve 310 has an enlarged diameter immediately adjacent to the valve seat 332 of the seat spool 324. The enlarged diameter of the control pressure chamber outlet passage 162′ immediately adjacent to the valve seat 332 provides a valve ball retaining chamber 354 analogous to the valve ball retaining chamber 226 in the pole piece 212 of the proportional pressure control valve 20. A U-shaped slot 356 extends across the face of the stop 152′ immediately adjacent to the main spool 112′ and the seat spool 324. The slot 356 forms a portion of the control pressure chamber 158′ that permits hydraulic fluid to flow into and out of that portion of the control pressure chamber 158′ adjacent to the control pressure surface 138′ of the main spool 112′. The diameter of the control pressure chamber outlet passage 162′ on the opposite side of the stop 152′ from the valve ball retaining chamber 354 that is adjacent to the pole piece 212′ is also enlarged to permit hydraulic fluid to flow freely about the short pin 348 on its way to the body tank port 32′ and cage tank ports 52′, and thence to the tank. Because the proportional pressure control valve 310 omits the coil spring 236″ included in the proportional pressure control valve 20, unless an electrical current flows through the solenoid coil 252′ there is no force urging the plunger 232′ away from the solid tube plug 342 toward the valve ball 336. Therefore, when no electrical current flows through the solenoid coil 252′, the force of the hydraulic fluid impinging on the valve ball 336 urges it away from the valve seat 332 of the seat spool 324 toward the interior of the stop 152′ and the narrowest portion of the control pressure chamber outlet passage 162′. In this location, the valve ball 336 seals the control pressure chamber outlet passage 162′ and hydraulic fluid at the full pressure supplied by the pump fills the control pressure chamber 158′. The presence of hydraulic fluid within the control pressure chamber 158′ at the full pressure supplied by the pump causes the main spool 112′ to move longitudinally within the cage 42 thereby coupling the cage pump ports 56′ to the cage clutch ports 54′ to supply hydraulic fluid at the full pressure supplied by the pump to the body clutch port 34′. The magnetic field resulting from the application of a PWM electrical signal to the solenoid coil 252′ pushes the plunger 232′ away from the solid tube plug 342 toward the valve ball 336. The combined long pin 346 and short pin 348 transmit this movement of the plunger 232′ to the valve ball 336 pushing it toward the valve seat 332 of the seat spool 324. Movement of the valve ball 336 toward the valve seat 332 simultaneously allows hydraulic fluid to flow from the control pressure chamber 158′ into the control pressure chamber outlet passage 162′ and restricts the flow of hydraulic fluid through the pilot valve supply passage 136′ in the seat spool 324 into the control pressure chamber 158′. Thus, a PWM electrical signal applied to the solenoid coil 252′ reduces the pressure of the hydraulic fluid in the control pressure chamber 158′ thereby causing longitudinal movement of the main spool 112′ within the cage 42′ that reduces the pressure of hydraulic fluid within the body clutch port 34′. Operated in this manner, the solenoid coil 252′, the plunger 232′, the pins 346 and 348, the valve ball. 336, the stop 152′, and the seat spool 324 provide an electromagnetically operated pilot valve for supplying a regulated pressure of fluid to the control pressure chamber 158′ responsive to an electrical control signal. FIG. 8 depicts a cross-sectional plan view of a proportional pressure control valve referred to by the general reference character 410. FIG. 7, made up of FIGS. 7A and 7B, is an exploded, cross-sectional plan view depicting the various parts included in the proportional pressure control valve 410. Those elements depicted in FIGS. 7 and 8 that are common to the proportional pressure control valve 20 depicted in FIGS. 1 and 2 or to the proportional pressure control valve 310 depicted in FIG. 5 and 6 carry the same reference numeral distinguished by a double prime (“″”) designation. The same reference characters are used to identify the same part of the proportional pressure control valve 410 both in FIG. 7 and in FIG. 8. The proportional pressure control valve 410 depicted in FIGS. 7 and 8 is a normally closed valve that is adapted for control by a digital pulse width modulated (“PWM”) electrical control signal. The tube 202″ of the proportional pressure control valve 410 is shorter than the tube 202 of the tube assemblies 178 and 178′ of the proportional pressure control valves 20 and 310. Because of the shorter tube 202″, the proportional pressure control valve 410 omits the spacer 254. The solid tube plug 342″ of the proportional pressure control valve 410 extends further into the tube 202″ than the tube plug 342 of the proportional pressure control valve 310 and functions as a pole piece for the proportional pressure control valve 410. Formed into the end of the solid tube plug 342″ nearest to the adaptor 176″ is a plug spring cavity 412. In the assembled proportional pressure control valve 410, the plug spring cavity 412 receives one end of the coil spring 236″. The other end of the spring 236″ is received into the spring cavity 234″ formed into the plunger 232″ of the proportional pressure control valve 410 immediately adjacent to the solid tube plug 342″. Projecting outward from the end of the plunger 232″ furthest from the spring cavity 234″ is a protrusion 422. A pin cavity 424, formed into the protrusion 422, receives a pin 426. The outer surface of the plunger 232″ parallel to the center line 24″ is not formed in the shape of a full right circular cylinder. Rather, the shape of the outer surface of the plunger 232″ parallel to the center line 24″ is similar to that of the plunger 232 as depicted in FIG. 3. There are only two substantial differences between stop 152″ of the normally closed proportional pressure control valve 410 and the stop 152′ of the normally open proportional pressure control valve 310. Because the proportional pressure control valve 410 omits the pole piece 212′ included in the proportional pressure control valve 310, the width of the stop 152″ between the cage 42″ and the adaptor 176″ is greater than that of the stop 152′. Thus, in the assembled proportional pressure control valve 410, the adaptor 176″ contacts the stop 152″ and directly forces it into the cage 42″ and holds it there. Also because the proportional pressure control valve 410 lacks the pole piece 212′, a U-shaped slot 432 is formed across the face of the stop 152″ immediately adjacent to the plunger 232″. The slot 432 forms a portion of the passage by which hydraulic fluid, that flows out of the control pressure chamber 158″ through the control pressure chamber outlet passage 162″, returns to the body tank port 32″ and cage tank ports 52″, and thence to the tank. The coil spring 236 included in the proportional pressure control valve 410 applies sufficient force to the valve ball 336″ through the plunger 232″ and the pin 426 that, in the absence of an electric current flowing through the solenoid coil 252″, the valve ball 336″ seals the pilot valve supply passage 136″ thereby preventing hydraulic fluid from entering into and pressurizing the control pressure chamber 158″. As explained previously, the absence of any pressure on the hydraulic fluid in the control pressure chamber 158″ causes the proportional pressure control valve 410 to block all fluid flow from the pump inlet chamber 84″ to the body clutch port 34″ and relieves all pressure from the hydraulic fluid in the body clutch port 34″. Application of a PWM signal to the solenoid coil 252″ of the proportional pressure control valve 410 overcomes the force applied to the plunger 232″ by the spring 236″ and pulls the plunger 232″ away from the valve ball 336″ toward the solid tube plug 342″. Pulling the plunger 232″ toward the solid tube plug 342″ releases the force urging the valve ball 336″ into the valve seat 332″ of the seat spool 324″. The force of the hydraulic fluid impinging on the valve ball 336″ urges it away from the valve seat 332″ of the seat spool 324″ toward the interior of the stop 152″. Thus spaced apart from the valve seat 332″, the valve ball 336″ allows hydraulic fluid to flow into and raise the pressure of hydraulic fluid within the control pressure chamber 158″. The pressurized hydraulic fluid within the control pressure chamber 158″ causes the main spool 112″ to move laterally along the length of the cage 42″ and to couple the cage pump ports 56″ to the cage clutch ports 54″ thereby supplying hydraulic fluid to the body clutch port 34″. Operated in this manner, the solenoid coil 252″, the plunger 232″, the pin 426, the valve ball 336″, the stop 152″, and the seat spool 324″ provide an electromagnetically operated pilot valve for supplying a regulated pressure of fluid to the control pressure chamber 158″ responsive to an electrical control signal. A normally open proportional pressure control valve adapted for control by an analog electrical control signal may be constructed by substituting certain elements from the normally closed proportional pressure control valve 410 for elements of the normally closed proportional pressure control valve 20. Such a normally open proportional pressure control valve may be assembled by incorporating the tube assembly 178″, the spring 236″, and a plunger 232″ that lacks the protrusion 422 of the proportional pressure control valve 410 for the corresponding elements of the proportional pressure control valve 20. The stop 152 of such an analog normally open valve must also be modified from that included in the proportional pressure control valve 20 by making it thicker so the adaptor 176 of the tube assembly 178 may force the stop 152 into the cage 42, and by providing structures that will support the valve ball 228 at the valve seat 164 analogous to the valve ball retaining chamber 226 in the pole piece 212. The stop 152 must also be modified to provide a passage by which hydraulic fluid, that flows out of the control pressure chamber 158 through the control pressure chamber outlet passage 162, may return to the body tank port 32 and cage tank ports 52. In such a modified valve, if no current flows through the solenoid coil 252, the force of the spring 236″ urges the valve ball 228 into sealing relationship with the valve seat 164 thereby pressurizing the hydraulic fluid within the control pressure chamber 158. Supplying an analog electrical control current to the solenoid coil 252 of such a modified valve applies a magnetic field to the plunger 232″ that overcomes the force of the spring 236 and pulls the plunger 232″ away from the valve ball 228 thereby relieving the pressure of hydraulic fluid within the control pressure chamber 158. Operated in this manner, the solenoid coil 252″, the plunger 232″, the pin 426, the valve ball 228, the modified stop 152, and the control flow restriction orifice 144 provide an electromagnetically operated pilot valve responsive to an analog current for supplying a regulated pressure of fluid to the control pressure chamber 158 responsive to an electrical control signal. Referring now to FIG. 9, depicted there is a cross-sectional plan view of a main spool 502 in accordance with the present invention that also includes a pressure spike suppression check valve 504. Those elements depicted in FIG. 9 that are common to the main spool 112 of the proportional pressure control valve 20 depicted in FIGS. 1 and 2 carry the same reference numeral distinguished by a triple prime (“′″”) designation. The main spool 502 includes a narrow U-shaped trough 512 formed into the outer surface of the main spool 502 between the control pressure surface 138′″ of the main spool 502 and the trough 122′″ that establishes the hollow, annularly-shaped valving chamber 124′″. The trough 512 establishes a hollow, annularly-shaped pressure spike pilot chamber 514 encircling the main spool 502 between its outer surface and the inner surface of the cage 42′″ (not illustrated in FIG. 9). The pressure spike pilot chamber 514 is always open to the cage tank ports 52′″ (not illustrated in FIG. 9). A pressure spike pilot valve cavity 518 extending between the trough 122′″ and the control pressure surface 138′″ opens into the pressure spike pilot chamber 514. The pressure spike pilot valve cavity 518 is open to the valving chamber 124′″ through the surface of the trough 122′″. Threads formed at the end of the pressure spike pilot valve cavity 518 adjacent to the control pressure surface 138′″ receive a threaded plug 522. The pressure spike suppression check valve 504 fits snugly within the pressure spike pilot valve cavity 518 to normally block any flow among the valving chamber 124′″, the control pressure chamber 158′″ and the pressure spike pilot chamber 514 due to the pressure difference between the control pressure chamber 158 and valving chamber 124 and a spring 524 located between pressure spike suppression check valve 504 and the pressure spike pilot orifice 522. Spring 524 provides a biasing force to prevent unwanted oscillation of pressure spike suppression check valve 504. If a clutch, or any other hydraulically operated device, reaches the mechanical limit of its travel and hydraulic fluid flow through the cage clutch ports 54′″ stops abruptly, the fluid pressure on the side of the pressure spike suppression check valve 504 open to the valving chamber 124′″ rises abruptly. The pressure spike suppression check valve 504 is constructed such that when the pressure of the hydraulic fluid on the side open to the valving chamber 124′ exceeds the pressure of the hydraulic fluid applied to the other side of the valve 504, the valve 504 opens to permit fluid to flow between the valving chamber 124′″ and the pressure spike pilot chamber 514. Since the pressure spike pilot chamber 514 is always open to the cage tank ports 52′″, fluid flows from the valving chamber 124′″ to the cage tank ports 52 to relieve the abnormally high pressure within the cage clutch ports 54′″. When the pressure applied to the pressure spike suppression check valve 504 from the trough 122′″ once again equals or becomes less than the pressure applied to the valve 504 from the control pressure surface 138′″, the pressure spike suppression check valve 504 once again closes to prevent fluid from flowing between the valving chamber 124′″ and the pressure spike pilot chamber 514. Industrial Applicability While the disclosed embodiment describes certain preferred locations for various passages in the valve such as the pilot valve supply passage 136 supplying hydraulic fluid from the cage pump ports 56 to the pilot valve, and the feedback pressure passage 126 from the valving chamber 124 to the feedback pressure chamber 118, those passages need not necessarily be located exactly as described above. For example, the pilot valve supply passage 136 could be formed through the body 22 and the adaptor 176 rather than through the main spool 112 in the proportional pressure control valve 20, or through the combined main spool 112′ and the seat spool 324 the proportional pressure control valve 310. Analogously, the feedback pressure passage 126 need not be formed through the main spool 112. Rather, the feedback pressure passage 126 could be formed through the cage wall 44. Similarly, the pressure spike pilot valve cavity 518 could be formed through the cage wall 44′″ and the pressure spike suppression check valve 504 be located in the cage 42′″ rather than in the main spool 502. Comparatively large passages in the pilot valve of the proportional pressure control valves 310 and 410 adapted for use with a PWM control signal permit omission of the screen 142 included in valves adapted for control by an analog signal. If particles in the hydraulic fluid cause blockage of the passages in the valves 310 or 410, then a screen, similar to the screen 142 included in the proportional pressure control valve 20, may be suitably incorporated into either the main spool or the seat spool of the valves 310 or 410. While the solenoid coil 252 of the proportional pressure control valves adapted for control by an analog signal, a pulse width modulated (“PWM”) signal and the like, it may be desirable to use this valve as a solenoid on-off valve provided a small amount of bleeding flow is acceptable. Such an on-off valve assures the benefits of using a small inexpensive coil to control comparatively large flow. In distinction to the valves 20 and 310, the valve 410, when used in the proportional control mode, requires a pluse width modulated (“PWM”) driver with a “peak-and-hold” means to develop sufficient magnetic forces to overcome the force provided by the compressed coil spring which otherwise cannot be overcome at lesser values of current. It has been determined that a usable pulse width modulation frequency range will be approximately from about 50 Hz to about 500 Hz. While the body 22 has been described in connection with the preferred embodiment of the invention, the body 22 is not essential to the functioning of the valve. Rather, as described above, the body 22 merely provides a mechanical housing for the cage 42 and for joining the cage 42 respectively with the pump, the tank and the clutch. Thus, a valve in accordance with the present invention need not include the body 22. Rather, other structures, such as the case that mechanically encloses the transmission for an automotive vehicle, could itself directly incorporate the structure and provide the function of the body 22 as described above. While the present invention has been described for use in hydraulic transmissions, its usefulness in other hydraulic systems will be understood by those skilled in the art of hydraulic systems. Such uses may include but are not limited to hydraulic braking systems, hydraulic lifting systems and such similar hydraulic systems using proportional control valves. Although the present invention has been described in terms of the presently preferred embodiment, it is to be understood that such disclosure is purely illustrative and is not to be interpreted as limiting. Consequently, without departing from the spirit and scope of the invention, various alterations, modifications, and/or alternative applications of the invention will, no doubt, be suggested to those skilled in the art after having read the preceding disclosure. Accordingly, it is intended that the following claims be interpreted as encompassing all alterations, modifications, or alternative applications as fall within the true spirit and scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Automobiles, trucks, tractors, earth-moving vehicles, and many other different types of vehicles (hereinafter collectively referred to as automotive vehicles) frequently include an internal combustion engine for powering their movement across the earth's surface. An automotive vehicle also includes a drive train for transmitting energy produced by the internal combustion engine into movement of the wheels, drive tracks or similar means by which the vehicle is driven across the earth's surface. To effectively accommodate the power characteristics of the internal combustion engine to the load of the vehicle that it must drive at various speeds over varying terrain, an automotive vehicle's drive train usually includes one or more transmissions. Each transmission in an automotive vehicle includes a transmission power input shaft that receives energy from the internal combustion engine's power output shaft, and a transmission power output shaft for transmitting the engine's energy onto the means for driving the vehicle across the earth's surface. Each transmission in an automotive vehicle also includes sets of gears, each one of which, when selected for coupling the transmission's power input shaft to its power output shaft, provides a different speed ratio between the rotation rates, respectively, of the transmission's power input and power output shafts. To facilitate selecting a particular gear ratio and for smoothly accelerating an automotive vehicle from a stationary start, its drive train usually includes a clutch located between the automotive vehicle's internal combustion engine and its transmission(s). This clutch selectively couples the internal combustion engine's power output shaft to the transmission's power input shaft. In one position of the clutch, it completely decouples the engine's power output shaft from the transmission's power input shaft. In another position, the clutch of an automotive vehicle provides a tight coupling between the internal combustion engine's power output shaft and the transmission's power input shaft. In this tightly coupled state, the internal combustion engine's power output shaft and the transmission's power input shaft rotate at the same speed. However, most clutches for automotive vehicles operating in this tightly coupled state are capable of passing only some maximum amount of torque from the internal combustion engine to the transmission without slippage occurring in the clutch. If a torque greater than this maximum amount is supplied to the clutch in its tightly coupled state, slippage occurs within the clutch that allows the power output shaft of the internal combustion engine to rotate at a speed different from that of the transmission's power input shaft. Between these two extremes of clutch operation, either of being decoupled or of being tightly coupled, the design of most clutches used in automotive vehicles permit progressively varying the tightness of coupling between the engine's power output shaft and the transmission's power input shaft. In intermediate states between these two extremes, the clutch will transmit an amount of torque to the transmission without slippage that is less than the maximum amount that it will transmit when tightly coupled. Controllably coupling differing amounts of torque from the internal combustion engine to the means for driving the vehicle across the earth's surface permits smoothly accelerating an automotive vehicle into motion. Controllably coupling different amounts of torque from the internal combustion engine to the means for driving the vehicle through the clutch is also useful, particularly for heavy industrial vehicles such as trucks, tractors and the like when shifting the transmission smoothly from a set of gears having one ratio to another set having a different ratio. Historically, a driver of an automotive vehicle usually operated its clutch through a direct mechanical linkage between the clutch and a clutch pedal located in the vehicle's passenger compartment near the driver. In some instances, a closed hydraulic system for operating the clutch by pressure on the clutch pedal replaces the direct mechanical linkage. More recently, to provide automatic electronic control of gear ratio selection, particularly in automotive vehicle's that include a microprocessor, it has become desireable to control clutch operation by means of an electrical signal rather than by the driver pressing on a clutch pedal. While some designs for clutches are known that permit an electrical current to directly effect coupling and uncoupling of the clutch, such clutches generally consume, and must therefore also dissipate, a significant amount of electrical power. Thus, even with microprocessor controlled operation of an automotive vehicle's transmission, it still appears desirable to continue controlling clutch operation indirectly by converting a control electrical signal from the microprocessor into a more powerful mechanical driving force for directly operating a conventional clutch. In pursuing this indirect electronic control of automotive vehicle clutches, some automotive vehicle manufacturers have chosen to employ electro-hydraulic transmissions having hydraulically operated clutches. In such electro-hydraulic transmissions, a hydraulic pump supplies pressurized hydraulic fluid for energizing a hydraulic actuator, for example a piston or a bellows, that directly operates the clutch. In one design for such a clutch, springs hold the clutch in its disengaged position and a carefully controlled pressure of the hydraulic fluid from the pump overcomes the springs' force to effect engagement of the clutch. When the hydraulic pressure is removed from this clutch, the springs once again move the clutch into its disengaged state. By using the spring pressure to effect clutch disengagement and hydraulic pressure to effect clutch engagement, the clutch inherently disconnects the engine from the transmission when the engine is not running to power the hydraulic fluid pump. Furthermore, this method of operating an electro-hydraulic clutch inherently avoids creating a hazardous condition if the hydraulic fluid pump fails. With such an electro-hydraulically operated clutch, smoothly accelerating the vehicle into motion and smoothly shifting transmission gear ratios require a hydraulic valve that controls the pressure of the hydraulic fluid supplied to the clutch precisely in response to changing values of the controlling electrical signal. U.S. Pat. No. 4,996,195 entitled “Transmission Pressure Regulator” issued on Oct. 30, 1990 to Ralph P. McCabe (“the McCabe patent”) and discloses a valve for controlling the pressure of a fluid medium that is adapted for use in a control system such as that of an automatic transmission of an automotive vehicle. The valve disclosed in the McCabe patent includes a cylindrically shaped, elongated, hollow aperture means or cage. Formed through the wall of the cage toward one end is a first set of apertures or ports. This first set of ports receives a supply pressure of hydraulic fluid, apparently from a pump (not depicted or described in the text or drawings of the McCabe patent). A second set of apertures or ports also passes through the wall of the aperture means or cage. The second set of ports is displaced laterally from the first set of ports along the length of the cage and located near the middle of the length of the cage. The hydraulic fluid in the second set of ports has a control pressure and, apparently, is supplied to the automatic transmission (not depicted or described in the McCabe patent). A third set of apertures or ports is formed in the wall of the cage. The third set of ports is displaced laterally along the length of the cage from both the first and second sets of ports and is located near the end of the cage furthest from the first set. The hydraulic fluid in this third set of ports has a sump or tank pressure, and appears to return from the valve to a tank (not depicted or described in the McCabe patent). The inner surface of the cage is formed in the shape of a right, circular cylinder and receives a snugly fitting main spool. The spool is much shorter than the cage and can, therefore, move laterally back and forth within the cage while remaining totally enclosed therein. A broad trough encircles the outer surface of the spool about its aid-section to establish a first chamber between the outer surface of the spool and the inner surface of the cage. The width of this trough along the length of the spool permits the first chamber to couple immediately adjacent pairs of sets of ports to each other while not simultaneously coupling all three sets of ports to each other. As depicted in FIGS. 1 and 2 of the McCabe patent, when the spool is fully displaced toward the right, the first chamber couples the second set of apertures, i.e., the clutch ports, to the third set of apertures, i.e., the tank ports. Alternatively, when the spool is fully displaced toward the left, the first chamber couples the first set of apertures, i.e., the pump ports, to the second set of apertures, i.e., the clutch ports. Thus, precisely controlled motion of the main spool laterally within the cage couples the set of clutch ports either to the set of pump ports or to the set of tank ports, and, as described in the McCabe patent, can thereby control the hydraulic fluid pressure in the clutch ports. As depicted in FIGS. 1 and 2 of the McCabe patent, the outer surface of the spool is also encircled by a narrow trough located near its left end. This narrow trough establishes a second chamber between the outer surface of the spool and the inner surface of the cage. The second chamber appears to be always open to a flow of hydraulic fluid from the pump through the pump ports through the wall of the cage. Located in the interior of the spool disclosed in the McCabe patent is a hollow first internal passage. The formation of this passage in the spool establishes a cup-shaped cavity that is open toward the right end of the spool and closed at the spool's left end. A passage, formed through the wall of the spool, connects this cup-shaped cavity to the second chamber. From FIGS. 1 and 2 of the McCabe patent, it appears that the first internal passage in the spool always receives a flow of hydraulic fluid from the pump through the pump ports in the cage and the second chamber regardless of the lateral position of the spool along the length of the cage. The spool disclosed in the McCabe patent also includes a second internal passage that pierces both the wall of the broad trough and the left end surface of the spool. This second internal passage couples the pressure of hydraulic fluid in the first chamber to a second cavity located at the left end of the spool between the spool and an end cap. The end cap closes the end of the cage to the left of the spool and seals the second cavity so that fluid may enter and leave it only through the second internal passage. Because the second cavity opens only into the second internal passage, the pressure within this second cavity always equals the pressure of fluid within the first chamber. The end cap also compresses a first coil spring between its inner surface and the left hand surface of the spool. In the absence of any other force on the spool, this first coil spring urges the spool toward the right end of the cage as depicted in FIGS. 1 and 2 of the McCabe patent. An annularly shaped poppet valve plate is located immediately to the right of the spool as depicted in FIGS. 1 and 2 of the McCabe patent, and partially obscures the right hand end of the cylindrically shaped interior of the cage. The full pressure of hydraulic fluid applied by the pump to the pump ports forces hydraulic fluid through the pump ports in the wall of the cage, the second chamber, and the first internal passage in the spool to the side of the poppet plate immediately adjacent to the right hand end of the spool. A second coil spring is compressed between the spool and the poppet plate at the right end of the spool and, according to the text of the McCabe patent, applies a force to the spool that is smaller than that applied by the first coil spring at the left end of the spool. Located to the right of the poppet plate is a movable armature that is surrounded by a solenoid coil. An electrical current flowing through the coil applies a magnetic force to the armature. In the valve depicted in FIG. 1 of the McCabe patent, this electromagnetic force on the armature urges it to move laterally toward the left which tends to close the opening in the center of the annularly shaped poppet valve. According to the text of the McCabe patent, closure of the poppet valve increases the pressure of the hydraulic fluid at the right end of the spool adjacent to the poppet plate with the spool urged to the right end of the cage by the first coil spring, an increase in hydraulic fluid pressure on the right end of the spool urges it to move laterally to the left away from the poppet plate. Movement of the spool to the left causes the first chamber to move laterally away from the tank ports toward the pump ports. Lateral movement of the first chamber over the pump ports permits hydraulic fluid to flow from the pump ports to the clutch ports thereby increasing the pressure of the hydraulic fluid in the clutch ports. Increased pressure of the hydraulic fluid in the clutch ports is coupled via the second internal passage to the second cavity thereby increasing the pressure of the hydraulic fluid in the second cavity at the left end of the spool. An increasing pressure in the second cavity urges the spool to halt its lateral movement to the left away from the poppet plate and urges it to begin moving back to the right toward the poppet plate. According to the text of the McCabe patent, “the spool . . . will move axially in relation to the poppet plate . . . until the sum of the forces on the spool . . . are in equilibrium.” The text of the McCabe patent also states that the second coil spring compressed between the poppet plate and the spool acts to reduce lateral oscillation of the spool due to changes in the pressure of hydraulic fluid at opposite ends of the spool. Thus, according to the McCabe patent, the combination of the poppet valve at the right end of the spool with the second internal passage in the spool and the second cavity at the left end of the spool along with the second coil spring, precisely controls the movement of the main spool laterally within the cage to adjust the pressure in the clutch ports. Based upon the preceding description of the operation of the valve depicted in FIG. 1 of the McCabe patent, that valve may be characterized as a normally closed valve that couples the clutch ports to the tank ports when no current flows through the coil. Conversely, the valve depicted in FIG. 2 of the McCabe patent includes a spring which biases the poppet valve closed, and a magnetic field generated by an electric current flowing through the coil urges the armature to move toward the right thereby opening the poppet valve. According to the text of the McCabe patent, the hydraulic pressure applied to the right end of the spool of the valve depicted in FIG. 2 when no current flows through the coil causes the spool to move to the left thereby causing the first chamber to couple the clutch ports to the pump ports. Thus the valve embodiment depicted in FIG. 2 of the McCabe patent may be characterized as a normally open valve that couples the clutch ports to the pump ports when no current flows through the coil. The text of the McCabe patent appears to lack an explanation of how closing and opening of the poppet valve depicted in the drawings of the patent may increase or decrease the pressure of hydraulic fluid present at the right end of the spool adjacent to the annularly shaped poppet plate. Accordingly, it appears that the valve disclosed in the McCabe patent may be commercially impractical for its intended purpose of controlling the pressure of hydraulic fluid in an automatic transmission of an automotive vehicle. U.S. Pat. No. 4,996,195 entitled “Pilot-Operated Valve With Load Pressure Feedback” issued on May 3, 1988 to Kenneth J. Stoss and Richard A Felland (“the Stoss et al. patent” discloses a pilot-operated electro-hydraulic valve adapted for use in controlling a transmission of an automotive vehicle. The valve disclosed in the Stoss et al. patent includes an electromagnetically controlled pilot valve that controls the operation of the valve's main spool. A pilot feedback passage couples the pressure of hydraulic fluid in the load or clutch port of the valve to a feedback chamber at one end of the pilot valve. The Stoss et al. patent discloses that a pilot feedback passage coupling the clutch port to the feedback chamber preferably includes a filtered orifice. The Stoss et al. patent appears to omit an explanation of the function provided by the filtered orifice. Neither the McCabe patent nor the Stoss et al. patent disclose or solve a problem that occurs in the operation of clutches in electro-hydraulic transmissions known as spiking. Spiking is a phenomenon that results from abruptly halting fluid flow through a hydraulic system. Fluid flowing through a hydraulic system has two types of energy. Those two different types of energy are potential energy and kinetic energy. Potential energy is energy that is present due to the pressure of hydraulic fluid. Kinetic energy is energy that is present due to the flow of fluid through the hydraulic system. When a clutch, or any other hydraulically operated device that is moving in response to a flow of hydraulic fluid reaches the mechanical limit of its travel, the hydraulic fluid flow through the system stops abruptly. This abrupt stopping of hydraulic fluid flow converts the fluid's kinetic energy into potential energy thereby producing a sudden and abnormal increase, or spike, in the pressure of the hydraulic fluid. Under appropriate circumstances, this pressure spike may be heard audibly as a disturbing or alarming noise, and the pressure increase may be so severe that it causes failure of the hydraulic system.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a commercially practical electrically energized, hydraulic proportional pressure control valve for use in electro-hydraulic transmissions having hydraulically operated clutches. An object of the present invention is to provide a fully operable electrically energized, hydraulic proportional pressure control valve for use in electro-hydraulic transmissions. Another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that controls the pressure in its clutch port precisely in response to changing values of the controlling electrical signal. Yet another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that relieves the abnormally high hydraulic fluid pressure spike that occurs when a flow of hydraulic fluid through the valve stops abruptly. Another object of the present invention is to provide an electrically energized, hydraulic proportional pressure control valve that reduces the abnormally high hydraulic fluid pressure spike that occurs when a flow of hydraulic fluid through the valve stops abruptly. Another object of the present invention is to provide a simpler electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide a more easily manufactured electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide a more economical electrically energized, hydraulic proportional pressure control valve. Another object of the present invention is to provide an electrically energized, proportional pressure control valve that, when used in conjunction with a clutch, provides improved and smooth engagement and disengagement of a load through precise control of fluid pressures within a hydraulic system. A further object of the present invention is to provide an electrically energized, proportional pressure control valve that has an improved pilot valve section allowing precise control of fluid pressures within a hydraulic system. Another object of the invention is to provide an electrically energized, proportional pressure control valve that has an improved ball type pilot valve section which allows precise control of fluid pressures within a hydraulic system and substantially reduces the cost of such a valve. A further object of the invention is to provide an electronically energized, proportional pressure control valve that includes improved feedback means to dampen oscillation within the valve. Briefly a proportional pressure control valve in accordance with the present invention includes a hollow cage having a wall that is pierced by a pump port, by a clutch port, and by a tank port. The pump port receives hydraulic fluid from a pump at a pressure provided by the pump. The clutch port is adapted for supplying pressurized hydraulic fluid to a hydraulic actuator at a pressure that is controlled by the proportional pressure control valve. The tank port of the cage returns hydraulic fluid from the proportional pressure control valve to a tank from which the fluid circulates back to the pump. The proportional pressure control valve also includes a main spool adapted to fit snugly within the cage. Contained within the cage, the main spool is movable along the length of the cage for controlling a flow of hydraulic fluid passing between the clutch port and either the pump port or the tank port. An electromagnetically operated pilot valve regulates a control pressure of hydraulic fluid that is present in a control pressure chamber of the proportional pressure control valve. The pressure of the fluid in the control pressure chamber is applied to a control pressure surface of the main spool. Pressure applied to the control pressure surface urges the main spool to move along the length of the cage to a position in which it allows hydraulic fluid to flow between the pump port and the clutch port. When disposed in such a position, the main spool obstructs any flow of hydraulic fluid between the clutch port and the tank port. A feedback pressure passage couples the pressure of hydraulic fluid in the clutch port of the proportional pressure control valve to a feedback pressure chamber. The feedback pressure chamber applies the pressure of hydraulic fluid in the clutch port to a feedback surface of the main spool. Pressure applied to the feedback pressure surface of the main spool urges the main spool to move within the cage to a position in which it allows a flow of hydraulic fluid to pass between the clutch port and the tank port. When disposed in such a position, the main spool obstructs any flow of hydraulic fluid between the pump port and the clutch port. The feedback pressure passage includes a feedback restriction orifice for restraining the rate at which fluid may flow between the clutch port and the feedback pressure chamber. An embodiment of the proportional pressure control valve of the present invention includes a pressure spike suppression check valve for relieving any abnormally high pressure that occurs in the clutch port of the cage. Such an abnormally high pressure may occur if a flow of hydraulic fluid through the clutch port stops abruptly. In the preferred form of this embodiment, the check valve allows hydraulic fluid to flow from the cage clutch port to the cage tank port when an abnormally high pressure occurs in the clutch port. A spike suppression orifice may also be included to restrain the rate at which fluid may flow through the check valve. These and other features, objects and advantages will be understood or apparent to those of ordinary skill in the art from the following detailed description of the preferred embodiment as illustrated in the various drawing figures.
20041026
20050809
20050428
96830.0
1
MICHALSKY, GERALD A
PROPORTIONAL PRESSURE CONTROL VALVE
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,974,098
ACCEPTED
Portable misting device with drinking spout and fan assist
A portable misting device having a body with an internal and fluid holding reservoir. A fill port provides for refilling of the fluid holding reservoir and one or more discharge ports are in fluidic communication with the reservoir. A fluid conveying conduit extends from the discharge port and terminates in an orifice. The orifice typically includes both spray misting and drinking components.
1. A portable misting device, comprising: a body having an internal and fluid holding reservoir; a fill port for refilling said fluid holding reservoir; at least one discharge port separate from said fill port and in fluidic communication with said reservoir; and a fluid conveying conduit extending from said discharge port and terminating in an orifice, said orifice being actuated to issue a mist spray. 2. The portable misting device as described in claim 1, further comprising a squeeze bulb pump arranged in fluidic communication with said discharge port. 3. The portable misting device as described in claim 2, further comprising said squeeze bulb being connected to at least a reservoir side associated with said discharge port and a location along said extending conduit. 4. The portable misting device as described in claim 1, said body further comprising a first discharge port and a second discharge port, said orifice further comprising a pump sprayer secured to an extending end of said conduit. 5. The portable misting device as described in claim 1, further comprising a dual chamber bulb pump arranged in fluidic communication with said discharge port, said orifice further comprising a pressure vessel secured to an end of said extending conduit, actuation of said pump causing both fluid and air to be introduced into said pressure vessel. 6. The portable misting device as described in claim 1, said body further comprising a squeeze bulb pump and an elastic walled pressure vessel arranged in fluidic communication with said discharge port. 7. The portable misting device as described in claim 1, further comprising a misting fan incorporating said orifice and secured to an extending end of said conduit, a squeeze bulb incorporated into said a body associated with said misting fan and, upon being compressed, issuing said mist spray into a path of a plurality of rotating blades associated with said fan. 8. The portable misting device as described in claim 1, further comprising a dual check valve secured to a location of said conduit and in fluidic communication with said reservoir, said check valve communicating said reservoir with at least one of said spray orifice and a drinking spout and to permit one-way flow of fluid from said reservoir. 9. The portable misting device as described in claim 8, further comprising said check valve being located on an inlet side corresponding to at least one piston pump. 10. The portable misting device as described in claim 1, further comprising a dip tube extending within said fluid reservoir and in communication with said discharge port. 11. The portable misting device as described in claim 1, said orifice further comprising a hand-held pump subassembly for issuing fluid in at least one of said mist spray and a steady fluid flow. 12. The portable misting device as described in claim 11, said fluid conveying conduit further comprising a flexible conduit. 13. The portable misting device as described in claim 11, said pump subassembly further comprising: an inlet plenum; a piston pump secured to a first outlet associated with said plenum, said orifice defining an outlet location of said piston pump; and a pump actuator mechanism secured to said sub-assembly and, upon being depressed, engaging said piston pump to issue said mist spray. 14. The portable misting device as described in claim 11, said pump subassembly further comprising at least one of a flapper-type check valve in operative communication with a second outlet associated with said plenum; and a drinking nipple incorporating a bite valve insert, deformation of said insert permitting a steady stream fluid flow through said nipple. 15. The portable misting device as described in claim 1, further comprising an internally pressurized bladder arranged within said fluid holding reservoir. 16. The portable misting device as described in claim 15, said further comprising a fill conduit connected to a pressurized water supply and attached to said fill port, a check valve located being disposed between said fill conduit and said fluid holding reservoir. 17. The portable misting device as described in claim 15, said discharge port further comprising a discharge closure and to which an inlet end of said conduit is engaged. 18. The portable misting device as described in claim 1, further comprising a built-in air pump associated with said body and for establishing a desired pressurization within said fluid holding reservoir. 19. The portable misting device as described in claim 11, said pump sub-assembly further comprising: an inlet plenum; a control valve secured to a first outlet associated with said plenum; and a valve actuator arm pivotally mounted to said control valve by an interiorly disposed ball valve such that, upon being engaged, said control valve issues said mist spray. 20. The portable misting device as described in claim 14, said bite valve insert associated with said drinking nipple further comprising first and second convex shaped and spring bow portions, a bite valve seat and bite valve gate axially displacing from said nipple in response to deformation thereto and in order to permit said steady stream fluid flow. 21. The portable misting device as described in claim 13, said pump subassembly further comprising a bite valve and which incorporates a slit deformable in a radially outward direction and upon being depressed radially inwardly. 22. The portable misting device as described in claim 13, said pump subassembly further comprising a suction-actuated valve having an outer and cylindrical shaped valve body, a spring loaded and axially displaceable valve insert actuating to permit said steady stream fluid flow. 23. The portable misting device as described in claim 1, said body further comprising a flexible bladder. 24. The portable misting device as described in claim 1, further comprising a fan unit secured to an extending end of said conduit, said orifice further comprising at least one of a pump actuated spray mister and a steady-stream permitting orifice. 25. The portable misting device as described in claim 24, said fan unit further comprising: an inlet plenum; a piston pump secured to a first outlet associated with said plenum, said orifice defining an outlet location of said piston pump; and a pump mechanism arm secured to said fan unit and, upon being depressed, engaging said piston pump to issue said mist spray. 26. The portable misting device as described in claim 25, further comprising an O-ring seal established between said plenum first outlet and said piston pump. 27. The portable misting device as described in claim 25, said fan unit further comprising a suction-operating and drinking nipple incorporating a spring-loaded valve and connected to a second outlet associated with said plenum. 28. The portable misting device as described in claim 24, further comprising a check valve disposed between said second plenum outlet and said drinking nipple. 29. The portable misting device as described in claim 24, said fan unit further comprising a motor, an impeller blade and hub securing to a rotary output associated with said motor, a switch actuating said motor between on and off positions. 30. The portable misting device as described in claim 24, said fan unit further comprising an upper attachable fan enclosure subassembly, interengaging attachment rails extending along each of said fan subassembly and a conduit attached subassembly incorporating spray mister and bite valve and nipple. 31. The portable misting device as described in claim 15, further comprising a fan unit secured to an extending end of said conduit, said orifice further comprising at least one of a spray mister and a steady-stream permitting bite valve and nipple. 32. The portable misting device as described in claim 31, further comprising a control arm secured to a valve for actuating said mist spray. 33. The portable misting device as described in claim 1, further comprising a handpiece enclosure secured to an extending end of said conduit and incorporating said orifice in order to issue at least one of a mist spray and a steady-stream fluid flow. 34. The portable misting device as described in claim 33, said handpiece enclosure further comprising: an inlet; a pump handle secured in fluidic communication to a plenum extending from said inlet; an elastic and pressurized bladder in fluidic communication with said plenum; a handle actuated valve fluidly communicating with a first outlet of said plenum and, upon being engaged, issuing said mist spray; and combination bite valve and nipple fluidly communicating with a second outlet of said plenum and, upon being engaged, permitting said steady-stream fluid flow. 35. The portable misting device as described in claim 1, further comprising a plurality of connect fittings extending from said discharge port, at least one of said conduits securing to a selected fitting. 36. The portable misting device as described in claim 35, a quick-connect fitting extending from a remote end of said conduit, a sub-assembly incorporating an interengaging quick connect fitting securing to said conduit end and incorporating said orifice for issuing at least one of said mist spray and a steady stream fluid flow. 37. The portable misting device as described in claim 35, further comprising a combination hanging loop and carry handle secured to an upper end of said body, a cap engaging said handle and being removed to define said fill port. 38. The portable misting device as described in claim 36, a first of said quick connect fittings associated with said conduit end further comprising: an outer and interiorly hollowed sleeve shaped body; a spring loaded and axially displaceable spool valve, a gate secured to a lowermost end of said spool valve and in fluid communication with said conduit; and annularly and inwardly extending holding pins located proximate to an outermost end of said sleeve shaped body. 39. The portable misting device as described in claim 38, a second of said quick connect fittings associated with said sub-assembly further comprising: an inner and interiorly hollowed sleeve shaped body; an inwardly recessed groove extending about an outer annular location of said body and, upon inserting said inner sleeve shaped body in an axial direction within said interior of said outer sleeve shaped body, said groove being engaged by said holding pins; and a flapper type check valve arranged in fluid communication between said first quick connect fitting and an outlet plenum associated with said sub-assembly. 40. The portable misting device as described in claim 38, further comprising an O-ring seal extending around an annular interior of said outer sleeve shaped body. 41. The portable misting device as described in claim 1, said subassembly further comprising a portable and battery powered pump for generating a constant flow of fluid at an elevated pressure for discharge through at least said spray mister orifice. 42. The portable misting device as described in claim 1, further comprising an in-line subassembly secured to a remote end of said conduit, a pump actuator arm secured to a body of said subassembly and, upon being actuated, causing a fixed volume of said mist spray to issue from said orifice. 43. The portable misting device as described in claim 42, said in-line subassembly further comprising: a hose attachment fitting connecting to said remote conduit end; an inlet check valve in fluid communication with said attachment fitting; a sliding actuator bracket engaged by said pump actuator arm; a discharge check valve arranged at an outlet end of said fitting; and a further hose attachment fitting extending from said outlet end and engageable by a discharge hose extending therefrom. 44. The portable misting device as described in claim 42, further comprising a drinking nipple incorporating a bite valve insert and which is secured to an outlet end of said in-line subassembly. 45. The portable misting device as described in claim 42, further comprising first and second cam surfaces arranged between said pump actuator arm and a sliding actuator bracket incorporated within said sub-assembly. 46. The portable misting device as described in claim 42, further comprising a water filled plenum extending within an interior of said in-line subassembly and between inlet and outlet ends thereof.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to hydration packs such as are used by hikers, bikers and other athletes and in order to carry volumes of water in portable fashion. More specifically, the present invention teaches a device which incorporates a misting function to an associated mouthpiece or drinking nipple and in a compact fashion. 2. Description of the Prior Art Fluid filled bladder devices incorporating both soft, semi-rigid and hardened sides are known in the art. In order to prevent a potable fluid from pouring out of the drinking nipple, when not placed in the user's mouth, most such nipples incorporate a valve of some type. Examples of such an assembly include Edison U.S. Pat. No. 5,060,833; Camel U.S. Pat. No. 5,722,573 and Motsenbocker U.S. Pat. No. 4,420,097. Such prior art assembly may in particular include both bite valves and suction operated valves. As such bite valves are often found not to be perfectly leak-proof, a secondary shutoff valve may also be incorporated. Practically known hydration packs are further known to include at least one opening or port on the reservoir for admitting potable water (or other drinkable fluid) and a closure to prevent leakage of the water out of the reservoir. It is also known to include a second smaller opening with a closure to attach such as a supply tube for the drinking nipple. Personal mister devices and misting fans are also well known in the art. These issue a fine mist of water into the air, the evaporation of which results in the cooling of the air surrounding the droplets. Fans driven with electrical motors are further known which propel the cooled air stream and mist, such as in a direction toward the user. Portable misting fans have also been in use for at least the last several preceding years and which employ a battery operated fan located atop a trigger spray bottle. Examples drawn from the prior art in this area include Steiner U.S. Pat. No. 4,839,106; Steiner U.S. Pat. No. 5,338,495; Arnieri et al. U.S. Pat. No. 6,217,294; Hsu U.S. Pat. No. 6,378,845; Hsu U.S. Pat. No. 5,752,662; Hsu U.S. Pat. No. 5,715,999; Junkel et al. U.S. Pat. Nos. 5,843,344; 6,398,132; 5,620,633; 5,667,731; and 5,965,067. Other examples include Lederer U.S. Pat. Nos. 5,667,732 and 5,837,167, as well as Utter U.S. Pat. Nos. 6,216,961 and 6,371,388. Another example of a portable multi-port liquid dispensing system is set forth in U.S. Pat. No. 5,799,873, issued to Lan, and which allows the user to either receive a spray of liquid for cooling or a stream of water for drinking. A spray head is attachable to the body, which in turn attaches to a container. Once assembled, the user may drink liquid from the container by sucking on the straw protruding from the body. Simultaneously, or sequentially, with drinking from the straw the user may receive a spray from the ejector. Among the previously referenced prior art are battery operated misting fans typically having a small, rigid bottle as a reservoir and with a pump sprayer attached to the neck of the bottle. While the atomizing of the water droplets issued from the pump sprayer cools the air somewhat and evaporation of the mist from the end user's skin cools some more, this effect is greatly enhanced with the addition of the fan to speed the evaporative cooling of the mist and the moisture on the user's skin. SUMMARY OF THE PRESENT INVENTION The present invention is a hydration pack for use by such as hikers, bikers and athletes, and which provides the ability to carry volumes of water portably. As will be further described, the portable misting device also allows the user to issue either or both of a spray mist or a steady stream fluid. The misting device includes a body having an internal and fluid holding reservoir. Depending upon the variant of misting device, the contents of the fluid holding reservoir may either be unpressurized or under a specified degree of pressurization. A fill port is provided for refilling the fluid holding reservoir and at least one discharge port is in fluidic communication with the reservoir. A fluid conveying conduit, typically in the form of a flexible neck, extends from the discharge port and terminates in at least a spray misting orifice. Preferred embodiments of the invention include the provision of both spray misting and drinking ports for issuing fluid from the reservoir and through the flexible conduit. In order to achieve satisfactory fluid flow, a combination of mechanisms are employed for generating the necessary pressure within the fluid reservoir or spray/pour subassembly, these including, among others, various types of fluid pumps (including squeeze bulbs) and piston/cylinder arrangements. Also, a portable fan attachment may be used in conjunction with the spray misting component and in order to provide an added degree of evaporative cooling. BRIEF DESCRIPTION OF THE DRAWINGS Reference will now be made to the attached drawings, when read in combination with the following detailed description, wherein like reference numerals refer to like parts throughout the several views, and in which: FIG. 1 is an illustration of a first mist bag concept including a reservoir with a large fill port and a smaller discharge port attached to a squeeze bulb pump by a length of conduit and according to a first embodiment of the present invention; FIG. 2 is an illustration of a mist bag according to a second preferred embodiment and which includes a refillable reservoir with filling and discharge ports, a piston pump operable with a conduit associated with the second discharge port; FIG. 3 is an illustration of a mist bag according to a third preferred embodiment and by which the fluid contents of a refillable reservoir are maintained at lower pressure and attached to a dual chamber pump and for introducing both and air into the pressure vessel, the same being capped with an aerosol valve; FIG. 4 is an illustration of a mist bag according to a fourth preferred embodiment and including an elastic wall pressure vessel in operative communication with a reservoir enclosure by means of a squeeze bulb pump and for issuing a continuous aerosol mist; FIG. 5 is an illustration of a misting fan handpiece, attached to a low pressure reservoir by a length of conduit, and which operates to issue a mist directly into the path of a plurality of rotating fan blades; FIG. 6 is a sectional illustration of a dual check valve incorporated into the present device and which operates to prevent such as saliva contamination resulting from backwash into the pump and common water supply, and by which it could be misted out onto someone other than the user of the mouthpiece; FIG. 7 is an illustration of a combined misting and drinking device according to a further preferred embodiment and which includes a conduit extending from a fluid filled reservoir and terminating in a hand-held pump subassembly for issuing fluid in either of misting and drinking conditions; FIG. 8 is an enlarged view of the pump sub-assembly shown in FIG. 7; FIG. 8A is a further illustration of the pump sub-assembly in an actuated and spray misting condition; FIG. 9 is an illustration of a hydration system incorporating a pressurized reservoir, and which further includes an internally disposed and pressurized air bladder for issuing a combined drinking source and mist to a conduit connected pump sub-assembly; FIG. 10 is an illustration of an alternate pressurization scheme in use with a hydration system and which substitutes the bladder of FIG. 9 with a built-in air pump communicating with the fluid filled reservoir interior; FIG. 11 is a sectional illustration of an alternate configuration of a pump sub-assembly and incorporating a ball valve and actuator arm arrangement for issuing a misting spray; FIG. 11A is a substantially identical illustration of the pump sub-assembly of FIG. 11 and further shown in an actuated and spray misting condition; FIG. 12 is an enlarged illustration of the bite valve incorporated into the pump sub-assembly; FIG. 12A is a succeeding illustration of the bite valve in an engaged and fluid issuing condition; FIG. 13 is an illustration of a modified bite valve from that shown in FIGS. 12 and 12A, applied to a misting/fluid sub-assembly according to the present invention; FIG. 13A is an end view illustration of the bite valve of FIG. 13 in a closed position; FIG. 1 3B is a succeeding end view illustration of the bite valve and illustrating the flexure of the valve body, resulting from inward biting by the user's teeth, and resulting in the opening of the slit, allowing the user to suck water through the opening; FIG. 14 is a sectional illustration of a suction operated valve incorporated into a drinking nipple and in a normally closed position; FIG. 14A is a succeeding sectional illustration of the suction operated and by which the annular end disk is translated to an open and fluid issuing condition; FIG. 15 is an illustration of a personal hydration system exhibiting a flexible and fluid-filled bladder reservoir and with drinking, misting and fan cooling functions incorporated within a conduit attached handpiece; FIG. 16 is an enlarged illustration of the multi-function spray/fluid/fan cooling handpiece illustrated in FIG. 15; FIG. 17 is an alternate variant of a multi-functional handpiece and illustrating the feature of a removable fan enclosure subassembly; FIG. 17A is a further illustration of the handpiece of FIG. 17 in an exploded illustration; FIG. 18 is an illustration of a personal hydration system with internally pressurized and air-filled bladder along with the multi-function handpiece of FIG. 17; FIG. 19 is an illustration of a personal hydration system according to a further preferred embodiment of the present invention and illustrating a fluid filled reservoir of the embodiment shown in FIG. 7 combined with a further variant of the misting and sipping handpiece according to the present invention; FIG. 20 is an enlarged view of the multi-function handpiece shown in FIG. 19; FIG. 21 is an illustration of a personal hydration system including an unpressurized reservoir and a pump sub-assembly as previously illustrated in FIG. 8, the components being designed for east of separability for customization and repair; FIG. 22 is an exploded illustration of a misting and fluid sub-assembly, attached in quick-connect fashion to an extending end of a reservoir connected conduit and according to the present invention; FIG. 23 is a further sectional illustration of a multi-functional handpiece and which incorporates a rotary pump for generating a pressurized misting spray downstream from an unpressurized fluid reservoir; FIG. 24 is an illustration of an in-line misting and fluid attachment device in use with a fluid filled reservoir according to a further preferred embodiment of the present invention; FIG. 25 is a succeeding illustration of a further variant of an in-line misting device and which substitutes a check valve for the barbed fitting at the discharge end of the enclosure, the outlet of the check valve flowing into a drinking nipple; FIG. 25A is a ninety degree rotated view of the in-line misting device shown in FIG. 25 and illustrating the spray misting device actuated to the open position; and FIG. 26 is an illustration of a water-filled plenum device and with the pump and orifice being removed for purpose of clarity. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIG. 1, a portable misting device is illustrated at 10 according to a first preferred embodiment of the present invention. As previously described, the misting device with drinking spout and fan assist makes possible the-portability and convenience of both spray misting and drinking water for use with hikers, athletes and the like. Referring again to FIG. 1, the illustration 10 of the first mist bag concept includes the provision of a body 12 having an internal and fluid holding reservoir 14. A fill port 16 provides for selective refilling of the reservoir, such as with water or other suitable (and typically potable) fluid. A smaller discharge port 18 is also in fluid communication with the reservoir 14. A length of conduit 20, typically flexible in nature, extends from the discharge port 18 and terminates in an end orifice 22. A pressure inducing source is provided in the form of a squeeze bulb 24, which is located at a location along the length of conduit. As is understood, the squeeze bulb may be attached as shown or may be located upon a reservoir side of the body 12. Actuation of the pump 24 results in fluid being drawing from the reservoir, out through the discharge port 18, through the conduit 20, and issued as a mist spray 26 through the orifice 22. Referring now to FIG. 2, an illustration is shown at 28 of a mist bag according to a second preferred embodiment and which again includes a body 12 constructed substantially identically to that described in FIG. 1. FIG. 2 differs from FIG. 1 in that a piston pump sprayer 30 substitutes for the squeeze bulb 24 and which is operable with the conduit 20 associated with the discharge port 18 to issue a mist spray 32. Referring now to FIG. 3, an illustration 34 of a mist bag according to a third preferred embodiment again teaches a body 35 and an internal reservoir 36, the fluid contents of which are maintained at lower pressure and attached to a dual chamber pump 38 and which, upon being squeezed, introduces both water and air into a pressure vessel, see at 40, the same being capped with an aerosol valve 42 for issuing the mist spray. As with the embodiments of FIGS. 1 and 2, the reservoir is accessed by an inlet/fill port 16 and an outlet/discharge port 18. Despite modifications to several of the embodiments to be subsequently described, it is understood that certain elements such as fill port 16 and discharge port 18 may be repetitively numbered, for convenience. As shown in FIG. 4, a mist bag 44 according to a fourth preferred embodiment includes a body 45 within which is configured an elastic wall pressure vessel 46 in operative communication with a reservoir enclosure 48, and by means of a squeeze bulb pump 50, issues a continuous aerosol mist through a spray orifice 52. The pressure vessel can exhibit elastic walls and store energy by stretching the vessel walls, instead of air compression. The pump in this variant is simple because only water (no air) needs to be pressurized. As with the third preferred embodiment, the mist can emanate continuously from the nozzle instead of in discrete bursts. As with the earlier disclosed embodiments, the variant 44 includes a fluid fill port 16 and discharge port 18. Referring now to FIG. 5, an illustration is shown at 54 of a misting fan handpiece, and which is attached to a low pressure reservoir (not shown) by a length of conduit, see at 56. A thin walled and squeeze bulb 58 is actuated to issue a mist through a spray orifice 60 and directly into the path of a plurality of rotating fan blades 62. Additional features include a check valve 64 for interconnecting the conduit 56 with the squeeze bulb 58. Referring to FIG. 6, a sectional illustration 66 is provided of a dual check valve incorporated into the present device and which operates to prevent such as saliva contamination resulting from backwash into the pump and common water supply, and by which it could be misted out onto someone other than the user of the mouthpiece. In particular, the check valve 66 is connected to an extending end of a hose or conduit 68 and includes, in the embodiment illustrated, a first spring-loaded ball valve assembly 70 fluidly communicating the conduit 68 to a discharge associated with the spray mister 72. A second spring-loaded ball valve assembly 73 is arranged in parallel with the first ball valve assembly 70 and likewise fluidly communicates the conduit 68 to a discharge associated with the drinking spout 74 (the particulars of which will be subsequently discussed in additional detail). The term ball valve is further intended to encompass any fluid control device that operates between full closed to open position. Each of the check valves operates to prevent fluid backwash into the common fluid supply (reservoir). Referring now to FIG. 7, an illustration is shown at 76 of a combined misting and drinking device according to a further preferred embodiment. A body 78 includes a fluid reservoir 80. A dip tube 82 extends within the reservoir 80, and includes an inlet check valve 83, an opposite end of the dip tube and connects to a discharge port and closure 84. A fill port 85 and closure includes a one-way valve suction release 86 and for refilling the fluid reservoir. A conduit 86, typically flexible, extends from the fluid filled reservoir, and typically from the discharge port and closure 84. The conduit 86 terminates in a hand-held pump subassembly 88 for issuing fluid in either of misting and drinking conditions. In particular, and referencing also the enlarged views of FIGS. 8 and 8A, the pump subassembly includes an inlet plenum 90, a piston pump 92 secured to a first outlet associated with the plenum 90, an orifice 93 in turn defining an outlet location of the piston pump 92. A pump actuator arm 94 is secured to a body of the sub-assembly 88 and, upon being depressed, engages the piston pump 92 to issue a mist spray 96. It is also envisioned that the term arm can also encompass any manually operable mechanism for effecting displacement of the associated pump, and such as potentially a pushbutton. Additional components of the pump subassembly include a flapper-type check valve 98, in operative communication with a second outlet 100 associated with the plenum 90. A drinking nipple 102 incorporating a bite valve insert, see convex walls 104, deforms upon being biased (such as by a user's teeth) and which causes a steady stream fluid flow through the nipple 102 when the user sucks on the nipple. The term bite valve, as most broadly defined is interpreted to further include any fluid control device operable using the mouth, (lips, tongue, teeth or breath). Referring now to FIG. 9, an illustration is shown at 106 of a hydration system incorporating a pressurized reservoir 108, and which further includes an internally disposed and pressurized air bladder 110 disposed within the reservoir and for creating the necessary pressurization. Additional features include a pressurized water supply 112, an inlet/fill conduit 114, and a ball-type check valve 116 in communication with an inlet of the fluid reservoir 108. Upon being pressurized by the expanding bladder 110, the fluid is forced through a discharge closure 118, an outlet conduit 120 and a misting/pour pump subassembly 122. The subassembly 122, see also FIGS. 11 and 11A, includes a handpiece enclosure 124, an inlet plenum 126, a ball-type control valve 128 being in communication with a first outlet of the plenum 126 and actuated (see at 128′ in FIG. 11A) for issuing a mist spray 130. A drinking nipple and bite valve 132 is in communication with a second outlet of the plenum 126 and is actuated to issue a steady stream fluid. Due again to the internal pressurization caused by the bladder 110, no vacuum/sucking force need be applied to discharge fluid through the nipple and bite valve. Referring now to FIG. 10, an illustration is shown at 134 of an alternate pressurization scheme in use with a hydration system, and which substitutes the bladder 110 of FIG. 9 with a built-in air pump assembly communicating with the fluid filled reservoir interior. In particular, the air pump assembly includes a pump actuator handle 136, attached stem 138, pump piston 140, and which is seated within a pump cylinder 142. Actuation of the piston in the downward direction causes air to be forced under pressure out through apertures in a bottom most location of the cylinder, see at 144, and to pressurize a fluid reservoir interior 146. A discharge fitting 148 of the reservoir body is communicated by an extending conduit 150 and which again terminates in a mist/flow subassembly such as described at 122 in FIG. 9. Referring to FIGS. 12 and 12A, enlarged illustrations are shown of the bite valve assembly 132 incorporated into the pump sub-assembly. In particular, an inlet plenum 134 leads to a check valve inlet port 136 and check valve flapper 138. Situated within the bite valve assembly is a spring base 140 and a pair of first and second convex shaped and spring bow portions 142. A bite valve seat 144 and associated gate 146 is connected to an upper end of the bow portions 142 and, upon biting/inward deformation of the bow portions 142 as shown in FIG. 12A, the seat and gate are axially displaced, see in direction of arrow 148, to allow a path for a steady stream fluid discharge 150. Referring to FIGS. 13, 13A and 13B, first and second illustrations of a further variant of bite valve, applied to a misting/fluid sub-assembly according to the present invention. In particular, FIG. 13A is an end view illustration of the bite valve of FIG. 13 in a closed position and by which an end slit 152 is illustrated in a closed position. In contrast, FIG. 13B illustrates a succeeding end view of the bite valve and illustrating the flexure of the valve body to an open position 152′, resulting from inward biting by the user's teeth, and resulting in the opening of the slit, allowing the user to suck water through the opening. In comparison, the bite valve of FIGS. 12 and 12A is in the form of a moving disk valve gate. FIGS. 14 and 14A are closed and open sectional illustrations, respectively, of a suction operated valve incorporated into a drinking nipple and in a normally closed position. In particular, FIG. 14 illustrates a valve 154 extending from an end of a plenum outlet 156, and by which a valve insert 156 and valve seat 158 is biased in a normally closed position through the influencing force of a coil spring 160. Referring further to FIG. 14A, a suction force is applied to a disk 162 the valve seat 158, overcoming the force of the spring 160, and in order to unseat the same in an axially extending direction from the valve seat 158 and to permit fluid flow as evidenced by arrows 157. Upon release of the suction force, the spring forces re-exert the disk 162 and seat 158 in a closing direction. Referring now to FIG. 15, an illustration 164 is generally shown of a personal hydration system exhibiting a flexible and fluid-filled bladder reservoir 166. A reservoir port and closure 168 interconnects the bladder reservoir 166 with an extending conduit 170, the same terminating in a handpiece 172 combining the features of drinking, misting and fan cooling functions. In particular, and referring also to the enlarged view of FIG. 16, the handpiece 172 includes a three-dimensional handpiece body 174 within which extends an inlet plenum 176 fluidly communicating with the opposite end of the conduit 170. An O-ring 178 separates a first outlet of the plenum 176 with a piston pump 180, the same further being actuated by a pump actuator arm 182 hingedly connected to the body 174 at pivot point 184. An orifice 186 is located in alignment with an outlet of the piston pump and, upon being actuated by arm 182, causes a mist spray 188 to be issued through a plurality of rotating blades 190 associated with a fan. A motor 192 is powered by a battery 194 and in turn activated by a switch 196 in order to selectively activate and deactivate the impeller blade and hub associated with the fan unit. A check valve 198 is located in fluidic communication with a second outlet associated with the inlet plenum 176 and in turn is communicated with a drinking nipple 200 and suction operated valve 202 (substantially as previously described), and in order to provide a steady stream fluid flow. FIG. 17 is an alternate variant 204 of a modification of the multi-functional handpiece illustrated and described in FIGS. 15 and 16 and illustrating the feature of a removable fan enclosure subassembly 206. In particular, the fan unit includes an upper attachable fan enclosure subassembly as shown, and from which extend interengaging attachment rails 208 and 210 along each of the fan subassembly 204 and a conduit attached main subassembly 212 incorporating both spray mister 214 and bite valve and nipple (steady stream flow) 216 components. Referring now to FIG. 18, an illustration is shown at 218 of a personal hydration system and which combines the previously described components of the internally pressurized and air filled bladder (see again as repetitively described by elements 108-118 in FIG. 9) along with a further variant 220 of a multi-function handpiece. Inlet plenum 222 of the handpiece subassembly communicates fluid flow across a first outlet with a lever actuated ball valve 224, which in turn actuates a mist spray 226 across an orifice 228 in communication with a fan impeller hub and motor set 230. A drinking nipple 232 is again fluidly communicated with a second plenum outlet and, upon being actuated, generates a steady stream fluid flow from the internally pressurized reservoir 108. Check valves in this variant are removed and the pump replaced with a proportional control valve 233 at the inlet to the dip tube. FIG. 19 is an illustration 234 of a personal hydration system according to a further preferred embodiment of the present invention and illustrating an unpressurized and fluid filled reservoir 78 of the embodiment shown in FIG. 7, combined with a further variant of the misting and sipping handpiece 238 according to the present invention. A clip 238, attached to an intermediate location of the conduit 86, and in order to secure the same such as to the user's shirt or the like. The handpiece enclosure 236, as also illustrated in enlarged fashion in FIG. 20, secures to an extending end of the conduit 86 and incorporates an inlet 240, a pump handle 242 securing in fluidic communication to a plenum 244 extending from the inlet 240. An elastic and pressurized bladder 248 (illustrated in a collapsed position in FIG. 20) is provided in fluidic communication with the pump handle and a handle actuated ball valve 250 fluidly communicates with a first outlet of the plenum 244 and, upon being engaged, issues a mist spray 252 through an outlet orifice 254. A combination bite valve and nipple 256 fluidly communicates with a second outlet of the plenum and, upon being engaged, issues a steady-stream fluid flow. FIG. 21 is an illustration of a personal hydration system 258, including an unpressurized reservoir body 260 and a pump sub-assembly as previously illustrated in FIG. 8. A plurality of axially biasing and connect fittings 262, 264 and 266 extend from a discharge port 268 associated with the reservoir, at least one conduit, see at 270, securing to a selected fitting 266. Referring also to FIG. 22, a quick-connect fitting 272 extends from a remote end of the conduit 270, a mist/pour sub-assembly 274 incorporating an interengaging quick connect fitting 276 securing to the conduit end and incorporating orifices for issuing both the mist spray and steady stream fluid flow, reference again being made to the disclosure of FIGS. 8 and 8A. A combination hanging loop and carry handle 278 secures to an upper end of the reservoir body 260, a cap 280 engaging the handle and being removed to define a reservoir fill port. Referring again to FIG. 22, the quick-connect fitting 272 includes a sleeve spring 282, sliding sleeve 284, O-ring 286 and holding pins 288. A gate for a spool type valve 290 seats an inserting end of the quick connect fitting 276, the same also including a groove 292 for seating by the holding pins 288. A flapper type check valve 294 feeds fluid to an inlet plenum 296 of the handpiece and for subsequent spray misting 296 or steady stream fluid flow 298 in the manner previously described. FIG. 23 is a further sectional illustration of a multi-functional handpiece 300, similar in numerous respects to that previously described in reference to FIG. 16, and which incorporates a rotary pump 302, driven by pump motor 304, and for generating a pressurized misting spray downstream from an unpressurized fluid reservoir (not shown). Common elements from the variant of FIG. 16 are represented in the variant of FIG. 23. FIG. 24 is an illustration 306 of an in-line misting and fluid attachment device in use with a fluid filled reservoir (again not shown) according to a further preferred embodiment of the present invention. A pump actuator arm 308 secures to a body 310 of the subassembly and, upon being actuated, causing a fixed volume of a mist spray 312 to issue from an associated orifice 314. The in-line subassembly further includes a hose attachment fitting 316 connects to a remote conduit end 318. An inlet check valve 320 is in fluid communication with the attachment fitting 316 and a sliding actuator bracket 322 is engaged upon actuation of the pump actuator arm 308. A discharge check valve 324 is arranged at an outlet end 326 of the fitting and a further hose attachment 328 fitting extending from an outlet end. FIGS. 25 and 25A are succeeding and 90 degree rotated illustrations 330 and 330′ of both a terminus attached end and an in-line attached misting device and which substitutes a check valve 332 for the barbed fitting at the discharge end of the enclosure. The outlet of the check valve 332 flows into a bite valve actuated drinking nipple 334, as previously described. Referring again to FIG. 25A, a ninety degree rotated view of the in-line misting device shown in FIG. 25 illustrates the spray misting device actuated to the open position. First and second cam surfaces 336 and 338 (see again FIG. 25A) are arranged between the pump actuator arm 308 and sliding actuator bracket 322 to facilitate actuation of the spray mister. Referring finally to FIG. 26, an illustration is shown of a water-filled plenum device 340 and with the pump and orifice being removed for purpose of clarity. The crosshatched area 342 illustrated represents fillable water. Upstream of a plenum 344 is a first check valve flapper 346 and a narrowed portion of the pump (sealed with an O-ring as previously described in FIGS. 24 and 25) is a flapper 348 associated with a second check valve 350. Having described our invention, other and additional preferred embodiments will become apparent to those skilled in the art to which it pertains and without deviating from the scope of the appended claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates generally to hydration packs such as are used by hikers, bikers and other athletes and in order to carry volumes of water in portable fashion. More specifically, the present invention teaches a device which incorporates a misting function to an associated mouthpiece or drinking nipple and in a compact fashion. 2. Description of the Prior Art Fluid filled bladder devices incorporating both soft, semi-rigid and hardened sides are known in the art. In order to prevent a potable fluid from pouring out of the drinking nipple, when not placed in the user's mouth, most such nipples incorporate a valve of some type. Examples of such an assembly include Edison U.S. Pat. No. 5,060,833; Camel U.S. Pat. No. 5,722,573 and Motsenbocker U.S. Pat. No. 4,420,097. Such prior art assembly may in particular include both bite valves and suction operated valves. As such bite valves are often found not to be perfectly leak-proof, a secondary shutoff valve may also be incorporated. Practically known hydration packs are further known to include at least one opening or port on the reservoir for admitting potable water (or other drinkable fluid) and a closure to prevent leakage of the water out of the reservoir. It is also known to include a second smaller opening with a closure to attach such as a supply tube for the drinking nipple. Personal mister devices and misting fans are also well known in the art. These issue a fine mist of water into the air, the evaporation of which results in the cooling of the air surrounding the droplets. Fans driven with electrical motors are further known which propel the cooled air stream and mist, such as in a direction toward the user. Portable misting fans have also been in use for at least the last several preceding years and which employ a battery operated fan located atop a trigger spray bottle. Examples drawn from the prior art in this area include Steiner U.S. Pat. No. 4,839,106; Steiner U.S. Pat. No. 5,338,495; Arnieri et al. U.S. Pat. No. 6,217,294; Hsu U.S. Pat. No. 6,378,845; Hsu U.S. Pat. No. 5,752,662; Hsu U.S. Pat. No. 5,715,999; Junkel et al. U.S. Pat. Nos. 5,843,344; 6,398,132; 5,620,633; 5,667,731; and 5,965,067. Other examples include Lederer U.S. Pat. Nos. 5,667,732 and 5,837,167, as well as Utter U.S. Pat. Nos. 6,216,961 and 6,371,388. Another example of a portable multi-port liquid dispensing system is set forth in U.S. Pat. No. 5 , 799 , 873 , issued to Lan, and which allows the user to either receive a spray of liquid for cooling or a stream of water for drinking. A spray head is attachable to the body, which in turn attaches to a container. Once assembled, the user may drink liquid from the container by sucking on the straw protruding from the body. Simultaneously, or sequentially, with drinking from the straw the user may receive a spray from the ejector. Among the previously referenced prior art are battery operated misting fans typically having a small, rigid bottle as a reservoir and with a pump sprayer attached to the neck of the bottle. While the atomizing of the water droplets issued from the pump sprayer cools the air somewhat and evaporation of the mist from the end user's skin cools some more, this effect is greatly enhanced with the addition of the fan to speed the evaporative cooling of the mist and the moisture on the user's skin.
<SOH> SUMMARY OF THE PRESENT INVENTION <EOH>The present invention is a hydration pack for use by such as hikers, bikers and athletes, and which provides the ability to carry volumes of water portably. As will be further described, the portable misting device also allows the user to issue either or both of a spray mist or a steady stream fluid. The misting device includes a body having an internal and fluid holding reservoir. Depending upon the variant of misting device, the contents of the fluid holding reservoir may either be unpressurized or under a specified degree of pressurization. A fill port is provided for refilling the fluid holding reservoir and at least one discharge port is in fluidic communication with the reservoir. A fluid conveying conduit, typically in the form of a flexible neck, extends from the discharge port and terminates in at least a spray misting orifice. Preferred embodiments of the invention include the provision of both spray misting and drinking ports for issuing fluid from the reservoir and through the flexible conduit. In order to achieve satisfactory fluid flow, a combination of mechanisms are employed for generating the necessary pressure within the fluid reservoir or spray/pour subassembly, these including, among others, various types of fluid pumps (including squeeze bulbs) and piston/cylinder arrangements. Also, a portable fan attachment may be used in conjunction with the spray misting component and in order to provide an added degree of evaporative cooling.
20041027
20070717
20060427
63604.0
A62C1362
1
HWU, DAVIS D
PORTABLE MISTING DEVICE WITH DRINKING SPOUT AND FAN ASSIST
SMALL
0
ACCEPTED
A62C
2,004
10,974,216
ACCEPTED
Event-based formalism for data management in a wireless sensor network
A wireless sensor network comprises a plurality of nodes that communicate over wireless communication links. At least one of the plurality of nodes receives sensor data from a sensor. At least one of the plurality of nodes determines when a discrete event occurs. When the discrete event occurs, transmits data related to the discrete event over at least one of the wireless communication links. The discrete event is a function of the sensor data.
1. A wireless sensor network comprising: a plurality of nodes that communicate over wireless communication links, wherein at least one of the plurality of nodes receives sensor data from a sensor; wherein at least one of the plurality of nodes determines when a discrete event occurs and, when the discrete event occurs, transmits data related to the discrete event over at least one of the wireless communication links; and wherein the discrete event is a function of the sensor data. 2. The wireless sensor network of claim 1, wherein the at least one of the plurality of nodes determines when another discrete event occurs and, when the other discrete event occurs, transmits data related to the other discrete event over at least one of the wireless communication links, wherein the other discrete event is not a function of the sensor data. 3. The wireless sensor network of claim 1, wherein the wireless sensor network is queried by specifying a set of discrete events of interest and, for each of the set of discrete events of interest, a producer node included in the plurality of nodes determines when that discrete events of interest occurs and, when that discrete event of interest occurs, transmits data related to that discrete event of interest. 4. The wireless sensor network of claim 3, wherein, for each of the set of discrete events of interest, the producer node for that discrete event of interest transmits the data related to that discrete event of interest to a consumer node associated with that discrete event of interest when that discrete event of interest occurs. 5. The wireless sensor network of claim 1, wherein the sensor data comprises continuous data. 6. The wireless sensor network of claim 5, wherein the at least one of the plurality of nodes determines when the discrete event occurs based on the continuous data. 7. The wireless sensor network of claim 6, wherein the at least one of the plurality of nodes uses an event filter to filter the continuous data to determine when the discrete event occurs. 8. The wireless sensor network of claim 1, further comprising an event-based data management model operable to retrieve, from the wireless sensor network, data related to the discrete event. 9. A wireless sensor node, comprising: a wireless transceiver to communicate over a wireless communication link; and a sensor interface to receive sensor data from a sensor; wherein the wireless sensor node determines when a discrete event occurs and, when the discrete event occurs, transmits data related to the discrete event over the wireless communication link; and wherein the discrete event is a function of the sensor data. 10. The wireless sensor node of claim 9, wherein the wireless sensor is a member of wireless sensor network, wherein an event-based data management model is used to retrieve, from the wireless sensor network, data related to the discrete event. 11. The wireless sensor node of claim 10, further comprising a protocol interface that implements at least a portion of the event-based data management model. 12. The wireless sensor node of claim 11, wherein the event-based data management model comprises a plurality of layers, wherein the protocol interface of the wireless sensor node implements at least one of the plurality of layers. 13. The wireless sensor node of claim 11, wherein the protocol interface of the wireless sensor node implements a physical layer. 14. The wireless sensor node of claim 11, wherein the protocol interface of the wireless sensor node implements an execution layer that determines when the discrete event occurs. 15. The wireless sensor node of claim 9, wherein the sensor data comprises continuous data. 16. The wireless sensor node of claim 15, wherein the wireless sensor node determines when the discrete event occurs based on the continuous data. 17. The wireless sensor node of claim 16, wherein the wireless sensor node uses an event filter to filter the continuous data to determine when the discrete event occurs. 18. A method of accessing data in a wireless sensor network comprising a plurality of nodes that communicate over wireless communication links, wherein at least one of the plurality of nodes receives sensor data from a sensor, the method comprising: querying the wireless sensor network for data, wherein the query specifies a set of discrete events of interest; and for each of the set of discrete events of interest, at at least one of the plurality of nodes, determining when that discrete event occurs and, when that discrete event occurs, transmitting data related to that discrete event. 19. The method of claim 18, wherein the sensor data comprises continuous data and wherein, for each of the set of discrete events of interest, at at least one of the plurality of nodes, determining when that discrete event occurs comprises determining when that discrete event occurs based on the continuous data. 20. The method of claim 19, wherein, for each of the set of discrete events of interest, at at least one of the plurality of nodes, determining when that discrete event occurs based on the continuous data comprises filtering the continuous data to identify when the discrete event occurs.
CROSS REFERENCE TO RELATED CASES This application is related to the following applications filed on even date herewith, all of which are hereby incorporated herein by reference: U.S. patent application Ser. No. ______ (attorney docket number H0006303), entitled “LAYERED ARCHITECTURE FOR DATA MANAGEMENT IN A WIRELESS SENSOR NETWORK.” U.S. patent application Ser. No. ______ (attorney docket number H0006305), entitled “PUBLISH/SUBSCRIBE MODEL IN A WIRELESS SENSOR NETWORK.” U.S. patent application Ser. No. (attorney docket number H0006707), entitled “DISCRETE EVENT OPERATORS FOR EVENT MANAGEMENT IN A WIRELESS SENSOR NETWORK.” U.S. patent application Ser. No. ______ (attorney docket number H0006708), entitled “MACHINE ARCHITECTURE FOR EVENT MANAGEMENT IN A WIRELESS SENSOR NETWORK.” TECHNICAL FIELD The following description relates to wireless sensor networks in general and to data management in a wireless sensor network in particular. BACKGROUND Systems often include some type of functionality for providing data management. Data management is concerned with providing a logical view of the data that is available in a system. Such a logical view is also referred to here as the “data model” for the system. Data management is also concerned with the underlying physical organization of the data in the system and the transformation between the logical view of the data and the underlying physical organization. In addition, data management is typically concerned with a query mechanism for retrieving data from the system, a frame structure for the data, and the optimization of queries based on various parameters. One type of system is a wireless sensor network. A wireless sensor network typically include several nodes that communicate with one another over wireless communication links (for example, over radio frequency communication links). One or more of the nodes in the wireless sensor network incorporate (or are otherwise coupled to) a sensor. Such nodes are also referred to here as “wireless sensor nodes” or “sensor nodes.” Each sensor is capable of generating a value that, at any given point in time, is indicative of some physical attribute of interest. In one configuration, the sensor nodes are battery powered and have limited computational resources (for example, limited memory and processing capability). One approach to providing data management in a sensor network employs techniques used in relational database management systems (RDBMS). In such an approach, sensor data generated by sensor nodes in the network are logically organized into tables. Relational algebra is used for specifying the behavior of the logical view of the sensor data. Such an RDBMS approach, however, may not be suitable in a wireless sensor network that makes use of sensor nodes that have limited resources (for example, power, memory, or processing capability). SUMMARY In one embodiment, a wireless sensor network comprises a plurality of nodes that communicate over wireless communication links. At least one of the plurality of nodes receives sensor data from a sensor. At least one of the plurality of nodes determines when a discrete event occurs. When the discrete event occurs, transmits data related to the discrete event over at least one of the wireless communication links. The discrete event is a function of the sensor data. In another embodiment, a wireless sensor node comprises a wireless transceiver to communicate over a wireless communication link and a sensor interface to receive sensor data from a sensor. The wireless sensor node determines when a discrete event occurs. When the discrete event occurs, transmits data related to the discrete event over the wireless communication link. The discrete event is a function of the sensor data. Another embodiment is a method of accessing data in a wireless sensor network comprising a plurality of nodes that communicate over wireless communication links, where at least one of the plurality of nodes receives sensor data from a sensor. The method comprises querying the wireless sensor network for data. The query specifies a set of discrete events of interest. The method further comprises, for each of the set of discrete events of interest, at at least one of the plurality of nodes, determining when that discrete event occurs and, when that discrete event occurs, transmitting data related to that discrete event. The details of various embodiments of the claimed invention are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims. DRAWINGS FIG. 1 is a block diagram of one exemplary embodiment of a wireless sensor network. FIG. 2 is a block diagram of one embodiment of a wireless sensor node. FIG. 3 is a block diagram of one embodiment of a logical source entity that generates an event of interest in a wireless sensor network. FIG. 4 is a high-level flow diagram of one embodiment of a method of generating an event of interest using the source entity of FIG. 3. FIG. 5 illustrates one example of a subscription request in the wireless sensor network of FIG. 1. FIG. 6 illustrates, generally, one example of a recursive subscription request in the wireless sensor network. FIG. 7 is block diagram of one embodiment of a data management stack for providing data management functionality in a wireless sensor network. FIG. 8 is a Backus-Naur Form of one example of a high-level query language. FIG. 9 is a flow diagram of one embodiment of a method of compiling a source form of a query in order to generate the binary form of that query. FIG. 10 is a block diagram illustrating one exemplary instruction format for use with the method of FIG. 9. FIG. 11 illustrates one example of an instruction set. FIG. 12 illustrates one example of a query expressed in source form using the grammar set forth above in FIG. 8. FIG. 13 illustrates a graph generated from the query that is expressed in source form in FIG. 12. FIG. 14 is a table having a row for each node in the graph shown in FIG. 13. FIG. 15 is a binary form of the query set forth in FIG. 12. FIG. 16 illustrates one example of a set of recursive subscriptions that can result from the query of FIG. 12. FIG. 17 is a block diagram of one embodiment of a virtual machine for use in a wireless sensor network. FIG. 18 is a flow chart illustrating the processing of an event program by the embodiment of the virtual machine shown in FIG. 17. Like reference numbers and designations in the various drawings indicate like elements. DETAILED DESCRIPTION FIG. 1 is a block diagram of one exemplary embodiment of a wireless sensor network 100. The wireless sensor network 100 includes multiple wireless sensor nodes 102 that communicate with one another and/or a base station 104 using wireless communication links. The nodes of the wireless sensor network 100, in some embodiments, are distributed over a large geographical area. In one embodiment of the wireless sensor network 100, wireless sensor nodes 102 are distributed over an environment that is to be monitored. Each wireless sensor node 102 includes (or is otherwise coupled to) a sensor that is capable of generating a value that, at any given point in time, is indicative of some physical attribute of interest. Each wireless sensor node 102 receives sensor data from a respective sensor. In one embodiment, the wireless sensor nodes 102 and the base station 104 communicate with one another using radio frequency (RF) communication links. In other embodiments, other wireless communication links (for example, infrared wireless communication links) are used instead of or in addition to RF wireless communication links. In one embodiment, the wireless sensor network 100 is implemented as an ad-hoc, peer-to-peer network. In such an embodiment, the nodes of the wireless sensor network 100 communicate with each other wirelessly using a multi-hop protocol. Such a multi-hop protocol provides a mechanism for a packet (or other unit of data) to be transmitted by a source node to a destination node outside of the wireless transmission range of the source node by transmitting the packet to an intermediate node within the source node's wireless transmission range. The intermediate node then forwards the packet onto the destination node (if the destination node is within the intermediate node's wireless transmission range) or onto another intermediate node within the first intermediate node's wireless transmission range. This forwarding process is repeated until the packet reaches the destination node. In another embodiment, the wireless sensor network 100 is implemented using a different wireless networking approach (for example, using an infrastructure wireless network in which wireless communications are routed through an access point). The base station 104 provides a static point from which queries can be injected into the wireless sensor network 100 and from which data that is retrieved by such queries can be received. In one embodiment, a user communicates a query to the base station 104. The base station 104 receives the query and injects the query into the wireless sensor network 100. The query propagates to appropriate sensor nodes 102, which communicate data back to the base station 104 (via one or more intermediate nodes) as specified in the query. In one implementation, the base station 104 also acts as a gateway to another network or device not otherwise included in the wireless sensor network 100 from which queries are received and/or to which data retrieved from the wireless sensor network 100 is communicated. The wireless sensor network 100 can also include other types of nodes. For example, as shown in FIG. 1, a personal digital assistant (PDA) 106 is included in the network 100. The PDA 106 includes a wireless transceiver that enables the PDA 106 to communicate with other nodes in the wireless sensor network 100 over one or more wireless communication links. In one usage scenario, a user uses the PDA 106 to input a query for data from the wireless sensor network 100. The PDA 106 communicates the query to the base station 104 (via one or more intermediate nodes, if necessary). The base station 104 receives the query and injects the query into the wireless sensor network 100 and communicates back to the PDA 106 any data received from the wireless sensor network 100 in response to the query. In the exemplary embodiment shown in FIG. 1, at least a portion of the nodes in the network 100 are logically arranged into regions 108. A region 108, in such an embodiment, defines a geographic area. Each region 108 is considered to include those nodes that are physically located within the geographic area of that region 108. For example, as shown in FIG. 1, the wireless sensor nodes 102 and the PDA 106 are arranged into four regions 108 (specifically, identified in FIG. 1 as region A, region B, region C, and region D). In such an embodiment, a user or application that retrieves data from the network 100 using the regions 108, if appropriate for the needs of that user or application. In other embodiments, such logical regions 108 are not used. FIG. 2 is a block diagram of one embodiment of a wireless sensor node 102. The wireless sensor node 102 shown in FIG. 2 is suitable for use in the embodiment of a wireless sensor network 100 shown in FIG. 1. The embodiment of a wireless sensor node 102 shown in FIG. 2 comprises a sensor interface 202 that couples a sensor 204 to the wireless sensor node 102. In the particular embodiment shown in FIG. 2, the sensor 204 is integrated into the wireless sensor node 102 (for example, by enclosing the sensor 204 within a housing that encloses the sensor 204 along with the other components of the wireless sensor node 102). In another embodiment, the sensor 204 is not integrated into the wireless sensor node 102 but is otherwise communicatively coupled to the other components of the wireless sensor node 102 via the sensor interface 202. The sensor 204 is capable of generating a value that, at any given point in time, is indicative of some physical attribute of interest. Examples of sensors 204 include devices that generate a value indicative of temperature, light, magnetic field, air flow, acceleration, vibration, sound, or power. The sensor interface 202 comprises appropriate interface hardware or software for communicatively coupling the sensor 204 to the other components of the wireless sensor node 102. For example, in one embodiment, the software interface 202 includes, for example, an analog-to-digital converter and/or a software driver for the sensor 204. The wireless sensor node 102 shown in FIG. 2 further comprises a programmable processor 206. The programmable processor 206 is programmed with appropriate program instructions to perform at least a portion of the processing described here as being performed by the wireless sensor node 102. The wireless sensor node 102 shown in FIG. 2 includes memory 208 in which such program instructions and any data structures used by the program instruction are stored. The memory 208 includes any appropriate type of memory now known or later developed including without limitation, read-only memory (ROM), random access memory (RAM), and a set of registers included within the processor 206. The wireless sensor node 102 shown in FIG. 2 also comprises a wireless transceiver 216 that transmits and receives data over one or more wireless communication links. In one embodiment, the wireless transceiver 216 comprises a RF transceiver that sends and receives data over one or more RF communication links. In other embodiments, the wireless transceiver 216 comprises other types of wireless transceivers for sending and receiving data over other types of wireless communication links (for example, an infrared transceiver for sending and receiving data over infrared communication links) instead of or in addition to an RF transceiver. The wireless sensor node 102 also comprises a power source 218. In the embodiment shown in FIG. 2, the power source 218 includes a battery 220. In other embodiments, the power source 218 comprises, in addition to or instead of a battery 220, an interface for coupling the wireless sensor node 102 to an external power source such as a source of alternating current (AC) power. The wireless sensor node 102 also comprises one or more hardware timers 222 that are used generating interrupts based on timing-related events. In one implementation of the embodiment shown in FIG. 2, the wireless sensor node 102 is implemented using a CHIPCON CC1010 integrated circuit that includes an 8-bit micro-controller, 32 kilobytes of flash memory, and 2 kilobytes of RAM. In the embodiment shown in FIGS. 1 and 2, an event-based data management model is used to implement data management functionality in the wireless sensor network 100. Each of the nodes in the wireless sensor network 100 includes a data management interface 110 that implements at least a portion of such data management functionality. The data management interface 110, in one implementation, comprises software that executes on a programmable processor included in each node. In such an embodiment, the wireless sensor network 100 is logically viewed as a set of discrete events and a set of logical entities that “generate” the discrete events. The wireless sensor network 100 is queried, in such an embodiment, by specifying a set of events of interest. With such an event-based data management model, a discrete event operator algebra can be used as a formalism to specify the behavior of such a logical system and to verify the correctness and completeness of the specification. Each event of interest is logically viewed as having a logical entity that is the source of that event. This source entity is also referred to here as the “producer” of that event. Also, each event of interest is logically viewed as having one or more logical entities that are sinks of that event (and/or data related to that event). Each of these sink entities is also referred to here as a “consumer” of that event or event-related data. The data management model used in such an embodiment, in other words, makes use of a “producer/consumer model.” For each logical entity, there is a corresponding node in the network 100 that physically implements the processing for that logical entity. The underlying node that implements a given source entity is also referred to here as a “data source” and the underlying node that implements a given sink entity is also referred to here as a “data sink.” For example, where an event of interest is a function of sensor data provided by a particular sensor 204, the source entity for that event is implemented on a wireless sensor node 102 that is coupled to that sensor 204 (that is, on the wireless sensor node 102 that is the data source for the desired sensor data). It may be the case, that a particular node in the wireless sensor network 100 implements both the source entity and the sink entity for a given event. FIG. 3 is a block diagram of one embodiment of a logical source entity 300 that generates an event of interest 302 in a wireless sensor network. The source entity 300 makes use of an event filter 304 to identify an occurrence of the event of interest 302 for which the entity 300 is the sink entity. The event filter 302 comprises a condition 306 and, when the condition 306 is true, the event of interest 302 is considered to have occurred. An event filter's condition 306 can be specified as a function of continuous data 308 (for example, sensor data generated by a sensor) and/or other events 310 generated by other entities (for example, an event for which the source entity 300 is also a sink entity). FIG. 4 is a high-level flow diagram of one embodiment of a method 400 of generating an event of interest using the source entity of FIG. 3. Method 400 is used to generate each of a set of events of interest specified in a query that is received at the wireless sensor network 100. A user or application that desires to retrieve information from the wireless sensor network 100 formulates the query and injects the query into the network 100. The query specifies a set of events of interest about which the user or application wishes to receive information. In one embodiment, the query is converted into a form suitable for communication to the nodes in the wireless sensor network 100. In one implementation (for example, as described below in connection with FIGS. 9-15), the query is converted into a binary form of the query that is executed by one or more nodes. When a node receives the query information, the node determines whether that node is able to serve as a source entity for any of the set of events of interest specified in the query. If that node is able to serve as a source entity for an event of interest specified in the query, that node performs the processing of method 400 for that event. For a particular event of interest specified in a query, an event filter is created at the source entity for that event (block 402). The query includes information that is used by the source entity to create the event filter for that event. For example, in one embodiment, the query specifies a condition, for each event of interest set forth in the query, that is used to identify each occurrence of that event. Once created, the event filter is used to identify when the particular event of interest has occurred. When the event filter determines that the particular event of interest has occurred (block 404), the source node communicates data related to that event to the sink entity specified for that event (block 406). That is, the physical node on which the source entity is implemented communicates the event-related data to the physical node on which the sink entity is implemented over one or more wireless communication links provided in the wireless sensor network 100. The event-based data management model, in one such embodiment, makes use of a combined producer/consumer and publish/subscribe model. In such a model, from a logical point of view, a sink entity that wishes to receive data related to a particular event informs the wireless sensor network 100 of that entity's interest in that event. The sink entity's interest in that event is then communicated to an entity that is able to serve as a source entity for that event. The sink entity indicates that it is interested in a particular event of interest by “subscribing” to that event. A subscription is formulated and is communicated to a source entity for the event of interest. The subscription identifies the event of interest (for example, by specifying a condition for use in an event filter that identifies that event) and the sink entity to which data related to the event should be sent when the event occurs. The source entity receives the subscription and creates an event filter for that event. The source entity “publishes” the event of interest when the event occurs. That is, when the event of interest specified in the subscription occurs, the source entity sends data related to that event to the specified sink entity. In this way, the nodes in the wireless sensor network 100 only monitor (and process and communicate data about) those events that are of interest to some entity in the network 100 (that is, those events to which a sink entity has subscribed). In such an embodiment, each subscription is installed at the physical node that implements the logical source entity for the event specified by that subscription. Each subscription can be installed, deferred, paused, resumed, dropped or updated (for example, by a user or application) at anytime during the lifetime of the query. Each subscription has a specified activation time when the source entity is to begin checking for and publishing occurrences of the event of interest. Each subscription, in such an embodiment, also has as a specified lifetime after which the subscription ceases to exist (that is, the source entity no longer checks for and publishes the event of interest). Also, in such an embodiment, each subscription can specify how often the event filter should be evaluated in order to check for occurrences of the event of interest (also referred to here as the “event rate”). FIG. 5 illustrates one example of a subscription request in the wireless sensor network 100. In this example, a sink entity wishes to receive information about an event that is associated with a particular sensor. The sink entity is implemented on the base station node 104 and the source entity is implemented on the wireless sensor node 102 that includes the sensor that the sink entity is interested in. The data management interface 110 on the base station 104 communicates the subscription request to the wireless sensor node 102 on which the source entity is implemented (also referred to here as the “source wireless sensor node 102). In communicating the request to the wireless sensor node 102, the data management interface 110 of the base station 104 interacts with appropriate underlying layers of the networking stack to route the subscription request to the wireless sensor node 102. When the source wireless sensor node 102 receives the subscription request, the source wireless sensor node 102 installs the event filter associated with that subscription request using the event-filter information specified in the subscription request. After the subscription has been activated and during the lifetime of the subscription, when the source wireless sensor node 102 determines that the event of interest has occurred, the source wireless sensor node 102 publishes the event to the sink entity implemented on the base station 104. In publishing the event, the data management interface 110 on the source wireless sensor node 102 interacts with appropriate underlying layers of the networking stack to route data related to the event that occurred to the base station 104. In such an embodiment, a subscription can be formulated by a user of the wireless sensor network 100 as a query. The user formulates the query in a formal and verifiable query language. The query language is implemented as a high-level, human-readable language, which provides an interface to access data that resides in the wireless sensor network 100 and provides an interface to specify the intent of the user for the data. The user, in such an implementation, supplies the query, specified in the query language, to a node in the wireless sensor network 100 (for example, the base station 104 or the PDA 106). The node that receives such a query parses the query, checks the query for any syntactic or semantic errors and converts the query into a set of subscriptions. The conversion of the human-readable query (also referred to here as the “source” form of the query) into a set of subscriptions is also referred to here as “compiling” the query. In one embodiment, the set of subscriptions is expressed in a binary form that is designed for convenient execution by the nodes in the wireless sensor network 100. In one implementation of such an embodiment, the data management interface 110 of the node that receives the query parses, checks, and compiles the received query and injects the query into the wireless sensor network 100. In such an embodiment, subscriptions can also be formulated by an application that resides in or interacts with the wireless sensor network 100. For example, in one implementation, the application formulates the subscriptions in source form using the high-level query language. In another implementation, the application formulates the subscriptions directly in binary form (thereby avoiding the need to compile the query). In such an embodiment, an optimization process that operates on the source form of the query and/or an optimization process that operates on the binary form of the query can be performed. Examples of various optimizations that can be performed in such an implementation are described below. In such an embodiment, recursive subscriptions are supported. Each subscription comprises a condition that identifies when the event of interest has occurred. The event of interest associated with the subscription can be a “simple” event that is not expressed in terms of any other events in the wireless sensor network 100 (for example, where the event is a function of continuous data from a sensor or a timer). That is, a simple event comprises a condition that is not a function of any other event in the wireless sensor network 100. Alternatively, the event of interest associated with a particular subscription can be a “complex” or “parent” event that is expressed in terms of one or more other events (also referred to here as “child events”) in the wireless sensor network 100. That is, such a parent event comprises a “parent” condition that is a function of one or more child events. Likewise, each child event can itself be a simple event or a parent event that is expressed in terms of one or more child events. The parent condition for such a parent event can combine the condition for a child event (referred to here as a “child condition”) with child conditions for zero, one, or more other child events and/or with zero, one, or more time-based conditions that specify when an event should be published, specify a duration for the subscription, specify an event-rate for the subscription, and/or specify when the subscription should be activated. These child conditions and/or time-based conditions can be combined together, for example, using logical operators (such as AND, OR, or XOR). In one implementation of such an embodiment, the time-based conditions are also implemented as events. FIG. 6 illustrates, generally, one example of a recursive subscription request in the wireless sensor network 100. In this example, a recursive subscription indicates that an entity (referred to here as the “parent sink entity”) wishes to receive information about an event that is associated with a first sensor when data from a second sensor meets a certain condition. In this example, the recursive subscription comprises a parent event that has a condition that indicates that the value of the first sensor is to be published when the value of the second sensor is greater than 20. In this example, the parent sink entity is implemented on the base station 104 and the source entity (also referred to here as the “parent source entity”) is implemented on the wireless sensor node 102 that includes the first sensor. This wireless sensor node 102 is also referred to here as the “first” wireless sensor node 102. The data management interface 110 on the base station 104 communicates the original subscription request to the first wireless sensor node 102, which install an event filter based on the condition specified in the original subscription request. The parent source entity also “splices” the original subscription request in order to generate a second subscription, based on the original subscription received from the parent sink entity. The second subscription indicates that the parent source entity wishes to be informed as to when the second sensor is greater than 20. In other words, this second subscription identifies a child event that is of interest to the parent source entity. For this second subscription, the parent source entity is the sink entity. The source entity (also referred to here as the “child source entity”) for this child event is the wireless sensor node 102 that includes the second sensor (also referred to here as the “second” wireless sensor node 102). The data management interface 110 of the first wireless sensor node 102 communicates the second subscription request to the second wireless sensor node 102, which installs an event filter based on the condition specified in the second subscription request. When the second wireless sensor node 102 determines that the child event has occurred (that is, the value of the second sensor is greater than 20), the second wireless sensor node 102 publishes the child event to the child sink entity, which is implemented on the first wireless sensor node 102. In this example, the child sink entity is also the parent source entity. When the parent source entity on the first wireless sensor node 102 learns that the value of the second sensor node is greater than 20, the first wireless sensor node 102 publishes the parent event to the parent sink entity, which is implemented on the base station 104. That is, the first wireless sensor node 102 provides the value of the first sensor to the parent sink entity implemented on the base station 104. FIG. 7 is block diagram of one embodiment of a data management stack 700 for providing data management functionality in a wireless sensor network. The embodiment of the data management stack 700 shown in FIG. 7 is described here as being implemented using the wireless sensor network 100 and the wireless sensor node 102 of FIGS. 1 and 2, respectively. Other embodiments are implemented in other ways. One or more of the various layers described here are implemented on each node in the wireless sensor network 100. In the embodiment shown in FIG. 7, the data management stack 700 comprises six layers. The data management stack 700 includes a query formalism layer 702 that provides the formal framework and language used for querying data from the wireless sensor network 100. For example, the query formalism layer 702 provides the functionality for compiling the source form of a query into a binary form and for injecting the query into the wireless sensor network 100. In such an embodiment, the query formalism layer 702 implements one or more of the following features: the ability to subscribe for an event. the ability to publish events to all subscribers. the ability to uniquely identify each subscription that is made. the ability to uniquely identify each event and the subscription that generates that event. the ability to install a subscription, defer installation of a subscription, pause a subscription, resume a subscription, drop a subscription, update or modify a subscription, and activate a subscription. the ability to specify a lifetime for a subscription. the ability to specify an activation time for a subscription. the ability to specify aggregation operations for a subscription, including a singe-source aggregation operation or a multiple-source aggregation. the ability to specify a subscription that executes only once (that is, only one event is published for that subscription). the ability to specify a priority for a subscription. the ability to specify a subscription to one or more simple data sources and/or one or more complex data sources. the ability to specify a condition used in an event filter for a subscription. the ability to specify one or more parameter for a subscription. the ability to specify one or more parameter for a publication. the ability to specify during initialization a classification of a data source as a producer or a consumer of a particular item of data. the ability to specify constraints on each subscription and corresponding publications for that subscription, such as a minimum power at a node to install that subscription at that node, a minimum power to generate lower power publication, and a minimum amount of time that a value should be stable before publishing any event that is based on that value. A Backus-Naur Form (BNF) of one example of a high-level query language that implements these features is shown in FIG. 8. A description of various statements and clauses shown in FIG. 8 is given below. SUBSCRIBE EVENT Statement: This statement is used to specify a subscription request. A subscription request is set by an entity when an event of interest is to be monitored. OF Clause: The OF clause is a part of a SUBSCRIBE EVENT statement that is used to associate a parameter with a region 108 of the wireless sensor network 100. ACTIVATE Clause: The ACTIVATE clause is a part of a SUBSCRIBE EVENT statement that enables specification of the time when the subscription should be activated by the source entity. If the ACTIVATE clause is not specified the default value of IMMEDIATE (explained below) is used for activation of the subscription. The time parameter for this clause is specified in HH:MM:SS format. IMMEDIATE Clause: The IMMEDIATE clause is an optional clause of a SUBSCRIBE EVENT statement. When used, this clause specifies that the subscription should be activated immediately (that is, without any delays). WHEN Clause: The WHEN clause is an optional clause of a SUBSCRIBE EVENT statement. This clause is used to specify a condition for an event filter that is evaluated to identify when the event of interest occurs. The event of interest is published only when the condition is evaluated and found to be true. LIFETIME Clause: The LIFETIME clause is an optional clause of a SUBSCRIBE EVENT statement. When specified, this clause defines a duration for which the SUBSCRIBE EVENT statement is to be kept alive at the node where the subscription is installed. After the duration specified in this clause has elapsed, this subscription is “removed” from that node. The time parameter for this clause is specified in HH:MM:SS format. INFINITE Clause: The INFINITE clause is an optional clause of a SUBSCRIBE EVENT statement. When used, it must be used along with a LIFETIME clause in the SUBSCRIBE EVENT statement. This clause defines the lifetime of that subscription as infinite, which means that the subscription will be active while the node at which the subscription is installed remains alive. ONCE Clause: The ONCE clause is an optional clause of a SUBSCRIBE EVENT statement. When specified, this clause should be specified along with a LIFETIME clause. When this clause is specified with the LIFETIME clause, the subscription is evaluated only once and then removed from the node at which the subscription is installed. This is the default value used if a LIFETIME clause is not specified in the SUBSCRIBE EVENT statement. PUBLISH EVENT Statement: The PUBLISH EVENT statement is used to publish an event of interest that has been subscribed to in a corresponding SUBSCRIBE EVENT statement. A PUBLISH EVENT statement is generated by a source entity and communicated to one or more sink entities specified in a corresponding SUBSCRIBE EVENT statement when the conditions specified in the SUBSCRIBE EVENT statement are evaluated and are true. VALUES Clause: The VALUES clause is used in a PUBLISH EVENT statement to communicate the current values of one or more parameters. This clause associates a current value for a parameter with a parameter identifier for that parameter. INSTALL EVENT Statement: The INSTALL EVENT statement is used to install an event filter at a particular node on which a source entity is implemented for a particular subscription. The event filter is, for example, installed into the program memory of that node and prepared for evaluation by that node. The subscription to be installed is specified by the event-id parameter of the INSTALL EVENT statement. UNINSTALL EVENT Statement: The UNINSTALL EVENT statement is used to remove a subscription from the wireless sensor network 100. This statement causes the event specified by an event identifier to no longer be checked for by the node on which the corresponding subscription has been installed. The subscription is cached for a limited period of time after being uninstalled for use in optimization processing. SUSPEND EVENT Statement: The SUSPEND EVENT statement is used to suspend a subscription. The subscription is specified using an event identifier and the state of the subscription is set as “suspended.” DROP EVENT Statement: The DROP EVENT statement is used to remove a subscription from the wireless sensor network 100. This statement causes the event specified by an event identifier to no longer be checked for by the node on which the corresponding subscription has been installed. Unlike with the UNINSTALL EVENT statement, the subscription is not cached for use in optimization processing. MODIFY EVENT Statement: The MODIFY EVENT statement is used to modify an existing subscription at runtime. SET LIFETIME Clause: The SET LIFETIME clause is a part of a MODIFY EVENT statement to modify the lifetime of an existing subscription. ACTIVATE EVENT Statement: The ACTIVATE EVENT statement is used activate a subscription that has previously been suspended via the SUSPEND EVENT statement. The state of the specified subscription is changed from “suspended” to “active.” DEFER EVENT Statement: The DEFER EVENT Statement is used to defer the evaluation of the specified subscription for the specified duration. MIN|MAX|AVERAGE|SUM|MEDIAN Clauses: These clauses are used to specify that a particular application-specific aggregation operation should be performed as a part of a subscription. The MIN clause indicates that a minimum value of a group of events should be computed, the MAX clause indicates that a maximum value of a group of events should be computed, the AVERAGE clause indicates that an average value of a group of events should be computed, the SUM clause indicates that a sum of a group of events should be computed, and the MEDIAN clause indicates that a median value of a group of events should be computed. The data management stack 700, in the embodiment shown in FIG. 7, also comprises a discrete event view (DEV) layer 704. The DEV layer 704, in such an embodiment, is scalable so that the functions performed by the DEV layer 704 can be implemented in high-end systems and low-end systems. For example, the source and sink functionality described below is required in both high-end systems and low-end systems, but is scaled appropriately. In such an embodiment, the DEV layer 704 also decides on the actions to be performed for any constraints that are specified in a query. It may be the case, however, that such constraint decisions cannot, during operation, be evaluated and made in the DEV layer 704 due to limitations of resources and information. The DEV layer 704 performs a semantic check of each subscription by checking the event-filter condition specified in each subscription to check that valid source and sink entities have been specified. The DEV layer 704, as a part of such processing, checks the validity of any time-based conditions (for example, conditions specifying when the corresponding event should be published, the lifetime of the subscription, an event rate for the subscription, and/or when the subscription should be activated). The DEV layer 704, as a part of such processing, checks the validity of any parameters used in the event-filter condition. In an alternative embodiment, such semantic checking is not performed by the DEV layer 704. In the embodiment shown in FIG. 7, the DEV layer 704 identifies the logical source entity and one or more logical sink entities for each subscription and for each corresponding publication. The DEV layer 704 determines and keeps track of which physical node in the wireless sensor node 100 implements each such logical entity and buffers data for these logical entities so as to provide an interface for users and applications to interact with the logical entities. The DEV layer 704, in such an embodiment, also handle recursive subscriptions and the corresponding publications. For example, the DEV layer 704 maps each publication generated by a source entity to the corresponding subscription so that the “chain” specified in a recursive subscription can be maintained. In the embodiment shown in FIG. 7, the DEV layer 704 maintains information about the subscriptions that exist in the wireless sensor network 100 at any given point in time. Such information is used by the DEV layer 704 to optimize, at least partially, new queries and/or existing queries. In one embodiment, the optimization processing performed by the DEV layer 704 includes optimizing recursive subscriptions that are received by the wireless sensor network 100. Such optimization processing is also referred to here as “recursive-subscription optimization.” The DEV layer 704, when a recursive subscription is received, recursively converts the original, recursive subscription into a set of smaller and more efficient subscriptions. The DEV layer 704 also maintains the proper linkage of the set of subscriptions to main the logical relationship specified in the original, recursive subscription. In one embodiment, the optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account the organization of the logical entities in the wireless sensor network 100. Such optimization processing is also referred to here as “data-source organization optimization” or “data-source optimization.” As noted above, logically, the wireless sensor network 100 can be viewed as a set of entities, each of which is able to send and/or receive data related discrete events of interest. In the embodiment shown in FIG. 1, the entities are organized geographically into regions 108. A region 108 is an abstract entity that has an associated geographical area defined by a user of the network 100. Each region 108 is considered to include all the logical entities that are implemented on a physical node that is physically located within the geographical area associated with that region 108. The DEV layer 704 can optimize a query using heuristics that are based on the organization of the logical entities involved in the query. For example, such heuristics can be based on the physical distance between nodes used to implement logical entities involved in a given query. In one embodiment, the optimization processing performed by the DEV layer 704 includes processing that is based on or that optimizes the use of available resources in the wireless sensor network 100 (for example, based on the availability of memory, power, and network bandwidth). Such optimization processing is also referred to here as “resource-influenced optimization.” In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on or that alters the status of one or more subscriptions. Such optimization processing is also referred to here as “subscription-status influenced optimization” or “subscription-status optimization.” As noted above, at any given point in time, many subscriptions typically exist in the wireless sensor network 100. Each subscription that exists in the wireless sensor network 100 has a current state, such as “active,” “suspended,” or “uninstalled.” Optimization processing performed by the DEV layer 704 includes, for example, changing the state of a subscription in order to optimize some attribute of the network 100 (for example, network bandwidth used by the node on which a subscription is implemented). In one implementation of such an embodiment, a finite state machine representation of the status of each subscription is used in the DEV layer 704, among other things, to perform such subscription-status optimization. Examples of heuristics that can be used in such an embodiment include the following: if a new subscription is received by the DEV layer 704 that specifies the same event that is specified in an existing subscription but with an extended lifetime, the DEV layer 704 causes the node on which the existing subscription is installed to modify the existing subscription by extending the lifetime of the existing subscription and to publish events to both the sink entity specified in the existing subscription and the sink entity specified in the new subscription. if a new subscription is received by the DEV layer 704 that is the same as an existing subscription but with a different event rate, the DEV layer 704, if possible, causes the node on which the existing subscription is installed to modify the existing subscription by adjusting the event rate of the existing subscription to satisfy both the existing subscription and the new subscription and to publish events to both the sink entity specified in the existing subscription and the sink entity specified in the new subscription. if a new subscription is received by the DEV layer 704 that specifies parameters similar to parameters specified in an existing subscription, the DEV layer 704 causes the node on which the existing subscription is installed to copy the existing subscription information and to modify the copy in order to install the new subscription on that node. if a new subscription is received by the DEV layer 704 that is exactly the same as an existing subscription except for specifying a different sink entity, the DEV layer 704 causes the node on which the existing subscription is installed to publish events to both the sink entity specified in the existing subscription and the sink entity specified in the new subscription. if a new subscription is received by the DEV layer 704 that specifies a first event generated by a first source entity but a second entity in the network 100 is also able generate a second event that is similar to the first event, the DEV layer 704 is able to install the subscription on the second source entity or modify an existing subscription that is already exists on the second source entity to publish events to the sink entity specified in the new subscription. when the lifetime of a subscription has elapsed, the node on which that subscription is installed can be instructed to save the subscription (for example, by changing the status of the subscription from “installed” to “uninstalled”) for a predetermined period of time after uninstalling the subscription, thereby making the subscription available to the DEV layer 704 (for example, for one or more of the optimizations described above) for an additional period of time. In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account a multi-source aggregation operation specified in a subscription. Such optimization processing is also referred to here as “multi-source aggregation optimization” or “multi-source optimization.” In a multi-source aggregation operation, more than one source entity is specified for a subscription and any corresponding publications. An example of such a multi-source aggregation operation is a subscription in which one event generated by a first source entity influences an aggregation event that is generated by a second source entity. Examples of heuristics that can be used in such an embodiment include performing localized data-source optimizations before performing multi-source optimization, performing subscription-status optimization, resource-influenced optimization, or other kinds of optimization processing before performing multi-source optimization, and/or performing event-sequencing optimization so that events from disparate sources are ordered optimally. In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account a single-source aggregation operation specified in a subscription. Such optimization processing is also referred to here as “single-source aggregation optimization” or “single-source optimization.” In a single-source aggregation operation, a single source entity is specified for a subscription and any corresponding publications. In such single-source aggregation optimization, information related to the single source entity is used in performing optimization processing. Examples of heuristics that can be used in such optimization processing include implementing the source entity for such an aggregation operation on a physical node that has higher resource availability and/or that results in the lowest (or lower) amount of power being expended to communicate with that physical node. In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account the ordering of subscriptions and/or publications (for example, within a given subscription, region, and/or the network 100 as a whole). Such optimization processing is also referred to here as “event sequencing optimization.” In such optimization processing, dependencies between the various events and parameters are used in finding an optimal (or improved) sequencing of subscriptions and/or publications. In one implementation, a Petri net-based model is maintained in the DEV layer 704 for use in such optimization processing. In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account a “when” clause specified in a subscription. The when clause for a given subscription is used to specify a condition that is used in the event filter for that subscription. Such optimization processing is also referred to here as “when-clause optimization.” The when-clause optimization processing breaks down the when clause into unit/atomic conditions that are optimized using the optimization processing described above. In one implementation of such an embodiment, techniques similar to those used in optimizing “where” clauses in structured query language (SQL) queries are used. For example, in one such implementation, a subscription/publication parse tree is assembled from the query and evaluated to find the cost of each condition-expression given in the when clause and appropriate optimizations are performed. In one embodiment, optimization processing performed by the DEV layer 704 includes processing that is based on, that alters, or that otherwise takes into account one or more constraints specified in a subscription. Constraints are specified for a given subscription in order to specify the boundaries of the subscription. The constraints can be used to eliminate some of the methods or approaches used to manage the subscription and any corresponding publications. In one embodiment, the DEV layer 704 uses one or more finite state machine models to implement at least a portion of the functionality provided by the DEV layer 704. In such an embodiment, a finite state machine-based model is used to model those aspects of the network 100 that involve specific states and state transitions. Examples of where a finite state machine-based model is used include: tracking the status of subscriptions; each subscription transitions through one or more of the various states mentioned above (for example, “installed,” “active,” “suspended,” “resumed,” and “waiting”). tracking data source dependencies; global dependencies between those entities in the network 100 that wait on other entities in the network 100 for data or events are used to identify those entities at which additional load can be scheduled (for example, because those entities are in a wait state). tracking the current status of entities in the network; a given entity transitions through various states such as “initialization,” “fault,” and diagnostics.” The states are required during subscription scheduling optimization. For example, when an entity is in a “diagnostic” state, operations should not be scheduled on that entity. tracking the current health status of an entity; the health of an entity can be modeled using states and transitions between the states. For example, the power and memory available at a given entity can be modeled using various states and transitions between those states can be used to represent the health of the entity. In one embodiment, the DEV layer 704 uses one or more Petri net models to implement at least a portion of the functionality provided by DEV layer 704. In such an embodiment, a Petri net model is used in event scheduling. The events are scheduled based on dependencies that exist between the events. The tokens of the Petri net are used to schedule and sequence the various subscriptions and publications that exist in the wireless sensor network 100. In the embodiment shown in FIG. 7, the data management stack 700 further comprises a logical layer 706. The logical layer 706 implements an abstract view of the data in the wireless sensor network 100 using the event-based data model described above in connection with FIGS. 3 through 6 in which the wireless sensor network 100 is logically viewed as a set of logical entities that generate discrete events. Such an event-based data model makes use of a producer/consumer model in which a given entity can be classified as a consumer of certain data and a producer of other data. The use of the producer/consumer model, among other things, supports sensing, actuation, and control in sensor network 100. The event-based data model also makes use of a publish/subscribe model so that the nodes in the wireless sensor network 100 only monitor (and process and communicate data about) those events that are of interest to some entity in the network 100. The data management stack 700, in the embodiment shown in FIG. 7, also comprises an extended logical layer 708 in which application scenario-specific extensions to the logical layer 706 are made. In one implementation, the extended logical layer 708 includes extensions that maintain information related to event dependencies, data dependencies (for example, dependencies between events that are generated by various data sources), aggregation dependencies, replication dependencies, control dependencies (for example, dependencies that exist between various data sources for performing a control operation), actuation dependencies, and availability management (for example, information pertaining to availability of data to indicates, for example, that data should be stored in an intermediary data source for ensuring a desired level of data availability). In one implementation, the extended logical layer 708 is implemented at the base station 104 and at each data source in the network 100. The data management stack 700, in the embodiment shown in FIG. 7, also comprises an execution layer 710. The execution layer 710 provides an abstract view and snap-shot, both static and dynamic, of the execution state of the wireless sensor network 100. The execution layer 710 maintains information pertaining to aggregation points in the network 100, adaptive query operations, query execution points, and replication points. The information maintained by the execution layer 710 is updated in response to every occurrence of an event of interest (that is, every event that is subscribed to) in the network 100. The data management stack 700, in the embodiment shown in FIG. 7, also comprises a physical layer 712 in which network-specific dependencies are managed. The topology, routing and base-band issues are managed by the physical layer 712. The execution layer 710 interacts with and uses the services provided by the physical layer 712 to publish events, identify aggregation points and optimize data management functionality. As noted above, an event-based formalism is used for data management in the wireless sensor network 100. The formalism includes the grammar used for specifying the subscriptions and resulting publications of data from the sensor network. In one embodiment, the event-based formalism is extended to include a set of operators (also referred to here as “discrete event operators”) that are used for forming an execution plan that can be subjected to analysis and optimization using the properties of the operators. The discrete event operators are defined from an algebraic formalism. This algebraic formalism is also referred to here as a “discrete event process algebra.” The discrete event operators in this algebra are extended and modified appropriately for execution plan creation. The discrete event process algebra is used by the data management stack 700 of the wireless sensor network 100 to formulate “processes” for use in the execution planning phase performed by the query formalism layer 700. The following describes one embodiment of a discrete event process algebra. In this embodiment, a “trajectory” is defined as the sequence of events that are accepted and processed by a given process until termination of that process. The symbol “ε” is defined as the string whose symbols are the events from the event set. The symbol “Σ” is defined as the set of all the events that are applicable for a process, including both the events that are accepted and rejected by the process. The symbol “Xi” is defined as the string of events that are rejected by a process before an event is successfully accepted by the process. The symbol “σi” is defined as the event that is accepted by a process. The symbol “Σext” is defined as the event set Σ that is extended with events Termination, Divergence, Positive Response and Feedback Response. In one embodiment, any decision point along the wireless sensor network 100 is defined as a process. Formally, a process P in the wireless sensor network 100 is a subset P⊂Otd:=(2 exp(Σext)×Σ)*X2 exp(Σext) satisfying the following conditions: Condition 1: (ε, Φ) ∈ P; Null trajectory is in every process. This is the idle state of the process. Condition 2: ((X0, σ1) (X1, σ2) . . . (Xk1−, σk), Xk) ∈P & ∃j: 0≦j≦k−1; σj+1 ∈Xj((X0, σ1) . . . (Xj-1, σj), Xj ∪{})∈P; All trajectories of a non-divergent process must be valid. Condition 3: Termination symbol () is a standalone symbol. Condition 4: A process terminates with the termination event () and accepts no further events. Condition 5: A process generates event (/ˆ) in response a set of accepted events. In such an embodiment of a discrete event process algebra, an event set Σ is augmented using /ˆ and ˆ\ symbols. In such an embodiment, the following discrete event operators are defined: (a) Prefix Operator (→.): The prefix operator in the data management stack 700 is used for sequencing the operations in the wireless sensor network 100. The prefix operator Q:=σ→P specifies that the process Q starts at an initial state and then moves to (transitions to) process P on event σ. An example of use of prefix operator is the ACTIVATE clause of the data model (describe above in FIG. 8). One example of a subscription that includes this operator is: SUBSCRIBE EVENT (‘124’, ‘125’, ‘126’) OF ‘902’ WHEN (‘512’ OF ‘345’>‘903’ OF ‘567’) ACTIVATE ‘10:32:12” LIFETIME ‘12:30:00’ EVERY ‘00:00;10’; In this example, P and Q are defined as: Q=Idle process A that is waiting for an event. P=(‘512’ OF ‘345’>‘903’ OF ‘567’) σ=Timer event ‘10:32:12’ A:=“10:32:12”→(‘512’ OF ‘345’>‘903’ OF ‘567’) (b) Controlled Alternative Operator (+): This operator enables transition to two different processes that depend on two different and mutually exclusive events. Given Q1=σ1→P1 and Q2=σ2→P2 the operator+enables transition from the start state of process Q to either P1 or P2 depending upon either the σ1 or σ2 event respectively. Q=(σ1+P1)+(σ2+P2). One example of a subscription that includes this operator is: SUBSCRIBE EVENT (‘124’) OF ‘902’ WHEN ((‘512’ OF ‘345’>50 AND ‘602’ OF ‘831’>70) OR (‘602’ OF ‘831’<20 AND ‘129’ OF ‘513’<90)) ACTIVATE IMMEDIATE; In this example, P1, P2, σ1, σ2, and Q are defined as follows: P1=(‘512’ OF ‘345’>50 AND ‘602’ OF ‘831’>70) P2=(‘602’ OF ‘831’<20 AND ‘129’ OF ‘513’<90) σ1=(‘602’ OF ‘831’>70) σ2=(‘602’ OF ‘831’<20) Q=Δ (which is referred to here as the “idle process”) and is defined as: Δ=((‘602’ OF ‘831’>70)→(‘512’ OF ‘345’>50 AND ‘602’ OF ‘831’>70)+((‘602’ OF ‘831’<20)→(‘602’ OF ‘831’<20 AND ‘129’ OF ‘513’<90)) (c) Uncontrolled Alternative Operator (⊕): This operator is not used in this embodiment of a discrete event process algebra, as the wireless sensor network 100 in this embodiment is deterministic and no non-deterministic operators are possible. (d) Event-Internalization (\σ): This operator is used to remove the occurrences of a given event from external view. Given P=(a→b→Δ)+(c→Δ), P\a is given by (b→Δ)+(c→Δ). An example of one application of this operator is during the LIFETIME and EVERY clauses of the grammar defined in FIG. 8. The event for LIFETIME clause is internalized with that of EVERY clause so that LIFETIME events are made ‘invisible’ from the external view. (e) Parallel Composition without Sync. (.∥Φ.): This operator enables two processes to operate in parallel completely independent of each other. This operator is used in the data management stack 700 for performing operations that need not be synchronized by timer events. One class of operation for which this operator is applicable is the ‘Decomposable aggregation’ operation. (f) Parallel Composition with full Synchronization (.∥Σ.): This operator enforces a rule that all the events in the event set Σ be completed and fully synchronized. This operator is used in the data management stack 700 to execute events that are conjoined by the AND logical operator in the WHEN clause of the grammar set forth above in FIG. 8. One example of a query that uses this operator is: SUBSCRIBE EVENT (‘124’) OF ‘902’ WHEN ((‘512’ OF ‘345’>50 AND ‘602’ OF ‘831’>70) OR (‘602’ OF ‘831’<20 AND ‘129’ OF ‘513’<90)) ACTIVATE IMMEDIATE; In this example, the synchronization set is: Σ1={(‘512’ OF ‘345’>50), (‘602’ OF ‘831’>70)} Σ2={(‘602’ OF ‘831’<20), (‘129’ OF ‘513’<90)} In this example, the event-sets Σ1 and Σ2 are synchronized using the “.∥Σ.” operator. (g) Parallel Composition on Synchronization Set (.∥A.): This operator is similar in functionality to the .∥Σ. operator except that A⊂Σ. This restricted set is applicable in the data management stack 700 when the WHEN clause of a SUBSCRIBE statement contains an OR logical operator A=Σ(AND) event−Σ(OR) events. (h) Prioritized Synchronization Composition (.A∥B.): The prioritized sets are defined on the processes and synchronization is enforced on these events only. This operator is used in the data management stack 700 to enforce priority on the events of a data source. Only those events that have priority above a certain threshold are included in the priority event sets A and B. (i) Termination (): A process terminates if after processing a set of events the process refuses any further events. A termination operator is used in the data management stack 700 to denote the completion of the SUBSCRIPTION. A variation of the operator is the instance termination operator (↓), which terminates the current instance of SUBSCRIPTION and initializes the subscription for a new execution. (j) Divergence (): The divergence operator models the catastrophic behavior of the process and it is applicable when the process reaches a chaotic state. In the data management stack 700, this operator is used for modeling the behavior of the wireless sensor network 100 when either the node dies or the node gets disconnected from the network. (k) Positive Response Operator (/ˆ): This operator generates events from the process in response to the processing function's output. This is a positive response as it contains values that are generated. An example of this kind of operator would be used when values are PUBLISHED from the data source in response to an aggregation operation. (l) Feedback Response Operator (ˆ\): The feedback response operator is used to signal the completion of some task. In the data management stack 700, this operator is used to start the operation of parameter assimilation specified in a SUBSCRIPTION/PUBLICATION list. One example of a subscription query that uses this operator is: SUBSCRIBE EVENT (‘124’) OF ‘902’ WHEN ((‘512’ OF ‘345’>50 AND ‘602’ OF ‘831’>70) OR (‘602’ OF ‘831’<20 AND ‘129’ OF ‘513’<90)) ACTIVATE IMMEDIATE; FIG. 9 is a flow diagram of one embodiment of a method 900 of compiling a source form of a query in order to generate the binary form of that query. The embodiment of method 900 shown in FIG. 9 is described here as being implemented using the wireless sensor network 100, wireless sensor node 102, and data management stack 700 of FIGS. 1, 2, and 7, respectively. Other embodiments are implemented in other ways. Method 900 includes receiving a query in source form (block 902). For example, in one usage scenario, a user of the wireless sensor network 100 formulates a query using the query language described above in connection with FIG. 8 and inputs (or otherwise communicates) the query to the base station 104. In one implementation, the query formalism layer 702 implements the functionality that receives the query in source form. The query is checked for syntactic and semantic errors (block 904). If there are any errors, the user is informed of the error (block 906) and processing of the received query is terminated. If there are no errors, a graph is generated from the source form of the query (block 908). The graph that is generated expresses the query in an instruction set that is used in the wireless sensor network 100. The source form of the query is parsed and the corresponding graph is generated based on the contents of the query. Each node in the graph that is generated is associated with a particular instruction from the instruction set. In this embodiment, the instruction set comprises a set of discrete event operators from a discrete event process algebra (also referred to here as “DEO instructions”) and a set of operators that are used to define and/or retrieve a value for a simple event (also referred to here as “simple-event instructions”). A discrete event operator instruction is associated with each parent node in the graph (that is, each node that includes one or more child nodes). The discrete event operator instruction defines a relationship (for example, sequencing, ordering and/or synchronization) of the subject defined by and under each child node of that parent node. The DEO instruction associated with each parent node is also referred to here as the “parent instruction” for that parent node. Each child node can itself be a parent node (having an associated DEO instruction and one or more child nodes) or a leaf node. Each leaf node is associated with a single, simple event and a simple-event instruction is associated with each leaf node. Method 900 further comprises attempting to optimize the query as expressed in the generated graph (block 910). For example, one or more of the optimization techniques described above are performed by the DEV layer 704 of the data management stack 700. A binary form of the query is then generated from the optimized graph (block 912). The graph generated for the query is traversed and the instruction associated with each node is generated, properly populated, and added to the end of the binary form of the query. In this way, the binary form of the query is generated. FIG. 10 is a block diagram illustrating one exemplary instruction format 1000 for use with the embodiment of method 900 shown in FIG. 9. Each instruction includes an operation code (also referred to here as an “opcode”) field 1002 that identifies the particular operation for that instruction. Each instruction also includes an operand size field 1004 that contains the total size of the operands (if any) included in that instruction. In the embodiment shown in FIG. 10, the opcode field 1002 and the operand size field 1004 are each 4 bits wide and are located in the first byte of the instruction (labeled “Byte 0” in FIG. 10). Each instruction also includes a parent identifier field 1006 that contains an identifier that identifies the parent instruction for that instruction (which corresponds to a particular parent node in a corresponding graph). The parent identifier field 1006, in the embodiment shown in FIG. 10, is one byte wide and is located in the second byte of the instruction (labeled “Byte 1” in FIG. 10). Each instruction includes none, one, or more operands depending on the particular opcode specified for that instruction. In the embodiment shown in FIG. 10, each operand follows the parent identifier field 1006 in the instruction. FIG. 11 illustrates one example of an instruction set 1100. The instruction set 1100 includes a set of DEO instructions 1102, each of which corresponds to an operator in the discrete event process algebra described above. The instruction set 1100 also includes a set of simple-event instruction 1104 that are used to define and retrieve a simple event. FIG. 12 illustrates one example of a query 1200 expressed in source form using the grammar set forth above in FIG. 8. The query 1200 shown in FIG. 12 specifies a subscription request for getting data from a particular region of interest. In the query 1200 shown in FIG. 12, the particular region of interest for the subscription has a region identifier of 99. This subscription subscribes to three events that related to the parameters identified by the parameter identifiers of 124, 125, and 126. For example, in one implementation, these three parameters relate to temperature, airflow and light intensity, respectively. In the query shown in FIG. 12, a lifetime of one minute and thirty seconds is specified for the subscription. The query 1200 specifies that the subscription be activated after five seconds and be evaluated every 30 minutes. Additional conditions are specified for the subscription request in a “WHEN” clause. These additional conditions specify when the parameters of interest should be fetched and published as events at the specified points of time and when the condition specified in the WHEN clause, as a whole, is valid. FIG. 13 illustrates a graph 1300 generated from the query 1200 that is expressed in source form in FIG. 12. Each parent node of the graph 1300 is displayed in FIG. 13 using the discrete event process algebra symbol that represents the discrete event operator associated with that parent node. Also, the discrete event operator associated with each parent node can also be viewed as a complex event, each occurrence of which is determined as a function of the child nodes of that parent node. Each leaf node in the graph 1300 is displayed in FIG. 13 using a description of the particular simple event associated with that leaf node. Also, each node of the graph 1300 has an associated index number (referred to here as an “event index”). The event index for each node in the graph 1300 shown in FIG. 13 is set forth in parentheses to the left of that node. Each node is also refereed to here using the event index for that node (for example, the node having an event index of 1 is referred to here as “node 1” or “event 1” and the node having an event index of 2 is referred to here as “node 2” or “event 2”). Each node shown in FIG. 13 also has an associated identifier number (referred to here as an “event identifier”) that is set forth to the right of or below that node. FIG. 14 is a table 1400 having a row for each node in the graph 1300 shown in FIG. 13. The table 1400 also includes a first column that identifies the event index of the node of each row, a second column that identifies the event identifier for each row, a third column that identifies the event index of the parent event for each row, a fourth column that identifies the event identifier for the parent event for each row in decimal form, and a fifth column that sets forth the event identifier of the parent event for each row in hexadecimal form. The binary form of the query 1200 set forth in FIG. 12 is shown in FIG. 15. The binary form of the query 1200 is shown in FIG. 15 in a grid in which the first byte of the binary form of the query 1200 (that is, “00”) is shown in the upper left corner of the grid (that is, at the cell at row 0 and column 0). Each instruction is surrounded by a box that is referenced in FIG. 15 with the event index for the node (and the complex event represented by that node) to which that instruction corresponds. For example, the first instruction shown in FIG. 15 is the instruction that corresponds to the node 1 shown in FIG. 14. The first instruction is “00 FF”, where the first 4 bits of the first byte (“0”) is the opcode for a SUBSCRIBE DEO instruction, the second 4 bits of the first byte (“0)” is the size of any operands for that opcode (which is zero because there are no operands for that opcode), and the second byte is the event identifier for that instruction's parent event (which is “FF” for the first instruction). The eleventh instruction shown in FIG. 15, for example, is the instruction that corresponds to node 11 shown in FIG. 14. The eleventh instruction is “E5 15 2D 0B 63 01 32”, where the first 4 bits of the first byte (“E”) is the opcode for the EVENT external-event operator shown in FIG. 11, the second 4 bits of the first byte (“5”) is the number of operands, in bytes, for this opcode, and the second byte (“15”) is the event identifier, in hexadecimal notation, for that instruction's parent event. The next five bytes (that is, the first three operands for this instruction) specify a particular event: when parameter “45” (“2D” in hexadecimal notation) associated with (opcode “B”) region “99” (“63” in hexadecimal notation) is greater than (opcode “01”) “50” (“32” in hexadecimal notation). In this example, the binary form of the query 1200 is injected into the wireless sensor network 100. As the query 1200 propagates among the nodes of the wireless sensor network 100, each node that receives binary form of the query 1200 from a peer node parses the binary form of the query 1200 and determines if that receiving node is able to act as a source entity for any of the simple events (specified by simple-event instructions 1104) specified in the binary form of the query 1200. If the receiving node is able to act as a source entity for such a simple event, the receiving node informs the peer node from which the receiving node received the binary form. As this process plays out throughout the network 100, a series of recursive subscriptions are formed, as managed by the DEV layer 704 of the data management stack 700. FIG. 16 illustrates one example of a set of recursive subscriptions that can result from the query 1200 of FIG. 12. As shown in FIG. 16, a set of eight subscriptions (labeled S1 through S8 in FIG. 16) are generated in order to satisfy the query 1200. In this example, the query 1200 is injected into the wireless sensor network 100 from the base station 104 and the base station 104, in this example, is the sink entity for the original subscription generated from the query 1200 (which is subscription S1 in FIG. 16). The source entity for the subscription S1 is an intermediary node (labeled node IM1 in FIG. 16). The node IM1 publishes events related to parameters 124, 125, and 126 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of the subscription S1 are all true. In this example, the node IM1 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of the subscription S1. The node IM1 is a sink entity for a subscription S2 for an event related to parameter 124, a sink entity for a subscription S3 for an event related to parameter 125, and a sink entity for subscription S4 for an event related to parameter 126. In this example, the source entity for subscription S2 is the node in the wireless sensor network 100 that is the data source for parameter 124 (labeled node 124 in FIG. 16). Node 124 publishes events related to parameter 124 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S2 are all true. In this example, the node 124 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of the subscription S2. The node 124 is a sink entity for a subscription S5 for an event related to parameter 45 of region 99, a sink entity for a subscription S6 for an event related to parameter 54 of region 99, a sink entity for subscription S7 for an event related to parameter 81 of region 99, and a sink entity for a subscription S8 for an event related to parameter 90 of region 99. In this example, the source entity for subscription S3 is the node in the wireless sensor network 100 that is the data source for parameter 125 (labeled node 125 in FIG. 16). Node 125 publishes events related to parameter 125 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S3 are all true. In this example, the node 125 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S3. The node 125 is also a sink entity for subscription S5, a sink entity for subscription S6, a sink entity for subscription S7, and a sink entity for subscription S8. In this example, the source entity for subscription S4 is the node in the wireless sensor network 100 that is the data source for parameter 126 (labeled node 126 in FIG. 16). Node 126 publishes events related to parameter 126 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S4 are all true. In this example, the node 126 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S4. The node 126 is also a sink entity for subscription S5, a sink entity for subscription S6, a sink entity for subscription S7, and a sink entity for subscription S8. In this example, the source entity for subscription S5 is the node in the wireless sensor network 100 that is the data source for parameter 45 of region 99 (labeled node 45 in FIG. 16). Node 45 publishes events related to parameter 45 of region 99 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S5 are all true. In this example, the node 45 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S5 and the data event specified in the WHEN clause of subscription S5. In this example, the source entity for subscription S6 is the node in the wireless sensor network 100 that is the data source for parameter 54 of region 99 (labeled node 54 in FIG. 16). Node 54 publishes events related to parameter 54 of region 99 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S6 are all true. In this example, the node 54 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S6 and the data event specified in the WHEN clause of subscription S6. In this example, the source entity for subscription S7 is the node in the wireless sensor network 100 that is the data source for parameter 81 of region 99 (labeled node 81 in FIG. 16). Node 81 publishes events related to parameter 81 of region 99 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S7 are all true. In this example, the node 81 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S7 and the data event specified in the WHEN clause of subscription S7. In this example, the source entity for subscription S8 is the node in the wireless sensor network 100 that is the data source for parameter 90 of region 99 (labeled node 90 in FIG. 16). Node 90 publishes events related to parameter 90 of region 99 when the WHEN clause and the LIFETIME, EVERY, and ACTIVATE clauses of subscription S8 are all true. In this example, the node 90 is able to act as a source of the time events specified in the LIFETIME, EVERY, and ACTIVATE clauses of subscription S8 and the data event specified in the WHEN clause of subscription S8. When nodes 45 determines that the LIFETIME, EVERY, ACTIVATE, and WHEN clauses of subscription S5 are all true, node 45 (which implements the source entity for subscription S5) publishes an event related to parameter 45 of region 99 to the sink entities of subscription S5. When node 54 determines that the LIFETIME, EVERY, ACTIVATE and WHEN clauses of subscription S6 are all true, node 54 (which implements the source entity for subscription S6) publishes an event related to parameter 54 of region 99 to the sink entities of subscription S6. When node 81 determines that the LIFETIME, EVERY, ACTIVATE and WHEN clauses of subscription S7 are all true, node 81 (which implements the source entity for subscription S7) publishes an event related to parameter 81 of region 99 to the sink entities of subscription S7. When node 90 determines that the LIFETIME, EVERY, ACTIVATE and WHEN clauses of subscription S8 are all true, node 90 (which implements the source entity for subscription S8) publishes an event related to parameter 90 of region 99 to the sink entities of subscription S8. The sink entities for subscriptions S5, S6, S7, and S8 are implemented on node 124, node 125, and node 126, respectively. When node 124 determines that the LIFETIME, EVERY, and ACTIVATE clauses of subscription S2 are all true and receives information from node 45 and node 54 or from node 81 and node 90 indicating that the WHEN clause of subscription S2 is true, node 124 (which implements the source entity for subscription S2) publishes an event related to parameter 124 to the sink entity of subscription S2 (which is implemented on node IM1). When node 125 determines that the LIFETIME, EVERY, and ACTIVATE clauses of subscription S3 are all true and receives information from node 45 and node 54 or from node 81 and node 90 indicating that the WHEN clause of subscription S3 is true, node 125 (which implements the source entity for subscription S3) publishes an event related to parameter 125 to the sink entity of subscription S3 (which is implemented on node IM1). When node 126 determines that the LIFETIME, EVERY, and ACTIVATE clauses of subscription S4 are all true and receives information from node 45 and node 54 or from node 81 and node 90 indicating that the WHEN clause of subscription S4 is true, node 126 (which implements the source entity for subscription S4) publishes an event related to parameter 126 to the sink entity of subscription S4 (which is implemented on node IM1). When node IM1 determines that the LIFETIME, EVERY, and ACTIVATE clauses of subscription S1 are all true and receives information from node 124, node 125, or node 126 indicating that the WHEN clause of subscription S1 is true (the WHEN clause of subscription S1 is the same as the WHEN clause in subscriptions S2, S3, and S4), node IM1 (which implements the source entity for subscription S1) publishes an event related to parameter 124 (if node IM1 has received a publication for subscription S2), parameter 125 (if node IM1 has received a publication for subscription S2), and/or parameter 126 (if node IM1 has received a publication for subscription S2) to the sink entity of subscription S1 (which is implemented on the base station 104). FIG. 17 is a block diagram of one embodiment of a virtual machine 1700 for use in a wireless sensor network. The embodiment of virtual machine 1700 shown in FIG. 17 is described here as being implemented using the wireless sensor network 100 and wireless sensor node 102 of FIGS. 1 and 2, respectively. Other embodiments are implemented in other ways. The virtual machine 1700 shown in FIG. 17 executes one or more “event programs” as described below. In such an embodiment, each event program is the binary form of a subscription that has been installed on the particular node on which the virtual machine 1700 is implemented (also referred to here as the “target” node) and comprises a set of instructions (for example, from the instruction set 1100 shown in FIG. 11). Each event program identifies one or more simple events (for example, identified using the simple-event instructions 1104 described above). In the embodiment shown in FIG. 17, the occurrence of each simple event is signaled to the virtual machine 1700 by an interrupt generated by the underlying hardware of the target node. As described above, each discrete event operator instruction 1102 is also viewed, in the context of the virtual machine 1700, as a complex event. When each discrete event operator instruction 1104 is executed, particular processing is performed by the target node. This processing that is performed when each discrete event operator instruction 1104 is executed is also referred to here as the “event handler” for the internal event associated with that discrete event operator instruction 1104. The embodiment of a virtual machine 1700 shown in FIG. 17 employs techniques used to implement Petri nets. Petri nets are typically used to model systems with interacting concurrent components where the transfer of information or materials from one component to another component requires that the activities of the involved components be synchronized during the interaction. In such a system, it is often the case that one component must wait for another component in order for the two components to remain synchronized. The timing of actions by different components may be very complex and the resulting interactions between components difficult to describe and synchronize. Petri nets provide a useful mathematical foundation to manage these kinds of systems. A Petri net can be represented as a graph with two types of nodes—“places” and “transitions.” Each transition has a set of input places and a set of output places. In the graph for a Petri net, each input place is shown as being connected to the transition by an arc that is directed from the input place to the transition. Similarly, each output place is shown as being connected to the transition by an arc that is directed from the transition to the output place. Places can be “marked” by “tokens.” Each place can hold an integer number of tokens. Transitions whose input places are all marked by at least one token are said to be “enabled” and are fired. When a transition is fired, a token is placed in each of the output places for that transition. In the embodiment of virtual machine 1700 shown in FIG. 17, each event (including each simple event and each complex event) in the event program is modeled as a “place.” The event handler for each complex event (that is, each discrete event operator instruction 1104) is modeled as a “transition.” Each transition associated with a particular complex event has a set of input places comprising the child events of that complex event. Each transition associated with a particular complex event also comprises an output place that corresponds to the parent event of that complex event. The event handler associated with each transition is executed when the transition is enabled. Each transition is enabled when a logical function associated with that transition evaluates to “true.” This logical function is defined, in this embodiment, by a logical operator (for example, AND, OR, or XOR) that is used to logically combine all the input places for the transition, where each input place has a logical value of “true” if the input place is marked and has a logical value of “false” if the input place is not marked. Each such logical function, in other words, implements the event filter condition for the associated complex event. In such an embodiment, each place (that is, each event) is allocated a data structure that is used to determine if that place has been marked. This data structure is referred to here as a “token data structure” or just a “token.” A place is marked by storing a value corresponding to logical true (for example, a value “1”) in the token for that place. A place is not marked when the token for that place contains a value corresponding to logical false (for example, a value of “0”). The set of tokens allocated to a set of input places for a given transition (that is, a given event handler) is also referred to here as the set of “input tokens” for that transition. Likewise, the token allocated to the output place of a given transition is also referred to here as the “output token” for that transition. The virtual machine 1700 comprises a token management subsystem 1702 for allocating and managing the token data structures used by the virtual machine 1700. The number of tokens that can be allocated in the virtual machine 1700 at any time is limited. The token management subsystem 1702 includes a token scheduler unit 1704 and a token register bank 1706. The token register bank 1706 comprises a set of bit-addressable token registers 1708 in which the tokens that are allocated by the token management subsystem 1702 are stored. In the embodiment shown in FIG. 17, the token register bank 1706 includes five token registers 1708, though the token register bank 1706 includes a different number of token registers 1708 in other embodiments. The bits contained within each of the token registers 1708 are allocated by the token scheduler unit 1704 based on considerations such as runtime management of tokens that have been allocated, the allocation of tokens to events such that each token resolves to a unique address, and/or the scheduling of tokens for new events that are generated at run time. The token management subsystem 1702 also allocates and manages a data structure (referred to here as the “event-token map” 1710) that maps each event in the event program to the location within the token register bank 1706 of the token allocated for that event. The token management subsystem 1702 also allocates and manages a data structure (referred to here as the “token-association list” 1712) that is used in determining when a particular event handler should be executed. In the embodiment shown in FIG. 17, the token-association list 1712 is implemented as a table in which each event handler in the event program is assigned a row in the table. As noted above, each event handler is modeled as a transition that has a set of input places and an output place. Each row contains a handle (or other reference) to the program instructions that comprise the event handler associated with that row. Each row also specifies the address (or other identifier) of the input tokens for the event associated with that row (labeled “Token List” in FIG. 17). Each row also specifies the logical operator (for example, AND, OR, or XOR) that is used to logically combine the input places for the transition associated with that row's event (labeled “Association” in FIG. 17). The input places are logically combined to determine if the transition associated with each row is enabled and, as a result, the event handler associated with that transition should be executed. This operation is also referred to here as “evaluating” that row of the token-association list 1712. If the result of logically combining the input tokens is “true”, then that event handler is executed. When the event handler is executed for a particular complex event, the event handler, among other things, clears (that is, unmarks) the input tokens of that complex event and marks the output token of that complex event. Every row in the token-association list 1712 is evaluated when any token within the token register bank 1706 has been marked. The token management subsystem 1702 comprises an event handling unit 1714 that performs such processing using the token-association list 1712. That is, the event handler 1714, when any token in the token register bank 1706 is marked, evaluates each row in the token-association list 1712. If a row evaluates to true, the event handling unit 1714 determines the address for the event handler associated with that row using the handle (or other reference) contained in that row and passes the address to the event-execution management subsystem 1716 (described below) to schedule the event handler for execution thereby. The virtual machine 1700 also comprises an interrupt management subsystem 1718 that allocates and handles interrupts and timers that are assigned to simple events specified in an event program. The number of interrupts and timers that are available on the target node is limited. The interrupt management subsystem 1718 comprises an interrupt multiplexer register bank 1720. The interrupt multiplexer register bank 1720 comprises a set of interrupt multiplexer registers 1722. In the embodiment shown in FIG. 17, the interrupt multiplexer register bank 1720 includes five interrupt multiplexer registers 1722, though the interrupt multiplexer register bank 1720 includes a different number of interrupt multiplexer registers 1722 in other embodiments. In the embodiment shown in FIG. 17, the interrupt management subsystem 1718 comprises an interrupt multiplexer unit 1726 that allocates the physical interrupts and timers to the simple events specified in each event program. For example, the interrupt multiplexer unit 1726 performs such processing when each event program is installed on the target node. The interrupt multiplexer unit 1726 identifies all simple events that are data events (as opposed to timer events) and allocates a physical interrupt to each data event. The interrupt multiplexer unit 1726 also configures the underlying hardware of the target node (for example, the programmable processor 206) to generate that physical interrupt only when the condition specified for that data event is true. The interrupt multiplexer unit 1726 also identifies all the simple events that are timer events (as opposed to data events) and allocates a hardware timer to that timer event. For timer events, the interrupt multiplexer unit 1726 also allocates physical interrupt to the timer event and configures the underlying hardware of the target node (for example, the programmable processor 206) to generate the physical interrupt at the appropriate time as specified in the timer event. The interrupt multiplexer unit 1726 allocates and maintains a data structure (referred to here as the “event-interrupt map” 1724) that maps each simple event specified in the event program to the physical interrupt allocated to that event. Each time a physical interrupt occurs, the interrupt multiplexer unit 1726 determines if that physical interrupt has been allocated to any event. If the physical interrupt has been allocated to one or more of the events, the interrupt multiplexer unit 1726 “routes” the interrupt to an interrupt handling unit (IHU) 1728 included in the interrupt management subsystem 1710. The interrupt handling unit 1728 executes a generic interrupt service routine (ISR) that evaluates each entry in the event-interrupt map 1724. If the physical interrupt that occurred is contained in a particular entry in the event-interrupt map 1724, the generic ISR marks the token allocated to the event specified in that entry of the event-interrupt map 1724. The generic ISR uses the event-token map 1710 to determine which token has been allocated to the event specified in that entry of the event-interrupt map 1724. As noted above, whenever a token is marked, the event handling unit 1714 evaluates each row in the token-association list 1712 to determine if any event handlers should be scheduled for execution by the event-execution management subsystem 1716. The virtual machine 1700, in the embodiment shown in FIG. 17, further comprises an event-execution management subsystem 1716. The event-execution management subsystem 1716 allocates and manages memory in which the program logic that implements each event handler installed on the target node is stored. The event-execution management subsystem 1716 also receives requests from the token management subsystem 1702 to schedule a particular event handler for execution. The event-execution management subsystem 1716 comprises an event scheduler 1730 that performs the scheduling of event handlers. The event scheduler 1730 schedules event handlers for execution based on factors such as priority, time to execute and system resources. The event-execution management subsystem 1716 comprises an event-execution unit 1732 that interacts with the underlying hardware (for example, the programmable processor 206) of the target node to execute the program logic of the event handlers in accordance with the schedule established by the event scheduler 1730. The event-execution management subsystem 1716, in the embodiment shown in FIG. 17, comprises an event queue 1734 that is used by the event-execution scheduler 1730 and the event-execution unit 1732 to schedule and execute the program logic of the event handlers, respectively. In the embodiment shown in FIG. 17, the virtual machine 1700 comprises an arithmetic and logic unit 1736 that the event-execution management subsystem 1716 uses to interact with the underlying programmable processor 206 of the target node in order to execute the program logic of the various event handlers installed on the target node. The virtual machine 1700 further comprises a hardware abstraction unit 1738 that is used to access the other parts of the underlying hardware of the target node. For example, in the embodiment shown in FIG. 17, the interrupt management subsystem 1710 uses the hardware abstraction unit 1738 to communicate with the underlying hardware of the target node about the physical interrupts and hardware timers used by the virtual machine 1700. In the embodiment shown in FIG. 17, the virtual machine 1700 also comprises an event parser 1740 that parses each event program that is installed on the target node. During parsing, the event program is stored in event program memory 1742. In one embodiment, the event program memory 1742 is located in a data structure allocated in the memory 208 of the target node. In the embodiment shown in FIG. 17, each event program is parsed in two steps. During the first step, the event parser 1740 identifies each discrete event operator instruction 1102 in the event program. For each discrete event operator instruction 1102 that is identified, the event parser 1740 causes the token scheduler unit 1704 to allocate a token for that complex event and causes the event-execution management subsystem 1716 to store the program logic for that event handler. Also, during the first step, the event parser 1740 identifies each simple-event instruction 1104 in the event program. For each simple-event instruction 1104 that is identified, the event parser 1740 causes the token scheduler unit 1704 to allocate a token for that simple event and causes the interrupt management subsystem 1718 to allocate a physical interrupt (and a hardware timer, if the simple event is a timer event). After all of the tokens have been allocated for the event program, the event parser 1740 performs the second step of the parsing process. In the second step, the event parser orders and sequences the tokens that have been allocated by causing the token scheduler unit 1704 to populate a row in the token-association list 1712 for each discrete event operator instruction 1102. For each discrete event operator instruction 1102, a row in the token-association list 1712 is populated with the set of input tokens for that discrete event operator instruction 1102, the logical operator for combining the set of input tokens to determine if the associated event handler should be executed, and a handle (or other reference) to the program logic for that event handler. In one implementation, the virtual machine 1700 is implemented using the “TinyOS” operating system developed at the University of California at Berkeley. The event scheduler 1730, in such an implementation, is implemented using the event scheduler component of the TinyOS operating system. In such an implementation, the round-robin scheduling logic of the TinyOS scheduler is extended to implement a priority-based scheduling algorithm for use with the virtual machine 1700 of FIG. 1700. The hardware abstraction unit 1738 of the virtual machine 1700 is implemented, in such an implementation, using the hardware-abstraction-layer of the TinyOS operating system. FIG. 18 is a flow chart illustrating the processing of an event program by the embodiment of the virtual machine 1700 shown in FIG. 17. The processing described here as being performed by the virtual machine 1700 is carried out by the underlying hardware of the target node (for example, by the programmable processor 206). The underlying target node, in one implementation, includes a scheduling mechanism that is able to, among other things, allocate processing resources between the processing performed in method 1800, the program logic for any event handlers that are executed by the event execution unit 1732, and any processing performed in order to generate interrupts and management hardware timers. Method 1800 comprises receiving the event program (that is, the binary form of a subscription) at the virtual machine (block 1802). The event program, in this embodiment, is expressed as a set of instructions, comprising one or more discrete event operator instructions 1102 and simple-event instructions 1104 of the type shown in FIG. 11. The event program is received by the target node using the underlying networking and routing layer implemented on the target node and included in the physical layer 712 of the data management stack 700. The event program is parsed by the event parser 1740 of the virtual machine 1700 (block 1804). In this embodiment, the event program is parsed using the two-step process described above. In the first step, the tokens for each event of the event program (that is, for each instruction) are allocated, the event handler for each discrete event operator instruction 1102 is allocated, and the interrupts and hardware timers are allocated for the simple events specified in the event program. In the second step, the tokens are ordered and sequenced by populating the rows of the token-association list 1712 with the set of input tokens for the complex event associated with that row, the logical operator for combining the set of input tokens, and the handle (or other reference) to the program logic for the event handler for that event. After parsing the event program, the subsystems of the virtual machine 1700 are initialized (block 1806). For example, the token registers 1708, the interrupt multiplexer registers 1722, and the event scheduler 1730 are initialized along with the underlying hardware of the target node (for example, the processor 206 that generates interrupts and the hardware timers 222). After the parsing and initialization is complete, the event program is executed by the virtual machine 1700 (block 1808). In the embodiment shown in FIG. 18, the event program is not executed until the ACTIVATE event specified in the event program has occurred (checked in block 1810). In this embodiment, the ACTIVATE event is allocated an interrupt and hardware timer by the interrupt management subsystem 1718 and the underlying hardware of the target node is initialized to generate this interrupt when the condition specified in the ACTIVATE instruction of the event program is true. Executing the event program comprises determining when an interrupt has been generated (block 1812). When an interrupt is generated, the interrupt is checked to determine if that type of interrupt (indicated by an interrupt identifier) has been allocated to an event in the event program (block 1814). In this embodiment, the interrupt multiplexer unit 1726 makes this determination. If that type of interrupt has not been allocated to an event in the event program, the interrupt is not processed (returning back to block 1812). If that type of interrupt has been allocated, the token associated with the event allocated to that interrupt is marked (block 1816). In this embodiment, if that type of interrupt has been allocated, the interrupt multiplexer unit 1726 routes the interrupt to the interrupt handler unit 1728. The interrupt handler unit 1728 executes the generic interrupt service routine, which uses the event-interrupt map 1724 to determine which event is associated with that interrupt. The generic interrupt service then marks the token allocated to that event, which is stored in the token register bank 1706. After the token is marked, each row in the token-association list 1712 is evaluated (block 1818) and if the row evaluates to true (checked in block 1820), the event handler specified by that row is scheduled for execution (block 1822). When all rows of the token-association list 1712 have been evaluated (checked in block 1824), method 1800 waits for the next interrupt (returning to block 1812). This is done until the event-program is terminated, for example, by an event handler (for example, by an event handler associated with a timer event). The methods and techniques described here may be implemented in digital electronic circuitry, or with a programmable processor (for example, a special-purpose processor or a general-purpose processor such as a computer) firmware, software, or in combinations of them. Apparatus embodying these techniques may include appropriate input and output devices, a programmable processor, and a storage medium tangibly embodying program instructions for execution by the programmable processor. A process embodying these techniques may be performed by a programmable processor executing a program of instructions to perform desired functions by operating on input data and generating appropriate output. The techniques may advantageously be implemented in one or more programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from, and to transmit data and instructions to, a data storage system, at least one input device, and at least one output device. Generally, a processor will receive instructions and data from a read-only memory and/or a random access memory. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and DVD disks. Any of the foregoing may be supplemented by, or incorporated in, specially-designed application-specific integrated circuits (ASICs). A number of embodiments of the invention defined by the following claims have been described. Nevertheless, it will be understood that various modifications to the described embodiments may be made without departing from the spirit and scope of the claimed invention. Accordingly, other embodiments are within the scope of the following claims.
<SOH> BACKGROUND <EOH>Systems often include some type of functionality for providing data management. Data management is concerned with providing a logical view of the data that is available in a system. Such a logical view is also referred to here as the “data model” for the system. Data management is also concerned with the underlying physical organization of the data in the system and the transformation between the logical view of the data and the underlying physical organization. In addition, data management is typically concerned with a query mechanism for retrieving data from the system, a frame structure for the data, and the optimization of queries based on various parameters. One type of system is a wireless sensor network. A wireless sensor network typically include several nodes that communicate with one another over wireless communication links (for example, over radio frequency communication links). One or more of the nodes in the wireless sensor network incorporate (or are otherwise coupled to) a sensor. Such nodes are also referred to here as “wireless sensor nodes” or “sensor nodes.” Each sensor is capable of generating a value that, at any given point in time, is indicative of some physical attribute of interest. In one configuration, the sensor nodes are battery powered and have limited computational resources (for example, limited memory and processing capability). One approach to providing data management in a sensor network employs techniques used in relational database management systems (RDBMS). In such an approach, sensor data generated by sensor nodes in the network are logically organized into tables. Relational algebra is used for specifying the behavior of the logical view of the sensor data. Such an RDBMS approach, however, may not be suitable in a wireless sensor network that makes use of sensor nodes that have limited resources (for example, power, memory, or processing capability).
<SOH> SUMMARY <EOH>In one embodiment, a wireless sensor network comprises a plurality of nodes that communicate over wireless communication links. At least one of the plurality of nodes receives sensor data from a sensor. At least one of the plurality of nodes determines when a discrete event occurs. When the discrete event occurs, transmits data related to the discrete event over at least one of the wireless communication links. The discrete event is a function of the sensor data. In another embodiment, a wireless sensor node comprises a wireless transceiver to communicate over a wireless communication link and a sensor interface to receive sensor data from a sensor. The wireless sensor node determines when a discrete event occurs. When the discrete event occurs, transmits data related to the discrete event over the wireless communication link. The discrete event is a function of the sensor data. Another embodiment is a method of accessing data in a wireless sensor network comprising a plurality of nodes that communicate over wireless communication links, where at least one of the plurality of nodes receives sensor data from a sensor. The method comprises querying the wireless sensor network for data. The query specifies a set of discrete events of interest. The method further comprises, for each of the set of discrete events of interest, at at least one of the plurality of nodes, determining when that discrete event occurs and, when that discrete event occurs, transmitting data related to that discrete event. The details of various embodiments of the claimed invention are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
20041027
20091208
20060427
98576.0
H04Q724
0
PHAM, TUAN
EVENT-BASED FORMALISM FOR DATA MANAGEMENT IN A WIRELESS SENSOR NETWORK
UNDISCOUNTED
0
ACCEPTED
H04Q
2,004
10,974,372
ACCEPTED
Optical stack of laminated removable lenses for face shields, windows, and displays
A stack of laminated transparent lenses consists of two alternating optically clear materials in intimate contact. The materials are a plastic lens and clear adhesive. The adhesive is uninterrupted. The lens and the adhesive have refraction mismatch of less than 0.2. A tab portion is part of each lens acts as an aid in peeling away the outermost lens after contamination of the lens layer during racing conditions. The lens stack can be mounted to the posts on the face shield or laminated directly to a windshield.
1. (canceled) 2. (canceled) 3. (canceled) 4. (canceled) 5. (canceled) 6. (canceled) 7. (canceled) 8. (canceled) 9. (canceled) 10. A stack comprising: a plurality of removable lenses affixed to each other and successive lenses define contact surfaces with respect to each other; and a clear adhesive interposed between each upper and lower lenses and adhered to the upper and lower lens contact surface; wherein a refraction mismatch between the plurality of removable lenses is less than 0.2 such that no reflections are evident through the plurality of removable lenses. 11. The stack of claim 10, wherein a refraction mismatch between the lens and adhesive is less than 0.2. 12. The stack of claim 11, wherein the refraction mismatch between the plurality of removable lenses is greater than the refraction mismatch between the lens and adhesive. 13. The stack of claim 11, wherein the refraction mismatch between the lens and adhesive is about 0.12. 14. The stack of claim 10, wherein the clear adhesive is a water-based adhesive. 15. The stack of claim 10, wherein the clear adhesive is an oil based adhesive. 16. The stack of claim 10, wherein a distance between the contact surfaces of each successive lenses is negligible 17. The stack of claim 16, wherein the distance is about ⅙ mil. 18. The stack of claim 10, wherein the lens is fabricated from polymer polyethylene terephalate. 19. An optical stack of laminated removable lenses for affixing to a viewing surface consisting essentially of: a plurality of superposed removable lenses adhesively affixed to one another; each said removable lens being held to each successive lens with a clear uninterrupted adhesive layer interposed between each said removable lens; each said lens having a removable tab portion on at least one end which does not have any adhesive layer on either side of said tab portion such that when the optical stack of laminated removable lenses is affixed to a viewing surface a user can quickly grasp said removable tab portion for removing the top lens of the optical stack of laminated removable lenses and expose a clean lens directly underneath said removed top lens. 20. The optical stack of removable lenses as recited in claim 19 further consisting essentially of a second removable tab portion opposite the end of said removal tab portion. 21. The optical stack of removable lenses as recited in claim 19, wherein the clear uninterrupted adhesive layer has a thickness of about ⅙ mil. 22. The optical stack of removable lenses as recited in claim 19, wherein said removable lenses have indexes of refraction matched to about 0.2. 23. An optical stack of laminated removable lenses for affixing to a viewing surface consisting essentially of: a plurality of superposed removable lenses adhesively affixed to one another; each said removable lens being held to each successive lens with a clear uninterrupted adhesive layer interposed between each said removable lens and said removable lenses having indexes of refraction matched to about 0.2; each said lens having a removable tab portion on at least one end which does not have any adhesive layer on either side of said tab portion such that when the optical stack of laminated removable lenses is affixed to a viewing surface a user can quickly grasp said removable tab portion for removing the top lens of the optical stack of laminated removable lenses and expose a clean lens directly underneath said removed top lens. 24. The optical stack of removable lenses as recited in claim 23 further consisting essentially of a second removable tab portion opposite the end of said removal tab portion. 25. An optical stack of laminated removable lenses for affixing to a viewing surface consisting essentially of: a plurality of superposed removable lenses adhesively affixed to one another; each said removable lens being held to each successive lens with a clear uninterrupted adhesive layer interposed between each said removable lens, the layer having a thickness of about ⅙ mil; each said lens having a removable tab portion on at least one end which does not have any adhesive layer on either side of said tab portion such that when the optical stack of laminated removable lenses is affixed to a viewing surface a user can quickly grasp said removable tab portion for removing the top lens of the optical stack of laminated removable lenses and expose a clean lens directly underneath said removed top lens. 26. The optical stack of removable lenses as recited in claim 25 further consisting essentially of a second removable tab portion opposite the end of said removal tab portion.
CROSS REFERENCE TO RELATED APPLICATIONS none BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention pertains to the following areas of technology: Apparel—Guards and Protectors; for wearer's head and face; eye shields such as goggles having a lens-cover plate; and windshield covers. 2. Description of the Prior Art Face shields are employed in environments where contamination of the eyes may occur. It is well known in the art that flexible transparent lenses affixed by numerous methods are overlaid on the face shield for protection. The lenses are easily removed and discarded when visibility is reduced from the accumulation of dirt or other contaminants. In motor sports for instance, multiple layers of transparent lenses are overlaid on the face shield, each being sequentially removed as they become contaminated, because they reduce the visibility of the operator. The drawback of the lenses in the prior art is that each transparent lens applied over the face shield is itself a hindrance to good visibility due to its optical index of refraction. Most common materials used as plastics have optical indexes of refraction ranging from 1.47 to 1.498. The index mismatch between the removable lens and air (air has an optical index of 1.00) causes a reflection of 4% of the light that would normally come to the operator's eyes. This reflection effect is additive for each additional surface to air interface. Then for each removable lens having two surfaces, the reflections are 8%. Thus a stack of seven lenses would reflect 42% of the light away from the operator thereby reducing the brightness of the objects viewed. A second optical phenomenon occurs simultaneously that also reduces visibility. The reflections are bi-directional and thus make the lens stack appear as a semi-permeable mirror to the operator. This mirror effect further reduces visibility, because the light that passes through the lens stack reflects off of the operator's face and then reflects off of the lens stack into the operator's eyes. The effect to the operator is that he sees his own image on the inside of the stack nearly as brightly as the objects viewed on the outside. This significantly reduces visibility. Another drawback to this stacking arrangement is that moisture exhaled by the operator's breath can cloud or fog-up the lenses also reducing visibility. The air spaces between each lens allows the moisture to enter this area. SUMMARY OF THE INVENTION An object of the present invention is to provide a series of easily removable optically clear lens stacks that do not cause reflection to the operator's eyes. The prior art discloses reflective lens stacks that do cause reflections to the operator's eyes. An example of this type of prior art of reflective lens stacks is disclosed in U.S. Pat. No. 5,592,698 issued on Jan. 14, 1997 to Woods. Refraction is the change in the direction in which waves travel when they pass from one kind of matter into another. Waves are refracted (bent) when they pass at an angle from one medium into another in which the velocity of light is different. The amount that a ray of a certain wavelength bends in passing from one medium to another is indicated by the index of refraction between the two mediums for that wavelength. The index of refraction indicates the amount that a light ray bends as it passes out of one substance and into another. When light passes from air to a denser substance, such as Mylar film, it slows down. If the light ray enters the Mylar film at any angle except a right angle, the slowing down causes the light ray to bend at the point of entry. This bending is called refraction. The ratio of the speed of light in air to its speed in the Mylar film is the Mylar film's index of refraction. The present invention includes a series of alternating optically clear films whose indexes of refraction are matched to within 0.2 and which will nearly eliminate all reflections to the operator's eyes. The layers of film are adhesively laminated to one another and are compliant so there is no air between the layers. The film layers can be large and generally rectangular in shape with a tab extending from each of the film layers. The tabs can be staggered so that the user can remove the top most layer and then the next succeeding layer. This embodiment of the present invention can be applied to race car windshields, windows, visors or direct view displays such as ATM machines that are subject to contaminating environments. Accordingly, the present invention is an adhesively laminated multi-layered clear film adapted to be used on a racer's face shield, or on the windshield of a race car to keep the viewing area clean during the course of a race. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an off-road wearer's helmet showing one embodiment of the present invention affixed to the face shield of the helmet. FIG. 2 is a front elevational view of the helmet shown in FIG. 1 showing the tab portion without any adhesive for allowing the wearer of the helmet to easily grasp the tab and peel-off the soiled top layer of the present invention. FIG. 3 is a partial sectional view taken along line 3-3 in FIG. 2. This view shows the tension post extending outwardly from the face shield with the left-side end tab portion of the present invention. FIG. 4 is a front elevational view illustrating the present invention before it is affixed to the face shield of the helmet. FIG. 5. is a top view of the stackable lenses illustrating seven layers of lens held together by an adhesive applied between each lens with the thicknesses of the layers of each lens and applied adhesive highly exaggerated to clearly show the relationship between the lenses and the adhesive and also to show the end portions that do not have any adhesive between each lens layer for forming the removable tab portions at both ends of the present invention. FIG. 6 illustrates a 60″ wide roll of film, which will be used to cut out the optical stacks that are illustrated in FIG. 4. The gray stripes illustrate the clear adhesive, and the clear stripes illustrate the clear film without adhesive. It is to be understood that the gray stripes are for illustration purposes only, because the adhesive is clear. FIG. 7 is an exploded perspective view illustrating seven sheets of film layer and seven layers of clear adhesive interposed between each sheet of film layer. This embodiment is used for windshields, windows and the like. FIG. 8 is a view of the laminated sheets illustrated in FIG. 7 having a rectangular shape with a series of six tabs for removing each top layer of the lenses successively as the uppermost exposed lens layer becomes soiled or otherwise contaminated. DETAILED DESCRIPTION OF THE INVENTION The present invention will now be discussed in detail. As stated above, FIG. 4 is a front elevational view illustrating the present invention 10 before it is affixed to the face shield of the helmet. The top view in FIG. 5 illustrates 7 layers of lenses 15 adhesively affixed to each successive lenses. The adhesive layer is numbered 20. The material used to form the lenses is preferably a clear polyester. The lens layers are fabricated from sheets of plastic film sold under the registered trademark Mylar owned by the DuPont Company. The several trademark registrations for the mark Mylar list several types of products sold under that mark, and include polyester film. The type of Mylar used in the present invention is made from the clear polymer polyethylene terephalate, commonly referred to as PET, which is the most important polyester. PET is thermoplastic—that is, it softens and melts at high temperatures. Uses of PET film include magnetic tapes and shrink wrap. The adhesive 20 used to laminate the lenses together sequentially is a clear optical low tack material. The thickness of each lens will range from 0.5 mil to 7 mil (1 mil is 0.001″). The preferred thickness will be 2 mil. Even after the adhesive material is applied to a 2 mil thickness lens, the thickness of the 2 mil thickness lenses will still be 2 mil. The adhesive has nominal thickness. As illustrated in FIG. 5, after the seven layers of film and the six layers of adhesive are laminated together, the overall thickness of the end product is 15 mils. The term “wetting” can be used to describe the relationship between the laminated film layers. When viewing through the laminated layers, it appears to be one single piece of plastic film. No reflections are evident. The end tab portions without the adhesive exhibit reflections are not a hindrance to the user, because these end portions are folded back over the posts as illustrated in FIG. 3, and do not affect the visibility of the user. The adhesive material 20 will be a water-based acrylic optically clear adhesive or an oil based clear adhesive, with the water based adhesive being the preferred embodiment. After the seven layers are laminated or otherwise bonded together with the adhesive layers, the thickness of each adhesive layer is negligible even though the adhesive layers are illustrated in FIGS. 4 and 5 as distinct layers. FIG. 5. is a top view of the stackable lenses illustrating seven layers of lens held together by an adhesive applied between each lens with the thicknesses of the layers of lenses and applied adhesive highly exaggerated to clearly show the relationship between the lenses and the adhesive and also to show the end portions that do not have any adhesive between each lens layer for forming the removable tab portions 25 at both ends of the present invention. The individual stackable lenses package, illustrated in FIG. 5 for use with racing helmets, can be fabricated from a roll of film as illustrated in FIG. 6. The film in FIG. 6 includes seven layers of clear polyester film, and having the water-based acrylic adhesive laminating the seven film layers to one another. Keep in mind that each layer of the lenses can be easily peeled away as the top layer exposing the next clean lens. Each succeeding lens layer can be removed as the top lens becomes contaminated with dirt and grime during racing conditions. Referring back now to FIG. 3. As previously stated, FIG. 3 illustrates the tension post 60 extending outwardly from the face shield 55 with the left side end tab portion 25 of the present invention illustrated. The face shield 55 has a left tension post 60 and a right tension post 65. The present invention 10 has the following dimensions: 18″ in length; 2½″ in height; and about 15 mils in thickness (1 mil is 0.001″). The present invention is symmetrical about it vertical medial axis and about its horizontal medial axis. The left end has a removable tab portion 25, and the right end has a removable tab portion 35. The area 15 indicates where the adhesive 20 is applied to the layers of the lens 15. The bilateral demarcation lines 31 and 41 indicate where the adhesive stops on either side. The demarcation lines 31 and 41 also indicate where the tab portions begin. The present invention has a pair of bilateral keyhole-shaped slots 27 and 37 for demountably engaging the two helmet posts 60 and 65 respectively. The curved distance between the two helmet posts 60 and 65 is the same as the distance between the centers of the pair of slots 27 and 37. The user secures the lenses to the face shield by positioning the slots adjacent the helmet posts and passing the posts through the slots. It is preferable that the remainder of the tab portion outboard from the slot be folded back upon itself so that the finger hole is also passed through the helmet post. This is illustrated in FIG. 3. The proper installation of the present invention on the helmet requires the user to position the bottom lens of the stack through the post hole by passing the post through the slot, then folding back the remainder of the tab portion 25 so that post passes through the finger hole 29. This is done for each lens working from the bottom up until the tab portion 25 of the top lens extends unfolded as illustrated in FIG. 2. In this manner, the helmet wearer can easily put his index finger through the finger hole topmost lens layer. The clean layer below the removed layer is then exposed and the removal tab portion on the exposed layer will spring back to the unfolded position to expose the finger hole so that the helmet wearer can easily remove that layer after it becomes soiled and contaminated. The plastic material forming the lenses is resilient and will spring back to its unfolded position and extend outwardly from the face shield. The thicknesses of the layered lenses and folded tab portions illustrated in FIG. 3 are highly exaggerated to clearly show the folding relationship. In actual practice seven lenses and seven tab portions with be stacked into the space between the end of the post and the outer surface of the face shield. Remember that there is no adhesive between the tab portions. This allows the removal tab portions to fan out. They do not stick to one another. The present invention as shown in the Drawing Figures has removal tab portions at both ends. This allows a right or left-handed person to easily remove the topmost layer. It also allows the driver to pull the tab with either hand depending on the circumstances of the race. It is to be understood that the present invention includes a laminated lenses with only a left tab portion 25, or only a right tab portion 35, or both a left and a right tab portion. The windshield embodiment 100 illustrated in FIGS. 7 and 8 will now be discussed in detail. An optical stack of removable lenses for affixing to an optical window such as a racing car windshield is disclosed in FIG. 8. The embodiment 100 has a plurality of seven generally rectangular superposed removable lenses 105 adhesively affixed to one another. The outer perimeter is continuous. Each of the removable lens 105 is held to each successive lens with a clear uninterrupted adhesive layer 110 interposed between each of the removable lens. The perimeter has at least one generally straight edge portion 115. In the embodiment illustrated in FIG. 8, the perimeter is rectangular and has four straight edge portions, one for each side. It is to be understood that the invention could be practiced with only one generally straight edge portion. The area adjacent to the straight edge portion 115 has a banded portion 120 that does not have any adhesive affixed to any of the layers of film to assist in allowing each said film layer 105 to be peeled off successively along the straight edge portion. A plurality of staggered tabs 125 are affixed to the film layers one-at-a-time. The tabs 125 extend from the straight edge portions 120 to assist the user in removing the uppermost soiled and grimy film layer, and to successively remove each next clean layer as the top exposed layer becomes contaminated. The adhesive layer can be foreshortened so as to expose successively a portion of the lens layers without optical wetting to create a grasping tab. The stack of removable lenses as illustrated in FIGS. 7 and 8 can have an optically clear adhesive as the bottom last layer to aid in mounting the stack of lenses to the windshield. The stack is affixed to the windshield in much the same way that tinted window plastic film is affixed to a window. The windshield is sprayed with water and the bottom adhesive layer with the stack is then applied to the windshield. Air bubbles and the like are eliminated with a squeegee appliance. The bottom layer becomes “wetted” to the windshield. The stack of removable lenses 100 can be applied to any type of optical window such as windshield, window, face shield, or a video display. It is common at an ATM terminal to have a video display for the customer. The surface of the display can be kept clear by using the present invention. herein in what is conceived to be the best mode contemplated, it is recognized that departures may be made therefrom within the scope of the invention which is therefore not to be limited to the details disclosed herein, but is to be afforded the full scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention pertains to the following areas of technology: Apparel—Guards and Protectors; for wearer's head and face; eye shields such as goggles having a lens-cover plate; and windshield covers. 2. Description of the Prior Art Face shields are employed in environments where contamination of the eyes may occur. It is well known in the art that flexible transparent lenses affixed by numerous methods are overlaid on the face shield for protection. The lenses are easily removed and discarded when visibility is reduced from the accumulation of dirt or other contaminants. In motor sports for instance, multiple layers of transparent lenses are overlaid on the face shield, each being sequentially removed as they become contaminated, because they reduce the visibility of the operator. The drawback of the lenses in the prior art is that each transparent lens applied over the face shield is itself a hindrance to good visibility due to its optical index of refraction. Most common materials used as plastics have optical indexes of refraction ranging from 1.47 to 1.498. The index mismatch between the removable lens and air (air has an optical index of 1.00) causes a reflection of 4% of the light that would normally come to the operator's eyes. This reflection effect is additive for each additional surface to air interface. Then for each removable lens having two surfaces, the reflections are 8%. Thus a stack of seven lenses would reflect 42% of the light away from the operator thereby reducing the brightness of the objects viewed. A second optical phenomenon occurs simultaneously that also reduces visibility. The reflections are bi-directional and thus make the lens stack appear as a semi-permeable mirror to the operator. This mirror effect further reduces visibility, because the light that passes through the lens stack reflects off of the operator's face and then reflects off of the lens stack into the operator's eyes. The effect to the operator is that he sees his own image on the inside of the stack nearly as brightly as the objects viewed on the outside. This significantly reduces visibility. Another drawback to this stacking arrangement is that moisture exhaled by the operator's breath can cloud or fog-up the lenses also reducing visibility. The air spaces between each lens allows the moisture to enter this area.
<SOH> SUMMARY OF THE INVENTION <EOH>An object of the present invention is to provide a series of easily removable optically clear lens stacks that do not cause reflection to the operator's eyes. The prior art discloses reflective lens stacks that do cause reflections to the operator's eyes. An example of this type of prior art of reflective lens stacks is disclosed in U.S. Pat. No. 5,592,698 issued on Jan. 14, 1997 to Woods. Refraction is the change in the direction in which waves travel when they pass from one kind of matter into another. Waves are refracted (bent) when they pass at an angle from one medium into another in which the velocity of light is different. The amount that a ray of a certain wavelength bends in passing from one medium to another is indicated by the index of refraction between the two mediums for that wavelength. The index of refraction indicates the amount that a light ray bends as it passes out of one substance and into another. When light passes from air to a denser substance, such as Mylar film, it slows down. If the light ray enters the Mylar film at any angle except a right angle, the slowing down causes the light ray to bend at the point of entry. This bending is called refraction. The ratio of the speed of light in air to its speed in the Mylar film is the Mylar film's index of refraction. The present invention includes a series of alternating optically clear films whose indexes of refraction are matched to within 0.2 and which will nearly eliminate all reflections to the operator's eyes. The layers of film are adhesively laminated to one another and are compliant so there is no air between the layers. The film layers can be large and generally rectangular in shape with a tab extending from each of the film layers. The tabs can be staggered so that the user can remove the top most layer and then the next succeeding layer. This embodiment of the present invention can be applied to race car windshields, windows, visors or direct view displays such as ATM machines that are subject to contaminating environments. Accordingly, the present invention is an adhesively laminated multi-layered clear film adapted to be used on a racer's face shield, or on the windshield of a race car to keep the viewing area clean during the course of a race.
20041027
20070227
20050421
64984.0
2
HARRINGTON, ALICIA M
OPTICAL STACK OF LAMINATED REMOVABLE LENSES FOR FACE SHIELDS, WINDOWS, AND DISPLAYS
SMALL
1
CONT-ACCEPTED
2,004
10,974,380
ACCEPTED
Electronic emissions control
A method of controlling emissions from an internal combustion engine including governing engine speed with respect to a constant speed, maintaining an air/fuel ratio of the engine, flowing exhaust from the engine through an exhaust system containing a catalyst, monitoring a variable with a feedback sensor located upstream of the catalyst, and controlling the air/fuel ratio of the engine as a function of the variable. In one application, the engine is configured for marine applications, including electric power generation and propulsion.
1. A method of controlling emissions from an internal combustion engine, the method comprising: governing engine speed with respect to a constant speed; maintaining an air/fuel ratio of the engine; flowing exhaust from the engine through an exhaust system containing a catalyst; monitoring a first variable with a feedback sensor located upstream of the catalyst; and controlling the air/fuel ratio of the engine as a function of the variable. 2. The method of claim 1 wherein the first variable is oxygen. 3. The method of claim 2 wherein the sensor is a narrow-band oxygen sensor. 4. The method of claim 1 further comprising monitoring a second variable with an exhaust sensor located downstream of the catalyst and providing a warning to an operator when the second variable reaches a threshold level. 5. The method of claim 4 wherein the second variable is carbon monoxide. 6. The method of claim 4 wherein the second variable is oxygen. 7. The method of claim 6 wherein the exhaust sensor is a wide-band oxygen sensor. 8. The method of claim 1 wherein the air/fuel ratio is stoichiometric. 9. The method of claim 1 wherein the air/fuel ratio is slightly lean. 10. The method of claim 1 further comprising controlling the air/fuel ratio with electronic fuel injection. 11. The method of claim 10 wherein the electronic fuel injection is throttle-body fuel injection. 12. The method of claim 10 wherein the electronic fuel injection is multi-point fuel injection. 13. The method of claim 12 wherein the electronic fuel injection is synchronized external fuel injection. 14. The method of claim 12 wherein the electronic fuel injection is nonsynchronized external fuel injection. 15. The method of claim 12 wherein the electronic fuel injection is direct fuel injection. 16. The method of claim 1 wherein the catalyst is configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons. 17. The method of claim 16 wherein the catalyst is configured to reduce carbon monoxide to between about 9 parts per million and between about 30 parts per million. 18. The method of claim 16 wherein the catalyst is configured to reduce carbon monoxide to ambient levels. 19. The method of claim 1 wherein the engine is configured for marine applications and the exhaust system further comprises a water-jacketed manifold. 20. The method of claim 19 wherein the engine is driving an electric generator. 21. The method of claim 20 wherein the generator is a multi-pole permanent magnet generator. 22. The method of claim 21 wherein the generator is configured to operate at variable speeds. 23. The method of claim 22 wherein the generator modulates between a high speed and a low speed having a 3 to 1 ratio. 24. The method of claim 22 wherein the generator modulates between a high speed and a low speed having a 2 to 1 ratio. 25. The method of claim 1 wherein the second variable is monitored with a MEMS device. 26. A method of controlling emissions from an internal combustion engine configured for marine application, the method comprising: driving an electric generator with the engine; governing engine speed with respect to a selected constant speed; maintaining an air/fuel ratio of the engine; flowing exhaust from the engine through an exhaust system containing a catalyst; monitoring a first variable with a feedback sensor located upstream of the catalyst, the catalyst being configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons; and controlling the air/fuel ratio of the engine as a function of the variable with electronic fuel injection. 27. The method of claim 26 further comprising monitoring a second variable downstream of the catalyst with an exhaust sensor downstream of the catalyst and providing a warning to an operator when the second variable reaches a threshold level. 28. The method of claim 27 wherein the second variable is carbon monoxide. 29. The method of claim 27 wherein the second variable is oxygen. 30. The method of claim 29 wherein the exhaust sensor is a wide-band oxygen sensor. 31. The method of claim 26 wherein the generator is a permanent magnet generator. 32. The method of claim 26 wherein the second variable is carbon monoxide. 33. The method of claim 26 wherein the second variable is oxygen. 34. The method of claim 26 wherein the air/fuel ratio is stoichiometric. 35. The method of claim 26 wherein the air/fuel ratio is slightly lean.
CLAIM OF PRIORITY This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/515,166, filed on Oct. 27, 2003, the entire contents of which are hereby incorporated by reference. TECHNICAL FIELD This invention relates to controlling emissions from internal combustion engines. BACKGROUND Reducing combustion engine exhaust emissions is a continual object of research and development, driven both by awareness of environmental effects and increased government regulation. Some of the most effective and cost-efficient emissions controls involve the use of downstream chemical catalysts that further oxygenate incompletely combusted compounds. Sometimes exhaust is directed sequentially through multiple catalyst beds. It is generally understood that higher catalyst temperatures provide more effective emissions control. Much exhaust catalysis development has been focused on developing catalytic converters for automotive applications, in which engine speed varies substantially with vehicle speed and gear selection. In several other applications, such as in powering fixed-frequency electrical generators, engine speed is held as constant as possible during use, even while generator and engine loads fluctuate. Some engine-generator sets are designed for installation on-board moving vehicles, either on land or in water. Marine generators are subjected to specific regulations, both for emissions and for safety concerns. For example, exposed engine surface temperatures (including exhaust system surface temperatures) must be kept low to avoid increased risk of fire hazard. Seawater is injected into many marine engine exhaust flows so as to cool exiting exhaust gases, and seawater is also frequently circulated through exhaust system components so as to maintain low surface temperatures. Further improvements in exhaust emissions controls for constant and variable speed engine applications are desired, particularly improvements suitable for marine use. SUMMARY Many aspects of the invention feature methods of controlling emissions from an internal combustion engine. In one aspect, the method includes governing engine speed with respect to a constant speed, maintaining an air/fuel ratio of the engine, flowing exhaust from the engine through an exhaust system containing a catalyst, monitoring a first variable with a feedback sensor located upstream of the catalyst, and controlling the air/fuel ratio of the engine as a function of the variable. In some cases the first variable is oxygen and/or the feedback sensor is a narrow-band oxygen sensor. In some cases, the first variable is monitored with a MEMS device. In some embodiment, the method further includes monitoring a second variable with an exhaust sensor located downstream of the catalyst. In some embodiments, the second variable is carbon monoxide. In some other embodiments, the second variable is oxygen and/or the exhaust sensor is a wide-band oxygen sensor. In a preferred embodiment, the air/fuel ratio is stoichiometric. In other embodiments, the air/fuel ratio is slightly lean. In some embodiments, the air/fuel ratio with is controlled with electronic fuel injection. In one embodiment, the electronic fuel injection is throttle-body fuel injection. In other embodiments, the electronic fuel injection is multi-point fuel injection. The the electronic fuel injection can be synchronized external fuel injection. Alternatively, the the electronic fuel injection can be nonsynchronized external fuel injection. In still other embodiments, the electronic fuel injection is direct fuel injection. In one embodiment, the catalyst is configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons. In some preferred embodiments, the catalyst is configured to reduce carbon monoxide to between about 9 parts per million and between about 30 parts per million. In one presently preferred embodiment, the catalyst is configured to reduce carbon monoxide to ambient levels. In one embodiment, the engine is configured for marine applications and the exhaust system further comprises a water-jacketed manifold. In some cases, the engine is driving an electric generator. In one application, the generator is a multi-pole permanent magnet generator. In some embodiments, the generator is configured to operate at variable speeds. In some embodiments, the generator modulates between a high speed and a low speed having a ratio of 3 to 1. In other embodiments, the generator modulates between a high speed and a low speed having a ratio of 2 to 1. In another aspect, the method includes driving an electric generator with the engine configured for marine applications, governing engine speed with respect to a selected constant speed, maintaining an air/fuel ratio of the engine, flowing exhaust from the engine through an exhaust system containing a catalyst, monitoring a first variable with a feedback sensor located upstream of the catalyst, the catalyst being configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons, and controlling the air/fuel ratio of the engine as a function of the variable with electronic fuel injection. In some embodiments, the method also includes monitoring a second variable downstream of the catalyst with an exhaust sensor downstream of the catalyst and providing a warning to an operator when the second variable reaches a threshold level. In some cases, the second variable is carbon monoxide. In other applications, the second variable is oxygen. In some embodiments, the exhaust sensor is a wide-band oxygen sensor. In some embodiments, the generator is a permanent magnet generator. In some cases, the second variable is carbon monoxide. The other cases, the second variable is oxygen. In a preferred embodiment, the air/fuel ratio is stoichiometric. In other embodiments, the air/fuel ratio is slightly lean. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims. DESCRIPTION OF DRAWINGS FIG. 1 is a perspective view of a marine engine-generator set. FIG. 2 is a schematic cross-section illustrating flow through the exhaust manifold and elbow of the engine-generator set of FIG. 1. FIG. 3 illustrates an alternative second exhaust manifold construction and catalyst arrangement. FIG. 4 is a perspective view of an engine exhaust manifold. FIG. 5 is a partial cross-sectional view of the manifold of FIG. 4. FIG. 6 shows a schematic view of a marine exhaust system according to the invention. FIG. 7 is a detail view of a float valve and water level indicator contained within the marine exhaust system. Like reference symbols in the various drawings indicate like elements. DETAILED DESCRIPTION Referring first to FIG. 1, an engine-generator set 10 includes an internal combustion engine 12 driving an electrical generator 14. Engine 10 has an exhaust manifold 16 that receives and combines exhaust gasses from each cylinder of the engine and directs the combined exhaust gasses through a catalyst contained within the manifold, as is discussed in more detail below. Secured to the outlet of the manifold 16 is an exhaust elbow 18. In a marine application, water, such as cold seawater, is supplied to manifold 16 through hose 30. The water is directed through cooling passages in manifold 16 and elbow 18 to keep the outer surfaces of the exhaust system at or below a desired temperature, and is then injected into the exhaust stream in elbow 18, downstream of the catalysts, to cool the exhaust. In one embodiment, a variable is monitored with a feedback sensor 19 located upstream of the catalyst which provides a control signal to electronic controller 24. In one embodiment, controller 24 provides controls the air fuel ratio of the engine 12 to correspond to a 1.0 stoichiometric ratio. In other embodiments, the air fuel ratio of the engine 12 is slightly lean. In one embodiment, the variable monitored by the feedback sensor 19 is oxygen and the feedback sensor 19 is a narrow-band oxygen sensor. In one embodiment, an exhaust sensor 23 is mounted downstream of the catalyst. In one embodiment, the exhaust sensor 23 measures oxygen as a proxy for indirectly determining the level of carbon monoxide. In this application, a wide-band oxygen sensor can be used. In other applications, the exhaust sensor 23 directly measures carbon monoxide. The signal output from the exhaust sensor 23 can provide an anticipatory alarm apprising an operator when the catalyst 32 is functioning with reduced effectiveness. Accordingly, the exhaust sensor can inform the operator if the catalyst 32 has been damaged by seawater and requires replacement. The exhaust sensor 23 can be a MEMS device in some embodiments. With continued reference to FIG. 1 and in an alternative embodiment, air is delivered to manifold 16, through a controllable dump valve 20, from belt-driven air pump 22. A fixed speed, electric air pump may also be employed. Valve 20 is controlled by an electronic controller 24 to moderate the flow of air into manifold 16 as a function of the load placed on engine 12, such as by controllably dividing the output of the air pump between manifold 16 and exhaust elbow 18. Controller 24 varies a signal to valve 20 as a function of engine load, or as a function of a sensible parameter that changes with engine load. In the illustrated embodiment, controller 24 senses an output voltage and/or current of generator 14, such as at generator output 26, and controls valve 20 accordingly. Controller 24 also senses engine speed, such as by receiving a signal from flywheel magnetic reluctance sensor 28, and controls engine inputs (such as fuel and/or air flow) to maintain engine speed at or near a desired set point, so as to maintain the frequency of generator 14. As an alternative to controlling a dump valve 20 splitting pump air flow between manifold 16 and either atmosphere or a lower point in the exhaust stream, a variable speed electric air pump 22a is employed in some instances, with controller 24 varying the operating speed of pump 22a as a function of engine load. In such cases, the entire output of pump 22a is preferably ported directly to manifold 16. Referring to now FIG. 2, a cylindrical catalyst 32 containing a catalyst bed is shown disposed within the exhaust manifold 16. The catalyst 32 is wrapped in an insulating blanket 96, such as a {fraction (1/8)} inch (3.2 millimeter) thick sheet of cotton binding containing mica, for example, that helps reduce heat transfer from the catalyst into the housing and also helps to isolate the delicate catalyst bed from shocks and vibrations. In one embodiment, controlled air flow is injected either just forward of the catalyst at port 38a, or at the far end of the manifold at port 38b so as to preheat the injected air flow. Single catalyst 32 may be of any preferred composition, such as a palladium-platinum catalyst, for example. In other embodiments, no air flow injection is required. With continued reference to FIG. 2 and in one embodiment, catalyst 32 is configured and dimensioned for fitting within a marine exhaust manifold 16. In one presently preferred embodiment, the catalyst 32 has a diameter of 3.66 inch (9.30 cm) and a length of 6.0 inch (15.24 cm). The catalyst 32 can include a round ceramic having a diameter of 3.0 inch (7.62 cm) and a length of 6.0 inch (15.24 cm) and a 400-cells per inch with 95-grams per cubic foot of a 3-to-1 ratio of platinum to rhodium. The catalyst 32 can also include a specialized wash coat designed to be the most effective at a 1.0 stoichiometric air fuel ratio. The catalyst 32 is configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons. In one preferred embodiment, the catalyst 32 is configured to reduce carbon monoxides levels to below 50 part per million, preferably to below 35 parts per million, and most preferably to below ambient levels, i.e., 9 part per million. Other catalyst configuration are contemplated within the exhaust manifold 16. For example as illustrated in FIG. 3, the catalyst 32 in an alternative embodiment can include a first catalyst 33 and second catalyst 36 contained within a second bore of the manifold, parallel to and offset from the first bore. The manifold can be equipped with a removable cover 44 through which the air is injected, enabling loading of both of the catalysts into their respective bores. As in the first illustrated embodiment, after flowing through both catalyst beds the exhaust flow is combined with cooling water in elbow 18a. The exhaust is combined and directed through a first catalyst bed 32, through a space 34, and then through a second catalyst bed 36. The air is injected into the manifold in space 34, through air inlet 38. Cooling water flows around both catalyst beds, through appropriate channels cast into manifold 16a and elbow 18, and is then injected into the exhaust flow. In marine applications where the cooling seawater can have a high salt content, the water injection outlets 40 in elbow 18 are preferably at least about six inches (15 centimeters) below the lowest edge of the catalysts or the upper edge of any internal elbow baffles 42 positioned to avoid salt water splash on the hot catalysts. Also, it is preferred that for such marine applications manifold 16a and elbow 18 be cast of a corrosion-resistant material, such as an aluminum-magnesium alloy. It will be apparent from FIG. 2 that the connection between manifold 16a and elbow 18 can be readily positioned between the two catalyst beds, such that second catalyst 36 is carried within elbow 18. The construction of the catalyst 32 according to this embodiment can include a first catalyst bed 33 which preferably includes a catalyst such as one containing rhodium as the precious metal, selected to reduce hydrocarbon and NOx emissions. For example, one preferred catalyst bed is in the form of a cylinder 3.0 inches (76 millimeters) in diameter and 2.6 inches (6.7 centimeters) long. The ceramic substrate has a cross-sectional area of about 7 square inches (45 square centimeters) and has about 400 cells per square inch (62 per square centimeter), and is washed with 6.1 grams per cubic foot (0.06 grams per cubic centimeter) of rhodium. Such a catalyst bed is available from ASEC/Delphi Exhaust and Engine Management of Flint, Mich. Catalysis efficiency within first catalysis bed 33 may be accomplished by various methods known in the art, either in carbureted or fuel-injected systems with oxygen sensors, to remove as much of the overall emissions components as possible. The second catalyst bed 36 contains a catalyst selected to further reduce CO emissions. In one arrangement, second catalyst bed 36 contains a three to one ratio of palladium and platinum, carried on a honey-combed substrate of ceramic or metal. The active precious metals are washed onto the substrate and then heated to set the metals onto the surface as known in the art. An example of a preferred second catalyst bed is a metal substrate in the form of a cylinder of 5.0 inch (12.7 centimeter) diameter and 6.3 inch (16 centimeter) length, with 19.6 square inches (126 square centimeters) of cross-sectional area, washed with 40 grams per cubic foot (0.4 grams per cubic centimeter) each of palladium and platinum. Such a catalyst is available from Miratech of Tulsa, Okla., for example. Second catalyst 36 will tend to run hotter, such as perhaps about 400 degrees Fahrenheit (220 degrees Celsius) hotter than the rhodium catalyst. Preferably, the temperature of the combined air and exhaust entering the second catalyst is about 1000 degrees Fahrenheit (540 degrees Celsius). FIGS. 4 and 5 show another example of a catalyst exhaust manifold 16b. The catalyst 32 is loaded as a cylinder from the large end of the manifold, with the NOx catalyst loaded into bore 46 (FIG. 5) and the CO catalyst loaded into bore 48 (FIG. 5). In this example, coolant enters the manifold at inlet 50 and leaves the manifold at outlet 52, without joining the exhaust stream. The cooling channels 54 cast into the manifold are partially shown in FIG. 5, providing a closed flow path between inlet 50 and outlet 52. Various control techniques may be employed to vary air injection rate for good CO reduction. In one embodiment, the air injection rate is varied as a function of approximate engine load. In one test using a Westerbeke 4-cylinder, 1.5 liter gasoline engine and the palladium-platinum second catalyst bed described above, the lowest CO emissions were provided by varying the rate of air flow into the manifold ahead of the second catalyst (at 100 liter per minute graduations) according to the following table: Engine Load (Percent Full Load) Air Flow Rate (liters per minute) 100 500 75 500 50 500 25 400 10 300 0 300 Of course, optimal air flow rates will be different for different applications. The air flow controller can be configured to interpolate between adjacent entries in the load-air correlation table to provide finer control sensitivity. There are various ways to determine approximate engine load, such that a table like that shown above can be used to determine an optimal air injection rate. For example, if substantially all of the engine load is provided by an electrical generator (as shown in FIG. 1), monitoring the electrical output of the generator can provide a good estimate of engine load. Current can be monitored as a most direct measure of electrical load, such as by providing a current transformer about the output of the generator. In some cases in which generator voltage is known to predictably decrease a measurable amount with load, voltage may alternately be monitored. In most cases, however, current monitoring is preferred for systems with proper generator voltage regulation. Other options include measuring engine output driveshaft torque (or some measurable parameter that varies predictably with torque), or measuring the pressure within the manifold, such as upstream of the catalyst beds, or exhaust backpressure below the catalysts and above a muffler or other exhaust restriction. Because the engine speed is substantially fixed in the primary embodiments, other parameters may also be found to vary predictably with engine load, such as throttle position and fuel flow rate, for example. As an alternative to controlling the air injection rate as a function of load, the air injection rate can be controlled as a function of other measured parameters that signify catalysis efficiency. For example, a CO sensor may be provided downstream of the catalyst as described above. With renewed reference to FIG. 2 an in one embodiment, an exhaust pressure sensor 62 can be placed in the manifold 16, to measure exhaust manifold pressure, or downstream of the catalyst 32 to measure exhaust backpressure developed upstream of a muffler or other exhaust restriction (not shown). If the air pump delivering air to inlet 38 is not a fixed displacement pump, changes in exhaust backpressure with engine load can cause a significant fluctuation in the injected air rate. This fluctuation will tend to work against the desired variation of air flow rate with engine load, as backpressure, which rises with engine load, will cause a reduction in air injection rate that should be accounted for in the control of the pump or valve. It will be understood that sensors 62 are shown in optional and alternative locations, and are not necessary in some embodiments, such as when air flow rate is controlled as a function of generator current or some other primary control parameter. Referring now to FIG. 6, an exhaust system 60 for the engine 12 mounted in a boat 67 is shown. The exhaust manifold 16 directs exhaust gases through the catalyst 32 and exhaust elbow 18 and past a water injected exhaust elbow 65. To reduce the operating temperature of the exhaust components, cooling seawater is injected at the inlet to the exhaust elbow 70. The exhaust gases and cooling water then pass through an exhaust valve and water level indicator 75 (discussed in more detail below). The exhaust gasses and cooling water enter a water lift marine muffler 80 before proceeding to a high point at the U-bend 85 and out of the boat through the through-hull fitting 90 above the water line 97. In one embodiment, the muffler 80 includes a drain 97. In marine applications, it is desirable to prevent cooling seawater from contacting the catalyst 32 disposed within the exhaust manifold 16. It is also desirable to prevent cooling seawater from reaching the engine 12, which can results in catastrophic failure. Referring to FIG. 7, an exhaust valve and water level indicator 75 are shown and disposed within the marine exhaust manifold 16 between the water injected exhaust elbow 65 and the water lift muffler 80 (FIG. 6). The valve/indicator 75 can include a float valve 105, such as a ball valve and a water level indicator 110 combined in a housing 115. The ball valve 105 translates along the housing 115 between ball valve guides 120a, 120b and is supported by ball valve supports 130a, 130b when the ball valve is disposed in an open position 135 (shown in phantom). When the ball valve 105 ascends upward to the closed position (as shown) the surface of the ball valve 105 contacts the housing 115 along valve sealing areas 140a, 140b thereby closing the valve. The rising water level within the housing 115 floats the water level indicator 110 upward to an alarm level which provides a signal 145 to warn an operator that the muffler 80 is overfilled. A number of embodiments of the invention have been described. For example, the engine 12 as described above can be used for propulsion in marine applications. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
<SOH> BACKGROUND <EOH>Reducing combustion engine exhaust emissions is a continual object of research and development, driven both by awareness of environmental effects and increased government regulation. Some of the most effective and cost-efficient emissions controls involve the use of downstream chemical catalysts that further oxygenate incompletely combusted compounds. Sometimes exhaust is directed sequentially through multiple catalyst beds. It is generally understood that higher catalyst temperatures provide more effective emissions control. Much exhaust catalysis development has been focused on developing catalytic converters for automotive applications, in which engine speed varies substantially with vehicle speed and gear selection. In several other applications, such as in powering fixed-frequency electrical generators, engine speed is held as constant as possible during use, even while generator and engine loads fluctuate. Some engine-generator sets are designed for installation on-board moving vehicles, either on land or in water. Marine generators are subjected to specific regulations, both for emissions and for safety concerns. For example, exposed engine surface temperatures (including exhaust system surface temperatures) must be kept low to avoid increased risk of fire hazard. Seawater is injected into many marine engine exhaust flows so as to cool exiting exhaust gases, and seawater is also frequently circulated through exhaust system components so as to maintain low surface temperatures. Further improvements in exhaust emissions controls for constant and variable speed engine applications are desired, particularly improvements suitable for marine use.
<SOH> SUMMARY <EOH>Many aspects of the invention feature methods of controlling emissions from an internal combustion engine. In one aspect, the method includes governing engine speed with respect to a constant speed, maintaining an air/fuel ratio of the engine, flowing exhaust from the engine through an exhaust system containing a catalyst, monitoring a first variable with a feedback sensor located upstream of the catalyst, and controlling the air/fuel ratio of the engine as a function of the variable. In some cases the first variable is oxygen and/or the feedback sensor is a narrow-band oxygen sensor. In some cases, the first variable is monitored with a MEMS device. In some embodiment, the method further includes monitoring a second variable with an exhaust sensor located downstream of the catalyst. In some embodiments, the second variable is carbon monoxide. In some other embodiments, the second variable is oxygen and/or the exhaust sensor is a wide-band oxygen sensor. In a preferred embodiment, the air/fuel ratio is stoichiometric. In other embodiments, the air/fuel ratio is slightly lean. In some embodiments, the air/fuel ratio with is controlled with electronic fuel injection. In one embodiment, the electronic fuel injection is throttle-body fuel injection. In other embodiments, the electronic fuel injection is multi-point fuel injection. The the electronic fuel injection can be synchronized external fuel injection. Alternatively, the the electronic fuel injection can be nonsynchronized external fuel injection. In still other embodiments, the electronic fuel injection is direct fuel injection. In one embodiment, the catalyst is configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons. In some preferred embodiments, the catalyst is configured to reduce carbon monoxide to between about 9 parts per million and between about 30 parts per million. In one presently preferred embodiment, the catalyst is configured to reduce carbon monoxide to ambient levels. In one embodiment, the engine is configured for marine applications and the exhaust system further comprises a water-jacketed manifold. In some cases, the engine is driving an electric generator. In one application, the generator is a multi-pole permanent magnet generator. In some embodiments, the generator is configured to operate at variable speeds. In some embodiments, the generator modulates between a high speed and a low speed having a ratio of 3 to 1. In other embodiments, the generator modulates between a high speed and a low speed having a ratio of 2 to 1. In another aspect, the method includes driving an electric generator with the engine configured for marine applications, governing engine speed with respect to a selected constant speed, maintaining an air/fuel ratio of the engine, flowing exhaust from the engine through an exhaust system containing a catalyst, monitoring a first variable with a feedback sensor located upstream of the catalyst, the catalyst being configured to simultaneously reduce oxides of nitrogen, carbon monoxide and hydrocarbons, and controlling the air/fuel ratio of the engine as a function of the variable with electronic fuel injection. In some embodiments, the method also includes monitoring a second variable downstream of the catalyst with an exhaust sensor downstream of the catalyst and providing a warning to an operator when the second variable reaches a threshold level. In some cases, the second variable is carbon monoxide. In other applications, the second variable is oxygen. In some embodiments, the exhaust sensor is a wide-band oxygen sensor. In some embodiments, the generator is a permanent magnet generator. In some cases, the second variable is carbon monoxide. The other cases, the second variable is oxygen. In a preferred embodiment, the air/fuel ratio is stoichiometric. In other embodiments, the air/fuel ratio is slightly lean. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
20041027
20101116
20050609
67255.0
1
TRAN, DIEM T
ELECTRONIC EMISSIONS CONTROL
SMALL
0
ACCEPTED
2,004
10,974,591
ACCEPTED
Anti-VEGF antibodies
Humanized and variant anti-VEGF antibodies and various uses therefor are disclosed. The anti-VEGF antibodies have strong binding affinities for VEGF; inhibit VEGF-induced proliferation of endothelial cells in vitro; and inhibit tumor growth in vivo.
1. A humanized anti-VEGF antibody which binds human VEGF with a KD value of no more than about 1×10−8M. 2. A humanized anti-VEGF antibody which binds human VEGF with a Kd value of no more than about 5×10−9M. 3. A humanized anti-VEGF antibody which has an ED50 value of no more than about 5 nM for inhibiting VEGF-induced proliferation of endothelial cells in vitro. 4. A humanized anti-VEGF antibody which inhibits VEGF-induced angiogenesis in vivo. 5. The humanized anti-VEGF antibody of claim 4 wherein 5 mg/kg of the antibody inhibits at least about 50% of tumor growth in an A673 in vivo tumor model. 6. The humanized anti-VEGF antibody of claim 1 having a heavy chain variable domain comprising the following hypervariable region amino acid sequences: CDRH1 (GYX1FTX2YGMN, wherein X1 is T or D and X2 is N or H; SEQ ID NO:128), CDRH2 (WINTYTGEPTYMDFKR; SEQ ID NO:2) and CDRH3 (YPX1YYGX2SHWYFDV, wherein X1 is Y or H and X2 is S or T; SEQ ID NO:129). 7. The humanized anti-VEGF antibody of claim 6 comprising the amino acid sequence of SEQ ID NO:7. 8. The humanized anti-VEGF antibody of claim 6 having a heavy chain variable domain comprising the following hypervariable region amino acid sequences: CDRH1 (GYTFTNYGMN; SEQ ID NO:1), CDRH2 (WINTYTGEPTYAADFKR; SEQ ID NO:2) and CDRH3 (YPHYYGSSHWYFDV; SEQ ID NO:3). 9. The humanized anti-VEGF antibody of claim 1 having a light chain variable domain comprising the following hypervariable region amino acid sequences: CDRL1 (SASQDISNYLN; SEQ ID NO:4), CDRL2 (FTSSLHS; SEQ ID NO:5) and CDRL3 (QQYSTVPWT; SEQ ID NO:6). 10. The humanized anti-VEGF antibody of claim 9 comprising the amino acid sequence of SEQ ID NO:8. 11. The humanized anti-VEGF antibody of claim 1 having a heavy chain variable domain comprising the amino acid sequence of SEQ ID NO:7 and a light chain variable domain comprising the amino acid sequence of SEQ ID NO:8. 12. An anti-VEGF antibody light chain variable domain comprising the amino acid sequence: DIQX1TQSPSSLSASVGDRVTITCSASQDISNYLNWYQQ KPGKAPKVLIYFTSSLHSGVPSRFS GSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQGTKVEIKR (SEQ ID NO:124), wherein X1 is M or L. 13. An anti-VEGF antibody heavy chain variable domain comprising the amino acid sequence: EVQLVESGGGLVQPGGSLRLSCAASGYX1FTX2YGM NWVRQAPGKGLEWVGWINTYTGEPT YAADFKRRFTFSLDTSKSTAYLQMNSLRAEDTAVYYCAKYPX3YYGX4SHWYFDVWGQGTLV TVSS (SEQ ID NO:125), wherein X1 is T or D; X2 is N or H; X3 is Y or H and X4 is S or T. 14. A variant of a parent anti-VEGF antibody, wherein said variant binds human VEGF and comprises an amino acid substitution in a hypervariable region of a heavy chain variable domain of said parent antibody. 15. The variant of claim 14 wherein said parent antibody is a human or humanized antibody. 16. The variant of claim 14 which binds human VEGF with a Kd value of no more than about 1×10−8M. 17. The variant of claim 14 which binds human VEGF with a Kd value of no more than about 5×10−9M. 18. The variant of claim 14 wherein the substitution is in CDRH1 of the heavy chain variable domain. 19. The variant of claim 14 wherein the substitution is in CDRH3 of the heavy chain variable domain. 20. The variant of claim 14 which has amino acid substitutions in both CDRH1 and CDRH3. 21. The variant of claim 14. which binds human VEGF with a Kd value less than that of said parent antibody. 22. The variant of claim 14 which has an ED50 value for inhibiting VEGF-induced proliferation of endothelial cells in vitro which is at least about 10 fold lower than that of said parent antibody. 23. The variant of claim 18 wherein the CDRH1 comprises the amino acid sequence: GYDFTHYGMN (SEQ ID NO:126) 24. The variant of claim 19 wherein the CDRH3 comprises the amino acid sequence: YPYYYGTSHWYFDV (SEQ ID NO:127). 25. The variant of claim 14 wherein the heavy chain variable domain comprises the amino acid sequence of SEQ ID NO:116. 26. The variant of claim 25 further comprising the light chain variable domain amino acid sequence of SEQ ID NO:124. 27. The variant of claim 26 comprising the light chain variable domain amino acid sequence of SEQ ID NO:115. 28. The humanized anti-VEGF antibody of claim 1 which is a full length antibody. 29. The humanized anti-VEGF antibody of claim 28 which is a human IgG. 30. The humanized anti-VEGF antibody of claim 1 which is an antibody fragment. 31. The antibody fragment of claim 30 which is a Fab. 32. A composition comprising the humanized anti-VEGF antibody of claim 1 and a pharmaceutically acceptable carrier. 33. A composition comprising the variant anti-VEGF antibody of claim 14 and a pharmaceutically acceptable carrier. 34. Isolated nucleic acid encoding the antibody of claim 1. 35. A vector comprising the nucleic acid of claim 34. 36. A host cell comprising the vector of claim 35. 37. A process of producing a humanized anti-VEGF antibody comprising culturing the host cell of claim 36 so that the nucleic acid is expressed. 38. The process of claim 37 further comprising recovering the humanized anti-VEGF antibody from the host cell culture. 39. A method for inhibiting VEGF-induced angiogenesis in a mammal comprising administering a therapeutically effective amount of the humanized anti-VEGF antibody of claim 1 to the mammal. 40. The method of claim 39 wherein the mammal is a human. 41. The method of claim 39 wherein the mammal has a tumor. 42. The method of claim 39 wherein the mammal has a retinal disorder.
CROSS REFERENCES This application is a continuation-in-part of co-pending U.S. application Ser. No. 08/833,504, filed Apr. 7, 1997, which application is incorporated herein by reference and to which application priority is claimed under 35 USC §120. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to anti-VEGF antibodies and, in particular, to humanized anti-VEGF antibodies and variant anti-VEGF antibodies. 2. Description of Related Art It is now well established that angiogenesis is implicated in the pathogenesis of a variety of disorders. These include solid tumors, intraocular neovascular syndromes such as proliferative retinopathies or age-related macular degeneration (AMD), rheumatoid arthritis, and psoriasis (Folkman et al. J. Biol. Chem. 267:10931-10934 (1992); Klagsbrun et al. Annu. Rev. Physiol. 53:217-239 (1991); and Garner A, Vascular diseases. In: Pathobiology of ocular disease. A dynamic approach. Garner A, Klintworth G K, Eds. 2nd Edition Marcel Dekker, New York, pp 1625-1710 (1994)). In the case of solid tumors, the neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to the normal cells. Accordingly, a correlation has been observed between density of microvessels in tumor sections and patient survival in breast cancer as well as in several other tumors (Weidner et al. N Engl J Med 324:1-6 (1991); Horak et al. Lancet 340:1120-1124 (1992); and Macchiarini et al. Lancet 340:145-146 (1992)). The search for positive regulators of angiogenesis has yielded many candidates, including aFGF, bFGF, TGF-α, TGF-β, HGF, TNF-α, angiogenin, IL-8, etc. (Folkman et al. and Klagsbrun et al). The negative regulators so far identified include thrombospondin (Good et al. Proc. Natl. Acad. Sci. USA. 87:6624-6628 (1990)), the 16-kilodalton N-terminal fragment of prolactin (Clapp et al. Endocrinology, 133:1292-1299 (1993)), angiostatin (O'Reilly et al. Cell, 79:315-328 (1994)) and endostatin (O'Reilly et al. Cell, 88:277-285 (1996)). Work done over the last several years has established the key role of vascular endothelial growth factor (VEGF) in the regulation of normal and abnormal angiogenesis (Ferrara et al. Endocr. Rev. 18:4-25 (1997)). The finding that the loss of even a single VEGF allele results in embryonic lethality points to an irreplaceable role played by this factor in the development and differentiation of the vascular system (Ferrara et al.). Furthermore, VEGF has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders (Ferrara et al.). The VEGF mRNA is overexpressed by the majority of human tumors examined (Berkman et al. J Clin Invest 91:153-159 (1993); Brown et al. Human Pathol. 26:86-91 (1995); Brown et al. Cancer Res. 53:4727-4735 (1993); Mattern et al. Brit. J. Cancer. 73:931-934 (1996); and Dvorak et al. Am J. Pathol. 146:1029-1039 (1995)). Also, the concentration of VEGF in eye fluids are highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies (Aiello et al. N. Engl. J. Med. 331:1480-1487 (1994)). Furthermore, recent studies have demonstrated the localization of VEGF in choroidal neovascular membranes in patients affected by AMD (Lopez et al. Invest. Ophtalmo. Vis. Sci. 37:855-868 (1996)). Anti-VEGF neutralizing antibodies suppress the growth of a variety of human tumor cell lines in nude mice (Kim et al. Nature 362:841-844 (1993); Warren et al. J. Clin. Invest. 95:1789-1797 (1995); Borgström et al. Cancer Res. 56:4032-4039 (1996); and Melnyk et al. Cancer Res. 56:921-924 (1996)) and also inhibit intraocular angiogenesis in models of ischemic retinal disorders (Adamis et al. Arch. Ophthalmol. 114:66-71 (1996)). Therefore, anti-VEGF monoclonal antibodies or other inhibitors of VEGF action are promising candidates for the treatment of solid tumors and various intraocular neovascular disorders. SUMMARY OF THE INVENTION This application describes humanized anti-VEGF antibodies and anti-VEGF antibody variants with desirable properties from a therapeutic perspective, including strong binding affinity for VEGF; the ability to inhibit VEGF-induced proliferation of endothelial cells in vitro; and the ability to inhibit VEGF-induced angiogenesis in vivo. The preferred humanized anti-VEGF antibody or variant anti-VEGF antibody herein binds human VEGF with a Kd value of no more than about 1×10−8M and preferably no more than about 5×10−9M. In addition, the humanized or variant anti-VEGF antibody may have an ED50 value of no morethan about 5 nM for inhibiting VEGF-induced proliferation of endothelial cells in vitro. The humanized or variant anti-VEGF antibodies of particular interest herein are those which inhibit at least about 50% of tumor growth in an A673 in vivo tumor model, at an antibody dose of 5 mg/kg. In one embodiment, the anti-VEGF antibody has a heavy and light chain variable domain, wherein the heavy chain variable domain comprises hypervariable regions with the following amino acid sequences: CDRH1 (GYX1FTX2YGMN, wherein X1 is T or D and X2 is N or H; SEQ ID NO:128), CDRH2 (WINTYTGEPTYAADFKR; SEQ ID NO:2) and CDRH3 (YPX1YYGX2SHWYFDV, wherein X1 is Y or H and X2 is S or T; SEQ ID NO:129). For example, the heavy chain variable domain may comprise the amino acid sequences of CDRH1 (GYTFTNYGMN; SEQ ID NO:1), CDRH2 (WINTYTGEPTYAADFKR;SEQ ID NO:2) and CDRH3 (YPHYYGSSHWYFDV; SEQ ID NO:3). Preferably, the three heavy chain hypervariable regions are provided in a human framework region, e.g., as a contiguous sequence represented by the following formula: FR1-CDRH1-FR2-CDRH2-FR3-CDRH3-FR4. The invention further provides an anti-VEGF antibody heavy chain variable domain comprising the amino acid sequence: EVQLVESGGGLVQPGGSLRLSCAASGYX1FTX2YGMNWVRQAPGKGLEWVGWINTYTGEPT YAADFKRRFTFSLDTSK STAYLQMNSLRAEDTAVYYCAKYPX3YYGX4SHWYFDVWGQGTLV TVSS (SEQ ID NO:125), wherein X1 is T or D; X2 is N or H; X3 is Y or H and X4 is S or T. One particularly useful heavy chain variable domain sequence is that of the F(ab)-12 humanized antibody of Example 1 and comprises the heavy chain variable domain sequence of SEQ ID NO:7. Such preferred heavy chain variable domain sequences may be combined with the following preferred light chain variable domain sequences or with other light chain variable domain sequences, provided that the antibody so produced binds human VEGF. The invention also provides preferred light chain variable domain sequences which may be combined with the above-identified heavy chain variable domain sequences or with other heavy chain variable domain sequences, provided that the antibody so produced retains the ability to bind to human VEGF. For example, the light chain variable domain may comprise hypervariable regions with the following amino acid sequences: CDRL1 (SASQDISNYLN; SEQ ID NO:4), CDRL2 (FTSSLHS; SEQ ID NO:5) and CDRL3 (QQYSTVPWT; SEQ ID NO:6). Preferably, the three light chain hypervariable regions are provided in a human framework region, e.g., as a contiguous sequence represented by the following formula: FR1-CDRL1-FR2-CDRL2-FR3-CDRL3-FR4. In one embodiment, the invention provides a humanized anti-VEGF antibody light chain variable domain comprising the amino acid sequence: DIQX1TQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFS GSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQGTKVEIKR (SEQ ID NO:124), wherein X1 is M or L. One particularly useful light chain variable domain sequence is that of the F(ab)-12 humanized antibody of Example 1 and comprises the light chain variable domain sequence of SEQ ID NO:8. The invention also provides a variant of a parent anti-VEGF antibody (which parent antibody is preferably a humanized or human anti-VEGF antibody), wherein the variant binds human VEGF and comprises an amino acid substitution in a hypervariable region of the heavy or light chain variable domain of the parent anti-VEGF antibody. The variant preferably has one or more substitution(s) in one or more hypervariable region(s) of the anti-VEGF antibody. Preferably, the substitution(s) are in the heavy chain variable domain of the parent antibody. For example, the amino acid subsition(s) may be in the CDRH1 and/or CDRH3 of the heavy chain variable domain. Preferably, there are substitutions in both these hypervariable regions. Such “affinity matured” variants are demonstrated herein to bind human VEGF more strongly than the parent anti-VEGF antibody from which they are generated, i.e., they have a Kd value which is significantly less than that of the parent anti-VEGF antibody. Preferably, the variant has an ED50 value for inhibiting VEGF-induced proliferation of endothelial cells in vitro which is at least about 10 fold lower, preferably at least about 20 fold lower, and most preferably at least about 50 fold lower, than that of the parent anti-VEGF antibody. One particularly prefered variant is the Y0317 variant of Example 3, which has a CDRH1 comprising the amino acid sequence:GYDFTHYGMN (SEQ ID NO:126) and a CDRH3 comprising the amino acid sequence:YPYYYGTSHWYFDV (SEQ ID NO:127). These hypervariable regions and CDRH2 are generally provided in a human framework region, e.g., resulting in a heavy chain variable domain comprising the amino acid sequence of SEQ ID NO:116. Such heavy chain variable domain sequences are optionally combined with a light chain variable domain comprising the amino acid sequence of SEQ ID NO:124, and preferably the light chain variable domain amino acid sequence of SEQ ID NO:115. Various forms of the antibody are contemplated herein. For example, the anti-VEGF antibody may be a full length antibody (e.g. having an intact human Fc region) or an antibody fragment (e.g. a Fab, Fab′ or F(ab′)2). Furthermore, the antibody may be labeled with a detectable label, immobilized on a solid phase and/or conjugated with a heterologous compound (such as a cytotoxic agent). Diagnostic and therapeutic uses for the antibody are contemplated. In one diagnostic application, the invention provides a method for determining the presence of VEGF protein comprising exposing a sample suspected of containing the VEGF protein to the anti-VEGF antibody and determining binding of the antibody to the sample. For this use, the invention provides a kit comprising the antibody and instructions for using the antibody to detect the VEGF protein. The invention further provides: isolated nucleic acid encoding the antibody; a vector comprising that nucleic acid, optionally operably linked to control sequences recognized by a host cell transformed with the vector; a host cell comprising that vector; a process for producing the antibody comprising culturing the host cell so that the nucleic acid is expressed and, optionally, recovering the antibody from the host cell culture (e.g. from the host cell culture medium). The invention also provides a composition comprising the anti-VEGF antibody and a pharmaceutically acceptable carrier or diluent. The composition for therapeutic use is sterile and may be lyophilized. The invention further provides a method for treating a mammal suffering from a tumor or retinal disorder, comprising administering a therapeutically effective amount of the anti-VEGF antibody to the mammal. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B depict the amino acid sequences of variable heavy domain (SEQ ID NO:9) and light domain (SEQ ID NO:10) of muMAbVEGFA.4.6.1, variable heavy domain (SEQ ID NO:7) and light domain (SEQ ID NO:8) of humanized F(ab) (F(ab)-12) and human consensus frameworks (hum III for heavy subgroup III (SEQ ID NO:11); humκ1 for light κ subgroup I (SEQ ID NO:12)). FIG. 1A aligns variable heavy domain sequences and FIG. 1B aligns variable light domain sequences. Asterisks indicate dfferences between humanized F(ab)-12 and the murine MAb or between F(ab)-12 and the human framework. Complementarity Determining Regions (CDRs) are underlined. FIG. 2 is a ribbon diagram of the model of humanized F(ab)-12 VL and VH domains. VL domain is shown in brown with CDRs in tan. The sidechain of residue L46 is shown in yellow. VH domain is shown in purple with CDRs in pink. Sidechains of VH residues changed from human to murine are shown in yellow. FIG. 3 depicts inhibition of VEGF-induced mitogenesis by humanized anti-VEGF F(ab)-12 from Example 1. Bovine adrenal cortex-derived capillary endothelial cells were seeded at the density of 6×103 cells/well in six well plates, as described in Example 1. Either muMAb VEGF A.4.6.1 or rhuMAb VEGF (IgG1; F(ab)-12) was added at the indicated concentrations. After 2-3 hours, rhVEGF165 was added at the final concentration of 3 ng/ml. After five or six days, cells were trypsinized and counted. Values shown are means of duplicate determinations. The variation from the mean did not exceed 10%. FIG. 4 shows inhibition of tumor growth in vivo by humanized anti-VEGF F(ab)-12 from Example 1. A673 rhabdomyosarcoma cells were injected in BALB/c nude mice at the density of 2×106 per mouse. Starting 24 hours after tumor cell inoculation, animals were injected with a control MAb, muMAb VEGF A4.6.1 or rhuVEGF MAb (IgG1; F(ab)-12) twice weekly, intra peritoneally. The dose of the control Mab was 5 mg/kg; the anti-VEGF MAbs were given at 0.5 or 5 mg/kg, as indicated (n=10). Four weeks after tumor cell injection, animals were euthanized and tumors were removed and weighed. *: significant difference when compared to the control group by ANOVA (p<0.05). FIGS. 5A and 5B show the acid sequences of the light and heavy variable domains respectively of murine antibody A4.6.1 (SEQ ID NO:10 for the VL and SEQ ID NO:9 for the VH) and humanized A4.6.1 variants hu2.0 (SEQ ID NO:13 for the VL and SEQ ID NO:14 for the VH) and hu2.10 (SEQ ID NO:15 for the VL and SEQ ID NO:16 for the VH) from Example 2. Sequence numbering is according to Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991) and mismatches are indicated by asterisks (murine A4.6.1 vs hu2.0) or bullets (hu2.0 vs hu2.10). Variant hu2.0 contains only the CDR sequences (bold) from the murine antibody grafted onto a human light chain κ subgroup I consensus framework (SEQ ID NO:12) and heavy chain subgroup III consensus framework (SEQ ID NO:11). hu2.10 was the consensus humanized clone obtained from phage sorting experiments described herein. FIG. 6 depicts framework residues targeted for randomization in Example 2. FIG. 7 depicts the phagemid construct for surface display of Fab-pIII fusions on phage. The phagemid encodes a humanized version of the Fab fragment for antibody A4.6.1 fused to a portion of the M13 gene III coat protein. The fusion protein consists of the Fab joined at the carboxyl terminus of the heavy chain to a single glutamine residue (from suppression of an amber codon in supE E. coli), then the C-terminal region of the gene III protein (residues 249-406). Transformation into F+ E coli, followed by superinfection with M13KO7 helper phage, produces phagemid particles in which a small proportion of these display a single copy of the fusion protein. FIGS. 8A-E depict the double stranded nucleotide sequence (SEQ ID NO:99) for phage-display antibody vector phMB4-19-1.6 in Example 3 and the amino acid sequence encoded thereby (SEQ ID NO:100). FIGS. 9A and 9B depict an alignment of the amino acid sequences for the light and heavy variable domains respectively of affinity matured anti-VEGF variants in Example 3, compared to F(ab)-12 of Example 1 (SEQ ID NO's 8 and 7 for light and heavy variable domains, respectively). CDRs are underlined and designated by L, light, or H, heavy chain, and numbers 1-3. Residues are numbered sequentially in the VL and VH domains, as opposed to the Kabat numbering scheme. The template molecule, MB1.6 (SEQ ID NO's 101 and 102 for light and heavy variable domains, respectively) is shown, along with variants: H2305.6 (SEQ ID NO's 103 and 104 for light and heavy variable domains, respectively), Y0101 (SEQ ID NO's 105 and 106 for light and heavy variable domains, respectively), and Y0192 (SEQ ID NO's 107 and 108 for light and heavy variable domains, respectively). Differences from F(ab)-12 are shown in shaded boxes. FIGS. 10A and 10B depict an alignment of the amino acid sequences for the light and heavy variable domains respectively of affinity matured anti-VEGF variants from Example 3 compared to F(ab)-12 of Example 1 (SEQ ID NO's 8 and 7 for light and heavy variable domains, respectively). CDRs are underlined and designated by L, light, or H, heavy chain, and numbers 1-3. The variants are designated Y0243-1 (SEQ ID NO's 109 and 110 for light and heavy variable domains, respectively), Y0238-3 (SEQ ID NO's 111 and 112 for light and heavy variable domains, respectively), Y0313-1 (SEQ ID NO's 113 and 114 for light and heavy variable domains, respectively), and Y0317 (SEQ ID NO's 115 and 116 for light and heavy variable domains, respectively). Differences from F(ab)-12 are shown in shaded boxes. FIG. 11 depicts the results of the HuVEC activity assay in Example 3 for variants Y0238-3, Y0192 and Y0313-1 as well as full length F(ab)-12 from Example 1. FIG. 12 depicts inhibition of VEGF-induced mitogenesis by full length F(ab)-12 from Example 1 (rhuMAb VEGF), a Fab fragment of F(ab)-12 from Example 1 (rhuFab VEGF), and a Fab fragment of affinity matured variant Y0317 from Example 3 (rhuFab VEGF (affinity matured)). DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 1. Definitions The term “human VEGF” as used herein refers to the 165-amino acid human vascular endothelial cell growth factor, and related 121-,189-, and 206-amino acid vascular endothelial cell growth factors, as described by Leung et al., Science 246:1306 (1989), and Houck et al., Mol. Endocrin. 5:1806 (1991) together with the naturally occurring allelic and processed forms of those growth factors. The present invention provides anti-VEGF antagonistic antibodies which are capable of inhibiting one or more of the biological activities of VEGF, for example, its mitogenic or angiogenic activity. Antagonists of VEGF act by interfering with the binding of VEGF to a cellular receptor, by incapacitating or killing cells which have been activated by VEGF, or by interfering with vascular endothelial cell activation after VEGF binding to a cellular receptor. All such points of intervention by a VEGF antagonist shall be considered equivalent for purposes of this invention. The term “VEGF receptor” or “VEGFr” as used herein refers to a cellular receptor for VEGF, ordinarily a cell-surface receptor found on vascular endothelial cells, as well as variants thereof which retain the ability to bind hVEGF. One example of a VEGF receptor is the fms-like tyrosine kinase (flt), a transmembrane receptor in the tyrosine kinase family. DeVries et al., Science 255:989 (1992); Shibuya et al., Oncogene 5:519 (1990). The fit receptor comprises an extracellular domain, a transmembrane domain, and an intracellular domain with tyrosine kinase activity. The extracellular domain is involved in the binding of VEGF, whereas the intracellular domain is involved in signal transduction. Another example of a VEGF receptor is the flk-1 receptor (also referred to as KDR). Matthews et al., Proc. Nat. Acad. Sci. 88:9026 (1991); Terman et al., Oncogene 6:1677 (1991); Terman et al., Biochem. Biophys. Res. Commun. 187:1579 (1992). Binding of VEGF to the flt receptor results in the formation of at least two high molecular weight complexes, having apparent molecular weight of 205,000 and 300,000 Daltons. The 300,000 Dalton complex is believed to be a dimer comprising two receptor molecules bound to a single molecule of VEGF. The term “epitope A4.6.1 ” when used herein, unless indicated otherwise, refers to the region of human VEGF to which the A4.6.1 antibody disclosed in Kim et al., Growth Factors 7:53 (1992) and Kim et al. Nature 362:841 (1993), binds. “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented. “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human. “Antibodies” (Abs) and “immunoglobulins” (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific antigen, immunoglobulins include both antibodies and other antibody-like molecules which lack antigen specificity. Polypeptides of the latter kind are, for example, produced at low levels by the lymph system and at increased levels by myelomas. “Native antibodies” and “native immunoglobulins” are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains. The term “variable” refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called hypervariable regions both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework region (FR). The variable domains of native heavy and light chains each comprise four FRs (FR1, FR2, FR3 and FR4, respectively), largely adopting a β-sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β-sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), pages 647-669). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity. The term “hypervariable region” when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region comprises amino acid residues from a “complementarity determining region” or “CDR” (i.e. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)) and/or those residues from a “hypervariable loop” (i.e. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). “Framework” or “FR” residues are those variable domain residues other than the hypervariable region residues as herein defined. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site, and a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-combining sites and is still capable of cross-linking antigen. “Fv” is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. This region consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. It is in this configuration that the three hypervariable regions of each variable domain interactto define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six hypervariable regions confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site. The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab′ fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteine(s) from the antibody hinge region. Fab′-SH is the designation herein for Fab′ in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab′)2 antibody fragments originally were produced as pairs of Fab′ fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known. The “light chains” of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains. Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known. The term “antibody” herein is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity. “Antibody fragments” comprise a portion of a full length antibody, generally the antigen binding or variable domain thereof. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. The term “monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567). The “monoclonal antibodies” may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example. The monoclonal antibodies herein specifically include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)). “Humanized” forms of non-human (e.g., murine) antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable regions correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Reichmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992). “Single-chainFv” or “sFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315 (1994). The term “diabodies” refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993). The expression “linear antibodies” when used throughout this application refers to the antibodies described in Zapata et al. Protein Eng. 8(10):1057-1062 (1995). Briefly, these antibodies comprise a pair of tandem Fd segments (VH-CH1-VH-CH1) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific. A “variant” anti-VEGF antibody, refers herein to a molecule which differs in amino acid sequence from a “parent” anti-VEGF antibody amino acid sequence by virtue of addition, deletion and/or substitution of one or more amino acid residue(s) in the parent antibody sequence. In the preferred embodiment, the variant comprises one or more amino acid substitution(s) in one or more hypervariable region(s) of the parent antibody. For example, the variant may comprise at least one, e.g. from about one to about ten, and preferably from about two to about five, substitutions in one or more hypervariable regions of the parent antibody. Ordinarily, the variant will have an amino acid sequence having at least 75% amino acid sequence identity with the parent antibody heavy or light chain variable domain sequences (e.g. as in SEQ ID NO:7 or 8), more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, and most preferably at least 95%. Identity or homology with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the parent antibody residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. None of N-terminal, C-terminal, or internal extensions, deletions, or insertions into the antibody sequence shall be construed as affecting sequence identity or homology. The variant retains the ability to bind human VEGF and preferably has properties which are superiorto those of the parent antibody. For example, the variant may have a stronger binding affinity, enhanced ability to inhibit VEGF-induced proliferation of endothelial cells and/or increased ability to inhibit VEGF-induced angiogenesis in vivo. To analyze such properties, one should compare a Fab form of the variant to a Fab form of the parent antibody or a full length form of the variant to a full length form of the parent antibody, for example, since it has been found that the format of the anti-VEGF antibody impacts its activity in the biological activity assays disclosed herein. The variant antibody of particular interest herein is one which displays at least about 10 fold, preferably at least about 20 fold, and most preferably at least about 50 fold, enhancement in biological activity when compared to the parent antibody. The “parent” antibody herein is one which is encoded by an amino acid sequence used for the preparation of the variant. Preferably, the parent antibody has a human framework region and, if present, has human antibody constant region(s). For example, the parent antibody may be a humanized or human antibody. An “isolated” antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step. The term “epitope tagged” when used herein refers to the anti-VEGF antibody fused to an “epitope tag”. The epitope tag polypeptide has enough residues to provide an epitope against which an antibody thereagainst can be made, yet is short enough such that it does not interfere with activity of the VEGF antibody. The epitope tag preferably is sufficiently unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least 6 amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues). Examples include the flu HA tag polypeptide and its antibody 12CA5 (Field et al. Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Mol. Cell. Biol. 5(12):3610-3616(1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al., Protein Engineering 3(6):547-553(1990)). In certain embodiments, the epitope tag is a “salvage receptor binding epitope”. As used herein, the term “salvage receptor binding epitope” refers to an epitope of the Fc region of an IgG molecule (e.g., IgG1, IgG2, IgG3, or IgG4) that is responsible for increasing the in vivo serum half-life of the IgG molecule. The term “cytotoxic agent” as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., I131, I125, Y90 and Re186), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof. A “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include Adriamycin, Doxorubicin, 5-Fluorouracil, Cytosine arabinoside (“Ara-C”), Cyclophosphamide, Thiotepa, Taxotere (docetaxel), Busulfan, Cytoxin, Taxol, Methotrexate, Cisplatin, Melphalan, Vinblastine, Bleomycin, Etoposide, Ifosfamide, Mitomycin C, Mitoxantrone, Vincreistine, Vinorelbine, Carboplatin, Teniposide, Daunomycin, Carminomycin, Aminopterin, Dactinomycin, Mitomycins, Esperamicins (see U.S. Pat. No. 4,675,187), Melphalan and other related nitrogen mustards. The term “prodrug” as used in this application refers to a precursor or derivative form of a pharmaceutically active substance that is less cytotoxic to tumor cells compared to the parent drug and is capable of being enzymatically activated or converted into the more active parent form. See, e.g., Wilman, “Prodrugs in Cancer Chemotherapy” Biochemical Society Transactions, 14, pp. 375-382, 615th Meeting Belfast (1986) and Stella et al., “Prodrugs: A Chemical Approach to Targeted Drug Delivery,” Directed Drug Delivery, Borchardt et al., (ed.), pp. 247-267, Humana Press (1985). The prodrugs of this invention include, but are not limited to, phosphate-containing prodrugs, thiophosphate-containing prodrugs, sulfate-containing prodrugs, peptide-containing prodrugs, D-amino acid-modified prodrugs, glycosylated prodrugs, β-lactam-containing prodrugs, optionally substituted phenoxyacetamide-containing prodrugs or optionally substituted phenylacetamide-containing prodrugs, 5-fluorocytosine and other 5-fluorouridine prodrugs which can be converted into the more active cytotoxic free drug. Examples of cytotoxic drugs that can be derivatized into a prodrug form for use in this invention include, but are not limited to, those chemotherapeutic agents described above. The word “label” when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody. The label may itself be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. By “solid phase” is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g. controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g. an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Pat. No. 4,275,149. A “liposome” is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as the anti-VEGF antibodies disclosed herein and, optionally, a chemotherapeutic agent) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes. An “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the antibody nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells. The expression “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers. Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. As used herein, the expressions “cell,” “cell line,” and “cell culture” are used interchangeably and all such designations include progeny. Thus, the words “transformants” and “transformed cells” include the primary subject cell and cultures derived therefrom without regard for the number of transfers. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Mutant progeny that have the same function or biological activity as screened for in the originally transformed cell are included. Where distinct designations are intended, it will be clear from the context. II. Modes for Carrying out the Invention The examples hereinbelow describe the production of humanized and variant anti-VEGF antibodies with desirable properties from a therapeutic perspective including: (a) strong binding affinity for the VEGF antigen; (b) an ability to inhibit VEGF-induced proliferationof endothelial cells in vitro; and (c) the ability to inhibit VEGF-induced angiogenesis in vivo. Antibody affinities may be determined as described in the examples hereinbelow. Preferred humanized or variant antibodies are those which bind human VEGF with a Kd value of no more than about 1×10−7M; preferably no more than about 1×10−8M; and most preferably no more than about 5×10−9M. Aside from antibodies with strong binding affinity for human VEGF, it is also desirable to select humanized or variant antibodies which have other beneficial properties from a therapeutic perspective. For example, the antibody may be one which inhibits endothelial cell growth in response to VEGF. In one embodiment, the antibody may be able to inhibit bovine capillary endothelial cell proliferation in response to a near maximally effective concentration of VEGF (3 ng/ml). Preferably, the antibody has an effective dose 50 (ED50) value of no more than about 5 nM, preferably no more than about 1 nM, and most preferably no more than about 0.5 nM, for inhibiting VEGF-induced proliferation of endothelial cells in this “endothelial cell growth assay”, i.e., at these concentrations the antibody is able to inhibit VEGF-induced endothelial cell growth in vitro by 50%. A preferred “endothelial cell growth assay” involves culturing bovine adrenal cortex-derived capillary endothelial cells in the presence of low glucose Dulbecco's modified Eagle's medium (DMEM) (GIBCO) supplemented with 10% calf serum, 2 mM glutamine, and antibiotics (growth medium), essentially as described in Example 1 below. These endothelial cells are seeded at a density of 6×103 cells per well, in 6-well plates in growth medium. Either parent anti-VEGF antibody (control), humanized or variant anti-VEGF antibody is then added at concentrations ranging between 1 and 5000 ng/ml. After 2-3 hr, purified VEGF was added to a final concentration of 3 ng/ml. For specificity control, each antibody may be added to endothelial cells at the concentration of 5000 ng/ml, either alone or in the presence of 2 ng/ml bFGF. After five or six days, cells are dissociated by exposure to trypsin and counted in a Coulter counter (Coulter Electronics, Hialeah, Fla.). Data may be analyzed by a four-parameter curve fitting program (KaleidaGraph). The preferred humanized or variant anti-VEGF antibody may also be one which has in vivo tumor suppression activity. For example, the antibody may suppress the growth of human A673 rhabdomyosarcoma cells or breast carcinoma MDA-MB-435 cells in nude mice. For in vivo tumor studies, human A673 rhabdomyosarcoma cells (ATCC; CRL 1598) or MDA-MB-435 cells (available from the ATCC) are cultured in DMEM/F12 supplemented with 10% fetal bovine serum, 2 mM glutamine and antibiotics as described in Example 1 below. Female BALB/c nude mice, 6-10 weeks old, are injected subcutaneously with 2×106 tumor cells in the dorsal area in a volume of 200 μl. Animals are then treated with the humanized or variant antibody and a control antibody with no activity in this assay. The humanized or variant anti-VEGF MAb is administered at a dose of 0.5 and/or 5 mg/kg. Each MAb is administered twice weekly intra peritoneally in a volume of 100 μl, starting 24 hr after tumor cell inoculation. Tumor size is determined at weekly intervals. Four weeks after tumor cell inoculation, animals are euthanized and the tumors are removed and weighed. Statistical analysis may be performed by ANOVA. Preferably, the antibody in this “in vivo tumor assay” inhibits about 50-100%, preferably about 70-100% and most preferably about 80-100% human A673 tumor cell growth at a dose of 5 mg/kg. In the preferred embodiment, the humanized or variant antibody fails to elicit an immunogenic response upon administration of a therapeutically effective amount of the antibody to a human patient. If an immunogenic response is elicited, preferably the response will be such that the antibody still provides a therapeutic benefit to the patient treated therewith. The humanized or variant antibody is also preferably one which is able to inhibit VEGF-induced angiogenesis in a human, e.g. to inhibit human tumor growth and/or inhibit intraocular angiogenesis in retinal disorders. Preferred antibodies bind the “epitope A4.6.1” as herein defined. To screen for antibodies which bind to the epitope on human VEGF bound by an antibody of interest (e.g., those which block binding of the A4.6.1 antibody to human VEGF), a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping, e.g. as described in Champe et al., J. Biol. Chem. 270:1388-1394 (1995), can be performed to determine whether the antibody binds an epitope of interest. The antibodies of the preferred embodiment herein have a heavy chain variable domain comprising an amino acid sequence represented by the formula: FR1-CDRH1-FR2-CDRH2-FR3-CDRH3-FR4, wherein “FR1-4” represent the four framework regions and “CDRH1-3” represent the three hypervariable regions of an anti-VEGF antibody variable heavy domain. FR1-4 may be derived from a “consensus sequence” (i.e. the most common amino acids of a class, subclass or subgroup of heavy or light chains of human immunoglobulins) as in the examples below or may be derived from an individual human antibody framework region or from a combination of different framework region sequences. Many human antibody framework region sequences are compiled in Kabat et al., supra, for example. In one preferred embodiment, the variable heavy FR is provided by a consensus sequence of a human immunoglobulin subgroup as compiled by Kabat et al., supra. Preferably, the human immunoglobulin subgroup is human heavy chains subgroup III (e.g. as in SEQ ID NO:11). The human variable heavy FR sequence preferably has substitutions therein, e.g. wherein the human FR residue is replaced by a corresponding nonhuman residue (by “corresponding nonhuman residue” is meant the nonhuman residue with the same Kabat positional numbering as the human residue of interest when the human and nonhuman sequences are aligned), but replacement with the nonhuman residue is not necessary. For example, a replacement FR residue other than the corresponding nonhuman residue may be selected by phage display (see Example 2 below). Exemplary variable heavy FR residues which may be substituted include any one or more of FR residue numbers: 37H, 49H, 67H, 69H, 71H, 73H, 75H, 76H, 78H, 94H (Kabat residue numbering employed here). Preferably at least two, or at least three, or at least four of these residues are substituted. A particularly preferred combination of FR substitutions is: 49H, 69H, 71H, 73H, 76H, 78H, and 94H. With respect to the heavy chain hypervariable regions, these preferably have amino acid sequences as follows: CDRH1 GYX1X2X3X4YGX5N (SEQ ID NO:117), wherein X1 is D, T or E, but preferably is D or T; X2 is F, W, or Y, but preferably is F; X3 is T, Q, G or S, but preferably is T; X4 is H or N; and X5 is M or I, but preferably is M. CDRH2 WINTX1TGEPTYAADFKR (SEQ ID NO:118), wherein X1 is Y or W, but preferably is Y. CDRH3 YPX1YX2X3 X4X5HWYFDV (SEQ ID NO:119), wherein X1 is H or Y; X2 is Y, R, K, I, T, E, or W, but preferably is Y; X3 is G, N, A, D, Q, E, T, K, or S, but preferably is G; X4 is S, T, K, Q, N, R, A, E, or G, but preferably is S or T; and X5 is S or G, but preferably is S. The heavy chain variable domain optionally comprises what has been designated “CDR7” herein within (i.e. forming part of) FR3 (see FIGS. 9B and 10B), wherein CDR7 may have the following amino acid sequence: CDR7 X1SX2DX3X4X5X6TX7 (SEQ ID NO:120), wherein X1 is F, I, V, L, or A, but preferably is F; X2 is A, L, V, or I, but preferably is L; X3 is T, V or K, but preferably is T; X4 is S or W, but preferably is S; X5 is S, or K, but preferably is K; X6 is N, or S, but preferably is S; and X7 is V, A, L or I, but preferably is A. The antibodies of the preferred embodiment herein have a light chain variable domain comprising an amino acid sequence represented by the formula: FR1-CDRL1-FR2-CDRL2-FR3-CDRL3-FR4, wherein “FR1-4” represent the four framework regions and “CDRL1-3” represent the three hypervariable regions of an anti-VEGF antibody variable heavy domain. FR1-4 may be derived from a “consensus sequence” (i.e. the most common amino acids of a class, subclass or subgroup of heavy or light chains of human immunoglobulins) as in the examples below or may be derived from an individual human antibody framework region or from a combination of different framework region sequences. In one preferred embodiment, the variable light FR is provided by a consensus sequence of a human immunoglobulin subgroup as compiled by Kabat et al., supra. Preferably, the human immunoglobulin subgroup is human kappa light chains subgroup I (e.g. as in SEQ ID NO:12). The human variable light FR sequence preferably has substitutions therein, e.g. wherein the human FR residue is replaced by a corresponding mouse residue, but replacement with the nonhuman residue is not necessary. For example, a replacement residue other than the corresponding nonhuman residue may be selected by phage display (see Example 2 below). Exemplary variable light FR residues which may be substituted include any one or more of FR residue numbers: 4 L, 46 L and 71 L (Kabat residue numbering employed here). Preferably only 46 L is substituted. In another embodiment, both 4 L and 46 L are substituted. With respect to the CDRs, these preferably have amino acid sequences as follows: CDRL1 X1AX2X3X4X5SNYLN (SEQ ID NO:121), wherein X1 is R or S, but preferably is S; X2 is S or N, but preferably is S; X3 is Q or E, but preferably is Q; X4 is Q or D, but preferably is D; and X5 is I or L, but preferably is I. CDRL2 FTSSLHS (SEQ ID NO:122). CDRL3 QQYSX1X2PWT (SEQ ID NO:123), wherein X1 is T, A or N, but preferably is T; and X2 is V or T, but preferably is V. Preferred humanized anti-VEGF antibodies are those having the heavy and/or light variable domain sequences of F(ab)-12 in Example 1 and variants thereof such as affinity matured forms including variants Y0317, Y0313-1 and Y0238-3 in Example 3, with Y0317 being the preferred variant. Methods for generating humanized anti-VEGF antibodies of interest herein are elaborated in more detail below. A. Antibody Preparation Methods for humanizing nonhuman VEGF antibodies and generating variants of anti-VEGF antibodies are described in the examples below. In order to humanize an anti-VEGF antibody, the nonhuman antibody starting material is prepared. Where a variant is to be generated, the parent antibody is prepared. Exemplary techniques for generating such nonhuman antibody starting material and parent antibodies will be described in the following sections. (i) Antigen Preparation The VEGF antigen to be used for production of antibodies may be, e.g., intact VEGF or a fragment of VEGF (e.g. a VEGF fragment comprising “epitope A4.6.1”). Other forms of VEGF useful for generating antibodies will be apparent to those skilled in the art. The VEGF antigen used to generate the antibody, is preferably human VEGF, e.g. as described in Leung et al., Science 246:1306 (1989), and Houck et al., Mol. Endocrin. 5:1806 (1991). (ii) Polyclonal Antibodies Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc) or intraperitoneal (ip) injections of the relevant antigen and an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOCl2, or R1N=C=NR, where R and R1 are different alkyl groups. Animals are immunized against the antigen, immunogenic conjugates, or derivatives by combining, e.g., 100 μg or 5 μg of the protein or conjugate (for rabbits or mice, respectively) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with ⅕ to {fraction (1/10)} the original amount of peptide or conjugate in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response. (iii) Monoclonal Antibodies Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Pat. No. 4,816,567). In the hybridoma method, a mouse or other appropriate host animal, such as a hamster or macaque monkey, is immunized as hereinabove described to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells. Preferred myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. Among these, preferred myeloma cell lines are murine myeloma lines, such as those derived from MOP-21 and M.C.-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, Calif. USA, and SP-2 or X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Md. USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)). Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson et al., Anal. Biochem., 107:220 (1980). After hybridoma cells are identified that produce antibodies of the desired specificity, affinity, and/or activity, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown in vivo as ascites tumors in an animal. The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography. DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the monoclonal antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as E coli cells, simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Recombinant production of antibodies will be described in more detail below. (iv) Humanization and Amino Acid Sequence Variants Examples 1-2 below describe procedures for humanization of an anti-VEGF antibody. In certain embodiments, it may be desirable to generate amino acid sequence variants of these humanized antibodies, particularly where these improve the binding affinity or other biological properties of the humanized antibody. Example 3 describes methodologies for generating amino acid sequence variants of an anti-VEGF antibody with enhanced affinity relative to the parent antibody. Amino acid sequence variants of the anti-VEGF antibody are prepared by introducing appropriate nucleotide changes into the anti-VEGF antibody DNA, or by peptide synthesis. Such variants include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the anti-VEGF antibodies of the examples herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the humanized or variant anti-VEGF antibody, such as changing the number or position of glycosylation sites. A useful method for identification of certain residues or regions of the anti-VEGF antibody that are preferred locations for mutagenesis is called “alanine scanning mutagenesis,” as described by Cunningham and Wells Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with VEGF antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti-VEGF antibody variants are screened for the desired activity. Alanine scanning mutagenesis is described in Example 3. Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an anti-VEGF antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the anti-VEGF antibody molecule include the fusion to the N- or C-terminus of the anti-VEGF antibody of an enzyme or a polypeptide which increases the serum half-life of the antibody (see below). Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the anti-VEGF antibody molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in Table 1 under the heading of “preferred substitutions”. If such substitutions result in a change in biological activity, then more substantial changes, denominated “exemplary substitutions” in Table 1, or as further described below in reference to amino acid classes, may be introduced and the products screened. TABLE 1 Original Exemplary Preferred Residue Substitutions Substitutions Ala (A) val; leu; lie val Arg (R) lys; gln; asn lys Asn (N) gln; his; asp, lys; gln arg Asp (D) glu; asn glu Cys (C) ser; ala ser Gln (Q) asn; glu asn Glu (E) asp; gln asp Gly (G) ala ala His (H) asn; gln; lys; arg arg Ile (I) leu; val; met; ala; leu phe; norleucine Leu (L) norleucine; ile; val; ile met; ala; phe Lys (K) arg; gln; asn arg Met (M) leu; phe; ile leu Phe (F) leu; val; ile; ala; tyr tyr Pro (P) ala ala Ser (S) thr thr Thr (T) ser ser Trp (W) tyr; phe tyr Tyr (Y) trp; phe; thr; ser phe Val (V) ile; leu; met; phe; leu ala; norleucine Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr; (3) acidic: asp, glu; (4) basic: asn, gin, his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic: trp, tyr, phe. Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Any cysteine residue not involved in maintaining the proper conformation of the humanized or variant anti-VEGF antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment). A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants is affinity maturation using phage display (see Example 3 herein). Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene IIII product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis (see Example 3) can be performed to identified hypervariable region residues contributing significantly to antigen binding. Alternatively, or in addition, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human VEGF. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development. Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody. Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used. Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites). Nucleic acid molecules encoding amino acid sequence variants of the anti-VEGF antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-VEGF antibody. (v) Human Antibodies As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (JH) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258(1993); Bruggermann et al., Year in Immuno., 7:33 (1993); and U.S. Pat. Nos. 5,591,669, 5,589,369 and 5,545,807. Human antibodies can also be derived from phage-display libraries (Hoogenboom et al., J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581-597 (1991); and U.S. Pat. Nos. 5,565,332 and 5,573,905). As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. Pat. Nos. 5,567,610 and 5,229,275). (vi) Antibody Fragments In certain embodiments, the humanized or variant anti-VEGF antibody is an antibody fragment. Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117(1992) and Brennan et al., Science 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. For example, Fab′-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab′)2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). In another embodiment, the F(ab′)2 is formed using the leucine zipper GCN4 to promote assembly of the F(ab′)2 molecule. According to another approach, Fv, Fab or F(ab′)2 fragments can be isolated directly from recombinant host cell culture. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. (vii) Multispecific Antibodies In some embodiments, it may be desirable to generate multispecific (e.g. bispecific) humanized or variant anti-VEGF antibodies having binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the VEGF protein. Altematively, an anti-VEGF arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g., CD2 or CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the VEGF-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express VEGF. These antibodies possess an VEGF-binding arm and an arm which binds the cytotoxic agent (e.g., saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g., F(ab′)2 bispecific antibodies). According to another approach for making bispecific antibodies, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 domain of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g., tyrosine or tryptophan). Compensatory “cavities” of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g., alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers. See WO96/27011 published Sep. 6, 1996. Bispecific antibodies include cross-linked or “heteroconjugate” antibodies. For example, one of the antibodies in the heteroconjugate can be coupled to avidin, the other to biotin. Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking techniques. Techniques for generating bispecific antibodies from antibody fragments have also been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab′)2 fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab′ fragments generated are then converted to thionitrobenzoate(TNB) derivatives. One of the Fab′-TNB derivatives is then reconverted to the Fab′-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab′-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes. In yet a further embodiment, Fab′-SH fragments directly recovered from E coli can be chemically coupled in vitro to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992). Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab′ portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The “diabody” technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol. 152:5368 (1994). Alternatively, the bispecific antibody may be a “linear antibody” produced as described in Zapata et al. Protein Eng. 8(10):1057-1062 (1995). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). (viii) Other Modifications Other modifications of the humanized or variant anti-VEGF antibody are contemplated. For example, it may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance the effectiveness of the antibody in treating cancer, for example. For example cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al., Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989). The invention also pertains to immunoconjugates comprising the antibody described herein conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. A variety of radionuclides are available for the production of radio conjugated anti-VEGF antibodies. Examples include 212Bi, 131I, 131In, 90Y and 186Re. Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238:1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. In another embodiment, the antibody may be conjugated to a “receptor” (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionuclide). The anti-VEGF antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA 77:4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Pat. No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab′ fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem. 257:286-288 (1982) via a disulfide interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst.81(19):1484 (1989) The antibody of the present invention may also be used in ADEPT by conjugating the antibody to a prodrug-activating enzyme which converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO81/01145)to an active anti-cancer drug. See, for example, WO 88/07378 and U.S. Pat. No. 4,975,278. The enzyme component of the immunoconjugate useful for ADEPT includes any enzyme capable of acting on a prodrug in such a way so as to covert it into its more active, cytotoxic form. Enzymes that are useful in the method of this invention include, but are not limited to, alkaline phosphatase useful for converting phosphate-containing prodrugs into free drugs; arylsulfatase useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), that are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as β-galactosidase and neuraminidase useful for converting glycosylated prodrugs into free drugs; β-lactamase useful for converting drugs derivatized with β-lactams into free drugs; and penicillin amidases, such as penicillin V amidase or penicillin G amidase, useful for converting drugs derivatized at their amine nitrogens with phenoxyacetyl or phenylacetyl groups, respectively, into free drugs. Alternatively, antibodies with enzymatic activity, also known in the art as “abzymes”, can be used to convert the prodrugs of the invention into free active drugs (see, e.g., Massey, Nature 328:457-458 (1987)). Antibody-abzyme conjugates can be prepared as described herein for delivery of the abzyme to a tumor cell population. The enzymes of this invention can be covalently bound to the anti-VEGF antibodies by techniques well known in the art such as the use of the heterobifunctional crosslinking reagents discussed above. Alternatively, fusion proteins comprising at least the antigen binding region of an antibody of the invention linked to at least a functionally active portion of an enzyme of the invention can be constructed using recombinant DNA techniques well known in the art (see, e.g., Neuberger et al., Nature 312:604-608 (1984)). In certain embodiments of the invention, it may be desirable to use an antibody fragment, rather than an intact antibody, to increase tumor penetration, for example. In this case, it may be desirable to modify the antibody fragment in order to increase its serum half life. This may be achieved, for example, by incorporation of a salvage receptor binding epitope into the antibody fragment (e.g., by mutation of the appropriate region in the antibody fragment or by incorporating the epitope into a peptide tag that is then fused to the antibody fragment at either end or in the middle, e.g., by DNA or peptide synthesis). See WO96/32478 published Oct. 17, 1996. The salvage receptor binding epitope generally constitutes a region wherein any one or more amino acid residues from one or two loops of a Fc domain are transferred to an analogous position of the antibody fragment. Even more preferably, three or more residues from one or two loops of the Fc domain are transferred. Still more preferred, the epitope is taken from the CH2 domain of the Fc region (e.g., of an IgG) and transferred to the CH1, CH3, or VH region, or more than one such region, of the antibody. Alternatively, the epitope is taken from the CH2 domain of the Fc region and transferred to the CL region or VL region, or both, of the antibody fragment. In one most preferred embodiment, the salvage receptor binding epitope comprises the sequence: PKNSSMISNTP (SEQ ID NO:17), and optionally further comprises a sequence selected from the group consisting of HQSLGTQ (SEQ ID NO:18), HQNLSDGK (SEQ ID NO:19), HQNISDGK (SEQ ID NO:20), or VISSHLGQ (SEQ ID NO:21), particularly where the antibody fragment is a Fab or F(ab′)2. In another most preferred embodiment, the salvage receptor binding epitope is a polypeptide containing the sequence(s): HQNLSDGK (SEQ ID NO:19), HQNISDGK (SEQ ID NO:20), or VISSHLGQ (SEQ ID NO:21) and the sequence: PKNSSMISNTP (SEQ ID NO:17). Covalent modifications of the humanized or variant anti-VEGF antibody are also included within the scope of this invention. They may be made by chemical synthesis or by enzymatic or chemical cleavage of the antibody, if applicable. Other types of covalent modifications of the antibody are introduced into the molecule by reacting targeted amino acid residues of the antibody with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues. Exemplary covalent modifications of polypeptides are described in U.S. Pat. No. 5,534,615, specifically incorporated herein by reference. A preferred type of covalent modification of the antibody comprises linking the antibody to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. B. Vectors, Host Cells and Recombinant Methods The invention also provides isolated nucleic acid encoding the humanized or variant anti-VEGF antibody, vectors and host cells comprising the nucleic acid, and recombinant techniques for the production of the antibody. For recombinant production of the antibody, the nucleic acid encoding it may be isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. In another embodiment, the antibody may be produced by homologous recombination, e.g. as described in U.S. Pat. No. 5,204,244, specifically incorporated herein by reference. DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, e.g., as described in U.S. Pat. No. 5,534,615 issued Jul. 9, 1996 and specifically incorporated herein by reference. Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 Apr. 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for anti-VEGF antibody-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger. Suitable host cells for the expression of glycosylated anti-VEGF antibody are derived from multicellularorganisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells. Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts. However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2). Host cells are transformed with the above-described expression or cloning vectors for anti-VEGF antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The host cells used to produce the anti-VEGF antibody of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Pat. Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, is removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants. The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a CH3 domain, the Bakerbond ABX™ resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered. Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt). C. Pharmaceutical Formulations Therapeutic formulations of the antibody are prepared for storage by mixing the antibody having the desired degree of purity with optional physiologically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other (see Section F below). Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The active ingredients may also be entrapped in microcapsule prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980). The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes. Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsule. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the Lupron Depot™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(−)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C., resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S—S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. D. Non-therapeutic Uses for the Antibody The antibodies of the invention may be used as affinity purification agents. In this process, the antibodies are immobilized on a solid phase such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody is contacted with a sample containing the VEGF protein (or fragment thereof) to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the VEGF protein, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent, such as glycine buffer, pH 5.0, that will release the VEGF protein from the antibody. Anti-VEGF antibodies may also be useful in diagnostic assays for VEGF protein, e.g., detecting its expression in specific cells, tissues, or serum. Such diagnostic methods may be useful in cancer diagnosis. For diagnostic applications, the antibody typically will be labeled with a detectable moiety. Numerous labels are available which can be generally grouped into the following categories: (a) Radioisotopes, such as 35S, 14C, 125I, 3H, and 131I. The antibody can be labeled with the radioisotope using the techniques described in Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-Interscience, New York, N.Y., Pubs. (1991) for example and radioactivity can be measured using scintillation counting. (b) Fluorescent labels such as rare earth chelates (europium chelates) or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, Lissamine, phycoerythrin and Texas Red are available. The fluorescent labels can be conjugated to the antibody using the techniques disclosed in Current Protocols in Immunology, supra, for example. Fluorescence can be quantified using a fluorimeter. (c) Various enzyme-substrate labels are available and U.S. Pat. No. 4,275,149 provides a review of some of these. The enzyme generally catalyzes a chemical alteration of the chromogenic substrate which can be measured using various techniques. For example, the enzyme may catalyze a color change in a substrate, which can be measured spectrophotometrically. Alternatively, the enzyme may alter the fluorescence or chemiluminescence of the substrate. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, β-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclicoxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay, in Methods in Enzym. (ed J. Langone & H. Van Vunakis), Academic press, New York, 73:147-166 (1981). Examples of enzyme-substrate combinations include, for example: (i) Horseradish peroxidase (HRPO) with hydrogen peroxidase as a substrate, wherein the hydrogen peroxidase oxidizes a dye precursor (e.g., orthophenylene diamine (OPD) or 3,3′,5,5′-tetramethyl benzidine hydrochloride (TMB)); (ii) alkaline phosphatase (AP) with para-Nitrophenyl phosphate as chromogenic substrate; and (iii) β-D-galactosidase (β-D-Gal) with a chromogenic substrate (e.g., p-nitrophenyl-β-D-galactosidase) or fluorogenic substrate 4-methylumbelliferyl-β-D-galactosidase. Numerous other enzyme-substrate combinations are available to those skilled in the art. For a general review of these, see U.S. Pat. Nos. 4,275,149 and 4,318,980. Sometimes, the label is indirectly conjugated with the antibody. The skilled artisan will be aware of various techniques for achieving this. For example, the antibody can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the antibody in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the antibody, the antibody is conjugated with a small hapten (e.g., digoxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten antibody (e.g., anti-digoxin antibody). Thus, indirect conjugation of the label with the antibody can be achieved. In another embodiment of the invention, the anti-VEGF antibody need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the VEGF antibody. The antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp.147-158 (CRC Press, Inc. 1987). Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of VEGF protein in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies generally are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound. Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., U.S. Pat. No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme. For immunohistochemistry, the tumor sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example. The antibodies may also be used for in vivo diagnostic assays. Generally, the antibody is labeled with a radio nuclide (such as 111In, 99Tc, 14C, 131I, 125I, 3H, 32P or 35S) so that the tumor can be localized using immunoscintiography. E. Diagnostic Kits As a matter of convenience, the antibody of the present invention can be provided in a kit, i.e., a packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the antibody is labeled with an enzyme, the kit will include substrates and cofactors required by the enzyme (e.g., a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g., a block buffer or lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients which on dissolution will provide a reagent solution having the appropriate concentration. F. Therapeutic Uses for the Antibody For therapeutic applications, the anti-VEGF antibodies of the invention are administered to a mammal, preferably a human, in a pharmaceutically acceptable dosage form such as those discussed above, including those that may be administered to a human intravenously as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intra-cerebrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation routes. The antibodies also are suitably administered by intra tumoral, peritumoral, intralesional, or perilesional routes, to exert local as well as systemic therapeutic effects. The intraperitoneal route is expected to be particularly useful, for example, in the treatment of ovarian tumors. For the prevention or treatment of disease, the appropriate dosage of antibody will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the antibody is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. The antibody is suitably administered to the patient at one time or over a series of treatments. The anti-VEGF antibodies are useful in the treatment of various neoplastic and non-neoplastic diseases and disorders. Neoplasms and related conditions that are amenable to treatment include breast carcinomas, lung carcinomas, gastric carcinomas, esophageal carcinomas, colorectal carcinomas, liver carcinomas, ovarian carcinomas, thecomas, arrhenoblastomas, cervical carcinomas, endometrial carcinoma, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, head and neck cancer, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, melanoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, pancreas carcinomas, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendroglioma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, thyroid carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, edema (such as that associated with brain tumors), and Meigs' syndrome. Non-neoplastic conditions that are amenable to treatment include rheumatoid arthritis, psoriasis, atherosclerosis, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, nephrotic syndrome, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion. Age-related macular degeneration (AMD) is a leading cause of severe visual loss in the elderly population. The exudative form of AMD is characterized by choroidal neovascularization and retinal pigment epithelial cell detachment. Because choroidal neovascularization is associated with a dramatic worsening in prognosis, the VEGF antibodys of the present invention are expected to be especially useful in reducing the severity of AMD. Depending on the type and severity of the disease, about 1 μg/kg to about 50 mg/kg (e.g., 0.1-20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily or weekly dosage might range from about 1 μg/kg to about 20 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is repeated until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays, including, for example, radiographic tumor imaging. According to another embodiment of the invention, the effectiveness of the antibody in preventing or treating disease may be improved by administering the antibody serially or in combination with another agent that is effective for those purposes, such as tumor necrosis factor (TNF), an antibody capable of inhibiting or neutralizing the angiogenic activity of acidic or basic fibroblast growth factor (FGF) or hepatocyte growth factor (HGF), an antibody capable of inhibiting or neutralizing the coagulant activities of tissue factor, protein C, or protein S (see Esmon et al., PCT Patent Publication No. WO 91/01753, published 21 Feb. 1991), an antibody capable of binding to HER2 receptor (see Hudziak et al., PCT Patent Publication No. WO 89/06692, published 27 Jul. 1989), or one or more conventional therapeutic agents such as, for example, alkylating agents, folic acid antagonists, anti-metabolites of nucleic acid metabolism, antibiotics, pyrimidine analogs, 5-fluorouracil, cisplatin, purine nucleosides, amines, amino acids, triazol nucleosides, or corticosteroids. Such other agents may be present in the composition being administered or may be administered separately. Also, the antibody is suitably administered serially or in combination with radiological treatments, whether involving irradiation or administration of radioactive substances. In one embodiment, vascularization of tumors is attacked in combination therapy. The antibody and one or more other anti-VEGF antagonists are administered to tumor-bearing patients at therapeutically effective doses as determined for example by observing necrosis of the tumor or its metastatic foci, if any. This therapy is continued until such time as no further beneficial effect is observed or clinical examination shows no trace of the tumor or any metastatic foci. Then TNF is administered, alone or in combination with an auxiliary agent such as alpha-, beta-, or gamma-interferon, anti-HER2 antibody, heregulin, anti-heregulin antibody, D-factor, interleukin-1 (IL-1), interleukin-2 (IL-2), granulocyte-macrophage colony stimulating factor (GM-CSF), or agents that promote microvascular coagulation in tumors, such as anti-protein C antibody, anti-protein S antibody, or C4b binding protein (see Esmon et al., PCT Patent Publication No. WO 91/01753, published 21 Feb. 1991), or heat or radiation. Since the auxiliary agents will vary in their effectiveness it is desirable to compare their impact on the tumor by matrix screening in conventional fashion. The administration of anti-VEGF antibody and TNF is repeated until the desired clinical effect is achieved. Alternatively, the anti-VEGF antibody is administered together with TNF and, optionally, auxiliary agent(s). In instances where solid tumors are found in the limbs or in other locations susceptible to isolation from the general circulation, the therapeutic agents described herein are administered to the isolated tumor or organ. In other embodiments, a FGF or platelet-derived growth factor (PDGF) antagonist, such as an anti-FGF or an anti-PDGF neutralizing antibody, is administered to the patient in conjunction with the anti-VEGF antibody. Treatment with anti-VEGF antibodies optimally may be suspended during periods of wound healing or desirable neovascularization. G. Articles of Manufacture In another embodiment of the invention, an article of manufacture containing materials useful for the treatment of the disorders described above is provided. The article of manufacture comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agent in the composition is the anti-VEGF antibody. The label on, or associated with, the container indicates that the composition is used for treating the condition of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use. EXAMPLE 1 This example describes the production of humanized anti-VEGF antibodies with desirable properties from a therapeutic standpoint. Materials and Methods Cloning of Murine A4.6.1 MAb and Construction of Mouse-Human Chimeric Fab: The murine anti-VEGF mAb A4.6.1 has been previously described by Kim et al., Growth Factors 7:53 (1992) and Kim et al. Nature 362:841 (1993). Total RNA was isolated from hybridoma cells producing the anti-VEGF Mab A.4.6.1 using RNAsol (TEL-TEST) and reverse-transcribed to cDNA using Oligo-dT primer and the SuperScript II system (GIBCO BRL, Gaithersburg, Md.). Degenerate oligonucleotide primer pools, based of the N-terminal amino acid sequences of the light and heavy chains of the antibody, were synthesized and used as forward primers. Reverse primers were based on framework 4 sequences obtained from murine light chain subgroup kV and heavy chain subgroup II (Kabat et al. Sequences of Proteins of Immunological Interest. 5th ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). After polymerase chain reaction (PCR) amplification, DNA fragments were ligated to a TA cloning vector (Invitrogen, San Diego, Calif.). Eight clones each of the light and heavy chains were sequenced. One clone with a consensus sequence for the light chain VL domain and one with a consensus sequence for the heavy chain VH domain were subcloned respectively into the pEMX1 vector containing the human CL and CH1 domains (Werther et al. J. Immunol. 157:4986-4995 (1996)), thus generating a mouse-human chimera. This chimeric F(ab) consisted of the entire murine A4.6.1 VH domain fused to a human CH1 domain at amino acid SerH113 and the entire murine A4.6.1 VL domain fused to a human CL domain at amino acid LysL107. Expression and purification of the chimeric F(ab) were identical to that of the humanized F(ab)s. The chimeric F(ab) was used as the standard in the binding assays. Computer Graphics Models of Murine and Humanized F(ab): Sequences of the VL and VH domains (FIGS. 1A and 1B) were used to construct a computer graphics model of the murine A4.6.1 VL-VH domains. This model was used to determine which framework residues should be incorporated into the humanized antibody. A model of the humanized F(ab) was also constructed to verify correct selection of murine framework residues. Construction of models was performed as described previously (Carter et al. Proc. Natl. Acad. Sci. USA 89:4285-4289 (1992) and Eigenbrot et al. J.Mol. Biol. 229:969-995 (1993)). Construction of Humanized F(ab)s: The plasmid pEMX1 used for mutagenesis and expression of F(ab)s in E coli has been described previously (Werther et al., supra). Briefly, the plasmid contains a DNA fragment encoding a consensus human k subgroup I light chain (VLkI-CL) and a consensus human subgroup III heavy chain (VHIII-CH1) and an alkaline phosphatase promoter. The use of the consensus sequences for VL and VH has been described previously (Carter et al., supra). To construct the first F(ab) variant of humanized A4.6.1, F(ab)-1, site-directed mutagenesis (Kunkel et al., Proc. Natl. Acad. Sci. USA 82:488-492 (1985)) was performed on a deoxyuridine-containing template of pEMX1. The six CDRs according to Kabat et al., supra, were changed to the murine A4.6.1 sequence. F(ab)-1 therefore consisted of a complete human framework (VL k subgroup I and VH subgroup III) with the six complete murine CDR sequences. Plasmids for all other F(ab) variants were constructed from the plasmid template of F(ab)-1. Plasmids were transformed into E. coli strain XL-1 Blue (Stratagene, San Diego, Calif.) for preparation of double- and single-stranded DNA. For each variant, DNA coding for light and heavy chains was completely sequenced using the dideoxynucleotide method (Sequenase, U.S. Biochemical Corp., Cleveland, Ohio). Plasmids were transformed into E coli strain 16C9, a derivative of MM294, plated onto Luria broth plates containing 50 μg/ml carbenicillin, and a single colony selected for protein expression. The single colony was grown in 5 ml Luria broth-100 mg/ml carbenicillin for 5-8 h at 37° C. The 5 ml culture was added to 500 ml AP5-50 μg/ml carbenicillin and allowed to grow for 20 h in a 4 L baffled shake flask at 30° C. AP5 media consists of: 1.5 g glucose, 11.0 g Hycase SF, 0.6 g yeast extract (certified), 0.19 g MgSO4 (anhydrous), 1.07 g NH4Cl, 3.73 g KCl, 1.2 g NaCl, 120 ml 1 M triethanolamine, pH 7.4, to 1 L water and then sterile filtered through 0.1 mm Sealkeen filter. Cells were harvested by centrifugation in a 1 L centrifuge bottle at 3000×g and the supernatant removed. After freezing for 1 h, the pellet was resuspended in 25 ml cold 10 mM Tris-1 mM EDTA-20% sucrose, pH 8.0. 250 ml of 0.1 M benzamidine (Sigma, St. Louis, Mo.) was added to inhibit proteolysis. After gentle stirring on ice for 3 h, the sample was centrifuged at 40,000×g for 15 min. The supernatant was then applied to a protein G-Sepharose CL-4B (Pharmacia, Uppsala, Sweden) column (0.5 ml bed volume) equilibrated with 10 mM Tris-1 mM EDTA, pH 7.5. The column was washed with 10 ml of 10 mM Tris-1 mM EDTA, pH 7.5, and eluted with 3 ml 0.3 M glycine, pH 3.0, into 1.25 ml 1 M Tris, pH 8.0. The F(ab) was then buffer exchanged into PBS using a Centricon-30 (Amicon, Beverly, Mass.) and concentrated to a final volume of 0.5 ml. SDS-PAGE gels of all F(ab)s were run to ascertain purity and the molecular weight of each variant was verified by electrospray mass spectrometry. Construction and Expression of Chimeric and Humanized IgG: For generation of human IgG1 variants of chimeric (chIgG1) and humanized (huIgG1) A4.6.1, the appropriate murine or humanized VL and VH (F(ab)-12, Table 2) domains were subcloned into separate, previously described, pRK vectors (Eaton et al., Biochemistry 25:8343-8347 (1986)). The DNA coding for the entire light and the entire heavy chain of each variant was verified by dideoxynucleotide sequencing. For transient expression of variants, heavy and light chain plasmids were co-transfected into human 293 cells (Graham et al., J. Gen. Virol. 36:59-74 (1977)), using a high efficiency procedure (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (1990)). Media was changed to serum-free and harvested daily for up to five days. Antibodies were purified from the pooled supernatants using protein A-Sepharose CL-4B (Pharmacia). The eluted antibody was buffer exchanged into PBS using a Centricon-30(Amicon), concentrated to 0.5 ml, sterile filtered using a Millex-GV(Millipore, Bedford, Mass.) and stored at 4° C. For stable expression of the final humanized IgG1 variant (rhuMAb VEGF), Chinese hamster ovary (CHO) cells were transfected with dicistronic vectors designed to coexpress both heavy and light chains (Lucas et al., Nucleic Acid Res. 24:1774-79 (1996)). Plasmids were introduced into DP12 cells, a proprietary derivative of the CHO-K1 DUX B11 cell line developed by L. Chasin (Columbia University), via lipofection and selected for growth in GHT-free medium (Chisholm, V. High efficiency gene transfer in mammalian cells. In: Glover, D M, Hames, B D. DNA Cloning 4. Mammalian systems. Oxford Univ. Press, Oxford pp 1-41 (1996)). Approximately 20 unamplified clones were randomly chosen and reseeded into 96 well plates. Relative specific productivity of each colony was monitored using an ELISA to quantitate the full length human IgG accumulated in each well after 3 days and a fluorescent dye, Calcien AM, as a surrogate marker of viable cell number per well. Based on these data, several unamplified clones were chosen for further amplification in the presence of increasing concentrations of methotrexate. Individual clones surviving at 10, 50, and 100 nM methotrexate were chosen and transferred to 96 well plates for productivity screening. One clone, which reproducibly exhibited high specific productivity, was expanded in T-flasks and used to inoculate a spinner culture. After several passages, the suspension-adapted cells were used to inoculate production cultures in GHT-containing, serum-free media supplemented with various hormones and protein hydrolysates. Harvested cell culture fluid containing rhuMAb VEGF was purified using protein A-Sepharose CL-4B. The purity after this step was ˜99% . Subsequent purification to homogeneity was carried out using an ion exchange chromatography step. The endotoxin content of the final purified antibody was <0.10 eu/mg. F(ab) and IgG Quantitation: For quantitating F(ab) molecules, ELISA plates were coated with 2 μg/ml goat anti-human IgG Fab (Organon Teknika, Durham, N.C.) in 50 mM carbonate buffer, pH 9.6, at 4° C. overnight and blocked with PBS-0.5% bovine serum albumin (blocking buffer) at room temperature for 1 h. Standards (0.78-50 ng/ml human F(ab)) were purchased from Chemicon (Temecula, Calif.). Serial dilutions of samples in PBS-0.5% bovine serum albumin-0.05% polysorbate 20 (assay buffer) were incubated on the plates for 2 h. Bound F(ab) was detected using horseradish peroxidase-labeled goat anti-human IgG F(ab) (Organon Teknika), followed by 3,3′,5,5′-tetramethylbenzidine (Kirkegaard & Perry Laboratories, Gaithersburg, Md.) as the substrate. Plates were washed between steps. Absorbance was read at 450 nm on a Vmax plate reader (Molecular Devices, Menlo Park, Calif.). The standard curve was fit using a four-parameter nonlinear regression curve-fitting program. Data points which fell in the range of the standard curve were used for calculating the F(ab) concentrations of samples. The concentration of full-length antibody was determined using goat anti-human IgG Fc (Cappel, Westchester, Pa.) for capture and horseradish peroxidase-labeled goat anti-human Fc (Cappel) for detection. Human IgG1 (Chemicon) was used as standard. VEGF Binding Assay: For measuring the VEGF binding activity of F(ab)s, ELISA plates were coated with 2 μg/ml rabbit F(ab′)2 to human IgG Fc (Jackson ImmunoResearch, West Grove, Pa.) and blocked with blocking buffer (described above). Diluted conditioned medium containing 3 ng/ml of KDR-IgG (Park et al., J. Biol. Chem. 269:25646-25645 (1994)) in blocking buffer were incubated on the plate for 1 h. Standards (6.9-440 ng/ml chimeric F(ab)) and two-fold serial of samples were incubated with 2 nM biotinylated VEGF for 1 h in tubes. The solutions from the tubes were then transferred to the ELISA plates and incubated for 1 h. After washing, biotinylated VEGF bound to KDR was detected using horseradish peroxidase-labeled streptavidin (Zymed, South San Francisco, Calif. or Sigma, St. Louis, Mo.) followed by 3,3′,5,5′-tetramethylbenzidine as the substrate. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy Software, Reading Pa.). Concentrations of F(ab) variants corresponding to the midpoint absorbance of the titration curve of the standard were calculated and then divided by the concentration of the standard corresponding to the midpoint absorbance of the standard titration curve. Assays for full-length IgG were the same as for the F(ab)s except that the assay buffer contained 10% human serum. BIAcore™ Biosensor Assay: VEGF binding of the humanized and chimeric F(ab)s were compared using a BIAcore™ biosensor (Karlsson et al. Methods: A Comparison to Methods in Enzymology 6:97-108 (1994)). Concentrations of F(ab)s were determined by quantitative amino acid analysis. VEGF was coupled to a CM-5 biosensor chip through primary amine groups according to manufacturer's instructions (Pharmacia). Off-rate kinetics were measured by saturating the chip with F(ab) (35 μl of 2 μM F(ab) at a flow rate of 20 μl/min) and then switching to buffer (PBS-0.05% polysorbate 20). Data points from 0-4500 sec were used for off-rate kinetic analysis. The dissociation rate constant (koff) was obtained from the slope of the plot of ln(R0/R) versus time, where R0 is the signal at t=0 and R is the signal at each time point. On-rate kinetics were measured using two-fold serial dilutions of F(ab) (0.0625-2 mM). The slope, Ks, was obtained from the plot of ln(−dR/dt) versus time for each F(ab) concentration using the BIAcore™ kinetics evaluation software as described in the Pharmacia Biosensor manual. R is the signal at time t. Data between 80 and 168, 148, 128, 114, 102, and 92 sec were used for 0.0625, 0.125, 0.25, 0.5, 1, and 2 mM F(ab), respectively. The association rate constant (kon) was obtained from the slope of the plot of Ks versus F(ab) concentration. At the end of each cycle, bound F(ab) was removed by injecting 5 μl of 50 mM HCl at a flow rate of 20 μl/min to regenerate the chip. Endothelial Cell Growth Assay; Bovine adrenal cortex-derived capillary endothelial cells were cultured in the presence of low glucose Dulbecco's modified Eagle's medium (DMEM) (GIBCO) supplemented with 10% calf serum, 2 mM glutamine, and antibiotics (growth medium), essentially as previously described (Leung et al. Science 246:1306-1309 (1989)). For mitogenic assays, endothelial cells were seeded at a density of 6×103 cells per well, in 6-well plates in growth medium. Either muMAb VEGF A.4.6.1 or rhuMAb VEGF was then added at concentrations ranging between 1 and 5000 ng/ml. After 2-3 hr, purified E coli-expressed rhVEGF165 was added to a final concentration of 3 ng/ml. For specificity control, each antibody was added to endothelial cells at the concentration of 5000 ng/ml, either alone or in the presence of 2 ng/ml bFGF. After five or six days, cells were dissociated by exposure to trypsin and counted in a Coulter counter (Coulter Electronics, Hialeah, Fla.). The variation from the mean did not exceed 10%. Data were analyzed by a four-parameter curve fitting program (KaleidaGraph). In Vivo Tumor Studies: Human A673 rhabdomyosarcoma cells (ATCC; CRL 1598) were cultured as previously described in DMEM/F12supplemented with 10% fetal bovine serum, 2 mM glutamine and antibiotics (Kim et al. Nature 362:841-844 (1993) and Borgström et al. Cancer Res. 56:4032-4039 (1996)). Female BALB/c nude mice, 6-10 weeks old, were injected subcutaneously with 2×106 tumor cells in the dorsal area in a volume of 200 μl. Animals were then treated with muMAb VEGF A.4.6.1, rhuMAb VEGF or a control MAb directed against the gp120 protein (Kim et al. Nature 362:841-844 (1993)). Both anti-VEGF MAbs were administered at the doses of 0.5 and 5 mg/kg; the control MAb was given at the dose of 5 mg/kg. Each MAb was administered twice weekly intra peritoneally in a volume of 100 μl, starting 24 hr after tumor cell inoculation. Each group consisted of 10 mice. Tumor size was determined at weekly intervals. Four weeks after tumor cell inoculation, animals were euthanized and the tumors were removed and weighed. Statistical analysis was performed by ANOVA. Results Humanization: The consensus sequence for the human heavy chain subgroup III and the light chain subgroup k I were used as the framework for the humanization (Kabat et al., supra) (FIGS. 1A and 1B). This framework has been successfully used in the humanization of other murine antibodies (Werther et al., supra; Carter et al., supra; Presta et al. J. Immunol. 151:2623-2632 (1993); and Eigenbrot et al. Proteins 18:49-62(1994)). CDR-H1 included residues H26-H35. The other CDRs were according to Kabat et al., supra. All humanized variants were initially made and screened for binding as F(ab)s expressed in E coli. Typical yields from 500 ml shake flasks were 0.1-0.4 mg F(ab). The chimeric F(ab) was used as the standard in the binding assays. In the initial variant, F(ab)-1, the CDR residues were transferred from the murine antibody to the human framework and, based on the models of the murine and humanized F(ab)s, the residue at position H49 (Ala in human) was changed to the murine Gly. In addition, F(ab)s which consisted of the chimeric heavy chain/F(ab)-1 light chain (F(ab)-2) and F(ab)-1 heavy chain/chimeric light chain (F(ab)-3) were generated and tested for binding. F(ab)-1 exhibited a binding affinity greater than 1000-fold reduced from the chimeric F(ab) (Table 2). Comparing the binding affinities of F(ab)-2 and F(ab)-3 suggested that framework residues in the F(ab)-1 VH domain needed to be altered in order to increase binding. TABLE 2 Binding of Humanized Anti-VEGF F(ab) Variants to VEGFa EC50 F(ab)-X EC50 chimeric F(ab)c Variant Template Changesb Purpose Mean S.D. N chim- Chimeric F(ab) 1.0 F(ab) F(ab)-1 Human FR Straight CDR swap >1350 2 AlaH49Gly F(ab)-2 Chimera Light Chain >145 3 F(ab)-1 Heavy Chain F(ab)-3 F(ab)-1 Light Chain 2.6 0.1 2 Chimera Heavy Chain F(ab)-4 F(ab)-1 ArgH71Leu CDR-H2 conformation >295 3 AsnH73Thr Framework F(ab)-5 F(ab)-4 LeuL46Val VL-VH interface 80.9 6.5 2 F(ab)-6 F(ab)-5 LeuH78Ala CDR-H1 conformation 36.4 4.2 2 F(ab)-7 F(ab)-5 IleH69Phe CDR-H2 conformation 45.2 2.3 2 F(ab)-8 F(ab)-5 IleH69Phe CDR-H2 conformation 9.6 0.9 4 LeuH78Ala CDR-H1 conformation F(ab)-9 F(ab)-8 GlyH49Ala CDR-H2 conformation >150 2 F(ab)-10 F(ab)-8 AsnH76Ser Framework 6.4 1.2 4 F(ab)-11 F(ab)-10 LysH75Ala Framework 3.3 0.4 2 F(ab)-12 F(ab)-10 ArgH94Lys CDR-H3 conformation 1.6 0.6 4 aAnti-VEGF F(ab) variants were incubated with biotinylated VEGF and then transferred to ELISA plates coated with KDR-IgG (Park et al., supra). bMurine residues are underlined; residue numbers are according to Kabat et al., supra. cMean and standard deviation are the average of the ratios calculated for each of the independent assays; the EC50 for chimeric F(ab) was 0.049 ± 0.013 mg/ml (1.0 nM). Changing human residues H71 and H73 to their murine counterparts in F(ab)-4 improved binding by 4-fold (Table 2). Inspection of the models of the murine and humanized F(ab)s suggested that residue L46, buried at the VL-VH interface and interacting with CDR-H3 (FIG. 2), might also play a role either in determining the conformation of CDR-H3 and/or affecting the relationship of the VL and VH domains. When the murine Val was exchanged for the human Leu at L46 (F(ab)-5), the binding affinity increased by almost 4-fold (Table 2). Three other buried framework residues were evaluated based on the molecular models: H49, H69 and H78. Position H69 may affect the conformation of CDR-H2 while position H78 may affect the conformation of CDR-H1 (FIG. 2). When each was individually changed from the human to murine counterpart, the binding improved by 2-fold in each case (F(ab)-6 and F(ab)-7, Table 2). When both were simultaneously changed, the improvement in binding was 8-fold (F(ab)-8, Table 2). Residue H49 was originally included as the murine Gly; when changed to the human consensus counterpart Ala the binding was reduced by 15-fold (F(ab)-9, Table 2). In F(ab)-10 and F(ab)-11 two residues in framework loop 3, FR-3, were changed to their murine counterparts: AsnH76 to murine Ser (F(ab)-10) and LysH75 to murine Ala (F(ab)-11). Both effected a relatively small improvement in binding (Table 2). Finally, at position H94 human and murine sequences most often have an Arg (Kabat et al., supra). In F(ab)-12, this Arg was replaced by the rare Lys found in the murine antibody (FIG. 1A) and this resulted in binding which was less than 2-fold from the chimeric F(ab) (Table 2). F(ab)-12 was also compared to the chimeric F(ab) using the BIAcore™ system (Pharmacia). Using this technique the Kd of the humanized F(ab)-12 was 2-fold weaker than that of the chimeric F(ab) due to both a slower kon and faster koff (Table 3). TABLE 3 Binding of Anti-VEGF F(ab) Variants to VEGF Using the BIAcore ™ Systema Amount of (Fab) bound koff kon Kd Variant (RU) (s−1) (M−1s−1) (nM) chim- 4250 5.9 × 10−5 6.5 × 104 0.91 F(ab)b F(ab)-12 3740 6.3 × 10−5 3.5 × 104 1.8 aThe amount of F(ab) bound, in resonance units (RU), was measured using a BIAcore ™ system when # 2 μg F(ab) was injected onto a chip containing 2480 RU immobilized VEGF. Off-rate kinetics (koff) were # measured by saturating the chip with F(ab) and then monitoring dissociation after switching to buffer. On-rate # kinetics (kon) were measured using two-fold serial dilutions of F(ab). Kd, the equilibrium dissociation # constant, was calculated as koff/kon. bchim-F(ab) is a chimeric F(ab) with murine VL and VH domains fused to human CL and CH1 heavy domains. Full length mAbs were constructed by fusing the VL and VH domains of the chimeric F(ab) and variant F(ab)-12 to the constant domains of human k light chain and human IgG1 heavy chain. The full length 12-IgG1 (F(ab)-12fused to human IgG1) exhibited binding which was 1.7-fold weaker than the chimeric IgG1 (Table 4). Both 12-IgG1 and the chimeric IgG1 bound slightly less well than the original murine mAb A4.6.1 (Table 4). TABLE 4 Binding of Anti-VEGF IgG Variants to VEGFa IgG1/chIgG1b Variant Mean S.D. N chIgG1 1.0 2 murIgG1c 0.759 0.001 2 12-IgG1d 1.71 0.03 2 aAnti-VEGF IgG variants were incubated with biotinylated VEGF and then transferred to ELISA plates coated with KDR-IgG (Park et al., (1994), supra). bchIgG1 is chimeric IgG1 with murine VL and VH domains fused to human CL and IgG1 heavy chains; the EC50 for chIgG1 was 0.113 ± 0.013 μg/ml (0.75 nM). cmurIgG1 is muMAbVEGF A461 purified from ascites. d12-IgG1 is F(ab)-12 VL and VH domains fused to human CL and IgG1 heavy chains. Biological Studies: rhuMAb VEGF and muMAb VEGF A.4.6.1. were compared for their ability to inhibit bovine capillary endothelial cell proliferation in response to a near maximally effective concentration of VEGF (3 ng/ml). As illustrated in FIG. 3, the two MAbs were essentially equivalent, both in potency and efficacy. The ED50 values were respectively 50±5 ng/ml and 48±8 ng/ml (˜0.3 nM). In both cases 90% inhibition was achieved at the concentration of 500 ng/ml (˜3 nM). Neither muMAb VEGF A.4.6.1 nor rhuMAb VEGF had any effect on basal or bFGF-stimulated proliferation of capillary endothelial cells, confirming that the inhibition is specific for VEGF. To determine whether such equivalency applies also to an in vivo system, the two antibodies were compared for their ability to suppress the growth of human A673 rhabdomyosarcoma cells in nude mice. Previous studies have shown that muMAb VEGF A.4.6.1 has a dramatic inhibitory effect in this tumor model (Kim et al. Nature 362:841-844 (1993) and Borgström et al. Cancer Res 56:4032-4039 (1996)). As shown in FIG. 4, at both doses tested (0.5 and 5 mg/kg), the two antibodies markedly suppressed tumor growth as assessed by tumor weight measurementsfour weeks after cell inoculation. The decreases in tumorweight compared to the control group were respectively 85% and 93% at each dose in the animals treated with muMAb VEGF A.4.6.1. versus 90% and 95% in those treated with rhuMAb VEGF. Similar results were obtained with the breast carcinoma cell line MDA-MB 435. EXAMPLE 2 In this example, the murine anti-VEGF antibody A4.6.1 discussed above was humanized by randomizing a small set of framework residues and by monovalent display of the resultant library of antibody molecules on the surface of filamentous phage in order to identify high affinity framework sequences via affinity-based selection. Materials and Methods Construction of Anti-VEGF Phagemid Vector, pMB4-19: The murine anti-VEGF mAb A4.6.1 is discussed above in Example 1. The first Fab variant of humanized A4.6.1, hu2.0, was constructed by site-directed mutagenesis using a deoxyuridine-containing template of plasmid pAK2 (Carter et al. Proc. Natl. Acad. Sci. U.S.A. 89:4285-4289 (1992)) which codes for a human VLκI-Cκ1 light chain and human VHIII-CH1γ1 heavy chain Fd fragment. The transplanted A4.6.1 CDR sequences were chosen according to the sequence definition of Kabat et al., supra, except for CDR-H1 which included residues 26-35. The Fab encoding sequence was subcloned into the phagemid vector phGHamg3 (Bass et al. Proteins 8:309-314 (1990) and Lowman et al. Biochemistry 30:10832-10838(1991)). This construct, pMB4-19, encodes the initial humanized A4.6.1 Fab, hu2.0, with the C-terminus of the heavy chain fused precisely to the carboxyl portion of the M13 gene III coat protein. pMB4-19 is similar in construction to pDH188, a previously described plasmid for monovalentdisplay of Fab fragments (Garrard et al. Biotechnology 9:1373-1377 (1991)). Notable differences between pMB4-19 and pDH188 include a shorter M13 gene III segment (codons 249-406) and use of an amber stop codon immediately following the antibody heavy chain Fd fragment. This permits expression of both secreted heavy chain or heavy chain-gene III fusions in supE suppressor strains of E. coli. Expression and Purification of Humanized A4.6.1 Fab Fragment: E coli strain 34B8, a nonsuppressor, was transformed with phagemid pMB4-19, or variants thereof. Single colonies were grown overnight at 37° C. in 5 mL 2YT containing 50 μg/mL carbenicillin. These cultures were diluted into 200 mL AP5 medium (Chang et al. Gene 55:189-196 (1987)) containing 20 μg/mL carbenicillin and incubated for 26 hr at 30° C. The cells were pelleted at 4000×g and frozen at −20° C. for at least 2 h. Cell pellets were then resuspended in 5 mL of 10 mM Tris-HCl (pH 7.6) containing 1 mM EDTA, shaken at 4° C. for 90 min and centrifuged at 10,000×g for 15 min. The supernatant was applied to a 1 mL streptococcal protein G-sepharose column (Pharmacia) and washed with 10 mL of 10 mM MES (pH 5.5). The bound Fab fragment was eluted with 2.5 mL 100 mM acetic acid and immediately neutralized with 0.75 mL 1M Tris-HCl, pH 8.0. Fab preparations were buffer-exchanged into PBS and concentrated using Centricon-30 concentrators (Amicon). Typical yields of Fab were ˜1 mg/L culture, post-protein G purification. Purified Fab samples were characterized by electrospray mass spectrometry, and concentrations were determined by amino acid analysis. Construction of the Anti-VEGF Fab Phagemid Library: The humanized A4.6.1 phagemid library was constructed by site-directed mutagenesis according to the method of Kunkel et al. Methods Enzymol. 204:125-139 (1991)). A derivative of pMB4-19 containing TAA stop triplets at VH codons 24, 37, 67 and 93 was prepared for use as the mutagenesis template (all sequence numbering according to Kabat et al., supra). This modification was to prevent subsequent background contamination by wild type sequences. The codons targeted for randomization were 4 and 71 (light chain) and 24, 37, 67, 69, 71, 73, 75, 76, 78, 93 and 94 (heavy chain). In order to randomize heavy chain codons 67, 69, 71, 73, 75, 76, 78, 93 and 94 with a single mutagenic oligonucleotide, two 126-mer oligonucleotides were first preassembled from 60 and 66-mer fragments by template-assisted enzymatic ligation. Specifically, 1.5 nmol of 5′ phosphorylated oligonucleotide 503-1 (5′-GAT TTC AAA CGT CGT NYT ACT WTT TCT AGA GAC AAC TCC AAA AAC ACA BYT TAC CTG CAG ATG AAC-3′ (SEQ ID NO:22)) or 503-2 (5′-GAT TTC AAA CGT CGT NYT ACT WTT TCT TTA GAC ACC TCC GCA AGC ACA BYT TAC CTG CAG ATG AAC-3′ (SEQ ID NO:23)) were combined with 1.5 nmol of 503-3 (5'-AGC CTG CGC GCT GAG GAC ACT GCC GTC TAT TAC TGT DYA ARG TAC CCC CAC TAT TAT GGG-3′ (SEQ ID NO:24)) (randomized codons underlined; N=A/G/T/C; W=A/T; B=G/T/C; D=G/A/T; R=A/G; Y=C/T). Then, 1.5 nmol of template oligonucleotide (5′-CTC AGC GCG CAG GCT GTT CAT CTG CAG GTA-3′ (SEQ ID NO:25)), with complementary sequence to the 5′ ends of 503-½ and the 3′ end of 503-3, was added to hybridize to each end of the ligation junction. Taq ligase (thermostable ligase from New England Biolabs) and buffer were added, and the reaction mixture was subjected to 40 rounds of thermal cycling, (95° C. 1.25 min; 50° C. for 5 min) so as to cycle the template oligonucleotide between ligated and unligated junctions. The product 126-mer oligonucleotides were purified on a 6% urea/TBE polyacrylamide gel and extracted from the polyacrylamide in buffer. The two 126-mer products were combined in equal ratio, ethanol precipitated and finally solubilized in 10 mM Tris-HCl, 1 mM EDTA. The mixed 126-mer oligonucleotide product was labeled 504-01. Randomization of select framework codons (VL 4, 71; VH 24, 37, 67, 69, 71, 73, 75, 76, 93, 94) was effected in two steps. Firstly, VL randomization was achieved by preparing three additional derivatives of the modified pMB4-19 template. Framework codons 4 and 71 in the light chain were replaced individually or pairwise using the two mutagenic oligonucleotides 5'-GCT GAT ATC CAG TTG ACC CAG TCC CCG-3′ (SEQ ID NO:26) 5′-and TCT GGG ACG GAT TAC ACT CTG ACC ATC-3′ (SEQ ID NO:27). Deoxyuridine-containing template was prepared from each of these new derivatives. Together with the original template, these four constructs coded for each of the four possible light chain framework sequence combinations (Table 5). Oligonucleotides 504-1, a mixture of two 126-mer oligonucleotides (see above), and 5′-CGT TTG TCC TGT GCA RYT TCT GGC TAT ACC TTC ACC AAC TAT GGT ATG AAC TGG RTC CGT CAG GCC CCG GGT AAG-3′ (SEQ ID NO:28) were used to randomize heavy chain framework codons using each of the four templates just described. The four libraries were electroporated into E. coli XL-1 Blue cells (Stratagene) and combined. The total number of independent transformants was estimated at >1.2×108, approximately 1,500-fold greater than the maximum number of DNA sequences in the library. A variety of systems have been developed for the functional display of antibody fragments on the surface of filamentous phage. Winter et al., Ann. Rev. Immunol. 12,433 (1994). These include the display of Fab or single chain Fv (scFv) fragments as fusions to either the gene III or gene VIII coat proteins of M13 bacteriophage. The system selected herein is similar to that described by Garrard et al., Biotechn, 9,1373 (1991) in which a Fab fragment is monovalently displayed as a gene III fusion (FIG. 7). This system has two notable features. In particular, unlike scFvs, Fab fragments have no tendency to form dimeric species, the presence of which can prevent selection of the tightest binders due to avidity effects. Additionally the monovalency of the displayed protein eliminates a second potential source of avidity effects that would otherwise result from the presence of multiple copies of a protein on each phagemid particle. Bass and Wells, Proteins 8:309 (1990) and Lowman et al., Biochemistry 30:10832 (1991). Phagemid particles displaying the humanized A4.6.1 Fab fragments were propagated in E. coli XL-1 Blue cells. Briefly, cells harboring the randomized pMB4-19 construct were grown overnight at 37° C. in 25 mL 2YT medium containing 50 μg/mL carbenicillin and approximately 1010 M13KO7 helper phage (Vieira & Messing Methods Enzymol. 153:3-11 (1987)). Phagemid stocks were purified from culture supernatants by precipitation with a saline polyethylene glycol solution, and resuspended in 100 μL PBS (˜1014 phagemid/mL) Selection of Humanized A4.6.1 Fab Variants: Purified VEGF121 (100 μL at 10 μg/mL in PBS) was coated onto a microtiter plate well overnight at 4° C. The coating solution was discarded and this well, in addition to an uncoated well, were blocked with 6% skim milk for 1 h and washed with PBS containing 0.05% TWEEN 20™ (detergent). Then, 10 μL of phagemid stock, diluted to 100 μL with 20 mM Tris (pH 7.5) containing 0.1% BSA and 0.05% TWEEN 20™, was added to each well. After 2 hours the wells were washed and the bound phage eluted with 100 μL of 0.1 M glycine (pH 2.0), and neutralized with 25 μL of 1M Tris pH 8.0. An aliquot of this was used to titer the number of phage eluted. The remaining phage eluted from the VEGF-coated well were propagated for use in the next selection cycle. A total of 8 rounds of selection was performed after which time 20 individual clones were selected and sequenced (Sanger et al. Proc. Natl. Acad. Sci. U.S.A. 74:5463-5467 (1977)). Determination of VEGF Binding Affinities: Association (kon) and dissociation (koff) rate constants for binding of humanized A4.6.1 Fab variants to VEGF121 were measured by surface plasmon resonance (Karlsson et al. J. Immun. Methods 145:229-240 (1991)) on a Pharmacia BIAcore instrument. VEGF121 was covalently immobilized on the biosensorchip via primary amino groups. Binding of humanized A4.6.1 Fab variants was measured by flowing solutions of Fab in PBS/0.05% TWEEN 20™ over the chip at a flow rate of 20 μL/min. Following each binding measurement, residual Fab was stripped from the immobilized ligand by washing with 5 μL of 50 mM aqueous HCl at 3 μL/min. Binding profiles were analyzed by nonlinear regression using a simple monovalent binding model (BIAevaluation software v2.0; Pharmacia). Results Construction of Humanized A4.6.1: An initial humanized A4.6.1 Fab fragment was constructed (hu2.0, FIGS. 5A and 5B), in which the CDRs from A4.6.1 were grafted onto a human VLκI-VHIII framework. All other residues in hu2.0 were maintained as the human sequence. Binding of this variant to VEGF was so weak as to be undetectable. Based on the relative affinity of other weakly-binding humanized A4.6.1 variants, the KD for binding of hu2.0 was estimated at >7 μM. This contrasts with an affinity of 1.6 nM for a chimeric Fab construct consisting of the intact VL and VH domains from murine A4.6.1 and human constant domains. Thus binding of hu2.0 to VEGF was at least 4000-fold reduced relative to the chimera. Design of Antibody Library: The group of framework changes to the human framework sequence herein is shown in Table 5 and FIG. 6. TABLE 5 Key Framework Residues Important for Antigen Binding and Targeted for Randomization Human VKLI, Murine Framework VHIII consensus A4.6.1 residue residue residue Randomizationa VL: 4 Met Met Met, Leu 71 Phe Tyr Phe, Tyr VH: 24 Ala Ala Ala, Val, Thr 37 Val Val Val, Ile 67 Phe Phe Phe, Val, Thr, Leu, Ile, Ala 69 Ile Phe Ile, Phe 71 Arg Leu Argb, Leub 73 Asp Thr Aspb, Thrb 75 Lys Ala LYSb, Alab 76 Asn Ser Asnb, Serb 78 Leu Ala Leu, Ala, Val, Phe 93 Ala Ala Ala, Val, Leu, Ser, Thr 94 Arg Lys Arg, Lys aAmino acid diversity in phagemid library bVH71, 73, 75, 76 randomized to yield the all-murine (L71/T73/A75/S76) or all-human (R71/D73/K75/N76) VHIII tetrad A concern in designing the humanized A4.6.1 phagemid library was that residues targeted for randomization were widely distributed across the VL and VH sequences. Limitations in the length of synthetic oligonucleotides requires that simultaneous randomization of each of these framework positions can only be achieved through the use of multiple oligonucleotides. However, as the number of oligonucleotides increases, the efficiency of mutagenesis decreases (i.e. the proportion of mutants obtained which incorporate sequence derived from all of the mutagenic oligonucleotides). To circumvent this problem, two features were incorporated into the library construction. The first was to prepare four different mutagenesis templates coding for each of the possible VL framework combinations. This was simple to do given the limited diversity of the light chain framework (only 4 different sequences), but was beneficial in that it eliminated the need for two oligomucleotides from the mutagenesis strategy. Secondly, two 126-base oligonucleotides were preassembled from smaller synthetic fragments. This made possible randomization of VH codons 67, 69, 71, 73, 75, 76, 93 and 94 with a single long oligonucleotide, rather than two smaller ones. The final randomization mutagenesis strategy therefore employed only two oligonucleotides simultaneously onto four different templates. Selection of Tight Binding Humanized A4.6.1 Fab's: Variants from the humanized A4.6.1 Fab phagemid library were selected based on binding to VEGF. Enrichment of functional phagemid, as measured by comparing titers for phage eluted from a VEGF-coated versus uncoated microtiter plate well, increased up to the seventh round of affinity panning. After one additional round of sorting, 20 clones were sequenced to identify preferred framework residues selected at each position randomized. These results, summarized in Table 6, revealed strong consensus amongst the clones selected. Ten out of the twenty clones had the identical DNA sequence, designated hu2.10. Of the thirteen framework positions randomized, eight substitutions were selected in hu2.10 (VL 71; VH 37, 71, 73, 75, 76, 78 and 94). Interestingly, residues VH 37 (lle) and 78 (Val) were selected neither as the human VHIII or murine A4.6.1 sequence. This result suggests that some framework positions may benefit from extending the diversity beyond the target human and parent murine framework sequences. TABLE 6 Sequences Selected from the Humanized A4.6.1 Phagemid Fab Library Residue substitutions VL VH Variant 4 71 24 37 67 69 71 73 75 76 78 93 94 murine M Y A V F F L T A S A A K A4.6.1 hu2.0 M F A V F I R N K N L A R (CDR- graft) Phage-selected clones: hu2.1(2) — Y — I — — — — — — V — K hu2.2(2) L Y — I — — — — — — V — K hu2.6(1) L — — I T — L T A S V — K hu2.7(1) L — — I — — — — — — V — K hu2.10 — Y — I — — L T A S V — K (10) Differences between hu2.0 and murine A4.6.1 antibodiess are underlined. The number of identical clones identifies for each phage-selected sequence is indicated in parentheses. Dashes in the sequences of phage-selected clones indicate selection of the human VLKI-VHIII framework sequence (i.e. as in hu2.0). There were four other unique amino acid sequences among the remaining ten clones analyzed: hu2.1, hu2.2, hu2.6 and hu2.7. All of these clones, in addition to hu2.10, contained identical framework substitutions at positions VH 37 (lle), 78 (Val) and 94 (Lys), but retained the human VHIII consensus sequence at positions 24 and 93. Four clones had lost the light chain coding sequence and did not bind VEGF when tested in a phage ELISA assay (Cunningham et al. EMBO J. 13:2508-251 (1994)). Such artifacts can often be minimized by reducing the number of sorting cycles or by propagating libraries on solid media. Expression and Binding Affinity of Humanized A4.6.1 Variants: Phage-selected variants hu2. 1, hu2.2, hu2.6, hu2.7 and hu2.10 were expressed in E coli using shake flasks and Fab fragments were purified from periplasmic extracts by protein G affinity chromatography. Recovered yields of Fab for these five clones ranged from 0.2 (hu2.6) to 1.7 mg/L (hu2.1). The affinity of each of these variants for antigen (VEGF) was measured by surface plasmon resonance on a BIAcore instrument (Table 7). Analysis of this binding data revealed that the consensus clone hu2.10 possessed the highest affinity for VEGF out of the five variants tested. Thus the Fab phagemid library was selectively enriched for the tightest binding clone. The calculated KD for hu2.10 was 55 nM, at least 125-fold tighter than for hu2.0 which contains no framework changes (KD>7 μM). The other four selected variants all exhibited weaker binding to VEGF, ranging down to a KD of 360 nM for the weakest (hu2.7). Interestingly, the KD for hu2.6, 67 nM, was only marginally weaker than that of hu2.10 and yet only one copy of this clone was found among 20 clones sequenced. This may have due to a lower level of expression and display, as was the case when expressing the soluble Fab of this variant. However, despite the lower expression rate, this variant is useful as a humanized antibody. TABLE 7 VEGF Binding Affinity of Humanized A4.6.1 Fab Variants kon koff KD KD(A4.6.1) Variant M−1s−1/104 104s−1 nM KD(mut) A4.6.1 chimera 5.4 0.85 1.6 >4000 hu2.0 ND ND >7000** Phage selected clones: hu2.1 0.70 18 260 170 hu2.2 0.47 16 340 210 hu2.6 0.67 4.5 67 40 hu2.7 0.67 24 360 230 hu2.10 0.63 3.5 55 35 *hu2.10 V 2.0 1.8 9.3 5.8 *hu2.10 V = hu2.10 with mutation VL Leu−>Val Estimated errors in the Biacore binding measurements are +/−25%. **Too weak to measure; estimate of lower bound Additional Improvement of Humanized Variant hu2.1: Despite the large improvement in antigen affinity over the initial humanized variant, binding of hu2.10 to VEGF was still 35-fold weaker than a chimeric Fab fragment containing the murine A4.6.1 VL and VH domains. This considerable difference suggested that further optimization of the humanized framework might be possible through additional mutations. Of the Vernier residues identified by Foote & Winter J. Mol. Biol. 224:487-499 (1992), only residues VL 46, VH 2 and VH 48 differed in the A4.6.1 versus human VLκI-VHIII framework (FIGS. 5A and 5B) but were not randomized in our phagemid library. A molecular model of the humanized A4.6.1 Fv fragment showed that VL 46 sits at the VL-VH interface and could influence the conformation of CDR-H3. Furthermore, this amino acid is almost always leucine in most VLκ frameworks (Kabat et al. supra), but is valine in A4.6.1. Accordingly, a Leu -→Val substitution was made at this position in the background of hu2.10. Analysis of binding kinetics for this new variant, hu2.10V, indicated a further 6-fold improvement in the KD for VEGF binding, demonstrating the importance of valine at position VL 46 in antibody A4.6.1. The KD for hu2.10V (9.3 nM) was thus within 6-fold that of the chimera. In contrast to VL 46, no improvement in the binding affinity of hu2.10 was observed for replacement of either VH 2 or VH 48 with the corresponding residue from murine A4.6.1. EXAMPLE 3 In this example, CDR randomization, affinity maturation by monovalent Fab phage display, and cumulative combination of mutations were used to enhance the affinity of a humanized anti-VEGF antibody. Construction of Humanized Antibody pY0101: Phage-displayed antibody vector phMB4-19-1.6 (see FIGS. 8A-E) was used as a parent. In this construct, anti-VEGF is expressed as a Fab fragment with its heavy chain fused to the N-terminus of the truncated g3p. Both the light and heavy chains are under the control of phoA promoter with an upstream stIl signal-sequence for secretion into the periplasm. Point mutations outside the CDR regions were made by site-directed mutagenesis to improve affinity for VEGF with oligonucleotides HL-242, HL-243, HL-245, HL-246, HL-254, HL-256, and HL-257 as shown in Table 8 below: TABLE 8 Oligos for Directed Mutations Oligo Substitution/ Number Region Comments Sequence HL-242 VL M4L 5′-GATATCCAGTTGACCCAGTCCCCG-3′ (SEQ ID NO:29) HL-243 VL L46V 5′-GCTCCGAAAGTACTGATTTAC-3′ (SEQ ID NO:30) HL-245 VH CDR-7 5′-CGTCGTTTCACTTTTTCTGCAGACACCTC (SEQ ID NO:31) CAGCAACACAGTATACCTGCAGATG-3′ HL-246 VH R98K 5′-CTATTACTGTGCAAAGTACCCCCAC-3′ (SEQ ID NO:32) HL-254 VL Y71F 5′-GGGACGGATTTCACTCTGACCATC-3′ (SEQ ID NO:33) HL-256 VH I37V 5′-GGTATGAACTGGGTCCGTCAGGCCCC-3′ (SEQ ID NO:34) HL-257 VH CDR-7 5′-CGTCGTTTCACTTTTTCTTTAGACACCTC (SEQ ID NO:35) A72L CAAAAGCACAGCATACCTGCAGATGAAC-3′ S76K N77S The resulting variant was termed Y0101 (FIGS. 9A and 9B). Construction of the First Generation of Antibody-Phage Libraries: To prevent contamination by wild-type sequence, templates with the TAA stop codon at the targeted sites for randomization were prepared and used for constructing libraries by site-directed mutagenesis with oligonucleotides using the degenerate NNS codon (where N is an equal mixture of A, G, C, and T while S is an equal mixture of G and C) for saturation mutagenesis. VL1 and VH3 were chosen as potential candidates for affinity enhancement (FIGS. 9A and B). Within the CDRs, two libraries were constructed from the pY0101 template. VL1 was mutated using stop-template oligonucleotides HL-248 and HL-249 (Table 9) and library oligonucleotides HL-258 and HL-259 (Table 10). Similarly, three libraries were constructed for VH3 using stop template oligonucleotides HL-250, HL-251, and HL-252 (Table 9), and library oligonucleotides HL-260, HL-261, and HL-262 (Table 10). Library construction is summarized in Tables 9 and 10 below. TABLE 9 Template Oligos for Mutagenesis Oligo Region Number Comments Sequence HL-248 VL1 5′-GGGTCACCATCACCTGCT (SEQ ID NO:36) AAGCATAATAATAATAAAGCA ACTATTTAAACTGG-3′ HL-249 VL1 5′-GCGCAAGTCAGGATATTT (SEQ ID NO:37) AATAATAATAATAATGGTATC AACAGAAACCAGG-3′ HL-250 VH3 5′-GTCTATTACTGTGCAAAG (SEQ ID NO:38) TAATAACACTAATAAGGGAGC AGCCACTGG-3′ HL-251 VH3 5′-GGTACCCCCACTATTATT (SEQ ID NO:39) AATAATAATAATGGTATTTCG ACGTCTGGGG-3′ HL-252 VH3 5′-CACTATTATGGGAGCAGC (SEQ ID NO:40) CACTAATAATAATAAGTCTGG GTCAAGGAACCCTG-3′ HL-263 VH1 5′-TCCTGTGCAGCTTCTGGC (SEQ ID NO:41) TAATAATTCTAATAATAAGGT ATGAACTGGGTCCG-3′ HL-264 VH2 5′-GAATGGGTTGGATGGATT (SEQ ID NO:42) AACTAATAATAAGGTTCCGAC CTATGCTGCGG-3′ YC-80 VH3 5′-CTGTGCAAAGTACCCGTA (SEQ ID NO:43) ATATTAATAATAATAACACTG GTATTTCGAC-3′ YC-100 CDR7 5′-CGTTTCACTTTTTCTTAA (SEQ ID NO:44) GACTAATCCAAATAAACAGCA TACCTGCAG-3′ YC-102 VH2 5′-GAATGGGTTGGATGGATT (SEQ ID NO:45) TAATAATAATAAGGTGAACCG ACCTATG-3′ TABLE 10 Random Oligos for Library Construction Oligo Region Number Comment Sequence HL-258 VL1 5′-GGGTCACCATCACCTGCN (SEQ ID NO:46) NSGCANNSNNSNNSNNSAGCA ACTATTTAAACTGG-3′ HL-259 VL1 5′-GCGCAAGTCAGGATATTN (SEQ ID NO:47) NSNNSNNSNNSNNSTGGTATC AACAGAAACCAGG-3′ HL-260 VH3 5′-GTCTATTACTGTGCAAAG (SEQ ID NO:48) NNSNNSCACNNSNNSGGGAGC AGCCACTGG-3′ HL-261 VH3 5′-GGTACCCCCACTATTATN (SEQ ID NO:49) NSNNSNNSNNSTGGTATTTCG ACGTCTGGGG-3′ HL-262 VH3 5′-CACTATTATGGGAGCAGC (SEQ ID NO:50) CACNNSNNSNNSNNSGTCTGG GGTCAAGGAACCCTG-3′ HL-265 VH1 5′-TCCTGTGCAGCTTCTGGC (SEQ ID NO:51) NNSNNSTTCNNSNNSNNSGGT ATGAACTGGGTCCG-3′ HL-266 VH2 5′-GAATGGGTTGGATGGATT (SEQ ID NO:52) AACNNSNNSNNSGGTNNSCCG ACCTATGCTGCGG-3′ YC-81 VH3 5′-CTGTGCAAAGTACCCGNN (SEQ ID NO:53) STATNNSNNSNNSNNSCACTG GTATTTCGAC-3′ YC-101 CDR7 5′-CGTTTCACTTTTTCTNNS (SEQ ID NO:54) GACNNSTCCAAANNSACAGCA TACCTGCAG-3′ YC-103 VH2 5′-GAATGGGTTGGATGGATT (SEQ ID NO:55) NNSNNSNNSNNSGGTGAACCG ACCTATG-3′ The products of random mutagenesis reactions were electroporated into XL1-Blue E. coli cells (Stratagene) and amplified by growing 15-16 h with M13KO7 helper phage. The complexity of each library, ranging from 2×107 to 1.5×108, was estimated based upon plating of the initial transformation onto carbenicillin plates. Initial Affinity Selections: For each round of selection, approximately 109-1010 phage were screened for binding to plates (Nunc Maxisorp 96-well) coated with 2 μg/mL VEGF (recombinant; residue 9-109 version) in 50 mM carbonate buffer, pH 9.6 and blocked with 5% instant milk in 50 mM carbonate buffer, pH 9.6. After 1-2 hour binding at room temperature, in the presence of 0.5% bovine serum albumin and 0.05% TWEEN 20™ in PBS, the phage solution was removed, and the plate was washed ten times with PBS/TWEEN™ (0.05% TWEEN 20™ in PBS buffer). Typically, to select for enhanced affinity variants with slower dissociation rates, the plates were incubated with PBS/TWEEN™ buffer for a period of time which lengthened progressively for each round of selection (from 0 minute for the first round, to 3 h for the ninth round of selection). After the PBS/TWEEN™ buffer was removed, the remained phages were eluted with 0.1 M HCl and immediately neutralized with ⅓ volume of 1 M Tris, pH 8.0. The eluted phages were propagated by infecting XL1-Blue E coli cells (Stratagene) for the next selection cycle. Sequencing data revealed that both VL1 libraries, even after the eighth/ninth round of sorting, remained diverse, tolerating various type of residues at the sites of randomization. In contrast, the VH3 libraries retained only wild type residues or had very conservative substitutions. This suggested that the VL1 was more exposed to solvent and lay outside the binding interface. In contrast, VH3 did not show dramatically different sidechain substitutions, and therefore might be more intimately involved in antigen binding. Phage-ELISA Assay of Binding Affinities: From each of these libraries, representative clones (those represented by abundant sequences) were assayed for their affinities relative to that of parent clone pY0101 in a phage-ELISA assay. In such an assay, phages were first serially diluted to determine a fractional saturation titer which was then held constant and used to incubate with varying concentrations of VEGF (starting at 200 nM to 0 nM) in solution. The mixture was then transferred onto plate precoated with VEGF (2 μg/mL) and blocked with 5% instant milk, and allowed to equilibrate for 1 hour at room temperature. Thereafter, the phage solution was removed and the remaining bound phages were detected with a solution of rabbit anti-phage antibody mixed with goat anti-rabbit conjugate of horse radish peroxidase. After an hour incubation at room temperature, the plate was developed with a chromogenic substrate, o-phenylenediamine (Sigma). The reaction was stopped with addition of ½ volume of 2.5 M H2SO4. Optical density at 492 nm was measured on a spectrophotometric plate reader. Although all of the selected clones from these five libraries showed either weaker or similar affinities than that of wild type pY0101 in phage-ELISA assay, one particular variant (pY0192) from library HL-258 displayed an apparent advantage (about 10 fold) in the level of expression or phage display relative to pY0101. This clone contained mutations S24R, S26N, Q27E, D28Q, and I29L in the VL region (FIG. 9A). In addition, this variant was found to have a spurious mutation, M341I in VH. This variant showed no significant difference in binding affinity to VEGF as compared with the pY0101 variant. To improve the level of Fab-display on phage, and the signal-to-noise ratio for phage-ELISA assays, the corresponding substitutions in pY0192 at VL1 were incorporated into the template background for constructing both CDR Ala-mutants and the second generation of anti-VEGF libraries. Ala-Scanning the CDRs of Anti-VEGF: To determine the energetics contributed by each of the amino acids in the CDR regions and thus better select target residues for randomization, the CDR regions were screened by substituting alanine for each residue. Each Ala mutant was constructed using site-directed mutagenesis with a synthetic oligonucleotide encoding for the specific alanine substitution. Where Ala was the wild-type residue, Ser was substituted to test the effect of a sidechain substitution. Phage clones having a single Ala mutation were purified and assayed in phage-ELISA as described above. Results of the Ala-scan demonstrated that Ala-substitution at various positions can have an effect, ranging from 2 to >150 fold reductions, on antigen binding affinity compared to pY0192. In addition, it confirmed a previous observationthat VH3, but not VL1, was involved in antigen binding. Results of the CDR Ala-scan are summarized in Table 11 below. TABLE 11 Relative VEGF Affinities of Ala-Scan Fab Variants Residue IC50 (mut) Residue IC50 (mut) VL IC50 (wt) VH IC50 (wt) R24A 1 G26A 2 A25S 1 Y27A 34 N26A 1 T28A 1 E27A 1 F29A 16 Q28A 1 T30A 1 L29A 1 N31A >150 S30A 2 Y32A >150 N31A 2 G33A 6 Y32A 2 I34A 6 L33A 2 N35A 66 N34A 4 W50A >150 F50A 1 I51A 4 T51A 1 N52A >150 S52A 1 T53A 9 S53A 1 Y54A 9 L54A 1 T55A 4 H55A 1 G56A 1 S56A 1 E57A 2 P58A 1 Q89A 4 T59A 3 Q90A 3 Y60A 2 Y91A 14 A61S 1 S92A 1 A62S 1 T93A 1 D63A 1 V94A 2 F64A 1 P95A 3 K65A 1 W96A >150 R66A 1 T97A 1 Y99A >150 P100A 38 H101A 4 Y102A 4 Y103A 5 G104A 2 S105A 1 S106A >150 H107A 2 W108A >150 Y109A 19 F110A 25 D111A 2 All variants are in the background of pY0192 (“wt”; see FIGS. 9A-B). IC50's were determined in a competitive phage-ELISA assay. The largest effects of Ala substitutionsare seen in CDRs H1, H2, and H3, including Y27A (34-fold reduction in affinity), N31A, Y32A, W50A, N52A, Y99A, S106A and W108A (each >150-fold reduction); N35A (66-fold reduction), P1OOA (38-fold reduction) and F100A (25-fold reduction). In contrast, only one VL substitution had a large impact on binding affinity, W96A (>150-fold reduction). These results point to the three VH CDRs as the main energetic determinants of Fab binding to VEGF, with some contribution from VL3. Design of Second-Generation CDR Mutation Libraries: Two additional libraries which randomized existing residues in anti-VEGF version Y0192 were designed based upon inspection of the crystal structure. In VH2, residues 52-55 were randomized because they lie within the binding interface with VEGF. An additional region of the Fab, termed “CDR7” (see FIG. 10B), was also targeted for randomization because several residues in this loop, while not contacting VEGF, do have contacts with the VH loops of the antibody. These represented potential sites for affinity improvement through secondary effects upon the interface residues. Residues L72, T74, and S77 were randomized in this CDR7 library. Also based upon the crystal structure, one of the original CDR libraries was reconstructed to re-test the potential for affinity maturation in the VH1 CDR. Residues 27, 28, and 30-32 were randomized using the new Y0192 background. Second-Generation Selections of Anti-VEGF Libraries: Based on Ala-scan results as well as the crystal structure of the antigen-antibody (F(ab)-12) complex, a total of seventeen libraries were constructed using the pY0192 template and stop-template oligonucleotides (which code for a stop codon at the sites targeted for randomization) YC-80, YC-100, YC-102, HL-263, and HL-264 (Table 9 above). The corresponding randomization oligonucleotides (which employ NNS at the sites targeted for randomization) were YC81, YC-101, YC-103, HL-265, and HL-266 (Table 10 above). The resulting transformants yielded libraries with complexities ranging from 6×107 to 5×108 which suggests that the libraries were comprehensive in covering all possible variants. Phage libraries were sorted for 7-8 rounds using conditions as described in Table 12 below. TABLE 12 Conditions for Secondary Selections of Fab Variants Round of Incubation Incubation Incubation Selection Time (hr) Solution Temp. (° C.) 1 0 0 room temp. 2 1 ELISA buffer room temp. 3 2 1 μM VEGF/ELISA room temp. 4 18 1 μM VEGF/ELISA room temp. 5 37 1 μM VEGF/ELISA room temp. 6 17 hr @ room temp./ 1 μM VEGF/ELISA room temp./ 30 hr @ 37° C. 37° C. 7 63 1 μM VEGF/ELISA 37° C. 8 121 1 μM VEGF/ELISA 37° C. ELISA buffer contained 0.5% bovine serum albumin and 0.05% TWEEN 20™ in PBS. VEGF was included in the incubation buffer to minimize rebinding of phages to VEGF coated on the surface of the plate. Sorting of these libraries yielded phage enrichments over 7 to 8 rounds of selection. Phage-ELISA Assays of Second Generation Clones: After eight round of selections, ten to twenty clones from each library were isolated from carbenicillin containing plates harboring E. coli (XL1) colonies which had been infected with an eluted phage pool. Colonies were isolated and grown with helper phage to obtain single-stranded DNA for sequencing. CDR substitutions selected for more favorable binding to VEGF were deduced from the DNA sequences of phagemid clones. A sampling of selected clones is shown in Table 13 below. TABLE 13 Protein Sequences of Anti-VEGF Variants from Second Generation Fab-Phage Libraries Variants from library YC-81 Name VH3 sequence (residues 99-111) Y0238-1 YPYYRGTSHWYFD (SEQ ID NO:56) Y0238-2 YPYYINKSHWYFD (SEQ ID NO:57) Y0238-3 YPYYYGTSHWYFD (SEQ ID NO:58) Y0238-4 YPYYYNQSHWYFD (SEQ ID NO:59) Y0238-5 YPYYIAKSHWYFD (SEQ ID NO:60) Y0238-6 YPYYRDNSHWYFD (SEQ ID NO:61) Y0238-7 YPYYWGTSHWYFD (SEQ ID NO:62) Y0238-8 YPYYRQNSHWYFD (SEQ ID NO:63) Y0238-9 YPYYRQSSHWYFD (SEQ ID NO:64) Y0238-10 YPYYRNTSHWYFD (SEQ ID NO:65) Y0238-11 YPYYKNTSHWYFD (SEQ ID NO:66) Y0238-12 YPYYIERSHWYFD (SEQ ID NO:67) Y0228-21 YPYYRNASHWYFD (SEQ ID NO:68) Y0228-22 YPYYTTRSHWYFD (SEQ ID NO:69) Y0228-23 YPYYEGSSHWYFD (SEQ ID NO:70) Y0228-24 YPYYRQRGHWYFD (SEQ ID NO:71) Y0228-26 YPYYTGRSHWYFD (SEQ ID NO:72) Y0228-27 YPYYTNTSHWYFD (SEQ ID NO:73) Y0228-28 YPYYRKGSHWYFD (SEQ ID NO:74) Y0228-29 YPYYTGSSHWYFD (SEQ ID NO:75) Y0228-30 YPYYRSGSHWYFD (SEQ ID NO:76) Y0229-20 YPYYTNRSHWYFD (SEQ ID NO:77) Y0229-21 YPYYRNSSHWYFD (SEQ ID NO:78) Y0229-22 YPYYKESSHWYFD (SEQ ID NO:79) Y0229-23 YPYYRDASHWYFD (SEQ ID NO:80) Y0229-24 YPYYRQKGHWYFD (SEQ ID NO:81) Y0229-25 YPYYKGGSHWYFD (SEQ ID NO:82) Y0229-26 YPYYYGASHWYFD (SEQ ID NO:83) Y0229-27 YPYYRGESHWYFD (SEQ ID NO:84) Y0229-28 YPYYRSTSHWYFD (SEQ ID NO:85) Variants from library HL-265 Name VH1 sequence (residue 26-35) Y0243-1 GYDFTHYGMN (SEQ ID NO:86) (5/10 clones) Y0243-2 GYEFQHYGMN (SEQ ID NO:87) Y0243-3 GYEFTHYGMN (SEQ ID NO:88) Y0243-4 GYDFGHYGMN (SEQ ID NO:89) Y0243-5 GYDFSHYGMN (SEQ ID NO:90) Y0243-6 GYEFSHYGMN (SEQ ID NO:91) Variants from library YC-101 Name VH “CDR7” sequence (residues 70-79) Y0244-1 FSVDVSKSTA (SEQ ID NO:92) Y0244-2 FSLDKSKSTA (SEQ ID NO:93) Y0244-3 FSLDVWKSTA (SEQ ID NO:94) Y0244-4 FSIDKSKSTA (:95) The sequence of the randomized region only is shown as deduced from DNA sequencing. When a number of clones were tested along with the parent clone pY0192 in phage-ELISA assay, none showed a distinctive improvement over the parental clone. This could be explained by the time-scale on which the assay was performed (<3 hours). In order to quantify improvement in antigen binding over parent clone, several anti-VEGF variants' DNA were transformed into E. coli strain 34B8, expressed as Fab, and purified by passing the periplasmic shockate through a protein G column (Pharmacia) as described in Example 2 above. CDR Combination Variants: To improve VEGF binding affinity further, mutations found by phage display were combined in different CDRs to create multiple-CDR mutants. In particular, the mutations identified in the most affinity-improved phage variants from VH1, VH2, and VH3 libraries were combined (Table 14) in order to test for additivity of their contributions to binding affinity. TABLE 14 Combination CDR Anti-VEGF Variants Parent Mutagenesis oligo/ Name clone comments Sequence Y0313-1 Y0243-1 YC-115 (VH3: 5′-GCAAAGTACCCGTACTATTATGGGAC (SEQ ID NO:96) H101Y and S105T) GAGCCACTGGTATTTC-3′ Y0317 Y0313-1 YC-108 (revert VL1 5′-GTCACCATCACCTGCAGCGCAAGTCA (SEQ ID NO:97) back to wild type) GGATATTAGCAACTATTTAAAC-3′ Y0313-3 Y0238-3 YC-116 (VH3; 5′-CCGTACTATTATGGGAGCAGCCACTG (SEQ ID NO:98) T105S) GTATTTC-3′ Mutations from the indicated parental vectors were combined with those from the indicated oligonucleotide by site-directed mutagenesis to yield the combination variants listed. Version Y0317 is equivalent to Y0313-1 except that the background mutation in VL1 was removed and its sequence reverted back to that in pY0101. The effects of mutating H101Y and S105T were tested by constructing a reversion mutant from Y0238-3. BIAcore Analysis: The VEGF-binding affinities of Fab fragments were calculated from association and dissociation rate constants measured using a BIAcore-2000™ surface plasmon resonance system (BIAcore, Inc., Piscataway, N.J.). A biosensor chip was activated for covalent coupling of VEGF using N-ethyl-N′-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's (BIAcore, Inc., Piscataway, N.J.) instructions. VEGF was buffered exchanged into 20 mM sodium acetate, pH 4.8 and diluted to approximately 50 μg/mL. An aliquot (35 μL) was injected at a flow rate of 2 μL/min to achieve approximately 700-1400 response units (RU) of coupled protein. Finally, 1 M ethanolamine was injected as a blocking agent. For kinetics measurements, two-fold serial dilutions of Fab were injected in PBS/TWEEN™ buffer (0.05% TWEEN 20™ in phosphate buffered saline) at 25° C. at a flow rate of 10 μL/min. On rates and off rates were calculated using standard protocols (Karlson et al. J. Immun. Methods 145:229-240(1991)). Equilibrium dissociation constants, Kd's from surface plasmon resonance (SPR) measurements were calculated as koff/kon. Data are shown in Table 15 below. TABLE 15 Kinetics of Fab-VEGF binding from BIAcore ™ measurements Kd (wt)/Kd Variant Kon (104/M/s) koff (10−4/s) Kd (nM) (mut) Y0244-1 3.4 2.7 8 3.6 Y0244-4 5.2 1.7 3.3 0.9 Y0243-1 6.7 0.45 0.7 4.1 Y0238-3 1.7 ≦0.04* ≦0.2* ≧14* Y0238-7 1.5 ≦0.06* ≦0.4* ≧7.3* Y0238-10 1.6 0.09 0.6 4.8 Y0238-5 0.8 0.08 0.9 3.2 Y0238-1 2.6 0.09 0.4 7.3 Y0313-1 3.5 ≦0.054* ≦0.15* ≧20* Y0313-3 1.2 0.081 0.65 4.5 *The dissociation rate observed probably reflects an upper limit for the true dissociation rate in these experiments, since the off-rate is approaching the limit of detection by BIAcore. The BIAcore™ data in Table 15 show that several variants had improved affinity over Y0192. For example, a CDRH1 variant, Y0243-1, showed 4.1 fold enhanced affinity, arising from mutations T28D and N31 H. Variant Y0238-3 showed at least a 14 fold improvement in binding affinity over Y0192. Both CDRH3 mutations contribute to the improved affinity of Y0238-3 because reversion of T105 to S (variant Y0313-3) reduces the affinity of Y0238-3 from 0.15 nM to 0.65 nM (see Table 15). The greater affinity enhancement relative to Y0192 was seen for Y0313-1, which contained CDRH3 mutations combined with CDRH1 mutations. Cell-Based Assay of VEGF Inhibition: Several versions of the A4.6.1 anti-VEGF antibody were tested for their ability to antagonize VEGF (recombinant; version 1-165) in induction of the growth of HuVECs (human umbilical vein endothelial cells). The 96-well plates were seeded with 1000 HuVECs perwell and fasted in assay medium (F12:DMEM 50:50 supplemented with 1.5% diafiltered fetal bovine serum) for 24 h. The concentration of VEGF used for inducing the cells was determined by first titrating for the amount of VEGF that can stimulate 80% of maximal DNA synthesis. Fresh assay medium containing fixed amounts of VEGF (0.2 nM final concentration), and increasing concentrations of anti-VEGF Fab or Mab were then added. After 40 h of incubation, DNA synthesis was measured by incorporation of tritiated thymidine. Cells were pulsed with 0.5 μCi per well of [3H]-thymidine for 24 h and harvested for counting, using a TopCount gamma counter. The results (FIG. 11) show that the full-length IgG form of F(ab)-12 was significantly more potent in inhibiting VEGF activity than the Fab form (here, Y0192 was used). However, both variants Y0238-3 and Y0313-1 showed even more potent inhibition of VEGF activity than either the Y0192 Fab or F(ab)-12 Mab. Comparing the Fab forms, variant Y0313-1 appeared >30-fold more potent than the wild-type Fab. It should be noted that the amount of VEGF (0.2 nM) used in this assay is potentially limiting for determination of an accurate IC50 for the mutant. For example, if the binding affinity (Kd) of the mutant is in fact <0.2 nM, the IC50 in this experiment will appear higher than under conditions of lower VEGF concentration. The result therefore supports the conclusion that the affinity-improvedvariant is at least 30-fold improved in affinity for VEGF, and that it effectively blocks VEGF activity in vitro. Since the variant Y0317 differs from Y0313-1 only in the reversion of the VL1 sequence to wild-type (FIG. 10A), it is predicted that Y0317 will have similar activity to Y0313-1. Variant Y0317 (Fab) and humanized variant F(ab)-12 from Example 1 (full length and Fab) were compared for their ability to inhibit bovine capillary endothelial cell proliferation in response to a near maximally effective concentration of VEGF using the assay described in Example 1. As illustrated in FIG. 12, Y0317 was markedly more effective at inhibiting bovine capillary endothelial cell proliferation than the full length and Fab forms of F(ab)-12 in this assay. The Y0317 affinity matured Fab demonstrated an ED50 value in this assay which was at least about 20 fold lower than F(ab)-12 Fab.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates generally to anti-VEGF antibodies and, in particular, to humanized anti-VEGF antibodies and variant anti-VEGF antibodies. 2. Description of Related Art It is now well established that angiogenesis is implicated in the pathogenesis of a variety of disorders. These include solid tumors, intraocular neovascular syndromes such as proliferative retinopathies or age-related macular degeneration (AMD), rheumatoid arthritis, and psoriasis (Folkman et al. J. Biol. Chem. 267:10931-10934 (1992); Klagsbrun et al. Annu. Rev. Physiol. 53:217-239 (1991); and Garner A, Vascular diseases. In: Pathobiology of ocular disease. A dynamic approach. Garner A, Klintworth G K, Eds. 2nd Edition Marcel Dekker, New York, pp 1625-1710 (1994)). In the case of solid tumors, the neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to the normal cells. Accordingly, a correlation has been observed between density of microvessels in tumor sections and patient survival in breast cancer as well as in several other tumors (Weidner et al. N Engl J Med 324:1-6 (1991); Horak et al. Lancet 340:1120-1124 (1992); and Macchiarini et al. Lancet 340:145-146 (1992)). The search for positive regulators of angiogenesis has yielded many candidates, including aFGF, bFGF, TGF-α, TGF-β, HGF, TNF-α, angiogenin, IL-8, etc. (Folkman et al. and Klagsbrun et al). The negative regulators so far identified include thrombospondin (Good et al. Proc. Natl. Acad. Sci. USA. 87:6624-6628 (1990)), the 16-kilodalton N-terminal fragment of prolactin (Clapp et al. Endocrinology, 133:1292-1299 (1993)), angiostatin (O'Reilly et al. Cell, 79:315-328 (1994)) and endostatin (O'Reilly et al. Cell, 88:277-285 (1996)). Work done over the last several years has established the key role of vascular endothelial growth factor (VEGF) in the regulation of normal and abnormal angiogenesis (Ferrara et al. Endocr. Rev. 18:4-25 (1997)). The finding that the loss of even a single VEGF allele results in embryonic lethality points to an irreplaceable role played by this factor in the development and differentiation of the vascular system (Ferrara et al.). Furthermore, VEGF has been shown to be a key mediator of neovascularization associated with tumors and intraocular disorders (Ferrara et al.). The VEGF mRNA is overexpressed by the majority of human tumors examined (Berkman et al. J Clin Invest 91:153-159 (1993); Brown et al. Human Pathol. 26:86-91 (1995); Brown et al. Cancer Res. 53:4727-4735 (1993); Mattern et al. Brit. J. Cancer. 73:931-934 (1996); and Dvorak et al. Am J. Pathol. 146:1029-1039 (1995)). Also, the concentration of VEGF in eye fluids are highly correlated to the presence of active proliferation of blood vessels in patients with diabetic and other ischemia-related retinopathies (Aiello et al. N. Engl. J. Med. 331:1480-1487 (1994)). Furthermore, recent studies have demonstrated the localization of VEGF in choroidal neovascular membranes in patients affected by AMD (Lopez et al. Invest. Ophtalmo. Vis. Sci. 37:855-868 (1996)). Anti-VEGF neutralizing antibodies suppress the growth of a variety of human tumor cell lines in nude mice (Kim et al. Nature 362:841-844 (1993); Warren et al. J. Clin. Invest. 95:1789-1797 (1995); Borgström et al. Cancer Res. 56:4032-4039 (1996); and Melnyk et al. Cancer Res. 56:921-924 (1996)) and also inhibit intraocular angiogenesis in models of ischemic retinal disorders (Adamis et al. Arch. Ophthalmol. 114:66-71 (1996)). Therefore, anti-VEGF monoclonal antibodies or other inhibitors of VEGF action are promising candidates for the treatment of solid tumors and various intraocular neovascular disorders.
<SOH> SUMMARY OF THE INVENTION <EOH>This application describes humanized anti-VEGF antibodies and anti-VEGF antibody variants with desirable properties from a therapeutic perspective, including strong binding affinity for VEGF; the ability to inhibit VEGF-induced proliferation of endothelial cells in vitro; and the ability to inhibit VEGF-induced angiogenesis in vivo. The preferred humanized anti-VEGF antibody or variant anti-VEGF antibody herein binds human VEGF with a K d value of no more than about 1×10 −8 M and preferably no more than about 5×10 −9 M. In addition, the humanized or variant anti-VEGF antibody may have an ED50 value of no morethan about 5 nM for inhibiting VEGF-induced proliferation of endothelial cells in vitro. The humanized or variant anti-VEGF antibodies of particular interest herein are those which inhibit at least about 50% of tumor growth in an A673 in vivo tumor model, at an antibody dose of 5 mg/kg. In one embodiment, the anti-VEGF antibody has a heavy and light chain variable domain, wherein the heavy chain variable domain comprises hypervariable regions with the following amino acid sequences: CDRH1 (GYX 1 FTX 2 YGMN, wherein X 1 is T or D and X 2 is N or H; SEQ ID NO:128), CDRH2 (WINTYTGEPTYAADFKR; SEQ ID NO:2) and CDRH3 (YPX 1 YYGX 2 SHWYFDV, wherein X 1 is Y or H and X 2 is S or T; SEQ ID NO:129). For example, the heavy chain variable domain may comprise the amino acid sequences of CDRH1 (GYTFTNYGMN; SEQ ID NO:1), CDRH2 (WINTYTGEPTYAADFKR;SEQ ID NO:2) and CDRH3 (YPHYYGSSHWYFDV; SEQ ID NO:3). Preferably, the three heavy chain hypervariable regions are provided in a human framework region, e.g., as a contiguous sequence represented by the following formula: FR1-CDRH1-FR2-CDRH2-FR3-CDRH3-FR4. The invention further provides an anti-VEGF antibody heavy chain variable domain comprising the amino acid sequence: EVQLVESGGGLVQPGGSLRLSCAASGYX 1 FTX 2 YGMNWVRQAPGKGLEWVGWINTYTGEPT YAADFKRRFTFSLDTSK STAYLQMNSLRAEDTAVYYCAKYPX 3 YYGX 4 SHWYFDVWGQGTLV TVSS (SEQ ID NO:125), wherein X 1 is T or D; X 2 is N or H; X 3 is Y or H and X 4 is S or T. One particularly useful heavy chain variable domain sequence is that of the F(ab)-12 humanized antibody of Example 1 and comprises the heavy chain variable domain sequence of SEQ ID NO:7. Such preferred heavy chain variable domain sequences may be combined with the following preferred light chain variable domain sequences or with other light chain variable domain sequences, provided that the antibody so produced binds human VEGF. The invention also provides preferred light chain variable domain sequences which may be combined with the above-identified heavy chain variable domain sequences or with other heavy chain variable domain sequences, provided that the antibody so produced retains the ability to bind to human VEGF. For example, the light chain variable domain may comprise hypervariable regions with the following amino acid sequences: CDRL1 (SASQDISNYLN; SEQ ID NO:4), CDRL2 (FTSSLHS; SEQ ID NO:5) and CDRL3 (QQYSTVPWT; SEQ ID NO:6). Preferably, the three light chain hypervariable regions are provided in a human framework region, e.g., as a contiguous sequence represented by the following formula: FR1-CDRL1-FR2-CDRL2-FR3-CDRL3-FR4. In one embodiment, the invention provides a humanized anti-VEGF antibody light chain variable domain comprising the amino acid sequence: DIQX 1 TQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFS GSGSGTDFTLTISSLQPEDFATYYCQQYSTVPWTFGQGTKVEIKR (SEQ ID NO:124), wherein X 1 is M or L. One particularly useful light chain variable domain sequence is that of the F(ab)-12 humanized antibody of Example 1 and comprises the light chain variable domain sequence of SEQ ID NO:8. The invention also provides a variant of a parent anti-VEGF antibody (which parent antibody is preferably a humanized or human anti-VEGF antibody), wherein the variant binds human VEGF and comprises an amino acid substitution in a hypervariable region of the heavy or light chain variable domain of the parent anti-VEGF antibody. The variant preferably has one or more substitution(s) in one or more hypervariable region(s) of the anti-VEGF antibody. Preferably, the substitution(s) are in the heavy chain variable domain of the parent antibody. For example, the amino acid subsition(s) may be in the CDRH1 and/or CDRH3 of the heavy chain variable domain. Preferably, there are substitutions in both these hypervariable regions. Such “affinity matured” variants are demonstrated herein to bind human VEGF more strongly than the parent anti-VEGF antibody from which they are generated, i.e., they have a K d value which is significantly less than that of the parent anti-VEGF antibody. Preferably, the variant has an ED50 value for inhibiting VEGF-induced proliferation of endothelial cells in vitro which is at least about 10 fold lower, preferably at least about 20 fold lower, and most preferably at least about 50 fold lower, than that of the parent anti-VEGF antibody. One particularly prefered variant is the Y0317 variant of Example 3, which has a CDRH1 comprising the amino acid sequence:GYDFTHYGMN (SEQ ID NO:126) and a CDRH3 comprising the amino acid sequence:YPYYYGTSHWYFDV (SEQ ID NO:127). These hypervariable regions and CDRH2 are generally provided in a human framework region, e.g., resulting in a heavy chain variable domain comprising the amino acid sequence of SEQ ID NO:116. Such heavy chain variable domain sequences are optionally combined with a light chain variable domain comprising the amino acid sequence of SEQ ID NO:124, and preferably the light chain variable domain amino acid sequence of SEQ ID NO:115. Various forms of the antibody are contemplated herein. For example, the anti-VEGF antibody may be a full length antibody (e.g. having an intact human Fc region) or an antibody fragment (e.g. a Fab, Fab′ or F(ab′) 2 ). Furthermore, the antibody may be labeled with a detectable label, immobilized on a solid phase and/or conjugated with a heterologous compound (such as a cytotoxic agent). Diagnostic and therapeutic uses for the antibody are contemplated. In one diagnostic application, the invention provides a method for determining the presence of VEGF protein comprising exposing a sample suspected of containing the VEGF protein to the anti-VEGF antibody and determining binding of the antibody to the sample. For this use, the invention provides a kit comprising the antibody and instructions for using the antibody to detect the VEGF protein. The invention further provides: isolated nucleic acid encoding the antibody; a vector comprising that nucleic acid, optionally operably linked to control sequences recognized by a host cell transformed with the vector; a host cell comprising that vector; a process for producing the antibody comprising culturing the host cell so that the nucleic acid is expressed and, optionally, recovering the antibody from the host cell culture (e.g. from the host cell culture medium). The invention also provides a composition comprising the anti-VEGF antibody and a pharmaceutically acceptable carrier or diluent. The composition for therapeutic use is sterile and may be lyophilized. The invention further provides a method for treating a mammal suffering from a tumor or retinal disorder, comprising administering a therapeutically effective amount of the anti-VEGF antibody to the mammal.
20041026
20071120
20050526
59686.0
2
TUNGATURTHI, PARITHOSH K
ANTI-VEGF ANTIBODIES
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,975,020
ACCEPTED
Network for telephony and data communication
A service outlet for coupling a data unit to a wired digital data signal and for coupling a service unit to an analog service signal, for use with a service wire pair installed in walls of a building, the service wire pair concurrently carrying a wired bi-directional digital data signal and an analog service signal carried over a service signal frequency band, using frequency division multiplexing, wherein the wired digital data signal is carried over a frequency band distinct from the service signal frequency band. The outlet has a single enclosure and, within the enclosure: a wiring connector; first and second filters coupled to the wiring connector; a service connector coupled to the first filter and connectable to the service unit for coupling the service unit to the analog service signal; a service wiring modem coupled to the second filter; and a power supply coupled to the service wiring modem.
1. A service outlet for coupling a data unit to a wired digital data signal and for coupling a service unit to an analog service signal, for use with a service wire pair installed in walls of a building, the service wire pair concurrently carrying a wired bi-directional digital data signal and an analog service signal carried over a service signal frequency band, using frequency division multiplexing, wherein the wired digital data signal is carried over a frequency band distinct from the service signal frequency band, wherein said service outlet comprises a single enclosure and, within said single enclosure: a wiring connector for connecting to the service wire pair, a first filter coupled to the wiring connector for passing only the analog service signal, a standard service connector coupled to the first filter and connectable to the service unit for coupling the service unit to the analog service signal, a second filter coupled to the wiring connector for passing only the wired digital data signal, a service wiring modem coupled to the second filter for coupling the second filter to the wired digital data signal, a standard data connector connectable to the data unit, a transceiver coupled to the standard data connector for coupling packet-based bi-directional digital data to the data unit, a multiport device consisting of one of a bridge, a router and a gateway coupled to said service wiring modem and said transceiver for coupling wired digital data contained in the wired digital data signal and the packet based digital data, and a power supply coupled to the service wiring modem and the transceiver for powering the service wiring modem and the transceiver. 2. The service outlet as in claim 1, wherein the wired digital data signal is xDSL based and the analog service signal is an analog telephone signal. 3. The service outlet as in claim 1, wherein the standard data connector and the transceiver are operative for coupling to an Ethernet IEEE802.3 interface. 4. The service outlet as in claim 1, further comprising a power connector connectable to a power source, and wherein the power supply is coupled to said power connector for power feeding the service wiring modem and the transceiver from the power source. 5. The service outlet as in claim 1, wherein the service wire pair further carries a power signal, and the power supply is coupled to the wiring connector for coupling to the power signal and feeding at least one component in the outlet from the power signal. 6. The service outlet as in claim 1, wherein the service wire pair is a telephone wire pair and the analog service signal is an analog telephone signal. 7. The service outlet as in claim 1, for coupling an additional data unit to wired digital data contained in the wired digital data signal, wherein the wired digital data comprises distinct first and second data streams using time division multiplexing, and wherein the service outlet further comprises: a second standard data connector connectable to a second data unit, a second transceiver coupled to the second standard data connector and to the multiport device, and wherein the first data unit is couplable only to the first data stream and the second data unit couplable only to the second data stream. 8. A device for coupling a first data unit and a second data unit to first and second distinct Internet-based data streams carried over a single XDSL connection using time division multiplexing, for use with a telephone wire pair concurrently carrying xDSL and analog telephony signals using frequency division multiplexing, wherein the xDSL signal is carried over a high frequency band and the analog telephony signal is carried over a low frequency band, wherein said device comprises a single enclosure and, within said single enclosure: a telephone connector for connecting to the telephone wire pair, a high pass filter coupled to the telephone connector for passing only the xDSL signal, a xDSL modem coupled to the high pass filter for coupling to the xDSL signal, a first standard data connector connectable to the first data unit, a first data transceiver coupled with the first standard data connector for first Internet-based data stream communication with the first data unit, a second standard data connector connectable to the second data unit, a second data transceiver coupled with the second standard data connector for second Internet-based data stream communication with the first data unit, and a multiport device consisting of one of a bridge, a router and a gateway coupled to said xDSL modem and said first and second data transceivers for coupling the xDSL signal and the first and second Internet-based data streams. 9. The device as in claim 8 further couplable to an analog telephone device, the device further comprising: a low pass filter coupled to said telephone connector for passing only the analog telephony signal, and a second telephone connector coupled to said low pass filter for coupling an analog telephone device to said analog telephony signal. 10. The device as in claim 8 further couplable to a service wiring within a building carrying a bi-directional wired digital data signal and an analog service signal over an analog service signal frequency band, using frequency division multiplexing wherein the bi-directional wired digital data signal is carried over a frequency band distinct from the service signal frequency band, wherein said device further comprises: a wiring connector for connecting to the service wiring, a second filter coupled to said wiring connector and operative to pass only the second bi-directional wired digital data, and a service wiring modem coupled between said second filter and said multiport device. 11. The device as in claim 10, wherein the service wiring is a telephone wiring and the analog service signal is a further analog telephony signal. 12. The device as in claim 8, wherein the device is integrated within a service outlet. 13. The device as in claim 8, wherein the telephone wire pair concurrently carries a power signal, and wherein the device is couplable to the power signal to be at least in part powered by the power signal. 14. A device for coupling first and second bi-directional digital data signals, each carried over a distinct wiring, to each other and to a data unit, for use with a telephone wire pair at least in part in a building, the telephone wire pair concurrently carrying first bi-directional digital data using a XDSL signal containing the first bi-directional digital data and an analog telephone signal over a telephone signal frequency band, wherein the xDSL signal is carried over a frequency band distinct from and higher than the telephone signal frequency band, and with a service wire pair installed at least in part in walls within a building, the service wire pair concurrently carrying a second bi-directional digital data signal containing second bi-directional digital data and an analog service signal carried over an analog service signal frequency band, using frequency division multiplexing wherein the second bi-directional digital data signal is carried over a frequency band distinct from the analog service signal frequency band, said device comprising a single enclosure and, within said single enclosure: a telephone connector for connecting said device to the telephone wire pair; a high pass filter coupled to said telephone connector for passing only the XDSL signal; a xDSL modem coupled to said high pass filter for coupling with the first bi-directional data signal; a service wiring connector for connecting said device to the service wire pair; a filter coupled to said service wiring connector for passing only the second bi-directional data signal; a service wiring modem coupled to said filter for coupling with the second bi-directional data signal; a multiport unit consisting of one of a bridge, a router and a gateway coupled to said xDSL modem and service wiring modem and operative to couple the first and second bi-directional digital data to each other; a standard data interface coupled to the multiport unit for coupling a standard data interface signal to at least one of the XDSL signal and the second bi-directional digital data signal; and a standard data connector coupled to the standard data interface and connectable to a data unit for coupling the standard data interface signal to the data unit. 15. The device as in claim 14 further connectable to an analog telephone device and wherein the service wiring is a telephone wire pair and the service signal is an analog telephone signal, the device further comprising: a low pass filter coupled to said telephone connector for passing only the analog telephone signal, and a second telephone connector coupled to said low pass filter for coupling an analog telephone device to said analog telephony signal. 16. The device as in claim 14 further connectable to a service unit, the device further comprising: a second filter coupled to said service wiring connector for passing only the analog service signal; and a service connector coupled to said second filter for coupling a service unit to said analog service signal. 17. The device as in claim 14, wherein the device is integrated within a service outlet. 18. The device as in claim 14, wherein the telephone wire pair concurrently carries a power signal, and wherein the device is couplable to the power signal to be at least in part powered by the power signal. 19. A device for coupling a first data unit and a second data unit to respective first and second distinct data streams, for use with a wiring concurrently carrying over the same wires a power signal and a digital data signal, the digital data signal comprising said first and second distinct data streams carried using time division multiplexing, wherein said device comprises a single enclosure and, within said single enclosure: a wiring connector for connecting to the wiring, a wiring modem coupled to the wiring connector for coupling to the digital data signal, a first standard data connector connectable to the first data unit, a first data transceiver coupled to the first standard data connector for data communication with the first data unit, a second standard data connector connectable to the second data unit, a second data transceiver coupled to the second standard data connector for data communication with the second data unit, and a multiport unit coupled to said wiring modem and said first and second data transceivers for coupling only the first data stream to the first data transceiver and for coupling only the second data stream to the second data transceiver, wherein at least part of the device is coupled to the wiring connector to be powered by the power signal. 20. The device as in claim 19 wherein the first and second data streams are packet-based. 21. The device as in claim 19 wherein the multiport unit consists of one of a bridge, a router and a gateway. 22. The device as in claim 19 wherein the power signal is Direct Current (DC). 23. The device as in claim 19 wherein the power signal is Alternating Current (AC). 24. The device as in claim 19 wherein the digital data signal is carried over a digital data signal frequency band and the power signal is carried over a frequency band distinct from the digital data signal frequency band, and the device further comprises: a first filter coupled between the wiring connector and the wiring modem for passing only the digital data signal, and a second filter coupled to the wiring connector for passing only the power signal to a part of the device. 25. The device as in claim 19 wherein the wiring is a pre-existing service wiring at least in part in the walls of a building, and the service wiring further concurrently carries an analog service signal over an analog service signal frequency band, and the digital data signal is carried using frequency division multiplexing wherein the digital data signal is carried over a digital data frequency band distinct from the analog service signal frequency band. 26. The device as in claim 25 further operative for coupling a service unit to the analog service signal, wherein the device further comprises: a service filter coupled to the wiring connector for passing only the analog service signal, a standard service connector coupled to the service filter and connectable to a service unit for coupling the service unit to the analog service signal. 27. The device as in claim 26, wherein the service wiring is a telephone wire pair and the analog service signal is an analog telephone signal. 28. The device as in claim 19, wherein the device is integrated within a service outlet. 29. The device as in claim 19, wherein the first and second data streams are Ethernet based. 30. An outlet for coupling a first data unit and a second data unit to respective first and second distinct data streams, for use with a wiring at least in part in walls of a building and carrying a digital data signal, the digital data signal comprising said first and second distinct data streams carried using time division multiplexing, wherein said outlet comprises a single enclosure and, within said single enclosure: a wiring connector for connecting to the wiring, a wiring modem coupled to the wiring connector for coupling to the digital data signal, a first standard data connector connectable to the first data unit, a first data transceiver coupled to the first standard data connector for data communication with the first data unit, a second standard data connector connectable to the second data unit, a second data transceiver coupled to the second standard data connector for data communication with the second data unit, and a multiport unit coupled to said wiring modem and said first and second data transceivers for coupling only the first data stream to the first data transceiver and for coupling only the second data stream to the second data transceiver, wherein at least one of the wiring modem and the first and second data transceivers comprises power consuming components. 31. The outlet as in claim 30 wherein the first and second data streams are packet-based. 32. The outlet as in claim 30 wherein the multiport unit consists of one of a bridge, a router and a gateway. 33. The outlet as in claim 30 wherein the wiring concurrently carries a power signal over the same wires, and the power consuming components are coupled to the wiring connector to be powered by the power signal. 34. The outlet as in claim 33 wherein the power signal is Direct Current (DC). 35. The outlet as in claim 33 wherein the power signal is Alternating Current (AC). 36. The outlet as in claim 33 wherein the digital data signal is carried over a digital data signal frequency band and the power signal is carried over a frequency band distinct from the digital data signal frequency band, and the outlet further comprises: a first filter coupled between the wiring connector and the wiring modem for passing only the digital data signal, and a second filter coupled between the wiring connector and the at least one of the power consuming components for passing only the power signal. 37. The outlet as in claim 30, further comprising a power connector connectable to a power source, the power supply being coupled to said power connector for power feeding said wiring modem and at least one of said transceivers from said power source. 38. The outlet as in claim 30 wherein the wiring is a pre-existing service wiring at least in part in the walls of the building, and the service wiring further concurrently carries analog service signal over an analog service signal frequency band, and the digital data signal is carried using frequency division multiplexing wherein the digital data signal is carried over a digital data frequency band distinct from the analog service signal frequency band. 39. The outlet as in claim 38 further operative for coupling a service unit to the analog service signal, wherein the outlet further comprises: a service filter coupled to the wiring connector for passing only the analog service signal, and a standard service connector coupled to the service filter and connectable to a service unit for coupling the service unit to the analog service signal. 40. The outlet as in claim 39, wherein the service wiring is a telephone wire pair and the analog service signal is an analog telephone signal. 41. The device as in claim 30, wherein the first and second data streams are Ethernet based. 42. A device for coupling to a data signal, a power signal and a telephone signal carried by a network wiring in a building, said device comprising: a wiring connector connectible to the network wiring; a telephone connector coupled to said wiring connector and operative to couple a telephone unit to the telephone signal; a data connector coupled to said wiring connector and operative to couple a data unit to the data signal; and at least one power consuming component coupled to said wiring connector in order to receive, and be powered by, the power signal, wherein the telephone signal and the data signal are concurrently carried over the same conductors of the network wiring in respectively different frequency bands, and said device further comprises a frequency selective means to separate the telephone and data signals. 43. The device according to claim 42 wherein the power signal is concurrently carried over the same conductors of the network together with the telephone and data signals in a distinct power signal band. 44. The device according to claim 42, wherein the power signal is part of the telephone signal. 45. The device according to claim 42, wherein the power signal is carried by dedicated wires of the network wiring. 46. The device according to claim 42, wherein the power signal is a direct current signal. 47. The device according to claim 42, wherein the power signal is an alternating current signal. 48. The device according to claim 42, wherein said device is at least partially integrated into an outlet. 49. For use with a telephone wiring in a wall of a building, the wiring comprising of at least two conductors and being connected to external telephone and data networks, the telephone wiring concurrently carrying over the same conductors a digitized telephony signal and a digital data signal, a device for coupling a telephone device to said digitized telephony signal and a data unit to said digital data signal, the device comprising in a single enclosure: a wiring connector connectable to the telephone wiring; a high pass filter coupled to said wiring connector for passing only the digital data signal; a telephone wiring modem coupled to said high pass filter, the telephone wiring modem operative to conduct a bi-directional packet-based digital data signal over said telephone wiring; a data connector connectable to a data unit for establishing a bi-directional packet-based digital data signal connection with the data unit; a router coupled between the data connector and the telephone wiring modem for data transfer between said modem and said data connector; and a standard telephone connector coupled to said wiring connector and connectable to a telephone device for coupling the telephone device to the digitized telephony signal. 50. The device according to claim 49, wherein the digital telephony signal is ISDN based. 51. The device according to claim 49, wherein the digital data signal is ADSL based and the telephone wiring modem is an ADSL modem. 52. The device according to claim 49, wherein the enclosure is attachable to a wall. 53. The device according to claim 49, wherein the enclosure is mountable into a telephone outlet cavity. 54. The device according to claim 49, wherein the enclosure is housed in a telephone outlet. 55. The device according to claim 49, wherein the telephone device is an analog telephone device. 56. The device according to claim 49, wherein the wiring further concurrently carries a power signal, and the telephone wiring modem is further coupled to the wiring connector for coupling to the power signal to be powered therefrom. 57. The device according to claim 56, wherein the power signal is carried using frequency division multiplexing.
This is a continuation of copending U.S. application Ser. No. 10/773,247, filed on Feb. 9, 2004, which is itself a continuation of U.S. application Ser. No. 09/357,379, filed on Jul. 20, 1999, now U.S. Pat. No. 6,690,677. Both documents are incorporated herein by reference. FIELD OF THE INVENTION The present invention relates to the field of wired communication systems, and, more specifically, to the networking of devices using telephone lines. BACKGROUND OF THE INVENTION FIG. 1 shows the wiring configuration for a prior-art telephone system 10 for a residence or other building, wired with a telephone line 5. Residence telephone line 5 consists of single wire pair which connects to a junction-box 16, which in turn connects to a Public Switched Telephone Network (PSTN) 18 via a cable 17, terminating in a public switch 19, apparatus which establishes and enables telephony from one telephone to another. The term “analog telephony” herein denotes traditional analog low-frequency audio voice signals typically under 3 KHz, sometimes referred to as “POTS” (“plain old telephone service”), whereas the term “telephony” in general denotes any kind of telephone service, including digital service such as Integrated Services Digital Network (ISDN). The term “high-frequency” herein denotes any frequency substantially above such analog telephony audio frequencies, such as that used for data. ISDN typically uses frequencies not exceeding 100 KHz (typically the energy is concentrated around 40 KHz). The term “telephone device” herein denotes, without limitation, any apparatus for telephony (including both analog telephony and ISDN), as well as any device using telephony signals, such as fax, voice-modem, and so forth. Junction box 16 is used to separate the in-home circuitry from the PSTN and is used as a test facility for troubleshooting as well as for wiring new telephone outlets in the home. A plurality of telephones 13a, 13b, and 13c connects to telephone line 5 via a plurality of outlets 11a, 11b, 11c, and 11d. Each outlet has a connector (often referred to as a “jack”), denoted in FIG. 1 as 12a, 12b, 12c, and 12d, respectively. Each outlet may be connected to a telephone via a connector (often referred to as a “plug”), denoted in FIG. 1 (for the three telephone illustrated) as 14a, 14b, and 14c, respectively. It is also important to note that lines 5a, 5b, 5c, 5d, and 5e are electrically the same paired conductors. There is a requirement for using the existing telephone infrastructure for both telephone and data networking. This would simplify the task of establishing a new local area network in a home or other building, because there would be no additional wires and outlets to install. U.S. Pat. No. 4,766,402 to Crane (hereinafter referred to as “Crane”) teaches a way to form a LAN over two wire telephone lines, but without the telephone service. The concept of frequency domain/division multiplexing (FDM) is well-known in the art, and provides a means of splitting the bandwidth carried by a wire into a low-frequency band capable of carrying an analog telephony signal and a high-frequency band capable of carrying data communication or other signals. Such a mechanism is described for example in U.S. Pat. No. 4,785,448 to Reichert et al (hereinafter referred to as “Reichert”). Also is widely used are xDSL systems, primarily Asymmetric Digital Subscriber Loop (ADSL) systems. Relevant prior art in this field is also disclosed in U.S. Pat. No. 5,896,443 to Dichter (hereinafter referred to as “Dichter”). Dichter is the first to suggest a method and apparatus for applying such a technique for residence telephone wiring, enabling simultaneously carrying telephone and data communication signals. The Dichter network is illustrated in FIG. 2, which shows a network 20 serving both telephones and a local area network. Data Terminal Equipment (DTE) units 24a, 24b and 24c are connected to the local area network via Data Communication Equipment (DCE) units 23a, 23b and 23c, respectively. Examples of Data Communication Equipment include modems, line drivers, line receivers, and transceivers. DCE units 23a, 23b and 23c are respectively connected to high pass filters (HPF) 22a, 22b and 22c. The HPF's allow the DCE units access to the high-frequency band carried by telephone line 5. In a first embodiment (not shown in FIG. 2), telephones 13a, 13b and 13c are directly connected to telephone line 5 via connectors 14a, 14b and 14c, respectively. However, in order to avoid interference to the data network caused by the telephones, a second embodiment is suggested (shown in FIG. 2), wherein low pass filters (LPF's) 21a, 21b and 21c are added to isolate telephones 13a, 13b and 13c from telephone line 5. Furthermore, a low pass filter must also be connected to Junction-Box 16, in order to filter noises induced from or to the PSTN wiring 17. As is the case in FIG. 1, it is important to note that lines 5a, 5b, 5c, 5d and 5e are electrically the same paired conductors. The Dichter network suffers from degraded data communication performance, because of the following drawbacks: 1. Induced noise in the band used by the data communication network is distributed throughout the network. The telephone line within a building serves as a long antenna, receiving electromagnetic noise produced from outside the building or by local equipment such as air-conditioning systems, appliances, and so forth. Electrical noise in the frequency band used by the data communication network can be induced in the extremities of the telephone line 5 (line 5e or 5a in FIG. 2) and propagated via the telephone line 5 throughout the whole system. This is liable to cause errors in the data transportation. 2. The wiring media consists of a single long wire (telephone line 5). In order to ensure a proper impedance match to this transmission-line, it is necessary to install terminators at each end of the telephone line 5. One of the advantages of using the telephone infrastructure for a data network, however, is to avoid replacing the internal wiring. Thus, either such terminators must be installed at additional cost, or suffer the performance problems associated with an impedance mismatch. 3. In the case where LPF 21 is not fitted to the telephones 13, each connected telephone appears as a non-terminated stub, and this is liable to cause undesirable signal reflections. 4. In one embodiment, an LPF 21 is to be attached to each telephone 13. In such a configuration, an additional modification to the telephone itself is required. This further makes the implementation of such system complex and costly, and defeats the purpose of using an existing telephone line and telephone sets ‘as is’ for a data network. 5. The data communication network used in the Dichter network supports only the ‘bus’ type of data communication network, wherein all devices share the same physical media. Such topology suffers from a number of drawbacks, as described in U.S. Pat. No. 5,841,360 to the present inventor, which is incorporated by reference for all purposes as if fully set forth herein. Dichter also discloses drawbacks of the bus topology, including the need for bus mastering and logic to contend with the data packet collision problem. Topologies that are preferable to the bus topology include the Token-Ring (IEEE 803), the PSIC network according to U.S. Pat. No. 5,841,360, and other point-to-point networks known in the art (such as a serial point-to-point ‘daisy chain’ network). Such networks are in most cases superior to ‘bus’ topology systems. The above drawbacks affect the data communication performance of the Dichter network, and therefore limit the total distance and the maximum data rate such a network can support. In addition, the Dichter network typically requires a complex and therefore costly transceiver to support the data communication system. While the Reichert network relies on a star topology and does not suffer from these drawbacks of the bus topology, the star topology also has disadvantages. First, the star topology requires a complex and costly hub module, whose capacity limits the capacity of the network. Furthermore, the star configuration requires that there exist wiring from every device on the network to a central location, where the hub module is situated. This may be impractical and/or expensive to achieve, especially in the case where the wiring of an existing telephone system is to be utilized. The Reichert network is intended for use only in offices where a central telephone connection point already exists. Moreover, the Reichert network requires a separate telephone line for each separate telephone device, and this, too, may be impractical and/or expensive to achieve. There is thus a widely-recognized need for, and it would be highly advantageous to have, a means for implementing a data communication network using existing telephone lines of arbitrary topology, which continues to support analog telephony while also allowing for improved communication characteristics by supporting a point-to-point topology network. SUMMARY OF THE INVENTION The present invention provides a method and apparatus for using the telephone line wiring system within residence or other building for both analog telephony service and a local area data network featuring a serial “daisy chained” or other arbitrary topology. First, the regular outlets are modified or substituted to allow splitting of the telephone line having two wires into segments such that each segment connecting two outlets is fully separated from all other segments. Each segment has two ends, to which various devices, other segments, and so forth, may be connected. A low pass filter is connected in series to each end of the segment, thereby forming a low-frequency path between the external ports of the low pass filters, utilizing the low-frequency band. Similarly, a high pass filter is connected in series to each end of the segment, thereby forming a high-frequency path between the external ports of the high pass filters, utilizing the high-frequency band. The bandwidth carried by the segments is thereby split into non-overlapping frequency bands, and the distinct paths can be interconnected via the high pass filters and low pass filters as coupling and isolating devices to form different paths. Depending on how the devices and paths are selectively connected, these paths may be simultaneously different for different frequencies. A low-frequency band is allocated to regular telephone service (analog telephony), while a high-frequency band is allocated to the data communication network. In the low-frequency (analog telephony) band, the wiring composed of the coupled low-frequency paths appears as a normal telephone line, in such a way that the low-frequency (analog telephony) band is coupled among all the segments and is accessible to telephone devices at any outlet, whereas the segments may remain individually isolated in the high-frequency (data) band, so that in this data band the communication media, if desired, can appear to be point-to-point (such as a serialized “daisy chain”) from one outlet to the next. The term “low pass filter” herein denotes any device that passes signals in the low-frequency (analog telephony) band but blocks signals in the high-frequency (data) band. Conversely, the term “high pass filter” herein denotes any device that passes signals in the high-frequency (data) band but blocks signals in the low-frequency (analog telephony) band. The term “data device” herein denotes any apparatus that handles digital data, including without limitation modems, transceivers, Data Communication Equipment, and Data Terminal Equipment. A network according to the present invention allows the telephone devices to be connected as in a normal telephone installation (i.e., in parallel over the telephone lines), but can be configured to virtually any desired topology for data transport and distribution, as determined by the available existing telephone line wiring and without being constrained to any predetermined data network topology. Moreover, such a network offers the potential for the improved data transport and distribution performance of a point-to-point network topology, while still allowing a bus-type data network topology in all or part of the network if desired. This is in contrast to the prior art, which constrains the network topology to a predetermined type. A network according to the present invention may be used advantageously when connected to external systems and networks, such as xDSL, ADSL, as well as the Internet. In a first embodiment, the high pass filters are connected in such a way to create a virtual ‘bus’ topology for the high-frequency band, allowing for a local area network based on DCE units or transceivers connected to the segments via the high pass filters. In a second embodiment, each segment end is connected to a dedicated modem, hence offering a serial point-to-point daisy chain network. In all embodiments of the present invention, DTE units or other devices connected to the DCE units can communicate over the telephone line without interfering with, or being affected by, simultaneous analog telephony service. Unlike prior-art networks, the topology of a network according to the present invention is not constrained to a particular network topology determined in advance, but can be adapted to the configuration of an existing telephone line installation. Moreover, embodiments of the present invention that feature point-to-point data network topologies exhibit the superior performance characteristics that such topologies offer over the bus network topologies of the prior art, such as the Dichter network and the Crane network. Therefore, according to the present invention there is provided a network for telephony and data communication including: (a) at least one electrically-conductive segment containing at least two distinct electrical conductors operative to conducting a low-frequency telephony band and at least one high-frequency data band, each of the segments having a respective first end and a respective second end; (b) a first low pass filter connected in series to the respective first end of each of the segments, for establishing a low-frequency path for the low-frequency telephony band; (c) a second low pass filter connected in series to the respective second end of each of the segments, for establishing a low-frequency path for the low-frequency telephony band; (d) a first high pass filter connected in series to the respective first end of each of the segments, for establishing a high-frequency path for the at least one high-frequency data band; (e) a second high pass filter connected in series to the respective second end of each of the segments, for establishing a high-frequency path for the at least one high-frequency data band; and (f) at least two outlets each operative to connecting at least one telephone device to at least one of the low-frequency paths, and at least two of the at least two outlets being operative to connecting at least one data device to at least one of the high-frequency paths; wherein each of the segments electrically connects two of the outlets; and each of the outlets that is connected to more than one of the segments couples the low-frequency telephony band among each of the connected segments. BRIEF DESCRIPTION OF THE DRAWINGS In order to understand the invention and to see how the same may be carried out in practice, some preferred embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, wherein: FIG. 1 shows a common prior art telephone line wiring configuration for a residence or other building. FIG. 2 shows a prior art local area network based on telephone line wiring for a residence or other building. FIG. 3 shows modifications to telephone line wiring according to the present invention for a local area network. FIG. 4 shows modifications to telephone line wiring according to the present invention, to support regular telephone service operation. FIG. 5 shows a splitter according to the present invention. FIG. 6 shows a local area network based on telephone lines according to the present invention, wherein the network supports two devices at adjacent outlets. FIG. 7 shows a first embodiment of a local area network based on telephone lines according to the present invention, wherein the network supports two devices at non-adjacent outlets. FIG. 8 shows a second embodiment of a local area network based on telephone lines according to the present invention, wherein the network supports three devices at adjacent outlets. FIG. 9 shows third embodiment of a local area network based on telephone lines according to the present invention, wherein the network is a bus type network. FIG. 10 shows a node of local area network based on telephone lines according to the present invention. FIG. 11 shows a fourth embodiment of a local area network based on telephone lines according to the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS The principles and operation of a network according to the present invention may be understood with reference to the drawings and the accompanying description. The drawings and descriptions are conceptual only. In actual practice, a single component can implement one or more functions; alternatively, each function can be implemented by a plurality of components and circuits. In the drawings and descriptions, identical reference numerals indicate those components which are common to different embodiments or configurations. The basic concept of the invention is shown in FIG. 3. A network 30 is based on modified telephone outlets 31a, 31b, 31c and 31d. The modification relates to wiring changes at the outlets and substituting the telephone connectors, shown as connectors 32a, 32b, 32c and 32d in outlets 31a, 31b, 31c and 31d respectively. No changes are required in the overall telephone line layout or configuration. The wiring is changed by separating the wires at each outlet into distinct segments of electrically-conducting media. Thus, each segment connecting two outlets can be individually accessed from either end. In the prior art Dichter network, the telephone wiring is not changed, and is continuously conductive from junction box 16 throughout the system. According to the present invention, the telephone line is broken into electrically distinct isolated segments 15a, 15b, 15c, 15d and 15e, each of which connects two outlets. In order to fully access the media, each of connectors 32a, 32b, 32c and 32d must support four connections, two in each segment. This modification to the telephone line can be carried out by replacing each of the outlets 31a, 31b, 31c and 31d, replacing only the connectors 32a, 32b, 32c and 32d, or simply by cutting the telephone line wiring at the outlet. As will be explained later, these modifications need be performed only to those outlets which connect to data network devices, but are recommended at all other outlets. A minimum of two outlets must be modified, enabling data communication between those outlets only. FIG. 4 shows how a network 40 of the present invention continues to support the regular telephone service, by the installation of jumpers 41a, 41b, 41c and 41d in modified outlets 31a, 31b, 31c and 31d respectively. At each outlet where they are installed, the jumpers connect both segment ends and allow telephone connection to the combined segment. Installation of a jumper effects a re-connection of the split telephone line at the point of installation. Installation of jumpers at all outlets would reconstruct the prior art telephone line configuration as shown in FIG. 1. Such jumpers can be add-ons to the outlets, integrated within the outlets, or integrated into a separate module. Alternately, a jumper can be integrated within a telephone set, as part of connector 14. The term “jumper” herein denotes any device for selectively coupling or isolating the distinct segments in a way that is not specific to the frequency band of the coupled or isolated signals. Jumper 41 can be implemented with a simple electrical connection between the connection points of connector 32 and the external connection of the telephone. As described above, jumpers 41 are to be installed in all outlets which are not required for connection to the data communication network. Those outlets which are required to support data communication connections, however, will not use jumper 41 but rather a splitter 50, shown in FIG. 5. Such a splitter connects to both segments in each modified outlet 31 via connector 32, using a port 54 for a first connection and a port 55 for a second connection. Splitter 50 has two LPF's for maintaining the continuity of the audio/telephone low-frequency band. After low pass filtering by LPF 51a for the port 54 and LPF 51b for port 55, the analog telephony signals are connected together and connected to a telephone connector 53. Hence, from the point of view of the telephone signal, the splitter 50 provides the same continuity and telephone access provided by the jumper 41. On the other hand, the data communication network employs the high-frequency band, access to which is made via HPF's 52a and 52b. HPF 52a is connected to port 54 and HPF 52b is connected to port 55. The high pass filtered signals are not passed from port 54 to port 55, but are kept separate, and are routed to a connector 56 and a connector 57, respectively. The term “splitter” herein denotes any device for selectively coupling or isolating the distinct segments that is specific to the frequency band of the coupled or isolated signals. Therefore, when installed in an outlet, the splitter 50 serves two functions. With respect to the low-frequency analog telephony band, splitter 50 establishes a coupling to effect the prior-art configuration shown in FIG. 1, wherein all telephone devices in the premises are connected virtually in parallel via the telephone line, as if the telephone line were not broken into segments. On the other hand, with respect to the high-frequency data communication network, splitter 50 establishes electrical isolation to effect the configuration shown in FIG. 3, wherein the segments are separated, and access to each segment end is provided by the outlets. With the use of splitters, the telephone system and the data communication network are actually decoupled, with each supporting a different topology. FIG. 6 shows a first embodiment of a data communication network 60 between two DTE units 24a and 24b, connected to adjacent outlets 31b and 31c, which are connected together via a single segment 15c. Splitters 50a and 50b are connected to outlets 31b and 31c via connectors 32b and 32c, respectively. As explained above, the splitters allow transparent audio/telephone signal connection. Thus, for analog telephony, the telephone line remains virtually unchanged, allowing access to telephone external connection 17 via junction box 16 for telephones 13a and 13c. Likewise, telephone 13b connected via connector 14b to a connector 53a on splitter 50a, is also connected to the telephone line. In a similar way, an additional telephone can be added to outlet 31c by connecting the telephone to connector 53b on splitter 50b. It should be clear that connecting a telephone to an outlet, either via jumper 41 or via splitter 50 does not affect the data communication network. Network 60 (FIG. 6) supports data communication by providing a communication path between port 57a of splitter 50a and port 56b of splitter 50b. Between these ports there exists a point-to-point connection for the high-frequency portion of the signal spectrum, as determined by HPF 52a and 52b within splitters 50 (FIG. 5). This path can be used to establish a communication link between DTE units 24a and 24b, by means of DCE units 23a and 23b, which are respectively connected to ports 57a and 56b. The communication between DTE units 24a and 24b can be unidirectional, half-duplex, or full-duplex. The only limitation imposed on the communication system is the capability to use the high-frequency portion of the spectrum of segment 15c. As an example, the implementation of data transmission over a telephone line point-to-point system described in Reichert can also be used in network 60. Reichert implements both LPF and HPF by means of a transformer with a capacitor connected in the center-tap, as is well known in the art. Similarly, splitter 50 can be easily implemented by two such circuits, one for each side. It should also be apparent that HPF 52a in splitter 50a and HPF 52b in splitter 50b can be omitted, because neither port 56a in splitter 50a nor port 57b in splitter 50b is connected. Network 60 provides clear advantages over the networks described in hitherto-proposed networks. First, the communication media supports point-to-point connections, which are known to be superior to multi-tap (bus) connections for communication performance. In addition, terminators can be used within each splitter or DCE unit, providing a superior match to the transmission line characteristics. Furthermore, no taps (drops) exists in the media, thereby avoiding impedance matching problems and the reflections that result therefrom. Moreover, the data communication system in network 60 is isolated from noises from both the network and the ‘left’ part of the telephone network (Segments 15a and 15b), as well as noises induced from the ‘right’ portion of the network (Segments 15d and 15e). Such isolation is not provided in any prior-art implementation. Dichter suggests installation of a low pass filter in the junction box, which is not a satisfactory solution since the junction box is usually owned by the telephone service provider and cannot always be accessed. Furthermore, safety issues such as isolation, lightning protection, power-cross and other issues are involved in such a modification. Implementing splitter 50 by passive components only, such as two transformers and two center-tap capacitors, is also advantageous, since the reliability of the telephone service will not be degraded, even in the case of failure in any DCE unit, and furthermore requires no external power. This accommodates a ‘life-line’ function, which provides for continuous telephone service even in the event of other system malfunction (e.g. electrical failures). The splitter 50 can be integrated into outlet 31. In such a case, outlets equipped with splitter 50 will have two types of connectors: One regular telephone connector based on port 53, and one or two connectors providing access to ports 56 and 57 (a single quadruple-circuit connector or two double-circuit connectors). Alternatively, splitter 50 can be an independent module attached as an add-on to outlet 31. In another embodiment, the splitter is included as part of DCE 23. However, in order for network 60 to operate properly, either jumper 41 or splitter 50 must be employed in outlet 31 as modified in order to split connector 32 according to the present invention, allowing the retaining of regular telephone service. FIG. 7 also shows data communication between two DTE units 24a and 24b in a network 70. However, in the case of network 70, DTE units 24a and 24b are located at outlets 31b and 31d, which are not directly connected, but have an additional outlet 31c interposed therebetween. Outlet 31c is connected to outlet 31b via a segment 15c, and to outlet 31d via a segment 15d. In one embodiment of network 70, a jumper (not shown, but similar to jumper 41 in FIG. 4) is connected to a connector 32c in outlet 31c. The previous discussion regarding the splitting of the signal spectrum also applies here, and allows for data transport between DTE units 24a and 24b via the high-frequency portion of the spectrum across segments 15c and 15d. When only jumper 41 is connected at outlet 31c, the same point-to-point performance as previously discussed can be expected; the only influence on communication performance is from the addition of segment 15d, which extends the length of the media and hence leads to increased signal attenuation. Some degradation, however, can also be expected when a telephone is connected to jumper 41 at outlet 31c. Such degradation can be the result of noise produced by the telephone in the high-frequency data communication band, as well as the result of the addition of a tap caused by the telephone connection, which usually has a non-matched termination. Those problems can be overcome by installing a low pass filter in the telephone. In a preferred embodiment of network 70, a splitter 50b is installed in outlet 31c. Splitter 50b provides the LPF functionality, and allows for connecting a telephone via connector 53b. However, in order to allow for continuity in data communication, there must be a connection between the circuits in connectors 56b and 57b. Such a connection is obtained by a jumper 71, as shown in FIG. 7. Installation of splitter 50b and jumper 71 provides good communication performance, similar to network 60 (FIG. 6). From this discussion of a system wherein there is only one unused outlet between the outlets to which the DTE units are connected, it should be clear that the any number of unused outlets between the outlets to which the DTE units are connected can be handled in the same manner. For the purpose of the foregoing discussions, only two communicating DTE units have been described. However, the present invention can be easily applied to any number of DTE units. FIG. 8 illustrates a network 80 supporting three DTE units 24a, 24b and 24c, connected thereto via DCE units 23a, 23b and 23c, respectively. The structure of network 80 is the same as that of network 70 (FIG. 7), with the exception of the substitution of jumper 71 with a jumper 81. Jumper 81 makes a connection between ports 56b and 57b in the same way as does jumper 71. However, in a manner similar to that of jumper 41 (FIG. 4), jumper 81 further allows for an external connection to the joined circuits, allowing the connection of external unit, such as a DCE unit 23c. In this way, segments 15c and 15d appear electrically-connected for high-frequency signals, and constitute media for a data communication network connecting DTE units 24a, 24b and 24c. Obviously, this configuration can be adapted to any number of outlets and DTE units. In fact, any data communication network which supports a ‘bus’ or multi-point connection over two-conductor media, and which also makes use of the higher-frequency part of the spectrum can be used. In addition, the discussion and techniques explained in the Dichter patent are equally applicable here. Some networks, such as Ethernet IEEE 802.3 interface 10BaseT and 100BaseTX, require a four-conductor connection, two conductors (usually single twisted-wire pair) for transmitting, and two conductors (usually another twisted-wire pair) for receiving. As is known in the art, a four-to-two wires converter (commonly known as hybrid) can be used to convert the four wires required into two, thereby allowing network data transport over telephone lines according to the present invention. As with jumper 41 (FIG. 4), jumper 81 can be an integral part of splitter 50, an integral part of DCE 23, or a separate component. In order to simplify the installation and operation of a network, it is beneficial to use the same equipment in all parts of the network. One such embodiment supporting this approach is shown in for a set of three similar outlets in FIG. 8, illustrating network 80. In network 80, outlets 31b, 31c, and 31d are similar and are all used as part of the data communication network. Therefore for uniformity, these outlets are all coupled to splitters 50a, 50b, and 50c respectively, to which jumpers are attached, such as a jumper 81 attached to splitter 50b (the corresponding jumpers attached to splitter 50a and splitter 50c have been omitted from FIG. 8 for clarity), and thus provide connections to local DCE units 23a, 23c, and 23b, respectively. In a preferred embodiment of the present invention, all outlets in the building will be modified to include both splitter 50 and jumper 81 functionalities. Each such outlet will provide two connectors: one connector coupled to port 53 for a telephone connection, and the other connector coupled to jumper 81 for a DCE connection. In yet another embodiment, DCE 23 and splitter 50 are integrated into the housing of outlet 31, thereby offering a direct DTE connection. In a preferred embodiment, a standard DTE interface is employed. In most ‘bus’ type networks, it is occasionally required to split the network into sections, and connect the sections via repeaters (to compensate for long cabling), via bridges (to decouple each section from the others), or via routers. This may also be done according to the present invention, as illustrated in FIG. 9 for a network 90, which employs a repeater/bridge/router unit 91. Unit 91 can perform repeating, bridging, routing, or any other function associated with a split between two or more networks. As illustrated, a splitter 50b is coupled to an outlet 31c, in a manner similar to the other outlets and splitters of network 90. However, at splitter 50b, no jumper is employed. Instead, a repeater/bridge/router unit 91 is connected between port 56b and port 57b, thereby providing a connection between separate parts of network 90. Optionally, unit 91 can also provide an interface to DTE 24c for access to network 90. FIG. 9 also demonstrates the capability of connecting to external DTE units or networks, via a high pass filter 92 connected to a line 15a. Alternatively, HPF 92 can be installed in junction box 16. HPF 92 allows for additional external units to access network 90. As shown in FIG. 9, HPF 92 is coupled to a DCE unit 93, which in turn is connected to a network 94. In this configuration, the local data communication network in the building becomes part of network 94. In one embodiment, network 94 offers ADSL service, thereby allowing the DTE units 24d, 24a, 24c and 24b within the building to communicate with the ADSL network. The capability of communicating with external DTE units or networks is equally applicable to all other embodiments of the present invention, but for clarity is omitted from the other drawings. While the foregoing relates to data communication networks employing bus topology, the present invention can also support networks where the physical layer is distinct within each communication link. Such a network can be a Token-Passing or Token-Ring network according to IEEE 802, or preferably a PSIC network as described in U.S. Pat. No. 5,841,360 to the present inventor, which details the advantages of such a topology. FIG. 10 illustrates a node 100 for implementing such a network. Node 100 employs two modems 103a and 103b, which handle the communication physical layer. Modems 103a and 103b are independent, and couple to dedicated communication links 104a and 104b, respectively. Node 100 also features a DTE interface 101 for connecting to a DTE unit (not shown). A control and logic unit 102 manages the higher OSI layers of the data communication above the physical layer, processing the data to and from a connected DTE and handling the network control. Detailed discussion about such node 100 and the functioning thereof can be found in U.S. Pat. No. 5,841,360 and other sources known in the art. FIG. 11 describes a network 110 containing nodes 10d, 100a, 100b and 100c coupled directly to splitters 50d, 50a, 50b and 50c, which in turn are coupled to outlets 31a, 31b, 31c and 31d respectively. Each node 100 has access to the corresponding splitter 50 via two pairs of contacts, one of which is to connector 56 and the other of which is to connector 57. In this way, for example, node 100a has independent access to both segment 15b and segment 15c. This arrangement allows building a network connecting DTE units 24d, 24a, 24b and 24c via nodes 10d, 100a, 100b and 100c, respectively. For clarity, telephones are omitted from FIGS. 9 and 11, but it will be clear that telephones can be connected or removed without affecting the data communication network. Telephones can be connected as required via connectors 53 of splitters 50. In general, according to the present invention, a telephone can be connected without any modifications either to a splitter 50 (as in FIG. 8) or to a jumper 41 (as in FIG. 4). Furthermore, although the present invention has so far been described with a single DTE connected to a single outlet, multiple DTE units can be connected to an outlet, as long as the corresponding node or DCE supports the requisite number of connections. Moreover, access to the communication media can be available for plurality of users using multiplexing techniques known in the art. In the case of time domain/division multiplexing (TDM) the whole bandwidth is dedicated to a specific user during a given time interval. In the case of frequency domain/division multiplexing (FDM), a number of users can share the media simultaneously, each using different non-overlapping portions of the frequency spectrum. In addition to the described data communication purposes, a network according to the present invention can be used for control (e.g. home automation), sensing, audio, or video applications, and the communication can also utilize analog signals (herein denoted by the term “analog communication”). For example, a video signal can be transmitted in analog form via the network. While the present invention has been described in terms of outlets which have only two connections and therefore can connect only to two other outlets (i.e., in a serial, or “daisy chain” configuration), the concept can also be extended to three or more connections. In such a case, each additional connecting telephone line must be broken at the outlet, with connections made to the conductors thereof, in the same manner as has been described and illustrated for two segments. A splitter for such a multi-segment application should use one low pass filter and one high pass filter for each segment connection. The present invention has also been described in terms of media having a single pair of wires, but can also be applied for more conductors. For example, ISDN employs two pairs for communication. Each pair can be used individually for a data communication network as described above. Also as explained above, an outlet 31 according to the invention (FIG. 3) has a connector 32 having at least four connection points. As an option, jumper 41 (FIG. 4), splitter 50 (FIG. 5), or splitter 50 with jumper 81 (FIG. 8), low pass filters, high pass filters, or other additional hardware may also be integrated or housed internally within outlet 31. Alternatively, these devices may be external to the outlet. Moreover, the outlet may contain standard connectors for devices, such as DTE units. In one embodiment, only passive components are included within the outlet. For example, splitter 50 can have two transformers and two capacitors (or an alternative implementation consisting of passive components). In another embodiment, the outlet may contain active, power-consuming components. Three options can be used for providing power to such circuits: 1. Local powering: In this option, supply power is fed locally to each power-consuming outlet. Such outlets must be modified to support connection for input power. 2. Telephone power: In both POTS and ISDN telephone networks, power is carried in the lines with the telephone signals. This power can also be used for powering the outlet circuits, as long as the total power consumption does not exceed the POTS/ISDN system specifications. Furthermore, in some POTS systems the power consumption is used for OFF—HOOK/ON—HOOK signaling. In such a case, the network power consumption must not interfere with the telephone logic. 3. Dedicated power carried in the media: In this option, power for the data communication related components is carried in the communication media. For example, power can be distributed using 5 kHz signal. This frequency is beyond the telephone signal bandwidth, and thus does not interfere with the telephone service. The data communication bandwidth, however, be above this 5 kHz frequency, again ensuring that there is no interference between power and signals. While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.
<SOH> BACKGROUND OF THE INVENTION <EOH>FIG. 1 shows the wiring configuration for a prior-art telephone system 10 for a residence or other building, wired with a telephone line 5 . Residence telephone line 5 consists of single wire pair which connects to a junction-box 16 , which in turn connects to a Public Switched Telephone Network (PSTN) 18 via a cable 17 , terminating in a public switch 19 , apparatus which establishes and enables telephony from one telephone to another. The term “analog telephony” herein denotes traditional analog low-frequency audio voice signals typically under 3 KHz, sometimes referred to as “POTS” (“plain old telephone service”), whereas the term “telephony” in general denotes any kind of telephone service, including digital service such as Integrated Services Digital Network (ISDN). The term “high-frequency” herein denotes any frequency substantially above such analog telephony audio frequencies, such as that used for data. ISDN typically uses frequencies not exceeding 100 KHz (typically the energy is concentrated around 40 KHz). The term “telephone device” herein denotes, without limitation, any apparatus for telephony (including both analog telephony and ISDN), as well as any device using telephony signals, such as fax, voice-modem, and so forth. Junction box 16 is used to separate the in-home circuitry from the PSTN and is used as a test facility for troubleshooting as well as for wiring new telephone outlets in the home. A plurality of telephones 13 a , 13 b , and 13 c connects to telephone line 5 via a plurality of outlets 11 a , 11 b , 11 c , and 11 d . Each outlet has a connector (often referred to as a “jack”), denoted in FIG. 1 as 12 a , 12 b , 12 c , and 12 d , respectively. Each outlet may be connected to a telephone via a connector (often referred to as a “plug”), denoted in FIG. 1 (for the three telephone illustrated) as 14 a , 14 b , and 14 c , respectively. It is also important to note that lines 5 a , 5 b , 5 c , 5 d , and 5 e are electrically the same paired conductors. There is a requirement for using the existing telephone infrastructure for both telephone and data networking. This would simplify the task of establishing a new local area network in a home or other building, because there would be no additional wires and outlets to install. U.S. Pat. No. 4,766,402 to Crane (hereinafter referred to as “Crane”) teaches a way to form a LAN over two wire telephone lines, but without the telephone service. The concept of frequency domain/division multiplexing (FDM) is well-known in the art, and provides a means of splitting the bandwidth carried by a wire into a low-frequency band capable of carrying an analog telephony signal and a high-frequency band capable of carrying data communication or other signals. Such a mechanism is described for example in U.S. Pat. No. 4,785,448 to Reichert et al (hereinafter referred to as “Reichert”). Also is widely used are xDSL systems, primarily Asymmetric Digital Subscriber Loop (ADSL) systems. Relevant prior art in this field is also disclosed in U.S. Pat. No. 5,896,443 to Dichter (hereinafter referred to as “Dichter”). Dichter is the first to suggest a method and apparatus for applying such a technique for residence telephone wiring, enabling simultaneously carrying telephone and data communication signals. The Dichter network is illustrated in FIG. 2 , which shows a network 20 serving both telephones and a local area network. Data Terminal Equipment (DTE) units 24 a , 24 b and 24 c are connected to the local area network via Data Communication Equipment (DCE) units 23 a , 23 b and 23 c , respectively. Examples of Data Communication Equipment include modems, line drivers, line receivers, and transceivers. DCE units 23 a , 23 b and 23 c are respectively connected to high pass filters (HPF) 22 a , 22 b and 22 c . The HPF's allow the DCE units access to the high-frequency band carried by telephone line 5 . In a first embodiment (not shown in FIG. 2 ), telephones 13 a , 13 b and 13 c are directly connected to telephone line 5 via connectors 14 a , 14 b and 14 c , respectively. However, in order to avoid interference to the data network caused by the telephones, a second embodiment is suggested (shown in FIG. 2 ), wherein low pass filters (LPF's) 21 a , 21 b and 21 c are added to isolate telephones 13 a , 13 b and 13 c from telephone line 5 . Furthermore, a low pass filter must also be connected to Junction-Box 16 , in order to filter noises induced from or to the PSTN wiring 17 . As is the case in FIG. 1 , it is important to note that lines 5 a , 5 b , 5 c , 5 d and 5 e are electrically the same paired conductors. The Dichter network suffers from degraded data communication performance, because of the following drawbacks: 1. Induced noise in the band used by the data communication network is distributed throughout the network. The telephone line within a building serves as a long antenna, receiving electromagnetic noise produced from outside the building or by local equipment such as air-conditioning systems, appliances, and so forth. Electrical noise in the frequency band used by the data communication network can be induced in the extremities of the telephone line 5 (line 5 e or 5 a in FIG. 2 ) and propagated via the telephone line 5 throughout the whole system. This is liable to cause errors in the data transportation. 2. The wiring media consists of a single long wire (telephone line 5 ). In order to ensure a proper impedance match to this transmission-line, it is necessary to install terminators at each end of the telephone line 5 . One of the advantages of using the telephone infrastructure for a data network, however, is to avoid replacing the internal wiring. Thus, either such terminators must be installed at additional cost, or suffer the performance problems associated with an impedance mismatch. 3. In the case where LPF 21 is not fitted to the telephones 13 , each connected telephone appears as a non-terminated stub, and this is liable to cause undesirable signal reflections. 4. In one embodiment, an LPF 21 is to be attached to each telephone 13 . In such a configuration, an additional modification to the telephone itself is required. This further makes the implementation of such system complex and costly, and defeats the purpose of using an existing telephone line and telephone sets ‘as is’ for a data network. 5. The data communication network used in the Dichter network supports only the ‘bus’ type of data communication network, wherein all devices share the same physical media. Such topology suffers from a number of drawbacks, as described in U.S. Pat. No. 5,841,360 to the present inventor, which is incorporated by reference for all purposes as if fully set forth herein. Dichter also discloses drawbacks of the bus topology, including the need for bus mastering and logic to contend with the data packet collision problem. Topologies that are preferable to the bus topology include the Token-Ring (IEEE 803), the PSIC network according to U.S. Pat. No. 5,841,360, and other point-to-point networks known in the art (such as a serial point-to-point ‘daisy chain’ network). Such networks are in most cases superior to ‘bus’ topology systems. The above drawbacks affect the data communication performance of the Dichter network, and therefore limit the total distance and the maximum data rate such a network can support. In addition, the Dichter network typically requires a complex and therefore costly transceiver to support the data communication system. While the Reichert network relies on a star topology and does not suffer from these drawbacks of the bus topology, the star topology also has disadvantages. First, the star topology requires a complex and costly hub module, whose capacity limits the capacity of the network. Furthermore, the star configuration requires that there exist wiring from every device on the network to a central location, where the hub module is situated. This may be impractical and/or expensive to achieve, especially in the case where the wiring of an existing telephone system is to be utilized. The Reichert network is intended for use only in offices where a central telephone connection point already exists. Moreover, the Reichert network requires a separate telephone line for each separate telephone device, and this, too, may be impractical and/or expensive to achieve. There is thus a widely-recognized need for, and it would be highly advantageous to have, a means for implementing a data communication network using existing telephone lines of arbitrary topology, which continues to support analog telephony while also allowing for improved communication characteristics by supporting a point-to-point topology network.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a method and apparatus for using the telephone line wiring system within residence or other building for both analog telephony service and a local area data network featuring a serial “daisy chained” or other arbitrary topology. First, the regular outlets are modified or substituted to allow splitting of the telephone line having two wires into segments such that each segment connecting two outlets is fully separated from all other segments. Each segment has two ends, to which various devices, other segments, and so forth, may be connected. A low pass filter is connected in series to each end of the segment, thereby forming a low-frequency path between the external ports of the low pass filters, utilizing the low-frequency band. Similarly, a high pass filter is connected in series to each end of the segment, thereby forming a high-frequency path between the external ports of the high pass filters, utilizing the high-frequency band. The bandwidth carried by the segments is thereby split into non-overlapping frequency bands, and the distinct paths can be interconnected via the high pass filters and low pass filters as coupling and isolating devices to form different paths. Depending on how the devices and paths are selectively connected, these paths may be simultaneously different for different frequencies. A low-frequency band is allocated to regular telephone service (analog telephony), while a high-frequency band is allocated to the data communication network. In the low-frequency (analog telephony) band, the wiring composed of the coupled low-frequency paths appears as a normal telephone line, in such a way that the low-frequency (analog telephony) band is coupled among all the segments and is accessible to telephone devices at any outlet, whereas the segments may remain individually isolated in the high-frequency (data) band, so that in this data band the communication media, if desired, can appear to be point-to-point (such as a serialized “daisy chain”) from one outlet to the next. The term “low pass filter” herein denotes any device that passes signals in the low-frequency (analog telephony) band but blocks signals in the high-frequency (data) band. Conversely, the term “high pass filter” herein denotes any device that passes signals in the high-frequency (data) band but blocks signals in the low-frequency (analog telephony) band. The term “data device” herein denotes any apparatus that handles digital data, including without limitation modems, transceivers, Data Communication Equipment, and Data Terminal Equipment. A network according to the present invention allows the telephone devices to be connected as in a normal telephone installation (i.e., in parallel over the telephone lines), but can be configured to virtually any desired topology for data transport and distribution, as determined by the available existing telephone line wiring and without being constrained to any predetermined data network topology. Moreover, such a network offers the potential for the improved data transport and distribution performance of a point-to-point network topology, while still allowing a bus-type data network topology in all or part of the network if desired. This is in contrast to the prior art, which constrains the network topology to a predetermined type. A network according to the present invention may be used advantageously when connected to external systems and networks, such as xDSL, ADSL, as well as the Internet. In a first embodiment, the high pass filters are connected in such a way to create a virtual ‘bus’ topology for the high-frequency band, allowing for a local area network based on DCE units or transceivers connected to the segments via the high pass filters. In a second embodiment, each segment end is connected to a dedicated modem, hence offering a serial point-to-point daisy chain network. In all embodiments of the present invention, DTE units or other devices connected to the DCE units can communicate over the telephone line without interfering with, or being affected by, simultaneous analog telephony service. Unlike prior-art networks, the topology of a network according to the present invention is not constrained to a particular network topology determined in advance, but can be adapted to the configuration of an existing telephone line installation. Moreover, embodiments of the present invention that feature point-to-point data network topologies exhibit the superior performance characteristics that such topologies offer over the bus network topologies of the prior art, such as the Dichter network and the Crane network. Therefore, according to the present invention there is provided a network for telephony and data communication including: (a) at least one electrically-conductive segment containing at least two distinct electrical conductors operative to conducting a low-frequency telephony band and at least one high-frequency data band, each of the segments having a respective first end and a respective second end; (b) a first low pass filter connected in series to the respective first end of each of the segments, for establishing a low-frequency path for the low-frequency telephony band; (c) a second low pass filter connected in series to the respective second end of each of the segments, for establishing a low-frequency path for the low-frequency telephony band; (d) a first high pass filter connected in series to the respective first end of each of the segments, for establishing a high-frequency path for the at least one high-frequency data band; (e) a second high pass filter connected in series to the respective second end of each of the segments, for establishing a high-frequency path for the at least one high-frequency data band; and (f) at least two outlets each operative to connecting at least one telephone device to at least one of the low-frequency paths, and at least two of the at least two outlets being operative to connecting at least one data device to at least one of the high-frequency paths; wherein each of the segments electrically connects two of the outlets; and each of the outlets that is connected to more than one of the segments couples the low-frequency telephony band among each of the connected segments.
20041028
20090127
20050526
61795.0
2
WOO, STELLA L
NETWORK FOR TELEPHONY AND DATA COMMUNICATION
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,975,130
ACCEPTED
Variable intake module of engine
A fuel rail in a variable intake module is integrated, thereby obtaining a sufficient coupling area and excellent sealing between the variable intake module and intake manifold. The assembly of injector and variable intake module to an engine is improved. A high pressure fuel path is integrally formed at a lower inner side of the variable intake module, wherein the variable intake module includes a plurality of intake paths and a flap placed at each intake path to form a tumble. Furthermore, an injector insertion part is formed at a lower side of each intake path to communicate with the high pressure fuel path.
1. A variable intake module of an engine, the module comprising: a high pressure fuel path integrally formed at a lower inner side of a variable intake module, wherein said variable intake module includes a plurality of intake paths and a flap placed at each said intake path to form a tumbling of air and fuel within a combustion chamber; and an injector insertion part formed at a lower side of each said intake path to communicate with said high pressure fuel path. 2. The module as defined in claim 1, wherein said variable intake module of the engine further comprises: a fuel pressure sensor connected with said high pressure fuel path to measure the pressure inside said high pressure fuel path; and a high pressure regulator connected with said high pressure fuel path to adjust the pressure inside said high pressure fuel path to a feasible level. 3. The module as defined in claim 2, wherein said variable intake module is integrally formed with a return path for allowing said high pressure regulator to discharge excessive fuel. 4. A variable intake module, comprising: a variable intake module defining, at a lower inner side thereof, a high pressure fuel path, and wherein said variable intake module further defines a plurality of intake paths; at least one flap positioned with respect to each said intake path wherein said at least one flap is configured and dimensioned to generate a tumble of fuel mixture within a cylinder; and an injector insertion component positioned at a lower side of each said intake path, said injector insertion component being configured and dimensioned to communicate with said high pressure fuel path. 5. The module of claim 4, further comprising: a fuel pressure sensor in communication with said high pressure fuel path to measure pressure inside said high pressure fuel path; and a high pressure regulator coupled with said high pressure fuel path to adjust pressure inside said high pressure fuel path. 6. The module of 5, wherein said variable intake module further defines a return path into which said high pressure regulator can discharge excessive fuel.
CROSS-REFERENCE TO RELATED APPLICATIONS The present application is based on, and claims priority to, Korean Application Serial Number 10-2003-0075878, filed on Oct. 29, 2003, the disclosure of which is hereby incorporated by reference herein in its entirety. TECHNICAL FIELD OF THE INVENTION The present invention relates to a variable intake module of an engine. BACKGROUND OF THE INVENTION Typically, a variable intake module is placed between an intake manifold and cylinder head of an internal combustion engine. The variable intake module forms a strong tumble within a combustion chamber by adjusting the flow of intake air, thereby resulting in a lean-burn of fuel. A flap is installed inside the variable intake module at a path where the exterior air is taken in. The flap pivots to vary the area and shape of the above path, thereby inducing a strong tumble or swirling of the air/fuel mixture inside the combustion chamber. Injectors are equipped in the cylinder head for injecting fuel. The injectors are installed at a fuel rail provided with fuel under high pressure. The fuel rail is installed in the cylinder head to maintain the installation disposition of the injector. An injector, fuel rail, and variable intake module are equipped around the intake port of the cylinder head. The injector is equipped to provide fuel and the variable intake module is equipped to form a tumble of the fuel. Typically, the fuel rail installed with the injector is assembled first, and subsequently, the variable intake module is assembled. However, if pluralities of the above components are located on the intake port side of the cylinder head, the components frequently interfere with each other. Therefore, a portion of the variable intake module should be either reduced in size or removed to prevent interference from occurring. However, the variation of the variable intake module reduces the coupling area between the variable intake module and intake manifold, thereby causing insufficient sealing around the coupling portion therebetween. Furthermore, a narrow space between the injector, fuel rail, and variable intake module deteriorates the assembly. SUMMARY OF THE INVENTION An embodiment of the present invention is provided to obtain a sufficient coupling area and an excellent sealing property between a variable intake module and intake manifold. The present invention also improves the assembly of the injector and variable intake module to the engine. A variable intake module of the engine comprises a high pressure fuel path integrally formed at a lower inner side of a variable intake module. The variable intake module includes a plurality of intake paths and a flap placed at each intake path to form a tumble. An injector insertion part is formed at a lower side of each intake path to communicate with the high pressure fuel path. That is, the conventional fuel rail is integrally formed at the lower side of the variable intake module in the present invention. BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the nature and objects of the present invention, reference should be made to the following detailed description, read in conjunction with the accompanying drawings, in which: FIG. 1 is a side view of a cylinder head side of a variable intake module according to an embodiment of the present invention; and FIG. 2 is a side view of an intake manifold side of a variable intake module according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As illustrated in FIGS. 1 and 2, a variable intake module 10 includes intake paths 11 identical in quantity to that of the cylinders. Each intake path 11 is installed with a flap 12 for adjusting the formation of tumble. A high pressure fuel path 21 is installed at a lower portion of the variable intake module. An injector insertion part 22 is formed at a lower side of each intake paths to communicate with the high pressure fuel path. One side of the high pressure fuel path 21 is opened for a fuel provision. The other side of the high pressure fuel path 21 is isolated by the main body of the variable intake module. A fuel pressure sensor 23 is configured to communicate with the high pressure fuel path 21 for measuring the pressure inside the high pressure fuel path 21. A high pressure regulator 24 is configured to connect with the high pressure fuel path 21 for properly regulating the pressure inside the high pressure fuel path 21. A return path 25 is formed in the main body of the variable intake module for discharging excessive fuel by using the high pressure regulator 24. The Engine Control Unit (ECU) monitors the fuel pressure via the fuel pressure sensor 23. The ECU simultaneously adjusts the pressure inside the high pressure fuel path 21 to a desired level by a feed back control of the high pressure regulator 24. In an embodiment of the invention, the ECU may comprise a processor and memory, as well as associated hardware and software as may be selected and programmed by a person of ordinary skill in the art base on the teachings contained herein. The variable intake module 10 is positioned between the cylinder head and intake manifold, as previously mentioned, and is assembled by a bolt. A dowel pin is used to accurately fix the variable intake module 10 in relation to the cylinder head and intake manifold before coupling with the bolt. The variable intake module 10 is formed at both planar sides with a cylinder head side dowel pin 13 and an intake manifold side dowel pin 14. The cylinder head side dowel pin 13 is inserted into the pin hole provided at the cylinder head. The intake manifold side dowel pin 14 is inserted into the pin hole formed at the intake manifold. In order to install the variable intake module 10 to the engine, each injector is firstly and precisely positioned in the injector hole of the cylinder head. The variable intake module is precisely positioned at the cylinder head by using the cylinder head side dowel pin 13. The upper portion of the injector (inserted with an O-ring) is designed to be inserted into the injector insertion part 22. A bolt is used to fix the variable intake module to the cylinder head. Next, the intake manifold is located in relation to the variable intake module 10 by using the intake manifold side dowel pin 14. The intake manifold is also installed to the variable intake module by a bolt. Accordingly, no interference between the variable intake module 10 and the injector occurs during the engine assembly, resulting in obtaining a sufficient coupling area between the variable module 10 and the cylinder head. In short, excellent sealing is obtained between the variable intake module 10 and cylinder head. Furthermore, since the integrated variable intake module 10 is installed at the engine, a conventional separate fuel rail is not required to be installed in the narrow space between the injector, fuel rail, and variable intake module, thereby improving the assembly thereof. As apparent from the foregoing, there is an advantage in the present invention in that excellent sealing properties are acquired by obtaining a sufficient coupling area between the variable intake module and intake manifold. There is another advantage in that the assembly of the injector and the variable intake module to the engine is greatly improved.
<SOH> BACKGROUND OF THE INVENTION <EOH>Typically, a variable intake module is placed between an intake manifold and cylinder head of an internal combustion engine. The variable intake module forms a strong tumble within a combustion chamber by adjusting the flow of intake air, thereby resulting in a lean-burn of fuel. A flap is installed inside the variable intake module at a path where the exterior air is taken in. The flap pivots to vary the area and shape of the above path, thereby inducing a strong tumble or swirling of the air/fuel mixture inside the combustion chamber. Injectors are equipped in the cylinder head for injecting fuel. The injectors are installed at a fuel rail provided with fuel under high pressure. The fuel rail is installed in the cylinder head to maintain the installation disposition of the injector. An injector, fuel rail, and variable intake module are equipped around the intake port of the cylinder head. The injector is equipped to provide fuel and the variable intake module is equipped to form a tumble of the fuel. Typically, the fuel rail installed with the injector is assembled first, and subsequently, the variable intake module is assembled. However, if pluralities of the above components are located on the intake port side of the cylinder head, the components frequently interfere with each other. Therefore, a portion of the variable intake module should be either reduced in size or removed to prevent interference from occurring. However, the variation of the variable intake module reduces the coupling area between the variable intake module and intake manifold, thereby causing insufficient sealing around the coupling portion therebetween. Furthermore, a narrow space between the injector, fuel rail, and variable intake module deteriorates the assembly.
<SOH> SUMMARY OF THE INVENTION <EOH>An embodiment of the present invention is provided to obtain a sufficient coupling area and an excellent sealing property between a variable intake module and intake manifold. The present invention also improves the assembly of the injector and variable intake module to the engine. A variable intake module of the engine comprises a high pressure fuel path integrally formed at a lower inner side of a variable intake module. The variable intake module includes a plurality of intake paths and a flap placed at each intake path to form a tumble. An injector insertion part is formed at a lower side of each intake path to communicate with the high pressure fuel path. That is, the conventional fuel rail is integrally formed at the lower side of the variable intake module in the present invention.
20041027
20060411
20050505
97525.0
1
ARGENBRIGHT, TONY MICHAEL
VARIABLE INTAKE MODULE OF ENGINE
UNDISCOUNTED
0
ACCEPTED
2,004
10,975,191
ACCEPTED
Face guard for a sports helmet
The present invention provides a face guard for a sports helmet having at least two ear holes. The face guard includes a main body having an arrangement of elongated members. The face guard also includes a pair of quadrilateral projections for securing the face guard to the helmet, wherein the projections are integral with and extend from the main body. The projections are positioned below the ear holes in the helmet when the face guard is secured to the helmet. Also, the projections are positioned adjacent a lower edge of the helmet when the face guard is secured to the helmet. The projections are positioned below a rear lower edge of the helmet when the face guard is secured to the helmet. Each projection has first and second vertical members that are configured to engage a connector that secures the face guard to the helmet. Furthermore, each projection includes a first and second substantially horizontal members that, when combined with the first and second vertical members, define a rectangle or a trapezoid.
1. A face guard for a sports helmet having at least two ear holes, the face guard comprising: a main body having an arrangement of elongated members; and, a pair of quadrilateral projections for securing the face guard to the helmet, wherein the projections extend from the main body, the projections positioned below the ear holes in the helmet when the face guard is secured to the helmet. 2. The face guard of claim 1 wherein the projections are positioned adjacent a lower edge of the helmet when the face guard is secured to the helmet. 3. The face guard of claim 1 wherein the projections are positioned below a rear lower edge of the helmet when the face guard is secured to the helmet. 4. The face guard of claim 1 wherein each projection has a first vertical member that is configured to engage a connector that secures the face guard to the helmet. 5. The face guard of claim 4 wherein the projection has a second vertical member that is configured to engage the connector. 6. The face guard of claim 1 further comprising means for connecting the face guard to the helmet. 7. The face guard of claim 6 wherein the connecting means comprises a bracket and a fastener. 8. The face guard of claim 1 wherein the projections comprise first and second substantially horizontal members, and first and second substantially vertical members, the horizontal and vertical members defining a rectangle. 9. The face guard of claim 1 wherein the projections comprise first and second substantially horizontal members, and first and second substantially vertical members, the horizontal and vertical members defining a trapezoid. 10. (canceled) 11. A face guard for a sports helmet, the face guard comprising: a main body defined by a plurality of elongated wire members; a first projection extending from the main body and being defined by a plurality of wire members; a second projection extending from the main body and being defined by a plurality of wire members; and, wherein when the face guard is secured to the helmet, at least two of the plurality of wire members defining the first projection engage a first connector attached to the helmet and at least two of the plurality of wire members defining the second projection engage a second connector attached to the helmet. 12. The face guard of claim 11 wherein the projections have a pair of substantially horizontal members joined by a pair of substantially vertical members. 13. The face guard of claim 12 wherein the substantially vertical members of the projections engage the connectors. 14. The face guard of claim 12 wherein the connectors each have first and second channels, and the substantially vertical members are positioned within the channels. 15. The face guard of claim 11 wherein the first and second connectors comprise a bracket and a fastener. 16. (canceled) 17. A sports helmet with a shell and a face guard removably attached to the shell, the helmet comprising: a face guard having a main body with a plurality of intersecting elongated members, the face guard further having a pair of projections for securing the face guard to the shell, wherein the projections extend from the main body and are positioned below an ear hole opening in the shell when the face guard is secured to the shell. 18. The face guard of claim 17 wherein the projections are positioned adjacent a lower edge of the shell when the face guard is secured to the shell. 19. The face guard of claim 17 wherein the projections are positioned along a jaw flap of the shell when the face guard is secured to the shell. 20. The face guard of claim 17 wherein each projection has a first and a second vertical member, wherein both vertical members are configured to engage means for connecting the face guard to the helmet. 21. The face guard of claim 20 wherein the connecting means includes a bracket that engages the first and second vertical members, and a fastener that extends through the bracket. 22. The face guard of claim 17 wherein each projection has a quadrilateral configuration with a first vertical member that is received by a bracket that secures the face guard to the shell. 23. The face guard of claim 22 wherein each projection has a second vertical member that is received by the bracket. 24. The face guard of claim 23 wherein the bracket has a pair of channels dimensioned to receive an extent of the first and second vertical members. 25. (canceled) 26. A football helmet comprising: a shell having first and second ear openings; a face guard having a main body with a plurality of intersecting members, the face guard further having first and second receivers extending outwardly from the main body; a first connector attached to the shell below the first ear opening and having a channel for engaging the first receiver; and, a second connector attached to the shell below the second ear opening and having a channel for engaging the second receiver. 27. The football helmet of claim 26 wherein the first receiver has a first substantially vertical member that engages the channel of the first connector. 28. The football helmet of claim 27 wherein the first connector has a second channel and the first receiver has a second substantially vertical member that engages the second channel of the first connector. 29. The football helmet of claim 26 wherein the first receiver has a first substantially horizontal member that engages the channel of the first connector. 30. The football helmet of claim 29 wherein the first connector has a second channel and the first receiver has a second substantially horizontal member that engages the second channel of the first connector. 31-34. (canceled) 35. The football helmet of claim 26 wherein the first and second connectors are positioned adjacent a lower edge of the shell when the connectors engage the first and second receivers.
CROSS-REFERENCE TO RELATED APPLICATIONS This Application is a divisional application of pending U.S. application Ser. No. 10/427,236, filed May 1, 2003, which claims the benefit of Provisional Patent Application No. 60/376,898, filed May 1, 2002. TECHNICAL FIELD The invention generally relates to a face guard for a sports helmet, such as a football helmet. BACKGROUND OF THE INVENTION Various activities, such as contact sports, and in particular the sport of football, require the use of helmets to attempt to protect participants from injury to their heads due to impact forces that may be sustained during such activities. Various types of helmets have been in use in the sport of football, ever since individuals began wearing helmets to attempt to protect their heads many years ago. Typically, these helmets have included: an outer shell, generally made of an appropriate plastic material, having the requisite strength and durability characteristics to enable them to be used in the sport of football; some type of shock absorbing liner within the shell; a face guard; and a chin protector, or chin strap, that fits snugly about the chin of the wear of the helmet, in order to secure the helmet to the wearer's head, as are all known in the art. Over the years, various improvements have been made to the various components of a football helmet; however, in general, the overall configuration and shape of a football helmet, has remained the same for many years. In this regard, a typical football helmet has included an ear flap as a part of the shell forming the helmet, and the ear flap generally overlies an ear of the wearer and a portion of a cheek of the wearer; however, the jaw of the wearer typically extends outwardly beyond the outer periphery of the helmet, whereby a majority portion of the jaw of the wearer has only been protected by the chin protector. In general, conventional football helmets presently have ear flaps and the lower portions thereof taper inwardly toward the neck and rearmost portions of the player's jawbone overlied by the ear flaps. As a consequence of this structure, when a player removes his, or her, helmet, it is necessary to pull the sides, or ear flaps, of the helmet outwardly so that the helmet may clear the player's ears. Further in this regard, conventional helmets may also include pads adjacent the player's ear and these pads generally are located along the lower and front edge of the ear flap. These pads must also be pulled away from the ears of the player when removing a conventional helmet. The repeated putting on, and taking off, a football helmet may cause irritation to the player's ear. It would be desirable if the putting on, and removal of, a football helmet did not cause repeated sliding frictional contact with a player's ears, to prevent potential irritation to the player's ear. Conventional football helmets utilize face guards which are generally made of either a metallic or thermoplastic material. Since a player wears a helmet for a considerable period of time during practices and games, it would be desirable to minimize the weight of the helmet, while not sacrificing protection. The face guards of conventional helmets are typically attached to the sides of the helmet, as well as upon the front of the helmet. Thus, the face guard must extend rearwardly in order to be attached to the side of the helmet. It would be desirable if the size of the face guard could be reduced, thereby reducing the weight of the face guard used in the helmet. While it is the desire and goal that a football helmet, and other types of protective helmets, prevent injuries from occurring, it should be noted that as to the helmet of the present invention, as well as prior art helmets, due to the nature of the sport of football in particular, no protective equipment or helmet can completely, totally prevent injuries to those individuals playing the sport of football. It should be further noted that no protective equipment can completely prevent injuries to a player, if the football player uses his football helmet in an improper manner, such as to butt, ram, or spear an opposing player, which is in violation of the rules of football. Improper use of a helmet to butt, ram, or spear an opposing player can result in severe head and/or neck injuries, paralysis, or death to the football player, as well as possible injury to the football player's opponent. No football helmet, or protective helmet, such as that of the present invention, can prevent head, chin, or neck injuries a football player might receive while participating in the sport of football. The helmet of the present invention is believed to offer protection to football players, but it is believed that no helmet can, or will ever, totally and completely prevent head injuries to football players. The football helmet of the present invention, when compared to previously proposed conventional football helmets, has the advantages of: being designed to attempt to protect a wearer of the helmet from injuries caused upon an impact force striking the helmet; preventing irritation to a player's ear; affording more protection to the jaw of the wearer; and providing for the use of a lighter weight face guard. SUMMARY OF THE INVENTION In accordance with the invention, the foregoing advantages are believed to have been achieved by the football helmet of the present invention. The football helmet of the present invention may include: an outer shell having an inner wall surface and an outer wall surface, the shell including a crown, a back, a front, a lower edge surface, and two sides, the shell being adapted to receive the head of wearer of the helmet, the wearer having a lower jaw having two side portions; each side of the shell includes an ear flap adapted to generally overlie an ear and a portion of a cheek of the wearer; each ear flap generally extending downwardly from its respective side; each ear flap including a jaw flap attached to the ear flap, each jaw flap extending from the ear flap forwardly toward the front of the shell and adapted to generally extend to overlie a side portion of the lower jaw of the wearer of the helmet; each side having a chin protector connector, adapted to connect a portion of a chin protector to the shell; each side having a face guard connector, adapted to connect a portion of a face guard to the shell; and a liner connector, adapted to connect a shock absorbing liner to a portion of the inner wall surface of the shell. Another feature of the present invention is that there may be a face guard connected to at least both sides of the helmet by the face guard connectors, each face guard connector including a shock absorber member adapted to substantially omni-directionally distribute an impact force, exerted upon the face guard, throughout the shell. A further feature of this aspect of the present invention is that each shock absorber member may be a grommet disposed in an opening formed in a side of the shell. In accordance with another aspect of the present invention, the football helmet may include a chin protector having two sides and at least two flexible members associated with each side of the chin protector, the at least two flexible members adapted to engage with one of the chin protector connectors on the sides of the shell. Another feature of this aspect of the invention is that the chin protector connector may include at least two notches formed in the lower edge surface of the shell, with at least one notch being disposed on each side of the shell, and at least one of the flexible members on each side of the chin protector passes through at least one of the notches on each side of the shell. A further aspect of the invention is that the at least two notches may be disposed in the lower edge surface of the shell adjacent each ear flap of the shell. An additional feature of this aspect of the invention is that the chin protector connector may include at least one slot formed in each side of the shell, and at least one of the flexible members on each side of the chin protector passes through the at least one slot. In accordance with another aspect of the present invention, the football helmet may include a shock absorbing liner associated with the inner wall surface of the shell by the liner connector. An additional feature of this aspect of the present invention is that the shock absorbing liner may include a plurality of resilient members adapted to absorb shock forces exerted upon the shell, and the plurality of resilient members may be disposed along the inner wall surface of the back and sides of the shell, including at least one resilient pad member disposed upon the inner wall surface of a portion of each of the jaw flaps of the shell. A further feature of this aspect of the present invention is that each of the at least one resilient pad members may be formed integral with the plurality of resilient members, or at least one resilient pad member may be releaseably secured to the plurality of resilient members. An additional feature of this aspect of the present invention is that on each side of the inner wall surface of the shell, an ear channel may be formed between at least one of the resilient members of the shock absorbing liner and the at least one resilient pad member disposed upon the inner wall surface of a portion of the jaw flap, and each ear channel may be disposed adjacent an ear opening formed in each flap. Another aspect of the present invention is that the outer shell may have a vertical, longitudinal axis extending downwardly from the crown of the helmet, and each ear flap may generally lie in a plane which is substantially parallel to the longitudinal axis of the outer shell. Another feature of this aspect of the present invention is that the outer shell of the helmet may have a vertical, longitudinal axis extending downwardly from the crown, and each jaw flap may generally lie in a plane which is substantially parallel to the longitudinal axis of the outer shell. The football helmet of the present invention, when compared with previously proposed conventional football helmets, is believed to have the advantages of: offering protection to football players against injuries caused by impact forces exerted upon the football helmet during the playing of the game of football; providing a football helmet which is easier for the wearer of the helmet to put on and take off, and may minimize irritation to a player's ear; providing protection for the jaw of the wearer; and providing a smaller, thus lighter in weight, face guard. Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an embodiment of a sports helmet showing a face guard of the present invention; FIG. 1A is perspective view of another embodiment of a sports helmet showing a face guard of the present invention; FIG. 1B is a perspective view of the portion of the helmet of FIG. 1A shown within dotted lines 1B; FIG. 2 is a partial perspective view of the helmet and face guard of FIG. 1; FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 2, showing an embodiment of the face guard and a face guard connector of the present invention; FIG. 4 is a partial side view of the face guard and the connector of FIG. 3; FIG. 5 is a perspective view of a face guard mounting clip of FIGS. 1A and 1B; FIG. 6 is a cross-sectional view of the face guard mounting clip of FIG. 5, taken along line 6-6 of FIG. 5; FIG. 7 is a partial cross-sectional view of the football helmet of FIGS. 1 and 2, taken along line 7-7 of FIG. 2; FIG. 8 is a partial exploded view of the football helmet and the face guard of the present invention; FIG. 9 is a cross-sectional view of the resilient pad member of FIG. 8, taken along line 9-9 of FIG. 8; FIG. 10 is a partial cross-sectional view of the resilient pad member of FIGS. 8 and 9 taken along line 10-10 of FIG. 9; FIG. 11 is a side view of the resilient pad member of FIGS. 8-10; FIG. 12 is a bottom view of the football helmet of FIGS. 1 and 8, with the face guard removed; FIG. 13 is a partial perspective view of the crown of the football helmet of FIGS. 1 and 1A, showing a crown pad in accordance with the present invention; FIG. 14 is a partial perspective view of a shock absorbing liner in accordance with the present invention, corresponding to the shock absorbing liner shown in FIGS. 8 and 12; FIG. 15 is a partial exploded perspective view of the helmet and the face guard of the present invention; FIG. 16 is a partial perspective view of another shock absorbing liner provided with another embodiment of the resilient pad member, of the present invention, as is shown in FIG. 15; FIG. 17 is a partial perspective view of the face guard and the helmet of FIG. 15; FIG. 18 is a partial cross-sectional view of the resilient pad member of FIG. 15 taken along line 18-18 of FIG. 15; FIG. 19 is a side view of the helmet of the present invention, illustrating the chin protector connecter of the football helmet of FIG. 1A, including a wearer of the helmet being partially shown in phantom lines, including a general outline of a conventional ear flap being also shown in phantom lines; and FIG. 20 is a front view of the football helmet of the present invention of both FIGS. 1 and 1A. While the invention will be described in connection with the preferred embodiments shown herein, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims. DETAILED DESCRIPTION In FIGS. 1, 1A, and 19, a football helmet 30 in accordance with the present invention is shown to generally include: an outer shell 31, ear flap 32, each ear flap 32 including a jaw flap 33, a chin protector connector 34, a face guard connector 35, and a liner connector 36 (FIG. 14). Outer shell 31 is preferably made of any suitable plastic material having the requisite strength and durability characteristics to function as a football helmet, or other type of protective helmet, such as polycarbonate plastic materials, one of which is known as LEXAN®, as is known in the art. Outer shell 31 has an inner wall surface 37 (FIG. 12) and an outer wall surface 38. Shell 31 further includes a crown 39, a back 40, a front 41, a lower edge surface 42, and two sides 43 (FIGS. 1 and 1A) and 44 (FIG. 19). As is known in the art, and as will be hereinafter described in greater detail, shell 31 is adapted to receive the head 45 of a wearer 46 of the helmet 30, the wearer 46 having a lower jaw 47 (FIG. 19) having two side portions 48 (FIG. 19), only the right side portion 48 of jaw 47 being illustrated. As shown in FIG. 19, the lower jaw 47 terminates generally adjacent to the chin 49 of the wearer's head 45 toward the front of the head 45, and the lower jaw, or mandible 47, generally ends its connection with the upper jaw generally adjacent, and forwardly of ears 50 of wearer 46. Still with reference to FIGS. 1, 1A and 19, each side 43, 44 of the shell 31 includes an ear flap 32, the left ear flap 32 being shown in FIGS. 1 and 1A and the right ear flap 32 being illustrated in FIG. 19, and ear flaps 32 are adapted to generally overlie an ear 50 (FIG. 19) and portion of a cheek 52 of the wearer 46. Each ear flap 32 generally extends downwardly from its respective side 43, 44, and in general extends in a direction extending from crown 39 downwardly toward the lower edge surface 42 of shell 31. Each ear flap 32 includes a jaw flap 33, the left hand jaw flaps 33 being illustrated in FIGS. 1 and 1A, and the right jaw flap 33 being illustrated in FIG. 19. Each jaw flap 33 extends from it corresponding ear flap 32 forwardly toward the front 41 of the shell 31, and as seen in FIG. 19 as adapted to generally extend to overlie a side portion 48 of the lower jaw 47 of the wearer 46 of the helmet. As shown in FIG. 19, jaw flap 33 is shown to extend forwardly to overlie a forwardly disposed portion 55 of lower jaw 47 disposed toward the chin 49 of wearer 46. As illustrated in FIG. 19, jaw flap 33 extends forwardly enough to overlie the side of the chin 49 of wearer 46. In this regard, it should be noted that helmets 30 of the present invention are generally made with outer shells 31 of varying sizes, dependent upon the size of the head of the particular wearer of the helmet. In FIG. 19, helmet 30 is shown superimposed upon what is believed to be an average size head of a wearer of the helmet 30, whereby jaw flap 33 is shown to generally overlie the entire side portion 48 of lower jaw 47, including the forwardly disposed portion 55 of lower jaw 47 adjacent the chin 49 of wearer 46, including overlying the side of the chin 49 of wearer 46. Since FIG. 19 is not a representation of all sizes of heads and all types of chin structures, such as chins which may greatly extend outwardly away from the head of the wearer, it should be understood that it is perhaps possible that someone wearing a helmet 30 in accordance with the present invention may have a slight side portion of his or her chin extending outwardly beyond the outer periphery of jaw flap 33. It is believed that jaw flap 33 will overlie at least the forwardly disposed portion 55 of the lower jaw 47 of virtually all wearers of helmets 30. In this regard, the outer periphery 60, shown in phantom lines in FIG. 19, of a conventional ear flap, without the jaw flap 33 of the present invention generally does not overlie a forwardly disposed portion 55 of the lower jaw, or mandible, 47 of a wearer of a conventional helmet. Furthermore, the ear flap of a conventional football helmet virtually never overlies the chin 49 of a wearer of a conventional helmet. With reference to FIGS. 12, 19, and 20, the outer shell 31 has a vertical, longitudinal axis 61 generally extending downwardly from crown 39, and each ear flap 32 generally lies in a plane which is substantially parallel to the longitudinal axis 61 of shell 31. Similarly, each jaw flap 33 also generally lies in a plane which is substantially parallel to the longitudinal axis 61 of the outer shell 31. The crown 39 of shell 31 may be provided with at least one, and preferably a plurality of ventilation openings, or air vents, 62, which permits the passage of air through shell 31. Vents 62 permit air adjacent the head 45 of wearer 46, which has been heated by being in contact with head 45, to be vented and passed outwardly through openings 62, which may contribute to greater comfort being afforded the wearer 46 of helmet 30. With reference to FIGS. 1, 1A, 8, and 15, the face guard connector 35 of the present invention will be described in greater detail. Face guard 65 is formed of a plurality of wire members 66, which may be formed of any suitable material having the requisite strength and durability characteristics to function as a football helmet face guard, as is known in the art. The wire members 66 may be preferably formed of a metallic material, such as any suitable steel, and as is known in the art, the wire members 66 may be provided with a suitable plastic coating. Additionally, the wire members 66 may be of a solid or tubular cross-sectional configuration. Alternatively, wire members 66 may be formed of any suitable plastic material, this material also having the requisite strength and durability characteristics to perform the functions of a football helmet face guard. The face guard connectors 35 are adapted to connect a portion of the face guard 65 to shell 31. A face guard connector 35 is disposed on each side 43, 44 of shell 31. One embodiment of face guard connector 35 is shown in FIGS. 1, 1A and 8, while another embodiment of face guard connector is illustrated in FIGS. 15 and 17. In general, the two embodiments of face guard connector 35 are substantially similar, whereby the same components will be described with identical reference numerals, and primed reference numerals will be used in connection with components having the same, or similar functions, but different structures or configurations. The details of the face guard connector 35 used in connection with the helmet 30 of FIGS. 1, 1A, 2 and 8, are illustrated in FIGS. 3 and 4, whereas the details of construction of the face guard connector 35 of FIG. 15 is illustrated in FIGS. 15 and 17. With reference to FIGS. 3, 4, 8, and 15, face guard connector 35 of the present invention is shown to include a shock absorber member 67 adapted to substantially omni-directionally distribute an impact force, exerted upon the face guard 65, through shell 31. Preferably, each shock absorber member 67 is a grommet 68 disposed in an opening 69 formed in a side 43, 44 of shell 31. Grommet 68 may be formed of rubber, or any other suitable elastomeric material which will function so as to permit substantially omni-directionally distribution of an impact force, exerted upon the face guard 65, throughout shell 31 of helmet 30. Preferably, grommet 68 is formed of synthetic rubber. In this regard, face guard 65 can incur impact forces in a variety of directions during a game of football. For example, as a player strikes the ground upon being tackled, his or her face guard might strike the ground at the lower most center 70 (FIG. 1) of face guard 65, which would be an upwardly exerted force upon face guard 65. Similarly, another player's helmet, or hand, might push downwardly upon the wire member 71 (FIG. 1) of face guard 65, thus exerting a downwardly extending impact force upon face guard 65. Additionally, a player's face guard could be struck in the direction from one of the sides 43, 44 of helmet 30, which would be a side or lateral impact force being exerted upon face guard 65. Of course, it would be readily apparent to one of ordinary skill in the art that an impact force could be exerted upon face guard 65 from any direction in which it is possible to strike, or impact against, face guard 65. As will be hereinafter described in greater detail, as an impact force is exerted upon face guard 65, the shock absorber member 67, or grommet 68, functions to absorb, or attenuate, the impact force exerted upon the face guard, and to substantially omni-directionally distribute the impact force through the shell 31. Grommet 68 may be a circular shaped member 72 with an opening 73 passing there through. As seen in FIG. 3, each circular shaped member 72 may include an inner, annular, or circular shaped lip 74 that abuts the inner wall surface 37 of the shell 31, and outer, annular shaped lip 75 that abuts the outer wall surface 38 of the shell 31. Each of the face guard connectors 35 has a recess 76 (FIG. 4) which receives a portion of the grommet 68 in a close fitting, abutting relationship as seen in FIG. 3. Preferably, the outer, annular shaped lip 75 is received in the recess 76. As shown in FIGS. 3, 8, and 15, a bushing 77 maybe disposed within the opening 73 which passes through grommet 68. Preferably, the bushing is made of a suitable plastic material having the requisite strength and durability characteristics to function as part of a football helmet face guard connector. Preferably, bushing 77 is formed of a thermoplastic material, such as SURLYN®. Bushing 77 may include a cap member 78 having an upper wall surface 79 (FIG. 3) and a lower wall surface 80 (FIGS. 8 and 15), with the lower wall surface 80 being disposed adjacent the inner wall surface 37 of the shell 31. A bolt 82 having first and second ends 83, 84 may be passed through each bushing and the face guard connector body members, or clips, 85, 85′ of each face guard connector 35. A nut 86 receives the second end 84 of the bolt 82. By bolt 82 being rotatably threaded and rotated with respect to nut 86, face guard 65 may be secured to each side 43, 44 of shell 31. It should be noted that although bolt 82 is inserted from the outside of shell 31, its disposition could be reversed, although it is preferred to be inserted from outside the shell, for ease of removal should a player be injured and it becomes necessary to remove face guard 65. The upper wall surface 79 of each cap member 78 may include a recess 87 which receives a corresponding nut 86. The recess 87 of the cap member 78 preferably matingly receives the corresponding nut 86 and the recess 87 restricts rotational movement of the nut with respect to the shell 31. Preferably, the nut 86 is a I-nut 88, which includes an upper rectangular shaped member 89 and a threaded cylindrical member 90 which is received and disposed within bushing 77. Each of the face guard connectors 35 of the present invention include a face guard connector body member 85, 85′. With reference to FIGS. 3, 4, and 8, face guard connector body member 85 will be described. Face guard connector 85 has an inner surface, or inner wall surface, 91, and outer surface, or outer wall surface, 92. Each face guard connector body member 85 has at least two channels 93, 94, disposed in a substantially parallel, substantially non-collinear relationship, each channel 93, 94 receiving a portion of the face guard 65. Preferably, face guard 65 on both of its sides includes a plurality of wire members having a substantial rectangular shaped opening, such as is formed by wire members 66a, 66b, 66c and 66d as shown in FIGS. 8, with wire members 66b and 66d being received within channels 93, 94, respectively. Preferably, at least one of the channels 93, 94, is formed in the inner surface 91 of the face guard connector body member 85 and the wire member 66b, 66d is received within the at least one channel, whereby the wire member 66b, 66d, is disposed between the inner surface 91 of the face guard connector body member 85, and the outer wall surface 38 of shell 31. Preferably, as shown in FIGS. 3 and 8, both channels, 93, 94 are formed in the inner surface 91 of the face guard connector body member 85. Face guard connector body member 85, as well as face guard connector body member 85′, to be hereinafter described, may be made of any suitable material having the requisite strength and durability characteristic to function as part of a face guard connector, such as a thermoplastic material being preferred. An opening 95 may be formed in the face guard connector body member 85 to provide flexibility to body member 85 so that it can more readily conform to the outer contour of the shell 31. With reference to FIGS. 15 and 17, it is seen that face guard body member 85′ is similar in design to that of body member 85. Body member 85′ differs from that of body member 85, in that body member 85′ includes an access passageway 96 formed in the outer surface 92′ of body member 85′. Access passageway 96 is aligned with an inflation port 97 disposed in shell 31, and is adapted to provide access to inflation port 97 and permit the shock absorbing liner, to be hereinafter described, to be inflated. Access passageway may be a semi-circular shaped notch 98 formed at one end of body member 85′. Helmet 30 as seen in FIGS. 1 and 1A may be provided with conventional face guard clips 99, only one of which is illustrated in FIGS. 1 and 1A, which are used to secure the upper portion of face guard 65 to the front 41 of shell 31. The details of construction of face guard clips 99 are shown in FIGS. 5 and 6. Upon the removal of bolts 82 from face guard connectors 35 and the removal of face guard connector body members 85, 85′, face guard 65 may be rotated upwardly about face guard clips 99, in the event that it is necessary to gain access to the face of a player, or to better assist in removing the helmet 30 of a player. In this regard, no tools, other than a screw driver are necessary to remove bolts 82 and face guard connector body members 85, 85′. The frictional forces between bushing 77 and nut 86 restrain nut 86 from rotation while bolt 82 is being unthreaded there from. Although the face guard connector 35 of the present invention has been described in particular with respect to its use with a football helmet 30, it should be noted that face guard connector 35 could, and in particular, its shock absorber member 67 could be utilized in connection with other types of protective helmets. For example, other types of helmets, with which a face guard of some type is used, include for example, lacrosse helmets, hockey helmets, and baseball batter's helmets, among others. With reference to FIGS. 1 and 1A, each helmet includes a chin protector connector 34 for connecting a portion of a chin protector 100 to shell 31. Chin protector 100 may be of conventional design and has two sides 101, 102 and at least two flexible members 103, 104 associated with each side 101, 102 of the chin protector. Only flexible members 103, 104, associated with side 102 of chin protector 100 are illustrated. The at least two flexible members, or strap members, 103, 104 are adapted to engage with one of the chin protector connectors 34 on the sides 43, 44 of shell 31. Chin protector 100 may include a conventional chin cup 105 as is known in the art. Two embodiments of chin protector connectors 34, in accordance with the present invention, are shown in FIGS. 1 and 1A. With respect to FIGS. 1A, 1B, 15, and 19, chin protector connector 34 includes at least two notches 107, 108 (FIG. 19) formed in the lower edge surface 42 of shell 31, with at least one notch being disposed on each side 43, 44 of the shell 31. As shown in FIGS. 1A. and 1B, at least one of the flexible members 103, 104 on each side of the chin protector 100 passes through at least one 107 of the notches 107, 108 on each side 43, 44 of the shell 31. Preferably, only one notch is formed in the shell 31 on each side 43, 44 of the shell; however, if desired, conditional notches could be formed on the sides of the shell. Preferably, notches 107, 108 are generally V-shaped notches; however, other shapes of notches, if desired, could be utilized. As shown in FIGS. 1A and 1B, flexible member, or flexible strap member 104 passes through notch 107. As is known in the art, chin protector 100 has upper and lower flexible members 103, 104, on each side, and the upper flexible members, or flexible strap members 103 are releaseably secured to the shell 31 as by a conventional snap connector, the male portion of the snap 109 (FIGS. 15 and 19), cooperating with a female snap connector 110 carried by a bracket 111 mounted on upper strap 103 (FIG. 1A). Helmets 30 are each provided with an ear opening 112 in each ear flap 32, and the ear openings 112 are adapted to be disposed adjacent an ear 50 of the wearer 46 permit the transmission of sound to the wearer 46. Ear openings 112 may be provided with a generally rounded configuration, with ear openings 112 generally having a truncated triangular shaped configuration with an additional smaller opening 112′ being disposed rearwardly of the main ear opening 112. Preferably the notches 107, 108 are disposed in the lower edge surface 42 of the shell 31, and as seen in FIG. 19, and the notches 107, 108 are preferably disposed substantially, directly below the ear openings 112. As seen in FIGS. 1A and 1B, a first portion 115 of each lower flexible member 104 is disposed adjacent the inner wall surface 37 of shell 31, a second portion 116 of strap member 104 passes through notch 107, and a third portion 117 of the flexible member, or lower strap member 104 is disposed adjacent the outer wall surface 38 of shell 31. The third portion 117 of each lower strap member 104 is preferably releaseably secured to a portion of the chin protector connector 34 disposed on the outer wall surface 38 of shell 31. Preferably, strap 104 is releaseably secured by a male and female snap connector 109, 110, and bracket 111, as previously described. The foregoing described chin protector 100 is generally referred to as a 4 point hookup, or a “high hookup” chin protector, or chin strap, which is believed to provide better stability of the helmet 30 with respect to the wearer's head, particularly upon the player sustaining an impact force to helmet 30. Because as previously described, the ear flaps 32 of the present invention are generally disposed to lie in a plane which is substantially parallel to the longitudinal axis 61 of the outer shell 31, the notches 107, 108 of chin protector connector 34 serve to provide improved stability of the lower chin straps, or flexible members 104, by preventing the lower strap 104 from being free to slide around the outer wall surface of ear flaps 32. The notches 107, 108 are believed to effectively “catch” the lower strap member 104 to prevent the free sliding of the lower chin strap 104. In general, if a helmet 30 is subjected to a downward impact force upon face mask 65, helmet 30 tends to roll forwardly around a virtual pivot point located slightly above the ear openings 112. This rolling effect is typically resisted by a force acting between the lower strap connectors 109, 110 and the chin 49 of the wearer of the helmet. The further away from the virtual pivot point the lower snap connection of lower chin strap 104 is located, the better the resistance of the helmet 30 to rolling. Notch 107 assists in resisting the undesired rolling effect by redirecting the strap's force line of action to a location farther away from the virtual pivot point. With reference to FIGS. 1 and 2 and 7, another embodiment of the chin protector connector 34 of the present invention will be described. In this embodiment, chin protector connector 34, at least one slot 120 is formed in each side 43, 44 of shell 31, and at least one of the flexible members 103, 104, passes through the at least one slot 120. Preferably, the at least one slot 120 is formed in each side 43, 44 of shell 31, and the at least one slot 120 is disposed in each ear flap 32 of shell 31. Preferably, only one slot 120 is provided for each side of the shell 31. Additionally, the at least one slot 120 is preferably disposed forwardly of each ear opening 112 and is positioned between the front 41 of the shell and each ear opening 112. As shown in FIG. 7, slot 120 is tapered with respect to the inner and outer wall surfaces 37, 38 of the shell, whereby sharp edges are avoided which could damage flexible member or strap member, 104. Strap member 104 is also releaseably secured to shell 31 as by use by a female and male snap connector and bracket 109-111, as previously described. Upon releasing the lower snap connections associated with lower strap members 104, the chin protector 104 may be loosened with respect to the chin of the wearer of the helmet, whereby the wearer of the helmet may remove helmet 30 from his or her head. It is not necessary to disengage, or unsnap, the upper flexible strap members 103, in order to remove helmet 30. Helmets 30 of the present invention preferably include a shock absorbing liner 125 associated by the liner connector 36 with the inner wall surface 37 of shell 31. Preferably, the shock absorbing liner 125 is releaseably connected to the inner wall surface 37 of shell 31 by the liner connector 36. Preferably the liner connector 36 includes a hook and loop fastener assembly 126, 127, which is generally referred to as a VELCRO® attachment, as by placing portions of the hook and loop assembly 126, 127 on the shock absorbing liner 125 and the inner wall surface 37 of the shell 31, as is known in the art. As shown in FIGS. 14 and 16, shock absorbing liner 125 generally includes a plurality of resilient members 130 which are adapted to absorb shock forces exerted upon the shell 31, and the plurality of resilient members 130 are disposed along the inner wall surface 37 of the back 40 and sides 43, 44 of shell 31. The general construction of shock absorbing liner 125 is disclosed in U.S. Pat. No. 5,263,203, commonly assigned with the present application, and which patent is herein incorporated by reference. Shock absorbing liners 125, 125′ may each include an inflation valve 131 which would mate with an opening, or port, disposed in the rear 40 of the shell 31, whereby shock absorbing liners 125, 125′ could be inflated as desired. Shock absorbing liners 125, 125′ each include at least one resilient pad member 135 disposed upon the inner wall surface 136 of a portion of each of the jaw flap 33 of shell 31. Two embodiments of resilient pad members 135 are illustrated. The first embodiment of resilient pad member 135 is shown in FIGS. 1, 1A, 2, 8, 12, and 14. Another embodiment of resilient pad member 135 is illustrated in FIGS. 15 and 16. Although the at least one resilient pad member, or jaw pad, 135 could be formed integral with the plurality of resilient pad members 130 of shock absorbing liners 125, 125′, the resilient pad members 135 are preferably releaseably secured to the plurality of resilient members 130 forming shock absorbing liner 125. As seen in FIGS. 14 and 16 each of the shock absorbing liners 125, 125′ have first and second ends 140, 141, and the shock absorbing liners 125, 125′ have a connector member 145, 145′ disposed at each of the ends 140, 141. Each of the connector members 145, 145′ are adapted to connect to the shock absorbing liner 125, 125′ at least one of the resilient pad members 135 disposed upon the inner wall surface 136 of a portion of the jaw flap 33. As shown in FIGS. 8 and 14, one embodiment of the at least one resilient pad member 135, may be jaw pad 150. Another embodiment of the at least one resilient pad member 135 may be seen in FIGS. 15 and 16 as jaw pad 150′. Each of the resilient pad members 135, or jaw pads 150, 150′ include at least one, and preferably three resilient pad members 151, 152, 153, in the case of the embodiment of jaw pad 150, and two resilient pad members 151 ′ and 152′ in the embodiment of resilient pad member 135, or jaw pad 150′ of FIG. 16. As previously described, each of the resilient pad members 135, or jaw pads 150, 150′, are releaseably secured to the resilient members 130 of the shock absorbing liners 125, 125′ by a connector member 145, 145′. Preferably the connector member 145, 145′ is a sling 160, 160′, that suspends at least at least one of the resilient pad members that comprise jaw pads 150, 150′. For example, as shown in FIGS. 1A, 8 and 14, resilient pad member 151 is suspended from sling 160. Similarly, as shown in FIGS. 15 and 16, resilient pad member 151′ of jaw pad 150′ is suspended from sling 160. Sling 160 has an opening 161 that receives the outer configuration, or periphery, of resilient pad member 151 therein, preferably in a closely conforming or mating, snug fitting relationship. Similarly, sling 160′ has an opening 161′ which receives the outer periphery of resilient pad member 151′ of jaw pad 150′, again in preferably a mating, snug fitting relationship. It should be noted that since each of the jaw pads 150, 150′ also include some hook and loop fastener material such as VELCRO®, 162, 163 (FIG. 8) and 162′, 163′ (FIG. 15), to releaseably secure jaw pads 150, 150′ to the inner wall surface 37 of shell 31, and preferably to the inner wall surface 136 of a portion of the jaw flap 33 of the shell 31, the mating relationship between the resilient pad members 151, 151′ with openings 161, 161′ is not required to be a snug, frictional relationship. It may rather be a loose fitting relationship for positioning purposes only, to position the jaw pads 150, 150′ in their desired location. With the hook and loop fastener material 162, 163 and 162′ and 163′ acting to releaseably secure the jaw pads 150, 150′. With reference to FIGS. 12 and 14, when shock absorbing liner 125 is associated with the inner wall surface 37 of shell 31, including the at least one resilient pad member 135, or jaw pad 150 being associated with shock absorbing liner 125, an ear channel 170 is formed on each side of the shell 31 between at least one of the resilient members 130 of the shock absorbing liner 125 and at least one resilient pad member 135, or jaw pad 150. Each ear channel 170 is disposed adjacent the ear openings 112 formed in ear flaps 32. For example, with reference to FIGS. 12 and 14, ear channel 170 is formed and bounded by on one side, by resilient member 130a, and on the other side by resilient pad members 151 and 152. The upper end of ear channel 170, as illustrated, is bounded by resilient member 130b. Similarly, as seen in FIG. 16, ear channel 170 is bounded by resilient member 130a on one side, and by resilient pad members 151 ′ and 152′ on the other side. The top of the ear channel 170 may be bounded by resilient member 130b′. Each of the ear channels 170 preferably extends along an axis 171 which is disposed substantially parallel with the substantially vertical, longitudinal axis 61 of the shell 31 extending from the crown 39 of the shell 31 to the lower edge surface 42 of the shell 31 adjacent the ear flap 32. The ear channels 170 are thus substantially unobstructed from the ear opening 112 to the lower edge surface 42 of the shell 31 below the ear openings 112, whereby the wearer of the helmet may easily put on, or take off, the helmet 30 without substantial contact between the ear of the wearer and the resilient members 130 and resilient pad members 135 of the shock absorbing liners 125, 125′. It is believed that ear channels 170 will help prevent and/or minimize irritation to the player's ear. With reference to FIGS. 8-11, the details of construction of jaw pad 150 are illustrated. In general, the resilient pad member 135, or pads 151, 152, 153, may include a layer of padding material 175, or two layers of padding material 176, 177 disposed in a chamber, or housing, 178, 179, 180. The chambers 178-180 may be formed of any suitable plastic material having the requisite strength and durability characteristics, as is known in the art, to function as resilient members, or pad members, for a football helmet. If desired, all of the chambers 178-180 could be filled with a single layer of padding material, or some of the chambers could be filled with a single layer, and other chambers could be filled with two or more layers of padding material. Alternatively, at least one of the resilient pad members 135, or pads 151-153 could also include a fluid such as a pressurized fluid, such as air. In the embodiment of jaw pad 150 shown in FIGS. 8-11, pads 151 and 153 are filled with a single layer of padding material, and pad 152 in addition to at least one layer 176 of padding material includes a fluid, and the fluid may be pressurized. Preferably, the fluid is air. As shown in FIG. 9, pad 152 preferably includes within its respective housing, or chamber, 179, two layers of padding material, 176, 177. A variety of different padding materials can be used for layers 175-177. For example, PVC nitrile foam, rubber foam, or polyurethane foam are examples of foam padding materials which may be utilized, as are known in the art. When multiple layers of padding material are utilized, such as in pad 152, the first layer of 176 may be one of the foregoing types of foam materials, which is generally referred to as an energy, or force attenuating, foam, and the second layer of foam padding material 177 is a “softer” foam, generally referred to as a fitting, or comfort, foam, as is known in the art. Examples of materials in construction of the foregoing described pads may also be found in U.S. Pat. No. 3,882,547, which is also commonly assigned to the present assignee of this application, which patent is incorporated herein by reference. The pressurized fluid, or air, may be provided to the interior of chamber, or housing, 179, as by an air channel 18 in fluid communication with the interior of housing 179 at one end, and in fluid communication at its other end with a suitable inflation valve 182. Inflation valve 182 may include an inlet orifice 183 which permits access to a conventional, compressible needle valve member 184 which has an exit orifice 185 in fluid communication with air channel 181. A conventional hand held pump having a conventional inflation needle may be inserted through the needle valve member 184, as is known in the art, to provide the desired amount of pressurized fluid, or air into air channel 181, to thus inflate chamber, or housing, 179, as desired. The inflation of chamber 179, in combination with the foam padding material contained therein may assist in properly sizing the helmet, including jaw pad 150, to the shape of the head of the wearer of the helmet. Air channel 181 may be formed by any conventional plastic material formed in the shape of air channel 81, such as by two layers of a suitable thermoplastic material which are heat sealed together into the configuration shown in FIGS. 9 and 11. Inflation valve 182 may include an annular seat 186 which is received within the confines of opening 187 when inflation valve 182 is folded back upon jaw pad 150 after pad 152 has been inflated, as desired, as shown in FIG. 14. With reference to FIGS. 15 and 16, jaw pad 150′ may be similar in construction to jaw pad 150. Pad 151′ may also include a chamber 178′ which may include a single, solid layer of foam 175′, and the pad 152′ may, if desired, have multiple of layers of foam disposed within chamber, or housing 179′. If it is desired to provide for a fluid within chamber 179′, pad 150′ may also include an inflation valve 182 as previously described, in fluid communication with an air channel 181′, which in turn is in fluid communication with the interior of chamber 179′. As shown in FIG. 15, inflation valve 182 for pad 150′ is associated with an inflation port 97, disposed in the outer wall surface 38 of shell 31, inflation port 97 in turn passing through the shell 31 to the inner wall surface 37 of shell 31. Thus, the inflation valve 182 of jaw pad 150′ is accessible from the exterior of shell 31, whereas inflation valve 182 of pad 150 is accessible from within shell 31. Chamber, or housing, 179 for pad 152′ of jaw pad 150′ may have any suitable outer configuration; however, a generally polygonal configuration as illustrated in FIG. 16. The two outer wall surfaces 190, 191 of chamber 179′, which define one side of ear channel 170 are of a generally rounded shape, with no sharp protrusions extending into ear channel 170. Housing, or chamber 179′ of jaw pad 150′ may have at least three sides, five sides being illustrated in the embodiment of FIGS. 15 and 16. It should be readily apparent to one of ordinary skill in the art that jaw pad 150′ may have more than three sides, as well as could have only an outer circumference, were it to be formed in the shape of a circle. With reference to FIGS. 12 and 13, a crown shock absorbing pad 200 is preferably disposed adjacent the inner wall surface 37 of shell 31 beneath crown 39. Preferably, crown shock absorbing pad 200 is inflatable, and includes an inflation valve 201 which is received within an opening (not shown) formed in the crown 39 of shell 31, which permits crown shock absorbing pad 200 to be inflated. Crown 200 may also include a positioning member 202, or snap member 203, or push-in-plug 204 which is received within an opening 205 in shell 31, to position and retain crown pad 200 within shell 31. Crown shock absorbing pad 200 may be of any suitable construction, and may include a single or multiple layers of a suitable shock absorbing foam material disposed therein. As seen in FIG. 12, the front 41 of shell 31 may include a conventional brow pad 210, as is known in the art. As seen in FIGS. 8, 14-17, and 19, the helmets 30 of the present invention, including jaw pads 150, 150′, when compared with previously proposed helmets, provide for a substantial amount of energy, or force attenuating, foam, or padding material, disposed in front of the coronal plane of the body of the wearer of the helmet and below the basic plane of the head of the wearer of the helmet. The energy, or force attenuating, foam, or padding material, is preferably a PVC nitrile foam or a polyurethane foam, having a density of at least approximately 5 PCF (pounds per cubic foot) and at least approximately a 25% compression deflection (ASTM D-1056 standard) of 8 PSI (pounds per square inch). As is known to those of skill in this art, the coronal plane is the frontal plane that passes through the long, or longitudinal, axis of the body, and the basic plane is a transverse plane that generally passes through the ears and the lower orbital rims of the eyes of the body. It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials or embodiment shown and described, as obvious modifications and equivalents will be apparent to one skilled in the art. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Various activities, such as contact sports, and in particular the sport of football, require the use of helmets to attempt to protect participants from injury to their heads due to impact forces that may be sustained during such activities. Various types of helmets have been in use in the sport of football, ever since individuals began wearing helmets to attempt to protect their heads many years ago. Typically, these helmets have included: an outer shell, generally made of an appropriate plastic material, having the requisite strength and durability characteristics to enable them to be used in the sport of football; some type of shock absorbing liner within the shell; a face guard; and a chin protector, or chin strap, that fits snugly about the chin of the wear of the helmet, in order to secure the helmet to the wearer's head, as are all known in the art. Over the years, various improvements have been made to the various components of a football helmet; however, in general, the overall configuration and shape of a football helmet, has remained the same for many years. In this regard, a typical football helmet has included an ear flap as a part of the shell forming the helmet, and the ear flap generally overlies an ear of the wearer and a portion of a cheek of the wearer; however, the jaw of the wearer typically extends outwardly beyond the outer periphery of the helmet, whereby a majority portion of the jaw of the wearer has only been protected by the chin protector. In general, conventional football helmets presently have ear flaps and the lower portions thereof taper inwardly toward the neck and rearmost portions of the player's jawbone overlied by the ear flaps. As a consequence of this structure, when a player removes his, or her, helmet, it is necessary to pull the sides, or ear flaps, of the helmet outwardly so that the helmet may clear the player's ears. Further in this regard, conventional helmets may also include pads adjacent the player's ear and these pads generally are located along the lower and front edge of the ear flap. These pads must also be pulled away from the ears of the player when removing a conventional helmet. The repeated putting on, and taking off, a football helmet may cause irritation to the player's ear. It would be desirable if the putting on, and removal of, a football helmet did not cause repeated sliding frictional contact with a player's ears, to prevent potential irritation to the player's ear. Conventional football helmets utilize face guards which are generally made of either a metallic or thermoplastic material. Since a player wears a helmet for a considerable period of time during practices and games, it would be desirable to minimize the weight of the helmet, while not sacrificing protection. The face guards of conventional helmets are typically attached to the sides of the helmet, as well as upon the front of the helmet. Thus, the face guard must extend rearwardly in order to be attached to the side of the helmet. It would be desirable if the size of the face guard could be reduced, thereby reducing the weight of the face guard used in the helmet. While it is the desire and goal that a football helmet, and other types of protective helmets, prevent injuries from occurring, it should be noted that as to the helmet of the present invention, as well as prior art helmets, due to the nature of the sport of football in particular, no protective equipment or helmet can completely, totally prevent injuries to those individuals playing the sport of football. It should be further noted that no protective equipment can completely prevent injuries to a player, if the football player uses his football helmet in an improper manner, such as to butt, ram, or spear an opposing player, which is in violation of the rules of football. Improper use of a helmet to butt, ram, or spear an opposing player can result in severe head and/or neck injuries, paralysis, or death to the football player, as well as possible injury to the football player's opponent. No football helmet, or protective helmet, such as that of the present invention, can prevent head, chin, or neck injuries a football player might receive while participating in the sport of football. The helmet of the present invention is believed to offer protection to football players, but it is believed that no helmet can, or will ever, totally and completely prevent head injuries to football players. The football helmet of the present invention, when compared to previously proposed conventional football helmets, has the advantages of: being designed to attempt to protect a wearer of the helmet from injuries caused upon an impact force striking the helmet; preventing irritation to a player's ear; affording more protection to the jaw of the wearer; and providing for the use of a lighter weight face guard.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the invention, the foregoing advantages are believed to have been achieved by the football helmet of the present invention. The football helmet of the present invention may include: an outer shell having an inner wall surface and an outer wall surface, the shell including a crown, a back, a front, a lower edge surface, and two sides, the shell being adapted to receive the head of wearer of the helmet, the wearer having a lower jaw having two side portions; each side of the shell includes an ear flap adapted to generally overlie an ear and a portion of a cheek of the wearer; each ear flap generally extending downwardly from its respective side; each ear flap including a jaw flap attached to the ear flap, each jaw flap extending from the ear flap forwardly toward the front of the shell and adapted to generally extend to overlie a side portion of the lower jaw of the wearer of the helmet; each side having a chin protector connector, adapted to connect a portion of a chin protector to the shell; each side having a face guard connector, adapted to connect a portion of a face guard to the shell; and a liner connector, adapted to connect a shock absorbing liner to a portion of the inner wall surface of the shell. Another feature of the present invention is that there may be a face guard connected to at least both sides of the helmet by the face guard connectors, each face guard connector including a shock absorber member adapted to substantially omni-directionally distribute an impact force, exerted upon the face guard, throughout the shell. A further feature of this aspect of the present invention is that each shock absorber member may be a grommet disposed in an opening formed in a side of the shell. In accordance with another aspect of the present invention, the football helmet may include a chin protector having two sides and at least two flexible members associated with each side of the chin protector, the at least two flexible members adapted to engage with one of the chin protector connectors on the sides of the shell. Another feature of this aspect of the invention is that the chin protector connector may include at least two notches formed in the lower edge surface of the shell, with at least one notch being disposed on each side of the shell, and at least one of the flexible members on each side of the chin protector passes through at least one of the notches on each side of the shell. A further aspect of the invention is that the at least two notches may be disposed in the lower edge surface of the shell adjacent each ear flap of the shell. An additional feature of this aspect of the invention is that the chin protector connector may include at least one slot formed in each side of the shell, and at least one of the flexible members on each side of the chin protector passes through the at least one slot. In accordance with another aspect of the present invention, the football helmet may include a shock absorbing liner associated with the inner wall surface of the shell by the liner connector. An additional feature of this aspect of the present invention is that the shock absorbing liner may include a plurality of resilient members adapted to absorb shock forces exerted upon the shell, and the plurality of resilient members may be disposed along the inner wall surface of the back and sides of the shell, including at least one resilient pad member disposed upon the inner wall surface of a portion of each of the jaw flaps of the shell. A further feature of this aspect of the present invention is that each of the at least one resilient pad members may be formed integral with the plurality of resilient members, or at least one resilient pad member may be releaseably secured to the plurality of resilient members. An additional feature of this aspect of the present invention is that on each side of the inner wall surface of the shell, an ear channel may be formed between at least one of the resilient members of the shock absorbing liner and the at least one resilient pad member disposed upon the inner wall surface of a portion of the jaw flap, and each ear channel may be disposed adjacent an ear opening formed in each flap. Another aspect of the present invention is that the outer shell may have a vertical, longitudinal axis extending downwardly from the crown of the helmet, and each ear flap may generally lie in a plane which is substantially parallel to the longitudinal axis of the outer shell. Another feature of this aspect of the present invention is that the outer shell of the helmet may have a vertical, longitudinal axis extending downwardly from the crown, and each jaw flap may generally lie in a plane which is substantially parallel to the longitudinal axis of the outer shell. The football helmet of the present invention, when compared with previously proposed conventional football helmets, is believed to have the advantages of: offering protection to football players against injuries caused by impact forces exerted upon the football helmet during the playing of the game of football; providing a football helmet which is easier for the wearer of the helmet to put on and take off, and may minimize irritation to a player's ear; providing protection for the jaw of the wearer; and providing a smaller, thus lighter in weight, face guard. Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
20041028
20060502
20050602
63525.0
1
LINDSEY, RODNEY M
FACE GUARD FOR A SPORTS HELMET
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,975,409
ACCEPTED
Vertical autosizing
A method for printing an image on an elongate image receiving medium comprising the steps: inputting data defining the image to be printed; selecting a vertical printing mode in which the image is to be printed across the width of the elongate image receiving medium; initiating a print operation for printing the image; generating print data, after vertical printing mode has been selected and the print operation has been initiated in accordance with a print data generation method which ensures that the image fits in the width of the elongate receiving medium; and printing the image using the print data.
1. A method for printing an image on an elongate image receiving medium comprising the steps: inputting data defining the image to be printed; selecting a vertical printing mode in which the image is to be printed across the width of the elongate image receiving medium; initiating a print operation for printing the image; generating print data, after vertical printing mode has been selected and the print operation has been initiated in accordance with a print data generation method which ensures that the image fits in the width of the elongate receiving medium; and printing the image using the print data. 2. A method as claimed in claim 1 wherein the inputted data is at least one character to define the image to be printed. 3. A method as claimed in claim 2 wherein the print data generation method operates without iterative calculation of size data of said at least one character. 4. A method as claimed in claim 2 wherein the print data generation method comprises the step of calculating the length of the image with a first character size. 5. A method as claimed in claim 4 wherein the print data generation method further comprises the steps of: comparing said calculated length to a predetermined range; selecting a second character size as a result of the comparison; printing said image with said second character size. 6. A method as claimed in claim 4 wherein the print data generation method further comprises the steps of: comparing said calculated length to a first predetermined length. 7. A method as claimed in claim 6 further comprising the steps of: enlarging said image with a second character size if said calculated length is less than said first predetermined length; calculating the length of the image enlarged with the second character size; comparing the calculated length to the first predetermined length. 8. A method as claimed in claim 6 further comprising the steps of: comparing said calculated length to a second predetermined length if said calculated length is greater than said first predetermined length; printing the image if the calculated length is less than or equal to the second predetermined length, or not printing the image if the calculated length is more than the predetermined length. 9. A method as claimed in claim 2 wherein the print data generation method comprises the step of determining the character size for the image from the number of characters inputted and the maximum printable length. 10. A method according to claim 9 wherein the character size is determined from a look up table. 11. A method as claimed in claim 1, further comprising the step of generating an error message if the image with a smallest character size does not fit in the width of the receiving medium. 12. A method as claimed in claim 1, further comprising the step of inhibiting printing if the image with a smallest character size does not fit in the width of the receiving medium. 13. A printer arranged to print an image on an elongate image receiving medium comprising: input means for inputting data defining the image to be printed; selecting means for selecting a vertical printing mode in which the image is to be printed across the width of the elongate image receiving medium; print operation initiating means for initiating a print operation for printing the image; print data generating means arranged to generate print data after vertical printing mode has been selected and the print operation has been initiated in accordance with a print data generation method which ensures that the image fits in the width of the elongate receiving medium; and printing means arranged to print the image using the print data. 14. A printing apparatus as claimed in claim 13 wherein the print data generating means comprises calculating means arranged to calculate the length of the image with a first character size. 15. A printing apparatus as claimed in claim 14 wherein the print data generating means further comprises: comparing means arranged to compare said calculated length to a predetermined range; and selecting means arranged to select a second character size as a result of the comparison; and wherein said printing means is arranged to print said image with said second character size. 16. A printing apparatus as claimed in claim 15 wherein the comparing means is arranged to compare said calculated length to a first predetermined length. 17. A printing apparatus as claimed in claim 16 wherein the print data generating means further comprises enlarging means arranged to enlarge said image with a second character size if said calculated length is less than a value related to said first predetermined length; and wherein said calculating means is arranged to calculate the length of the image enlarged with the second character size; and said comparing means is arranged to compare the calculated length to the first predetermined length. 18. A printing apparatus as claimed in claim 16 wherein: said comparing means is arranged to compare said calculated length to a second predetermined length if said calculated length is greater than said first predetermined length; and said printing means is controllable to either print the image if the calculated length is less than or equal to the second predetermined length, or not print the image if the calculated length is more than the predetermined length. 19. A printing apparatus as claimed in claim 14 wherein the print data generating means comprises determining means arranged to determine the character size for the image from the number of characters inputted and the maximum printable length. 20. A printing apparatus according to claim 19 wherein the determining means comprises a look up table. 21. A printing apparatus as claimed in claim 13, further comprising error message generating means arranged to generate an error message if the image with a smallest character size does not fit in the width of the receiving medium. 22. A printing apparatus as claimed in claim 13 further comprising print inhibiting means arranged to inhibit print if the image with a smallest character size does not fit in the width of the receiving medium.
The present invention relates to a method of printing an image on an image receiving medium, such as a tape, and in particular to printing the image across the width of the printing medium. There have been known for many years thermal printing devices which produce labels on an elongate medium such as tape. Such devices operate with a supply of tape arranged to receive an image and a means for transferring an image onto the tape. In one known device, a tape holding case holds a supply of image receiving tape and a supply of image transfer ribbon, the image receiving tape and the image transfer ribbon being passed in overlap through a print zone of the printing device. At the print zone, a thermal print head cooperates with a platen to transfer an image from the transfer ribbon to the tape. A printing device operating with a tape holding case of this type is described for example in EP-A-0267890 (Varitronics Inc.). In this printing device, the image receiving tape comprises an upper layer for receiving an image which is secured to a releasable backing layer of adhesive. In another device, the construction of the image receiving tape is such that the upper image receiving layer is transparent and receives an image on one of its faces printed as a mirror image so that it is viewed the correct way round through the other face of the tape. In this case, a double sided adhesive layer can be secured to the upper layer, this double sided adhesive layer having a releasable backing layer. This latter arrangement is described for example in EP-A-032918 and EP-A-0322919 (Brother Kogyo Kabushiki Kaisha). Printing devices of this type also include display means and an input means such as a keyboard for selecting characters to be printed. Selected characters are displayed on the display means and in this way a user can compose a label to be printed. When a label has been composed a print instruction is given and the printing device proceeds to print a label. Printing devices of this type also include cutting means to cut off the printed portion of the tape to enable it to be used as a label. For use as a label, the releasable backing layer is removed from the upper layer to enable the upper layer to be secured to a surface by means of the adhesive layer. In this way, labels having a character arrangement determined by the user can be made. The image may be printed on the tape in either a horizontal or vertical orientation to the length of the tape. When the image is printed horizontally, that is along the length of the tape, the user may determine the length of the image, practically without a limit. However, when an image is printed vertically, that is across the width of the tape, the length of the image is limited to the width of the tape. This may present a number of problems to the user when determining whether an image can be printed across the width of the tape and whether the printed image will be legible when printed. Printing text in a vertical direction is however very desirable since it is very useful for spine labels and the like. FIG. 7 shows four labels (a)-(d), each having text arranged in a vertical orientation. Each label has characters arranged such that each character is orientated vertical to the length of the tape. In label (a), each character is printed beneath the other, such that although the characters are printed vertically, the image is printed along the length of the tape. In this case, the length of the image is not limited to the width of the tape. Label (b) shows another example of where characters are printed vertically and the image is printed along the length of the tape. Here two words, ‘Tape’ and ‘Printer’ are included in the character string. The words in the character string are separated by including a blank space along the length of the tape. In label (c), each character is printed adjacent to the other such that the image extends across the width of the tape. In this case the length of the image is restricted by the width of the tape. Label (d) shows another example of this type of vertical printing. Here, two words have been separated by printing the words beneath the other. It can be seen that if a user wishes to print a label with an image arranged vertically as shown in FIGS. 7(c) and 7(d), it is necessary to ensure that the image may be printed within the width of the tape. U.S. Pat. No. 5,344,247 (Brother Kogyo Kabushiki Kaisha) describes a printer capable of printing an image onto a tape along the longitudinal direction of the tape. The printer is also capable of rotating the image such that the image is printed in a rotated fashion with respect to the longitudinal direction of the tape. After the image has been rotated, an iterative process incrementally reduces the length of the rotated image comparing the length of the image and the width of the tape after each iteration, until it is eventually determined that the image is a size that can be printed on the tape. Such methods for printing an image across the width of the tape involve complex algorithms that require a large amount of processing. This increases the memory requirements for the printer and thus increases cost. It is therefore an aim of the invention to overcome the problems identified in the prior art and to provide an improved method for printing vertical images. The present invention seeks to overcome these problems when printing within a predefined area, such as across the width of the tape. According to a first aspect of the present invention there is provided a method for printing an image on an elongate image receiving medium comprising the steps: inputting data defining the image to be printed; selecting a vertical printing mode in which the image is to be printed across the width of the elongate image receiving medium; initiating a print operation for printing the image; generating print data, after vertical printing mode has been selected and the print operation has been initiated in accordance with a print data generation method which ensures that the image fits in the width of the elongate receiving medium; and printing the image using the print data. In a preferred embodiment of the present invention the print data generation method operates without iterative calculation of size data of at least one character defining the image to be printed. In the preferred embodiment of the present invention the print data generation method further comprises the steps of comparing a calculated length of the image to a predetermined range, selecting a second character size as a result of the comparison and printing said image with said second character size. In an alternative embodiment of the present invention the method further comprises the steps of enlarging the image with a second character size if the calculated length of the image is less than said a predetermined length, calculating the length of the image enlarged with the second character size and comparing the calculated length to the first predetermined length. In a further alternative embodiment of the present invention the character size is determined from a look up table. According to a second aspect of the present invention there is provided a printer arranged to print an image on an elongate image receiving medium comprising: input means for inputting data defining the image to be printed; selecting means for selecting a vertical printing mode in which the image is to be printed across the width of the elongate image receiving medium; print operation initiating means for initiating a print operation for printing the image; print data generating means arranged to generate print data after vertical printing mode has been selected and the print operation has been initiated in accordance with a print data generation method which ensures that the image fits in the width of the elongate receiving medium; and printing means arranged to print the image using the print data. For a better understanding of the present invention, and to show how the same may be carried into effect, reference will now be made by way of example to the accompanying drawings in which:— FIG. 1 is a schematic cross sectional view of a tape printing device embodying the present invention; FIG. 2 is a schematic cross sectional view of a tape printing device in accordance with an alternative embodiment of the present invention. FIG. 3 is a diagrammatic sketch showing control circuitry for the printing device of FIG. 1 according to an embodiment of the present invention. FIG. 4 is a plan view of the top surface of the printing device. FIGS. 5a and b representations of look up tables used in an embodiment of the invention. FIG. 6 is a flow chart showing an alternative embodiment of the present invention. FIGS. 7a-d show examples of vertical printing. FIG. 1 shows in plan view a tape printing device 61 embodying the present invention which has a cassette 60 arranged therein. Typically this tape printing device 61 is a hand-held or small desktop device. The cassette 60 is located in a cassette bay 62 and contains a supply spool 64 of image receiving tape 63. The cassette bay 62 also accommodates a thermal print head 9 and a platen 10 which cooperate to define a print zone 65. The cassette 60 also has an ink ribbon supply spool 48 and an ink ribbon take up spool 50. An ink ribbon 12 is guided from the ink ribbon supply spool 48 through the print zone 65 and taken up on the ink ribbon take up spool 50. The image receiving tape 63 passes in overlap with the ink ribbon 12 through the print zone 65 with its image receiving layer in contact with the ink ribbon12. The print head 9 is movable so that it can be brought into contact with the platen 10 for printing and moved away from the platen 10 to enable the cassette 60 to be removed and replaced. In the operative position, the platen 10 is rotated to cause the image receiving tape 63 to be driven past the print head 9 and the print head is controlled to print an image on the image receiving tape 63 by thermal transfer of ink from the ink ribbon 12. The printhead 9 comprises a thermal print head having an array of printing elements connected in parallel, each of which can be thermally activated in accordance with the desired image to be printed. The image receiving tape 63 is guided by a guide mechanism (which is not shown) through the cassette 60 to an outlet 66 of the tape printing device 61. The platen 10 is driven by a DC motor 67 (see FIG. 3) so that it rotates to drive the image receiving tape 63 through the print zone 65 of the tape printing device 61 during printing. In this way, an image is printed on the tape and fed out from the print zone 65 to the outlet 66. The image is printed by the print head 9 on the image receiving tape 63 on a column by column basis with the columns being adjacent one another in the direction of movement of the tape 63. Pixels are selectively activated in each column to construct an image in a manner well known in the art. The DC motor 67 is provided with a shaft encoder for monitoring the speed of rotation of the motor. Sequential printing of the columns of pixels by the printhead 9 is controlled in dependence on the monitored speed of rotation of the motor 67. The control of the speed of the motor 67 is achieved by the microprocessor chip 100 (see FIG. 4) to generate data strobe signals each of which causes a column of pixel data to be printed by the print head 9. The tape printing device 61 may include at cutting location 68 a cutting mechanism 69 which carries a blade 70. The blade 70 cuts the image receiving tape 63 then enters a slot 71 located in the cassette 60. FIG. 2 shows an alternative embodiment of the present invention. FIG. 2 shows a printer having two cassettes arranged in a cassette receiving bay 62′ of a printing device. The upper cassette 72 contains a supply of the image receiving tape 63′ which passes through a print zone 65′ of the printer to an outlet 66′ of the printer. The image receiving tape 63′ comprises an upper layer for receiving a printed image on one of its surfaces and having its other surface coated with an adhesive layer to which is secured to a releasable backing layer. The cassette 72 has a recess 80 for accommodating a platen 10′ of the printer. The platen 10′ is mounted for rotation. The lower cassette 74 contains an ink ribbon 12 which extends from a supply spool 76 to a take up spool 78 within the cassette 74. The ink ribbon 12 extends through the print zone 65′ in overlap with the image receiving tape 63′. The cassette 74 has a recess 71 for receiving the printhead 9′ of the printer. The print head 9′ is movable between an operative position, in which it bears against the platen and holds the ink ribbon 12′ and the image receiving tape 73 in overlap between the print head 9 and the platen 10 and an inoperative position in which it is moved away from the platen to release the thermal transfer ribbon and the image receiving tape. In the operative position the platen 10 is rotated under the action of a DC motor 67′ in a manner as described in relation to FIG. 1. The print head is controlled to print an image onto the image receiving tape by thermal transfer of ink from the ribbon. The ink ribbon can be omitted in certain embodiments where the image receiving tape is of a thermally sensitive material. In this case, the image is printed by the thermal print head directly onto the thermally sensitive image receiving tape. FIG. 4 is a view of the printer from above. The cassette receiving bay 62 is covered by a lid 15 hinged along the line 17 at the rear of the printer and which can be opened from the front to reveal the cassette, or cassettes (depending on the embodiment) in the cassette receiving bay 62. The printer also has a keyboard 108 which has a plurality of character keys CK designated generally by arrow 111 and a plurality of function keys FK designated generally by 120. The basic circuitry for controlling the present invention of the printing device is shown in FIG. 3. There is a microprocessor 100 chip having a read only memory (ROM) 102, a microprocessor 101 and random access memory capacity (RAM) 104. The microprocessor chip 100 outputs data to drive a display via a display driver chip 109 to display a label to be printed (or part thereof) and/or a message for the user. The display driver alternatively may form part of the microprocessor chip. The microprocessor receives an input from keyboard 108. Additionally, the microprocessor chip 100 also outputs data to drive the print head 9 to form a label. The microprocessor chip 100 also controls the DC motor 67 driving the platen 10. The microprocessor may also control the cutting mechanism 69 to allow lengths of tape to be cut off. The ROM 102 stores font data defining alphanumeric characters. Characters to be printed by the printhead are derived from the font data. Characters for display by the display means may also be derived from the same font data stored in the ROM used to derive print data, or may be derived from separate font data stored at a separate location in the ROM. Font data may be stored as compressed data e.g. Bezier as or bitmap information. It will be appreciated that different variations of the characters can be produced from the font data stored in the ROM by manipulation by the microprocessor 101 using the memory capacity of the RAM 104. For example, characters of different sizes to be printed can be produced. In order to print a character from Bezier data an appropriate scaling factor may be applied to the font data. Alternatively, an already sized bit map version of the character can be used. Characters to be printed are entered into the printing device using the character keys designated generally referred to by the block 111 but in practice comprising a plurality of lettered and numbered keys CK. As each character is entered using the keyboard 108, the keyboard inputs information to the microprocessor 101 which drives the display 109 to display the characters as they are inputted. To do this, for each character which is entered, the microprocessor calls up the stored font data for forming that character from the ROM 102. The font data for that character is copied to the RAM 104 and is manipulated by the microprocessor 101 to generate pixel data representing the character. This pixel data is transferred to the display 108 and the character is displayed. The generation of print data from the stored font data will be described herein after. In an embodiment of the present invention, the printing device may be arranged to print on image receiving tapes of different widths. Therefore, the printing device may be provided with a sensing arrangement to determine the width of the tape in the cassette installed. When a cassette holding an image receiving tape is inserted into the printing device, the sensing arrangement (not shown) determines the width of the tape. The determined width is then stored in the RAM of the microprocessor. A suitable sensing arrangement is disclosed in our European Patent EP0574165, the contents of which are hereby incorporated by reference. In a further embodiment of the present invention, tape width is detected by the location of a tape size switch. Cassettes having tapes of different sizes have a recess in different positions. A tape size switch is located in the cassette bay. The user is required to adjust the switch to the correct location to match the recess such that the tape cassette can be inserted, thus indicating the width of the tape. An arrangement of this kind is disclosed in our European Patent EP0634274, the contents of which are hereby incorporated by reference. Various functions of the printing device may be selected using function keys FK. Vertical printing mode may be selected by selecting a vertical mode function key 122. Vertical printing mode causes an image such as a character string to be printed such that the character string extends across the tape width, i.e., the image is printed perpendicular to the length of tape, with characters rotated through 90 degrees, see FIG. 7. In an embodiment of the present invention, the vertical printing mode is only operational when a tape having a particular tape width is installed, e.g., the largest width. In an alternative embodiment of the invention, vertical print mode may be operational for different tape widths. In such embodiments, the maximum printable length of an image printed across the tape will depend on the width of the tape, since the length of the printed image cannot exceed the width of the tape. In further embodiments of the invention, the width of the tape installed in the printer may exceed the height of the print head. In such embodiments the maximum length of an image printed across the width of the tape will be equal to the height of the print head. For example, if the print head height is 13.5 mm the maximum length of an image printed across 19 mm width tape will be 13.5 mm. In accordance with an embodiment of the invention when vertical print mode is selected, print data is not generated until a print operation is executed. When vertical mode is selected and a character string is entered, the characters are displayed on the display as each character is selected on the keyboard as, discussed above. An icon indicating that vertical mode has been activated, may also be displayed on the display. In a preferred embodiment of the present invention when the user selects vertical mode, the printer disables any facility that enables the user to manually select the size of the image. When the user has completed entering the character string to be printed, the user may execute a print command by selecting a print key. As previously described, font data may be stored in the ROM. In this embodiment bit map data is stored for small ‘S’ and extra small ‘XS’ fonts only. In response to the execution of a print command the microprocessor retrieves character width information for the small ‘S’ font data from the ROM for each character in the character string. The length of the character string in the small font is then calculated and the microprocessor executes the following algorithm: Start 0 <= (length based on S font < tapewidth / 4 ) decision: L font tapewidth /4 <= length based on S font < tapewidth / 2 decision: M font tapewidth /2 <= length based on S font < tapewidth decision: S font tapewidth <= length based on S font if XS-length > tapewidth then error if XS-length < tapewidth then decision XS Stop When executing the algorithm, the microprocessor compares the calculated length to distinct ranges in sequence. Firstly the length of the character string is compared to the range 0—tape width/4. If the length falls within this range, the microprocessor determines that the character string is to be printed in large font ‘L’. If the length does not fall within this range the calculated length is compared to the second range tape width/4—tape width/2. If the calculated length falls within this range, the microprocessor determines that the character string is to be printed in medium font ‘M’. If the length does not fall within this range the calculated length is compared to a third range tape width/2—tape width. If the calculated length falls within this range, the microprocessor determines that the character string is to be printed in small font ‘S’. If the calculated length does not fall within the third range, the microprocessor retrieves small ‘XS’ font data from the ROM for each character in the character string. The length of the character string in the extra small font is then calculated. If the length of the character string in extra small font is less than the tape width the microprocessor determines that the character string is to be printed in extra small font. However if the length of the character string in extra small font is larger than the tape width, an error message is displayed. If it is determined that the character string should be printed in either large or medium font, the microprocessor then applies the appropriate decompression algorithm to the small font data forming each character in the character string retrieved from the ROM and copied to the RAM to generate print data representing each character. Alternatively, if it is determined that the character string should be printed in either small or extra small font, the font data is simply retrieved from the ROM and used to generate print data. This print data is then transferred column by column to the print head for printing. In an alternative embodiment of the present invention, when the tape width exceeds the height of the print head, the algorithm used to calculate the font size uses the ranges ‘0—print head height/4’; ‘print head height/4—print head height/2’; and ‘print head height/2—print head height’ as the first second and third ranges respectively. In an alternative embodiment of the present invention, when the user selects the vertical mode, look up tables stored in the ROM may be used to indicate the printed size of the font of each character in the character string. A separate look up table may be stored in the ROM for each width of tape which may be used in the printing device. The width of the tape may be input by the user or may be sensed using the tape width sensing arrangement described earlier. The microprocessor 100 uses the input tape width value to determine which look up table should be referred to in the vertical mode. As shown in FIG. 5a, the look up table stores a list of font sizes, in column 220, that correspond to a list of the number of characters entered in the character string in column 230. The value of the number of characters, ranges from 1 to a maximum value N. N is a fixed value for each tape width, equal to the maximum number of characters that may be printed across the width of the tape in the smallest font. Since the maximum number N of characters that can be printed across the tape, for each tape width is fixed, it may be advantageous to alert the user may to the maximum number of characters that may be input on one line. This may occur each time the user selects the vertical mode. In another embodiment of the present invention a single look up table may be stored having a column that includes different tape widths as shown in FIG. 5b. As described previously, when the user selects alphanumeric keys on the keyboard 108, display data is generated in the RAM and displayed on the display. When the print command is executed by the user, for example, by selecting a print function key on the keyboard the microprocessor determines the number of characters in the character string. Using the number of characters in the character string, and the width of the tape, the microprocessor refers to the look up table to determine the size print font to be used. The microprocessor then applies this size to the font data forming each character in the character string that has been copied to the RAM to generate print data representing each character. This print data is then transferred column by column to the print head for printing. In an embodiment of the invention, when the vertical mode is activated, the user may be prevented from entering a greater number of characters than the maximum number of characters N that may be printed across the detected tape width. In a further embodiment of the invention, if the number of characters in the character string exceeds the number of characters N that may be printed across the detected tape width, an error message will be displayed to the user when the user executes a print operation. Alternatively, or additionally, printing may be inhibited. In a further embodiment of the invention, if the number of characters in the character string exceeds the number of characters N that may be printed across the detected tape width, the microprocessor will generate print data for, and print each set of N characters of the character string on adjacent lines until the entire character string has been printed. An alternative embodiment of the present invention will now be described with reference to FIG. 6. FIG. 6 shows a flow chart describing the steps for generating print data when the user executes a print operation. At step 1 of the flow chart the user executes a print operation with vertical mode selected, after having entered a character string to be printed. At step 2 the microprocessor retrieves font data from the ROM for each character in the character string and copies it into the RAM. The font data that has been copied to the RAM is then sized to the smallest font that is printable by the printing device, in this example, extra small ‘XS’. In an alternative embodiment of the invention, the font data stored in the ROM may be stored as bitmap data for the extra small font. In this case the font for each character in the character string is simply copied to the RAM. At step 3 the length of the character string, is determined. At step 4, the length of the character string is compared to the maximum printable length. As previously stated, in some embodiments of the present invention the maximum printable length will be equal to the width of the image receiving tape installed in the printing device. In practice the maximum printable length may be slightly less than the width of the tape so that margins, i.e. blank spaces may be provided between the edges of the tape and the image. Alternatively, when the width of the image receiving tape is greater than the height of the print head the maximum printable length is equal to the height of the printhead. If the length of the character string is less than 75% of the maximum printable length the process continues to step 5 where the font data is sized to the next font size up. The process then returns to step 3. If the length of the character string in the applied font size is equal to or larger than 75% of the maximum printable length, the process continues to step 6 where it is determined if the character string in the applied font is less than, or equal to the maximum printable length. If the length of the character string is less than or equal to the maximum printable length, the process continues to step 7 and the character string is printed. If the length of the character string is greater than the maximum printable length, the process continues to step 8 and an error message is displayed to the user. The applicant draws attention to the fact that the present invention may include any feature or combination of features disclosed herein either implicitly or explicitly or any generalisation thereof, without limitation to the scope of any of the present claims. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.
20041029
20061128
20050707
98369.0
1
HAMDAN, WASSEEM H
VERTICAL AUTOSIZING PRINTING SYSTEM
UNDISCOUNTED
0
ACCEPTED
2,004
10,975,781
ACCEPTED
METHOD AND DEVICE FOR DETECTING LEAKS USING SMOKE
A smoke producing device for detecting leaks in a fluid system comprises a smoke producing chamber and a fluid reservoir for containing a smoke producing fluid. A heating element is provided within the smoke producing chamber. The chamber has a pressurized gas inlet for receiving a pressurized gas and an outlet port for conveying pressurized gas and/or smoke out of said chamber. A fluid transfer device has a first portion disposed within the fluid reservoir and a second portion which is adjacent and/or in contact with the heating element. The fluid transfer device is a capillary flow device which conveys smoke producing fluid from the fluid reservoir to the vicinity of the heating element primarily by capillary action. In order to detect a leak in a fluid system, the smoke exiting the outlet port is conveyed into the fluid system, for example through a conduit connected to the outlet port. The presence and location of a leak in the fluid system, if any, is quickly and easily found by visually detecting smoke escaping from the system through a leak. Conversely, if no smoke escapes, then the integrity of the fluid system is confirmed and no repairs should be needed.
1. A device for generating smoke for connection to a source of pressurized gas, comprising: a housing having disk-shaped main body having a top surface and a bottom surface and a first aperture extending from said top surface to said bottom surface, a top cap attached to said top surface of said main body, and a bottom cover attached to said bottom surface of said main body, said main body and said top cap forming a chamber; a heating element disposed within said chamber, a fluid reservoir for holding a supply of fluid, said fluid reservoir attached to said bottom surface of sad main body and having a second aperture which is in communication said first aperture; a gas inlet for connection to the source of pressurized gas; a gas supply fluid path extending from said gas inlet into said bottom cover, through said main body and into said chamber: a fluid transfer device having a first portion and a second portion, said first portion disposed within said fluid reservoir and a second portion being adjacent said heating element, said fluid transfer device being configured to convey a fluid from said fluid reservoir to said heating element primarily by capillary action. 2. The device of claim 1 wherein said fluid transfer device is a wick. 3. The device of claim 1 wherein said fluid transfer device is a plurality of wicks. 4. The device of claim 2 wherein said wick comprises a piece of woven fiberglass. 5. The device of claim 2 wherein at least one of said plurality of wicks comprises a piece of woven fiberglass. 6. The device of claim 1 further comprising an air inlet having a first end connectable to a source of pressurized gas and a second end in fluid communication with said chamber. 7. The device of claim 6 further comprising a smoke outlet having a first end in fluid communication with said chamber and a second end connectable to a conduit. 8. The device of claim 1 wherein said heating element comprises an electrically conductive wire. 9. The device of claim 8 wherein said wire is configured into a coil or other suitable shape. 10. The device claim 6 further comprising a pressure regulator in fluid communication with said air inlet. 11. The device of claim 6 further comprising an adjustable valve in fluid communication with said air inlet. 12. The device of claim 1 further comprising a flow gauge in fluid communication with said air inlet for measuring the flow rate of pressurized gas through said air inlet. 13. A method of producing smoke using the device of claim 1, comprising the following steps: providing a supply of smoke producing fluid in a reservoir; providing a heating element within a chamber; conveying said fluid from said reservoir to said heating element primarily by capillary action using a fluid transfer device; heating said fluid with said heating element to produce smoke in said chamber. 14. The method of claim 13 wherein said fluid transfer device is a wick. 15. The method of claim 14 wherein said wick comprises a piece of woven fiberglass. 16. The method of claim 13 further comprising the step of supplying a pressurized gas into said chamber. 17. The method of claim 16 further comprising the step of conveying said smoke out of said chamber into a conduit. 18. The method of claim 17 further comprising the step of adjusting a valve to vary the flow rate of the pressurized gas being supplied to said chamber. 19. The method of claim 18 further comprising the step of monitoring a pressure gauge which measures the pressure inside said chamber. 20. A method of detecting a leak in a fluid system using the device of claim 1, comprising the following steps: (a) providing a supply of smoke producing fluid in a reservoir, (b) providing a heating element within a chamber; (c) conveying said fluid from said reservoir to said heating element primarily by capillary action using a fluid transfer device; (d) heating said fluid with said heating element to produce smoke in said chamber; (e) supplying a pressurized gas into said chamber; (f) conveying said smoke out of said chamber into said fluid system. 21. The method of claim 2) further comprising the step of adjusting a valve to vary the flow rate of the pressurized gas being supplied to said chamber. 22. The method of claim 20 further comprising the step of monitoring a pressure gauge which measures the pressure inside said chamber. 23. The method of claim 20 further comprising the following steps: (g) pressurizing said fluid system being checked for a leak using said pressurized gas; (h) shutting a valve to seal off said pressurized gas from said fluid system; and (i) monitoring the pressure in said fluid system. 24. The method of claim 23 wherein said chamber is maintained in fluid communication with said fluid system after performing step (g) and step (h) and said pressure in said fluid system is monitored by monitoring the pressure in said chamber. 25. The method of claim 23 wherein steps (g)-(i) are performed before to steps (a)-(f). 26. The method of claim 23 wherein steps (g)-(i) are performed after steps (a)-(f).
FIELD OF THE INVENTION The present invention relates generally to leak detection in fluid systems and more particularly to methods and devices for leak detection using smoke. BACKGROUND OF THE INVENTION There are many useful systems which contain and/or operate using a fluid (gas, liquid or combination of both). For example, automobiles have several systems which contain and utilize a fluid in their operation including the fuel system, the exhaust system, the heating, cooling and ventilation (HVAC) system, and the hydraulic power steering and brake systems, to name a few. Moreover, numerous industrial machines, household HVAC systems, and other devices utilize a fluid to operate. Such fluids include, for example, gases such as air or evaporated system liquid, fuel, hydraulic fluids, manufactured gases and liquids, and many other fluids. In almost all circumstances, it is important, and in many cases crucial, that these fluid systems be properly sealed to prevent leakage of the system fluid. As an example, in an automobile fuel system, the gas tank and gas lines must be thoroughly sealed to prevent gasoline fumes from polluting the air and also to prevent leaking fuel from creating a fire hazard, not to mention the obvious benefit of conserving gasoline. In HVAC systems, it is important to seal the ducting which transports the conditioned air in order to maintain the efficiency of the systems. Air leaks tend to do nothing but heat or cool an attic, wall interior or other undesired space. In many cases, leaks in fluid systems are very difficult to detect and/or locate because the leak is small or in a location not easily accessible. Accordingly, a variety of methods and devices have been devised to detect leaks in fluid systems. The most common leak detectors utilize a visual indicator to locate a leak so that the leak may be repaired. Some of the visual indicators include liquid dyes. The visual indicator is dispensed into the fluid system and leaks are detected by locating places on the system where the visual indicator has escaped the system. For instance, a liquid dye will leave a trace of dye at the leak and smoke will billow out through the leak. The liquid dyes are most useful for detecting leaks in fluid systems which utilize a liquid and are not so useful for gas systems or systems which must seal vapors created by the system fluid. Still, liquid leaks are typically easier to detect than gas and vapor leaks because the liquid itself is usually visible. Vaporized dyes and smoke are most useful for detecting leaks in gas systems and systems which have vapors. In some cases, vaporized dye may be added to the smoke such that a trace of dye is left at the leak as the smoke flows through the leak. In general, devices for producing smoke for leak detection comprise a sealed chamber in which smoke is generated by vaporizing a smoke-producing fluid using a heating element. The smoke within the sealed chamber is forced out of the chamber through an outlet port by air pressure from a source of compressed air pumped into the sealed chamber. However, all of the previously disclosed smoke generating devices contact the smoke-producing fluid with the heating element to produce smoke by one of two methods. The first method is to locate the heating element within a reservoir of smoke-producing fluid. For example, U.S. Pat. No. 5,107,698, issued Apr. 28, 1992 to Gilliam, describes a smoke generating apparatus which has the heating element at least partially submerged within the smoke producing fluid in the fluid reservoir. The drawbacks to a device in which the heating element is submerged within the smoke producing fluid are numerous. First of all, the level of the fluid within the chamber must be accurately controlled. This requires frequent monitoring and adjustment of the fluid level. Because the heating element is located within the fluid, the temperature of the heating element and the smoke chamber must also be accurately monitored and controlled in order to prevent combustion or explosion of the smoke-producing fluid. Worse yet, the fluid in the reservoir is heated and cooled with every use of the device, which tends to break down integrity of the fluid (such as oil). Also, in such recirculating designs, the fluid is easily contaminated by particulate and smoke by-products created by the smoke-producing process. The contaminants fall directly into the fluid reservoir because the smoke producing site is located directly within the fluid reservoir. The degraded fluid can cause several problems including ignition of the fluid, toxicity of the produced smoke and a decrease in smoke producing efficiency. This creates a serious maintenance issue requiring the regular replacement of the degraded fluid in the reservoir. Accordingly, the degrading of the fluid reduces reliability, may create a risk of combustion or explosion within the fluid reservoir, and the smoke produced with the contaminated fluid may have toxic components. The second method of delivering the smoke-producing fluid to the heating element is to blow or spray the fluid onto the heating element. Examples of devices having this type of fluid delivery are described in U.S. Pat. No. 5,859,363, issued Jan. 12, 1999, to Gouge; U.S. Pat. No. 5,922,944, issued Jul. 13, 1999, to Pieroni et al.; U.S. Pat. No. 6,142,009, issued Nov. 7, 2000, issued to Loblick; U.S. Pat. No. 6,392,227, issued May 21, 2002, issued to Banyard et al.; U.S. Pat. No. 6,439,031, issued Aug. 27, 2002, to Pieroni et al.; and U.S. Pat. No. 6,526,808, issued Mar. 4, 2003, to Pieroni et al. In each of these devices, the smoke-producing fluid is blown, sprayed or atomized through a nozzle onto a heating element located above the fluid reservoir. Pressurized air is used to blow, spray or atomize the fluid through the nozzle. The heating element is purposely disposed above the fluid reservoir so that the blown, sprayed or atomized fluid which is not converted into smoke will return to the reservoir. Again, this type of fluid delivery system has many drawbacks. For one, there must be a minimum amount of air pressure and air flow in order to spray the fluid onto the heating element. This prevents the device from being able to vary the flow rate of smoke being fed to the system being leak checked. A flow valve on the smoke outlet usually cannot be used to reduce the pressure and flow rate because the pressure drop through such valves causes at least some of the smoke to condense thereby reducing the amount of smoke produced. Also, the minimum amount of air pressure required by the smoke machine may exceed the pressure capacity of some systems which it is desired to leak check (for example, some automobile systems can only hold 4 inches of water pressure). Moreover, these smoke machines which require air flow to draw fluid into the air stream and/or spray the fluid toward the heating element are rendered inoperative if the flow rate is reduced below the operating level. This reduction may be caused by the system not having a large enough leak or by the use of a flow control value at either the inlet or outlet of the machine. Furthermore, because the fluid is circulated back from the heating element to the fluid reservoir, this type of device suffers from the same contamination and degraded smoke producing fluid problems as described above. Accordingly, there is a need for an improved method and device for producing smoke for detecting leaks in fluid systems which overcomes the deficiencies of previous devices. The device should be safe, reliable, compact, easy to use and maintain, and have a relatively low manufacturing and retail cost, compared to previously known machines. SUMMARY OF THE INVENTION The present invention provides methods and devices for detecting leaks in a fluid system using smoke. The smoke machine comprises a housing having a smoke producing chamber and a fluid reservoir for containing a smoke producing fluid. A heating element is provided within the smoke producing chamber. The chamber has a pressurized gas inlet for receiving a pressurized gas and an outlet port for conveying pressurized gas and/or smoke out of said chamber. A fluid transfer device has a first portion disposed within the fluid reservoir and a second portion which is adjacent and/or in contact with the heating element. The fluid transfer device is a capillary flow device which conveys smoke producing fluid from the fluid reservoir to the vicinity of the heating element primarily by capillary action. The smoke machine may also comprise a pressure gauge which measures the pressure within said chamber, a flow meter which measures the flow rate of a pressurized gas provided to the chamber, pressure regulator to regulate the pressure of pressurized gas and a valve to shut-off or vary the flow rate of pressurized gas being provided to the chamber. In operation of the smoke machine, the fluid reservoir is first filled with a smoke producing fluid, such as mineral oil. Then, a power source is connected to the heating element and pressurized gas, such as compressed air, is supplied to the chamber. The fluid transfer device conveys the smoke producing fluid from the reservoir to the vicinity of the heating element by capillary action. Advantageously, the fluid transfer device does not require any power source to properly operate. As smoke producing fluid comes near to, or in contact with, the heating element, it is vaporized into smoke. The pressurized gas then carries the smoke out of the chamber through the outlet port. In order to detect a leak in a fluid system, the smoke exiting the outlet port is conveyed into the fluid system, for example through a conduit connected to the outlet port. The presence and location of a leak in the fluid system, if any, is quickly and easily found by visually detecting smoke escaping from the system through a leak. Conversely, if no smoke escapes, then the integrity of the fluid system is confirmed and no repairs should be needed. In a further aspect of the present invention, the valve may be adjusted to vary the flow rate of pressurized gas being supplied to the chamber. In addition, the valve may be closed to isolate the fluid system from the pressurized gas and the pressure gauge may be monitored to detect any pressure decay which can indicate the presence and/or size of a leak in the fluid system. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view of a smoke machine according to the present invention. FIG. 2 is a rear perspective view of the smoke machine of FIG. 1. FIG. 3 is a perspective exploded view of the smoke machine of FIG. 1. FIG. 4 is a perspective bottom view of the main body subassembly of the smoke machine of FIG. 1. FIG. 5 is a perspective side view of the main body of the smoke machine of the FIG. 1. DETAILED DESCRIPTION OF THE INVENTION Turning to FIGS. 1-4, a smoke machine 10 according to the present invention comprises a housing 12. The housing 12 has a top cap 14, a main body 16 and a bottom cover 18. The top cap 14 and the main body 16 form a smoke generating chamber 20. The top cap 14, main body 16 and bottom cover 18 may be made of aluminum which is strong and lightweight, or any other suitable material such as stainless steel or plastic. The top cap 14 has a flange 22 with four through-holes 24. The top cap 14 is installed on the main body 16 with the flange 22 resting on the top surface of the main body 16 and four screws 26 secure the top cap 14 to the main body 16. A seal or gasket (not shown) may be utilized to seal interface between the flange 22 and the top surface 23 of the main body 16. A pressure gauge 15 is attached to the top cap 14 and measures the pressure in the chamber 20. A hook 17 is attached to the top cap 14 for hanging the smoke machine 10 in a convenient location such as under the hood of an automobile. Also, the bottom of the bottom cover 18 has a plurality of non-slip feet 11 so that the smoke machine 10 can stably and securely rest on a flat surface. The bottom cover 18 slides over a lower portion 30 of the main body 16 and is held in place on the main body by four screws 28. Again, a seal or gasket (not shown) may be provided to seal the interface between the inner surface of the bottom cover 18 and the lower portion 30 of the main body 16. Turning to FIG. 5, the main body 16 is preferably a machined aluminum component, but may be manufactured by any other suitable process. The main body 16 is a generally cylindrical and disc-shaped and has two grooves 32 around its circumference. The lower portion 30 has a reduced diameter which forms a shoulder for receiving the bottom cover 18. The bottom surface 25 of the main body 16 has a round recess 34 for receiving a fluid reservoir 36. The top lip (not shown) of the fluid reservoir 36 slides into the recess 34. A gasket or seal (not shown) may be used to seal the interface between the main body 16 and the lip of the fluid reservoir 36. The fluid reservoir 36 is a container for holding smoke producing fluid. The fluid reservoir 36 may be made of aluminum or any other suitable material which is compatible with the particular smoke producing fluid(s) being used. The fluid reservoir 36 has a threaded hole 38 (the hole 38 does not protrude through the bottom of the fluid reservoir 36) in the bottom for receiving a bolt 40 which secures the fluid reservoir 36 to the main body 16. The main body 16 has a through-hole 42 (see FIG. 5) through which the bolt 40 inserts and the head of the bolt (not shown) bears on the top surface 23 of the main body 16. A dipstick 48 is provided so that the level of fluid in the fluid reservoir 36 may be checked without removing any of the covers or even the fluid reservoir 36 itself. The dipstick 48 has a handle 50 with threads which mate with threads on the top of the top cap 14. The shaft 52 of the dipstick 48 extends down through the chamber 20, through a through-hole 54 in said main body 16 and into the fluid reservoir 36. The bottom portion of the shaft 52 of the dipstick 48 may have graduations for indicating the level of fluid in the fluid reservoir 36. In order to fill the fluid reservoir 36 with smoke producing fluid, the dipstick is simply removed and fluid is poured into the threaded hole on the top of the fop cap 14. The smoke producing fluid is a fluid which when heated to a certain temperature will produce a dense, non-toxic smoke. Suitable fluids include non-toxic petroleum based oils, such as mineral oil (baby oil). While the term “smoke” generally refers to the vapor and particulate that is a byproduct of incomplete combustion, the term “smoke” as used herein includes any visible gas, vapor, and/or aerosol (particulate suspended in a gas) or any combination thereof. The term “vaporize” means to transform a fluid into smoke. A fluid transfer device 44 extends from within the chamber 20 down through a through-hole 46 in the main body 16 (see FIG. 5) and into the fluid reservoir 36. The bottom end of the fluid transfer device 44 preferably extends almost to the bottom of the fluid reservoir 36. The fluid transfer device 44 may touch the bottom of the fluid reservoir 36, but should not unduly restrict the fluid reservoir 36 from properly seating in the recess 34. The fluid transfer device 44 uses primarily capillary action to convey smoke producing fluid from the fluid reservoir up into the smoke producing chamber 20 and into the vicinity of a heating element 46. The term “primarily capillary action,” or other similar terms, means that the fluid is conveyed by this type of force more than any other force such as pumping, or pressure differentials caused by suction, but does not exclude that some force may be applied to the fluid by modes other than capillary action. Capillary action refers to the motive force on a fluid produced by the surface tension between the fluid and a surface, in this case the smoke producing fluid and the material of the fluid transfer device 44. Capillary action as used herein is not limited to the movement of a fluid in a tube or vessel, but includes any movement of fluid caused primarily by the surface tension forces described above. The fluid transfer device 44 may comprise a woven fiberglass wick such as the wick material available from Fil-Tec Company located in Hagerstown, Md. The woven wick is one inch in diameter. The fluid transfer device 44 must be able to withstand very high temperatures while also producing enough capillary action to convey the fluid from fluid reservoir 36 to the heating element 46. Woven fiberglass is an excellent transfer device because the fiberglass can withstand temperatures as high as 1000 degrees Fahrenheit and the woven fiberglass material can convey an adequate supply of fluid by capillary action to the heating element to produce an ample amount of smoke. Moreover, fiberglass is also an excellent thermal insulator so that any heating of the fluid in the fluid reservoir 36 by the heat produced by the heating element 46 is minimized. In this described embodiment, the fluid transfer device 44 comprising a woven fiberglass wick conveys the fluid from the fluid reservoir 36 to the heating element 44 substantially or solely by means of capillary action, although the present invention is limited to such a fluid transfer device 44. Alternatively, the fluid transfer device 44 may be any other suitable device which can adequately convey fluid from the fluid reservoir 36 to the heating element 46 primarily by capillary action. For example, an array of small, straight tubes, capillaries or filaments may also be a suitable fluid transfer device 44. The heating element 46 is a coil of resistive wire which generates heat when an electrical current is conducted through normally by placing an electrical voltage across the wire. The wire is coiled closely around the fluid transfer device 44 such that when the heating element 46 is energized and heated, the smoke producing fluid on the upper portion of the fluid transfer device 36 will be vaporized into smoke. One suitable wire for the heating element 46 is a 20 gauge alloy-52 wire (52% nickel, 48% iron) available from Strategic Aerospace Materials in Hicksville, N.Y. Of course, other suitable wire or resistive heating material may be used within the present invention. The heating element 46 is electrically connected to two electrical standoffs 47. The electrical standoff 47 extend through holes 49 in the main body 16. Each electrical standoff 47 comprises an electrically conducting core and an electrically insulating sheath which insulates the core from the main body 16. The other end of the electrical standoffs 47 are electrically connected to a controller 80. A pair of extension cables 45 electrically connect to a pair of electrical inputs 87 on the controller 80. In order to power the smoke machine 10, the extension cables 45 are connected to a power source such as a battery, a transformer or an electrical outlet. The controller 80 comprises a printed circuit board having a power switch. The controller 80 is configured such that it is capable of one or more of the following functions: measuring the temperature of the heating element 46, turning on and off one or more indicator lights; detecting the polarity of and turning on and off the power to the heating element 46 based on temperature and/or cycle-time criteria. The power switch on the controller 80 is operably coupled to an on/off button or switch 81 located on the top surface 23 of the main body 16. The controller 80 is also operably coupled to two indicator lights 83 and 85. The indicator lights 83 and 85 may be different colors, such as red and green, respectively. The controller 80 is configured such that one indicator light, for example green light 83, will be lit if a power source is connected to the extension cables with the correct polarity. The controller 80 is also configured to light the other indicator light, the red light 85, when the on/off button 81 has been actuated to turn on the smoke machine 10. Finally, the controller 80 controls the power being supplied to the heating element 46. The controller may be programmed to energize the heating element 46 when the temperature of the heating element 46 is below a specified temperature and to de-energize the heating element 46 when the temperature of the heating element exceeds a specified temperature. Alternatively, in a more complex control scheme, the controller may be programmed to initially energize the heating element 46 for a specified period of time. A the end of the initial time period, the controller 80 de-energizes the heating element 46. The controller then evaluates the temperature of the heating element and if the temperature of the heating element 46 is below a specified value, the controller 80 again energizes the heating element 46 for another specified period of time (which may be the same or a different length of time as the initial time period). This cycle continues until the heating element 46 reaches the prescribed operating temperature such that the controller 80 de-energizes the heating element 46. Then, the heating element 46 is left de-energized for a specified period of time. After the specified period of time has expired, the controller 80 evaluates the temperature of the heating element and if the heating element 46 is above a specified temperature, the heating element remains de-energized. If the heating element 46 is below the specified temperature, the controller 80 energizes the heating element 46. This cycle continues for as long as the smoke machine 10 is being used to produce smoke. In order to convey the smoke produced by the smoke machine 10 into a fluid system to check for leaks, a source of pressurized gas is supplied to the chamber 20 through a pressurized gas fluid path. The fluid path begins at an inlet conduit 60 which has a first end for connection to a source of pressurized gas such as an air compressor and a second end connected to a flow meter inlet port 62. The inlet port 62 may comprise a barbed fitting for securely retaining the inlet conduit 60. The flow meter 64 is shown as a simple graduated floating ball flow meter, but other meters capable of measuring fluid flow rates may also be utilized, including electronic flow meters which may be electrically connected to the controller 80. The flow meter 64 is secured to the bottom cover 18 using a flow meter bracket 66 which is attached to both the flow meter 64 and the bottom cover 18. A flow meter conduit 68 extends from a flow meter outlet port 70, through a hole 72 in the bottom cover 18 and connects to an inlet of a pressure regulator 74. The pressure regulator 74 may be set to reduce the incoming gas pressure to the desired pressure depending on the types of fluid system to be leak checked. For example, for fuel vapor recovery systems in automobiles the pressure regulator should be set to about 13 inches of water column. The outlet of the pressure regulator is connected to a flow valve 76. The control knob 78 of the flow valve 76 extends through a hole in the side of the bottom cover so that the flow valve 76 may be adjusted during the operation of the smoke machine. Alternatively, the flow valve may be an electronic valve which is connected to the controller 80. The outlet of the flow valve 76 is connected to an adapter fitting 82 which threads into a threaded hole 84 in the main body 16. A pressurized gas flow regulator 86 is threaded into the other side of the threaded hole 84. The gas flow regulator 86 is a fitting with one or more outlet orifices sized to control the flow rate of gas out of the orifices and into the chamber 20. The orifices may have a total area of opening totaling approximately 0.0064 square inches. At a pressure of 13 inches of water column, the orifices will regulate the flow rate to about 15 liters per minute. Without this regulator 86, the flow rate of pressurized gas is normally the maximum flow rate of the pressure regulator 74. In many cases, it is easier to detect and pinpoint the location of a leak with a smaller flow rate because the leak is not completely shrouded by smoke. This completes the pressurized gas fluid path. A smoke outlet standoff 90 is threaded into a threaded through hole 92 of the main body 16. A fitting 94 is threaded into the other side of the hole 92. The fitting 94 has a barbed end for securely retaining a smoke supply conduit 96 which extends out of the bottom cover 18 through a hole in the bottom cover 18. The other end of the smoke supply conduit 96 is used to convey smoke from the smoke machine 10 to the fluid system being leak checked. The operation of the smoke machine 10 to detect a leak in a fluid system is as follows. The dipstick 48 is removed to check the level of smoke producing fluid in the fluid reservoir 36. If the fluid level is too low or too high, fluid is added or removed through the dip stick 48 hole until the proper fluid level is achieved. A supply of pressurized gas, such as an air compressor, is connected to the inlet conduit 60 or directly to the flow meter inlet port 62. The extension cables 45 are connected to a power source such as a 12-volt automobile battery. If the cables 45 are connected to correct polarity, the controller 80 will light the green indicator light 83. If the indicator light 83 does not illuminate, the user must reverse the connection of the cables 45. The smoke outlet conduit 96 is connected to the fluid system to be leak checked. An adapter may be utilized to connect the conduit 96 to the fluid system. For example, in leak testing an automobile exhaust system, an exhaust cone adapter may be used. The exhaust cone adapter has one end which fits into a tailpipe and the other end has a fitting to receive the conduit 96. The fluid system may require one or more plugs to be installed in order to close the system so that it can hold pressure. Once the smoke machine 10 is properly set-up and connected to the fluid system, the pressure gauge 15 may be checked to ensure that the proper pressure of compressed air is being supplied. Several types of leak tests may now be performed with the smoke machine 10. With the smoke machine 10 in either the “on” mode in which it is producing smoke, or in the “off” mode in which it is not producing smoke, a leak test to determine whether there is a leak in the fluid system may be performed by allowing the compressed air to pressurize the fluid system for a period of time. As the fluid system is being pressurized by the compressed air, the flow meter 64 will indicate an amount of volumetric flow of compressed air into the smoke machine 10 and fluid system. As the fluid system is filled and pressurized, the pressure gauge 15 will indicate an increase in system pressure and the flow meter 64 will indicate that the flow rate is slowly decreasing. After a period of time depending on the volume of the fluid system being checked, the system will reach an equilibrium in which the pressure will stabilize at or near the pressure of compressed gas being supplied by the smoke machine 10 (the pressure set by the pressure regulator 74). If the system has a leak, the flow meter 64 will indicate an amount of flow equivalent to the amount of air leaking out of the system. If the flow meter 64 indicates zero flow rate, then there are no leaks in the fluid system (or at the least, no leaks larger than the sensitivity of the flow meter 64). The size of the leak(s) may be approximated by reference to a calibration table or formula which correlates the size of the area of a leak to the pressure and flow rate through the leak. Another leak test may be performed by pressurizing the fluid system as described above and then completing closing the flow valve 76. The pressure gauge 15 is then monitored to determine if there is any pressure decay in the fluid system. If the pressure holds, then there is no leak in the fluid system. If the pressure decreases, then there is a leak in the system. The rate of pressure decay can be used to approximate the size of a leak similar to the method described above with respect to flow rate. To determine the location of a leak in the fluid system, the smoke machine 10 must be turned on. The on/off button 81 is depressed to turn on the smoke machine 10. The controller 80 then energizes the heating element 46 and turns on the red indicator light (85). The controller 80 will energize the heating element 46 by any suitable process, including without limitation the processes described above. The heating element 46 vaporizes the fluid on the fluid transfer device 44 which is in the vicinity of the heating element 46, thereby producing smoke. The smoke is conveyed into the fluid system and the user then inspects the fluid system for any escaping smoke. If smoke is detected, the flow valve 76 may be adjusted to decrease the flow of smoke to more easily pinpoint the location of the leak in the fluid system. While the present invention has been fully described above with particularity and detail in connection with what is presently deemed to be the invention, it will be apparent to those of ordinary skill in the art that many modifications thereof may be made without departing from the principles and concepts set forth herein. Hence, the proper scope of the present invention should be determined only by the broadest interpretation of the appended claims so as to encompass all such modifications and equivalents.
<SOH> BACKGROUND OF THE INVENTION <EOH>There are many useful systems which contain and/or operate using a fluid (gas, liquid or combination of both). For example, automobiles have several systems which contain and utilize a fluid in their operation including the fuel system, the exhaust system, the heating, cooling and ventilation (HVAC) system, and the hydraulic power steering and brake systems, to name a few. Moreover, numerous industrial machines, household HVAC systems, and other devices utilize a fluid to operate. Such fluids include, for example, gases such as air or evaporated system liquid, fuel, hydraulic fluids, manufactured gases and liquids, and many other fluids. In almost all circumstances, it is important, and in many cases crucial, that these fluid systems be properly sealed to prevent leakage of the system fluid. As an example, in an automobile fuel system, the gas tank and gas lines must be thoroughly sealed to prevent gasoline fumes from polluting the air and also to prevent leaking fuel from creating a fire hazard, not to mention the obvious benefit of conserving gasoline. In HVAC systems, it is important to seal the ducting which transports the conditioned air in order to maintain the efficiency of the systems. Air leaks tend to do nothing but heat or cool an attic, wall interior or other undesired space. In many cases, leaks in fluid systems are very difficult to detect and/or locate because the leak is small or in a location not easily accessible. Accordingly, a variety of methods and devices have been devised to detect leaks in fluid systems. The most common leak detectors utilize a visual indicator to locate a leak so that the leak may be repaired. Some of the visual indicators include liquid dyes. The visual indicator is dispensed into the fluid system and leaks are detected by locating places on the system where the visual indicator has escaped the system. For instance, a liquid dye will leave a trace of dye at the leak and smoke will billow out through the leak. The liquid dyes are most useful for detecting leaks in fluid systems which utilize a liquid and are not so useful for gas systems or systems which must seal vapors created by the system fluid. Still, liquid leaks are typically easier to detect than gas and vapor leaks because the liquid itself is usually visible. Vaporized dyes and smoke are most useful for detecting leaks in gas systems and systems which have vapors. In some cases, vaporized dye may be added to the smoke such that a trace of dye is left at the leak as the smoke flows through the leak. In general, devices for producing smoke for leak detection comprise a sealed chamber in which smoke is generated by vaporizing a smoke-producing fluid using a heating element. The smoke within the sealed chamber is forced out of the chamber through an outlet port by air pressure from a source of compressed air pumped into the sealed chamber. However, all of the previously disclosed smoke generating devices contact the smoke-producing fluid with the heating element to produce smoke by one of two methods. The first method is to locate the heating element within a reservoir of smoke-producing fluid. For example, U.S. Pat. No. 5,107,698, issued Apr. 28, 1992 to Gilliam, describes a smoke generating apparatus which has the heating element at least partially submerged within the smoke producing fluid in the fluid reservoir. The drawbacks to a device in which the heating element is submerged within the smoke producing fluid are numerous. First of all, the level of the fluid within the chamber must be accurately controlled. This requires frequent monitoring and adjustment of the fluid level. Because the heating element is located within the fluid, the temperature of the heating element and the smoke chamber must also be accurately monitored and controlled in order to prevent combustion or explosion of the smoke-producing fluid. Worse yet, the fluid in the reservoir is heated and cooled with every use of the device, which tends to break down integrity of the fluid (such as oil). Also, in such recirculating designs, the fluid is easily contaminated by particulate and smoke by-products created by the smoke-producing process. The contaminants fall directly into the fluid reservoir because the smoke producing site is located directly within the fluid reservoir. The degraded fluid can cause several problems including ignition of the fluid, toxicity of the produced smoke and a decrease in smoke producing efficiency. This creates a serious maintenance issue requiring the regular replacement of the degraded fluid in the reservoir. Accordingly, the degrading of the fluid reduces reliability, may create a risk of combustion or explosion within the fluid reservoir, and the smoke produced with the contaminated fluid may have toxic components. The second method of delivering the smoke-producing fluid to the heating element is to blow or spray the fluid onto the heating element. Examples of devices having this type of fluid delivery are described in U.S. Pat. No. 5,859,363, issued Jan. 12, 1999, to Gouge; U.S. Pat. No. 5,922,944, issued Jul. 13, 1999, to Pieroni et al.; U.S. Pat. No. 6,142,009, issued Nov. 7, 2000, issued to Loblick; U.S. Pat. No. 6,392,227, issued May 21, 2002, issued to Banyard et al.; U.S. Pat. No. 6,439,031, issued Aug. 27, 2002, to Pieroni et al.; and U.S. Pat. No. 6,526,808, issued Mar. 4, 2003, to Pieroni et al. In each of these devices, the smoke-producing fluid is blown, sprayed or atomized through a nozzle onto a heating element located above the fluid reservoir. Pressurized air is used to blow, spray or atomize the fluid through the nozzle. The heating element is purposely disposed above the fluid reservoir so that the blown, sprayed or atomized fluid which is not converted into smoke will return to the reservoir. Again, this type of fluid delivery system has many drawbacks. For one, there must be a minimum amount of air pressure and air flow in order to spray the fluid onto the heating element. This prevents the device from being able to vary the flow rate of smoke being fed to the system being leak checked. A flow valve on the smoke outlet usually cannot be used to reduce the pressure and flow rate because the pressure drop through such valves causes at least some of the smoke to condense thereby reducing the amount of smoke produced. Also, the minimum amount of air pressure required by the smoke machine may exceed the pressure capacity of some systems which it is desired to leak check (for example, some automobile systems can only hold 4 inches of water pressure). Moreover, these smoke machines which require air flow to draw fluid into the air stream and/or spray the fluid toward the heating element are rendered inoperative if the flow rate is reduced below the operating level. This reduction may be caused by the system not having a large enough leak or by the use of a flow control value at either the inlet or outlet of the machine. Furthermore, because the fluid is circulated back from the heating element to the fluid reservoir, this type of device suffers from the same contamination and degraded smoke producing fluid problems as described above. Accordingly, there is a need for an improved method and device for producing smoke for detecting leaks in fluid systems which overcomes the deficiencies of previous devices. The device should be safe, reliable, compact, easy to use and maintain, and have a relatively low manufacturing and retail cost, compared to previously known machines.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides methods and devices for detecting leaks in a fluid system using smoke. The smoke machine comprises a housing having a smoke producing chamber and a fluid reservoir for containing a smoke producing fluid. A heating element is provided within the smoke producing chamber. The chamber has a pressurized gas inlet for receiving a pressurized gas and an outlet port for conveying pressurized gas and/or smoke out of said chamber. A fluid transfer device has a first portion disposed within the fluid reservoir and a second portion which is adjacent and/or in contact with the heating element. The fluid transfer device is a capillary flow device which conveys smoke producing fluid from the fluid reservoir to the vicinity of the heating element primarily by capillary action. The smoke machine may also comprise a pressure gauge which measures the pressure within said chamber, a flow meter which measures the flow rate of a pressurized gas provided to the chamber, pressure regulator to regulate the pressure of pressurized gas and a valve to shut-off or vary the flow rate of pressurized gas being provided to the chamber. In operation of the smoke machine, the fluid reservoir is first filled with a smoke producing fluid, such as mineral oil. Then, a power source is connected to the heating element and pressurized gas, such as compressed air, is supplied to the chamber. The fluid transfer device conveys the smoke producing fluid from the reservoir to the vicinity of the heating element by capillary action. Advantageously, the fluid transfer device does not require any power source to properly operate. As smoke producing fluid comes near to, or in contact with, the heating element, it is vaporized into smoke. The pressurized gas then carries the smoke out of the chamber through the outlet port. In order to detect a leak in a fluid system, the smoke exiting the outlet port is conveyed into the fluid system, for example through a conduit connected to the outlet port. The presence and location of a leak in the fluid system, if any, is quickly and easily found by visually detecting smoke escaping from the system through a leak. Conversely, if no smoke escapes, then the integrity of the fluid system is confirmed and no repairs should be needed. In a further aspect of the present invention, the valve may be adjusted to vary the flow rate of pressurized gas being supplied to the chamber. In addition, the valve may be closed to isolate the fluid system from the pressurized gas and the pressure gauge may be monitored to detect any pressure decay which can indicate the presence and/or size of a leak in the fluid system.
20041028
20071204
20071227
63694.0
F24F608
1
PAIK, SANG YEOP
METHOD AND DEVICE FOR DETECTING LEAKS USING SMOKE
SMALL
0
ACCEPTED
F24F
2,004
10,975,782
ACCEPTED
Heated massage ball
A heated massage ball apparatus has a ball that may be heated retained within a grip that allows for the ball to rotate freely therewithin. The ball may be heated, for example, in a microwave oven, and may be substantially hollow and filled with a liquid that retains heat. The grip is pliable enough to allow the forced insertion or ejection of the ball past its widest circumference. An opening in the bottom of the base may facilitate the removal of the ball from the base, whereby the user inserts a finger therein to force the ball out of the grip. A heating base can accept the grip and ball and provide heat to the ball, such as a heated conductor that extends through the bottom opening in the grip and heats the ball by direct contact and thermal conduction. An electrical circuit may be included that provides on/off and temperature controls, a heating element, a temperature-sensing means, a thermostat, and a display for indicating a target and current ball temperatures.
1. A heated massage ball comprising: a spherically shaped ball; a grip holding the spherically shaped ball, wherein the ball can rotate freely within the grip; a bottom opening in the grip; whereby a user can eject the ball from the grip by depressing the ball through the bottom opening. 2. The heated massage ball of claim 1, further comprising: a heated conductor electrically heated; the heating conductor extending through the bottom opening and touching the ball for heating by thermal conduction. 3. The heated massage ball of claim 1 wherein the ball is hollow and at least partially filled with liquid, whereby a user can heat the ball in a microwave. 4. The heated ball of claim 1 further comprising: a heated base, having a heating conductor extending through the bottom opening and touching the ball for heating; a base depression snugly receiving the massage ball grip and ball, wherein when a user puts the ball unit into the base depression, the ball is heated to a preset temperature. 5. The heated ball of claim 4, further comprising a display showing the preset ball temperature. 6. The heated ball of claim 4, further comprising a knob for setting the preset ball temperature. 7. The heated ball of claim 4, further comprising a thermocouple in the conductor, and wherein the display further indicates the actual temperature of the massage ball. 8. The heated ball of claim 4, further comprising a power button and a power cord. 9. The heated ball of claim 4 wherein the depression is filled with a heating liquid and retains the heating liquid, the heating liquid heated by a heating element, wherein the ball receives heat by conduction from the heating liquid. 10. The heated ball of claim 9 wherein the heating element does not contact the ball. 11. The heated ball of claim 10 further including: an induction coil is included within the grip, the induction coil for heating the ball and electrically connected to two contacts on a bottom side of the grip, and two electrical contacts in the depression of the base, the two electrical contacts electrically connected to the circuit, whereby when the grip is retained in the depression of the base the electrical contacts of the base make electrical contact to the corresponding contacts of the grip for supplying power to the induction coil. 12. A heated massage ball comprising: a spherically shaped ball; a grip holding the spherically shaped ball, wherein the ball can rotate freely within the grip; a bottom opening in the grip; an electrically heated conductor extending through the bottom opening and touching the ball for heating by thermal conduction. 13. A massage ball comprising: a hollow ball sphere, at least partially filled with liquid, wherein the ball sphere has sufficient wall thickness to allow a user to heat the ball in a microwave without rupture; a grip holding the hollow ball sphere, wherein the ball can rotate freely within the grip.
FIELD OF THE INVENTION The present invention relates generally to massage devices and, more particularly, to a heated massage ball. DISCUSSION OF RELATED ART Massage devices are well known in the prior art, some taking the form of round or spherically-shaped implements that can be pressed against a user's back to create a pleasurable sensation. For example, U.S. Pat. 754,925 to Zar-Adusht-Hanishon Mar. 15, 1904, discloses a massage ball device that partially encloses a massage ball in a shell that can be gripped by the user. The ball in such a device moves freely within the shell when the ball is pressed and moved against a patient's body. However, such a device is preferably made from wood, and as such does not provide for heating of the ball of the device, which can be of benefit to the patient. A very early example of a ball massager is taught in Design Pat. No. 143,678. Design Pat. Nos. 262,908; 264,754; 269,376 and 444,483, also disclose various hand-held ball massagers, but with multiple balls as the contact points. Inventor York in Design Pat. Nos. 454,644 and 469,880, discloses more recent hand-held massaging devices with single balls as the massage contact points. Inventor Racoosin in U.S. Pat. No. 6,093,159 teaches a freely rotational ball massager that is designed to fit more comfortably in a therapist's hand to prevent hand strain. Inventor Wu in U.S. Pat. No. 5,413,551 discloses a spherical massage device that is hand-held and includes an internal vibration generator that appears to be battery operated. Inventor Obagi in U.S. Pat. No. 5,131,384 discloses a ball massager that combines as an applicator to apply fluid (such as massage oil) as the massage is performed. Inventor Bontemps in U.S. Pat. No. 5,127,395 discloses a spherical device containing a eutectic cooling mixture at −20 C that is specifically beneficial to the skin of the person being massaged. Since the '925 patent, other massage devices have been introduced that utilize a ball contained within a shell or grip. For example, U.S. Pat. D403,076 to York on Dec. 22, 1998, discloses such a device. Massagers have also been made that combine both the mechanism of vibration and infrared heat. Inventor Cheng in U.S. Pat. No. 5,336,159 discloses a device with two vibrating rubber massage elements that are heated by infrared heat. Inventor Kim in U.S. Pat. No. 5,176,130 also discloses a device that is electrically heated with a vibration mechanism. OBJECTS OF THE INVENTION Other heated devices in the prior art used for massage typically do not include a warmed ball that can be rolled along the patient's body, which is a relaxing and beneficial effect. Thus, there is a need for an improved massage device that provides for a rolling ball or the like that may be heated for additional therapeutic effect. Such a needed device would be easy for the user to use and heat, and would be relatively inexpensive to manufacture. Such a device would work with or without the presence of massage oil or the like, and would not make any harsh or otherwise irritating regular noises during heating, thereby promoting a relaxed atmosphere for the patient. The present invention accomplishes these objectives. SUMMARY OF THE INVENTION The present device, in its simplest form, is a ball that may be heated and that is retained within a grip that allows for the ball to rotate freely therewithin. The ball may be heated in, for example, a microwave oven, and may be substantially hollow and filled with a liquid that retains heat. As such, upon heating, the ball may be inserted into the grip, which extends slightly past the center of the ball so as to frictionally retain the ball during use. The grip is preferably plastic or rubber and pliable enough to allow the forced insertion or ejection of the ball past its widest circumference. An opening in the bottom of the base may facilitate the removal of the ball from the base, whereby the user inserts a finger therein to force the ball out of the grip. Alternatively, a heating base may be included for accepting the grip and ball and to provide heat to the ball by a variety of means. For example, a heated conductor may be included in the base that extends through the bottom opening in the grip when the grip is engaged in the base. Such a heated conductor heats the ball by direct contact and thermal conduction. An electrical circuit includes a thermostat that measures the temperature of the ball and determines if the instant temperature of the ball has reached or exceeded a user-set target temperature. The circuit may power the heated conductor. The electric circuit may be AC or DC powered, and may include a display for indicating the target and current ball temperatures. In an alterative embodiment of the invention, an inductor coil may be included in the grip for heating of the ball. In yet another embodiment of the invention, water or massage oil or another liquid may be heated in a depression of the base such that when the grip and ball are engaged in the base, the fluid heats the ball by conduction. In use, a masseur applies power to the device or otherwise heats the ball to a desired temperature. The masseur then grasps the grip while rolling the ball around on the patient's skin as desired. In this manner, heat from the ball is transferred to the patient while the force of the ball against the patient's skin creates a pleasurable massage feeling and provides other therapeutic benefits. Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the invention, illustrating a massage ball, a grip, and a heated base of the invention; FIG. 2 is a cross-sectional view of the invention, taken generally along lines 2-2 of FIG. 1, illustrating a heated liquid inside the ball of the invention; and FIG. 3 is an exploded cross-sectional view of the invention, illustrating the assembly thereof. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is a heated massage ball apparatus comprising a spherical, rigid ball 10 that, in the simplest embodiment is hollow and contains a heatable fluid 5 therein (FIG. 3). The fluid 5 in the ball 10 may be heated in a microwave oven, for example, and in such an embodiment the ball 10 is made from a rigid microwave-safe polymer that is also easily washed. The fluid 5 may be a viscous oil or other type of fluid that retains heat for an extended period of time. A grip 20 is included that retains the ball 10 therein yet allows the ball 10 to rotate freely therewithin. The grip 20 is preferably made from an easily gripped rubber or plastic material that results in little friction between the grip 20 and the ball 10 (FIG. 2) and that, like the ball 10. is easily washed and cleaned. The grip 20 includes a bottom opening 25, FIG. 2, or side opening 22, FIG. 1 to eject the ball 10 from the grip 20 by insertion of a finger or other implement (not shown) while holding the grip 20 firmly. In case of using a side opening 22, an additional bottom opening can also be added but need not be human digit sized. In an alternate embodiment of the invention, a heated base 30 is included that accepts the grip 20 thereon for heating of the ball 10. A heated conductor 32 may be included on the base 30 such that when the grip 20 with the ball 10 is engaged with the base 30, the heated conductor 32 is inserted into the bottom opening 25 of the grip 20 to contact the ball 10 for heating. The base 30 may include a base depression 35 (FIGS. 2 and 3) for receiving the grip 20 therein to provide for proper position of the heated conductor 32 into the bottom opening 25 of the grip 20. The base depression is optionally filled with water to facilitate heat transfer and control temperature ranges. Optionally, the base depression 35 is at least partially hemispherical shaped so that it can also receive the ball directly without the ball housing. In this option, a user ejects the ball from the housing, and puts the ball into the base depression for heating. After the ball is heated, the user takes the ball and replaces it back into the socket of housing 20 for use. The base 30 may further include an electric circuit 33 (FIG. 2) that receives power from a power cord 60 and that is electrically connected to controls 40 and a heating element 36 within the heated conductor 32 such that the heated conductor 32 is electrically heated. A display 50 may be included for displaying a target temperature of the ball 10 and the current temperature of the ball 10. As such, the user can adjust the controls 40 so as to set the target temperature of the ball 10, and then read the display 50 to know when the ball 10 has reached the target temperature. The controls 40 may include a knob for setting the target temperature and a power switch for turning the electric circuit 33 on or off (FIG. 1). The power cord 60 may be an AC power cord for insertion at one end into a standard AC outlet, or a low-voltage DC powered receptacle for receiving DC power from a standard 12 volt AC/DC adapter. The circuit 33 may further include an audio transducer (not shown) that emits a chime or other low-volume pleasant sound that alerts the user when the current ball temperature has reached the target temperature. The circuit 33 may further include a temperature-sensing means 38, such as a thermocouple or thermistor, located distally from the heated conductor 32, such as in an edge of a lip of the grip 20 that contacts the ball 10, so as to provide information about the instant temperature of the ball 10. The thermocouple may be electrically connected to the circuit 33 through contacts located on the bottom of the grip 20 that touch corresponding contacts in tie depression 35 of the base 30 (not shown) when the grip 20 and the ball 10 are engaged with the base 30. The circuit 33 may further include a thermostat as is common in the prior art for automatic control of the heating element 36 so that the temperature of the ball is maintained at or near the target temperature. In an alternate embodiment of the invention, the depression 35 in the base 30 may be filled with water, the water being heated by a heating element 36 may be included in the base depression 35 (not shown). As such, when the grip 20 with the ball 10 is inserted into the base depression 35, the water flows up through the bottom opening 25 of the grip 20 to contact and heat the ball 10. As such, the heating element 36 does not directly contact the ball 10. In such an embodiment, the ball 10 may be made of a metal or other highly thermoconductive material. Further, the ball 10 in such an embodiment may be solid and not filled with the liquid 5, and not for heating in a microwave oven. In yet another embodiment of the present invention, an induction coil 37 may be included within the grip 20 that heats the ball 10 when the induction coil 37 is electrically connected to the circuit 33 in the base 30 through contacts in the bottom of the grip 20 that electrically connect to contacts in the depression 35 of the base 30 (not shown). In such an embodiment, water is not used in the depression 35 of the base 30, making the device easier and perhaps safer to use. Preferably, the grip 20 is keyed or otherwise has an asymmetric shape so that the grip 20 may be inserted into the base 30 in only one orientation. As such, the electrical contacts for the temperature-sensing means 38 and the electrical contacts for the induction coil 37 contact the corresponding electrical contacts in the base 30 (not shown). Alternately, the contacts grip 20 may be circular in a planar view and the contacts for the temperature-sending means 38 and the induction coil 37 may be radially aligned with circular contacts in the base (not shown), thereby providing for contact between the sets of contacts independently of the radial orientation of the grip 20 within the base 30. In use, a masseur begins to heat the massage ball 10 by switching on power and setting the target temperature by manipulating the controls 40 of the base 30. Upon seeing that the current ball temperature has reached the target temperature, or upon hearing a chime from the electrical circuit that indicates same, the masseur removes the grip 20 and ball 10 and, grasping the grip 20, rolls the ball 10 along the patient's skin as desired. The ball 10 freely rotates within the grip 20. In the event massage oil or other lubricant is used, the friction of the ball 10 against the patient's skin may be insufficient to induce a rotational force to the ball 10. However, the massage effect in such a situation is equivalent since heat from the ball 10 continues to be transferred to the patient's skin. While particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. For example, a grip 20 that holds a plurality of balls 10 may be fashioned, or a handle may be added to the grip 20 to facilitate holding thereof. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
<SOH> FIELD OF THE INVENTION <EOH>The present invention relates generally to massage devices and, more particularly, to a heated massage ball.
<SOH> SUMMARY OF THE INVENTION <EOH>The present device, in its simplest form, is a ball that may be heated and that is retained within a grip that allows for the ball to rotate freely therewithin. The ball may be heated in, for example, a microwave oven, and may be substantially hollow and filled with a liquid that retains heat. As such, upon heating, the ball may be inserted into the grip, which extends slightly past the center of the ball so as to frictionally retain the ball during use. The grip is preferably plastic or rubber and pliable enough to allow the forced insertion or ejection of the ball past its widest circumference. An opening in the bottom of the base may facilitate the removal of the ball from the base, whereby the user inserts a finger therein to force the ball out of the grip. Alternatively, a heating base may be included for accepting the grip and ball and to provide heat to the ball by a variety of means. For example, a heated conductor may be included in the base that extends through the bottom opening in the grip when the grip is engaged in the base. Such a heated conductor heats the ball by direct contact and thermal conduction. An electrical circuit includes a thermostat that measures the temperature of the ball and determines if the instant temperature of the ball has reached or exceeded a user-set target temperature. The circuit may power the heated conductor. The electric circuit may be AC or DC powered, and may include a display for indicating the target and current ball temperatures. In an alterative embodiment of the invention, an inductor coil may be included in the grip for heating of the ball. In yet another embodiment of the invention, water or massage oil or another liquid may be heated in a depression of the base such that when the grip and ball are engaged in the base, the fluid heats the ball by conduction. In use, a masseur applies power to the device or otherwise heats the ball to a desired temperature. The masseur then grasps the grip while rolling the ball around on the patient's skin as desired. In this manner, heat from the ball is transferred to the patient while the force of the ball against the patient's skin creates a pleasurable massage feeling and provides other therapeutic benefits. Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
20041028
20070717
20060511
76617.0
A61H1500
1
BROWN, MICHAEL A
HEATED MASSAGE BALL
SMALL
0
ACCEPTED
A61H
2,004
10,975,816
ACCEPTED
Apparatus and method for servicing a coolant system
An apparatus, system and method for servicing a coolant system, such as, an automobile air conditioner are disclosed. In one embodiment, the apparatus may comprise a device for measuring a parameter of the coolant system; and means for selectively switching between providing: (i) communication between the coolant system and said measuring device, and (ii) communication between the coolant system and the coolant supply.
1. An apparatus for servicing a coolant system adapted to receive coolant from a coolant supply, said apparatus comprising: a device for measuring a parameter of the coolant system; and means for selectively switching between providing: (i) communication between the coolant system and said measuring device, and (ii) communication between the coolant system and the coolant supply. 2. The apparatus of claim 1, wherein the switching means comprises: a three-way valve; and a mechanical actuator operatively connected to said three-way valve. 3. The apparatus of claim 2, wherein said mechanical actuator includes a pivoting element. 4. The apparatus of claim 2, wherein said mechanical actuator includes a cam element. 5. The apparatus of claim 2, wherein said mechanical actuator is adapted to receive a squeezing force. 6. The apparatus of claim 2, wherein said valve actuator comprises: a handle; and a mechanical link connecting said handle to said valve. 7. The apparatus of claim 2, wherein said handle comprises a pistol grip. 8. The apparatus of claim 2, wherein the three-way valve comprises: a plunger slidably disposed in a central body; and a spring biasing said plunger into a first position to provide communication between the coolant system and the measuring device. 9. The apparatus of claim 2, wherein said valve comprises: an outer piston slidably disposed in a bore in the apparatus; an inner piston disposed in said outer piston; and a cavity formed in said outer piston, said cavity adapted to connect to the coolant system. 10. The apparatus of claim 9 further comprising: a check valve disposed near one end of the bore, and wherein said valve comprises: an exterior protrusion extending from said outer piston and adapted to contact the coolant system; and an interior protrusion extending from said inner piston and adapted to engage a check valve provided in the apparatus. 11. The apparatus of claim 1, wherein said measuring device comprises a pressure gauge. 12. The apparatus of claim 1, wherein the coolant system comprises an automobile air conditioner. 13. The apparatus of claim 1, wherein the coolant supply comprises a pressurized container of at least refrigerant. 14. A device for servicing a coolant system, said device comprising: an outer housing; a central body disposed within the outer housing, said central body having an internal bore and first, second, and third fluid ports communicating with said internal bore; a valve disposed in said internal bore, said valve adapted to attain a first position in which there is communication between said first fluid port and said second fluid port, and a second position in which there is communication between said first fluid port and said third fluid port; and a valve actuator operatively connected to said valve. 15. The device of claim 14, wherein said valve comprises: a plunger slidably disposed in the internal bore; and a spring biasing said plunger into a first position. 16. The device of claim 15, wherein said plunger provides substantially exclusive communication between said first and second fluid ports when the valve is in the first position. 17. The device of claim 16, wherein said plunger provides substantially exclusive communication between said first and third fluid ports when the valve is in the second position. 18. The device of claim 14, further comprising a coolant container connection adapter, said adapter being connected to the central body via a fluid passage. 19. The device of claim 18, wherein the adapter comprises a piercing member. 20. The device of claim 18, further comprising a check valve disposed between the central body and the adapter. 21. The device of claim 14, wherein said valve actuator comprises: a handle; and a mechanical link connecting said handle to said valve. 22. The device of claim 21, wherein said handle comprises: a blade having a cam edge; and a cam surface on said mechanical link for receiving the cam edge of said blade. 23. The device of claim 22, wherein said mechanical link comprises one or more arms pivotally attached to the valve. 24. A system for servicing an automobile air conditioner, said system comprising: a coolant supply source; means for measuring a parameter of the coolant in the automobile air conditioner; and a device for servicing the automobile air conditioner, said device comprising: a central body; a valve disposed in said central body; and a valve actuator, wherein said valve is adapted to provide selective communication between the automobile air conditioner and (i) said measuring means, and (ii) said coolant supply source, responsive to an actuation force from said valve actuator. 25. The system of claim 24, wherein said measuring means comprises a pressure gauge. 26. The system of claim 25, wherein said coolant supply source comprises a pressurized container of a refrigerant. 27. The system of claim 24, wherein said valve comprises: a plunger slidably disposed in a bore formed in said central body between a first position and a second position; and a spring biasing said plunger in the first position. 28. The system of claim 27, wherein when said plunger is in the first position, said measuring means measures a parameter of the automobile air conditioner, and when said plunger is in said second position, at least a portion of the coolant is released from the coolant supply source into the automobile air conditioner. 29. The system of claim 24, wherein said valve actuator comprises: a handle; and a mechanical link connecting said handle to said valve. 30. The system of claim 29, wherein said handle comprises: a blade having a cam edge; and a cam surface on said mechanical link for receiving the cam edge of said blade. 31. A method of servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply, said method comprising the steps of: attaching the servicing apparatus to the coolant system; and selectively switching between providing: (i) communication between the coolant system and the measuring device, and (ii) communication between the coolant system and the coolant supply. 32. The method of claim 31, wherein the step of selectively switching comprises the step of: providing an actuating force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system. 33. The method of claim 32, wherein the step of providing an actuating force comprises the step of squeezing a handle of the servicing apparatus. 34. The method of claim 32, wherein the step of providing an actuating force comprises the step of contacting an exterior protrusion of the servicing apparatus against a service port of the coolant system using a first level of force to provide communication between the coolant system and the measuring device and a second level of force to provide communication between the coolant system and the coolant supply. 35. The method of claim 31, further comprising the step of substantially preventing communication between the coolant system and the measuring device when the coolant system communicates with the coolant supply. 36. The method of claim 35, further comprising the step of venting pressure from the measuring device when the coolant system communicates with the coolant supply. 37. The method of claim 35, further comprising the step of displaying a zero measurement on the measuring device when the coolant system communicates with the coolant supply. 38. A method of servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply, said method comprising the steps of: attaching the servicing apparatus to the coolant system; and selectively providing a squeezing force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS This application claims priority on U.S. Provisional Patent Application Ser. No. 60/516,552, for Device for Measuring Pressure in Automobile Air Conditioner and Charging Same With Refrigerant, filed on Oct. 31, 2003, the entirety of which is incorporated herein by reference. FIELD OF THE INVENTION Embodiments of the present invention relate to an apparatus and method for servicing a coolant system. BACKGROUND OF THE INVENTION Many coolant systems, such as, automobile air conditioners, use chemicals called refrigerants to cool air. The refrigerants may be added to the coolant system as liquids, but utilized in the system as gases. These coolant systems operate based on the principle of Gay-Lussac's Law, which is: P/T=P′/T′ where V is constant and where P=pressure, T=temperature, and V=volume. In accordance with this law, as the pressure of a compressed gas increases, its temperature increases. Conversely, as the pressure of the gas decreases, the temperature of the gas decreases. Expansion of a refrigerant gas in a coolant system acts to cool the system containing the refrigerant. Air blown over the cooled system, in turn may be cooled, and provided to a vent where it can cool an interior space, such as an automobile cabin. This is the basic concept of many refrigeration and air conditioning systems. The ability to achieve cooling by compressing and expanding a gaseous refrigerant may depend to some degree on the level of liquid refrigerant present in the system. In an automobile air conditioning system, several factors may adversely affect the level of refrigerant in the system. For example, the system may be subject to significant swings in temperature and frequent thermal cycling due to the action of the air conditioner itself and the heat produced by the automobile's engine. Under these conditions, joints and fittings may tend to expand and contract, permitting refrigerant to slowly leak out of the system. In another example, the hoses used may be slightly permeable to the refrigerant, which may also permit the refrigerant to slowly leak out of the hoses. Accordingly, maintenance of an automobile air conditioning system may require monitoring the refrigerant level or pressure and periodic re-charging of the refrigerant as indicated. Typical automotive air conditioners are provided with at least one service port to allow for the addition of refrigerant and checking on the level of refrigerant in the system. The check of refrigerant level and the addition of refrigerant may be attended to by a professional mechanic, however, there is no requirement that a professional carry out these functions. A growing number of automobile owners choose to perform this type of routine maintenance on their vehicles. This market is commonly referred to as the “do-it-yourself” market. A standard tool used by professionals for servicing automobile air conditioners includes a set of manifold gauges. This device usually includes three hoses and two gauges: one hose connects to a low pressure service port; one hose connects to a high pressure service port; and the third hose connects to the source of refrigerant. The two gauges may be used to measure the pressure at the high and low pressure service ports. Although manifold gauges are the standard tool used by professional auto mechanics for air conditioner service, several disadvantages may reduce their popularity among do-it-yourself consumers. Manifold gauges can be complicated to use. One must know the approximate ambient temperature and look up the pressure readings of the gauges on a chart to determine if there is sufficient refrigerant in the system. In addition, use of manifold gauges may be dangerous. Because these devices require handling of the high pressure service port of the automobile air conditioner, their use may present a risk of injury to inexperienced consumers. Furthermore, manifold gauges may be relatively expensive for a “do-it yourself” consumer considering the relative infrequency of their use for servicing of a single automobile. Accordingly, there is a need for new methods and apparatus for servicing air conditioners, such as those used in automobiles, which do not have the same drawbacks as manifold gauges. Various method and apparatus embodiments of the present invention may be used to service air conditioners, such as those used in automobiles. Embodiments of the present invention may allow a consumer to measure the refrigerant pressure in an automobile air conditioner, and to add refrigerant as needed. Additional advantages of embodiments of the invention are set forth, in part, in the description which follows and, in part, will be apparent to one of ordinary skill in the art from the description and/or from the practice of the invention. SUMMARY OF THE INVENTION Responsive to the foregoing challenges, Applicant has developed an innovative apparatus for servicing a coolant system adapted to receive coolant from a coolant supply. The apparatus may comprise: a device for measuring a parameter of the coolant system; and means for selectively switching between providing: (i) communication between the coolant system and said measuring device, and (ii) communication between the coolant system and the coolant supply. Applicant has further developed a device for servicing a coolant system, comprising: an outer housing; a central body disposed within the outer housing, the central body having an internal bore and first, second, and third fluid ports communicating with the internal bore; a valve disposed in the internal bore, the valve adapted to attain a first position in which there is communication between the first fluid port and the second fluid port, and a second position in which there is communication between the first fluid port and the third fluid port; and a valve actuator operatively connected to the valve. Applicant has further developed an innovative system for servicing an automobile air conditioner. The system may comprise: a coolant supply source; means for measuring a parameter of the coolant in the automobile air conditioner; and a device for servicing the automobile air conditioner. The servicing device may comprise a central body; a valve disposed in the central body; and a valve actuator, wherein the valve is adapted to provide selective communication between the automobile air conditioner and (i) the measuring means, and (ii) the coolant supply source, responsive to an actuation force from the valve actuator. Applicant has developed an innovative method for servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply. The method may comprise the steps of: attaching the servicing apparatus to the coolant system; and selectively switching between providing: (i) communication between the coolant system and the measuring device, and (ii) communication between the coolant system and the coolant supply. The step of selectively switching may include the step of providing an actuating force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system. Applicant has further developed an innovative method of servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply, comprising the steps of: attaching the servicing apparatus to the coolant system; and selectively providing a squeezing force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS In order to assist the understanding of this invention, reference will now be made to the appended drawings, in which like reference characters refer to like elements. FIG. 1 is a block diagram of a system for servicing a coolant system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a coolant system servicing device according to an embodiment of the present invention. FIG. 3A is a sectional view of a coolant system servicing device in a measuring mode of operation according to an embodiment of the present invention. FIG. 3B is a sectional view of a coolant system servicing device in a charging mode of operation according to an embodiment of the present invention. FIG. 3C is a side cross-sectional view of a coolant system servicing device in a measuring mode of operation according to an embodiment of the present invention. FIGS. 4A and 4B are side pictorial views of a coolant system servicing device attached to a pressurized container of coolant according to various embodiments of the present invention. FIG. 5 is a partial cross-sectional view of a coolant system servicing device in a measuring mode of operation according to a first alternative embodiment of the present invention. FIG. 6 is a partial cross-sectional view of the coolant system servicing device shown in FIG. 5 in a charging mode of operation. FIG. 7A is a partial cross-sectional view of a coolant system servicing device in a measuring mode of operation according to a second alternative embodiment of the present invention. FIG. 7B is a partial cross-sectional view of the coolant system servicing device shown in FIG. 7a in a charging mode of operation. FIG. 8 is a partial cross-sectional view of a coolant system servicing device according to a third alternative embodiment of the present invention. FIG. 9 is a partial cross-sectional view of a coolant system servicing device according to a fourth alternative embodiment of the present invention. FIG. 10 is a partial cross-sectional view of an alternative trigger arrangement that may be used in accordance with the coolant system servicing device shown in FIG. 9. FIG. 11 is a partial cross-sectional view of a coolant system servicing device having a low packaging profile according to an embodiment of the present invention. FIG. 12 is a partial cross-sectional view of an adapter for connecting a coolant system servicing device to a coolant supply in a sealing mode of operation. FIG. 13 is a partial cross-sectional view of the adapter shown in FIG. 12 in a piercing mode of operation. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. In a first embodiment, with reference to FIG. 1, a device 10 for servicing a coolant system 20, and a coolant supply 30 are shown. The servicing device 10 may include a measurement device 14 and a switching device 12 for selectively providing communication between the coolant system 20, the coolant supply 30, and the measurement device 14. The servicing device 10 may be adapted to selectively switch between a charging mode of operation, in which coolant from the coolant supply 30 is provided to the coolant system 20, and a measuring mode of operation, in which a parameter of the coolant system 20 is measured by the measurement device 14. The depiction of the switching device 12 is intended to be illustrative only, and not limiting. Any means for providing the indicated switching may be used in alternative embodiments of the invention. The servicing device 10 may be used to determine the level of coolant in the coolant system 20, and/or add coolant to the coolant system 20 from the coolant supply 30. In one method embodiment of the present invention, use of the servicing device 10 may be initiated by connecting the servicing device 10 to the coolant system 20 and the coolant supply 30. The switching device 12 may be oriented at this time to provide communication between the measurement device 14 and the coolant system 20. In this configuration, the measurement device 14 displays one or more parameters of the coolant system 20. In one embodiment, the measurement device 14 indicates a pressure level of the coolant system 20. The user may then read the pressure of the coolant system 20, for example, to determine whether or not additional coolant should be added to the system. If the addition of coolant is needed, the user may change the orientation of the switching device 12 so that it provides communication between the coolant system 20 and the coolant supply 30. When the switching device 12 is oriented so, coolant may be provided from the coolant supply 30 to the coolant system 20. In this orientation, communication between coolant system 20 and the measurement device 14 may be substantially prevented. The user may change the orientation of the switching device 12 as desired to alternate between providing coolant to the coolant system and checking the pressure of the coolant system. In one embodiment of the present invention, shown in FIG. 2, the servicing device 10 may include a central body 100, a valve 200, a valve actuator 300, and a housing 400. The central body 100 may include or communicate with a first fluid port 110, a second fluid port 120, and a third fluid port 130. The valve 200 may be adapted to provide selective communication between (i) the first fluid port 110 and the second fluid port 120, and (ii) the first fluid port 110 and the third fluid port 130, in response to an actuation of the valve actuator 300. The valve 200 shown in FIG. 2 may carry out the function of the switching device 12 shown in FIG. 1. The first port 110 may be adapted to connect to the coolant system 20, the second port 120 may be connected to the measurement device 14, and the third port 130 may be adapted to connect to the coolant supply 30. In one embodiment, the measurement device 14 may be incorporated into the housing 400 (as shown in FIG. 3A, for example). With continued reference to FIG. 2, the servicing device 10 may be used to determine the level of coolant in the coolant system 20, and/or add coolant to the coolant system from the coolant supply 30 in the same manner as explained above in connection with the embodiment of the invention shown in FIG. 1. In the embodiments of the present invention shown in FIGS. 1 and 2, the measurement device 14 is described as preferably being a pressure gauge used to measure the pressure of the coolant in the coolant system 20. It is contemplated that the measurement device 14 may be adapted to measure other suitable parameters of the coolant system 20. In various embodiments of the present invention, the coolant supply 30 may comprise a pressurized container including at least a refrigerant, as shown in FIGS. 4A and 4B. The container may comprise an Acme threaded container or other suitable container type. The refrigerant may comprise R134a, R12 (i.e., Freon), and/or other suitable coolant system refrigerant. In alternative embodiments of the invention, the coolant supply 30 may further include other suitable chemicals, such as, for example, leak detector and/or system lubricant. The orientation of the coolant system 20, the coolant supply 30, and the measurement device 14 relative to the servicing device 10, shown in FIG. 2, is intended to be illustrative only, and not limiting. For example, with reference to FIGS. 4A and 4B, it is contemplated that the receiving end 410 of the housing 400 for the coolant supply 30 may be located at either the top or the bottom of the servicing device 10. Other orientations of the coolant system 20, the coolant supply source 30, and the measurement device 14 relative to the servicing device 10 are also considered possible and are within the scope of the present invention. Another embodiment of the present invention will now be described with reference to FIGS. 3A, 3B, and 3C, in which like reference numerals refer to like elements in other embodiments, and which illustrate the same servicing device 10 in a measuring mode of operation (FIG. 3A), and a charging mode of operation (FIG. 3B), respectively. With respect to FIGS. 3A and 3B, the servicing device 10 may include a central body 100, a valve 200, a valve actuator 300, and a housing 400. The central body 100 may include or communicate with a first fluid port 110, a second fluid port 120, and a third fluid port 130. The valve 200 may be adapted to provide selective communication between (i) the first port 110 and the second port 120, and (ii) the first port 110 and the third port 130, in response to an actuation of the valve actuator 300. The first port 110 may be adapted to connect to a coolant system (not shown), the second port 120 may be connected to a measurement device 14, and the third port 130 may be adapted to connect to a coolant supply (not shown). The valve 200 may include a plunger 210 slidably disposed in a valve bore 140 formed in the central body 100. The valve bore 140 may be in selective fluid communication with the first port 110, the second port 120, and the third port 130 depending upon the position of the plunger 210. The plunger 210 may include an annular recess 220 provided between first and second grooves. Each of the grooves may be adapted to receive a sealing ring 218. The plunger 210 may be biased within the bore 140 in an upward direction by a spring 230. A tube 240 may extend from the third port 130 of the central body 100. The servicing device 10 may further comprise a receiving end 410 adapted to secure the device to a pressurized container of the coolant supply (not shown). The receiving end 410 of the housing 400 may include a recess 415 provided in an outer flange 420. The recess 415 and the outer flange 420 may be adapted to receive the hub of the coolant supply container (not shown) and support the servicing device 10 on the container. A pictorial view of the servicing device 10 of FIGS. 3A-C while mounted on a coolant supply container 30 is shown in FIG. 4A. In an alternative embodiment shown in FIG. 4B, the coolant supply container 30 may be mounted on the servicing device 10 in a location closer to the measurement device 14. An adapter 600 for connecting the servicing device 10 to the coolant supply may be disposed in the housing 400 at receiving end 410. The adapter 600 may include a threaded bore 610 for engaging a threaded nozzle of the coolant supply. A piercing member 620 may be disposed in the adapter 600. The piercing member 620 may include a sharp distal end such that when the adapter 600 engages the coolant supply container, the piercing member 620 pierces the seal of the container. The piercing member 620 is preferably hollow so as to allow the contents of the coolant supply container to exit from the container into the service device 10. In one embodiment, the piercing member 620 comprises a fixed needle. A check valve 630 may be disposed near or in a lower portion of the tube 240 proximate to the adapter 600. The check valve 630 may be adapted to permit primarily one-way fluid communication between the coolant supply container and the servicing device 10. In this manner, the check valve 630 may prevent undesired flow of coolant from the coolant system and the servicing device 10 back into the coolant supply container 30. The servicing device 10 may further comprise a valve actuator 300 for selectively applying an actuating force to the valve 200. In one embodiment, the valve actuator 300 may be adapted to receive a squeezing or gripping force. With reference to FIGS. 3A, 3B, and 3C, the valve actuator 300 may include a handle 310 pivotally attached to the central body 100 by a pin 315. The handle 310 may include a blade portion 320 having a cam edge 325. Detail of the manner in which the blade portion 320 and the cam edge 325 may be used to actuate the valve 200 may be explained in connection with FIG. 3C. With reference to FIG. 3C in particular, the valve actuator 300 may include single or dual arms 330 which may be attached to the plunger 210 (see FIG. 3A) by a pin 332. The arm(s) 330 may extend between the top of the plunger 210 and the cam edge 325. The arm(s) 330 may include a cam engaging surface 335 designed to smoothly and gradually receive the cam edge 325 of the blade 320. When the handle 310 is squeezed (moved towards the housing 400 in the embodiment shown in FIG. 3C), the cam edge 325 may force the arm(s) 320 downward, overcoming the upward bias of the valve spring 230, and moving the plunger 210 from a first measuring position in the bore 140 (shown in FIG. 3A) to a second charging position (shown in FIG. 3B). Release of the handle 310 may allow the plunger 210 to return to its measuring position under the influence of the spring 230. In some embodiments of the present invention, the valve actuator 300 may be adapted for one-handed operation. In some embodiments, the valve actuator 300 may be adapted such that switching the servicing device 10 between a measuring mode of operation and a charging mode of operation may occur without a user having to let go of the device. It is contemplated that other suitable means for providing an actuating force to the valve 200 are considered to be within the scope of the present invention. For example, means other than the arm(s) 330 for actuating the plunger 210 with the handle 310 are considered within the scope of the present invention, including, but not limited to, hydraulic, mechanical, or pneumatic members that could be used to link the plunger 210 with the handle 310. In addition, the valve actuator 300 may be adapted to receive other actuation forces, such as, for example, pulling, rotating, and/or pushing forces. The servicing device 10 may further comprise means for connecting the device to a coolant system (not shown). With renewed reference to FIGS. 3A and 3B, the device 10 may include a hose assembly 500. The hose assembly 500 may include a hose 510 having a first end attached to the central body 100 in communication with the first port 110. The hose 510 may be secured to the housing 400 with a nut 520. In one embodiment, the nut 520 may engage a corresponding connector 530 associated with the housing 400. A second end of the hose (not shown) may be provided with a coupler adapted to connect to the coolant system 20. In one embodiment of the present invention, the coupler may comprise a quick-connect coupler adapted to connect to a low pressure service port of an automobile air conditioner. Operation of an embodiment of the invention shown in FIGS. 3A-C will now be described. The servicing device 10 may be connected to a coolant supply at the receiving end 410 and to an automobile coolant system by the hose 510. At this time the handle 310 may remain in its extended position, as shown in FIG. 3A. Connection of the servicing device 10 to the coolant supply causes the piercing member 620 to pierce a seal on the top of the coolant supply. As a result, pressurized coolant may pass through the piercing member 620, the check valve 630, and the tube 240. While the servicing device 10 is in the position shown in FIG. 3A, the refrigerant may not be able to flow past the plunger 210 in the central body 100, and as a result the flow of refrigerant does not extend past the third port 130. While the servicing device 10 is in the position shown in FIG. 3A, the device may be used to measure the pressure of the refrigerant in the coolant system. While in this position, the plunger 210 is biased into its upper position by the spring 230. The annular recess 220 of the plunger 210 may provide communication between the first port 110 (which is connected to the coolant system) and the second port 120 (which is connected to the measurement device 14). The sealing rings 218 may substantially prevent communication between the third port 130 and either of the first or second ports 110 and 120. As a result, the second port 120 experiences pressure similar to the pressure of the first port 110, which, in turn, is similar to the internal pressure of the coolant system. In this manner, the measurement device 14 may measure the coolant system pressure (or other parameter in alternative embodiments). The user may inspect the measurement device 14 and determine if additional coolant is required. In some embodiments, the measurement device 14 may indicate the need for additional coolant, for example, by displaying a measurement reading. If a need for additional coolant is determined, the user may use the servicing device 10 to charge the coolant system with more coolant from the coolant supply. When charging operation is desired, an actuation force may be applied to the valve 200 using the handle 310. As shown in FIGS. 3B and 3C, when the handle 310 is squeezed, the cam edge 325 may push down on the cam surface 335, causing the arm(s) 330 to move downward. The downward motion of the arm(s) 330 may in turn cause the plunger 210 to move downward within the bore 140. In this position, the sealing rings 218 may substantially prevent communication between the second port 120 and either of the first or third ports 110 and 130. At the same time, the sealing rings 218 allow communication between the first and third ports 110 and 130. As a result, coolant from the coolant supply may flow through the piercing member 620, the tube 240, and past first port 110 to the coolant system. The user may apply an actuation force to the valve 200 by squeezing the handle 310 as desired to alternate between providing coolant to the coolant system and measuring a parameter of the coolant system. It is appreciated that the servicing device 10 may be adapted to selectively switch between the charging mode of operation and the measuring mode of operation in alternative ways. For example, it is contemplated that the device 10 may be adapted such that an actuation force is applied for measuring operation, and no actuation force is applied to the valve 200 for charging operation. Another embodiment of the present invention will now be described with reference to FIGS. 5 and 6, in which like reference numerals refer to like elements in other embodiments, and which illustrate the same servicing device 10 in a measuring mode of operation (FIG. 5), and a charging mode of operation (FIG. 6). With respect to FIGS. 5 and 6, the servicing device 10 may include a valve 200 comprising a plunger 250 slidably disposed in a bore 252 disposed in a housing 400. The plunger 250 may include a first annular recess 254 and a second annular recess 256 provided between sealing rings 255. The plunger 250 may be biased against a stop 251 by a spring 253 disposed in the bore 252. In one embodiment, as shown in FIGS. 5 and 6, the bore 252 may have a substantially horizontal orientation within the housing 400. The horizontal orientation of the bore 252 may permit a substantially compact arrangement of the first port 110, the second port 120, the measurement device 14, and the plunger 250. In this manner, the servicing device 10 may have a small height profile. The small height profile may lead to advantages in some embodiments such as, for example, easier packaging and/or shipping of the device 10. The servicing device 10 may further include a venting orifice 258 formed in the housing 400. The orifice 258 is in communication with the bore 252 and may be in selective communication with the second port 120 depending on the position of the plunger 250. In some cases, pressure may build up in the second port 120 during operation of the device 10. When the device 10 is in a charging mode of operation, this built up pressure may cause the measurement device 14 to display a reading even though the measurement device 14 is not in communication with the coolant system. The orifice 258 is adapted to vent pressure from the second port 120 to ambient when the orifice 258 is in communication with the second port 120. As a result, the measurement device 14 may indicate a measurement reading of substantially zero such that the user does not receive an inaccurate measurement reading during charging operation. The plunger 250 may be adapted to provide selective communication between (i) the first port 110 and the second port 120, and (ii) the first port 110 and the third port 130, in response to an actuation of the plunger 250. The actuation of the plunger 250 may be provided by a mechanical link, or other suitable means. As discussed above, the first port 110 may be adapted to connect to a coolant system (not shown), the second port 120 may be connected to a measurement device 14, and the third port 130 may be adapted to connect to a coolant supply container 30. Operation of the embodiment of the present invention shown in FIGS. 5 and 6 will now be described with reference to FIGS. 5 and 6. While the plunger 250 is in the position shown in FIG. 5, the device 10 may be used to measure the pressure of the refrigerant in the coolant system. While in this position, the plunger 250 is biased against the stop 251 by the spring 253. The annular recess 254 of the plunger 250 may provide communication between the first port 110 (which is connected to the coolant system) and the second port 120 (which is connected to the measurement device 14). The sealing rings 255 may substantially prevent communication between the third port 130 and either of the first or second ports 110 and 120. As a result, the second port 120 experiences pressure similar to the pressure of the first port 110, which, in turn, is similar to the internal pressure of the coolant system. In this manner, the measurement device 14 may measure the coolant system pressure (or other parameter in alternative embodiments). The user may inspect the measurement device 14 and determine if additional coolant is required. In some embodiments, the measurement device 14 may indicate the need for additional coolant, for example, by displaying a measurement reading. If a need for additional coolant is determined, the user may use the servicing device 10 to charge the coolant system with more coolant from the coolant supply container 30. When charging operation is desired, an actuation force may be applied to the plunger 250. When the actuation force is applied, the plunger 250 moves within the bore 252 against the bias of the spring 253 (in a rightward direction as shown in the embodiment depicted in FIGS. 5 and 6). In this position, as shown in FIG. 6, the sealing rings 255 allow communication between the first and third ports 110 and 130. As a result, coolant from the coolant supply container 30 may flow around the annular recess 254, and past first port 110 to the coolant system. At the same time, the sealing rings 255 may substantially prevent communication between the second port 120 and either of the first or third ports 110 and 130. The second port 120 may, however, communicate with the orifice 258, and pressure in the second port 120 may be vented to ambient through the orifice 258. As a result, the measurement device 14 may indicate a measurement reading of substantially zero such that the user does not receive an inaccurate measurement reading during charging operation. The user may apply an actuation force to the plunger 250 as desired to alternate between providing coolant to the coolant system and measuring a parameter of the coolant system. In other respects, the servicing device 10 shown in FIGS. 5 and 6 may operate substantially the same as the device shown in FIGS. 3A-C. Another embodiment of the present invention will now be described with reference to FIGS. 7A and 7B, in which like reference numerals refer to like elements in other embodiments, and which illustrate the same servicing device 10 in a measuring mode of operation (FIG. 7A), and a charging mode of operation (FIG. 7B). With respect to FIGS. 7A and 7B, the plunger 250 may include one annular recess 254 provided between sealing rings 255. The plunger 250 may be adapted to provide selective communication between (i) the first port 110 and the second port 120 (as shown in FIG. 7A), and (ii) the first port 110 and the third port 130 (as shown in FIG. 7B), in response to an actuation of the plunger 250. In this manner, the embodiment of the present invention shown in FIGS. 7A and B may operate substantially as described above in connection with the servicing device 10 shown in FIGS. 5 and 6. Another embodiment of the present invention is shown in FIG. 8, in which like reference numerals refer to like elements. A valve 700 having an inner piston 710 and an outer piston 720 may be slidably disposed in a bore 705 formed within the housing 400. An inner annular recess 712 may be formed in the inner piston 710 and an outer annular recess 722 may be formed in the outer piston 720. A first sealing ring 702 provides a seal between the outer piston 720 and the bore 705. A first spring 730 disposed in an inner cavity 735 may bias the valve 700 away from a check valve 630, which is biased against its seat 631 by a second spring 635. A stop 704 may prevent the valve 700 from falling out of the bore 705 when the device 10 is in the position shown in FIG. 8. The device 10 may be adapted to connect to a component of a coolant system (not shown). For example, the device 10 may be adapted to connect to the low pressure service port of the coolant system. The low pressure service port may include a Schrader valve. As will be apparent to those of ordinary skill in the art, the Schrader valve may include a valve stem centrally disposed within a circumferential member. When the Schrader valve stem is actuated, the valve opens and permits substantially one-way communication into the coolant system through the low pressure service port. An outer cavity 740 may be formed in the outer piston 720 and adapted to connect the device 10 to the coolant system. A first interior protrusion 714 may extend from the inner piston 710 toward the check valve 630, and a second interior protrusion 716 may extend from the inner piston 710 toward the cavity 740. An exterior protrusion 725 may extend from the outer piston 720 into the cavity 740. A detent 721 may be formed in the outer piston 720. The first interior protrusion 714 may be adapted to selectively contact and open the check valve 630. The exterior protrusion 725 may be adapted to selectively contact and open an element of the coolant system, such as, for example, the Schrader valve stem disposed in the low-pressure service port. The second interior protrusion 716 and the outer piston detent 721 may be adapted to contact the circumferential member of the low pressure service port. The second interior protrusion 716 may extend into the cavity 740 beyond the outer piston detent 721 such that during operation the circumferential member of the service port contacts the second interior protrusion 716 before contacting the detent 722. A second sealing ring 706 may be disposed in the cavity 740 and may sealingly engage the circumferential member of the service port during operation. A passage 718 formed in the inner piston 710 may provide communication between the outer cavity 740 and the inner cavity 735. The device 10 may further include a locking mechanism comprising a plurality of ball bearings 724 disposed in corresponding holes 723 formed in the outer piston 720. The balls 724 are adapted to rest against a shoulder 726 formed in the housing 400 and, in this manner, selectively prevent the upward movement of the outer piston 720 within the bore 705. As the inner piston 710 moves axially upward within the piston bore 705 toward the check valve 630, the balls 724 are exposed to the inner annular recess 712. At this point, the balls 724 are adapted to slide off the shoulder 726 and into the inner recess 712. With the balls 724 in the inner recess 712, the balls 724 may clear the shoulder 726, and the outer piston 720 is able to move axially upward within the piston bore 705. The valve 700 may be adapted to switch between a first position (shown, for example, in FIG. 8) in which the valve provides communication between the coolant system and the measuring device 14, and a second position in which the valve provides communication between the coolant system and the coolant supply. In this manner, the valve 700 may selectively switch between measuring a fluid parameter of the coolant system and charging the coolant system with coolant. Operation of the embodiment of the present invention shown in FIG. 8 will now be described. Use of the servicing device 10 may be initiated by connecting the device to the low pressure service port of a coolant system. The device may be connected to the service port such that the exterior protrusion 725 contacts the Schrader valve stem disposed in the service port, and the circumferential member sealingly engages the second sealing ring 706. Using the grip 430, a force may be applied to the device 10 in the direction of the arrow 750 shown in FIG. 8. A level of force may be applied such that the exterior protrusion 725 depresses the valve stem (not shown) disposed in the service port and opens the valve. Because the circumferential member of the service port sealingly engages the second sealing ring 706, gas from the coolant system is substantially prevented from communicating with ambient. The balls 724 remain abutted against the shoulder 726, and the outer piston 720 is substantially prevented from moving axially upward within the bore 705. In this position, as shown in FIG. 8, the passage 718 may provide communication between the outer cavity 740 and the inner cavity 735, which, in turn, communicates with the outer recess 722 and the second port 120. In this manner, the coolant system may communicate with the second fluid port 120. As a result, the second port 120 experiences pressure similar to the pressure of the outer cavity 740, which, in turn, is similar to the internal pressure of the coolant system, and the measurement device 14 may measure the coolant system pressure (or other parameter in alternative embodiments). The user may inspect the measurement device 14 and determine if additional coolant is required. In some embodiments, the measurement device 14 may indicate the need for additional coolant, for example, by displaying a measurement reading. If a need for additional coolant is determined, the user may use the servicing device 10 to charge the coolant system with more coolant from the coolant supply. It should be noted that if the coolant supply 30 is attached to the servicing device 10, coolant does not substantially communicate with the inner cavity 735, and correspondingly, the coolant system, because of the check valve 630. When the addition of coolant is desired, the coolant supply 30 may be attached to the receiving end 410 of the servicing device 10, if not already attached. The piercing member 620 pierces the seal of the coolant supply. Because the check valve 630 is biased against its seat 631 by the spring 635, coolant still does not substantially communicate with the inner cavity 735, and correspondingly, the coolant system. Using the grip 430, an additional force may be applied to the device 10 in the direction of the arrow 750 shown in FIG. 8. A level of force may be applied such that the circumferential member of the low pressure service port acts on the second inner protrusion 716 and overcomes the biasing force of the spring 730, causing the inner piston 710 to travel upward within the bore 705. Because the inner protrusion 716 extends into the cavity 740 beyond the outer piston detent 721, the circumferential member does not initially contact the outer piston detent 721. As the inner piston 710 travels axially upward within the bore 705, the balls 724 are exposed to the inner annular recess 712. The balls 724 slide off the shoulder 726 and into the inner recess 712. At the same time, the circumferential member of the service port begins to contact the outer piston detent 721. With the balls 724 in the inner recess 712, the balls 724 may clear the shoulder 726, and the outer piston 720 and the inner piston 710 now travel upward together within the bore 705. The interior protrusion 714 may then contact and unseat the check valve 630. Coolant from the coolant supply may now flow into the inner cavity 735, through the passage 718 and into the outer cavity 740, and, finally into the coolant system. At the same time, as the outer piston 720 travels upward, the first sealing ring 702 travels past the second fluid port 120 and substantially prevents communication between the second port 120 and the inner cavity 735 such that the cavity 740, and correspondingly the coolant system, no longer communicates with the measuring device 14. In one embodiment, pressure in the second port 120 may vent to ambient through space formed between the outer piston 720 and the bore 705. The space may be small enough such that the travel of the outer piston 720 within the bore is not adversely affected. As a result of the vented pressure, the measurement device 14 may indicate a measurement reading of substantially zero such that the user does not receive an inaccurate measurement reading during charging operation. When coolant supply is no longer desired, the force applied to the device may be reduced. This may cause the interior protrusion 714 to move out of contact with the check valve 630 under the bias of the spring 730. The check valve 630 may return to its seat 631 and prevent communication between the coolant supply and the inner cavity 735. In this manner, the device may return to the measuring position, shown in FIG. 8. The user may apply an actuation force to the device 10 as desired to alternate between providing coolant to the coolant system and measuring a parameter of the coolant system. Another embodiment of the present invention is shown in FIG. 9, in which like reference numerals refer to like elements. The servicing device 10 shown in FIG. 9 is similar to that shown in FIG. 8, with the addition of a trigger 340 operatively connected to a trigger valve assembly 345. The trigger valve assembly 345 may include a trigger pin 342 slidably disposed in a second bore 344, and a trigger valve 346 disposed at one end of the trigger pin 342. The trigger pin 342 may be operatively connected to the trigger 340 at a second end. The trigger valve 346 may be biased against its seat 347 by a trigger spring 348. A sealing ring 349 may be disposed between the trigger valve 346 and the trigger valve seat 347. The trigger valve assembly 345 may be adapted to move between a first position (shown, for example, in FIG. 9) and a second position (not shown) in which the trigger valve 346 is pushed off its seat 347 in response to an actuation force from the trigger 340. In the first position, the trigger spring 348 may bias the trigger valve 346 against its seat, substantially preventing coolant from the coolant supply source 30 from communicating to the coolant system through the third port 130. In the second position, when the trigger valve 346 is pushed off its seat 347 in response to an actuation force from the trigger 340, coolant may communicate with the third fluid port 130. Operation of the embodiment of the present invention shown in FIG. 9 is substantially as described above with reference to FIG. 8, with an additional feature. When the addition of coolant is desired, a level of force may be applied such that the circumferential member of the low pressure service port acts on the second inner protrusion 716 and overcomes the biasing force of the spring 730, causing the inner piston 710 to travel upward within the bore 705. Because the inner protrusion 716 extends into the cavity 740 beyond the outer piston detent 721, the circumferential member does not initially contact the outer piston detent 721. As the inner piston 710 travels axially upward within the bore 705, the balls 724 are exposed to the inner annular recess 712. The balls 724 slide off the shoulder 726 and into the inner recess 712. At the same time, the circumferential member of the service port begins to contact the outer piston detent 721. With the balls 724 in the inner recess 712, the balls 724 may clear the shoulder 726, and the outer piston 720 and the inner piston 710 now travel upward together within the bore 705. The interior protrusion 714 may then contact and unseat the check valve 630. An actuation force may be applied to the trigger 340, causing the trigger pin 342 to slide upward within the bore 344, and unseating the trigger valve 346. In this position, coolant from the coolant supply may flow through the third fluid port 130 past the check valve 630 to the coolant system. In other respects, the device 10 shown in FIG. 9 operates substantially as the device shown in FIG. 8. In another embodiment of the present invention, shown in FIG. 10, in which like reference numerals refer to like elements, the trigger valve assembly 345 shown in FIG. 9 may be adapted to receive a pulling-force instead of a pushing force. When charging operation is desired, a pulling force may be applied to the trigger pin 342 in the direction of the arrow shown. This force may cause the trigger valve 346 to move from its seat 347. In other respects, the device 10 shown in FIG. 10 operates substantially the same as the device shown in FIG. 9. A coolant system servicing device 800 will now be described with reference to FIG. 11, in which like reference numerals refer to like elements in other embodiments. The servicing device 800 may include a valve 810 having a bore 805 disposed in a housing 400, and a valve actuator 820. The valve may be adapted to provide selective communication between a coolant supply passage 802 and a charging passage 804. The coolant supply passage 802 may be adapted to connect to a coolant supply container 30, and the charging passage 804 may be adapted to connect to a coolant system (not shown). The device 800 is adapted to switch between a charging mode of operation (as shown in FIG. 11), in which coolant is supplied to the coolant system, and a non-charging mode of operation, in response to actuation of the valve actuator 820. The valve 810 may include a plunger 812 slidably disposed in the bore 805. A plunger spring 814 biases the plunger 812 against a plunger seat 816. The valve bore 805 may be in fluid communication with the coolant supply passage 802 and selective communication with the charging passage 804 depending on the position of the plunger 812. The servicing device 800 may further comprise a valve actuator 820 for selectively applying an actuating force to the valve 810. In one embodiment, the valve actuator 820 may be adapted to receive a squeezing or gripping force. The valve actuator 820 may include a trigger 822 pivotally attached to the housing by a pin 824. Single or dual arms 826 may be attached to the trigger 822 at a first end by a pin 827 and to the plunger 812 at a second end. When the trigger 822 is squeezed in the direction of the arrow 830, the trigger 822 rotates about the pin 824. The rotation of the trigger 822 forces the arm(s) 826 leftward, overcoming the rightward bias of the plunger spring 814, and moving the plunger 812 from a non-charging position in the bore 805 to a charging position (as shown in FIG. 11). Release of the trigger 822 may allow the plunger 812 to return to its non-charging position under the influence of the spring 814. The servicing device 800 may further comprise means 500 for connecting the device to the coolant system (not shown). The connecting means 500 may include a hose assembly 500 having a first end connected to the charging passage 804 and a second end operatively connected to the coolant system. An adapter 600 for connecting the servicing device 800 to the coolant supply container 30 may be disposed in the housing 400. The adapter 600 may include a piercing member 620 having a sharp distal end such that when the adapter engages the coolant supply container 30, the piercing member 620 pierces the seal of the container. The servicing device 800 may further comprise a receiving end 410 adapted to secure the device to the coolant supply container 30. In one embodiment of the servicing device 800, the valve bore 805 may have a substantially horizontal orientation within the housing 400, and may be oriented substantially perpendicular to the supply passage 802. In this embodiment, the flow of coolant from the valve bore 805 is in a substantially horizontal direction toward the rear of the device, as shown in FIG. 11. The charging passage 804 may be provided with a switch-back orientation such that the flow of coolant from the valve bore 805 is directed toward the front of the device 800 where the second end of the hose assembly 500 extends from the device and is operatively connected to the coolant system. In this embodiment, the charging passage 804 may include a first portion oriented substantially parallel to the valve bore 805 and a second portion oriented substantially unparallel to the valve bore 805. In an alternative embodiment, the entire charging passage 804 may be oriented substantially parallel to the valve bore 804. The orientation of the valve bore 805 and/or the charging passage 804 may permit a compact arrangement of the servicing device 800. In this manner, the servicing device 10 may have a small height profile. In some embodiments, the height of the housing 400 may be in the range of about 10% to about 30% of the combined height of the housing 400 and the coolant supply container 30. The proportional height of the housing 400 may vary depending on the size of the coolant supply container used. The small height profile may lead to advantages in some embodiments such as, for example, easier packaging and/or shipping of the device 10. Operation of the servicing device 800 will now be described with reference to FIG. 11. The servicing device 800 may be connected to the coolant supply container 30 at the receiving end 410 and to an automobile coolant system by the hose assembly 500. At this time the trigger 822 may be in an extended position (not shown). Connection of the servicing device 800 to the coolant supply may cause the piercing member 620 to pierce a seal on the top of the container. As a result, pressurized coolant may pass through the piercing member 620, the adapter 600, and into the valve bore 805. While the servicing device 800 is in the non-charging position, the refrigerant may not be able to flow past the plunger 812, which is biased against its seat 816 by the spring 814. As a result, the refrigerant may not flow into the charging passage 804. If a need for additional coolant is determined, the user may use the servicing device 800 to charge the coolant system with more coolant from the coolant supply 30. When charging operation is desired, an actuation force may be applied to the valve 810 using the trigger 822. When the trigger 822 is squeezed in the direction of the arrow 830, the trigger 822 rotates about the pin 824, causing the arm(s) 826 to move leftward against the bias of the spring 814. The leftward motion of the arm(s) 826 may in turn cause the plunger 812 to move leftward within the bore 805. In this position, as shown in FIG. 11, the plunger 812 may be moved off its seat 816, opening communication between the bore 805 and the charging passage 804. The coolant may then flow from the bore 805 and through the charging passage 804. As the coolant flows through the charging passage 804, the coolant may be redirected toward the front of the device, and may flow through the hose assembly 500 and into the coolant system. The user may apply an actuation force to the valve 810 by squeezing the trigger 822 as desired to alternate between providing coolant to the coolant system and not providing coolant. In some embodiments, the servicing device 800 may be adapted for one-handed operation. In this manner, a user may hold the coolant supply container 30 and apply a gripping force to the trigger 822 with one hand. In some embodiments, as shown in FIG. 11, the device housing 400 may include a contoured surface 440. The contoured surface 440 may be adapted to receive the area of the user's hand between the thumb and index finger. With the user's hand in this position, the trigger 822 may be adapted to receive a gripping force from one or more of the user's fingers. An adapter 900 for connecting a coolant system servicing device 10 to a coolant supply container 30 will now be described with reference to FIGS. 12 and 13. The adapter 900 may be disposed in a coolant system servicing device housing 400. The adapter 900 may be used in connection with a servicing device including, but not limited to, those depicted in embodiments of the present invention. The adapter 900 may be used to connect the servicing device 10 to the coolant supply container 30 in a manner that first sealingly engages the device with the container, and then piercingly engages the device with the container. FIG. 12 illustrates the adapter 900 sealingly engaged with the coolant supply container 30, and FIG. 13 illustrates the adapter 900 piercingly engaged with the container 30. The adapter 900 may include a connecting hub 905 for connecting the adapter to the servicing device housing 400, and a bore 910 for engaging a nozzle 31 of the coolant supply container 30. In one embodiment, the bore 910 may be threaded for engaging an Acme threaded coolant supply container 30. A user may rotate the coolant supply container 30 such that the nozzle 31 advances up the threads disposed in the bore 910. In other embodiments, the bore 910 may be adapted to engage a supply container having a quick connect fitting, and/or any other suitable container fitting. A sealing member 912 may be slidably disposed in the bore 910. The sealing member 912 may include a shoulder 913 adapted to sealingly engage the nozzle of the coolant supply container 30. In one embodiment, the sealing member 912 may comprise a deformable material, such as, for example, rubber. Other suitable materials are considered possible and are well within the scope and spirit of the present invention. A sealing spring 914 may bias the sealing member 912 into the bore 910. The upward travel of the sealing member 912 within the bore 910 may be limited by a travel stop 916. A contact plate 918 may be disposed between the sealing member 912 and the sealing spring 914. A piercing member 920 having a sharp distal end 925 may be disposed in the connecting hub 905. The piercing member 920 may be disposed such that, when the adapter is in the position shown in FIG. 12, the piercing member 920 does not extend into the bore 910 beyond the sealing member 912. In this manner, the coolant supply container 30 contacts the shoulder 913 of the sealing member 912 before contacting the distal end 925 of the piercing member. When the piercing member 920 engages the coolant supply container 30, the piercing member 920 pierces the seal of the container. The piercing member 920 is preferably hollow so as to allow the contents of the coolant supply container 30 to exit from the container into the servicing device 10. Operation of the adapter 900 will now be described with reference to FIGS. 12 and 13. A servicing device 10 including the adapter 900 may be connected to an automobile coolant system at a first end (not shown). When charging of the coolant system is required, the nozzle 31 of the coolant supply container 30 may be connected to the bore 910. A user may rotate the container such that the nozzle 31 advances up the threads disposed in the bore 910. As the nozzle 31 advances upward within the bore 910, the nozzle 31 first contacts the shoulder 913 of the sealing member 912. In this position, as shown in FIG. 12, the piercing member 920 does not pierce the seal of the container 30. As the container 30 is further engaged with the bore 910, the nozzle 31 remains in contact with the sealing member 912. The nozzle 31 pushes the sealing member 912 in an upward direction within the bore 910 against the bias of the sealing spring 914. As the sealing member 912 approaches the travel stop 916, the piercing member 920 engages the coolant supply container 30, and pierces the seal of the container, as shown in FIG. 13. As a result, pressurized coolant may pass through the piercing member 620, through the servicing device 10 and into the coolant system. Because the nozzle 31 remains sealingly engaged with the sealing member 912, coolant is substantially prevented from communicating with the bore 910 and the ambient environment during operation. It will be apparent to those skilled in the art that various other modifications and variations can be made in the construction, configuration, and/or operation of the present invention without departing from the scope or spirit of the invention. For example, it is appreciated that the present invention may include a combination of one or more of the servicing device 10, the measurement device 14, and the coolant supply source 30 provided as a complete product or kit. The depiction of the housing 400, the valve actuator 300, and the valve 200 are intended to be illustrative only, and not limiting. It is appreciated that the size and shape of the housing 400 may vary markedly without departing from the intended scope of the present invention. These and other modifications to the above-described embodiments of the invention may be made without departing from the intended scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Many coolant systems, such as, automobile air conditioners, use chemicals called refrigerants to cool air. The refrigerants may be added to the coolant system as liquids, but utilized in the system as gases. These coolant systems operate based on the principle of Gay-Lussac's Law, which is: in-line-formulae description="In-line Formulae" end="lead"? P/T=P′/T′ where V is constant in-line-formulae description="In-line Formulae" end="tail"? and where P=pressure, T=temperature, and V=volume. In accordance with this law, as the pressure of a compressed gas increases, its temperature increases. Conversely, as the pressure of the gas decreases, the temperature of the gas decreases. Expansion of a refrigerant gas in a coolant system acts to cool the system containing the refrigerant. Air blown over the cooled system, in turn may be cooled, and provided to a vent where it can cool an interior space, such as an automobile cabin. This is the basic concept of many refrigeration and air conditioning systems. The ability to achieve cooling by compressing and expanding a gaseous refrigerant may depend to some degree on the level of liquid refrigerant present in the system. In an automobile air conditioning system, several factors may adversely affect the level of refrigerant in the system. For example, the system may be subject to significant swings in temperature and frequent thermal cycling due to the action of the air conditioner itself and the heat produced by the automobile's engine. Under these conditions, joints and fittings may tend to expand and contract, permitting refrigerant to slowly leak out of the system. In another example, the hoses used may be slightly permeable to the refrigerant, which may also permit the refrigerant to slowly leak out of the hoses. Accordingly, maintenance of an automobile air conditioning system may require monitoring the refrigerant level or pressure and periodic re-charging of the refrigerant as indicated. Typical automotive air conditioners are provided with at least one service port to allow for the addition of refrigerant and checking on the level of refrigerant in the system. The check of refrigerant level and the addition of refrigerant may be attended to by a professional mechanic, however, there is no requirement that a professional carry out these functions. A growing number of automobile owners choose to perform this type of routine maintenance on their vehicles. This market is commonly referred to as the “do-it-yourself” market. A standard tool used by professionals for servicing automobile air conditioners includes a set of manifold gauges. This device usually includes three hoses and two gauges: one hose connects to a low pressure service port; one hose connects to a high pressure service port; and the third hose connects to the source of refrigerant. The two gauges may be used to measure the pressure at the high and low pressure service ports. Although manifold gauges are the standard tool used by professional auto mechanics for air conditioner service, several disadvantages may reduce their popularity among do-it-yourself consumers. Manifold gauges can be complicated to use. One must know the approximate ambient temperature and look up the pressure readings of the gauges on a chart to determine if there is sufficient refrigerant in the system. In addition, use of manifold gauges may be dangerous. Because these devices require handling of the high pressure service port of the automobile air conditioner, their use may present a risk of injury to inexperienced consumers. Furthermore, manifold gauges may be relatively expensive for a “do-it yourself” consumer considering the relative infrequency of their use for servicing of a single automobile. Accordingly, there is a need for new methods and apparatus for servicing air conditioners, such as those used in automobiles, which do not have the same drawbacks as manifold gauges. Various method and apparatus embodiments of the present invention may be used to service air conditioners, such as those used in automobiles. Embodiments of the present invention may allow a consumer to measure the refrigerant pressure in an automobile air conditioner, and to add refrigerant as needed. Additional advantages of embodiments of the invention are set forth, in part, in the description which follows and, in part, will be apparent to one of ordinary skill in the art from the description and/or from the practice of the invention.
<SOH> SUMMARY OF THE INVENTION <EOH>Responsive to the foregoing challenges, Applicant has developed an innovative apparatus for servicing a coolant system adapted to receive coolant from a coolant supply. The apparatus may comprise: a device for measuring a parameter of the coolant system; and means for selectively switching between providing: (i) communication between the coolant system and said measuring device, and (ii) communication between the coolant system and the coolant supply. Applicant has further developed a device for servicing a coolant system, comprising: an outer housing; a central body disposed within the outer housing, the central body having an internal bore and first, second, and third fluid ports communicating with the internal bore; a valve disposed in the internal bore, the valve adapted to attain a first position in which there is communication between the first fluid port and the second fluid port, and a second position in which there is communication between the first fluid port and the third fluid port; and a valve actuator operatively connected to the valve. Applicant has further developed an innovative system for servicing an automobile air conditioner. The system may comprise: a coolant supply source; means for measuring a parameter of the coolant in the automobile air conditioner; and a device for servicing the automobile air conditioner. The servicing device may comprise a central body; a valve disposed in the central body; and a valve actuator, wherein the valve is adapted to provide selective communication between the automobile air conditioner and (i) the measuring means, and (ii) the coolant supply source, responsive to an actuation force from the valve actuator. Applicant has developed an innovative method for servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply. The method may comprise the steps of: attaching the servicing apparatus to the coolant system; and selectively switching between providing: (i) communication between the coolant system and the measuring device, and (ii) communication between the coolant system and the coolant supply. The step of selectively switching may include the step of providing an actuating force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system. Applicant has further developed an innovative method of servicing a coolant system using a servicing apparatus attached to a measuring device and a coolant supply, comprising the steps of: attaching the servicing apparatus to the coolant system; and selectively providing a squeezing force to the servicing apparatus for switching between measuring a coolant system parameter and providing coolant to the coolant system. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
20041029
20070828
20051006
59658.0
1
ALI, MOHAMMAD M
APPARATUS AND METHOD FOR SERVICING A COOLANT SYSTEM
UNDISCOUNTED
0
ACCEPTED
2,004
10,975,960
ACCEPTED
Corner flashing system
A corner flashing system is provided for sealing the corners of recessed window frames against moisture penetration. In a preferred embodiment, the system comprises first and second double-flap members, a half-cube member, and caulking. The first and second double-flap members, and the half-cube member are preferably made of asphalt or petroleum based material. In another preferred embodiment, the system comprises one double-flap member, a modified half-cube member, and caulking. In another preferred embodiment, the system comprises a single member that combines a double-flap member and a half-cube member, and caulking. In another preferred embodiment, the system comprises a combination member, a double-flap member, and caulking.
1. A corner flashing system for use in a recessed window frame that prevents moisture from penetrating corners of the frame, comprising: a first member including a horizontal and a vertical seating flange, each having edges and joined to the other at a 90° angle along a first edge, the flanges being adapted to seat respectively on a horizontal portion and a vertical portion of the window frame; a first flap, having edges, and extending at a 90° angle from a second edge of the vertical flange; and a second flap, having edges, and extending at a 90° angle from a second edge of the horizontal flange, such that the first and second flaps lie in the same plane and are adapted to engage a vertical wall substantially perpendicular to the portions; and a second member including three faces having edges and being oriented at 90° angles to one another, each face bordering the remaining faces along three common edges, the second member being adapted to fit within a recessed corner of the frame. 2. The system of claim 1, wherein the first member further comprises: a web having edges and an adhesive backing, secured along and partially overlapping the adjacent edges of the first and second flaps. 3. The system of claim 2, wherein the web and the flaps are substantially rectangular, and the web is secured to the first and second flaps such that two edges of the web are parallel with the adjacent edge of the first flap and two edges of the web are parallel with the adjacent edge of the second flap. 4. The system of claim 3, further comprising: a strip of adhesive-backed flashing material secured to and overlapping at least two faces of the second member. 5. The system of claim 4, further comprising a third member that is substantially identical to the first member and is adapted to fit in a corner of a recessed window frame. 6. The system of claim 1, wherein the first member comprises water-impermeable flashing material. 7. The system of claim 6, wherein the first member comprises an asphalt- or petroleum-based flashing material. 8. A method of forming a flashing member, the method comprising the steps of: cutting an appropriately sized, substantially rectangular flat sheet of flashing material, having a bottom edge, a top edge and two side edges, from a center of its bottom edge to a terminus a distance “d” from the bottom edge, thus forming two cut edges that each define an edge of a first flap and a second flap; creasing the sheet along a line that begins at the terminus and extends in the direction of the cut to the top edge of the sheet; creasing the sheet along a line that is perpendicular to the direction of the cut, intersects the terminus of the cut, and stretches from one side edge to the other side edge; and separating the cut edges while folding the sheet along the creases in a manner such that the first and second flaps remain in the plane of the former flat sheet, thereby adapting the flaps to engage a vertical wall, the cut edges define a ninety-degree angle in the same plane, and the remainder of the former flat sheet defines an “L”-shaped seating flange extending into the plane of the former flat sheet, wherein the seating flange is adapted to fit in a corner of a window frame. 9. The method of claim 9, further comprising the step of applying a piece of adhesive-backed flashing material to the sheet such that the piece partially overlaps the cut edges of the first and second flaps. 10. The method of claim 9, wherein “d” is approximately two-thirds of the way up from the bottom edge to the top edge. 11. The method of claim 9, wherein “d” is in the range from 3″ to 5″. 12. The method of claim 9, further comprising the step of applying a second piece of adhesive-backed flashing material, substantially identical to the first piece, to a side of the sheet, opposite the first piece such that an adhesive surface of the first and second pieces face and substantially overlap one another. 13. A method of forming a flashing member, the method comprising the steps of: cutting an appropriately sized, substantially rectangular flat sheet of flashing material, having a bottom edge, a top edge and two side edges, from a center of its bottom edge to a terminus approximately {fraction (1/2)} of the way up from the bottom edge, thus forming two cut edges that each define an edge of a first flap and a second flap; creasing the sheet along a line that begins at the terminus and extends in the direction of the cut to the top edge of the sheet; creasing the sheet along a line that is perpendicular to the direction of the cut, intersects the terminus of the cut, and stretches from one side edge to the other side edge; and pushing the cut edges past one another while folding the sheet along the creases in a manner such that the first and second flaps substantially overlap one another, and the entire sheet defines a half-cube having three faces and three edges, with each face having two edges in common with the remaining faces, and wherein the member is adapted to fit within a recessed corner of a window frame. 14. The method of claim 13, further comprising the step of applying a strip of adhesive-backed flashing material along an inside or outside edge of the flashing member in a manner such that the member maintains a substantially half-cube shape. 15. A method of flashing a recessed window frame, the frame including an inner frame and an outer frame, the method comprising the steps of: applying a first substantially L-shaped bead of caulk to a lower corner of the outer frame such that a first branch of the first bead lies at a junction between a horizontal sill and a vertical support of the outer frame, and a second branch of the first bead lies at a junction between the horizontal sill of the outer frame and a front face of the inner frame; applying a second substantially L-shaped bead of caulk to the outer frame such that a first branch of the second bead is located on the vertical support of the outer frame at a position above and spaced from the first branch of the first bead, and a second branch of the second bead is located on the front face of the inner frame at a position above and spaced from the second branch of the second bead; securing a first flashing member in the corner of the outer frame such that a vertical seating flange of the first member contacts the vertical support of the outer frame, and a horizontal seating flange of the first member contacts the horizontal sill of the outer frame; and securing a second flashing member in the corner of the outer frame, such that a first face of the second member partially overlaps the vertical seating flange of the first member, a second face of the second member partially overlaps the horizontal seating flange of the first member, and a third face of the second member contacts the front surface of the inner frame. 16. The method of claim 15, further comprising the step of: securing a third flashing member, substantially identical to the first flashing member, in a corner of the inner frame, such that a vertical seating flange of the third member contacts a vertical support of the inner frame, and a horizontal seating flange of the third member contacts a horizontal sill of the inner frame. 17. A method of flashing a recessed window frame, the frame including an inner frame and an outer frame, the method comprising the steps of: applying a first substantially L-shaped bead of caulk to a lower corner of the outer frame such that a first branch of the first bead lies at a junction between a horizontal sill and a vertical support of the outer frame, and a second branch of the first bead lies at a junction between the horizontal sill of the outer frame and a front face of the inner frame; applying a second substantially L-shaped bead of caulk to the outer frame such that a first branch of the second bead is located on the vertical support of the outer frame at a position above and spaced from the first branch of the first bead, and a second branch of the second bead is located on the front face of the inner frame at a position above and spaced from the second branch of the second bead; securing a first flashing member in the corner of the outer frame such that a vertical seating flange of the first member contacts the vertical support of the outer frame, and a horizontal seating flange of the first member contacts the horizontal sill of the outer frame; securing a second flashing member in the corner of the outer frame, such that a first face of the second member partially overlaps the vertical seating flange of the first member, a second face of the second member partially overlaps the horizontal seating flange of the first member, and a third face of the second member contacts the front surface of the inner frame; and cutting, folding and securing the third face of the second member to the inner frame such that a portion of the third face overlaps a portion of the horizontal sill and a portion of the third face overlaps a portion of the vertical support. 18. A method of flashing a recessed window frame, the frame including an inner frame and an outer frame, the method comprising the steps of: applying a first substantially L-shaped bead of caulk to a lower corner of the outer frame such that a first branch of the first bead lies at a junction between a horizontal sill and a vertical support of the outer frame, and a second branch of the first bead lies at a junction between the horizontal sill of the outer frame and a front face of the inner frame; applying a second substantially L-shaped bead of caulk to the outer frame such that a first branch of the second bead is located on the vertical support of the outer frame at a position above and spaced from the first branch of the first bead, and a second branch of the second bead is located on the front face of the inner frame at a position above and spaced from the second branch of the second bead; securing a first flashing member in the corner of the outer frame such that a vertical seating flange of the first member contacts the vertical support of the outer frame, a horizontal seating flange of the first member contacts the horizontal sill of the outer frame, a first face of the first member partially contacts the vertical support, a second face of the first member contacts the horizontal sill, and a third face of the first member contacts the front surface of the inner frame; and cutting, folding and securing the third face of the first member to the inner frame such that a portion of the third face overlaps a portion of the horizontal sill and a portion of the third face overlaps a portion of the vertical support. 19. A method of flashing a recessed window frame, the frame including an inner frame and an outer frame, the method comprising the steps of: applying a first substantially L-shaped bead of caulk to a lower corner of the outer frame such that a first branch of the first bead lies at a junction between a horizontal sill and a vertical support of the outer frame, and a second branch of the first bead lies at a junction between the horizontal sill of the outer frame and a front face of the inner frame; applying a second substantially L-shaped bead of caulk to the outer frame such that a first branch of the second bead is located on the vertical support of the outer frame at a position above and spaced from the first branch of the first bead, and a second branch of the second bead is located on the front face of the inner frame at a position above and spaced from the second branch of the second bead; securing a first flashing member in the corner of the outer frame such that a vertical seating flange of the first member contacts the vertical support of the outer frame, a horizontal seating flange of the first member contacts the horizontal sill of the outer frame, a first face of the first member partially contacts the vertical support, a second face of the first member contacts the horizontal sill, and a third face of the first member contacts the front surface of the inner frame; and securing a second flashing member, in a corner of the inner frame, such that a vertical seating flange of the second member contacts a vertical support of the inner frame, and a horizontal seating flange of the second member contacts a horizontal sill of the inner frame.
RELATED APPLICATIONS This application is a divisional of copending application Ser. No. 09/915,495, filed on Jul. 26, 2001, which claims priority to provisional application Ser. No. 60/243,856, filed on Oct. 27, 2000. The entire contents of each of these applications are hereby expressly incorporated by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to systems for providing a water-tight seal at the corners of structures. More specifically, a preferred embodiment provides a device and method for flashing and sealing the corners of recessed window frames and recessed window wall conditions. 2. Description of the Related Art In the construction of new homes, it is important to provide a water-tight seal at the seams of any openings in exterior walls, specifically windows and doors. A number of different devices and methods of providing such a seal are in current use. All of these methods have at least one major drawback. Some are expensive, some are time consuming, some must be performed just right in order to be effective, some are not durable, and some create sharp edges that cut subsequent layers of building materials. One specific type of condition that is installed in many homes today is the recessed window. Recessed windows include an outer wall opening that is flush with the exterior of the house, and an inner, recessed framed opening, that lies in a plane behind that of the exterior. Generally, the inner framed opening has a height and width less than that of the outer framed opening. When the window is finally installed, it lies within the inner framed opening. Recessed windows are particularly difficult to flash and seal adequately, especially at the corners. Rain, especially wind-driven rain, tends to penetrate the corners of these windows rather easily. When this water infiltrates the space behind the flashing, it becomes trapped there and causes rotting and deterioration of the underlying wood, as well as fungus, mold and mildew growth within the wall systems. The inadequacy of current flashing systems is due to two problems. First, there is no known flashing system that is very reliable, even if installed correctly. Second, most flashing is performed by unskilled low-wage laborers. Most of these workers pay little attention to quality, and instead try to get the job done as quickly as possible. Further, many lack the language skills necessary to understand the detailed instructions that must be given by a supervisor in order to ensure a proper flashing. Because it is not cost effective to have a supervisor inspect every corner of every recessed window, many windows are installed with poor flashing. As a result, many flashing systems that might be effective if installed properly every time do not work well in practice. Therefore, there is a need for a corner flashing system that is not only effective when correctly installed, but is also nearly impossible to install incorrectly. Further, the system should be well adapted to installation in recessed window frames. SUMMARY OF THE INVENTION The corner flashing system according to the following preferred embodiments has several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of the Drawings,” one will understand how the features of this flashing system provide advantages, which include reliability, low cost, and foolproof installation. One preferred embodiment provides two uniquely shaped members that have outstanding water sealing capabilities. The members comprise sheets of flashing material, preferably of a petroleum or asphalt base, that are specially cut and formed to be adapted to fit into window and door frame corners. One preferred embodiment combines these members to provide a three-member corner flashing system for installation in recessed window frames. The first member, the double-flap member, is formed from a substantially rectangular flat sheet of water-impermeable material, preferably one having an asphalt or petroleum base. The dimensions of the sheet are appropriate for the size of the window frame that is to be sealed, but preferred embodiments include sheets measuring approximately 6″×9″, 8″×9″, 16½″×9″, 22½″×9″, 28½″×9″ and 34½″×9″. Testing has revealed that a 9″ width for the flat sheet is adequate to provide a leak-proof seal for the flashed corner. However, smaller and larger widths are also adequate, and the 9″ preferred width is in no way intended to limit the scope of coverage for the flashing system. For ease of reference, however, a sheet having a 9″ width will be used to describe the following methods of forming and installing the flashing system. With the flat sheet oriented such that one 9″ edge defines the bottom edge, the sheet is cut, starting from the center of the bottom edge, approximately 4½″ up from the bottom. The sheet is then creased along two lines. The first line intersects the terminus of the cut and runs in a direction perpendicular to the cut. The second line also intersects the cut, but extends upward in the same direction as the cut. When the sheet is folded along these two creases, so that each crease defines a ninety-degree angle, the formerly flat sheet defines two rectangular flaps in the plane of the flat sheet, joined at one corner, each having attached to one edge a sealing flange that extends perpendicularly into the plane of the flat sheet, the two flanges forming an “L”. To secure the double-flap member permanently in this shape, a piece of water-impermeable material having an adhesive backing is secured along the adjacent edges of the rectangular flaps that lie in the plane of the former flat sheet. The piece of adhesive-backed material may be of a substantially rectangular shape, or of any other shape, such as triangular, that is adapted to overlap and secure the adjacent edges of the rectangular flaps. As an optional final step, a second piece of adhesive backed water-impermeable material may be secured to the opposite side of the first piece of adhesive backed water-impermeable material, such that the adhesive surfaces face one another. The second member, the half-cube member, is formed from the same or a similar water-impermeable material as the double-flap member. Again, the process begins with a substantially rectangular flat sheet of appropriate dimension. Preferred dimensions for this sheet are 8″×9″. With the sheet oriented such that one 9″ edge defines the bottom edge, the sheet is cut along its bottom edge, one-half of the way up. Again, two creases are formed intersecting the terminus of the cut, one continuing in the direction of the cut and one running perpendicularly to it. For this member, however, the creases are folded in the opposite direction as the double-flap member, so that the resultant shape is similar to a half-cube, with all three sides sharing three common edges. To secure this member permanently in this shape, a strip of adhesive backed water-impermeable material is applied along at least one edge of the member. In one preferred embodiment, two of the double-flap members are combined with one of the half-cube members to create a three-member flashing system that is specially adapted to seal the corners of recessed window frames. To install the system, the first double-flap member is placed in the corner of the outer frame so that the vertex of the two sealing flanges sits in the corner and the remainder of the member protrudes from the front of the frame. The back surfaces of the two rectangular flaps should each lie flush with the front surface of the outer frame. The installer then secures the double-flap member to the frame by any appropriate method. One preferred method is a hammer stapler. Because the preferred flashing material is asphalt or petroleum based, it is self-sealing. Thus, the staples do not compromise the sealing ability of the flashing material. When the double-flap member has been secured, the second member, which is a half-cube member, is placed on top of it so that the corner of the half-cube rests in the corner of the frame and each surface of the half-cube is flush with either the front surface of the recessed frame, the inside vertical surface of the outer frame, or the inside horizontal surface of the outer frame. The two surfaces that face the inside surfaces of the outer frame should partially overlap the sealing flanges of the first member. When properly positioned, the second member is secured into place, preferably with staples. Finally, the third member, which is substantially identical to the first double-flap member, is placed in the corner of the recessed frame in exactly the same manner as the first member was placed in the corner of the outer frame. The portion of this member that protrudes from the front of the frame should overlap and partially cover the surface of the second member that faces the front of the recessed frame. When properly positioned, this member is secured into place, preferably with staples. To complete the flashing of the recessed window, the remaining corners are finished in the same manner just described, and flashing material is applied to the remaining surfaces of the frame in a manner well known within the art. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-1B are perspective views of a preferred embodiment of the double-flap member, from the front and back, respectively; FIG. 1C is a rear perspective view of another preferred embodiment of the double-flap member, illustrating the pre-applied rope caulking; FIG. 1D is a perspective view of a corner of a recessed window frame having a deep recess, illustrating a double-flap member that is adapted to fit such a deep recess; FIGS. 2A-2C are perspective views of a preferred embodiment of the double-flap member, illustrating the manner in which this member is cut and formed; FIGS. 3A-3B are perspective views of a preferred embodiment of the half-cube member, from the front and back, respectively; FIGS. 4A-4D are perspective views of a preferred embodiment of the half-cube member, illustrating the manner in which this member is cut and formed; FIGS. 5A-5D are perspective views of a preferred embodiment of the combination member, illustrating the manner in which this member is cut and formed; FIG. 6 is a perspective view of a corner of a recessed window frame, illustrating the step of applying caulk to the corner; FIG. 7 is a perspective view of a corner of a recessed window frame, illustrating the step of installing a first double-flap member in the corner; FIG. 8 is a perspective view of a corner of a recessed window frame, illustrating the step of securing the first double-flap member in the corner using a hammer stapler; FIG. 9 is a perspective view of a corner of a recessed window frame, illustrating the step of installing a half-cube member in the corner; FIG. 10 is a perspective view of a corner of a recessed window frame, illustrating the step of installing a second double-flap member in the corner FIG. 11 is a perspective view of a corner of a recessed window frame, illustrating the step of installing a double-flap member in the corner; FIG. 12 is a perspective view of a corner of a recessed window frame, illustrating the step of installing a half-cube member in the corner; FIG. 13 is a perspective view of a corner of a recessed window frame, illustrating the step of cutting and folding a portion of the half-cube member; and FIG. 14 is a perspective view of a corner of a recessed window frame that has been flashed according to a preferred embodiment of the present flashing system, using one double-flap member and one half-cube member. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1A-1B illustrate one preferred embodiment of a double-flap member 20. This member 20 is preferably constructed of an asphalt or petroleum based flashing material, although it will be understood by one skilled in the art that a variety of other materials having water-resistant properties may also be used. This member 20 comprises a vertical seating flange 22 and a horizontal seating flange 24, which are joined at a 90° angle. The vertical flange 22 preferably has substantially the same dimensions as the horizontal flange 24. The length L of the flanges, defined as the direction parallel to both planes defined by the flanges, is appropriate for the dimensions of the structure in which the flanges are installed. Preferred lengths are 1½″, 3⅛″, 12″, 18″, 24″ and 30″. FIG. 1D illustrates a double-flap member 20 having a long dimension L. Extending at a 90° angle from one edge of the vertical flange 22 is a substantially rectangular first flap 26. Extending at a 90° angle from one edge of the horizontal flange 24, is a substantially rectangular second flap 28. The two flaps 26, 28 extend from the same side of the flanges 22, 24, so that both flaps 26, 28 lie in the same plane. Joining the first flap 26 to the second flap 28 is a web 30. A preferred shape for the web 30 is rectangular, although it will be appreciated by one of skill in the art that other shapes, such as triangular, may be equally useful. The web 30 is preferably constructed from two substantially identical pieces of a flashing material that has an adhesive backing. Preferably, the web 30 is made of a material having an asphalt or petroleum base. The two pieces making up the web 30 face one another on their adhesive sides. The web 30 is secured to and partially overlaps the adjacent edges of the flaps 26, 28, such that two edges of the web 30 are parallel to the adjacent edges of the flaps 26, 28. As illustrated in FIG. 1C, one alternative embodiment of the double-flap member 20 includes a pre-installed length of rope caulking 32 having a protective backing. Pre-installation of this caulking 32 eliminates one step in the process of installing the flashing system, as explained in detail below. The double-flap member 20 is preferably formed as illustrated in FIGS. 2A-2C. The manufacturer begins with a substantially rectangular flat sheet 40 of flashing material, preferably one having an asphalt or petroleum base. The dimensions of the sheet 40 are appropriate for the size of the window frame that is to be sealed. In one preferred embodiment, the sheet 40 is approximately 8″×9″. Other preferred dimensions include 6″×9″, 16{fraction (2)}″×9″, 22½″×9″, 28½″×9″ and 34½″×9″. With the flat sheet 40 oriented such that one 9″ edge defines the bottom edge 42 of the sheet 40, the manufacturer makes a straight cut across the sheet, starting from the center of its bottom edge 42, to a terminus 44 that is preferably approximately 4½″ up from the bottom 42. Shorter or longer cuts are also acceptable, but a sufficient length of material is preferably left uncut to form the flanges 22, 24. The sheet 40 is then creased as shown in FIG. 2A. A horizontal crease 46 intersects the terminus 44 of the cut and runs in a direction perpendicular to the cut. A vertical crease 48 also intersects the terminus 44, but extends upward in the same direction as the cut. When the sheet 40 is folded along these two creases 46, 48, so that each crease 46, 48 defines the vertex of a ninety-degree angle, the formerly flat sheet 40 defines a first flap 26 and a second flap 28 that each lie in the plane of the flat sheet 40 and do not overlap one another. The first and second flaps 26, 28 are joined at the terminus 44 of the cut. Projecting into the plane of the former flat sheet 40 from one edge of each flap 26, 28 are two seating flanges, one horizontal 24 and one vertical 22. The vertical 22 and horizontal 24 seating flanges are attached to one another along an edge that extends perpendicularly into the plane of the flat sheet and terminates at one end in the terminus 44 of the cut where the first flap 26 and second flap 28 meet. To secure the double-flap member 20 permanently in this shape, a substantially rectangular piece of flashing material, a web 30, having an adhesive backing is secured along the adjacent edges of the flaps 26, 28, which were joined prior to being cut. Preferably, the adhesive surface of the web 30 is covered so as to prevent the double-flap member 20 from sticking to neighboring pieces, as in a bulk package of double-flap members 20. Preferably, this covering comprises a second piece of adhesive backed flashing material (not shown), substantially the same shape as the web 30, and secured to the adhesive side of the web 30 such that the adhesive surfaces of each piece face one another. FIGS. 3A and 3B illustrate a preferred embodiment of a half-cube member 50. This member 50 is preferably constructed of an asphalt or petroleum based flashing material, although it will be understood by one skilled in the art that a variety of other materials having water-resistant properties may also be used. This member 50 comprises a first face 52, a second face 54 and a third face 56, with all three faces 52, 54, 56 lying at right angles to one another. All three faces 52, 54, 56 share three common edges 58, 60, 62, such that the second face 54 and third face 56 share edge 58, second face 54 and first face 52 share edge 62, and third face 56 and first face 52 share edge 60. The half-cube member 50 retains its shape through the addition of a strip of adhesive backed flashing material 64 along the outside of edge 60, or along the inside of edge 62, or along both edges 60, 62. Although the illustrated embodiment of the half-cube member 50 includes substantially rectangular faces, one of skill in the art will appreciate that the faces may be any of a variety of different shapes without departing from the spirit of the invention. For example, by cutting diagonally across one or more of the faces 52, 54, 56, the half-cube member will comprise three substantially triangular faces. FIGS. 4A-4D illustrate a preferred method of constructing the half-cube member 50. The manufacturer begins with a substantially rectangular flat sheet 70 of flashing material. Preferably, the material is identical or substantially identical to the material used to construct the double-flap member 20. The sheet 70 is of appropriate dimension for the window frame that is to be flashed. Preferred dimensions are 8″×9″. With the sheet 70 oriented such that one 9″ edge defines a bottom edge 72, the manufacturer makes a straight cut across the sheet starting from the center of the bottom edge 72 and ending at a terminus 74 that is approximately one-half of the way up from the bottom 72. The cut thus forms two flaps 76, 78. The manufacturer then forms a horizontal crease 80 and a vertical crease 82, each intersecting the terminus 74 of the cut. The horizontal crease 80 runs perpendicularly to the cut, while the vertical crease 82 runs in the same direction as the cut. The manufacturer then folds the creases for the half-cube member 50 in the opposite direction as for the double-flap member 20 so that the two flaps 76, 78 substantially overlap one another and the member 50 resembles a half-cube with three faces 52, 54, 56 sharing three common edges 58, 60, 62. To secure this member 50 permanently in the shape of a half-cube, a strip of adhesive backed flashing material 64 is applied along the inside of edge 60 of the half-cube member 50, where the cut edge of flap 78 meets face 54, as illustrated in FIG. 4D. If desired, both the double flap member 20 and the half-cube member 50 may be constructed from a single sheet of flashing material. A complete combination member 102 is illustrated in FIG. 5D. A preferred method of forming the combination member 102 is illustrated in FIGS. 5A-5D. The manufacturer begins with a single sheet of flashing material 110. Preferably, the sheet is rectangular, having a bottom edge 112 and a top edge 114 that are each approximately 9″ in length, and side edges of length 9″+L. L preferably corresponds to the depth of the window to be flashed, as explained below. The manufacturer makes two straight cuts across the sheet, the first cut 116 begins at the center of the bottom edge 114 and continues vertically for approximately 4 ½. The second cut 118 begins at the center of the top edge 112 and continues vertically for approximately 4½″. The first cut 116 thus forms a first flap 120 and a second flap 122, and the second cut forms a third flap 124 and a fourth flap 126. The manufacturer also forms three creases in the sheet. The first two creases 128, 130 extend horizontally across the sheet, each intersecting the terminus of one of the cuts 116, 118. The third crease 132 extends vertically across the sheet between the two termini of the cuts 116, 118. To form the double flap component of the combination member 102, the first flap 120 and second flap 122 are separated while the first horizontal crease 130 is folded to a 90° angle and the vertical crease 132 is similarly folded to a 90° angle, as illustrated in FIG. 5B. To form the half-cube component of the combination member 102, the third flap 124 and fourth flap 126 are brought together while the second horizontal crease 128 is folded to a 90° angle, as illustrated in FIG. 5C. To secure the combination member 102 in this configuration, a web 134 is added to the double flap component in the same manner as above, and a strip of adhesive-backed flashing material 136 is added to one edge of the half-cube component in the same manner as above. FIGS. 6-10 illustrate one preferred method of combining and installing the members 20, 50 in a recessed window frame 82. The recessed window frame 82 has an outer frame 84 and an inner frame 86. The outer frame 84 has a vertical support 88, a horizontal sill 90, and a front surface 92. The inner frame 86 has a front surface 94, a vertical support 98 and a horizontal sill 100. As illustrated in FIG. 6, first an L-shaped bead of caulk 80 is applied along a seam between the horizontal sill 90 and the vertical support 88, and along a seam between the horizontal sill 90 and the front surface 94. An identical bead 81 is applied above the first bead 80 at the height of the upper sill 100. Second, a first double-flap member 20 is placed in the corner of the outer frame 84 such that the horizontal 24 and vertical 22 seating flanges contact the horizontal sill 90 and vertical support 88, respectively, of the corner of the outer frame 84. The first double-flap member 20 is placed such that the first flap 26, second flap 28 and web 30 are flush with the front surface 92 of the outer frame 84. The double-flap member 20 is secured in place, preferably with a hammer stapler 96, as illustrated in FIG. 8. Because the flashing material is preferably of an asphalt or petroleum base, it is self-sealing. Thus, the staples do not compromise the water sealing capability of the flashing material. In the third step, illustrated in FIG. 9, a half-cube member 50 is placed in the corner of the outer frame 84. The corner of the half-cube 50, where all three edges intersect, sits in the corner of the outer frame 84 so that one face of the half-cube is flush with the front surface 94 of the inner frame 86, one face is flush with the vertical support 88 of the outer frame 84, and one face is flush with the horizontal sill 90 of the outer frame 84. In this orientation, the faces of the cube that are flush with the horizontal sill 90 and vertical support 88 of the outer frame 84, partially overlap the horizontal 24 and vertical 22 seating flanges, respectively, of the double-flap member 20. The half-cube member 50 is secured in place in the same manner as the first double-flap member 20, preferably with a hammer stapler 96. In the fourth and final step, a second double-flap member 20 is placed in the corner of the inner frame 86, in the same manner and orientation as the first double-flap member 20 was placed in the corner of the outer frame 84. The first flap 26, second flap 28, and web 30 of the second double-flap member 20 partially overlap one face of the half-cube member 50. To complete the flashing of the recessed window, the remaining corners are finished in the same manner just described, and flashing material is applied to the remaining surfaces of the frame in a manner well known within the art. Another preferred method of installing the flashing system includes an alternate embodiment of the first and second double-flap members 20. This embodiment, illustrated in FIG. 1C, is substantially identical to the double-flap members 20 already described. This embodiment, however, includes a bead of caulk 32 that is pre-applied to the back of the member 20 along the edge that forms the border between the two seating flanges 22, 24, as shown in FIG. 1C. The pre-applied bead of caulk 32 preferably includes a protective backing to prevent the bead from collecting debris prior to installation. Because the double-flap members 20 already have a bead of caulk 32 applied to the region that mates with the corners of the window frames 84, 86, there is no need to apply a bead of caulk to the portions of the frames where the pre-applied bead sits. The first step in the installation process, then, is to remove the protective backing from the bead of caulk 32 on the first double-flap member 20 and place the first double flap member 20 into position as described above. The rest of the process proceeds as described above. In another preferred method of installation, shown in FIGS. 11-14, only one double flap member 20 is installed. The double flap member 20 may or may not include a pre-applied bead of caulk 32. Thus, in the first installation step, caulk is applied to the frame as needed in the locations described above, and if a pre-applied bead of caulk is used, the protective backing is removed. The double flap member 20 is seated in the corner of the outer frame 84 in the same manner as above, and as illustrated in FIG. 11. The half-cube member 50 is also seated in the corner of the outer frame 84 in the same manner as above. In this method, however, the first face 52, which comprises the two flaps 76, 78, is preferably flush with the front surface 94 of the inner frame 86. Rather than placing a second double-flap member 20 in the corner of the inner frame 86, the corner of the half-cube member 50 is cut and folded over the inner frame as illustrated in FIGS. 13 and 14. Because the first face 52 comprises two flaps 76, 78, one flap is cut and folded across the vertical support 98 of the inner frame, and the other flap is cut and folded across the horizontal sill 100 of the inner frame. Which flap is folded across which face makes no difference. To complete the installation, the folded portions of the flaps are preferably secured to the inner frame 86 with staples. In another preferred method (not shown) of installing the flashing system, one combination member 102 is installed in a recessed window frame. To begin, caulk is added to the window frame as needed in the same manner as in the previous methods. The combination member 102 is then seated in the corner of the frame such that the flaps 120, 122 are flush with a front surface of the outer frame, and one face 124 of the half-cube component is flush with the front surface of the inner frame. The combination member 102 is preferably secured in place with staples. To complete the installation, either the half-cube component is cut and folded over the inner frame, as described above, or a double flap member is installed in the corner of the inner frame, also as described above. SCOPE OF THE INVENTION The above presents a description of the best mode contemplated for the present corner flashing system, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains to make and use this corner flashing system. This corner flashing system is, however, susceptible to modifications and alternate constructions from that discussed above which are fully equivalent. Consequently, it is not the intention to limit this corner flashing system to the particular embodiments disclosed. On the contrary, the intention is to cover all modifications and alternate constructions coming within the spirit and scope of the corner flashing system as generally expressed by the following claims, which particularly point out and distinctly claim the subject matter of the corner flashing system.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to systems for providing a water-tight seal at the corners of structures. More specifically, a preferred embodiment provides a device and method for flashing and sealing the corners of recessed window frames and recessed window wall conditions. 2. Description of the Related Art In the construction of new homes, it is important to provide a water-tight seal at the seams of any openings in exterior walls, specifically windows and doors. A number of different devices and methods of providing such a seal are in current use. All of these methods have at least one major drawback. Some are expensive, some are time consuming, some must be performed just right in order to be effective, some are not durable, and some create sharp edges that cut subsequent layers of building materials. One specific type of condition that is installed in many homes today is the recessed window. Recessed windows include an outer wall opening that is flush with the exterior of the house, and an inner, recessed framed opening, that lies in a plane behind that of the exterior. Generally, the inner framed opening has a height and width less than that of the outer framed opening. When the window is finally installed, it lies within the inner framed opening. Recessed windows are particularly difficult to flash and seal adequately, especially at the corners. Rain, especially wind-driven rain, tends to penetrate the corners of these windows rather easily. When this water infiltrates the space behind the flashing, it becomes trapped there and causes rotting and deterioration of the underlying wood, as well as fungus, mold and mildew growth within the wall systems. The inadequacy of current flashing systems is due to two problems. First, there is no known flashing system that is very reliable, even if installed correctly. Second, most flashing is performed by unskilled low-wage laborers. Most of these workers pay little attention to quality, and instead try to get the job done as quickly as possible. Further, many lack the language skills necessary to understand the detailed instructions that must be given by a supervisor in order to ensure a proper flashing. Because it is not cost effective to have a supervisor inspect every corner of every recessed window, many windows are installed with poor flashing. As a result, many flashing systems that might be effective if installed properly every time do not work well in practice. Therefore, there is a need for a corner flashing system that is not only effective when correctly installed, but is also nearly impossible to install incorrectly. Further, the system should be well adapted to installation in recessed window frames.
<SOH> SUMMARY OF THE INVENTION <EOH>The corner flashing system according to the following preferred embodiments has several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of the Drawings,” one will understand how the features of this flashing system provide advantages, which include reliability, low cost, and foolproof installation. One preferred embodiment provides two uniquely shaped members that have outstanding water sealing capabilities. The members comprise sheets of flashing material, preferably of a petroleum or asphalt base, that are specially cut and formed to be adapted to fit into window and door frame corners. One preferred embodiment combines these members to provide a three-member corner flashing system for installation in recessed window frames. The first member, the double-flap member, is formed from a substantially rectangular flat sheet of water-impermeable material, preferably one having an asphalt or petroleum base. The dimensions of the sheet are appropriate for the size of the window frame that is to be sealed, but preferred embodiments include sheets measuring approximately 6″×9″, 8″×9″, 16½″×9″, 22½″×9″, 28½″×9″ and 34½″×9″. Testing has revealed that a 9″ width for the flat sheet is adequate to provide a leak-proof seal for the flashed corner. However, smaller and larger widths are also adequate, and the 9″ preferred width is in no way intended to limit the scope of coverage for the flashing system. For ease of reference, however, a sheet having a 9″ width will be used to describe the following methods of forming and installing the flashing system. With the flat sheet oriented such that one 9″ edge defines the bottom edge, the sheet is cut, starting from the center of the bottom edge, approximately 4½″ up from the bottom. The sheet is then creased along two lines. The first line intersects the terminus of the cut and runs in a direction perpendicular to the cut. The second line also intersects the cut, but extends upward in the same direction as the cut. When the sheet is folded along these two creases, so that each crease defines a ninety-degree angle, the formerly flat sheet defines two rectangular flaps in the plane of the flat sheet, joined at one corner, each having attached to one edge a sealing flange that extends perpendicularly into the plane of the flat sheet, the two flanges forming an “L”. To secure the double-flap member permanently in this shape, a piece of water-impermeable material having an adhesive backing is secured along the adjacent edges of the rectangular flaps that lie in the plane of the former flat sheet. The piece of adhesive-backed material may be of a substantially rectangular shape, or of any other shape, such as triangular, that is adapted to overlap and secure the adjacent edges of the rectangular flaps. As an optional final step, a second piece of adhesive backed water-impermeable material may be secured to the opposite side of the first piece of adhesive backed water-impermeable material, such that the adhesive surfaces face one another. The second member, the half-cube member, is formed from the same or a similar water-impermeable material as the double-flap member. Again, the process begins with a substantially rectangular flat sheet of appropriate dimension. Preferred dimensions for this sheet are 8″×9″. With the sheet oriented such that one 9″ edge defines the bottom edge, the sheet is cut along its bottom edge, one-half of the way up. Again, two creases are formed intersecting the terminus of the cut, one continuing in the direction of the cut and one running perpendicularly to it. For this member, however, the creases are folded in the opposite direction as the double-flap member, so that the resultant shape is similar to a half-cube, with all three sides sharing three common edges. To secure this member permanently in this shape, a strip of adhesive backed water-impermeable material is applied along at least one edge of the member. In one preferred embodiment, two of the double-flap members are combined with one of the half-cube members to create a three-member flashing system that is specially adapted to seal the corners of recessed window frames. To install the system, the first double-flap member is placed in the corner of the outer frame so that the vertex of the two sealing flanges sits in the corner and the remainder of the member protrudes from the front of the frame. The back surfaces of the two rectangular flaps should each lie flush with the front surface of the outer frame. The installer then secures the double-flap member to the frame by any appropriate method. One preferred method is a hammer stapler. Because the preferred flashing material is asphalt or petroleum based, it is self-sealing. Thus, the staples do not compromise the sealing ability of the flashing material. When the double-flap member has been secured, the second member, which is a half-cube member, is placed on top of it so that the corner of the half-cube rests in the corner of the frame and each surface of the half-cube is flush with either the front surface of the recessed frame, the inside vertical surface of the outer frame, or the inside horizontal surface of the outer frame. The two surfaces that face the inside surfaces of the outer frame should partially overlap the sealing flanges of the first member. When properly positioned, the second member is secured into place, preferably with staples. Finally, the third member, which is substantially identical to the first double-flap member, is placed in the corner of the recessed frame in exactly the same manner as the first member was placed in the corner of the outer frame. The portion of this member that protrudes from the front of the frame should overlap and partially cover the surface of the second member that faces the front of the recessed frame. When properly positioned, this member is secured into place, preferably with staples. To complete the flashing of the recessed window, the remaining corners are finished in the same manner just described, and flashing material is applied to the remaining surfaces of the frame in a manner well known within the art.
20041028
20100615
20050317
74049.0
1
FONSECA, JESSIE T
CORNER FLASHING SYSTEM
SMALL
1
CONT-ACCEPTED
2,004
10,976,057
ACCEPTED
Adaptive electronic messaging
In accordance with embodiments of the invention, adaptive electronic message services are provided for generating and supplementing adaptive electronic messages with digital content items.
1. In a computing system, a method of operation comprising: identifying a message adaptation specification for adapting a base electronic message; identifying, based at least in part upon the message adaptation specification, one or more digital content elements to supplement the base electronic message, each of the one or more digital content elements selected from a corresponding plurality of differently versioned digital content element candidates; and adapting the base electronic message to include the identified one or more digital content elements to form an adapted electronic message. 2. The method of claim 1, further comprising: transmitting the adapted electronic message to a recipient. 3. The method of claim 1, further comprising: transmitting the base electronic message to a recipient prior to said adapting. 4. The method of claim 3, wherein adapting the base electronic message comprises executing one or more scripts, on a client device associated with the recipient, to retrieve the one or more digital content elements designed to supplement the base electronic message from a remote device. 5. The method of claim 3, wherein identifying a message adaptation specification comprises determining one or more operational capabilities of a client device associated with the recipient. 6. The method of claim 5, wherein the one or more operational capabilities comprise multimedia presentation capabilities. 7. The method of claim 5, wherein the message adaptation specification comprises: a layer definition indicating the plurality of differently versioned digital content element candidates forming one or more message layers; and decision logic designed to facilitate selection of at least one of the one or more message layers for adaptation of the base message based upon the one or more determined operational capabilities. 8. The method of claim 7, wherein the layer definition comprises a markup language based file and the decision logic comprises a binary tree structure. 9. The method of claim 1, further comprising: transmitting the base electronic message to a plurality of recipients, wherein the one or more digital content elements are determined in a recipient-specific manner. 10. The method of claim 1, further comprising: determining based upon the message adaptation specification, whether a recipient has opted to receive a class of electronic messages; and adapting the base electronic message to include a digital content element in the form of a solicitation for the recipient to receive electronic messages belonging to the class of electronic messages, if it is determined that the recipient has not opted to receive electronic messages belonging to the class of electronic messages. 11. The method of claim 10, further comprising: transmitting the adapted electronic message including the solicitation to the recipient. 12. The method of claim 1, further comprising: determining, based upon the message adaptation specification, whether a receiving device associated with a recipient is configured as a wireless device; transmitting the adapted electronic message to the recipient if the receiving device associated with the recipient is configured as a wireless device; and transmitting the base electronic message to the recipient if the receiving device associated with the recipient is configured as a non-wireless device. 13. The method of claim 12, wherein when the message adaptation specification indicates that the receiving device is configured as a wireless device, the adapted electronic message includes a first set of reduced functionality digital content elements identified from the differently versioned digital content element candidates. 14. In a computing environment, a method of operation comprising: identifying a message adaptation specification to facilitate adaptation of a base electronic message, the message adaptation specification including a layer definition specifying a plurality of differently versioned digital content element candidates forming one or more message layers, and decision logic designed to facilitate selection of at least one of the one or more message layers for adaptation of the base message; identifying one or more supplemental digital content elements from the plurality of digital content element candidates based at least in part upon the message adaptation specification; generating an adapted electronic message including the base electronic message and the one or more supplemental digital content elements; and delivering the adapted electronic message to a recipient. 15. The method of claim 14, wherein at least one of the base electronic message and the adapted electronic message comprise an SMTP based electronic mail message. 16. The method of claim 14, further comprising: determining one or more multi-media rendering capabilities of a receiving device associated with the recipient; and modifying the adapted electronic message at the receiving device, based at least in part upon the determined one or more multi-media rendering capabilities and the message adaptation specification. 17. The method of claim 14, further comprising: determining whether the adapted message is to be viewed on a wireless device; identifying the one or more supplemental digital content elements from the plurality of digital content element candidates such that the one or more supplemental digital content elements comprise lower quality versions of the digital content elements if the adapted message is to be viewed on a wireless device; and identifying the one or more supplemental digital content elements from the plurality of digital content element candidates such that the one or more supplemental digital content elements comprise higher quality versions of the digital content elements if the adapted message is to be viewed on a non-wireless device. 18. The method of claim 17, wherein said lower quality versions of the digital content elements comprise digital content elements that are absent of motion video. 19. The method of claim 14, wherein the plurality of differently versioned digital content element candidates are adapted to be rendered by receiving devices having different multi-media rendering capabilities. 20. The method of claim 19, wherein the plurality of differently versioned digital content element candidates are adapted to be rendered on receiving devices having different network bandwidth capabilities. 21. An apparatus comprising a storage medium having stored therein programming instructions, which when executed are operative to enable the apparatus to: identify a message adaptation specification for adapting a base electronic message; identify, based at least in part upon the message adaptation specification, one or more digital content elements to supplement the base electronic message, each of the one or more digital content elements selected from a corresponding plurality of differently versioned digital content element candidates; and adapt the base electronic message to include the identified one or more digital content elements to form an adapted electronic message. 22. The apparatus of claim 21, wherein the programming instructions are further operative to enable the apparatus to transmit the adapted electronic message to a recipient. 23. The apparatus of claim 22, wherein the programming instructions are further operative to enable the apparatus to determine one or more operational capabilities of a client device associated with the recipient; and identify the message adaptation specification based, at least in part on the one or more operational capabilities of the client device. 24. The apparatus of claim 21, wherein the message adaptation specification comprises: a layer definition indicating the plurality of differently versioned digital content element candidates forming one or more message layers; and decision logic designed to facilitate selection of at least one of the one or more message layers for adaptation of the base message based upon the one or more determined operational capabilities. 25. The apparatus of claim 21, wherein the programming instructions are further operative to enable the apparatus to transmit the base electronic message to a plurality of recipients; and determine the one or more digital content elements in a recipient-specific manner. 26. The apparatus of claim 21, wherein the programming instructions are further operative to enable the apparatus to: determine, based upon the message adaptation specification, whether a receiving device associated with a recipient is configured as a wireless device; transmit the adapted electronic message to the recipient if the receiving device associated with the recipient is configured as a wireless device; and transmit the base electronic message to the recipient if the receiving device associated with the recipient is configured as a non-wireless device. 27. An apparatus comprising a storage medium having stored therein programming instructions, which when executed are operative to enable the apparatus to: identify a message adaptation specification to facilitate adaptation of a base electronic message, the message adaptation specification including a layer definition specifying a plurality of differently versioned digital content element candidates forming one or more message layers, and decision logic designed to facilitate selection of at least one of the one or more message layers for adaptation of the base message; identify one or more supplemental digital content elements from the plurality of digital content element candidates based at least in part upon the message adaptation specification; generate an adapted electronic message including the base electronic message and the one or more supplemental digital content elements; and deliver the adapted electronic message to a recipient. 28. The apparatus of claim 27, wherein the programming instructions are further operative to enable the apparatus to: determine whether the adapted message is to be viewed on a wireless device; identify the one or more supplemental digital content elements from the plurality of digital content element candidates such that the one or more supplemental digital content elements comprise lower quality versions of the digital content elements if the adapted message is to be viewed on a wireless device; and identify the one or more supplemental digital content elements from the plurality of digital content element candidates such that the one or more supplemental digital content elements comprise higher quality versions of the digital content elements if the adapted message is to be viewed on a non-wireless device. 29. The apparatus of claim 28, wherein said lower quality versions of the digital content elements comprise digital content elements that are absent of motion video. 30. The apparatus of claim 27, wherein the plurality of differently versioned digital content element candidates are adapted to be rendered by receiving devices having different multi-media rendering capabilities.
RELATED APPLICATIONS This non-provisional patent application is a continuation-in-part application of non-provisional U.S. patent application Ser. No. 10/611,698 filed on Jun. 30, 2003, which in turn claims priority to U.S. provisional patent application No. 60/393,176 filed on Jul. 1, 2002, both of which are hereby fully incorporated by reference. If any portion of this application should be determined to contradict any portion of application Nos. 10/611,698 or 60/393,176, for the purpose of this application, the description provided herein shall control. FIELD OF INVENTION This present invention is directed to the field of electronic messaging, and in particular to adaptive electronic messaging. BACKGROUND Electronic mail (“email”) is a form of electronic messaging that has proven a useful medium for several different types of communications. In particular, email has been used to deliver marketing messages to single recipients and groups of recipients. Initially, such email-conveyed messages were expressed in plain-text format. One advantage of the plain-text format is that recipients can read such messages no matter what email client program (“email client”) they use. A significant disadvantage of the plain-text format is that its display is undistinguished and unattractive relative to other types of visual displays possible on many computer systems, and is in that sense poorly suited to direct promotional marketing and other high impact business communications. Furthermore, recipient activity with the message cannot be tracked, representing another significant business limitation. As an improvement to text based messaging, email clients capable of sending and receiving more complex electronic messages have been developed. While this may facilitate somewhat richer and more colorful displays than plain-text format, such messages are typically static, not trackable, and still relatively poorly suited to achieve high impact with recipients. Although in certain occasions it might be desirable to send complex messages including multimedia components to recipients, not all recipients may be capable and/or authorized to receive or view such messages. BRIEF DESCRIPTION OF THE DRAWINGS The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which the like references indicate similar elements and in which: FIG. 1 illustrates an overview of message adaptation services in accordance with one embodiment of the invention; FIG. 2 illustrates one embodiment of a message adaptation specification; FIG. 3 illustrates a network environment within which the message adaptation services in accordance with one embodiment of the invention may be practiced; FIG. 4 illustrates an example computer system suitable to provide the message adaptation services in accordance with one embodiment of the invention; FIG. 5 is an operational flow diagram illustrating post-transmission adaptation of an electronic message in accordance with one embodiment of the invention; and FIG. 6 is an operational flow diagram illustrating pre-transmission adaptation of an electronic message in accordance with one embodiment of the invention. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION In the description to follow, various aspects of the present invention will be described, and specific configurations will be set forth. However, embodiments of the present invention may be practiced with only some or all aspects, and/or without some of these specific details. In other instances, well-known features may be omitted or simplified in order not to obscure the description. The description will be presented in terms of operations performed by a processor based device, using terms such as receiving, determining, identifying, displaying and the like, consistent with the manner commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. As is well understood by those skilled in the art, the quantities take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, and otherwise manipulated through mechanical, electrical and/or optical components of the processor based device. Various operations will be described as multiple discrete steps in turn, in a manner that is most helpful in understanding embodiment of the present invention, however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation. The description repeatedly uses the phrase “in one embodiment”, which does not necessarily refer to the same embodiment, although it may. Furthermore, the terms “comprising”, “including”, “having”, and the like, as used in the present application, are synonymous. In accordance with embodiments of the invention, adaptive electronic message services are provided for generating and supplementing adaptive electronic messages with digital content items. The adaptive electronic messages may be supplemented, either before or after delivery to a recipient, with one or more digital content elements that may be selected from a group of digital content element candidates. In one embodiment, digital content elements may be identified to supplement an electronic message based upon one or more message adaptation specifications that may be associated with one or more recipients or devices. In one embodiment, digital content elements may be identified based upon one or more preferences, capabilities, and/or configurations associated with a recipient or a corresponding receiving device as may be indicated by a message adaptation specification. FIG. 1 illustrates an overview of message adaptation services in accordance with embodiments of the invention. In one embodiment, message adaptation component 102 may operate to generate an adapted electronic message 110 based at least in part upon a message adaptation specification 106. In one embodiment, one or more digital content elements 112a-112n may be selected from a plurality of differently versioned digital content element candidates 108 to supplement a base electronic message 104. The base electronic message 104 may in turn, be adapted to include either the selected digital content elements 112a-112n or references thereto. In accordance with one embodiment, one or more client or server devices associated with a sender, a recipient, or a third party may be equipped with message adaptation component 102 to provide the message adaptation services described herein. As used herein, the term ‘component’ is intended to refer to programming logic that may be employed to obtain a desired outcome. The term component may be synonymous with ‘module’ and may refer to programming logic that may be embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, C++. A software component may be compiled and linked into an executable program, or installed in a dynamic link library, or may be written in an interpretive language such as BASIC. It will be appreciated that software components may be callable from other components/modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software instructions may be embedded in firmware, such as an EPROM or may be stored on a readable medium such as a magnetic or optical storage device. It will be further appreciated that hardware components may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. In one embodiment, the components described herein are implemented as software modules, but nonetheless may be represented in hardware or firmware. Furthermore, although only a given number of discrete software/hardware components may be illustrated and/or described, such components may nonetheless be represented by additional components or fewer components without departing from the spirit and scope of embodiments of the invention. The term ‘digital content elements’, is intended to broadly refer to multimedia or rich media elements or objects, such as, but not limited to audio and video (including multi-frame video and still images), animations, clips, files and data streams. Digital content elements may also refer to links or other user interface controls designed to enable recipients to obtain further information about a message, to forward the message to another recipient, to request to not receive similar messages in the future, and so forth. In accordance with one embodiment of the invention, an electronic message, such as base electronic message 104, may be supplemented with one or more such digital content elements. The term ‘supplement’ is broadly used herein to describe manners in which an electronic message may be adapted. For example, a base electronic message comprising only text elements may be supplemented with one or more digital content elements such as a video segment to enhance the overall presentation of the electronic message to a recipient. Similarly, a base electronic message comprising text and digital image elements may be supplemented with one or more video elements such that image (or other) elements are replaced by the video element(s). Accordingly, adapted electronic messages may contain a greater or a fewer number of digital content elements after a base electronic message has been supplemented. Similarly, the overall size or length of an adapted electronic message may be larger or smaller than that of the base electronic message. Thus, supplementing can be an additive function, a subtractive function, or a substitutive function. During formation of an adaptive electronic message, digital content elements may be linked to an electronic message or may be embedded within an electronic message through techniques such as object linking and embedding (OLE), or the use of uniform resource identifiers (URIs) or uniform resource locators (URLs) for example. Other methods of linking and/or embedding digital content elements to an electronic message may similarly be employed without departing from the spirit and scope of the invention. Content element candidates 108 may be stored locally in the same device/network domain as message adaptation component 102, or in a device/network domain that may be remote to message adaptation component 102. Additionally, content element candidates 108 may be aggregated within a single data store or distributed across multiple data stores. In accordance with one embodiment of the invention, message adaptation specification 106 may, in cooperation with message adaptation component 102, facilitate the flexible and extensible adaptation of electronic messages such as, but not limited to email. In one embodiment, message adaptation specification 106 may be device-specific or user-specific. For example, message adaptation specification 106 may indicate one or more operational capabilities of one or more devices, such as a message-receiving device (“receiving device”) associated with an intended recipient. Such operational capabilities may include multimedia presentation capabilities of a device, content rendering capabilities of a device, data throughput/bandwidth capabilities of a device, and may identify whether a device is configured as a wireless device or traditional, non-wireless or wireline device, and so forth. Additionally, message adaptation specification 106 may further represent user-specific (or company/entity-specific) preferences such as a message filtering level indicating e.g. a preferred message delivery policy with respect to one or more recipients. In one embodiment, message adaptation specification 106 may represent a collection of user-specific or device-specific message adaptation specifications that may be selectively employed based upon identification of an intended recipient of an adaptive electronic message. In one embodiment, message adaptation specification 106 may include a message layer definition to define alternative presentations or layers for a given adaptive electronic message, where each presentation may represent a different combination of digital content element candidates. In one embodiment, an adaptive electronic message may include one or more content cells that may be adapted to include a version of one or more digital content elements selected from the digital content element candidates 108 as may be appropriate for a given message presentation. As such, it is possible to generate an electronic message that may be adapted to take advantage of particular device-specific or user-specific message adaptation configurations or preferences. For example, in accordance with one embodiment, an electronic message may be adapted to take advantage of capabilities that may be specific to a receiving device. Similarly, adaptive electronic messages may be adapted or otherwise processed based upon recipient-specified or even sender-specified message delivery preferences. In one embodiment, message adaptation specification 106 may include decision logic to directly or indirectly determine which digital content items (e.g. as specified in the message layer definition) may be exposed to a recipient. In one embodiment, the decision logic may operate to select at least one of the message layers specified in the message layer definition for use in adapting the base message. In one embodiment, the message layer definition may be embodied in a markup language such as HTML, whereas the decision logic may be embodied as a binary tree structure. However, other data representation and/or programming techniques may be employed. In one embodiment, the message layer definition and decision logic may be represented within a single data structure and/or file, whereas in another embodiment, the message layer definition and decision logic may be represented by different data structures and/or data files. FIG. 2 illustrates one embodiment of message adaptation specification 106 including message layer definition 120 and decision logic 130. As shown, layer definition 120 includes specifications for three layers (layer 1, layer 2, and layer 3), each defining an alternative presentation for at least one content cell of an adaptive electronic message. In one embodiment, a content cell may represent a virtual area within an adaptive electronic message that may include one or more digital content element candidates. In one embodiment, the content element candidates may be selected based upon an identified presentation. In one embodiment, decision logic 130 may directly or indirectly determine which cells or presentation layers of an adaptive electronic message are to be exposed to one or more recipients of a particular instance of the adaptive electronic message. In the illustrated embodiment, decision logic 130 includes a root node 232 and a number of leaf nodes 235-237. In one embodiment, root nodes may correspond to global content intended to appear in each instance of the adapted electronic that may be transmitted. Leaf nodes may correspond to a content layer associated with digital content elements as may be specified within message layer definition 120. In the illustrated embodiment, decision logic 130 is designed to operate based upon capabilities of one or more receiving devices. In one embodiment, capabilities may be dynamically determined through execution of one or more client-side or server-side components or scripts. Accordingly, a recipient may receive a base electronic message including one or more scripts or components, or links to one or more remotely located scripts or components, which when executed, may determine various capabilities of the receiving device and request supplemental digital content elements accordingly. Alternatively, device capabilities may be predetermined and stored remotely on a server for access via a lookup table, file, or database by message adaptation component 102. As such, electronic messages may be remotely adapted with one or more content element candidates prior to transmission of the message to a recipient. Of course, electronic message adaptation may be conditioned on other factors besides device capabilities. In one embodiment, base electronic message 104 may include digital content elements that are to be globally rendered on behalf of all addressed recipients for a given adaptive electronic message. For example, base electronic message 104 may contain digital content elements that represent a least common denominator with respect to presentation capabilities of recipient devices. As such, a sender can generate a base electronic message that may be viewable by each intended recipient. Because certain recipients may be able to view more advanced and/or engaging versions of the base electronic message, a sender or message author may define one or more cells within the base electronic message that may be dynamically adapted before or after transmission of the message to one or more recipients. In one embodiment, predefined message templates such as message template 140 of FIG. 2 may be utilized to facilitate generation of one or more adaptive electronic messages. Such templates may be designed by a sender, a recipient, or a third party electronic message creation and/or mailing service, for example. In one embodiment, adaptive message templates may vary in complexity and may include, but are not limited to cell layout definitions specifying color, size and location of one or more adaptive message cells, and definitions of digital content elements to be displayed within one or more of the cells. Message template 140 illustrates various adaptive content cells that may be defined within an electronic message such as base electronic message 104. In message template 140, five presentation cells are shown with each cell being associated with a different type of content element. For example, cell 1 may be designated to display HTML-based content elements, cell 2 may be designated to display image-based content elements, cell 3 may be designated to display text-based content elements, and cell 4 may be designated to display video-based content elements. Of course any combination of cells and designated content element-types may be defined as determined e.g. by an author of an adaptive message. Moreover, each cell may be designated to display a variety of content element-types. In the example embodiment illustrated by FIG. 2, root node 232 of decision logic 130 represents layer 0 or a base layer of an adaptive electronic message. Layer 0 may include definitions of text or digital content items that are intended to be received by each message recipient. Alternatively, non-adaptive content typically contained within a base layer may instead be defined within layer definition 120 and optionally omitted from decision logic 130. At node 233 of decision logic 130, a determination may be made as to whether a recipient device contains video-rendering capabilities. Such a determination may be made through examination of one or more files or directories on the device. If it is determined that a recipient device does contain video rendering capabilities as may be manifested by the absence of a video player application, layer 3 of layer definition 120 may be exposed to the recipient. That is, the electronic message may be adapted to include digital content element candidates as may be specified in layer 3 of layer definition 120. If it is determined that a recipient device does not contain video rendering capabilities, a further decision may be made at node 234 regarding whether the device has FLASH capabilities. If the device is determined to have FLASH capabilities, layer 2 of layer definition 120 may then be exposed to the recipient. However, if a device does not have FLASH capabilities, the electronic message may be adapted to expose to the recipient, only those digital content items as may be associated with layer 1 of layer definition 120. Decision logic 130 could alternatively be associated with a wide variety of other criteria such as device capabilities including but not limited to graphic capabilities, and video bandwidth capabilities. For example, in the event decision logic 130 represents video bandwidth capabilities of a device, layer 1 could be associated with digital content elements that, for best performance, require a network bandwidth that may be achievable by most devices (e.g., <50 kb/s). In contrast, layer 2 could be associated with digital content elements that are best viewed on devices having medium network bandwidth connectivity e.g. in the range between 50 kb/s & 100 kb/s, while layer 3 could be associated with digital content elements that may be best viewed only on devices having high network bandwidth connectivity (e.g., >100 kb/s). Of course, the number and arrangement of decision nodes appearing in decision logic 130 may be application specific, and as such, may include a fewer or a greater number of nodes than those illustrated. FIG. 3 illustrates a network environment within which the message adaptation services in accordance with one embodiment of the invention may be practiced. As shown, sending device 302, receiving device 304, and 3rd party server 306 may each be communicatively coupled to network 300. Network 300 may represent one or more data communication networks ranging from a local network to one or more global interconnected networks such as the Internet or World Wide Web. In accordance with one embodiment of the invention, one or more of sending device 302 (also referred to as a sending client), receiving device 304 (also referred to as a receiving client), and 3rd party server 306 may be advantageously equipped with message adaptation services (MAS) 102 as shown. Sending device 302 may represent one or more devices used by one or more parties (e.g. senders) to compose and send adaptive electronic messages in accordance with one embodiment of the invention. Sending devices may include user-devices and/or server devices such as a mail server equipped with message adaptation services 102 that facilitate creation and transmission of adaptive electronic messages. Similarly, receiving device 304 may represent one or more devices used by one or more parties (e.g. recipients) to receive and view adaptive electronic messages in accordance with one embodiment of the invention. Correspondingly, the sending devices may include user-devices and/or server devices such as a mail server equipped with message adaptation services 102. Third party server 306 may represent one or more devices controlled by a third party entity (e.g. not a sender or recipient) which may facilitate in the composition and/or delivery of adaptive electronic messages in accordance with one embodiment of the invention. One or more of sending device 302, receiving device 304, and 3rd party server 306 may be co-located with one or more of the other devices within a shared network domain. Moreover, although not illustrated, one or more of sending device 302, receiving device 304, and 3rd party server 306 may be co-located with a mail server designed to deliver and receive electronic mail messages in accordance with a wide variety of message transfer protocols, including the well-known simple mail transfer protocol (SMTP). Such a mail server may be a hardware based device or a software service that executes on any one or more of sending device 302, receiving device 304, and 3rd party server 306. Sending device 302, receiving device 304, and 3rd party server 306 may each represent a broad range of digital systems known in the art, including but not limited to devices such as wireless mobile phones, palm sized personal digital assistants, notebook computers, desktop computers, servers, set-top boxes, game consoles and the like. FIG. 4 illustrates an example computer system generally suitable for use as sending device 302, receiving device 304, and 3rd party server 306 in accordance with the teachings of the present invention. As shown, example computer system 400 includes processor 401, ROM 403 including basic input/output system (BIOS) 405, and system memory 404 coupled to each other via communication bus 406. Also coupled to communication bus 406 is non-volatile mass storage 408, display device 410, cursor control device 412 and communication interface 414. During operation, memory 404 may include working copies of operating system 422, and message adaptation component 102. In the case of a sending or receiving client, memory 404 may further include working copies of one or more message layer definitions and decision logic according to one embodiment of the present invention. Except for the teachings of the present invention as incorporated herein, each of these elements may represent a wide range of these devices known in the art, and otherwise may perform its conventional functions. For example, processor 401 may perform the function of executing programming instructions of operating system 422 and message adaptation component 102. ROM 403 may be EEPROM, Flash and the like, and memory 404 may be SDRAM, DRAM and the like. Communication bus 406 may represent a single bus or a multiple bus implementation. In other words, bus 406 may include multiple properly bridged buses of identical or different kinds, such as Local Bus, VESA, ISA, EISA, PCI and the like. Mass storage 408 may represent disk drives, CDROMs, DVD-ROMs, DVD-RAMs and the like. Mass storage 408 may include a persistent copy of operating system 422 and message adaptation component 102. The persistent copy may be downloaded from a distribution server through a data network (such as network 300), or installed in the factory, or in the field. For field installation, the persistent copy may be distributed using one or more articles of manufacture such as diskettes, CDROM, DVD and the like, having a recordable medium including but not limited to magnetic, optical, and other mediums of the like. Display device 410 may represent any of a variety of display types including but not limited to a CRT and an active or passive matrix LCD display. Cursor control 412 may represent a mouse, a touch pad, a track ball, a keyboard, and the like to facilitate user input into the system. Lastly, communication interface 414 may represent a modem interface, an ISDN adapter, a DSL interface, an Ethernet or Token ring network interface and the like. In one embodiment of the invention, message adaptation component 102 may provide authoring services for the benefit of one or more sending parties. In one embodiment, the authoring services may include services to facilitate generation of a message adaptation specification possibly including a message layer definition and/or decision logic. Additionally, the authoring services may provide a message-editing environment through which a sender may compose an adaptive electronic message. In one embodiment, the authoring services may provide graphical or text-based tools to facilitate generation of the adaptive electronic messages as well as corresponding message layer definitions and decision logic. In one embodiment, through the authoring environment, a sender may access one or more predefined adaptive message templates. The adaptive message templates may include format definitions and/or content definitions for one or more adaptive cells within the template. Additionally, the adaptive message templates may provide editable data fields through which a sender may further customize the look and content of an adaptive electronic message. In one embodiment, a sender may choose to create an adaptive electronic message by first composing or selecting a previously composed base electronic message. Next, the sender may generate or select a message adaptation specification including previously generated message layer definitions and corresponding decision logic, if appropriate. Alternatively, the message adaptation specification may be automatically selected for the sender based e.g. upon one or more criteria. The authoring environment may then determine the fields and/or cells that are sender-customizable and may provide the sender with an opportunity to customize the base electronic message. Once the sender submits their customizations (if any), the fields within the adaptive electronic message may be populated and a message record may be made in a message database referencing, for example, the message layer definition, the decision logic, sender customizations and populated fields and so forth. An instance of that message record may then be created and transmitted as an adaptive electronic message to one or more indicated recipients. In one embodiment, one message instance may be created for each indicated recipient. In one embodiment, the adaptive electronic message may be dynamically adapted after transmission of the message to one or more recipients. In another embodiment of the invention, the adaptive electronic message may be dynamically adapted prior to transmission of the message to one or more recipients. FIG. 5 is an operational flow diagram illustrating post-transmission adaptation of an electronic message in accordance with one embodiment of the invention. As shown, a base electronic message is transmitted to one or more recipients at block 502. A message adaptation specification for adapting the based electronic message is determined at block 504, and one or more digital content elements are identified to supplement the base electronic message based at least in part upon the message adaptation specification at block 506. Lastly, at block 508, the base electronic message is adapted to include the identified one or more digital content elements. In one embodiment, the base electronic message may be adapted by a receiving device associated with a recipient or an intermediate mail server configured to forward messages to the recipient. In some embodiments, the base electronic message may include an initial content layer, to which client-side scripts and recipient-specific customization information may be added through the adaptation process. The added client-side scripts may perform such functions as: reporting on the opening of the email message; testing the digital content capabilities of the receiving device associated with the recipient; selecting the most appropriate layer of the message to be exposed to the user based upon the results of the tests; and supplementing (including possibly replacing) the contents of the message with those of the selected layer. The recipient-specific customization information may include special information designed to appeal specifically to the recipient, such as the recipient's name, or a message thanking the recipient for making a recent purchase. When one of these adaptive email messages is received, it may be stored in an email inbox on the recipient's system. When the recipient opens the email message, the initial layer may be displayed within the email message on the recipient's display device. The initial layer may contain an image tag that causes a very small image to be downloaded from a server system, thereby notifying the server system of the message opening as e.g. for tracking purposes. Other layers of the adaptive electronic message may also contain such an image tag, similarly facilitating the tracking of their respective opening. If script-processing functionality is available and enabled on a receiving device, the scripts in the adaptive message may be executed in order to test one or more capabilities such as media presentation capabilities of the receiving device. The scripts may also operate to select the most appropriate layer of the adaptive message to be exposed to the recipient based upon the results of the various tests. The scripts may further operate to supplement (e.g. though addition, removal, or replacement) the contents of the adaptive message with those of the selected layer. If script-processing functionality is not available or is not enabled, scripts contained in the adaptive message may not execute. As a result, the initial or base layer of an adaptive message may include a link that the recipient may manually traverse in order to open the first layer in a browser window, which may operate in a similar manner as described above with respect to the scripts. FIG. 6 is an operational flow diagram illustrating pre-transmission adaptation of an electronic message in accordance with one embodiment of the invention. As shown, a message adaptation specification for a base electronic message is determined at block 602. At block 604, one or more digital content elements are identified to supplement the base electronic message based upon the message adaptation specification. The message is then adapted to include the identified one or more digital content elements at block 606, and the adapted electronic message is transmitted to one or more recipients at block 608. In one embodiment of the invention, message adaptation component 102 may facilitate the pre-transmission adaptation of electronic messages based upon the particular configuration of a receiving device used by a recipient. More specifically, in accordance with one embodiment of the invention, message adaptation component 102 may operate to adapt electronic messages based upon whether a receiving device associated with an intended message recipient is identified as being a wireless device or a traditional wireline device. For the purpose of this disclosure, the term wireless device is intended to refer to a broad class of devices such as, but not limited to mobile phones, personal digital assistants, notebook computers, and so forth, that receive electronic messages wirelessly over the airwaves. A wireless device need not operate in accordance with any particular wireless protocol, however examples of such wireless protocols may include Code-Division Multiple Access (CDMA), Time-Division Multiple Access (TDMA), Global System for Mobile Communications (GSM), Wireless Application Protocol (WAP) and the like. A traditional wireline device on the other hand is intended to refer to any device that receives messages via a physical cable coupled to a data network. In general, since the network bandwidth capabilities of traditional wireline devices may exceed that of wireless devices, it may be advantageous to adapt electronic messages that are destined for wireless devices prior to their transmission to corresponding recipients. By doing so, it may be possible to reduce network connectivity and corresponding air-time costs, reduce required message download time, while at the same time improve the overall user/recipient experience. Even if network connectivity speeds for wireless networks can eventually approximate that of traditional wireline networks, it may nonetheless still be advantageous to supplement adaptive electronic messages prior to their transmission due at least in part to the typically limited hardware capabilities of wireless devices. For example, because traditional wireless devices, such as mobile phones and personal digital assistants, are typically equipped with less powerful hardware (including displays and memory) and software components than their wireline counterparts, it may further be advantageous to adapt electronic messages prior to their transmission to such devices to account for such potential limitations. In one embodiment, digital content elements may be selected for pre-transmission adaptation based upon the element's respective network connectivity bandwidth requirements. In one embodiment of the invention, message adaptation component 102 may facilitate the pre-transmission adaptation of electronic messages based upon a message filtering or security level. More specifically, in one embodiment, adaptation of electronic messages may be conditioned upon a message filtering level associated with a recipient or a company through which the recipient may receive email service. In one embodiment, a recipient may preemptively opt to receive electronic messages (e.g. opt-in) or opt to not receive electronic messages (e.g. opt-out). In one embodiment, a recipient may further stipulate criteria that if met, would facilitate determining whether electronic messages should be delivered to the recipient or blocked from delivery to the recipient. Such message filtering criteria may include, but is not limited to identification of a sender, sender domain, priority, subject of the message, content of the message, transmission protocol, and so forth. In one embodiment, the filtering criteria may be represented within message adaptation specification 106. In one embodiment, the filtering criteria may be embodied within a logic structure such as decision logic 130, while message layer definition 120 may be used to identify digital content element candidates for supplementing the message based upon the recipient's opt-in or opt-out status. In accordance with one embodiment of the invention, an adaptive electronic message may be supplemented with a solicitation for a recipient to receive one or more electronic messages in the future. In one embodiment, the solicitation may take the form of an electronic token that is embedded within a base electronic message prior to its transmission to the recipient. Upon receipt, the base electronic message may be displayed to the recipient including a text or graphic-based query soliciting the recipient as to whether they wished to receive additional email messages (or to have the viewed base electronic message otherwise adapted). The recipient may be queried as to whether they wish to receive any additional messages at all, or whether they wish to receive additional messages of a particular type or class as may be determined by e.g. the identity of the sender or sender's mail domain, the subject of the message, the content or priority of the message, and so forth. The query may be accompanied by an HTML based FORM element to enable the recipient to choose to “opt-in” to receive additional electronic messages of the stipulated class or to “opt-out” resulting in additional electronic messages of the stipulated class being blocked. Upon the recipient selecting one option or another, embedded data may be POSTed back to a server in conjunction with the electronic token. Thereafter, a server-based system may update a remotely stored message filtering profile indicating the recipients' manifest desires. In one embodiment of the invention, message adaptation component 102 may be used to facilitate large-scale electronic mailings or on-line advertising campaigns where a variety of electronic messages may be supplemented with digital content elements that may be tailored to the target audience, such as the recipient's name, logos associated with known interests of the recipients, a personalized message thanking the recipient for making a recent purchase, and so forth. In one embodiment, such ad-campaign messages may be adapted prior to transmission to a recipient, after transmission to a recipient, or both. In one embodiment, ad messages that are adapted prior to transmission to a recipient may be adapted to include an opt-out/opt-in solicitation as described above. For example, for a given advertising campaign one or more base electronic messages could be generated and transmitted to one or more recipients. The base electronic messages may each include query soliciting each recipient as to whether they wish to receive additional email messages (from the sender or third-party mailing service. For each recipient that chooses to accept the offer to receive additional electronic mail messages, an entry may be created in a remote database or lookup table. Alternatively, an entry may be created in a remote database or lookup table for each recipient that chooses to decline offer to receive additional electronic mail messages. For each subsequent electronic advertising campaign, a sender or third part mailing service may be required (e.g. by the advertiser or other party) to first determine whether the a particular recipient has “opted in” or “opted out”. In one embodiment, if the recipient has opted in, the electronic message may be delivered to the recipient with or without adaptation. However, if the recipient has opted out, the sender or third part mailing service may be required to withhold transmission of the electronic message. In one embodiment, if a recipient's manifest desire to receive additional electronic messages cannot be determined, the electronic message may be adapted to include a solicitation as previously described. In one embodiment of the invention, a company who operates a mail server for the benefit of its employees may also utilize the message adaptation services of embodiments of the present invention. More specifically, in one embodiment a company may institute one or more security policies with respect to the receipt of electronic mail messages. In one embodiment, message adaptation component 102 (of FIG. 1) may be incorporated within a mail server, router or firewall device to facilitate enforcement of such security policies utilizing the recipient opt-in/opt-out statuses described above. In one embodiment, security levels may correspond to specific message filtering levels that may cause electronic messages to be delivered to an indicated recipient, blocked (e.g. at a recipient mail server or firewall) from being delivered to the recipient, or dynamically adapted based upon one or more policies as e.g. indicated in a message adaptation specification. In one embodiment, adapted electronic messages may be supplemented with a solicitation in accordance with one embodiment of the invention. In one embodiment, messages may be delivered, blocked or adapted based upon a recipient's opt-in/opt-out preference or other criteria described herein. Moreover, recipient opt-in/opt-out preferences may be stored one a server belonging to the sender, a third party mailer, the advertiser or the recipient. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the embodiments discussed herein.
<SOH> BACKGROUND <EOH>Electronic mail (“email”) is a form of electronic messaging that has proven a useful medium for several different types of communications. In particular, email has been used to deliver marketing messages to single recipients and groups of recipients. Initially, such email-conveyed messages were expressed in plain-text format. One advantage of the plain-text format is that recipients can read such messages no matter what email client program (“email client”) they use. A significant disadvantage of the plain-text format is that its display is undistinguished and unattractive relative to other types of visual displays possible on many computer systems, and is in that sense poorly suited to direct promotional marketing and other high impact business communications. Furthermore, recipient activity with the message cannot be tracked, representing another significant business limitation. As an improvement to text based messaging, email clients capable of sending and receiving more complex electronic messages have been developed. While this may facilitate somewhat richer and more colorful displays than plain-text format, such messages are typically static, not trackable, and still relatively poorly suited to achieve high impact with recipients. Although in certain occasions it might be desirable to send complex messages including multimedia components to recipients, not all recipients may be capable and/or authorized to receive or view such messages.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which the like references indicate similar elements and in which: FIG. 1 illustrates an overview of message adaptation services in accordance with one embodiment of the invention; FIG. 2 illustrates one embodiment of a message adaptation specification; FIG. 3 illustrates a network environment within which the message adaptation services in accordance with one embodiment of the invention may be practiced; FIG. 4 illustrates an example computer system suitable to provide the message adaptation services in accordance with one embodiment of the invention; FIG. 5 is an operational flow diagram illustrating post-transmission adaptation of an electronic message in accordance with one embodiment of the invention; and FIG. 6 is an operational flow diagram illustrating pre-transmission adaptation of an electronic message in accordance with one embodiment of the invention. detailed-description description="Detailed Description" end="lead"?
20041027
20100427
20050317
96836.0
1
TAHA, SHUKRI ABDALLAH
ADAPTIVE ELECTRONIC MESSAGING
SMALL
1
CONT-ACCEPTED
2,004
10,976,458
ACCEPTED
Audio converter device and method for using the same
An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device.
1. A converter device to playback digital media, the converter device comprising: a local area network port to receive portions of a digital media file stored on a local server; a volatile memory buffer to store the portions of the digital media file; a microprocessor to convert a portion of the digital media file stored in the volatile memory buffer into a format usable by a conventional media playback system; firmware to control the transfer of the portions of the digital media file into the volatile memory buffer such that there is no interruption of media playback; a user interface to allow a user to navigate through a hierarchical presentation of data associated with the digital media file; and an infrared receiver to receive instructions from a remote controller for the transfer of the converted portion of the digital media file to the conventional media playback device. 2. The converter device of claim 1, further comprising a user interface to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 3. The converter device of claim 1, further comprising a portable electronic device to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 4. The converter device of claim 3, wherein the portable electronic device is a personal digital assistant. 5. The converter device of claim 1, further comprising a display to present data associated with the digital media file received from the local server. 6. The converter device of claim 1, further comprising a local area network adaptor. 7. A converter device to playback digital media, the converter device comprising: a local area network port to receive portions of a digital media file stored on a local server; a volatile memory buffer to store the portions of the digital media file; a microprocessor to convert a portion of the digital media file stored in the volatile memory buffer into a format usable by a conventional media playback system; firmware to control the transfer of the portions of the digital media file into the volatile memory buffer such that there is no interruption of media playback, wherein the firmware is operable to control the transfer of the portions of the digital media file into the volatile memory buffer while the microprocessor is converting portions of the digital media file to avoid interruption of media playback. 8. The converter device of claim 2, further comprising: a user interface to allow a user to navigate through a hierarchical presentation of data associated with the digital media file. 9. The converter device of claim 8, further comprising a user interface to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 10. The converter device of claim 8, further comprising a portable electronic device to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 11. The converter device of claim 10, wherein the portable electronic device is a personal digital assistant. 12. The converter device of claim 8, further comprising a display to present data associated with the digital media file received from the local server. 13. The converter device of claim 8, further comprising a local area network adaptor. 14. A converter device for receiving and converting a digital media stream from a server, the converter device comprising: a port to communicate with the server via a local area network; a user interface control device; one or more non-volatile flash memories to store converter control firmware operable to cause the port to start receiving the digital media stream from the server in response to activation of the user interface control device, wherein the user interface control device comprises an infra red (IR) remote control. 15. The converter device of claim 14, wherein the user interface control device includes a button integral to a housing of the converter device. 16. The converter device of claim 14, further comprising a buffer memory to store the digital media stream received.
This Application is a Continuation of the prior application for “AUDIO CONVERTER DEVICE AND METHOD FOR USING THE SAME” filed by Craig M. Janik on Sep. 1, 2001, which claims the benefit of U.S. Provisional Application No. 60/230,530, filed on Sep. 1, 2000. FIELD OF THE INVENTION The present invention relates generally to audio playback devices, and more particularly, to an audio converter device to convert digital audio data received from a computer system to analog electrical data to be played on an audio playback device. BACKGROUND The rapid buildup of telecommunications infrastructure combined with substantial investment in Internet-based businesses and technology has brought Internet connectivity to a large segment of the population. Recent market statistics show that a majority of households in the U.S. own at least one personal computer (PC), and a significant number of these PCs are connected to the Internet. Many households include two or more PCs, as well as various PC productivity peripherals such as printers, scanners, and the like. Decreases in the cost of PC components such as microprocessors, hard disk drives, memory, and displays, have driven the commoditization of PCs. Although the majority of household PCs are connected to the Internet by dialup modem connections, broadband connectivity is being rapidly adopted, and is decreasing in price as a variety of technologies are introduced and compete in the marketplace. A large majority of households in the U.S. and Europe are viable for at least one or more type of broadband connection, such as cable, DSL, optical networks, fixed wireless, or two-way satellite transmission. A market for home networking technology has emerged, driven by the need to share an Internet connection between two or more PCs, and to connect all the PCs to productivity peripherals. There has been innovation in local area network (LAN) technology based on end-user desire for simplicity and ease of installation. Installing Ethernet cable is impractical for a majority of end-users, therefore a number of no-new-wires technologies have been introduced. The Home Phoneline Networking Association (HPNA) promotes networking products that turn existing phone wiring in the home into an Ethernet physical layer. Adapters are required that allow each device to plug into any RJ-11 phone jack in the home. The adapter modifies the signal from devices so that it can be carried by the home phone lines. Existing HPNA products provide data-rates equivalent to 10base-T Ethernet, approximately 10 Mbps. Networking technology that uses the AC power wiring in the home to carry data signals has also appeared. Similar to HPNA devices, adapters are required to convert data signals from devices into voltage fluctuations carried on to and off of the AC wires, allowing any AC outlet to become a network interface. Although both HPNA and power line networking products are convenient to use because they require no new wires, the advantage of AC power line products over HPNA is that AC power outlets are more ubiquitous than RJ-11 phone jacks. Wireless radio-frequency (RF) LAN technology has also been introduced into the home networking market. Theoretically, wireless technology is the most convenient for the end user to install. There are currently two prevalent standards for wireless networking, Institute of Electrical and Electronics Engineers (IEEE) 802.11b and HomeRF. Both of these systems utilize the unlicensed 2.4 Ghz ISM band as the carrier frequency for the transmission of data. Both of these technologies have effective ranges of approximately 150 feet in a typical household setting. IEEE 802.11b is a direct sequence spread spectrum technology. HomeRF is a frequency-hopping spread spectrum technology. Adapters that are RF transceivers are required for each device to communicate on the network. In addition to utilizing Transmission Control Protocol/Internet Protocol (TCP/IP) protocols, IEEE 802.11b and HomeRF include additional encryption and security protocol layers so that the user's devices have controlled access to data being sent through the LAN. Due to market competition and the effect of Moore's Law, home networking technology is greatly increasing in performance and availability, while decreasing in price. For example, the current data-rate roadmap shows HomeRF increasing from 10 Mbps to 20 Mbps, utilizing the 5 Ghz band. The IEEE 802.11 technology roadmap shows the introduction of 802.11a at 54 Mbps, also utilizing the 5 Ghz band. It is important to note that LAN data-rates are increasing much faster than wide-area data-rates, such as the data-rates provided by “last mile” technologies including DSL, DOCSIS. Wireless wide area data-rates are also improving slowly. Current digital cellular technology provides less than 64 Kbps data-rates, with most systems providing throughput in the 20 Kbps range. The MP3 digital audio format is an audio encoding technology that allows consumers to further compress digital audio files such as those found on Compact Disks, to much smaller sizes with very little decrease in sound quality. The MP3 format is the audio layer of MPEG-2 digital audio and video compression and transmission standard. For example, the MP3 format allows for compression of audio content to approximately 1 million bytes per minute of audio, at near Compact Disk quality. This capability, combined with a decrease in the cost of flash memory, a type of non-volatile silicon-based mass memory, has made it possible to develop portable digital audio playback devices. These are devices that are significantly smaller than portable CD players because they contain no moving parts, only flash memory, a microprocessor for decoding MP3 compressed audio content, and batteries. However, the cost per bit of audio content with portable digital audio playback devices is still very high because of the high cost of flash memory. The typical portable digital audio playback device includes enough flash memory to store about one CD's worth of digital music. The result is that the user is burdened with having to continually manually change the music files in the device by plugging the device into the PC and operating a user interface, if they want to listen to a wide range of music. PC-based MP3 software players have been created that provide a convenient graphical user interface and software decoding of MP3 files. Some technology allows users to play MP3 files on their PC, using an existing sound card with external speakers. However, to listen to MP3s the user must interface with the PC, using a mouse and keyboard, and must be nearby the PC sound output equipment. The smaller size of MP3 encoded audio files has also enabled these files to be shared by users across the Internet, since the transfer of these files takes an acceptable amount of time. Internet-based digital music access and distribution service businesses have appeared that provide various means for users to gain access to digital audio files. In addition to music, many other types of audio content are now available in digital format, such as spoken-word content, news, commentary, and educational content. Digital files containing audio recordings of books being read aloud are available for download directly from their website. At the same time, there is a very large installed base of stereo systems in households throughout the world. The majority of these systems are capable of producing high fidelity audio if the audio inputs into the stereo system are of high quality. What is needed is a system that allows users to play all of the digital content that is stored on their PC, on their existing audio equipment. This system should include an audio content management system, and should allow the user to control and manipulate the content that is stored on the PC, at the stereo system. This system should also provide the ability to stream audio from sources beyond the PC on the Internet. There should be a seamless interface that allows user to manage both locally cached content and Internet streams. SUMMARY An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only: FIG. 1 shows a schematic of one embodiment of the digital streaming audio system hardware components; FIG. 2 shows an isometric view of one embodiment of a digital audio converter; FIG. 3 shows an isometric exploded view of one embodiment of a digital audio converter; FIG. 4 shows a block diagram of one embodiment of a digital audio converter hardware components; FIG. 5 shows a block diagram of one embodiment of the digital streaming audio system software components; FIG. 6 shows an isometric view of one embodiment of a digital audio converter remote control; FIG. 7 shows one embodiment of a PC desktop with the console and media manager GUI; FIG. 8 shows one embodiment of a PC desktop with the mini-browser open to a content portal; FIG. 9 shows one embodiment of a PC desktop with the media manager GUI open with a dialog box; FIG. 10 shows a flowchart of one embodiment of the GUI at digital audio converter; FIG. 11 shows one embodiment of a tag sequence flowchart; FIG. 12 shows a schematic of one embodiment of a digital audio converter with alarm clock function; FIG. 13 shows an isometric view of one embodiment of the alarm clock controller; FIG. 14 shows a schematic of one embodiment of a digital streaming audio system incorporating a PDA with an attached wireless LAN adapter module which functions as the system controller and, or player device; and FIG. 15 shows an isometric view of one embodiment of the PDA removed from the LAN adapter. DETAILED DESCRIPTION An audio converter device and a method for using the same are described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the present invention. A set of definitions is provided below to clarify the present invention. Definitions The Internet is used interchangeably with the term web or worldwide web. Both of these are defined as the worldwide network of PCs, servers, and other devices. Broadband connection is defined as a communications network in which the frequency bandwidth can be divided and shared by multiple simultaneous signals. A broadband connection to the Internet typically provides minimum upstream and downstream data-rates of approximately 200K or more bits per second. There are many different types of broadband connections including DSL, cable modems, and fixed and mobile wireless connections. A Data Over Cable System Interface Specification (DOCSIS) modem is an industry standard type of cable modem that is used to provide broadband access to the Internet 8 over a coaxial cable physical layer that is also used for the delivery of cable TV signals (CATV). A Digital Subscriber Line (DSL) modem is also an industry standard type of modem that is used to provide broadband access to the Internet, but over conventional copper phone lines (local loops). The term gateway, used interchangeably with broadband gateway, is defined as an integral modem and router, and may include hub functionality. The modem function is used to change voltage fluctuations on an input carrier line (a DSL line input or a cable TV input) into digital data. Routers are devices that connect one distinct network to another by passing only certain IP addresses that are targeted for specific networks. Hubs allow one network signal input to be split and thus sent to many devices. Gateway storage peripheral is defined as an add-on storage device with processing power, an operating system, and a software application that manages the downloading and storage of data. An example scenario for the use of a gateway storage peripheral is a system where a user has a DOCSIS modem and would like to add an always-on storage capability. The gateway storage peripheral is connected to the DOCSIS modem via a USB port or an Ethernet port in the DOCSIS modem. A gateway storage peripheral in combination with a DOCSIS modem or any type of broadband modem is considered a storage gateway system. A PC that is always left on and connected to an always-on gateway with a DSL or broadband cable connection is considered a storage gateway system. The term “message” is defined as information that is sent digitally from one computing device to another for various purposes. The term “content” is used to mean the information contained in digital files or streams. For example, content may be entertainment or news, or audio files in MP3 format. “Data” is used to mean information such as digital schedule contents, responses from devices sent back through the system, or digital messages and email. “Content” and “data” are sometimes used interchangeably. “Client devices” are those devices that are not fully functional without a host device such as a personal computer. Local Area Network (LAN) is defined as a network structure that includes two or more devices that can communicate with other devices utilizing a shared communication infrastructure, including wired network technologies, such as Ethernet, or wireless network technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11b or HomeRF technology. Wireless LAN technology such as EEE 802.11b and HomeRF are based on the unlicensed 2.4 Ghz ISM (Industrial, Scientific, and Medical) frequency band and are well known the telecommunications and LAN industries. These networking technologies utilize Transmission Control Protocol/Internet 8 Protocols (TCP/IP) protocols. A LAN typically constitutes a group of interconnected devices that share a common geographic location and are typically grouped together as a subnet. A local network, for example, would be a home network where several computers and other smart devices would be digitally connected for the purpose of transferring content and data, controlling each other, sharing programming, or presenting data and content to a user. Codec (Compression/Decompression algorithm) is a software application that is used to decode (uncompress) encoded (compressed) media files or streams. Most content is stored and sent in a compressed format so that the content files are smaller and thus take up less storage space and use less bandwidth when being transferred via the Internet. The content is then decoded at the playback device. For example, MP3 audio files are encoded and must be decoded by a microprocessor running the codec in order for the audio content to be presented to the user in an analog format. HTTP is Hyper-text transfer protocol, the protocol used by Web browsers and Web servers to transfer files, such as text and graphic files. Data-rate is defined as the data throughput of a telecommunications system or technology, and is measured in a quantity of bits per second, such as millions of bits per second (Mbps). Overview of Operation The fundamental operation of the digital streaming audio system involves LAN transmission of digital audio files 116 from a local source that is a personal computer (PC 34) 24, to a digital audio converter 32 that receives the stream and converts it into a signal that can be input into a conventional stereo system 40. Referring now to FIG. 1, the key hardware components in the system are PC 34 connected to the Internet 8. The PC 34 is also functionally connected via a USB connection 64 to a wireless radio frequency (RF) LAN access point 28, such that digital content from PC 34 is transmitted to nodes on the LAN. Digital audio converter 32, shown in FIG. 2, is located within communication range of the wireless LAN access point 28, and is connected to a conventional stereo receiver 44 via the right and left RCA jack inputs. Stereo receiver 44 is part of a stereo system 40 that includes a left speaker 48 and a right speaker 48. 0 is a block diagram of a portion of the digital streaming audio system including digital audio converter 32 and the stereo system 40, showing how left analog output 156 and right analog output 160 included in digital audio converter 32 are connected respectively to the left line input 78 and right line input 82 on existing stereo receiver 44. Digital audio converter 32 also includes a remote control 52 that communicates with digital audio converter 32 via an IR communication link 38. Stereo system 40 functions in the conventional way, pre-amplifying and amplifying the audio signals and delivering them to the left speaker 48 and the right speaker 48. The function of the PC 34 in the digital streaming audio system is to acquire, store, manage, and serve digital audio content to digital audio converter 32. The PC 34 gains access to digital audio content several ways. In one embodiment the PC 34 is also connected to the Internet 8 via a broadband cable modem 16. Thus the PC 34 has access via content services to both downloadable digital audio files 116 such as MP3 formatted content files, as well as digital audio streams from Internet 8 servers. For example, some radio stations provide access to their programming via digital audio streams. In other embodiments, PC 34 is connected to Internet 8 through a dial-up modem connection to an ISP, or Digital Subscriber Line (DSL), or a fixed wireless broadband connection. Wireless LAN transceivers are capable of sending and receiving data using radio frequencies via a wireless data transfer protocol. Technology for such a LAN is currently available and includes the Symphony wireless networking access point provided by Proxim, Inc. of Sunnyvale Calif. LAN systems such as this are based on RF modulation centered on the 2.4 GHz frequency band. Such LANs have a practical range of approximately 150 feet and are capable of reaching most areas in an average sized house were a stereo system 40 and digital audio converter 32 are located. In another embodiment, the wireless LAN access point 28 is a PCI card that is located internal to the PC 34, with an external antenna. In another embodiment, the wireless LAN communication link 6 is provided using IEEE 802.11b protocols. The function of digital audio converter 32 is to receive digital audio streams sent from the PC 34, decode and de-compress the digital audio in real time, convert it from a digital format into a analog electrical signals, specifically a left analog audio signal and a right analog audio signal. Through the use of digital audio converter 32, the stereo system 40 is the output device for digital audio content that was initially stored on the PC 34 or on the Internet 8. Digital audio converter 32 includes an LCD 50 that is used to display data relevant to the audio content being played, such as track 220 titles. In one embodiment, digital audio converter 32 includes one set of control buttons on the remote control 52, which attaches onto to the enclosure 60 of digital audio converter 32. In another embodiment, control buttons are included on both an IR remote control 52 and integral to the main enclosure 60. The purpose of the control buttons is to provide a user interface for controlling the digital streaming audio system, as well as a tag button 120 used to maintain a record of certain audio content on the PC 34 for later use, and control of other features. The control buttons include the conventional controls that are found on audio playback devices including power on/off button 100; track forward button 108 and track backward button 112—for advancing through and selecting tracks for playback; menu button 152; play/pause button 104—for starting and pausing (stopping at point in the middle of a playback of an audio track); stop button 116—for stopping playback of audio content; tag button 120—for triggering the transmission of information about a currently playing digital audio content back through the system for delivery to the end user on a website or for delivery to the content creator or content originator; user-defined button 124—a button that may be associated with a variety of functions as selected by the user using the audio playback device setup GUI. A four-way navigation control 144 including navigate up button 128, navigate down button 132, navigate left button 140, and navigate right button 136. A select button is included in the center of the four-way navigation control 144. These control buttons are also shown on a remote control 52 in FIG. 6. Mechanical Description Referring now to FIGS. 2 and 3, one embodiment of digital audio converter 32 includes a three-piece plastic injection-molded enclosure 60 including a top housing 54, a bottom housing 58, and a front bezel 66. Internal hardware also includes LCD 50 that contains an integral backlight 52 so that the LCD 50 may be read in low light, a power regulation sub-system 30, an infrared (IR) receiver 34 and related circuitry, and a printed circuit board (PCB) 70 that contains the electronic components that constitute the functional data-manipulating aspect of digital audio converter 32. In one embodiment, the wireless LAN transceiver 36 antenna 26 is located internal to the digital audio converter 32 housing as shown in FIG. 3. The entire assembly is held together with threaded fasteners. The construction of the remote control 52 is a typical two-piece plastic shell construction as shown in FIG. 6. Internal hardware includes an infrared (IR) transceiver 148 and batteries, as well as a printed circuit board that contains the electronic components that constitute the functional data-manipulating aspect of digital audio converter 32. In one embodiment, the remote control 52 is removably attached to the enclosure 60. Electrical Description FIG. 4 shows a block diagram of the electrical components in digital audio converter 32. PCB electrically connects components including a microprocessor 10 with dynamic memory (DRAM) 14, programmable (flash) memory 18 for storage of control firmware 100 when power is turned off, a power regulation sub-system 30, and a plurality of input/output terminals including an Ethernet port and a right analog output 160 and a left analog output 156. A wireless LAN transceiver 36 is functionally connected to the PCB. PCB also functionally connects an infra-red (IR) control sub-system 34 for processing IR commands from the remote control 52. Digital audio converter 32 also includes a digital-to-analog converter (DAC) 22 for converting the uncompressed digital information into analog signals that are presented at the standard left analog output 156 and right analog output 160 RCA connectors. A display driving sub-system 53 is also included for presenting text and graphical information to the user. Microprocessor 10 in combination with DRAM memory 14 executes instructions from its real time operating system 96 and control firmware 100. In another embodiment, digital audio converter 32 includes a terrestrial broadcast tuner subsystem for tuning local AM and FM broadcast radio. In another embodiment, power to the stereo system 40 is supplied via a switched power line from the converter box so that the system has the capability of turning the stereo on and off. The on/off function is controlled via software on the PC 34 or through the remote control 52, so that when the digital audio converter 32 is powered on, the stereo system 40 is also automatically powered on. System Software Description FIG. 5 displays the relevant software components of the digital streaming audio system. In one embodiment, the software required on the PC 34 includes an operating system 72, such as the WindowsXP operating system provided by Microsoft of Redmond, Oreg. Wide area communication software 121 is also required for connecting to the Internet 8, which is typically provided as drivers in operating system 72. LAN communication drivers 92 are required for connecting the PC 34 to the LAN. Digital audio files 116 such as MP3 formatted files are stored on the hard disk drive 68. Software Module—System Control Application 76 The system control application 76 is software executing on PC 34 that manages communication and streaming from PC 34 to digital audio converter 32. System control application 76 includes a server module 88 that is a Java application. System control application 76 also includes a database module 80 that is written to or accessed by server module 88, and a graphical user interface (GUI) module 84, that provides a user interface for setting up content to be streamed to digital audio converter 32 and played on the stereo system 40. In one embodiment, the GUI module 84 is a native Windows 32-bit application. In another embodiment, the GUI module 84 is available on a web page, implemented as HTML and Java Server Pages (JSP). The GUI module 84 provides a user interface that is used to organize audio content into lists. The lists that are created using the GUI module 84 at PC 34 are accessible at digital audio converter 32 via the use of control buttons on remote control 52 and visual output on LCD 50. FIG. 7 shows a PC desktop 200 with the media manager GUI 208 running. The console 204 is a GUI element that appears when server module 88 is running. Console 204 shows icons for any devices that are actively communicating on the LAN. Digital audio converter icon 224 is shown present on console 204. Media manager GUI 208 is launched from digital audio converter icon 224 on console 204 by clicking on digital audio converter icon 224 on console 204 with a mouse. The media manager GUI 208 features a three-level nested list structure. The three levels are labeled as channels 212, playlists 216, and tracks 220. Channels 212 are lists of playlists 216, and playlists 216 are lists of tracks 220. Track 220 is a GUI representation of a locally cached digital audio file 116 or a digital audio stream from Internet 8. Channels 212 can be added by right-clicking with the mouse on the channel bar 232. A menu is displayed that allows the user to create and label channel 212 by typing in text. Playlists 216 can be added to channels 212 by right clicking on a channel 212 label and selecting the option to add playlist 216. Playlists 216 can also be added to channels 212 by left clicking with the mouse on the add playlist button 236. Tracks 220 can be added to playlists 216 by using the mouse to click on the add track button 240. FIG. 9 shows the result of left clicking on add track button 240. A conventional Windows dialog box 248 is displayed. The left side of dialog box 248 includes a navigation window that allows the user to navigate to any directory on local PC 34 or to any other PC that are accessible on the LAN. Tracks 220 can also be added to playlists 216 by dragging and dropping an audio file icon from a window on the desktop, onto track 220 list. Tracks 220 can also be added to playlists 216 by dragging and dropping track 220 icon from the music library 244. Music library 244 is a window that shows all of the digital audio files 116 stored on the local hard disk drive 68 that can be decoded by digital audio converter 32. A software agent included in server module 88 of system control application 76 searches hard disk drive 68 for compatible audio files, enters the names and locations of those files into database module 80, and places labels of the files in music library 244. Audio content services are also available through online services accessed through a browser interface. FIG. 8 shows a web-based content selection guide 252 that provides the ability to make a playlist online. The online digital audio files associated with online playlist titles 99 in the online playlist 122 are streamed to digital audio converter 32 via PC 34 and wireless LAN communication link 6. Server module 88 includes software that interfaces with the protocols of each online audio service provider to allow online playlists 122 to be downloaded and transferred into database module 80. Thus, playlist structures and playlist titles created online using the web-based content selection guide 252 are available and can be interacted with by the user with the user interface at digital audio converter 32. Referring now to FIG. 7, media manager GUI also includes a PC audio device control interface 260, which includes the conventional controls for controlling an audio player device. PC audio device control interface 260 allow the user to control digital audio converter remotely from PC 34. Using a preference setting, the audio sound playing that is controlled by PC audio device control interface 260 can be directed to the local PC 34 speakers 48. In other words, the digital audio file 116 that is selected to be played can be decoded locally at PC 34 and played on PC24 speakers 48. Device Software—Digital Audio Converter 32 Operating System In one embodiment digital audio converter 32 operates using VxWorks, a real-time operating system 96 provided by WindRiver Systems. Digital audio converter 32 control firmware 100 is a software application that is run on real time operating system 96 and manages the processing of messages from the IR sub-system 34, communication with system control application 76 via LAN 6, stream buffering, and decoding of digital audio. Device Software—Device GUI A GUI is provided at digital audio converter 32. The GUI is operated using remote control 52 and LCD 50. FIG. 10 shows a graphical user interface flow chart to describe the user interface structure. The three levels of content organization provided by the media manager GUI 208 correspond to three display lines on digital audio converter 32 LCD 50. The display lines are manipulated by using the four-way navigation control 144 on remote control 52. Referring now to FIG. 10, each screen is described below: Initial state of digital audio converter 32 is shown. The top line of text shows the current channel, the second line of text shows the current playlist, and the third line of text shows the current track. Digital audio converter 32 status icon 256 shows the filled square symbol, which is the conventional symbol for a playback system that is in “stop” mode, i.e., nothing is playing. The channel level is depicted as the current channel by being graphically reversed (text is white with black background). This screen shows the result of activating the right navigation button. The channel level label changes to “channel 2”. The labels at the playlist level and the tracks level also update to reflect the new items in “channel 2”. This screen shows the result of activating the down navigation button. The highlight moves from the channel level to the playlist level. This screen shows the result of next activating the right navigation button. The playlist level changes to “playlist2”, the next playlist organized under “channel 2”. The track level text also updates to reflect the actual first track included in “track 1” under “playlist 2”. This screen shows the result of next activating the play/pause button on the remote control 52. “Track 1” begins to play. This screen shows the result of next activating the next track button on digital audio converter 32 remote control 52. “Track 3” begins to play. Status icon 256 changes from a black square to a right-pointing triangle. This screen shows the result of next activating the play/pause button while a track is playing. The track stops playing and status icon 256 is the “pause” icon. This screen shot shows the result of a few different actions. First, the play/pause button was activated, thus “Track 3” begins to play where it left off when the play/pause button was activated. Next, the right navigation button is activated once. The track line advances to show the next track, or “Track 4” in “Playlist 2” . “Track 3” continues to play. This feature allows the user to browse through the channel/playlist/track list structure while continuing to listen to a currently playing track. This screen shows the result if no other buttons are activated for six seconds. The display reverts back to display the channel, playlist, and track that are currently being played. The corresponding other buttons, such as the up navigation and left navigation buttons move the highlight to the corresponding label. Device Software—CODECs In one embodiment, digital audio converter 32 includes the Fraunhofer CODEC 104, licensed for use by Thomson Electronics for decoding the digital audio file that is streamed to it from PC 34. CODEC 104 is an executable file stored in memory, launched by control firmware 100, executed by real time operating system 96 running on digital audio converter 32. Digital audio converter 32 may store a multiple CODECs in memory 18 for decoding variously formatted digital audio files 116 that may be selected by the user. For example, the WindowsMedia CODEC, provided by Microsoft may be stored in memory 18 at digital audio converter 32. Software Functions—Communication/Message Processing The communication and streaming functions of the system will now be described. A user uses remote control 52 to control the function of digital audio converter 32. Button activations on remote control 52 result in IR pulse codes that are received by the IR receiver sub-system 34 in digital audio converter 32. These IR pulse codes are deciphered by the computer sub-system in digital audio converter 32 and are converted into messages that are interpreted by the control firmware 100 running on digital audio converter 32 to invoke action at digital audio converter 32. Other IR pulses codes from remote control 52 are processed by control firmware 100 and are converted into XML-based messages 94 and sent via HTTP requests to PC 34 via the wireless LAN. These messages are interpreted by server module 88 running on PC 34 and specific actions are initiated. For example, assume that digital audio converter 32 is currently in play mode, that is, a first digital audio file 116 is currently being streamed to digital audio converter 32, decoded, and corresponding analog signals are being produced at the analog outputs. The user activates forward one track button 108 and IR pulse code is generated by the IR sub-system 34 in remote control 52. IR pulse code 38 is received by the IR sub-system 34 in digital audio converter 32 and is interpreted by control firmware 100 running on digital audio converter 32 as a “forward one track” command. XML message 94 expressing the “forward one track” command is sent by microprocessor 10 to system control application 76 on PC 34. The “forward one track” XML message 94 is transmitted by wireless LAN transceiver 36 via the LAN, by an HTTP request, to wireless LAN access point 28 connected to PC 34. The HTTP request containing the “forward one track” message is received by server module 88, which accesses the next track name and location of the file associated with the next track name, in database 80. The text string for the track name is expressed in an XML message 94 and is sent to back to digital audio converter 32. This text string is interpreted by control firmware 100 running at digital audio converter 32 and the text string is then displayed on LCD 50. The preferred embodiment also enables the streaming of digital audio files 116 with a buffer management function that controls the flow of portions of the digital audio file 116 from PC 34 into a local DRAM memory 14 of digital audio converter 32. The buffer management function insures that the local DRAM memory 14 buffer is filled as the contents of DRAM 14 are decoded by microprocessor 10 executing the CODEC 104. Other Features—Downloadable Firmware and CODECs An aspect of control firmware 100 on digital audio converter 32 is the ability to receive and install new CODECs 104 via LAN communication link 6. Non-volatile flash memory 18 in digital audio converter 32 is partitioned into two sectors, flash memory sector A and flash memory sector B. A control bit determines the flash memory sector from which operating system 96 and control firmware 100 is loaded. In an initial state, operating system version A and control firmware version A are loaded into DRAM 14 upon boot of digital audio converter 32. Digital audio converter 32 is functional. New versions of the software, operating system B and control firmware B are sent to digital audio converter 32 via wireless LAN communication link. Operating system B and control firmware B are then written into flash memory sector B. A checksum is provided to insure that the exact image of the software has been successfully written into flash. If the checksum at digital audio converter 32 matches the control checksum, the control bit is changed to cause the system to boot from flash sector B. Either a device reboot command is initiated from the server module 88, or a reboot is initiated at digital audio converter 32. Operating system B and control firmware B are then loaded into DRAM. Digital audio converter 32 operates with new versions of the software. The next new version of software is loaded into flash sector A. Each successive revision of software is loaded into the flash sector A or flash sector B that is not the current bootable flash memory sector. Other Features—Tagging Because LAN technology is a two-way interconnection technology, responses from digital audio converter, in one embodiment, may be sent back through the digital streaming audio system and processed and presented to the user and other interested entities at both PC 34 and on the web. FIG. 6 shows tag button 120 on digital audio converter 32. FIG. 11 is a flow chart of the tagging sequence. During the playing of digital audio files 116, activation of tag button 120 by the user results in a transmission of XML message 94 back through LAN informing system control application 76 server module 88 that tag button 120 was activated. Server module 88 then compiles and transmits tag XML message 94 to tag storage and processing server 124. The information in tag XML message 94 may include but is not limited to: metadata or meta-tags (ID3 data) included in the file or stream (characters or images); the file name if content is a file; the URL or IP address of the stream if content 10 is a stream; time; date; and user identifier. The transmission of tag XML message 94 can have different results. The information in the message may be formatted as a readable text message and presented to a user on a personal tag aggregation web page. In this scenario, the user has signed up with an account and receives a password for entry into protected tag aggregation web page. For the tagging function, the server module 88 should have access to accurate time and date information. Server module 88 includes a function that accesses a server on Internet 8 where accurate time and date data is available, and these quantities are stored locally by server module 88 in system control application 76 database module 80. Other Features—User-Defined Button A user programmable user-defined button 124 is provided on remote control 52. The finction of user-defined button 124 can be changed based on an menu of items available via GUI module 84. For example, a user-defined menu may be accessible via a left mouse click on digital audio converter icon 224 on console 204. The left mouse click on digital audio converter icon 224 causes a preference menu to appear. Some possible functions for user-defined button 124 are: delete currently playing track from the current playlist; purchase the currently streaming digital audio file 116 (if it is a sample digital audio file); shuffle the tracks in the existing playlist; repeat the current playlist, if the active level is the playlist level; repeat the current channel if the active level is a channel. Use of the System The PC 34 downloads several digital audio files 116 through the Internet 8 during the night and stores them on hard drive 68. At some time during the day, the user builds a playlist 216 of the digital audio files 116 to be played on his/her stereo system 40. Using digital audio converter 32 and remote control 52, the user requests to listen to the digital audio files 116. This information is relayed to the PC 34. The PC 34 then sends the audio content to the stereo system 40 where it is played. The user continues to manipulate the playlist 216 through the use of remote control 52 and tags certain songs that he/she finds appealing. The user later returns to the PC 34 and builds a new music playlist 216 from the newly downloaded digital audio files 116. Alternative Embodiments FIG. 12 shows an embodiment of the invention used to perform the functions of an alarm clock for use with a stereo system 40. The system includes an alarm clock controller 132 such as the one illustrated in FIG. 13. The alarm clock controller 132 includes a wireless LAN transceiver 316 and the functional components required to allow the alarm clock remote controller 132 to operate as a node on the wireless LAN. The user can input a wake-up time into a PC 34 using a GUI or on alarm clock controller 132, which is sent, via the LAN communication link 6, to digital audio converter 32. Digital audio converter 32 may include a switched AC power conversion function that is used to switch on the stereo receiver 44 at the specified time in order to wake up a person sleeping in the room. The audio content that is played on the stereo at the time of wake-up can be pre-selected according to the users preferences. The alarm clock controller includes several buttons used to perform such functions as inputting a wake up time, tagging a web page, or turning the stereo off (snooze button 304). The alarm clock controller 132 includes a display 312 and several control buttons 308 used to perform such functions as inputting a wake up time and tagging digital audio. In an alternative embodiment, the alarm clock controller includes an IR transceiver and other necessary components for establishing an IR communication link to digital audio converter 32. The IR communication link to digital audio converter 32 is used here instead of a wireless LAN communication link to the PC 34. The alarm clock controller module retains the same functionality as previously described, but must communicate with the system via digital audio converter 32. In a further embodiment, digital audio converter 32 remote control 52 functions as the alarm clock controller. The user can use the remote control 52 to set the wake-up time for the stereo to turn on and/or use the remote control 521 to switch the stereo off (snooze function). The user-defined button can be programmed by the user to function as a snooze button. FIG. 14 shows an embodiment of the invention where a PDA docked with a wireless LAN adapter 148 is used as an enhanced controller and/or player used with the system. FIG. 15 shows the PDA removed from the wireless LAN adapter 148. The PDA is used as the system controller and is used to manage the audio content that is delivered to the stereo by manipulating software on the PC 34 through a wireless LAN communication link to the PC 34. For example, the user can create or edit a playlist that is stored in the database module 80 on the PC 34, by using a browser GUI on the PDA. The PDA can be similarly used to perform functions such as volume control, song skip, and pause. Furthermore, earphones can be connected to the wireless LAN adapter through the audio out jack on the module and the PDA can be used to play audio content stored on the PC 34. An audio data stream from the PC 34 is sent to the wireless LAN adapter module, where is decoded and converted into an analog audio signal that is sent to earphones. In this effect, the wireless LAN adapter module is functioning as digital audio converter 32, but has the added advantage of being portable. A custom user interface application on the PDA is used as the user interface. The PDAs that are included in this system are PDAs that are currently sold as standalone PDA devices such as the Palm III, made by Palm Inc. FIG. 13 shows a generic PDA. By docking a PDA with the wireless LAN adapter, the PDA essentially becomes a node in the LAN established by the wireless LAN access point 28 connected to the PC 24. Through the use of the wireless LAN adapter, in conjunction with software on the PDA and software on the PC 24, the PDA can send data to and receive data from the PC 24. FIG. 14 shows a PDA docked with a wireless LAN adapter 148. Electrical contacts on the rear end of the PDA make contact with electrical contacts 608 on the wireless LAN adapter 148 in order to establish a data communication link. There is a printed circuit board that contains the electronic components that constitute the functional data-manipulating aspect of wireless LAN adapter. Batteries are included to supply power to the wireless LAN adapter 148. The wireless LAN adapter further includes an audio output jack. In the preferred embodiment, the antenna is located internal to the PDA, mounted to the printed circuit board. The PDA can also be incorporated into the system by using onboard IR capabilities. In this scenario, the PDA would communicate with the system via an IR communication link to the Wireless LAN-to-audio converter and would be used to perform similar functions to those of the remote control 521 described in one embodiment. In another embodiment, a PDA is used that contains the processing power to decode and convert digital audio files. An example of such a PDA is the Compaq iPaq, manufactured by Compaq Computer. In this case, a wireless LAN Compact Flash transceiver card can be added to the CompactFlash card slot on the iPaq. A streaming player software application is also installed on the PDA that allows the PDA to interconnect to they system control application 76 on the PC 34 as if it were digital audio converter 32. A GUI on the PDA allows the user to select playlists and control the streaming of digital audio files to the PDA. The Home PC 34 to Stereo Player System has several permutations that have not yet been explicitly mentioned, but are implied: the system can be wholly controlled through the PC 34 and can be used without the use of a remote control 521 and or a PDA; digital audio converter 32 can be internally incorporated into a new stereo device; the buttons on digital audio converter 32 can be regarded as optional; the switched power line on digital audio converter 32 can be regarded as optional; the wireless LAN adapter can be internally incorporated into a new PDA device; the audio in/out jack on the HRF Adapter Sled Module and its associated functions can be regarded as optional; HRF antennas can be located internal or external to digital audio converter 32s they serve. In another embodiment the LAN connection between the PC 34 and device is Ethernet. In a different embodiment, the LAN connection between the PC 34 and digital audio converter 32 is an networking technology that uses the existing phone lines in the home as the physical layer. In yet another embodiment, the LAN connection between the PC 34 and digital audio converter 32 is a networking technology that uses the existing AC powerlines in the home as the physical layer. In another embodiment, a residential storage gateway or a storage gateway system is used in place of or in addition to the PC 34 to run the system control application 76, connect to the Internet 8, and store file based content. In another embodiment, the system control application 76 including server module 88, database module 80, and GUI module 84 can be run on a set-top box that includes a cable modem and a hard disk drive and can perform the same functions. An audio converter device and a method for using the same have been described. Although the present invention is described herein with reference to specific embodiments, many modifications and variations therein will readily occur to those with ordinary skill in the art. Accordingly, all such variations and modifications are included within the intended scope of the present invention as defined by the following claims.
<SOH> BACKGROUND <EOH>The rapid buildup of telecommunications infrastructure combined with substantial investment in Internet-based businesses and technology has brought Internet connectivity to a large segment of the population. Recent market statistics show that a majority of households in the U.S. own at least one personal computer (PC), and a significant number of these PCs are connected to the Internet. Many households include two or more PCs, as well as various PC productivity peripherals such as printers, scanners, and the like. Decreases in the cost of PC components such as microprocessors, hard disk drives, memory, and displays, have driven the commoditization of PCs. Although the majority of household PCs are connected to the Internet by dialup modem connections, broadband connectivity is being rapidly adopted, and is decreasing in price as a variety of technologies are introduced and compete in the marketplace. A large majority of households in the U.S. and Europe are viable for at least one or more type of broadband connection, such as cable, DSL, optical networks, fixed wireless, or two-way satellite transmission. A market for home networking technology has emerged, driven by the need to share an Internet connection between two or more PCs, and to connect all the PCs to productivity peripherals. There has been innovation in local area network (LAN) technology based on end-user desire for simplicity and ease of installation. Installing Ethernet cable is impractical for a majority of end-users, therefore a number of no-new-wires technologies have been introduced. The Home Phoneline Networking Association (HPNA) promotes networking products that turn existing phone wiring in the home into an Ethernet physical layer. Adapters are required that allow each device to plug into any RJ-11 phone jack in the home. The adapter modifies the signal from devices so that it can be carried by the home phone lines. Existing HPNA products provide data-rates equivalent to 10base-T Ethernet, approximately 10 Mbps. Networking technology that uses the AC power wiring in the home to carry data signals has also appeared. Similar to HPNA devices, adapters are required to convert data signals from devices into voltage fluctuations carried on to and off of the AC wires, allowing any AC outlet to become a network interface. Although both HPNA and power line networking products are convenient to use because they require no new wires, the advantage of AC power line products over HPNA is that AC power outlets are more ubiquitous than RJ-11 phone jacks. Wireless radio-frequency (RF) LAN technology has also been introduced into the home networking market. Theoretically, wireless technology is the most convenient for the end user to install. There are currently two prevalent standards for wireless networking, Institute of Electrical and Electronics Engineers (IEEE) 802.11b and HomeRF. Both of these systems utilize the unlicensed 2.4 Ghz ISM band as the carrier frequency for the transmission of data. Both of these technologies have effective ranges of approximately 150 feet in a typical household setting. IEEE 802.11b is a direct sequence spread spectrum technology. HomeRF is a frequency-hopping spread spectrum technology. Adapters that are RF transceivers are required for each device to communicate on the network. In addition to utilizing Transmission Control Protocol/Internet Protocol (TCP/IP) protocols, IEEE 802.11b and HomeRF include additional encryption and security protocol layers so that the user's devices have controlled access to data being sent through the LAN. Due to market competition and the effect of Moore's Law, home networking technology is greatly increasing in performance and availability, while decreasing in price. For example, the current data-rate roadmap shows HomeRF increasing from 10 Mbps to 20 Mbps, utilizing the 5 Ghz band. The IEEE 802.11 technology roadmap shows the introduction of 802.11a at 54 Mbps, also utilizing the 5 Ghz band. It is important to note that LAN data-rates are increasing much faster than wide-area data-rates, such as the data-rates provided by “last mile” technologies including DSL, DOCSIS. Wireless wide area data-rates are also improving slowly. Current digital cellular technology provides less than 64 Kbps data-rates, with most systems providing throughput in the 20 Kbps range. The MP3 digital audio format is an audio encoding technology that allows consumers to further compress digital audio files such as those found on Compact Disks, to much smaller sizes with very little decrease in sound quality. The MP3 format is the audio layer of MPEG-2 digital audio and video compression and transmission standard. For example, the MP3 format allows for compression of audio content to approximately 1 million bytes per minute of audio, at near Compact Disk quality. This capability, combined with a decrease in the cost of flash memory, a type of non-volatile silicon-based mass memory, has made it possible to develop portable digital audio playback devices. These are devices that are significantly smaller than portable CD players because they contain no moving parts, only flash memory, a microprocessor for decoding MP3 compressed audio content, and batteries. However, the cost per bit of audio content with portable digital audio playback devices is still very high because of the high cost of flash memory. The typical portable digital audio playback device includes enough flash memory to store about one CD's worth of digital music. The result is that the user is burdened with having to continually manually change the music files in the device by plugging the device into the PC and operating a user interface, if they want to listen to a wide range of music. PC-based MP3 software players have been created that provide a convenient graphical user interface and software decoding of MP3 files. Some technology allows users to play MP3 files on their PC, using an existing sound card with external speakers. However, to listen to MP3s the user must interface with the PC, using a mouse and keyboard, and must be nearby the PC sound output equipment. The smaller size of MP3 encoded audio files has also enabled these files to be shared by users across the Internet, since the transfer of these files takes an acceptable amount of time. Internet-based digital music access and distribution service businesses have appeared that provide various means for users to gain access to digital audio files. In addition to music, many other types of audio content are now available in digital format, such as spoken-word content, news, commentary, and educational content. Digital files containing audio recordings of books being read aloud are available for download directly from their website. At the same time, there is a very large installed base of stereo systems in households throughout the world. The majority of these systems are capable of producing high fidelity audio if the audio inputs into the stereo system are of high quality. What is needed is a system that allows users to play all of the digital content that is stored on their PC, on their existing audio equipment. This system should include an audio content management system, and should allow the user to control and manipulate the content that is stored on the PC, at the stereo system. This system should also provide the ability to stream audio from sources beyond the PC on the Internet. There should be a seamless interface that allows user to manage both locally cached content and Internet streams.
<SOH> SUMMARY <EOH>An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device.
20041029
20061128
20050908
75161.0
3
GRIER, LAURA A
AUDIO CONVERTER DEVICE AND METHOD FOR USING THE SAME
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,976,618
ACCEPTED
Device and method for continuously shuffling and monitoring cards
The present invention provides an apparatus and method for moving playing cards from a first group of cards into a second group of cards, wherein the second group of cards is randomly arranged or shuffled. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for moving the stack, a card-moving mechanism between the card receiver and the stack for moving cards one at a time into a selected one of the compartments, another card moving mechanism for moving cards from one of the compartments to a second card receiver and a microprocessor that controls the card-moving mechanisms and the elevator. A count of cards within specified areas of the card handling system is maintained and card handling is halted and all cards counted by adding a count of all cards not within the specified areas to the total of cards counted within the specified areas.
1-40. (canceled) 41. A method of operation of a card shuffling apparatus, comprising providing a card receiver having a support surface for supporting a stack of cards to be randomized; providing a card shuffling chamber comprising a plurality of card receiving compartments, each compartment capable of receiving multiple cards; moving cards individually from the card receiver to a compartment in the card shuffling chamber with a first card moving mechanism; moving cards with a second card moving mechanism from a card receiving compartment to a shuffled card receiver having a support surface for receiving randomly arranged cards; and controlling operation of the continuous card shuffling apparatus with a microprocessor. 42. The method of claim 41 wherein cards from more than one compartment are moved to the shuffled card receiver to form a set of shuffled cards. 43. The method of claim 42 wherein the set of shuffled cards is a hand of cards. 44. The method of claim 42 wherein cards are first unloaded from a first compartment into the shuffled card receiver and then cards from a second compartment are delivered to the shuffled card receiver. 45. The method of claim 44 wherein cards in the shuffled card receiver form a hand of cards. 46. The method of claim 41 wherein a buffer of a selected number of cards is maintained between the card receiving compartment and the shuffled card receiver. 47. The method of claim 42 wherein a buffer of a selected number of cards is maintained between the card receiving compartment and the shuffled card receiver. 48. The method of claim 43 wherein a buffer of a selected number of cards is maintained between the card receiving compartment and the shuffled card receiver. 49. The method of claim 44 wherein a buffer of a selected number of cards is maintained between the card receiving compartment and the shuffled card receiver. 50. The method of claim 55 wherein a buffer of a selected number of cards is maintained between the card receiving compartment and the shuffled card receiver. 51. A method of card shuffling comprising supporting a first group of cards to be randomized on a support surface; moving cards individually from the first group of cards on a support surface to at least a first compartment and a second compartment; moving cards from the first compartment to a shuffled card receiver having a support surface for receiving randomly arranged cards and then moving cards from the second compartment to a shuffled card receiver; and all moving controlled with a microprocessor. 52. The method of claim 50 wherein cards are randomly inserted into said first compartment and said second compartment from the first group of cards. 53. The method of claim 50 wherein cards in the first compartment and cards in the second compartment are randomly selected for movement to the shuffled card receiver. 54. The method of claim 51 wherein cards in the first compartment and cards in the second compartment are randomly selected for movement to the shuffled card receiver. 55. The method of claim 50 wherein cards in the shuffled card receiver form a hand of cards. 56. The method of claim 51 wherein cards in the shuffled card receiver form a hand of cards. 57. The method of claim 52 wherein cards in the shuffled card receiver form a hand of cards. 58. The method of claim 53 wherein cards in the shuffled card receiver form a hand of cards.
RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 09/060,598, filed 15 Apr. 1998 and Titled “DEVICE AND METHOD FOR CONTINUOUSLY SHUFFLING CARDS.” BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, it relates to an electromechanical machine for continuously shuffling playing cards, whereby a dealer has a substantially continuously readily available supply of shuffled cards for dealing and where cards may be monitored for security purposes during play of the game. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments and include card games wherein the symbols comprise familiar, common or standard playing cards. Card games such as twenty-one or blackjack, poker, poker variations, match card games and the like are excellent casino card games. Desirable attributes of casino card games are that they are exciting, that they can be learned and understood easily by players, and that they move or are played rapidly to their wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to maximize the amount of revenue generated by a game without changing games, without making obvious changes that indicate an increased hold by the house, particularly in a popular game, and without increasing the minimum size of wagers. One approach to maximizing revenue is speeding play. It is widely known that playing time is diminished by shuffling and dealing. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, reduce non-play time, thereby increasing the proportion of playing time to non-playing time, adding to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,515,367 (Howard) is an example of a batch-type shuffler. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 5,275,411 (Breeding) discloses a machine for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. U.S. Pat. No. 3,879,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,241,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. Nos. 793,489 (Williams), 2,001,918 (Nevius), 2,043,343 (Warner) and 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. Nos. 2,950,005 (MacDonald) and 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. Nos. 5,584,483 and 5,676,372 (Sines et al.) describe batch type shufflers which include a holder for an unshuffled stack of cards, a container for receiving shuffled cards, a plurality of channels to guide the cards from the unshuffled stack into the container for receiving shuffled cards, and an ejector mounted adjacent to the unshuffled stack for reciprocating movement along the unshuffled stack. The position of the ejector is randomly selected. The ejector propels a plurality of cards simultaneously from a number of points along the unshuffled stack, through the channels, and into the container. A shuffled stack of cards is made available to the dealer. U.S. Pat. No. 5,695,189 (Breeding et al.) is directed to a shuffling machine for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Aside from increasing speed and playing time, some shuffler designs have provided added protection to casinos. For example, one of the Breeding (similar to that described in U.S. Pat. No. b 5,275,411) shufflers is capable of verifying that the total number of cards in the deck has not changed. If the wrong number of cards are counted, the dealer can call a misdeal and return bets to players. A number of shufflers have been developed which provide a continuous supply of shuffled cards to a player. This is in contrast to batch type shuffler designs of the type described above. The continuous shuffling feature not only speeds the game, but protects casinos against players who may achieve higher than normal winnings by counting cards or attempting to detect repeated patterns in cards from deficiencies of randomization in single batch shufflers. An example of a card game in which a card counter may significantly increase the odds of winning by card counting or detecting previously occurring patterns or collections of cards is Blackjack. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses a continuous automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The Lorber shuffler counts the number of cards in the storage device prior to assigning cards to be fed to a particular location. The Samsel, Jr. patent (U.S. Pat. No. 4,513,969) discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. U.S. Pat. No. 5,382,024 (Blaha) discloses a continuous shuffler having a unshuffled card receiver and a shuffled card receiver adjacent to and mounted for relative motion with respect to the unshuffled card receiver. Cards are driven from the unshuffled card receiver and are driven into the shuffled card receiver forming a continuous supply of shuffled cards. However, the Blaha shuffler requires specially adapted cards, particularly, plastic cards, and many casinos have demonstrated a reluctance to use such cards. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically and continuously shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 4,770,421 (Hoffman) discloses a continuous card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a fixed number of distribution schedules is provided for distributing cards into a number of pockets. The microprocessor sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the cards have been through a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are moved onto the second elevator. The Hoffman patent does not disclose randomly selecting a pocket for delivering each card. Nor does the patent disclose a single stage process which randomly arranges cards into a degree of randomness satisfactory to casinos and players. Although the Hoffman shuffler was commercialized, it never achieved a high degree of acceptance in the industry. Card counters could successfully count cards shuffled in the device, and it was determined that the shuffling of the cards was not sufficiently random. U.S. Pat. No. 5,683,085 (Johnson) describes a continuous shuffler which includes a chamber for supporting a main stack of cards, a loading station for holding a secondary stack of cards, a stack gripping separating mechanism for separating or cutting cards in the main stack to create a space and a mechanism for moving cards from the secondary stack into the spaces created in the main stack. U.S. Pat. No. 4,659,082 (Greenberg) discloses a carousel type card dispenser including a rotary carousel with a plurality of card compartments around its periphery. Cards are injected into the compartments from an input hopper and ejected from the carousel into an output hopper. The rotation of the carousel is produced by a stepper motor with each step being equivalent to a compartment. In use, the carousel is rotated past n slots before stopping at the slot from which a card is to be ejected. The number n is determined in a random or near random fashion by a logic circuit. There are 216 compartments to provide for four decks and eight empty compartments when all the cards are inserted into compartments. An arrangement of card edge grasping drive wheels are used to load and unload the compartments. U.S. Pat. No. 5,356,145 (Verschoor) discloses another card shuffler involving a carousel or “rotatable plateau.” The Verschoor shuffler has a feed compartment and two card shuffling compartments which each can be placed in first and second positions by virtue of a rotatable plateau on which the shuffling compartments are mounted. In use, once the two compartments are filled, a drive roller above one of the. shuffling compartments is actuated to feed cards to the other compartment or to a discharge means. An algorithm determines which card is supplied to the other compartment and which is fed to the discharge. The shuffler is continuous in the sense that each time a card is fed to the discharge means, another card is moved from the feed compartment to one of the shuffling compartments. U.S. Pat. No. 4,969,648 (Hollinger et al.) discloses an automatic card shuffler of the type that randomly extracts cards from two or more storage wells. The shuffler relies on a system of solenoids, wheels and belts to move cards. Cards are selected from one of the two wells on a random basis so a deck of intermixed cards from the two wells is provided in a reservoir for the dealer. The patent is principally directed to a method and apparatus for detecting malfunctions in the shuffler, which at least tends to indicate that the Hollinger et al. shuffler may have some inherent deficiencies, such as misalignments of extraction mechanisms. The size of the buffer supply of shuffled cards in the known continuous shufflers is large, i.e., 40 or more cards in the case of the Blaha shuffler. The cards in the buffer cannot include cards returned to the shuffler from the previous hand. This undesirably gives the player some information about the next round. Randomness is determined in part by the recurrance rate of a card previously-played in the next consecutively dealt hand. The theoretical recurrence rate for known continuous shufflers is believed to be about zero percent. A completely random shuffle would yield a 13.5% recurrance rate using four decks of cards. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card-shuffling devices, none describes a device and method for providing a continuous supply of shuffled cards with the degree of randomness and reliability required by casinos until the filing of copending U.S. patent application Ser. No. 09/060,598. That device and method continuously shuffles and delivers cards with an improved recurrence rate and improves the acceptance of card shufflers and facilitate the casino play of card games. BRIEF SUMMARY OF THE INVENTION The present invention provides an electromechanical card handling apparatus and method for continuously shuffling cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in handling or sorting sheet material generally. In one embodiment, the present invention provides an apparatus for moving playing cards from a first group of unshuffled cards into shuffled groups of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that the cards are moved into a number of randomly selected compartments. Sensors act to monitor and to trigger operation of the apparatus, card moving mechanisms, and the elevator and also provide information to the microprocessor. The controlling microprocessor, including software, selects or identifies where cards will go as to the selected slot or compartment before card handling operations begin. For example, a card designated as card 1 may be directed to slot 5, a card designated as card 2 may be directed to slot 7, a card designated as card 3 may be directed to slot 3, etc. An advantage of the present invention is that it provides a programmable card-handling machine with a display and appropriate inputs for controlling and adjusting the machine. Additionally, there may be an elevator speed adjustment and sensor to adjust and monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing or eliminating the number of back up machines or units required at a casino. Since it is customary in the industry to provide free backup machines, a reduction in the number of backup machines needed presents a significant cost savings. The display may include a use rate and/or card count monitor and display for determining or monitoring the usage of the machine. Another advantage of the present invention is that it provides an electromechanical playing card handling apparatus for automatically and randomly generating a continuous supply of shuffled playing cards for dealing. Other advantages are a reduction of dealer shuffling time, and a reduction or elimination of security problems such as card counting, possible dealer manipulation and card tracking, thereby increasing the integrity of a game and enhancing casino security. Yet another advantage of the card handling apparatus of the present invention is that it converts a single deck, multiple decks, any number of unshuffled cards or large or small groups of discarded or played cards into shuffled cards ready for use or reuse in playing a game. To accomplish this, the apparatus includes a number of stacked or vertically oriented card receiving compartments one above another into which cards are inserted, one at a time, so a random group of cards is formed in each compartment and until all the cards loaded into the apparatus are distributed to a compartment. Upon demand, either from the dealer or a card present sensor, or automatically, the apparatus delivers one or more groups of cards from the compartments into a dealing shoe for distribution to players by the dealer. The present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Another advantage is that the apparatus of the present invention provides for the initial top feeding or loading of an unshuffled or discarded group of cards thereby facilitating use by the dealer. The shuffled card receiving shoe portion is adapted to facilitate use by a dealer. An additional advantage of the card handling apparatus of the present invention is that it facilitates and speeds the play of casino wagering games, particularly those games wherein multiple decks of cards are used in popular, rapidly played games (such as twenty-one or blackjack), making the games more exciting for players. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled new or played group of cards into a group of shuffled or reshuffled cards available to a dealer for distribution to players. The first step of this process is the dealer placing an initial group of cards, comprising unshuffled or played cards, into the card receiver of the apparatus. The apparatus is started or starts automatically by sensing the presence of the cards and, under the control of the integral microprocessor, it transfers the initial group of cards, randomly, one at a time, into a plurality of compartments. Groups of cards in one or more compartments are delivered, upon the dealer's demand or automatically, by the apparatus from that compartment to a card receiving shoe for the dealer to distribute to a player. According to the present invention, the operation of the apparatus is continuous. That is, once the apparatus is turned on, any group of cards loaded into the card receiver will be entirely processed into one or more groups of random cards in the compartments. The software assigns an identity to each card and then directs each identified card to a randomly selected compartment by operating the elevator motor to position that randomly selected compartment to receive the card. The cards are unloaded in groups from the compartments, a compartment at a time, as the need for cards is sensed by the apparatus. Thus, instead of stopping play to shuffle or reshuffle cards, a dealer always has shuffled cards available for distribution to players. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly and set up costs. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and outside the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be counted with minimum game interruption. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. A novel gravity feed/diverter system is described to reduce the potential for jamming and reducing the chance for multiple cards to be fed from a card feeder into selected card receiving compartments. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view depicting the apparatus of the present invention as it might be disposed ready for use in a casino on a gaming table. FIG. 2 is a perspective view, partially broken away, depicting the rear of the apparatus of the present invention. FIG. 3 is a front perspective view of the card handling apparatus of the present invention with portions of the exterior shroud removed. FIG. 4 is a side elevation view of the present invention with the shroud and other portions of the apparatus removed to show internal components. FIG. 5 is a side elevation view, largely representational, of the transport mechanism and rack assembly of the apparatus of the present invention. FIG. 5a is an expanded side elevation view of a shelf as shown in FIG. 5, showing more detail of the rack assembly, particularly the shelves forming the top and bottom of the compartments of the rack assembly. FIG. 6 is an exploded assembly view of the transport mechanism shown in FIG. 5. FIG. 7 is a top plan view, partially in section, of the transport mechanism. FIG. 8 is a top plan view of one embodiment of the pusher assembly of the present invention. FIG. 8a is a perspective view of a pusher assembly of the present invention. FIG. 9 is a front elevation view of the rack and elevator assembly. FIG. 10 is an exploded assembly view of one embodiment of a portion of the rack and elevator assembly. FIG. 11 depicts an alternative embodiment of the shelves or partitions for forming the stack of compartments of the present invention. FIG. 12 is a simplified side elevation view, largely representational, of the card handler of the present invention. FIG. 13 is a perspective view of a portion of the card handling apparatus of the present invention, namely, the second card receiver at the front of the apparatus, with a cover portion of the shroud removed. FIG. 14 is a schematic diagram of an electrical control system for one embodiment of the present invention. FIG. 15 is a schematic diagram of the electrical control system. FIG. 16 is a schematic diagram of an electrical control system with an optically-isolated bus. FIG. 17 is a detailed schematic diagram of a portion of FIG. 16. FIG. 18 is a side elevational view of a device that prevents the dealer from pushing cards in the output shoe back into the card way. FIG. 19 a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed. DETAILED DESCRIPTION This detailed description is intended to be read and understood in conjunction with appended Appendices A and B, which are incorporated herein by reference. Appendix A provides an identification key correlating the description and abbreviation of certain motors, switches and photoeyes or sensors with reference character identifications of the same components in the Figures, and gives the manufacturers, addresses and model designations of certain components (motors, limit switches and sensors). Appendix B outlines steps in a homing sequence, part of one embodiment of the sequence of operations. With regard to means for fastening, mounting, attaching or connecting the components of the present invention to form the apparatus as a whole, unless specifically described as otherwise, such means are intended to encompass conventional fasteners such as machine screws, rivets, nuts and bolts, toggles, pins and the like. Other fastening or attachment means appropriate for connecting components include adhesives, welding and soldering, the latter particularly with regard to the electrical system of the apparatus. All components of the electrical system and wiring harness of the present invention are conventional, commercially available components unless otherwise indicated, including electrical components and circuitry, wires, fuses, soldered connections, chips, boards and control system components. Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as metal, metallic alloys, ceramics, plastics, fiberglass and the like, and components and materials may be similar to or adapted from components and material used to make the card handling apparatus disclosed and described in copending application Ser. No. 09/060,627, entitled “Device and Method For Forming Hands of Randomly Arranged Cards”, filed on Apr. 15, 1998 and incorporated herein by reference. In the following description, the Appendices and the claims, any references to the terms right and left, top and bottom, upper and lower and horizontal and vertical are to be read and understood with their conventional meanings and with reference to viewing the apparatus generally from the front as shown in FIG. 1. Referring then to the Figures, particularly FIGS. 1, 3 and 4, the card handling apparatus 21 of the present invention includes a card receiver 26 for receiving a group of cards to be randomized or shuffled, a single stack of card-receiving compartments 28 (see FIGS. 4 and 9) generally adjacent to the card receiver 26, a card moving or transporting mechanism 30 (see FIGS. 3 and 4) between and linking the card receiver 26 and the compartments 28, and a processing unit, indicated generally at 54 in FIG. 3, that controls the apparatus 21. The apparatus 21 includes a second card mover 192 (see FIGS. 4, 8 and 8a) for emptying the compartments 28 into a second card receiver 36. Referring to FIGS. 1 and 2, the card handling apparatus 21 includes a removable, substantially continuous exterior housing shroud 40. The shroud 40 may be provided with appropriate vents 42 for cooling. The card receiver or initial loading region, indicated generally at 26 is at the top, rear of the apparatus 21, and the second card receiver 36 is at the front of the apparatus 21. Controls and/or display features 32 are generally at the rear or dealer-facing side of the machine 21. FIG. 2 provides a view of the rear of the apparatus 21 and more clearly shows the display and control inputs and outputs 32, including power input and communication port 46. FIG. 3 depicts the apparatus 21 with the shroud 40 removed, as it might be for servicing or programming, whereby internal components may be visualized. The apparatus includes a generally horizontal frame floor 50 for mounting and supporting operational components. A control (input and display) module 56 is cantilevered at the rear of the apparatus 21, and is operably connected to the operational portions of the apparatus 21 by suitable wiring or the like. The control module 56 may carry the microprocessor (not shown), or the microprocessor is preferably located on processing unit 54 on the frame 50 inside the shroud 40. The inputs and display portion 44 of the module 56 are fitted to corresponding openings in the shroud 40, with associated circuitry and programming inputs located securely with the shroud 40 when it is in place as shown in FIGS. 1 and 2. In addition, the present invention generically and specifically a card handler or shuffling device comprising: a card staging area for receiving cards to be handled; a plurality of card-receiving compartments, the card staging area (and a card mover) and the compartments are relatively movable; a card mover generally between the staging area and the compartments for moving a card from the staging area into one of the compartments; a microprocessor programmed to identify each card in the card staging area and to relatively actuate the card mover to move an identified card to a randomly selected compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a compartment; a drive system responsive to the microprocessor for relatively moving the compartments; and a counting system for counting cards within specified areas within the card handler. The terms “relatively actuate” and “relatively move” are used in this description to emphasize the point that there should be relative movement between the compartments and the card mover/card staging area. Relative movement may be caused by movement of the rack of compartments only, movement of the card mover only, or by movement of both the rack of compartments and the card mover/staging area. The alignment of the card feeder and the feeding of the card may be done as separate (in time) steps or as contemporaneous steps, with either the feeder (card mover) moving and being fed a card at the same time or having the card fed at a distinct time from the moving of the feeder (card mover). The card handler counting system preferably counts cards entering and leaving the plurality of card-receiving compartments. There may be present a card moving system to move cards from the plurality of card-receiving compartments to a second card receiving area. The card handler may have the counting system count cards entering and leaving the plurality of card-receiving compartments and cards entering and leaving the second card receiving area, and the counting system may maintain a rolling count of the cards within both the plurality of card-receiving compartments and the second card receiving area. This format could use inputs operably coupled to the microprocessor for inputting information into the microprocessor. A playing card handler according to the present invention may also comprise: a stack of compartments for accumulating cards in at least one compartment; a microprocessor programmed to randomly select the compartment which receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a selected number of compartments; a card staging area for receiving a stack of cards to be handled, wherein the stack of compartments and the card staging area are movable relative to each other, by any one being independently movable or by both being movable; card moving means responsive to output signals from the microprocessor for moving between the staging area and the stack of mixing compartments; a card mover for moving cards from the compartments to a second card receiver; and the microprocessor performing as a counting system for counting cards within specified areas within the card handler. This apparatus may further comprise a data storage medium accessible by the processing unit, wherein the data storage medium has a program stored on it, and wherein the program is configured to cause the processing unit to cause the card moving means to move cards from the staging area to random compartments. The microprocessor may monitor, record and control a display for the use of the apparatus. The apparatus may further comprise at least one sensor for monitoring the movement of cards and the data storage medium may be further configured to cause the processing unit to detect a card jam. A method according to the present invention for substantially continuously replenishing a group of processed cards may comprise: providing a card receiver for receiving cards to be processed; providing a single stack of card-receiving compartments generally adjacent to the card receiver and means for moving the stack relative to a card moving mechanism; providing a card-moving mechanism between the card receiver and the stack for moving cards from the card receiver to the card-receiving compartments; providing a second card receiver for receiving processed cards; providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and counting cards within specified areas within the card handler. Card Reader Referring to FIGS. 3 and 4, the card receiver or loading region 26 includes a card receiving well 60. The well 60 is defined by upright, generally parallel card guiding side walls 62 and a rear wall 64. It includes a floor surface 66 pitched or angled downwardly toward the front of the apparatus 21. Preferably, the floor surface is pitched from the horizontal at an angle ranging from approximately five to twenty degrees, with a pitch of seven degrees being preferred. A removable, generally rectangular weight or block 68 is freely and slidably received in the well 60 for free forward and rearward movement along the floor surface 66. Under the influence of gravity, the block 68 will tend to move toward the forward end of the well 60. The block 68 has an angled, card-contacting front face 70 for contacting the back (i.e., the bottom of the bottommost card) of a group of cards placed into the well, and urges cards (i.e., the top card of a group of cards) forward into contact with the card transporting mechanism 30. The card-contacting face 70 of the block 68 is at an angle complimentary to the floor surface 66 of the well 60, for example, an angle of between approximately 10 and 80 degrees, and preferably at an angle of 40 degrees. This angle and the weight of the block keep the cards urged forwardly against the transport mechanism 30. The selected angle of the floor 66 and the weight of the block 68 allow for the free floating rearward movement of the cards and the block 68 to compensate for the rearward force and movement generated as the top or forwardmost card contacts the transport mechanism 30 and begins to move. The well 60 includes a card present sensor 74 to sense the presence or absence of cards in the well 60. Preferably, the block 68 is mounted on a roller 69 for easing the movement of the block 68, and/or the floor 66 and the bottom of the block may be formed of or coated with friction reducing material. As shown in FIG. 6, the block 68 may have a thumb or finger receiving notch 71 to facilitate moving it. Card Receiving Compartments The assembly or stack of card receiving compartments 28 is depicted in FIGS. 4, 9 and 10, and may also be referred to as a rack assembly. Referring back to FIG. 3, the rack assembly 28 is housed in an elevator and rack assembly housing 78 generally adjacent to the well 60, but horizontally spaced therefrom. An elevator motor 80 is provided to position the rack assembly 28 vertically under control of a microprocessor, in one embodiment, generally part of the processing unit 54. The motor 80 is linked to the rack assembly 28 by a continuous resilient member such as a timing belt 82. Referring to FIG. 10, which depicts a portion of the rack assembly 28 and how it may be assembled, the rack assembly 28 includes a bottom plate 92, a left hand rack 94 carrying a plurality of half shelves 96, a right hand rack 98 including a plurality of half shelves 100 and a top plate 102. Together the right and left hand racks 94, 98 and their respective half shelves 96, 100 form the individual plate-like shelf pieces 104 for forming the top and bottom walls of the individual compartments 106. The rack assembly 28 is operably mounted to the apparatus 21 by a left side rack plate 107 and a linear guide 108. It is attached to the guide by a guide plate 110. The belt 82 links the motor 80 to a pulley 112 for driving the rack assembly 28 up and down. A hall effect switch assembly 114 is provided to sense the bottom position of the rack assembly 28. FIG. 9 depicts a rack assembly 28 having 19 individual compartments 106 for receiving cards. Generally speaking, a larger number of individual compartments is preferred over fewer compartments, with 17 to 19 compartments being most preferred for randomizing four decks of cards, but it should be understood that the present invention is not limited to a rack assembly of seventeen to nineteen compartments. Preferably, the compartments 106 are all substantially the same size, i.e., the shelves 104 are substantially equally vertically spaced from each other. FIG. 7 shows, in part, a top plan view of one of the shelf members 104 and that each includes a pair of rear tabs 124 located at respective rear corners of the shelf member 104. The tabs 124 are for card guiding, and help make sure cards are moved from the transporting mechanism 30 into the rack assembly 28 without jamming by permitting the leading edge of the card to be guided downwardly into the compartment 106 before the card is released from the card moving mechanism 30. Generally, it is desirable to mount the shelves as close to the transporting mechanism 30 as possible. FIG. 11 depicts an alternative embodiment of plate-like shelf members 104 comprising a single-piece plate member 104′. An appropriate number of the single-piece plates, corresponding to the desired number of compartments 106 would be connected between the side walls of the rack assembly 28. The plate 104′ depicted in FIG. 11 includes a curved or arcuate edge portion 126 on the rear edge 128 for removing cards or clearing jammed cards, and it includes the two bilateral tabs 124, also a feature of the shelf members 104 of the rack assembly 28 depicted in FIG. 7. The tabs 124 act as card guides and permit the plate-like shelf members 104 forming the compartments 106 to be positioned as closely as possible to the card transporting mechanism 30 to ensure that cards are delivered correctly into a compartment 106 even though they may be warped or bowed. Referring back to FIG. 5, an advantage of the plates 104 (and/or the half plates 96, 100) forming the compartments 106 is depicted. As shown in more detail in FIG. 5a, each plate 104 includes a beveled or angled underside rearmost surface 130 in the space between the shelves or plates 104, i.e., in each compartment 106. Referring to FIG. 5, the distance between the forward edge 134 of the plate 104 and the forward edge 132 of the bevel 130 is preferably less than the width of a typical card. The leading edge 136 of a card being driven into a compartment 106 hits the beveled surface 130 and falls down on the top of cards already in the compartment 106 so that it comes to rest properly in the compartment 106 or on the uppermost card of cards already delivered to the compartment. To facilitate a bevel 130 at a suitable angle 137, a preferred thickness for the plate-like shelf members 104 is approximately {fraction (3/32)} of an inch, but this thickness and/or the bevel angle can be changed or varied to accommodate different sizes of cards, such as poker and bridge cards. Preferably, the bevel angle 137 is between approximately ten and 45 degrees, and more preferably is between approximately fifteen and twenty degrees. Whatever bevel angle and thickness is selected, it is preferred that cards C should come to rest with their trailing edge at least even with and, preferably rearward of edge 132 of the plate-like shelf members 104. The front of the rack assembly 28 is closed by a removable cover 142, which may be formed of opaque, transparent or semi-transparent material such as suitable metal or plastic. Card Moving Mechanism Referring to FIGS. 4, 5 and 6, a preferred card transporting or moving mechanism 30 linking the card receiving well 60 and the compartments 106 of the rack assembly 28 includes a card pickup roller assembly 150. The card pick-up roller assembly 150 is located generally at the forward portion of the well 60. The pick-up roller assembly 150 includes friction rollers 151A, 151B supported by a bearing mounted axle 152 extending generally across the well 60 whereby the card contacting surface of the roller is in close proximity to the forward portion of the floor surface 66. The roller assembly 150 is driven by a pick up motor 154 operably coupled to the axle 152 by a suitable continuous connector 156 such as a belt or chain. The card-contacting surface of the roller may be generally smooth, it may be textured or it may include one or more finger or tab-like extensions, as long as card gripping and moving is not impaired. With continued reference to FIGS. 4, 5 and 6, the preferred card moving mechanism 30 includes a pinch roller card accelerator or speed-up system 160 located adjacent to the front of the well 60 generally between the well 60 and the rack assembly 28 forwardly of the pick-up roller assembly 150. As shown in FIG. 7, it is the speed-up system 160 which nests close to the shelves 104 between the tabs 124 of the shelves. Referring back to FIGS. 4, 5 and 6, the speed-up system 160 comprises a pair of axle supported, closely adjacent speed-up rollers, one above the other, including a lower roller 162 and an upper roller 164. The upper roller 164 may be urged toward the lower roller 162 by a spring assembly 166 (FIG. 4) or the roller 162 and 164 may be fixed in slight contact or near to contact and formed of a generally firm yet resilient material which gives just enough to admit a card. Referring to FIG. 4, the lower roller 162 is a driven by a speed-up motor 166 operably linked to it by a suitable connector 168 such as a belt or a chain. The mounting for the speed-up rollers also supports a rearward card in sensor 172 and a forward card out sensor 176. FIG. 5 is a largely representational view depicting the relationship between the card receiving well 60 and the card transporting mechanism 30, and also shows a card C being picked up by the pickup roller assembly 150 and being moved into the pinch roller system 160 for acceleration into a compartment 104 of the rack assembly 28. In one embodiment, the pick-up roller assembly 150 is not continuously driven, but rather indexes and includes a one-way clutch mechanism. After initially picking up a card and advancing it into the speed-up system 160, the pick-up roller motor 154 stops when the leading edge of a card hits the card out sensor 176, but the roller assembly 150 free-wheels as a card is accelerated from under it by the speed-up system 160. In one embodiment, the speed-up pinch system 160 is continuous in operation once a cycle starts. When the trailing edge of the card passes the card out sensor 176, the rack assembly 28 moves the next designated compartment into place for receiving a card. The pick up motor 154 then reactuates. Additional components and details of the transport mechanism 30 are depicted in FIG. 6, an exploded assembly view thereof In FIG. 6 the inclined floor surface 66 of the well 60 is visible, as are the axle mounted pickup and pinch roller assemblies 150, 160, respectively, and their relative positions. Referring to FIGS. 4 and 5, the transport assembly 30 includes a pair of generally rigid stopping plates including an upper stop plate and a lower stop plate 180, 182, respectively. The plates 180, 182 are fixedly positioned between the rack assembly 28 and the speed-up system 160 immediately forward of and above and below the pinch rollers 162, 164. The stop plates 180, 182 stop the cards from rebounding or bouncing rearwardly, back toward the pinch rollers, after they are driven against and contact the cover at the front of the rack assembly 28. Processing/Control Unit FIG. 14 is a block diagram depicting an electrical control system which may be used in one embodiment of the present invention. The control system includes a controller 360, a bus 362, and a motor controller 364. Also represented in FIG. 14 are inputs 366, outputs 368, and a motor system 370. The controller 360 sends signals to both the motor controller 364 and the outputs 368 while monitoring the inputs 366. The motor controller 364 interprets signals received over the bus 362 from the controller 360. The motor system 370 is driven by the motor controller 364 in response to the commands from the controller 360. The controller 360 controls the state of the outputs 368 by sending appropriate signals over the bus 362. In a preferred embodiment of the present invention, the motor system 370 comprises motors that are used for operating components of the card handling apparatus 21. Motors operate the pick-up roller, the pinch, speed-up rollers, the pusher and the elevator. The gate and stop may be operated by a motor, as well. In such an embodiment, the motor controller 364 would normally comprise one or two controllers and driver devices for each of the motor used. However, other configurations are possible. The outputs 368 include, for example, alarm, start, and reset indicators and inputs and may also include signals that can be used to drive a display device (e.g., a LED display—not shown). Such a display device can be used to implement a timer, a card counter, or a cycle counter. Generally, an appropriate display device can be configured and used to display any information worthy of display. The inputs 366 include information from the limit switches and sensors described above. Other inputs might include data inputted through operator or user controls. The controller 360 receives the inputs 366 over the bus 362. Although the controller 360 can be any digital controller or microprocessor-based system, in a preferred embodiment, the controller 360 comprises a processing unit 380 and a peripheral device 382 as shown in FIG. 16. The processing unit 380 in the preferred embodiment may be an 8-bit single-chip microcomputer such as an 80C52 manufactured by the Intel Corporation of Santa Clara, Calif. The peripheral device 382 may be a field programmable micro controller peripheral device that includes programmable logic devices, EPROMs, and input-output ports. As shown in FIG. 15, peripheral device 382 interfaces the processing unit 380 to the bus 362. The series of instructions stored in the controller 360 is shown in FIGS. 15 and 16 as program logic 384. In a preferred embodiment, the program logic 384 is RAM or ROM hardware in the peripheral device 382. (Since the processing unit 380 may have some memory capacity, it is possible that some of the instructions are stored in the processing unit 380.) As one skilled in the art will recognize, various implementations of the program logic 384 are possible. The program logic 384 could be either hardware, software, or a combination of both. Hardware implementations might involve hardwired code or instructions stored in a ROM or RAM device. Software implementations would involve instructions stored on a magnetic, optical, or other media that can be accessed by the processing unit 380. Under certain conditions, it is possible that a significant amount of electrostatic charge may build up in the card handler 21. Significant electrostatic discharge could affect the operation of the handler 21. It may, therefore, be helpful to isolate some of the circuitry of the control system from the rest of the machine. In one embodiment of the present invention, a number of optically-coupled isolators are used to act as a barrier to electrostatic discharge. As shown in FIG. 16, a first group of circuitry 390 can be electrically isolated from a second group of circuitry 392 by using optically-coupled logic gates that have light-emitting diodes to optically (rather than electrically) transmit a digital signal, and photo detectors to receive the optically transmitted data. An illustration of electrical isolation through the use of optically-coupled logic gates is shown in FIG. 17, which shows a portion of FIG. 16 in detail. Four Hewlett-Packard HCPL-2630 optocouplers (labeled 394, 396, 398 and 400) are used to provide an 8-bit isolated data path to the output devices 368. Each bit of data is represented by both an LED 402 and a photo detectors 404. The LEDs emit light when forward biased, and the photo detectors detect the presence or absence of the light. Data is thus transmitted without an electrical connection. Second Card Moving Mechanism Referring to FIGS. 4, 8 and 8a, the apparatus 21 includes a second card moving mechanism 34 comprising a reciprocating card unloading pusher 190. The pusher 190 includes a substantially flexible pusher arm 192 in the form of a rack having a plurality of linearly arranged apertures 194 along its length. The arm 192 is operably engaged with the teeth of a pinion gear 196 driven by an unloading motor 198 controlled by the microprocessor. At its leading or card contacting end, the pusher arm 192 includes a blunt, enlarged card-contacting head end portion 200. The end portion 200 is greater in height than the spacing between the shelf members 104 forming the compartments 106 to make sure that all the cards contained in a compartment are contacted and pushed as it is operated, even bowed or warped cards, and includes a pair outstanding guide tabs 203 at each side of the head 200 for interacting with the second card receiver 36 for helping to insure that the cards are moved properly and without jamming from the compartments 106 to the second card receiver 36. The second card moving mechanism 34 is operated periodically (upon demand) to empty stacks of cards from compartments, i.e., compartments which have received a complement of cards or a selectable minimum number of cards. Second Card Receiver When actuated, the second card moving mechanism 34 empties a compartment 106 by pushing cards therein into a second card receiver 36, which may take the form of a shoe-like receiver, of the apparatus 21. The second card receiver 36 is shown in FIGS. 1, 4, 14 and 16, among others. Referring to FIGS. 12 and 13, the second card receiver 36 includes a shoe-like terminal end plate 204 and a card way, indicated generally at 206, extending generally between the rack assembly 28 and the terminal end plate 204. When a compartment 106 is aligned with the card way 206, as shown in FIG. 12, the card way 206 may be thought of as continuous with the aligned compartment. Referring to FIG. 4, an optional cover operating motor 208 is positioned generally under the card way 206 for raising and lowering a powered cover 142 if such a cover is used. Referring back to FIGS. 4, 12 and 13, the card way 206 has a double curved, generally S-shaped surface and comprises a pair of parallel card guiding rails 210, 212, each having one end adjacent to the rack assembly 28 and a second end adjacent to the terminal end 204. Each rail 210, 212 has a card-receiving groove 213. A S-shaped card support 211 is positioned between the rails 210, 212 for supporting the central portion of a card or group of cards as it moves down the card way 206. A pair of card-biasing springs 215 are provided adjacent to the rails 210, 212 to urge the cards upwardly against the top of the grooves 213 to assist in keeping the all the cards in the group being moved into the second receiver 36 in contact with the pusher 190. The curves of the card way 206 help to guide and position cards for delivery between cards already delivered and the card-pushing block 214, which is generally similar to the block 68. The second curve portion 207 in particular helps position and align the cards for delivery between cards already delivered and the card pushing block 214. The second card receiver 36 is generally hollow, defining a cavity for receiving cards and for containing the mirror image rails 210, 212, the motor assembly 208 and a freely movable card pushing block 214. Referring to FIG. 12, the block 214 has an angled, front card contacting face 216, the angle of which is generally complementary to the angle of the terminal end plate 204. The block 214 has a wheel or roller 218 for contacting the sloping or angled floor 220 of the second card receiver 36 whereby the block moves freely back and forth The free movement helps absorb or accommodate the force generated by the dealer's hand as he deals, i.e., the block 214 is free to bounce rearwardly. A suitable bounce limit means (such as a stop 221 mounted on the floor 220 or a resilient member, not shown) may be coupled near the block 214 to limit its rearward travel. Referring to FIG. 4, a suitable receiver empty sensor 222 may be carried by the terminal plate 204 at a suitable location, and a card jammed sensor 224 may be provided along the card way 206 adjacent to the guide rails 210, 212. The receiver empty sensor 222 is for sensing the presence or absence of cards. The sensor 223 senses the location of block 214 indicating the number of cards in the buffer, and may be operably linked to the microprocessor or directly to the pusher motor 198 for triggering the microprocessor to actuate the pusher 190 of the second transport assembly 34 to unload one or more groups of cards from the compartments 106. As depicted in FIG. 13, the terminal plate 204 may include a sloped surface 204′. The sloped surface 204′ has a raised portion closest to the terminal plate 204, and that portion fits generally under a notch 205′ in the terminal plate 204 for receiving a dealer's finger to facilitate dealing and to help preserve the flatness of the cards. The shoe 204′, the terminal plate 204 and a removable card way cover 209 may be formed as a unit, or as separable individual pieces for facilitating access to the inside of the second receiver 36. FIG. 12 is a largely representational view depicting the apparatus 21 and the relationship of its components including the card receiver 26 for receiving a group of new or played cards for being shuffled for play, including the well 60 and block 68, the rack assembly 28 and its single stack of card-receiving compartments 106, the card moving or transporting mechanism 30 between and linking the card receiver 26 and the rack assembly 28, the second card mover 190 for emptying the compartments 106 and the second receiver 36 for receiving randomized or shuffled cards. Operation/Use Appendix B outlines one embodiment of the operational steps or flow of the method and apparatus of the present invention. The start input is actuated and the apparatus 21 homes (see Appendix B). In use, played or new cards to be shuffled or reshuffled are loaded into the well 60 by moving the block 68 generally rearwardly or removing it. Cards are placed into the well 60 generally sideways, with the plane of the cards generally vertical, on one of the long side edges of the cards (see FIGS. 5 and 12). The block 68 is released or replaced to urge the cards into an angular position generally corresponding to the angle of the angled card contacting face of the block, and into contact with the pick-up roller assembly 150. As the cards are picked up, i.e., after the separation of a card from the remainder of the group of cards in the well 60 is started, a card is accelerated by the speed-up system 160 and spit or moved through a horizontal opening between the plates 180, 182 and into a selected compartment 106. Substantially simultaneously, movement of subsequent cards is underway, with the rack assembly 28 position relative to the cards being delivered by the transport mechanism 30 being selected and timed by the microprocessor whereby selected cards are delivered randomly to selected compartments until the cards in the well 60 are exhausted. In the unlikely event of a card jam during operation, for example, if one of the sensors is blocked or if the pusher hits or lodges against the rack assembly 28, the apparatus 21 may flow automatically or upon demand to a recovery routine which might include reversal of one or more motors such as the pick-up or speed-up motors, and/or repositioning of the rack assembly 28 a small distance up or down. Upon demand from the receiver sensor 222, the microprocessor randomly selects the compartment 106 to be unloaded, and energizes the motor which causes the pusher 190 to unload the cards in one compartment 106 into the second card receiver 36. The pusher is triggered by the sensor 222 associated with the second receiver 36. It should be appreciated that each cycle or operational sequence of the machine 21 transfers all of the cards placed in the well 60 each time, even if there are still cards in some compartments 106. In one embodiment, the apparatus 21 is programmed to substantially constantly maintain a “buffer” (see FIG. 12 wherein the buffer is depicted at “B”) of a selected number of cards, for example 20 cards, in the second receiver. A buffer of more or less cards may be selected. In operation, when sensor 74 detects cards present, the entire stack of unshuffled cards in the card receiver 26 is delivered one by one to the card receiving compartments 106. A random number generator is utilized to select the compartment which will receive each individual card. The microprocessor is programmed to skip compartments that hold the maximum number of cards allowed by the program. At any time during the distribution sequence, the microprocessor can be instructed to activate the unloading sequence. All compartments 106 are randomly selected. It is to be understood that because cards are being fed into and removed from the apparatus 21 on a fairly continuous basis, that the number of cards delivered into each compartment 106 will vary. Preferably, the microprocessor is programmed to randomly select the compartment 106 to be unloaded when more cards are needed. Most preferably, the microprocessor is programmed to skip compartments 106 having seven or fewer cards to maintain reasonable shuffling speed. It has been demonstrated that the apparatus of the present invention provides a recurrance rate of at least 4.3%, a significant improvement over known devices. In one exemplary embodiment, the continuous card shuffling apparatus 21 of the present invention may have the following specifications or attributes which may be taken into account when creating an operational program. Machine Parameters—4 Deck Model: 1. Number of compartments 106: variable between 13-19; 2. Maximum number of cards/compartment: variable between 10-14; 3. Initial number of cards in second card receiver: 20-24; 4. Theoretical capacity of the compartments: 147-266 cards (derived from the number of compartments×the preferred maximum number of cards/compartment); 5. Number of cards in the second card receiver 36 to trigger unloading of a compartment: variable between 6-10; 6. Delivery of cards from a compartment 106 is not tied to a predetermined number of cards in a compartment (e.g., a compartment does not have to contain 14 cards to be unloaded). The minimum number of cards to be unloaded may range from between 4 to 7 cards and it is preferred that no compartment 106 be completely full (i.e., unable to receive additional cards) at any time. In use, it is preferred that the apparatus 21 incorporates features, likely associated with the microprocessor, for monitoring and recording the number of cards in each group of cards being moved into the second card receiver 36, the number of groups of cards moved, and the total number of cards moved. In one embodiment, taking into account the above set forth apparatus attributes, the apparatus 21 may follow the following sequence of operations: Filling the Machine with Cards: 1. The dealer loads the well 60 with pre-shuffled cards; 2. Upon actuation, the apparatus 21 randomly loads the compartments 106 with cards from the well, one card at a time, picking cards from the top of the cards in the well; 3. When one of the compartments 106 receives a predetermined number of cards, unload that compartment 106 into the second card receiver 36; 4. Continue with #2. No compartment loading during second receiver loading; 5. When a second compartment 106 receives a predetermined number of cards, unload that compartment 106 into the second card receiver 36, behind cards already delivered to the second receiver 36; 6. The dealer continues to load cards in the well 60 which are randomly placed into the compartments 106; and 7. Repeat this process until the initial number of cards in receiver 36 has been delivered. In another practice of the present invention, there are three (or more or fewer) separate methods of filling the shoe. The method may be preferably randomly selected each time the machine is loaded. Step 3 (above) outlines one method. A second method is described as follows: Prior to the beginning of the filling cycle, a distinct number of compartments (e.g., four compartments) are randomly selected, and as those compartments reach a minimum plurality number of cards (e.g., six cards), those compartments unload as they are filled to at least that minimum number. The second method delays the initial loading of the shoe as compared to the first method. In a third method, as cards are loaded into the rack assembly, no cards unload until there are only a predetermined plurality number (e.g., four) compartments remaining with a maximum number (e.g., six or fewer) of cards. When this condition is met, the shoe loads from the last plurality number (e.g., four) of compartments as each compartment is filled with a minimum number (e.g., six cards) of cards. This third member delays loading even more as compared to the first and second methods. Continuous Operation 1 The dealer begins dealing; 2. When the number of cards in the second card receiver 36 goes down to a predetermined number sensed by sensor 223, unload one group of cards from one of the compartments 106 (randomly selected); 3. As cards are collected from the table, the dealer loads cards into the receiver 60. These cards are then randomly loaded into compartments 106. In case a compartment has received the maximum number of cards allowed by the program, if selected to receive another card, the program will skip that compartment and randomly select another compartment; and 4. Repeat #2 and #3 as play continues. It is preferable that the ratio of cards out or in play to the total number of cards available should be low, for example approximately 24:208. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and without the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be verified with minimum game interruption. This system may be effected by a number of different procedures, each of which is exemplary and is not intended to limit the options or alternatives that may be used to effect the same or similar results. One method of effecting this method comprises a continuous counting, analysis, reporting based on at least some (but not necessarily all) the following information provided to the microprocessor: the total initial number of cards provided to the shuffler, the number of cards dealt to each player, the number of cards dealt in a complete game, the number of cards dealt in a round, the total number of cards dealt out since new cards were introduced, the total number of cards returned to the shuffler, the difference between the number of cards dealt out and the number of cards returned to the shuffler, specific cards removed and re-supplied to the shuffler, and the like. It must be noted that continuous shufflers are intended to run with no total replacement of the cards to be shuffled, except when the used decks are replaced with new decks. As opposed to the more common batch shufflers, where a specific number of decks are shuffled, the shuffled decks are cut, the game is played with cards distributed until the cut is reached, and then the decks are reinserted into the shuffler for shuffling, the continuous shuffler maintains a large stock of cards within the shuffler assembly, with cards used in the play of a hand being reinserted into the assembly to be combined with the stock of cards that are shuffled and added to the shoe for distribution to the players. This creates the card distribution pattern where the cards are ordinarily distributed between various sections of a shuffler (e.g., a feeder, a separation rack, a shoe, etc.), a manually stored portion of cards on the table, including for example excess cards, discards, cards used in part or in whole in the play of the hand, and cards held by a player. This pattern makes it very difficult to maintain surveillance of the cards and maintain security with respect to the number or type of cards present on the table. One type of continuous shuffler that is particularly useful in the practice of the present invention comprises a shuffler with a feeder zone, separation or shuffling zone (or “rack,” depending upon the design) and shoe zone. This shuffling zone could be any type of shuffling zone or shuffling process, including those constructions known in the art, wherein the novel feature of keeping a card count of cards specifically within a specific zone within the system is maintained. This is opposed to a construction where cards are merely counted in a batch as they are initially fed into a machine or into a zone. In this practice, for example, a constant count of cards is maintained in the shuffling zone by counting the cards inserted, the cards removed, and additional cards inserted into the zone. The feeder zone is a section where cards are inserted into the shuffling apparatus, usually stacked in a collection of cards to be shuffled. The feeder zone is a storage area in the shuffling device that stores unshuffled cards and provides or feeds those cards into a shuffling function. The shuffling or separation zone is a region within the shuffling or card handling apparatus where unshuffled cards are randomly distributed or separated into compartments or receiving areas to form subsets of randomly distributed cards from the unshuffled cards provided from the feeder zone. The shuffling zone could be any region within the device that accomplishes randomization of the cards while keeping track of the actual number of cards within the zone. The shoe is the section of the shuffling apparatus where shuffled cards are stored for delivery to a) players, b) the dealer and/or to c) discard or excess piles. The shoe may receive limited numbers of cards that are replenished (usually automatically) from the separation area. The general operation of this type of system would be as follows, with various exemplary, but non-limiting options provided. Cards are inserted into the feeder region of the shuffler. A number of cards are fed, usually one at a time, into the shuffling or separation zone (hereinafter referred to as the ‘shuffling zone’). The number of cards may be all of the cards (e.g., 1, 2, 3, 4, 5 or more decks depending upon the size of the apparatus and its capacity) or less than all of the cards. The microprocessor (or a networked computer) keeps track of the number of cards fed from the feeder zone into the shuffling zone. The shuffling zone may comprise, for example, a number of racks, vertical slots, vertical compartments, elevator slots, carousel slots, carousel compartments, or slots in another type of movable compartments (movable with respect to the feeding mechanism from the feeder, which could include a stationary separation department and a movable feeder). The shuffling zone can also include a completely different style of randomization or shuffling process, such as the shuffling processes shown in Sines U.S. Pat. Nos. 5,676,372 and 5,584,483. Although the described apparatus is a batchtype shuffler, the device could be easily modified to deliver cards continuously, with a resupply of spent cards. The device, for example, could be adapted so that whenever discards are placed in the infeed tray, the cards are automatically fed into the shuffling chamber. The programming could be modified to eject hands, cards or decks on demand, rather than only shuffling multiple decks of cards. In that type of apparatus, a stack of cards is placed up on edge in the shuffling zone, with one group of card edges facing upwardly, and the opposite edges supported by a horizontal surface defining a portion of the shuffling chamber. The stack of cards is supported on both sides, so that the group of cards is positioned substantially vertically on edge. A plurality of ejectors drive selected cards out of the stack by striking an edge of a card, sending the card through a passage and into a shuffled card container. Shuffling is accomplished in one shuffling step. In this example, by equipping the shuffler with a feed mechanism that is capable of counting each card that is loaded, including the cards added into the stack during operation, and counting each card ejected from the stack, it is possible to keep track of the total number of cards within the shuffling zone at any given time. In another example of the present invention, the shuffling chamber may be similar to that shown in U.S. Pat. No. 4,586,712 (Lorber et al.). That device shows a carousel-type shuffling chamber having a plurality of radially disposed slots, each slot adapted to receive a single card. A microprocessor keeps track of he number of or empty slots during operation (see column 7, lines 5-16). In the example of a slot-type shuffling apparatus that accepts more than one card per shelf or slot, the cards are generally inserted into the particular type of compartments or slots available within the system on a random basis, one card at a time. This creates a series of segments or sub-sets of cards that have been randomly inserted into the compartments or slots. These sub-sets are stored until they are fed into the shoe. The number of cards delivered from the shuffling zone into the shoe are also counted. In this manner, a constant count of the number of cards in the shuffling zone is maintained. At various times, either random times or at set intervals or at the command of the microprocessor, cards from the separation zone are directed into the shoe. The microprocessor may signal the need for cards in the shoe by counting the number of cards removed from the shoe (this includes counting the number of cards inserted into the shoe and the number of cards removed from the shoe, so that a count of cards in the shoe may be maintained. The process may then operate as follows. At all times (continually), the microprocessor tracks the number of cards present in the shuffling zone. The dealer or other floor personnel activates the card verification process, halting the delivery of cards from the shuffling zone to the shoe. All cards on the table are then fed into the shuffling zone. The total cards in the shuffling zone (e.g., within the rack of compartments or slots) is determined. If there are cards in the shoe zone, those cards in the shoe are placed into the feeder zone. The cards are fed from the feeder zone into the shuffling zone. The total of cards 1) originally in the shuffling zone area and 2) the cards added to the feeder (and any cards already in the feeder that had not been sent to the shuffling zone before discontinuance of the handling distribution functions of the apparatus) and then fed into the separation zone are totaled. That total is then compared to the original number or programmed number of cards in the system. A comparison identifies whether all cards remain within the system and whether security has been violated. The system may indicate a secure system (e.g., the correct amount or number of cards) by a visual signal (e.g., LED or liquid crystal readout, light bulb, flag, etc.) or audio signal. Similarly, an insecure security condition (e.g., insufficient number of cards or plethora of cards) could be indicated by a different visual or audio signal, or could activate an unloading sequence. If an insecure system notice is produced, there may be an optional function of reopening the system, recounting the cards, pausing and requiring an additional command prior to unloading, allowing the dealer to add additional cards subsequently found (e.g., retained at a player's position or in a discard pile), and then recounting some or all of the cards. Alternatively, the cards in the shoe may also be accurately accounted for by the microprocessor. That is, the microprocessor in the card-handling device of the present invention may count the cards in the shuffling zone and the cards in the shoe zone. This would necessitate that sensing be performed in at least two locations (from the feeder into the shuffling zone and out of the shoe) or more preferably in at least three locations (from the feeder to the shuffling zone, from the shuffling zone to the shoe zone, and cards removed from the shoe). Therefore, the cards may be counted in at least three different ways within the apparatus and provide the functionality of maintaining a count of at least some of the cards secure within the system (that is, they cannot be removed from the system either without the assistance of the dealer, without triggering an unlock function within the system, or without visually observable activity that would be observed by players, the dealer, house security, or video observation). For example, by counting and maintaining a count only within the shuffling zone, there is no direct access to the counted cards except by opening the device. By counting and maintaining a count within only the shuffling zone and the shoe, there is no direct access to the shuffling zone, and the cards may be removed from the shoe only by the dealer, and the dealer would be under the observation of the players, other casino workers, and video camera observation. The initiation of the count will cause a minor pause in the game, but takes much less time then a shuffling operation, including both a manual shuffling operation (e.g., up to five minutes with a six deck shoe) and a mechanical shuffling operation (1-4 minutes with a one to six deck shoe, which is usually performed during the play of the game with other decks), with the counting taking one minute or less. The actual initiation of the count must be done by the dealer or other authorized personnel (e.g., within the house crew), although the card handling apparatus may provide a warning (based on time since the last count, the time of day, randomly, on a response to instructions sent from a house's control center, or with other programmed base) that a count should be performed. The count may be initiated in a number of ways, depending upon where the count is being performed. A starting point would always be providing an initial total card count of all cards to be used with the shuffler. This can be done by the machine actually counting all the cards at the beginning of the game, by the dealer specifically entering a number for the total number of cards from a keypad, or by indicating a specific game that is defined by the number of cards used in the game. The card verification process is preferably repeated automatically whenever a card access point is opened (i.e., a shoe cover or door is opened). As an example, a situation will be analyzed where the dealer decides that a count is to be made in the system where card count is maintained in the shuffling zone only. The dealer enters or presets a specific card count of 208 (two hundred and eight cards, four decks) into the microprocessor for the shuffler by pressing numbers on a keypad. The dealer will deactivate any function of the machine that takes cards out of the shuffling zone will be deactivated. All cards on the table and in the shoe will then be added to the feeder zone. The cards will be automatically fed from the feeder zone into the shuffling zone and as a security function, each counted as it passes from the feeder zone to the shuffling zone. The count from this security function (or card totaling of cards not stored in the shuffling zone) will be added by the microprocessor to the running or rolling shuffling zone card count to provide a total card count. This total card count will then be compared to the preset value. In another embodiment, a four deck game of Spanish Twenty-One® blackjack will be played. The dealer indicates the game to be played, and the card handling device (shuffler) indicates that 192 (one hundred and ninety-two, that is, 4×48 cards) cards will be used. After one hour, the shuffler indicates that a count is required for security. The apparatus counts all cards in the shuffling zone and the shoe. The dealer closes a panel over the shoe to restrict access to the cards. The players' cards from the last hand, any discards, and all other cards not in the shuffling zone or shoe are then added to the feeder zone. The cards in the feeder zone are then fed into the shuffling zone and counted as the new card entry total. That new card entry total is added to the rolling total for cards held within the combined shuffling zone and shoe. If the total is 192, a green light (or other color, or LED or liquid crystal display, or audio signal) will indicate that the proper count was achieved. If the count is inaccurate, a number of different procedures may be activated, after the card handling device has appropriately indicated that there is a discrepancy between the original or initial card count and the final card count performed on command by the device. If the card count finds an insufficiency (e.g., fewer than 192 cards), the device may pause and the dealer and/or other casino employees will visually examine the table to see if cards were inadvertently left out of the count. The shuffler may also have the capability that it can abort a shuffling procedure and require a reloading of cards. If cards are found, the additional cards will be added to the feeder zone, an additional count initiated, and that second count total added to the initial final card count total. If the total still lacks correspondence to the initial count, a further search may be made or security called to investigate the absence of cards. If the device is in a “pause” mode, the dealer may activate an unloading process or a recounting process. A complete separate count may be made again by the machine and/or by hand to confirm the deficiency. The indication of an excess of cards is a more definitive initial indication of a security issue. After such an indication, security would be called (either by floor personnel or by direct signal from the microprocessor) and an immediate count (mechanical and/or manual) of all the cards would be made. That issue would be resolved by the recount indicating the correct number of cards or an indication that an excess of cards actually exists. The device can be constructed with not only a sensor or sensors to count the cards, but also with a scanner or scanners that can read data on the cards to indicate actual card ranks and values. In this manner, particularly by reading the cards going into the shoe and being removed from the shoe, and/or reading the cards going into distinct compartments within the rack, the shuffler may monitor the actual cards within the apparatus, not merely the number of cards present. In this manner, as where a jackpot is awarded and the cards must be verified, the card handling device may quickly verify the presence of all cards by number and rank within the decks. This can also be used to verify a hand by identifying which cards are specifically absent from the total of the cards originally inserted into the gaming apparatus. For example, the player's hand with a jackpot winning hand is left in front of the player. The apparatus is activated to count and identify cards. If the apparatus indicates that A-K-Q-J-10 of Hearts are missing from the count and the player has the A-K-Q-J-10 of Hearts in front of her/him, then the jackpot hand is verified with respect to the security of the total of the playing cards. This is ordinarily done manually and consumes a significant amount of time. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. FIG. 18 is a side elevational view of an output shoe 36 incorporating a gate 400 mounted for pivotal movement about an axis 410. The gate is of sufficient size and shape to retract and avoid obstruction of card way 206 when cards are moving into output shoe 36. A leading edge of a group of cards (not shown) contacts a first surface 412, moving gate 400 upwardly and substantially in a direction shown by arrow 414. Once the group of cards passes into the shoe as shown by the position of the group of cards identified as B, the gate lowers by means of gravity to a second position shown in phantom at 416, blocking an opening to card way 206. With gate 400 in the lower resting position shown at 416, the dealer cannot inadvertently push cards B back into the card way 206 when removing cards from the shoe 36. In this manner, the card way 206 is always capable of passing another group of cards to the shoe 36, assuring a continuous supply of cards. A novel gravity feed/diverter system is described to reduce the potential for jamming and greatly reduces the chance for multiple cards being fed into the shuffling zone. In this feature, two separate features are present between the feeder zone and the separation zone as shown in FIG. 19, which is a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed. The two features shown are adjacent to the feed tray 10. The feed tray 10 angled (at other than horizontal) with respect to the horizontal plane, but could also be substantially horizontal. The cards are urged towards the features on a discriminating barrier 500 by a pickoff roller 502. The pickoff roller 502 is shown here as driven by a motor 504. The shape of the lower edge of the discriminating barrier 500 is important because it discourages more than one card at a time from passing from the feed tray 10 to the separation zone 506. In the event that two cards are accidentally moved at the same time, the discriminating barrier 500, because of the height of a lower edge 508, the barrier will allow only one card to pass through, with the second (usually top most) card striking a braking surface 510 within the discriminating barrier 500 and retarding its forward movement. The braking surfaces 510 are shown as two separate surfaces. However, the braking surface 510 can be a single continuous surface or more than two surfaces. It is important that a contact surface be provided that inhibits forward movement of a card resting upon another card. Since the friction between the two adjacent cards is minimal, the contact surface does not need to include sharply angled or substantially vertical surfaces to inhibit the forward movement of the card. Another aspect of the separator of the present invention is the presence of a brake roller assembly 511. The assembly includes a stationary top roller 512 and a driven roller 514. The spacing between top roller 512 and bottom roller 514 is selected so that only one card can pass through the barrier 500. Single cards passing through roller assembly 511 pass through speed-up roller assembly 516, and into the shuffling zone. Upon failing to advance, the apparatus may be programmed to treat the presence of the additional card (sensed by sensing elements within the shuffler, not shown) as a jam or as the next card to be advanced, without an additional card removed from the feeder zone. Separating the cards to assure that only one card at a time is fed is critical to obtaining accurate card counting and verification (unless the counting system is sufficiently advanced to enable distinguishing between the number of cards fed and counting that number of cards). Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims. Appendix A Motors, Switches and Sensors Item Name Description 1 ICPS Input Card Present Sensor 2 RCPS Rack Card Present Sensor 3 RHS Rack Home Switch 4 RPS Rack Position Sensor 5 UHS Unloader Home Switch 6 DPS Door Present Switch 7 RUTS Rack Unload Trigger Sensor 8 CIS Card In Sensor 9 COS Card Out Sensor 10 GUS Gate Up Switch 11 GDS Gate Down Switch 12 SWRTS Shoe Weight Release Trigger Sensor 13 SES Shoe Empty Sensor 14 SJS Shoe Jam Sensor 15 SS Start Switch Name Description POM Pick-off Motor SUM Speed-up Motor RM Rack Motor UM Unloader Motor SWM Shoe Weight Motor GM Gate Motor SSV Scroll Switch - Vertical SSH Scroll Switch - Horizontal AL Alarm Light Appendix B Homing/Power-Up 1. Unloader Home 2. Door Present 3. Gate Closed 4. Card Out Sensor (COS) Clear 5. Rack Empty and Home 6. Input Shoe Empty 7. Shoe Empty 8. Card in Sensor (CIS) Clear. 9. Shoe Jam Sensor Clear An extremely desirable feature of the shuffler of the present invention is the system of monitoring and moving cards. FIG. 20 identifies the sensor and motor locations for a preferred embodiment of the invention. Representative sensors are optical sensors with a light emitter and receiver. An example of a suitable sensor is a model number EE-SPY401 available from Omron of Schaumburg, Ill. The space constraints and the specific function of each sensor described below are factors to be considered when selecting a sensor. Although optical sensors are described below, it is possible to use other types of sensors such as proximity sensors, pressure sensors, readers for information installed on the cards (e.g., magnetic readers) and the like. Sensor 600 is the dealing sensor. This sensor is capable of generating a signal for every card removed from the shoe. The signals are sent to the microprocessor, and are used to determine when the dealer removes the cards. Sensor 602 is the shoe empty sensor. This sensor generates a signal when no cards are present in the shoe. The sensor generates a signal that is sent to the microprocessor. This signal is interpreted by the microprocessor as an instruction to deliver another group of cards to the shoe. This sensor is a back-up sensor, because the shoe is normally not empty. The sensor is used primarily to verify that the shoe is empty when the machine is initially loaded with cards. Unloader trigger sensor 604 senses the amount of cards in the shoe, and generates a signal when a predetermined minimum number of cards are present in the shoe. The signal is sent to the microprocessor, and the microprocessor interprets the signal as an instruction to unload and deliver another group of cards into the shoe. In one example, the trigger sensor 604 activates a random number generator. The random number generator randomly selects a number between zero and three. The selected number corresponds to the number of additional cards to be dealt out of the shoe prior to unloading the next group of cards. If the randomly selected number is zero, the unloader immediately unloads the next group of cards. Unloader extended switch 606 generates a signal that is indicative of the position of the unloader. When the unloader is in the extended position, unloader extended switch 606 generates a signal that is received by the microprocessor. The microprocessor interprets the signal as instructions to halt forward movement of the unloader, and reverse movement. Staging switch 608 senses the position of the unloader. The sensor 608 is positioned at a point along the card way 206. As a group of cards reaches the sensor, the sensor sends a signal to the microprocessor to stop forward movement of the unloader. A group of cards is therefore staged in the card way 206. The microprocessor also receives signals from sensor 600 so that the staged group of cards is released while the dealer is removing cards from the shoe. This assures that the cards in the shoe, if pushed backwards initially, are traveling toward or resting against the exit of the shoe during unloading. In another example of the invention, the staging switch 608 unloads only when a signal from switch 600 is interrupted. Rack Emptying Sensor 610 indicates when a rack has been unloaded. The sensor is functional only when the shoe cover is open. This sensor functions during a process of emptying cards from the machine. The microprocessor interprets the signal as instructions to initiate the emptying or unloading of a rack. When the signal is interrupted, the microprocessor instructs the rack to align another compartment with the unloader. Shoe Cover Switch 612 indicates the presence of the shoe cover. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine. Door Present Switch 614 senses the presence of the door covering the opening to the racks. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine. Card Out Sensor 616 indicates when a card is passing into the rack from the speed up rollers 516. The microprocessor must receive the signal in order to continue to randomly select a compartment or shelf and instruct the elevator motor 638 to move the elevator to the next randomly selected position. If the signal is interrupted, the microprocessor initiates a jam recovery routine. To recover from a card jam, the elevator is moved up and down a short distance. This motion almost always results in a trailing edge of the jammed card making contact with the speed up rollers 516. The speed up rollers then deliver the card into the compartment. If the recovery is unsuccessful, the signal will remain interrupted, operations will hault. An error signal will be generated and displayed, and instructions for manually unjamming the machine will preferably be displayed. The function of the Card Out Sensor 161 is also critical to the card counting and verification procedure described above, as the signal produces a count of cards in each shelf in the rack. Card In Sensor 618 is located on an infeed end of the speed-up rollers 516 and is used both to monitor normal operation and to provide information to the microprocessor useful in recovering from a card feed jam. During normal operation, the microprocessor interprets the generation of the signal from sensor 618, the interruption of that signal, the generation and interruption of card out sensor 616, in sequence as a condition of counting that card. If a card would travel in the reverse direction, that card would not be counted. During the jam recovery process, the interruption of the signal from sensor 618 tells the microprocessor that a jam occurring in the speed up rollers 516 has been cleared. Card Separator Empty Sensor 620 monitors the progression of the cards as the cards leave the brake roller assembly 511. Although there is another card present sensor 626 as will be described below in the input shoe 10, sensor 620 senses the presence of the card before the signal generated by sensor 626 is interrupted. Because the spacing between sensors 620, 626 is less than a card length, the information sent to the microprocessor from both sensors provides an indication of normal card movement. Switch 622 is the main power switch. Upon activating the switch, a signal is sent to the microprocessor to activate the shuffling process. In one embodiment of the invention, upon delivering power to the shuffler, a test circuit first tests the voltage and phase of the power supply. A power adapter (not shown) is provided, and the available power is converted to a D.C. power supply for use by the shuffler. Light 624 is an alarm light. The microprocessor activates the alarm light whenever a fault condition exists. For example, if the cover that closes off the mixing stack or the shoe cover is not in place, the alarm light 624 would be illuminated. If the card verification procedure is activated, and an incorrect number of cards is counted, this would also cause light 624 to illuminate. Other faults such as misdeals, card feed jams, card insertion jams, card delivery jams, and the like are all possible triggering events for the activation of alarm light 624. Feeder Empty Sensor 626 is an optical sensor located on a lower surface of the card receiving well 60. This sensor sends a signal to the microprocessor. The microprocessor interprets the signal as an indication that cards are present, and that the feed system is to be activated. When the signal is interrupted, indicating that no cards are in the well 60, the feed roller 502 stops delivering cards. In one embodiment, the lower driven roller 514 of brake roller assembly 511 runs continuously, while in the embodiment shown in FIG. 19, the lower roller runs only when feed roller 502 runs. Similarly, speed up rollers 516 can run continuously or only when the feed roller 502 and brake roller 514 is being driven. In one example, the operation of rollers 514 and 502 is intermittent, while the operation of speed up rollers 516 is continuous. Referring back to FIG. 20, Enter Key 628 and Scroll Key 630 are both operator input keys. The Enter Key 628 is used to access a menu, and to scroll down to a particular entry. The Scroll Key 630 permits the selection of a field to modify, and Enter Key 628 can be used to input or modify the data. Examples of data to be selected and or manipulated includes: the type of game being played, the number of decks in the game, the number of cards in the deck, the number of promotional cards, the total number of cards in the machine, the table number, the pit number, and any other data necessary to accomplish card verification. Enter Key 628 provides a means of selecting from a menu of preprogrammed options, such as the type of game to be played (such as blackjack, baccarat, pontoon, etc.), the number of cards in the deck, the number of promotional cards, the number of decks, etc. The menu could also include other information of interest to the house such as the date, the shift, the name of the dealer, etc. This information can be tracked and stored by the microprocessor in associated memory, and included in management reports, or in other communications to the house. A number of motors are used to drive the various rollers in the feed assembly (shown in FIG. 19). Feed roller 502 is driven by motor 504, via continuous resilient belt members 504B and 504C. Brake roller driven roller 514 is also driven by motor 504 via resilient continuous member 504B. In another embodiment, rollers 502 and 514 are driven by different motors. Speed up roller assembly 516 is driven by motor 507, via resilient belt member 507B. Each of the motors is typically a stepper motor. An example of a typical stepper motor used for this application is available from Superior Electric of Bristol, Conn. by ordering part number M041-47103. Motor 636 drives the unloader 190 via continuous resilient member 636B. The resilient member 636B turns pulley or pinion gear 637, causing lateral motion of unloader 190. Teeth of pinion gear 637 mesh with openings 194 in the unloader (see FIG. 8). Rack motor 638 causes the rack assembly to translate along a linear path. This path is preferably substantially vertical. However, the rack could be positioned horizontally or at an angle with respect to the horizontal. For example, it might be desirable to position the rack so that it travels along a horizontal path to reduce the overall height of the device. The shaft of motor 638 includes a pulley that contacts resilient member 82 (FIG. 12). Resilient member is fixedly mounted to the rack assembly. Unloader home switch 640 provides a signal to the microprocessor indicating that the unloader 190 is in the home position. The microprocessor uses this information to halt the rearward movement of the unloader 190 and allow the unloader to cease motion. Rack home switch 642 provides a signal to the microprocessor that the rack is in the lowermost or “home” position. The “home” position in a preferred embodiment causes the feed assembly to come into approximate vertical alignment with a top shelf or opening of the rack. In another embodiment, the “home” position is not the lowermost position of the rack. Gate motor 644 drives the opening and closing of the gate. Gate down switch 646 provides a signal to the microprocessor indicating that the gate is in its lowermost position. Gate Up Switch 648 provides a signal that the gate is in its uppermost position. This information is used by the microprocessor to determine whether the shuffling process should proceed, or should be stopped. The microprocessor also controls the gate via motor 644 so that the gate is opened prior to unloading a group of cards. In a preferred device of the present invention, the number of cards in the rack assembly is monitored at all times while the shuffler is in the dealing mode. The microprocessor monitors the cards fed into and out of the rack assembly, and provides a visual warning that the number or amount of cards in the rack assembly is below a critical (predetermined, preset) number or level. When such a card count warning is issued, the microprocessor stops delivering cards to the shoe. When the cards are fed back into the machine and the number of cards in the rack assembly rises to an acceptable (preset or predetermined) level, the microprocessor resumes unloading cards into the shoe. The number of cards is dependent upon the game being dealt and the number of players present or allowed. For example, in a multi-deck blackjack game using 208 cards (four decks), the minimuj number of ards in the rack is approximately 178. At this point, a signal is sent to the visual display. When the number of cards drops to 158 (the preset number), the microprocessor will stop delivery of cards to the shoe. Limiting the number of cards outside the rack assembly maintains the integrity of the random shuffling process. Although a description of preferred embodiments has been presented, various changes including those mentioned above could be made without deviating from the spirit of the present invention. It is desired, therefore, that reference be made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, it relates to an electromechanical machine for continuously shuffling playing cards, whereby a dealer has a substantially continuously readily available supply of shuffled cards for dealing and where cards may be monitored for security purposes during play of the game. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments and include card games wherein the symbols comprise familiar, common or standard playing cards. Card games such as twenty-one or blackjack, poker, poker variations, match card games and the like are excellent casino card games. Desirable attributes of casino card games are that they are exciting, that they can be learned and understood easily by players, and that they move or are played rapidly to their wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to maximize the amount of revenue generated by a game without changing games, without making obvious changes that indicate an increased hold by the house, particularly in a popular game, and without increasing the minimum size of wagers. One approach to maximizing revenue is speeding play. It is widely known that playing time is diminished by shuffling and dealing. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, reduce non-play time, thereby increasing the proportion of playing time to non-playing time, adding to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,515,367 (Howard) is an example of a batch-type shuffler. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 5,275,411 (Breeding) discloses a machine for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. U.S. Pat. No. 3,879,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,241,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. Nos. 793,489 (Williams), 2,001,918 (Nevius), 2,043,343 (Warner) and 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. Nos. 2,950,005 (MacDonald) and 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. Nos. 5,584,483 and 5,676,372 (Sines et al.) describe batch type shufflers which include a holder for an unshuffled stack of cards, a container for receiving shuffled cards, a plurality of channels to guide the cards from the unshuffled stack into the container for receiving shuffled cards, and an ejector mounted adjacent to the unshuffled stack for reciprocating movement along the unshuffled stack. The position of the ejector is randomly selected. The ejector propels a plurality of cards simultaneously from a number of points along the unshuffled stack, through the channels, and into the container. A shuffled stack of cards is made available to the dealer. U.S. Pat. No. 5,695,189 (Breeding et al.) is directed to a shuffling machine for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Aside from increasing speed and playing time, some shuffler designs have provided added protection to casinos. For example, one of the Breeding (similar to that described in U.S. Pat. No. b 5 , 275 , 411 ) shufflers is capable of verifying that the total number of cards in the deck has not changed. If the wrong number of cards are counted, the dealer can call a misdeal and return bets to players. A number of shufflers have been developed which provide a continuous supply of shuffled cards to a player. This is in contrast to batch type shuffler designs of the type described above. The continuous shuffling feature not only speeds the game, but protects casinos against players who may achieve higher than normal winnings by counting cards or attempting to detect repeated patterns in cards from deficiencies of randomization in single batch shufflers. An example of a card game in which a card counter may significantly increase the odds of winning by card counting or detecting previously occurring patterns or collections of cards is Blackjack. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses a continuous automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The Lorber shuffler counts the number of cards in the storage device prior to assigning cards to be fed to a particular location. The Samsel, Jr. patent (U.S. Pat. No. 4,513,969) discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. U.S. Pat. No. 5,382,024 (Blaha) discloses a continuous shuffler having a unshuffled card receiver and a shuffled card receiver adjacent to and mounted for relative motion with respect to the unshuffled card receiver. Cards are driven from the unshuffled card receiver and are driven into the shuffled card receiver forming a continuous supply of shuffled cards. However, the Blaha shuffler requires specially adapted cards, particularly, plastic cards, and many casinos have demonstrated a reluctance to use such cards. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically and continuously shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 4,770,421 (Hoffman) discloses a continuous card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a fixed number of distribution schedules is provided for distributing cards into a number of pockets. The microprocessor sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the cards have been through a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are moved onto the second elevator. The Hoffman patent does not disclose randomly selecting a pocket for delivering each card. Nor does the patent disclose a single stage process which randomly arranges cards into a degree of randomness satisfactory to casinos and players. Although the Hoffman shuffler was commercialized, it never achieved a high degree of acceptance in the industry. Card counters could successfully count cards shuffled in the device, and it was determined that the shuffling of the cards was not sufficiently random. U.S. Pat. No. 5,683,085 (Johnson) describes a continuous shuffler which includes a chamber for supporting a main stack of cards, a loading station for holding a secondary stack of cards, a stack gripping separating mechanism for separating or cutting cards in the main stack to create a space and a mechanism for moving cards from the secondary stack into the spaces created in the main stack. U.S. Pat. No. 4,659,082 (Greenberg) discloses a carousel type card dispenser including a rotary carousel with a plurality of card compartments around its periphery. Cards are injected into the compartments from an input hopper and ejected from the carousel into an output hopper. The rotation of the carousel is produced by a stepper motor with each step being equivalent to a compartment. In use, the carousel is rotated past n slots before stopping at the slot from which a card is to be ejected. The number n is determined in a random or near random fashion by a logic circuit. There are 216 compartments to provide for four decks and eight empty compartments when all the cards are inserted into compartments. An arrangement of card edge grasping drive wheels are used to load and unload the compartments. U.S. Pat. No. 5,356,145 (Verschoor) discloses another card shuffler involving a carousel or “rotatable plateau.” The Verschoor shuffler has a feed compartment and two card shuffling compartments which each can be placed in first and second positions by virtue of a rotatable plateau on which the shuffling compartments are mounted. In use, once the two compartments are filled, a drive roller above one of the. shuffling compartments is actuated to feed cards to the other compartment or to a discharge means. An algorithm determines which card is supplied to the other compartment and which is fed to the discharge. The shuffler is continuous in the sense that each time a card is fed to the discharge means, another card is moved from the feed compartment to one of the shuffling compartments. U.S. Pat. No. 4,969,648 (Hollinger et al.) discloses an automatic card shuffler of the type that randomly extracts cards from two or more storage wells. The shuffler relies on a system of solenoids, wheels and belts to move cards. Cards are selected from one of the two wells on a random basis so a deck of intermixed cards from the two wells is provided in a reservoir for the dealer. The patent is principally directed to a method and apparatus for detecting malfunctions in the shuffler, which at least tends to indicate that the Hollinger et al. shuffler may have some inherent deficiencies, such as misalignments of extraction mechanisms. The size of the buffer supply of shuffled cards in the known continuous shufflers is large, i.e., 40 or more cards in the case of the Blaha shuffler. The cards in the buffer cannot include cards returned to the shuffler from the previous hand. This undesirably gives the player some information about the next round. Randomness is determined in part by the recurrance rate of a card previously-played in the next consecutively dealt hand. The theoretical recurrence rate for known continuous shufflers is believed to be about zero percent. A completely random shuffle would yield a 13.5% recurrance rate using four decks of cards. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card-shuffling devices, none describes a device and method for providing a continuous supply of shuffled cards with the degree of randomness and reliability required by casinos until the filing of copending U.S. patent application Ser. No. 09/060,598. That device and method continuously shuffles and delivers cards with an improved recurrence rate and improves the acceptance of card shufflers and facilitate the casino play of card games.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention provides an electromechanical card handling apparatus and method for continuously shuffling cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in handling or sorting sheet material generally. In one embodiment, the present invention provides an apparatus for moving playing cards from a first group of unshuffled cards into shuffled groups of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that the cards are moved into a number of randomly selected compartments. Sensors act to monitor and to trigger operation of the apparatus, card moving mechanisms, and the elevator and also provide information to the microprocessor. The controlling microprocessor, including software, selects or identifies where cards will go as to the selected slot or compartment before card handling operations begin. For example, a card designated as card 1 may be directed to slot 5, a card designated as card 2 may be directed to slot 7, a card designated as card 3 may be directed to slot 3, etc. An advantage of the present invention is that it provides a programmable card-handling machine with a display and appropriate inputs for controlling and adjusting the machine. Additionally, there may be an elevator speed adjustment and sensor to adjust and monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing or eliminating the number of back up machines or units required at a casino. Since it is customary in the industry to provide free backup machines, a reduction in the number of backup machines needed presents a significant cost savings. The display may include a use rate and/or card count monitor and display for determining or monitoring the usage of the machine. Another advantage of the present invention is that it provides an electromechanical playing card handling apparatus for automatically and randomly generating a continuous supply of shuffled playing cards for dealing. Other advantages are a reduction of dealer shuffling time, and a reduction or elimination of security problems such as card counting, possible dealer manipulation and card tracking, thereby increasing the integrity of a game and enhancing casino security. Yet another advantage of the card handling apparatus of the present invention is that it converts a single deck, multiple decks, any number of unshuffled cards or large or small groups of discarded or played cards into shuffled cards ready for use or reuse in playing a game. To accomplish this, the apparatus includes a number of stacked or vertically oriented card receiving compartments one above another into which cards are inserted, one at a time, so a random group of cards is formed in each compartment and until all the cards loaded into the apparatus are distributed to a compartment. Upon demand, either from the dealer or a card present sensor, or automatically, the apparatus delivers one or more groups of cards from the compartments into a dealing shoe for distribution to players by the dealer. The present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Another advantage is that the apparatus of the present invention provides for the initial top feeding or loading of an unshuffled or discarded group of cards thereby facilitating use by the dealer. The shuffled card receiving shoe portion is adapted to facilitate use by a dealer. An additional advantage of the card handling apparatus of the present invention is that it facilitates and speeds the play of casino wagering games, particularly those games wherein multiple decks of cards are used in popular, rapidly played games (such as twenty-one or blackjack), making the games more exciting for players. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled new or played group of cards into a group of shuffled or reshuffled cards available to a dealer for distribution to players. The first step of this process is the dealer placing an initial group of cards, comprising unshuffled or played cards, into the card receiver of the apparatus. The apparatus is started or starts automatically by sensing the presence of the cards and, under the control of the integral microprocessor, it transfers the initial group of cards, randomly, one at a time, into a plurality of compartments. Groups of cards in one or more compartments are delivered, upon the dealer's demand or automatically, by the apparatus from that compartment to a card receiving shoe for the dealer to distribute to a player. According to the present invention, the operation of the apparatus is continuous. That is, once the apparatus is turned on, any group of cards loaded into the card receiver will be entirely processed into one or more groups of random cards in the compartments. The software assigns an identity to each card and then directs each identified card to a randomly selected compartment by operating the elevator motor to position that randomly selected compartment to receive the card. The cards are unloaded in groups from the compartments, a compartment at a time, as the need for cards is sensed by the apparatus. Thus, instead of stopping play to shuffle or reshuffle cards, a dealer always has shuffled cards available for distribution to players. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly and set up costs. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and outside the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be counted with minimum game interruption. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. A novel gravity feed/diverter system is described to reduce the potential for jamming and reducing the chance for multiple cards to be fed from a card feeder into selected card receiving compartments. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.
20041029
20070814
20050324
91820.0
2
LAYNO, BENJAMIN
DEVICE AND METHOD FOR CONTINUOUSLY SHUFFLING AND MONITORING CARDS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,976,864
ACCEPTED
Recording cable deployment system
A system for deploying a cable, such as a ship's anchor chain, wherein the chain is measured as it is deployed and the deployed length displayed on a visual display. The chain consists of links of a first composition, with indicator links of a second composition disbursed at regular intervals along the length of the chain. A sensor, such as a magnetometer or densimeter senses the difference between the links of the first composition and the indicator links of the second composition. A computer then multiplies the number of indicator links deployed by the regular interval to determine the length of deployed chain, which is then displayed on a display board which is located proximate the sensor or remotely. The linkage between the sensor and the display board may be either by wire or wireless connection. The system may be applied to a rope or continuous cable with equal effectiveness.
1. A recording cable deployment system comprising: a cable, indicator elements positioned at regular intervals along the length of said cable, sensing means for sensing the number of said indicator elements within said cable that have been deployed past the sensing means, computation means for computing the total length of said cable that has been deployed, display means for displaying the total length of said cable that has been deployed, and connecting means for connecting said computation means and said display means. 2. A recording cable deployment system, as defined in claim 1, wherein said cable comprises a chain, said chain comprising a plurality of links of a first composition, and said indicating elements comprising a plurality of indicator links of a second composition, said second composition differing from that of said first composition, and said indicator links being disbursed at a regular, predetermined intervals along the length of said chain. 3. A recording cable deployment system, as defined in claim 2, wherein at least one of said first composition and said second composition comprises a ferrous material and the magnetic attractivity of said first composition differs from the magnetic attractivity of said second composition. 4. A recording cable deployment system, as defined in claim 2, wherein the density of said first composition differs from the density of said second composition. 5. A recording cable deployment system, as defined in claim 3, wherein said sensing means comprises a magnetometer, said magnetometer reading said difference between said magnetic attractivity of said first composition and said second composition. 6. A recording cable deployment system, as defined in claim 4, wherein said sensing means comprises a densimeter, said densimeter reading said difference between said density of said first composition and said density of said second composition. 7. A recording cable deployment system, as defined in claim 2, wherein said computation means comprises a device which counts the number of said indicator links which have been sensed and multiplies this number by said regular, predetermined interval. 8. A recording cable deployment system, as defined in claim 1, wherein said connection means comprises at least one of the group consisting of a wired connection and a wireless connection. 9. A recording cable deployment system, as defined in claim 1, wherein said sensing means further comprises a motion sensor means for determining the direction of travel of said chain, said direction of travel determining whether said chain is being deployed or retrieved. 10. A recording cable deployment system, as defined in claim 1, wherein said cable comprises at least one of the group consisting of a continuous filament rope and a continuous filament metallic cable. 11. A recording cable deployment system, as defined in claim 10, wherein said cable comprises a first composition, and said indicator elements comprise a second composition, said second composition differing from that of said first composition, and said indicator elements disbursed at regular, predetermined intervals along the length of said cable. 12. A recording cable deployment system, as defined in claim 11, wherein at least one of said first composition and said second composition comprises a ferrous material, and the magnetic attractivity of said first composition differs from the magnetic attractivity of said second composition. 13. A recording cable deployment system, as defined in claim 11, wherein the density of said first composition differs from the density of said second composition. 14. A recording cable deployment system, as defined in claim 12, wherein said sensing means comprises a magnetometer, said magnetometer reading said difference between said magnetic attractivity of said first composition and said second composition. 15. A recording cable deployment system, as defined in claim 13, wherein said sensing means comprises a densimeter, said densimeter reading said difference between said density of said first composition and said second composition. 16. A recording cable deployment chain system, as defined in claim 11, wherein said computation means comprises a device which counts the number of said indicator elements which have been sensed and multiplies this number by said regular, predetermined interval. 17. A recording cable deployment system, as defined in claim 11, wherein said sensing means further comprises a motion sensor means for determining the direction of travel of said cable, said direction of travel determining whether said chain is being deployed or retrieved. 18. A recording cable deployment system, as defined in claim 1, wherein said cable comprises a chain, said chain comprising a plurality of links of a first composition, and said indicating elements comprising a plurality of indicator links, each of said indicator links being of a composition differing from that of said first composition and from each of the other said indicator links, and said indicator links being disbursed at a regular, predetermined intervals along the length of said chain. 19. A recording cable deployment system, as defined in claim 18, wherein said composition of each of said indicator links comprises a ferrous material and the magnetic attractivity of said each of said indicator links differs from that of said links of said first composition and from each of the other said indicator links. 20. A recording cable deployment system, as defined in claim 19, wherein said sensing means comprises a magnetometer, said magnetometer reading said difference between said magnetic attractivity of said first composition and that of each of said indicator links. 21. A recording cable deployment system, as defined in claim 18, wherein the density of said first composition and the density of each of the indicator links differs from one another, said sensing means comprises a densimeter, said densimeter reading said difference between said density of said first composition and that of each of said indicator links. 22. A recording cable deployment system, as defined in claim 1, wherein said cable comprises a chain, said indicating elements comprising a plurality of unique RFID chips imbedded in selected of said links, each RFID chip being programed with the respective length of deployed chain, and said sensing means comprising an RFID receiver, said RFID receiver reading each unique RFID chip as it passes said RFID receiver.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anchor chain system for a ship or smaller vessel. More particularly, the invention comprises a chain having certain links of a material dissimilar to the material of the other links, which are spaced at regular intervals along the length of the chain, for the electronic monitoring of the amount of chain deployed from a reel. 2. Description of the Prior Art In the anchorage of ships or smaller vessels, it is desirable to know how much anchor chain has been deployed at any given time. Various methods have been employed over the years for anchoring and/or measuring the length of anchor chain deployed, including: U.S. Pat. No. 5,155,922, issued to Cooper on Oct. 20, 1992, discloses a DEPTH MEASURING DEVICE WITH WEAR RESISTANT GUIDE MEANS wherein the length of cable deployed is measured by the number of rotations of a wheel mounted tangentially to the cable. A MOORING SYSTEM FOR FLOATING DRILLING VESSELS is disclosed in U.S. Pat. No. 4,070,981, issued on Jan. 31, 1978, to Guinn, et al., in which the amount of anchor chain deployed is determined by a device which counts the links as the chain is deployed. The above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed. SUMMARY OF THE INVENTION The present invention provides a system for electronically determining the amount of anchor chain, or the like, which has been deployed from a winch drum. It is desirable for a ship or smaller vessel's crew to know at a glance, and often at a remote location, the amount of anchor chain which has been deployed from a winch drum. The present invention provides a method of determining the amount of chain which has been deployed by detecting links of differing materials situated along the length of the chain at determined intervals. By detecting the number of links which have passed by or through a sensor and multiplying that number by the distance between the links, the length of chain deployed may be readily determined. The sensor may be one which detects ferro-magnetic materials as opposed to non-ferro-magnetic, varying densities of materials, or any number of different detection methods known in the art. Likewise, detection could be similarly made of varying materials contained within a metal cable or rope, as well as links in a chain. A read out of the information provided by the sensor could be situated at the sensor itself, or transmitted, either by wire or wireless signal, to a remote location. Accordingly, it is a principal object of the invention to provide a method of determining the amount of anchor chain deployed. It is another object of the invention to provide a method of determining the amount of anchor chain deployed by utilizing a chain having links of a material differing from the predominant material of the balance of the links of the chain. It is a further object of the invention to provide a method of determining the amount of anchor chain deployed by determining the number of links of the differing material which have passed by or through a sensor. Another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the information derived by the sensor may be read at the sensor. Still another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the information derived by the sensor may be transmitted to a location remote from the sensor. An additional object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the sensor determines differing degrees of ferro-magnetic properties within the differing links. It is again an object of the invention to wherein the sensor determines differing density of the differing links. Yet another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the chain is a continuous cable or rope having detectably differing materials disposed at determined intervals along its length. It is an object of the invention to provide improved elements and arrangements thereof in an apparatus for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes. These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings. BRIEF DESCRIPTION OF THE DRAWINGS Various other objects, features, and attendant advantages of the present invention will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein: FIG. 1 is a diagrammatic sketch of the depth recording anchor chain system of the present invention with a wired connection between the sensor and the display. FIG. 2 is a diagrammatic sketch of the depth recording anchor chain system of the present invention with a wireless connection between the sensor and the display. FIG. 3 is a diagrammatic sketch of the depth recording system of the present invention utilizing distinct composition for each indicator link or a unique Radio Frequency Identification (RFID) chip imbedded in each indicator link as a means of determining the amount of chain dispersed. FIG. 4 is a diagrammatic sketch of the depth recording system of the present invention utilizing a continuous rope or cable in lieu of a linked chain. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, when reduced to its basic elements, the recording cable deployment system 1 of the present invention consists of a chain 10, a sensor 20, and a display terminal 40. Chain 10 is typical of standard anchor chains, as are known in the art, fabricated with a plurality of links 12, which are of a first composition, such as a ferrous material. Disbursed at regular and determined intervals along the length of chain 10 are a plurality of indicator links 14, indicator links 14 being of a second composition differing from that of the links 12. The sensor 20, which is situated at a point proximate the path of chain 10 as it is deployed, consists of a sensor head 22 and a computation device 24. The sensor 20 is connected to a display terminal 40, either by a cable 30 or wireless connection 30a. The computation device 24, display terminal 40 and cable 30/wireless connection 30a are all known in the art and are not deemed to be inventive in and of themselves, and therefore will not be described in great detail. As in typical anchor systems, the chain 10 is stored on a winch drum (not shown) situated on deck or in the hold of a vessel and is deployed overboard to lower an anchor (not shown) to hold the vessel in a relatively fixed location. It is often desirable to know how much chain 10 has been deployed in order to determine how much remains on the winch drum, the water depth, or the lateral distance that the vessel has drifted from the point where the anchor has embedded itself. Ideally, the sensor 20 would be located proximate the point that the chain 10 is deployed from the winch drum (not shown), although it could be located at the point where the chain 10 goes overboard, or any point in between, with equal effectiveness, so long as the chain 10 is directed across the sensor 20. The sensor head 22 may be of a variety of different types, including, but not limited to, a magnetometer, a densimeter, or a magnetic switch activated by the difference in magnetic attraction of the links 12 and sensing links 14. In the case of a magnetometer or densimeter, as the links 12 and indicating links 14 pass the sensor head 22, the difference in the magnetic attraction or density of the links 12 and indicator links 14 is detected and relayed to the computation device 24. In the case of a magnetic switch, the switch is opened/closed as the magnetic attraction changes as the links 12 and indicator links 14 pass. Regardless of the type of sensor head 22 utilized, the reading of each indicator link 14 passing the sensor head 22 is relayed to the computation device 24 for computation and forwarding to the display terminal 40 for display, the computation consist of the number of indicator links 14 having passed the senor head 22 multiplied by the distance between the indicator links 14. It would be evident to one of ordinary skill in the art that the computation device 24 could be as simple as a device to multiply the counted links 14 by the interval to a broader computer system which performs other tasks, as well. It could, likewise, be a simple impulse which causes a mechanical or digital readout to advance in increments equal to the interval between links 14. Simply counting the indicator links 14 as they pass the sensor head 22 does not give an accurate measure, as they are counted as the chain 10 is deployed and as it is retrieved back onto the winch drum. A motion sensor 26 employed in conjunction with the sensor head 22 senses the direction of travel of the chain 10, indicating to the computation device 24 whether to add to or subtract from the deployed length of the chain 10. It would be evident to one of ordinary skill in the art that a sensor (not shown) indicating direction of rotation of the winch drum (not shown) could accomplish the same without varying from the spirit of the present invention. It would, likewise, be evident to one of ordinary skill in the art that a reset button (not shown) could be employed to reset the computation device to zero at any desired time. In lieu of indicator links 14, each being formed of the same material, the indicator links 14A, 14B, 14C, etc, (FIG. 3) could be formed such that each was of a composition unique unto itself and unlike each of the other indicator links 14 and the links 12. In such an embodiment, the sensor head 22 would determine the magnetic attraction or density of each unique indicator link 14A, 14B, 14C, etc, as it passed the sensor head 22 and the computation device 24 would determine translate that unique magnetic attraction or density to the corresponding depth figure and transmit that depth figure to the display device. Likewise, each unique indicator link 14A, 14B, 14C, etc, could be formed with a unique RFID chip imbedded therein and the sensor head 22 being an RFID receiver. Each unique RFID chip would be programmed to indicate the depth figure for that particular indicator link 14, which would be received by the RFID sensor head 22 and relayed to the display terminal 40. While a chain 10 has been depicted and described herein above, it would be evident to one of ordinary skill in the art that the system could be applied to ropes or cables 10a having a continuous length, as opposed to the links 12/14 of chain 10, by including elements of a differing material 14D into the rope/cable 10a at regular, predetermined distances along the length thereof, as depicted at FIG. 4. While the above has been related to use in the deployment and retrieval of an anchor, it would be evident to one of ordinary skill in the art that the present invention has equal applicability in any application wherein a continuous element is deployed and retrieved, such as cranes, tow lines, drag lines, etc. It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to an anchor chain system for a ship or smaller vessel. More particularly, the invention comprises a chain having certain links of a material dissimilar to the material of the other links, which are spaced at regular intervals along the length of the chain, for the electronic monitoring of the amount of chain deployed from a reel. 2. Description of the Prior Art In the anchorage of ships or smaller vessels, it is desirable to know how much anchor chain has been deployed at any given time. Various methods have been employed over the years for anchoring and/or measuring the length of anchor chain deployed, including: U.S. Pat. No. 5,155,922, issued to Cooper on Oct. 20, 1992, discloses a DEPTH MEASURING DEVICE WITH WEAR RESISTANT GUIDE MEANS wherein the length of cable deployed is measured by the number of rotations of a wheel mounted tangentially to the cable. A MOORING SYSTEM FOR FLOATING DRILLING VESSELS is disclosed in U.S. Pat. No. 4,070,981, issued on Jan. 31, 1978, to Guinn, et al., in which the amount of anchor chain deployed is determined by a device which counts the links as the chain is deployed. The above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a system for electronically determining the amount of anchor chain, or the like, which has been deployed from a winch drum. It is desirable for a ship or smaller vessel's crew to know at a glance, and often at a remote location, the amount of anchor chain which has been deployed from a winch drum. The present invention provides a method of determining the amount of chain which has been deployed by detecting links of differing materials situated along the length of the chain at determined intervals. By detecting the number of links which have passed by or through a sensor and multiplying that number by the distance between the links, the length of chain deployed may be readily determined. The sensor may be one which detects ferro-magnetic materials as opposed to non-ferro-magnetic, varying densities of materials, or any number of different detection methods known in the art. Likewise, detection could be similarly made of varying materials contained within a metal cable or rope, as well as links in a chain. A read out of the information provided by the sensor could be situated at the sensor itself, or transmitted, either by wire or wireless signal, to a remote location. Accordingly, it is a principal object of the invention to provide a method of determining the amount of anchor chain deployed. It is another object of the invention to provide a method of determining the amount of anchor chain deployed by utilizing a chain having links of a material differing from the predominant material of the balance of the links of the chain. It is a further object of the invention to provide a method of determining the amount of anchor chain deployed by determining the number of links of the differing material which have passed by or through a sensor. Another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the information derived by the sensor may be read at the sensor. Still another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the information derived by the sensor may be transmitted to a location remote from the sensor. An additional object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the sensor determines differing degrees of ferro-magnetic properties within the differing links. It is again an object of the invention to wherein the sensor determines differing density of the differing links. Yet another object of the invention is to provide a method of determining the amount of anchor chain deployed wherein the chain is a continuous cable or rope having detectably differing materials disposed at determined intervals along its length. It is an object of the invention to provide improved elements and arrangements thereof in an apparatus for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes. These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.
20041101
20070904
20060504
62104.0
G08B2100
0
SOTELO, JESUS D
SYSTEM FOR MEASURING CHAIN OR ROPE DEPLOYMENT
SMALL
0
ACCEPTED
G08B
2,004
10,976,874
ACCEPTED
Respiratory mask having gas washout vent and gas washout vent assembly for respiratory mask
The present invention provides a vent assembly suitable for use with a respiratory mask of the type used in CPAP treatment. In one embodiment the vent is made of a thin air permeable membrane. Generally, the membrane is thinner than 0.5 mm. The membrane can be made of a hydrophobic material such as polytetrafluoroethylene (PTFE). The membrane can also be fabricated from expanded PTFE. The expanded PTFE membrane is mounted on a polypropylene scrim. The pores of the membrane have a reference pore size of 10 to 15 microns. In an alternative embodiment, the vent assembly includes a vent constructed from stainless steel. In another embodiment the membrane has a superficial cross-sectional area of approximately 500 mm2. In another embodiment the vent assembly comprises a membrane attached to a vent frame, the vent assembly forming an insert which can be removeably attached to a mask fame.
1. A respiratory mask comprising: a mask shell that can be fitted over a user's nose a cushion positioned in proximity to an edge portion of the shell to aid in fitting the mask shell to a user's face; a breathable gas inlet that can conduct gas through the shell to a breathing cavity formed between the shell and a user's face when the mask is in use; and a gas washout vent of thin air permeable membrane formed constructed and arranged to allow gas to exit from the breathing cavity 2. A respiratory mask according to claim 1, wherein the gas washout vent is located in the mask shell. 3. A respiratory mask according, to claim 1, wherein the gas washout vent is located in the gas inlet. 4. A respiratory mask according to claim 1, wherein the gas washout vent comprises a stainless steel sheet having holes therein. 5. A respiratory mask according to claim 4, wherein area of the holes constitutes substantially 5% of the area of the stainless steel sheet. 6. A respiratory mask according to claim 4, wherein the stainless steel sheet is substantially 0.45 mm thick. 7. A respiratory mask according to claim 4, wherein the stainless steel sheet has an area of approximately 322 mm2. 8. A respiratory mask according to claim 1, wherein the membrane is made from a hydrophobic material. 9. A respiratory mask according to claim 1, wherein the gas washout vent air permeable membrane comprises expanded polytetrafluoroethylene. 10. A respiratory mask according to claim 9, wherein the gas washout vent air permeable membrane comprises a GORE-TEX (Trademark) membrane provided on a scrim. 11. A respiratory mask according to claim 10, wherein the scrim is made of polypropylene. 12. A respiratory mask according to claim 10, wherein the membrane has an area of approximately 480 mm2. 13. A respiratory mask according to claim 10, wherein the membrane has thickness of approximately 0.05 mm 14. A respiratory mask according to claim 10, wherein the membrane has an approximate pore size in the range of 10 to 15 microns.
BACKGROUND OF INVENTION 1. Field of the Invention The present invention relates to a respiratory mask and a vent for a respiratory mask. GENERAL BACKGROUND AND RELATED ART The application of Continuous Positive Airway Pressure (CPAP) via a nasal mask is a common ameliorative treatment for sleep disordered breathing (SDB) including obstructive sleep apnea (OSA) as described in the applicant's U.S. Pat. No. 4,944,310. In CPAP treatment for OSA, air or other breathable gas is supplied to the entrance of a patient's airways at a pressure elevated above atmospheric pressure, typically in the range 3-20 cm H2O as measured in the patient interface. It is also known for the level of treatment pressure to vary during a period of treatment in accordance with patient need, that form of CPAP being known as automatically adjusting nasal CPAP treatment as described in the applicant's U.S. Pat. No. 5,245,995. Non-invasive positive pressure ventilation (NIPPV) is another form of treatment for breathing disorders including sleep disorder breathing. In a basic form, NIPPV involves a relatively high pressure of gas being provided in the patient interface during the inspiratory phase of respiration and a relatively low pressure or atmospheric pressure being provided in the patient interface during the expiratory phase of respiration. In other NIPPV modes the pressure can be made to vary in a complex manner throughout the respiratory cycle. For example, the pressure at the patient interface during inspiration or expiration can be varied through the period of treatment as disclosed in the applicant's International PCT Patent Application No WO 98/12965 and International PCT Patent Application No WO 99/61088. In this specification any reference to CPAP treatment is to be understood as embracing all of the above-described forms of ventilatory treatment or assistance. Typically, the patient interface for CPAP treatment consists of a nasal mask. The nasal mask is generally defined by a mask shell which forms an inner cavity defined by its interior surface, mask cushion and the user's face, a gas inlet which may or may not include a separate component such as a swivel elbow. Alternatively, a nose-mouth mask or full-face mask or nasal prongs or nasal pillows can be used. In this specification any reference to a mask is to be understood as incorporating a reference to a nasal mask, nose-mouth mask, full face mask, nasal prongs or nasal pillows unless otherwise specifically indicated. The mask incorporates, or has in close proximity, a gas washout vent for venting exhaled gases to atmosphere. The gas washout vent (the vent) is sometimes referred to as a CO2 washout vent. It is important that the apparatus is quiet and comfortable to encourage patient compliance with therapy. The exhausting to atmosphere of exhaled gas through the vent creates noise. As CPAP and NIPPV treatments are normally administered while the patient is sleeping, minimization of such noise is desirable for both the comfort of the patient and any bed partner. From a clinical perspective it is desirable for a mask and vent combination to maximize both the elimination of exhaled CO2 through the vent and also the inhalation of the supplied breathable gas. In this way, retention of exhaled CO2 within the mask, which is “re-breathed” by the wearer, is minimized. Generally by locating the vent in the mask shell CO2 washout will be superior to locating the same vent between the mask shell and the breathable gas supply conduit. It is desirable to minimise the weight of the vent assembly for greater patient comfort. Systems for the delivery of nasal CPAP treatment often incorporate in-line humidifiers to minimize drying of the nasal mucosa and increase patient comfort. Accordingly, it is also desirable that a vent not block when used with humidified gas. It is also desirable that a vent be easily cleaned or economically disposable. A number of vent configurations are known. One approach to vent configuration is to create within the mask shell one or more openings that allow for the flow of exhaust gas from the inner cavity to atmosphere. The exhaust flow may be directed through the incorporation of an additional pipe extending out from the opening located on the mask shell outer surface. The applicant's nasal mask system known by the name ResMed Modular Mask System incorporates an outlet vent located in the swivel elbow connected to the mask shell. The ports defining the vent have the same cross-sectional thickness and are formed from the same polycarbonate material that is used to form the swivel elbow and mask shell frame. The whisper swivel, manufactured by Respironics, Inc provides three slots on the circumference of a generally cylindrical attachment piece. In use, the attachment piece is to be interposed between the mask shell and the gas conduit. The attachment piece is made of the same material and thickness as is used to make the mask shell. European Patent No. 0 697 225 discloses a vent formed from a porous sintered material. A known vent, manufactured by Gottleib Weinmann Gerate Fur Medizin Und Arbeitsschutz GmbH and Co. comprises a generally cylindrical insert to be interposed in use, between the mask shell and the gas conduit. The insert includes a window which is covered with a porous sintered material of approximately 3-4 mm thickness. Another type of vent intended to be inserted between the mask shell and the breathable gas supply conduit is the E-Vent N by Draeger medizintechnik GmbH (the Draeger vent). The Draeger vent comprises a stack of 21 annular disks, which have slots in their adjacent surfaces for gas to flow therethough. Each slot has a length of 5 to 7 mm as measured along the path from the interior of the vent to atmosphere. The applicant produces a respiratory mask known as the MIRAGE® nasal mask system and the MIRAGE® full-face mask (the MIRAGE mask). The MIRAGE® mask has a crescent shaped opening in the mask shell in which is located a complementary shaped crescent elastometric insert with six holes therein which constitutes the vent. The elastomeric inset has a crossectional thickness of 3 to 4 mm. The vent of the type used in the MIRAGE® is described in International Patent Application No. WO 98/34665 and Australian Patent No 712236. It is an object of the present invention to provide an alternative form of vent that is suitable for use in a respiratory mask. SUMMARY OF THE INVENTION The present invention provides a vent assembly suitable for use with a mask used in CPAP treatment wherein the vent assembly is a thin air permeable membrane. In one form of the invention, the membrane is thinner than the mask frame. In another form of the invention, the membrane is thinner than 0.5 mm. In another form of the invention the membrane has an approximate thickness of 0.05 mm. In another form of the invention the membrane is constructed from a hydrophobic material such as polytetrafluoroethylene (PTFE). In another form of the invention the membrane is constructed from expanded PTFE. In another form of the invention the expanded PTFE membrane is mounted on a polypropylene scrim. In another form, the pores of the membrane have a reference pore size of 10 to 15 microns. In another form of the invention the membrane is constructed from stainless steel. In another form of the invention the membrane of the vent has a superficial cross-sectional area of approximately 500 mm2. In another form of the invention the vent assembly comprises a membrane attached to a vent frame, the vent assembly forming an insert which can be removeably attached to a mask fame. In another form of the invention there is provided a respiratory mask for communicating breathable gas to the entrance of a wearer's airways, the mask including (i) mask shell, (ii) a gas inlet and (iii) an opening into which an insert constructed from a thin air permeable membrane with a corresponding shape may be placed. The opening may be positioned in the mask shell or in the gas inlet. In one form, the mask includes a mask shell with an integrally formed gas inlet and the opening is provided in the mask shell remote the inlet. In another form, the mask includes a mask shell with an integrally formed gas inlet and the opening is provided in the gas inlet. In yet another form, the mask includes a mask shell with a separately formed gas inlet attached thereto and the opening is provided in the mask shell remote the inlet. In still yet another form, the mask includes a mask shell with a separately formed gas inlet attached thereto and the opening is provided in the gas inlet. The present invention also provides a respiratory mask arrangement for communicating breathable gas to the entrance of a wearer's airways, the mask arrangement including a vent assembly comprising an opening with a thin air permeable membrane extending across an opening. The present invention also provides an apparatus for delivering CPAP which apparatus includes a mask arrangement for communicating breathable gas to the entrance of a wearer's airways, the mask arrangement including a gas washout vent assembly comprising an opening with a thin air permeable membrane extending across said opening. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a respiratory mask according to a first embodiment of the invention; FIG. 2 is a perspective view of a respiratory mask according to a second embodiment of the invention; FIG. 3 is a perspective view of a respiratory mask according to a third embodiment of the invention; FIG. 4 is a partial cross-sectional view of a vent assembly according to a fourth embodiment of the invention; FIG. 5 is a partial cross-sectional view of a vent assembly according to a fifth embodiment the invention; FIG. 6 is a perspective view of a respiratory mask according to sixth embodiment of the invention; FIG. 7 is a perspective view of a full-face mask according to a seventh embodiment of the invention. FIG. 8 is an enlarged detailed view of an insert suitable for use with the masks shown in FIG. 6; and FIG. 7. FIG. 9 is a perspective view of a vent assembly according to an eighth embodiment of the invention where the thin air permeable membrane is located in a cylindrical position on a tube suitable for attachment to the mask elbow. DETAILED DESCRIPTION FIG. 1 shows a nasal respiratory mask 10 according to a first embodiment of the invention. The mask 10 includes a rigid plastic mask shell 12, which has a peripheral flange 14 for mounting of a cushion (not shown) to the shell 12. The cushion abuts the wearer's face in use and is well known in the art. The flange 14 includes slots 15 for the connection of mask restraining straps (not shown) that extend around the head of the wearer to maintain the mask 10 adjacent to the wearer's face. The straps are also known in the art. The shell 12 also includes an arm 16, which terminates in a fitting 18 that is adapted to connect to a forehead support (not shown), which is also known in the art. The mask shell 12 includes a breathable gas inlet 20 which is rotatably mounted to the shell 12. The inlet 20 has a first end 22 which is adapted for connection with a breathable gas supply conduit (not shown) and a second end 24 which is adapted to connect to, and communicate the supplied gas to the interior of the shell 12 for subsequent communication with the wearer's airways. The mask 10 includes a gas washout vent constituted by an opening 26 in the shell 12 across which extends a thin air permeable membrane 28. In the FIG. 1 embodiment, the thin air permeable membrane 28 is a stainless steel sheet approximately 0.45 mm thick having holes with a diameter approximately 0.1 mm in diameter. The total open area is approximately 5% of the total superficial surface area of the sheet. The dimensions of the sheet are approximately 322 mm2. The holes are laser cut into the stainless steel. The holes are desirably laser cut or flame cut through the stainless steel. Preferably the holes have a diameter of less than 0.2 mm, and preferably provide a total open area of approximately 1% to 25% of the superficial surface area of the steel. The holes may be tapered (in a gradual or stepped manner) through their internal bore. In use, if the smaller end of the vent's openings are located on the atmosphere side the opportunity for blockage occurring by the insertion of particulate matter will be minimized. Alternatively, the larger end of the vent's openings may be located on the atmosphere side which may make the vent quieter. FIG. 2 shows a nasal respiratory mask 40 according to a second embodiment of the invention. Like reference numerals to those used in describing the first embodiment will be used to denote like features in respect of the second embodiment. Accordingly, the mask 40 has a shell 12 with a gas inlet 20. Instead of the slots 15 of the first embodiment the mask shell includes openings 42 which are adapted to snap engage with connection fittings (not shown) provided on the end of mask restraining straps (not shown). Further, instead of the arm 16 and fitting 18, the mask 40 includes an adjustable forehead support mechanism indicated generally by the reference numeral 44. The mask 40 also includes a vent constituted by an opening 26 formed in the gas inlet 20 across which extends a thin air permeable membrane 28. FIG. 3 shows a mask 60 according to a third embodiment of the present invention. Although this particular embodiment is directed to a nasal mask, it should noted that various vent arrangements can be used with various mask arrangements. Once again like reference numerals to those used in describing features of the first embodiment shall be used to denote like features in respect of the third embodiment. The mask 60 includes a mask shell 12 with an integrally formed fixed gas inlet 62. A cushion 64 is attached to the peripheral flange 14 of the shell 12. The shell 12 also includes slotted extensions 66 for connecting headgear (not shown) to the mask. The mask 60 includes an opening 26 across which is extended a thin air permeable membrane 28 of identical construction to the ePFTE membrane discussed below in relation to the mask 40 shown in FIG. 6. FIG. 4 shows a cross-section of vent assembly 110. There is provided a membrane 114 interposed between an outer element 112 and an inner element 116. This arrangement provides for a simple assembly. There is a corresponding opening 115 in the outer element 112 and inner element 116 to allow for the passage of air through the membrane. The inner element 116 may form part of the mask frame or of a separate insert to be positioned in an opening in the mask frame. FIG. 5 shows an alternative cross-section of a vent assembly 110. There is provided a stainless steel membrane insert 118 positioned over the inner element 120. There is an opening 119 in the inner element 120 to allow for the passage of air through the membrane. The inner element 119 may form part of the mask frame or of a separate insert to be positioned in an opening in the mask frame. FIG. 6. shows a nasal respiratory mask 80 according to a sixth embodiment of the invention. The mask 80 is similar to the second embodiment of the mask 40 shown in FIG. 2 and like reference numerals have been used to indicate like features with respect to the second embodiment. In the mask 40 of FIG. 2, the vent is provided in the gas inlet 20, whereas in the mask 80 the vent is provided in the shell 12. More particularly, the mask 80 includes two cylindrical inserts 82 which have an inner opening 26 across which extends the thin air permeable material 28. The thin air permeable material is made from GORE-TEX® product attached to a polypropylene scrim having an area of 481 mm2. The membrane is constructed from expanded polytetrafluoroethylene (ePTFE). The inventors have identified GORE-TEX® ePTFE product manufactured by W. L. Gore & Associates, Inc. of Maryland USA (GORE-TEX® membrane) as being a suitable material for constructing a membrane. In one preferred form, the GORE-TEX® membrane has the following characteristics: Membrane material 100% expanded polytetrafluoroethylene Reference pore size 10-15 micron Bubble Point typical minimum individual 0.02 bar Airflow 0.37 LPM/cm2 Thickness 0.05 mm Substrate polypropylene scrim FIG. 7 shows a seventh embodiment of a full-face respiratory mask 100 according to the invention. Once again like reference numerals to those used in denoting like features with previous embodiments have been used to denote like features in respect of this embodiment. The mask 100 is similar to the mask 80 shown in FIG. 6 in that the vent is provided in the inserts 82. However the mask 100 uses slotted extensions 66 to attach mask restraining straps (not shown), not openings 42. As best seen in FIG. 8, which is a close-up view of the insert shown in FIG. 6, the insert 82 is comprises a cylindrical portion 86 sized to be a snug fit into a circular orifice 88 provided in the mask shell 12. The insert 82 located against the outer surface of the shell 12 by a peripheral flange 90. The inserts may be glued in position. FIG. 9 shows a further embodiment of the invention in which an in-line vent assembly is provided. Like numerals are used to indicate like features with previous embodiments. In this embodiment, the in-line vent assembly comprises a generally cylindrical shaped vent frame with “windows” or “ports” covered with a membrane as described above. The thin air permeable membrane of the present invention may be attached to the mask by any suitable means. For example the stainless steel vent describe above may be attached to a polycarbonate mask shell by way of hot glue adhesive (for example) or any other suitable adhesive. The durability sought to be achieved will determine the suitable approach for attachment. In a further embodiment there is provided a means to indicate the volume of air that has passed through the vent, or alternatively the time that the vent assembly has been used. When a sufficient volume of air has passed through the vent assembly, or the assembly has been used for a sufficient time and may have become blocked, the indicator will signal that the vent assembly should be replaced. For convenience, the thin air permeable membrane can be provided in an insert which is releasably attachable to the mask shell via a push-fit mechanism, as shown in FIG. 8. Preferably on at least the outer surface of the insert there is provided at least one cross-piece that protects the air permeable membrane from being damaged as it is located into the receiving orifice of the mask shell. This approach will allow for the easy placement, removal and replacement of a vent insert while retaining the other components of the mask. While the insert may be configured to take the form of any requisite shape preferably the insert has a circular circumferential shape defining a cylindrical insert which has a frictional fit within a corresponding circular orifice in the mask shell or gas inlet. Formation of the vent through use of an insert configuration facilitates the selection and fitting of a vent to suit a user's requirements. For example where a low treatment pressure is required the associated flow will also be relatively small compared with flow required to achieve a higher treatment pressure. In such circumstances a relatively large vent area may be adopted to facilitate achievement of the clinically desirable mask CO2 washout rate. Should a higher treatment pressure be required then the previously selected vent may be exchanged for a vent being more restrictive to flow. The more restrictive vent will allow achievement of the clinically desirable mask CO2 washout rate while avoiding the intensity of noise and exhaust gas jetting that would occur had the previously selected low pressure vent been used with the higher treatment pressure. Locating the vent in the mask shell results in an improvement in the minimization of CO2 retention within the mask compared to locating the vent as an inline mask component. Although the invention has been described with reference to specific examples, it is to be understood that these examples are merely illustrative of the application of the principles of the invention. Thus it is to be understood that numerous modifications may be made in the illustrative examples of the invention and other arrangements may be devised without departing from the spirit and scope of the invention.
<SOH> BACKGROUND OF INVENTION <EOH>1. Field of the Invention The present invention relates to a respiratory mask and a vent for a respiratory mask.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a vent assembly suitable for use with a mask used in CPAP treatment wherein the vent assembly is a thin air permeable membrane. In one form of the invention, the membrane is thinner than the mask frame. In another form of the invention, the membrane is thinner than 0.5 mm. In another form of the invention the membrane has an approximate thickness of 0.05 mm. In another form of the invention the membrane is constructed from a hydrophobic material such as polytetrafluoroethylene (PTFE). In another form of the invention the membrane is constructed from expanded PTFE. In another form of the invention the expanded PTFE membrane is mounted on a polypropylene scrim. In another form, the pores of the membrane have a reference pore size of 10 to 15 microns. In another form of the invention the membrane is constructed from stainless steel. In another form of the invention the membrane of the vent has a superficial cross-sectional area of approximately 500 mm 2 . In another form of the invention the vent assembly comprises a membrane attached to a vent frame, the vent assembly forming an insert which can be removeably attached to a mask fame. In another form of the invention there is provided a respiratory mask for communicating breathable gas to the entrance of a wearer's airways, the mask including (i) mask shell, (ii) a gas inlet and (iii) an opening into which an insert constructed from a thin air permeable membrane with a corresponding shape may be placed. The opening may be positioned in the mask shell or in the gas inlet. In one form, the mask includes a mask shell with an integrally formed gas inlet and the opening is provided in the mask shell remote the inlet. In another form, the mask includes a mask shell with an integrally formed gas inlet and the opening is provided in the gas inlet. In yet another form, the mask includes a mask shell with a separately formed gas inlet attached thereto and the opening is provided in the mask shell remote the inlet. In still yet another form, the mask includes a mask shell with a separately formed gas inlet attached thereto and the opening is provided in the gas inlet. The present invention also provides a respiratory mask arrangement for communicating breathable gas to the entrance of a wearer's airways, the mask arrangement including a vent assembly comprising an opening with a thin air permeable membrane extending across an opening. The present invention also provides an apparatus for delivering CPAP which apparatus includes a mask arrangement for communicating breathable gas to the entrance of a wearer's airways, the mask arrangement including a gas washout vent assembly comprising an opening with a thin air permeable membrane extending across said opening.
20041101
20070109
20050505
60088.0
1
LEWIS, AARON J
RESPIRATORY MASK HAVING GAS WASHOUT VENT AND GAS WASHOUT VENT ASSEMBLY FOR RESPIRATORY MASK
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,976,956
ACCEPTED
Audio converter device and method for using the same
An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device.
1. A system comprising: a media playback device; and a converter device communicably coupled to the media playback device, the converter device comprising: a local area network port to receive portions of a digital media file stored on a local server; a volatile memory buffer to store the portions of the digital media file; a microprocessor to convert a portion of the digital media file stored in the volatile memory buffer into a format usable by the media playback system; and firmware to control the transfer of the portions of the digital media file into the volatile memory buffer to avoid interruption of media playback. 2. The system of claim 1, further comprising a remote controller to send instructions to cause the converter device to stream the processed data to the media playback device. 3. The system of claim 1, wherein the converter device decompresses the digital media file and converts the decompressed file into analog electrical data. 4. The system of claim 1, further comprising a portable electronic device to send instructions to cause the converter device to transfer the converted portion of the digital media file to the media playback device. 5. The system of claim 4, wherein the portable electronic device is a personal digital assistant. 6. The system of claim 1, wherein the converted portion of the digital media file is streamed from the converter device via a wireless transfer protocol. 7. The system of claim 6, wherein the wireless transfer protocol is IEEE 802.11b. 8. The system of claim 1, further comprising a portable electronic device including a local area network adapter. 9. The system of claim 8, wherein the portable electronic device is a personal digital assistant. 10. A converter device for receiving and converting a digital media stream from a server, the converter device comprising: a port to communicate with the server via a local area network; a user interface control device; one or more non-volatile flash memories to store converter control firmware operable to cause the port to start receiving the digital media stream from the server in response to activation of the user interface control device. 11. The converter device of claim 10, wherein the user interface control device includes a button integral to a housing of the converter device. 12. The converter device of claim 10, further comprising a buffer memory to store the digital media stream received. 13. A method for playing back a digital media file stored on a server at a media playback system, the method comprising: receiving portions of the digital media file in a successive transfers from the server via a local area network into a converter device in response to user activation of a user interface control device; converting the portions of the digital media file into media signals; and outputting the media signals via a media signal output port to a media playback system to provide a continuous media program. 14. The method of claim 13, further comprising storing the portions of the digital media file received in a buffer memory in the converter device. 15. The method of claim 14, wherein converting the portions of the digital media file comprises converting the portions of the digital media file from a computer storable format into a media playback format. 16. The method of claim 13, wherein the media signals are in a media playback format. 17. A computing system for receiving and converting a digital media stream from a server, the computing system comprising: a computer to convert the digital media stream from a computer storable format into a playback device playable format; a first port to receive the digital media stream in the computer storable format from a digital media server via a local area network; and a second port to send the digital media stream in the playback device playable format to a media playback system. 18. The computing system of claim 17, wherein the digital media stream in the playback device playable format includes one or more analog signals. 19. The computing system of claim 17, wherein the digital media stream in the playback device playable format includes one or more uncompressed digital signals. 20. A converter device to playback digital media, the converter device comprising: a local area network port to receive portions of a digital media file stored on a local server; a volatile memory buffer to store the portions of the digital media file; a microprocessor to convert a portion of the digital media file stored in the volatile memory buffer into a format usable by a conventional media playback system; and firmware to control the transfer of the portions of the digital media file into the volatile memory buffer such that there is no interruption of media playback. 21. The converter device of claim 20, further comprising a user interface to allow a user to navigate through a hierarchical presentation of data associated with the digital media file. 22. The converter device of claim 21, further comprising a user interface to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 23. The converter device of claim 21, further comprising a portable electronic device to allow users to manipulate the transfer of both the digital media file and the converted portion of the digital media file. 24. The converter device of claim 23, wherein the portable electronic device is a personal digital assistant. 25. The converter device of claim 21, further comprising a display to present data associated with the digital media file received from the local server. 26. The converter device of claim 21, further comprising a local area network adapter.
This Application is a Continuation of the prior application for “AUDIO CONVERTER DEVICE AND METHOD FOR USING THE SAME” filed by Craig M. Janik on Sep. 1, 2001, which claims the benefit of U.S. Provisional Application No. 60/230,530, filed on Sep. 1, 2000. FIELD OF THE INVENTION The present invention relates generally to audio playback devices, and more particularly, to an audio converter device to convert digital audio data received from a computer system to analog electrical data to be played on an audio playback device. BACKGROUND The rapid buildup of telecommunications infrastructure combined with substantial investment in Internet-based businesses and technology has brought Internet connectivity to a large segment of the population. Recent market statistics show that a majority of households in the U.S. own at least one personal computer (PC), and a significant number of these PCs are connected to the Internet. Many households include two or more PCs, as well as various PC productivity peripherals such as printers, scanners, and the like. Decreases in the cost of PC components such as microprocessors, hard disk drives, memory, and displays, have driven the commoditization of PCs. Although the majority of household PCs are connected to the Internet by dialup modem connections, broadband connectivity is being rapidly adopted, and is decreasing in price as a variety of technologies are introduced and compete in the marketplace. A large majority of households in the U.S. and Europe are viable for at least one or more type of broadband connection, such as cable, DSL, optical networks, fixed wireless, or two-way satellite transmission. A market for home networking technology has emerged, driven by the need to share an Internet connection between two or more PCs, and to connect all the PCs to productivity peripherals. There has been innovation in local area network (LAN) technology based on end-user desire for simplicity and ease of installation. Installing Ethernet cable is impractical for a majority of end-users, therefore a number of no-new-wires technologies have been introduced. The Home Phoneline Networking Association (HPNA) promotes networking products that turn existing phone wiring in the home into an Ethernet physical layer. Adapters are required that allow each device to plug into any RJ-11 phone jack in the home. The adapter modifies the signal from devices so that it can be carried by the home phone lines. Existing HPNA products provide data-rates equivalent to 10base-T Ethernet, approximately 10 Mbps. Networking technology that uses the AC power wiring in the home to carry data signals has also appeared. Similar to HPNA devices, adapters are required to convert data signals from devices into voltage fluctuations carried on to and off of the AC wires, allowing any AC outlet to become a network interface. Although both HPNA and power line networking products are convenient to use because they require no new wires, the advantage of AC power line products over HPNA is that AC power outlets are more ubiquitous than RJ-11 phone jacks. Wireless radio-frequency (RF) LAN technology has also been introduced into the home networking market. Theoretically, wireless technology is the most convenient for the end user to install. There are currently two prevalent standards for wireless networking, Institute of Electrical and Electronics Engineers (IEEE) 802.11b and HomeRF. Both of these systems utilize the unlicensed 2.4 Ghz ISM band as the carrier frequency for the transmission of data. Both of these technologies have effective ranges of approximately 150 feet in a typical household setting. IEEE 802.11b is a direct sequence spread spectrum technology. HomeRF is a frequency-hopping spread spectrum technology. Adapters that are RF transceivers are required for each device to communicate on the network. In addition to utilizing Transmission Control Protocol/Internet Protocol (TCP/IP) protocols, IEEE 802.11b and HomeRF include additional encryption and security protocol layers so that the user's devices have controlled access to data being sent through the LAN. Due to market competition and the effect of Moore's Law, home networking technology is greatly increasing in performance and availability, while decreasing in price. For example, the current data-rate roadmap shows HomeRF increasing from 10 Mbps to 20 Mbps, utilizing the 5 Ghz band. The IEEE 802.11 technology roadmap shows the introduction of 802.11a at 54 Mbps, also utilizing the 5 Ghz band. It is important to note that LAN data-rates are increasing much faster than wide-area data-rates, such as the data-rates provided by “last mile” technologies including DSL, DOCSIS. Wireless wide area data-rates are also improving slowly. Current digital cellular technology provides less than 64 Kbps data-rates, with most systems providing throughput in the 20 Kbps range. The MP3 digital audio format is an audio encoding technology that allows consumers to further compress digital audio files such as those found on Compact Disks, to much smaller sizes with very little decrease in sound quality. The MP3 format is the audio layer of MPEG-2 digital audio and video compression and transmission standard. For example, the MP3 format allows for compression of audio content to approximately 1 million bytes per minute of audio, at near Compact Disk quality. This capability, combined with a decrease in the cost of flash memory, a type of non-volatile silicon-based mass memory, has made it possible to develop portable digital audio playback devices. These are devices that are significantly smaller than portable CD players because they contain no moving parts, only flash memory, a microprocessor for decoding MP3 compressed audio content, and batteries. However, the cost per bit of audio content with portable digital audio playback devices is still very high because of the high cost of flash memory. The typical portable digital audio playback device includes enough flash memory to store about one CD's worth of digital music. The result is that the user is burdened with having to continually manually change the music files in the device by plugging the device into the PC and operating a user interface, if they want to listen to a wide range of music. PC-based MP3 software players have been created that provide a convenient graphical user interface and software decoding of MP3 files. Some technology allows users to play MP3 files on their PC, using an existing sound card with external speakers. However, to listen to MP3s the user must interface with the PC, using a mouse and keyboard, and must be nearby the PC sound output equipment. The smaller size of MP3 encoded audio files has also enabled these files to be shared by users across the Internet, since the transfer of these files takes an acceptable amount of time. Internet-based digital music access and distribution service businesses have appeared that provide various means for users to gain access to digital audio files. In addition to music, many other types of audio content are now available in digital format, such as spoken-word content, news, commentary, and educational content. Digital files containing audio recordings of books being read aloud are available for download directly from their website. At the same time, there is a very large installed base of stereo systems in households throughout the world. The majority of these systems are capable of producing high fidelity audio if the audio inputs into the stereo system are of high quality. What is needed is a system that allows users to play all of the digital content that is stored on their PC, on their existing audio equipment. This system should include an audio content management system, and should allow the user to control and manipulate the content that is stored on the PC, at the stereo system. This system should also provide the ability to stream audio from sources beyond the PC on the Internet. There should be a seamless interface that allows user to manage both locally cached content and Internet streams. SUMMARY An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only: FIG. 1 shows a schematic of one embodiment of the digital streaming audio system hardware components; FIG. 2 shows an isometric view of one embodiment of a digital audio converter; FIG. 3 shows an isometric exploded view of one embodiment of a digital audio converter; FIG. 4 shows a block diagram of one embodiment of a digital audio converter hardware components; FIG. 5 shows a block diagram of one embodiment of the digital streaming audio system software components; FIG. 6 shows an isometric view of one embodiment of a digital audio converter remote control; FIG. 7 shows one embodiment of a PC desktop with the console and media manager GUI; FIG. 8 shows one embodiment of a PC desktop with the mini-browser open to a content portal; FIG. 9 shows one embodiment of a PC desktop with the media manager GUI open with a dialog box; FIG. 10 shows a flowchart of one embodiment of the GUI at digital audio converter; FIG. 11 shows one embodiment of a tag sequence flowchart; FIG. 12 shows a schematic of one embodiment of a digital audio converter with alarm clock function; FIG. 13 shows an isometric view of one embodiment of the alarm clock controller; FIG. 14 shows a schematic of one embodiment of a digital streaming audio system incorporating a PDA with an attached wireless LAN adapter module which functions as the system controller and, or player device; and FIG. 15 shows an isometric view of one embodiment of the PDA removed from the LAN adapter. DETAILED DESCRIPTION An audio converter device and a method for using the same are described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the present invention. A set of definitions is provided below to clarify the present invention. Definitions The Internet is used interchangeably with the term web or worldwide web. Both of these are defined as the worldwide network of PCs, servers, and other devices. Broadband connection is defined as a communications network in which the frequency bandwidth can be divided and shared by multiple simultaneous signals. A broadband connection to the Internet typically provides minimum upstream and downstream data-rates of approximately 200K or more bits per second. There are many different types of broadband connections including DSL, cable modems, and fixed and mobile wireless connections. A Data Over Cable System Interface Specification (DOCSIS) modem is an industry standard type of cable modem that is used to provide broadband access to the Internet 8 over a coaxial cable physical layer that is also used for the delivery of cable TV signals (CATV). A Digital Subscriber Line (DSL) modem is also an industry standard type of modem that is used to provide broadband access to the Internet, but over conventional copper phone lines (local loops). The term gateway, used interchangeably with broadband gateway, is defined as an integral modem and router, and may include hub functionality. The modem function is used to change voltage fluctuations on an input carrier line (a DSL line input or a cable TV input) into digital data. Routers are devices that connect one distinct network to another by passing only certain IP addresses that are targeted for specific networks. Hubs allow one network signal input to be split and thus sent to many devices. Gateway storage peripheral is defined as an add-on storage device with processing power, an operating system, and a software application that manages the downloading and storage of data. An example scenario for the use of a gateway storage peripheral is a system where a user has a DOCSIS modem and would like to add an always-on storage capability. The gateway storage peripheral is connected to the DOCSIS modem via a USB port or an Ethernet port in the DOCSIS modem. A gateway storage peripheral in combination with a DOCSIS modem or any type of broadband modem is considered a storage gateway system. A PC that is always left on and connected to an always-on gateway with a DSL or broadband cable connection is considered a storage gateway system. The term “message” is defined as information that is sent digitally from one computing device to another for various purposes. The term “content” is used to mean the information contained in digital files or streams. For example, content may be entertainment or news, or audio files in MP3 format. “Data” is used to mean information such as digital schedule contents, responses from devices sent back through the system, or digital messages and email. “Content” and “data” are sometimes used interchangeably. “Client devices” are those devices that are not fully functional without a host device such as a personal computer. Local Area Network (LAN) is defined as a network structure that includes two or more devices that can communicate with other devices utilizing a shared communication infrastructure, including wired network technologies, such as Ethernet, or wireless network technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11b or HomeRF technology. Wireless LAN technology such as IEEE 802.11b and HomeRF are based on the unlicensed 2.4 Ghz ISM (Industrial, Scientific, and Medical) frequency band and are well known the telecommunications and LAN industries. These networking technologies utilize Transmission Control Protocol/Internet 8 Protocols (TCP/IP) protocols. A LAN typically constitutes a group of interconnected devices that share a common geographic location and are typically grouped together as a subnet. A local network, for example, would be a home network where several computers and other smart devices would be digitally connected for the purpose of transferring content and data, controlling each other, sharing programming, or presenting data and content to a user. Codec (Compression/Decompression algorithm) is a software application that is used to decode (uncompress) encoded (compressed) media files or streams. Most content is stored and sent in a compressed format so that the content files are smaller and thus take up less storage space and use less bandwidth when being transferred via the Internet. The content is then decoded at the playback device. For example, MP3 audio files are encoded and must be decoded by a microprocessor running the codec in order for the audio content to be presented to the user in an analog format. HTTP is Hyper-text transfer protocol, the protocol used by Web browsers and Web servers to transfer files, such as text and graphic files. Data-rate is defined as the data throughput of a telecommunications system or technology, and is measured in a quantity of bits per second, such as millions of bits per second (Mbps). Overview of Operation The fundamental operation of the digital streaming audio system involves LAN transmission of digital audio files 116 from a local source that is a personal computer (PC 34) 24, to a digital audio converter 32 that receives the stream and converts it into a signal that can be input into a conventional stereo system 40. Referring now to FIG. 1, the key hardware components in the system are PC 34 connected to the Internet 8. The PC 34 is also functionally connected via a USB connection 64 to a wireless radio frequency (RF) LAN access point 28, such that digital content from PC 34 is transmitted to nodes on the LAN. Digital audio converter 32, shown in FIG. 2, is located within communication range of the wireless LAN access point 28, and is connected to a conventional stereo receiver 44 via the right and left RCA jack inputs. Stereo receiver 44 is part of a stereo system 40 that includes a left speaker 48 and a right speaker 48. 0 is a block diagram of a portion of the digital streaming audio system including digital audio converter 32 and the stereo system 40, showing how left analog output 156 and right analog output 160 included in digital audio converter 32 are connected respectively to the left line input 78 and right line input 82 on existing stereo receiver 44. Digital audio converter 32 also includes a remote control 52 that communicates with digital audio converter 32 via an IR communication link 38. Stereo system 40 functions in the conventional way, pre-amplifying and amplifying the audio signals and delivering them to the left speaker 48 and the right speaker 48. The function of the PC 34 in the digital streaming audio system is to acquire, store, manage, and serve digital audio content to digital audio converter 32. The PC 34 gains access to digital audio content several ways. In one embodiment the PC 34 is also connected to the Internet 8 via a broadband cable modem 16. Thus the PC 34 has access via content services to both downloadable digital audio files 116 such as MP3 formatted content files, as well as digital audio streams from Internet 8 servers. For example, some radio stations provide access to their programming via digital audio streams. In other embodiments, PC 34 is connected to Internet 8 through a dial-up modem connection to an ISP, or Digital Subscriber Line (DSL), or a fixed wireless broadband connection. Wireless LAN transceivers are capable of sending and receiving data using radio frequencies via a wireless data transfer protocol. Technology for such a LAN is currently available and includes the Symphony wireless networking access point provided by Proxim, Inc. of Sunnyvale Calif. LAN systems such as this are based on RF modulation centered on the 2.4 GHz frequency band. Such LANs have a practical range of approximately 150 feet and are capable of reaching most areas in an average sized house were a stereo system 40 and digital audio converter 32 are located. In another embodiment, the wireless LAN access point 28 is a PCI card that is located internal to the PC 34, with an external antenna. In another embodiment, the wireless LAN communication link 6 is provided using IEEE 802.11b protocols. The function of digital audio converter 32 is to receive digital audio streams sent from the PC 34, decode and de-compress the digital audio in real time, convert it from a digital format into a analog electrical signals, specifically a left analog audio signal and a right analog audio signal. Through the use of digital audio converter 32, the stereo system 40 is the output device for digital audio content that was initially stored on the PC 34 or on the Internet 8. Digital audio converter 32 includes an LCD 50 that is used to display data relevant to the audio content being played, such as track 220 titles. In one embodiment, digital audio converter 32 includes one set of control buttons on the remote control 52, which attaches onto to the enclosure 60 of digital audio converter 32. In another embodiment, control buttons are included on both an IR remote control 52 and integral to the main enclosure 60. The purpose of the control buttons is to provide a user interface for controlling the digital streaming audio system, as well as a tag button 120 used to maintain a record of certain audio content on the PC 34 for later use, and control of other features. The control buttons include the conventional controls that are found on audio playback devices including power on/off button 100; track forward button 108 and track backward button 112—for advancing through and selecting tracks for playback; menu button 152; play/pause button 104—for starting and pausing (stopping at point in the middle of a playback of an audio track); stop button 116—for stopping playback of audio content; tag button 120—for triggering the transmission of information about a currently playing digital audio content back through the system for delivery to the end user on a website or for delivery to the content creator or content originator; user-defined button 124—a button that may be associated with a variety of functions as selected by the user using the audio playback device setup GUI. A four-way navigation control 144 including navigate up button 128, navigate down button 132, navigate left button 140, and navigate right button 136. A select button is included in the center of the four-way navigation control 144. These control buttons are also shown on a remote control 52 in FIG. 6. Mechanical Description Referring now to FIGS. 2 and 3, one embodiment of digital audio converter 32 includes a three-piece plastic injection-molded enclosure 60 including a top housing 54, a bottom housing 58, and a front bezel 66. Internal hardware also includes LCD 50 that contains an integral backlight 52 so that the LCD 50 may be read in low light, a power regulation sub-system 30, an infrared (IR) receiver 34 and related circuitry, and a printed circuit board (PCB) 70 that contains the electronic components that constitute the functional data-manipulating aspect of digital audio converter 32. In one embodiment, the wireless LAN transceiver 36 antenna 26 is located internal to the digital audio converter 32 housing as shown in FIG. 3. The entire assembly is held together with threaded fasteners. The construction of the remote control 52 is a typical two-piece plastic shell construction as shown in FIG. 6. Internal hardware includes an infrared (IR) transceiver 148 and batteries, as well as a printed circuit board that contains the electronic components that constitute the functional data-manipulating aspect of digital audio converter 32. In one embodiment, the remote control 52 is removably attached to the enclosure 60. Electrical Description FIG. 4 shows a block diagram of the electrical components in digital audio converter 32. PCB electrically connects components including a microprocessor 10 with dynamic memory (DRAM) 14, programmable (flash) memory 18 for storage of control firmware 100 when power is turned off, a power regulation sub-system 30, and a plurality of input/output terminals including an Ethernet port and a right analog output 160 and a left analog output 156. A wireless LAN transceiver 36 is functionally connected to the PCB. PCB also functionally connects an infra-red (IR) control sub-system 34 for processing IR commands from the remote control 52. Digital audio converter 32 also includes a digital-to-analog converter (DAC) 22 for converting the uncompressed digital information into analog signals that are presented at the standard left analog output 156 and right analog output 160 RCA connectors. A display driving sub-system 53 is also included for presenting text and graphical information to the user. Microprocessor 10 in combination with DRAM memory 14 executes instructions from its real time operating system 96 and control firmware 100. In another embodiment, digital audio converter 32 includes a terrestrial broadcast tuner subsystem for tuning local AM and FM broadcast radio. In another embodiment, power to the stereo system 40 is supplied via a switched power line from the converter box so that the system has the capability of turning the stereo on and off. The on/off function is controlled via software on the PC 34 or through the remote control 52, so that when the digital audio converter 32 is powered on, the stereo system 40 is also automatically powered on. System Software Description FIG. 5 displays the relevant software components of the digital streaming audio system. In one embodiment, the software required on the PC 34 includes an operating system 72, such as the WindowsXP operating system provided by Microsoft of Redmond, Oreg. Wide area communication software 121 is also required for connecting to the Internet 8, which is typically provided as drivers in operating system 72. LAN communication drivers 92 are required for connecting the PC 34 to the LAN. Digital audio files 116 such as MP3 formatted files are stored on the hard disk drive 68. Software Module—System Control Application 76 The system control application 76 is software executing on PC 34 that manages communication and streaming from PC 34 to digital audio converter 32. System control application 76 includes a server module 88 that is a Java application. System control application 76 also includes a database module 80 that is written to or accessed by server module 88, and a graphical user interface (GUI) module 84, that provides a user interface for setting up content to be streamed to digital audio converter 32 and played on the stereo system 40. In one embodiment, the GUI module 84 is a native Windows 32-bit application. In another embodiment, the GUI module 84 is available on a web page, implemented as HTML and Java Server Pages (JSP). The GUI module 84 provides a user interface that is used to organize audio content into lists. The lists that are created using the GUI module 84 at PC 34 are accessible at digital audio converter 32 via the use of control buttons on remote control 52 and visual output on LCD 50. FIG. 7 shows a PC desktop 200 with the media manager GUI 208 running. The console 204 is a GUI element that appears when server module 88 is running. Console 204 shows icons for any devices that are actively communicating on the LAN. Digital audio converter icon 224 is shown present on console 204. Media manager GUI 208 is launched from digital audio converter icon 224 on console 204 by clicking on digital audio converter icon 224 on console 204 with a mouse. The media manager GUI 208 features a three-level nested list structure. The three levels are labeled as channels 212, playlists 216, and tracks 220. Channels 212 are lists of playlists 216, and playlists 216 are lists of tracks 220. Track 220 is a GUI representation of a locally cached digital audio file 116 or a digital audio stream from Internet 8. Channels 212 can be added by right-clicking with the mouse on the channel bar 232. A menu is displayed that allows the user to create and label channel 212 by typing in text. Playlists 216 can be added to channels 212 by right clicking on a channel 212 label and selecting the option to add playlist 216. Playlists 216 can also be added to channels 212 by left clicking with the mouse on the add playlist button 236. Tracks 220 can be added to playlists 216 by using the mouse to click on the add track button 240. FIG. 9 shows the result of left clicking on add track button 240. A conventional Windows dialog box 248 is displayed. The left side of dialog box 248 includes a navigation window that allows the user to navigate to any directory on local PC 34 or to any other PC that are accessible on the LAN. Tracks 220 can also be added to playlists 216 by dragging and dropping an audio file icon from a window on the desktop, onto track 220 list. Tracks 220 can also be added to playlists 216 by dragging and dropping track 220 icon from the music library 244. Music library 244 is a window that shows all of the digital audio files 116 stored on the local hard disk drive 68 that can be decoded by digital audio converter 32. A software agent included in server module 88 of system control application 76 searches hard disk drive 68 for compatible audio files, enters the names and locations of those files into database module 80, and places labels of the files in music library 244. Audio content services are also available through online services accessed through a browser interface. FIG. 8 shows a web-based content selection guide 252 that provides the ability to make a playlist online. The online digital audio files associated with online playlist titles 99 in the online playlist 122 are streamed to digital audio converter 32 via PC 34 and wireless LAN communication link 6. Server module 88 includes software that interfaces with the protocols of each online audio service provider to allow online playlists 122 to be downloaded and transferred into database module 80. Thus, playlist structures and playlist titles created online using the web-based content selection guide 252 are available and can be interacted with by the user with the user interface at digital audio converter 32. Referring now to FIG. 7, media manager GUI also includes a PC audio device control interface 260, which includes the conventional controls for controlling an audio player device. PC audio device control interface 260 allow the user to control digital audio converter remotely from PC 34. Using a preference setting, the audio sound playing that is controlled by PC audio device control interface 260 can be directed to the local PC 34 speakers 48. In other words, the digital audio file 116 that is selected to be played can be decoded locally at PC 34 and played on PC 24 speakers 48. Device Software—Digital Audio Converter 32 Operating System In one embodiment digital audio converter 32 operates using Vx Works, a real-time operating system 96 provided by WindRiver Systems. Digital audio converter 32 control firmware 100 is a software application that is run on real time operating system 96 and manages the processing of messages from the IR sub-system 34, communication with system control application 76 via LAN 6, stream buffering, and decoding of digital audio. Device Software—Device GUI A GUI is provided at digital audio converter 32. The GUI is operated using remote control 52 and LCD 50. FIG. 10 shows a graphical user interface flow chart to describe the user interface structure. The three levels of content organization provided by the media manager GUI 208 correspond to three display lines on digital audio converter 32 LCD 50. The display lines are manipulated by using the four-way navigation control 144 on remote control 52. Referring now to FIG. 10, each screen is described below: Initial state of digital audio converter 32 is shown. The top line of text shows the current channel, the second line of text shows the current playlist, and the third line of text shows the current track. Digital audio converter 32 status icon 256 shows the filled square symbol, which is the conventional symbol for a playback system that is in “stop” mode, i.e., nothing is playing. The channel level is depicted as the current channel by being graphically reversed (text is white with black background). This screen shows the result of activating the right navigation button. The channel level label changes to “channel 2”. The labels at the playlist level and the tracks level also update to reflect the new items in “channel 2”. This screen shows the result of activating the down navigation button. The highlight moves from the channel level to the playlist level. This screen shows the result of next activating the right navigation button. The playlist level changes to “playlist2”, the next playlist organized under “channel 2”. The track level text also updates to reflect the actual first track included in “track 1” under “playlist 2”. This screen shows the result of next activating the play/pause button on the remote control 52. “Track 1” begins to play. This screen shows the result of next activating the next track button on digital audio converter 32 remote control 52. “Track 3” begins to play. Status icon 256 changes from a black square to a right-pointing triangle. This screen shows the result of next activating the play/pause button while a track is playing. The track stops playing and status icon 256 is the “pause” icon. This screen shot shows the result of a few different actions. First, the play/pause button was activated, thus “Track 3” begins to play where it left off when the play/pause button was activated. Next, the right navigation button is activated once. The track line advances to show the next track, or “Track 4” in “Playlist 2”. “Track 3” continues to play. This feature allows the user to browse through the channel/playlist/track list structure while continuing to listen to a currently playing track. This screen shows the result if no other buttons are activated for six seconds. The display reverts back to display the channel, playlist, and track that are currently being played. The corresponding other buttons, such as the up navigation and left navigation buttons move the highlight to the corresponding label. Device Software—CODECs In one embodiment, digital audio converter 32 includes the Fraunhofer CODEC 104, licensed for use by Thomson Electronics for decoding the digital audio file that is streamed to it from PC 34. CODEC 104 is an executable file stored in memory, launched by control firmware 100, executed by real time operating system 96 running on digital audio converter 32. Digital audio converter 32 may store a multiple CODECs in memory 18 for decoding variously formatted digital audio files 116 that may be selected by the user. For example, the WindowsMedia CODEC, provided by Microsoft may be stored in memory 18 at digital audio converter 32. Software Functions—Communication/Message Processing The communication and streaming functions of the system will now be described. A user uses remote control 52 to control the function of digital audio converter 32. Button activations on remote control 52 result in IR pulse codes that are received by the IR receiver sub-system 34 in digital audio converter 32. These IR pulse codes are deciphered by the computer sub-system in digital audio converter 32 and are converted into messages that are interpreted by the control firmware 100 running on digital audio converter 32 to invoke action at digital audio converter 32. Other IR pulses codes from remote control 52 are processed by control firmware 100 and are converted into XML-based messages 94 and sent via HTTP requests to PC 34 via the wireless LAN. These messages are interpreted by server module 88 running on PC 34 and specific actions are initiated. For example, assume that digital audio converter 32 is currently in play mode, that is, a first digital audio file 116 is currently being streamed to digital audio converter 32, decoded, and corresponding analog signals are being produced at the analog outputs. The user activates forward one track button 108 and IR pulse code is generated by the IR sub-system 34 in remote control 52. IR pulse code 38 is received by the IR sub-system 34 in digital audio converter 32 and is interpreted by control firmware 100 running on digital audio converter 32 as a “forward one track” command. XML message 94 expressing the “forward one track” command is sent by microprocessor 10 to system control application 76 on PC 34. The “forward one track” XML message 94 is transmitted by wireless LAN transceiver 36 via the LAN, by an HTTP request, to wireless LAN access point 28 connected to PC 34. The HTTP request containing the “forward one track” message is received by server module 88, which accesses the next track name and location of the file associated with the next track name, in database 80. The text string for the track name is expressed in an XML message 94 and is sent to back to digital audio converter 32. This text string is interpreted by control firmware 100 running at digital audio converter 32 and the text string is then displayed on LCD 50. The preferred embodiment also enables the streaming of digital audio files 116 with a buffer management function that controls the flow of portions of the digital audio file 116 from PC 34 into a local DRAM memory 14 of digital audio converter 32. The buffer management function insures that the local DRAM memory 14 buffer is filled as the contents of DRAM 14 are decoded by microprocessor 10 executing the CODEC 104. Other Features—Downloadable Firmware and CODECs An aspect of control firmware 100 on digital audio converter 32 is the ability to receive and install new CODECs 104 via LAN communication link 6. Non-volatile flash memory 18 in digital audio converter 32 is partitioned into two sectors, flash memory sector A and flash memory sector B. A control bit determines the flash memory sector from which operating system 96 and control firmware 100 is loaded. In an initial state, operating system version A and control firmware version A are loaded into DRAM 14 upon boot of digital audio converter 32. Digital audio converter 32 is functional. New versions of the software, operating system B and control firmware B are sent to digital audio converter 32 via wireless LAN communication link. Operating system B and control firmware B are then written into flash memory sector B. A checksum is provided to insure that the exact image of the software has been successfully written into flash. If the checksum at digital audio converter 32 matches the control checksum, the control bit is changed to cause the system to boot from flash sector B. Either a device reboot command is initiated from the server module 88, or a reboot is initiated at digital audio converter 32. Operating system B and control firmware B are then loaded into DRAM. Digital audio converter 32 operates with new versions of the software. The next new version of software is loaded into flash sector A. Each successive revision of software is loaded into the flash sector A or flash sector B that is not the current bootable flash memory sector. Other Features—Tagging Because LAN technology is a two-way interconnection technology, responses from digital audio converter, in one embodiment, may be sent back through the digital streaming audio system and processed and presented to the user and other interested entities at both PC 34 and on the web. FIG. 6 shows tag button 120 on digital audio converter 32. FIG. 11 is a flow chart of the tagging sequence. During the playing of digital audio files 116, activation of tag button 120 by the user results in a transmission of XML message 94 back through LAN informing system control application 76 server module 88 that tag button 120 was activated. Server module 88 then compiles and transmits tag XML message 94 to tag storage and processing server 124. The information in tag XML message 94 may include but is not limited to: metadata or metatags (ID3 data) included in the file or stream (characters or images); the file name if content is a file; the URL or IP address of the stream if content 10 is a stream; time; date; and user identifier. The transmission of tag XML message 94 can have different results. The information in the message may be formatted as a readable text message and presented to a user on a personal tag aggregation web page. In this scenario, the user has signed up with an account and receives a password for entry into protected tag aggregation web page. For the tagging function, the server module 88 should have access to accurate time and date information. Server module 88 includes a function that accesses a server on Internet 8 where accurate time and date data is available, and these quantities are stored locally by server module 88 in system control application 76 database module 80. Other Features—User-Defined Button A user programmable user-defined button 124 is provided on remote control 52. The function of user-defined button 124 can be changed based on an menu of items available via GUI module 84. For example, a user-defined menu may be accessible via a left mouse click on digital audio converter icon 224 on console 204. The left mouse click on digital audio converter icon 224 causes a preference menu to appear. Some possible functions for user-defined button 124 are: delete currently playing track from the current playlist; purchase the currently streaming digital audio file 116 (if it is a sample digital audio file); shuffle the tracks in the existing playlist; repeat the current playlist, if the active level is the playlist level; repeat the current channel if the active level is a channel. Use of the System The PC 34 downloads several digital audio files 116 through the Internet 8 during the night and stores them on hard drive 68. At some time during the day, the user builds a playlist 216 of the digital audio files 116 to be played on his/her stereo system 40. Using digital audio converter 32 and remote control 52, the user requests to listen to the digital audio files 116. This information is relayed to the PC 34. The PC 34 then sends the audio content to the stereo system 40 where it is played. The user continues to manipulate the playlist 216 through the use of remote control 52 and tags certain songs that he/she finds appealing. The user later returns to the PC 34 and builds a new music playlist 216 from the newly downloaded digital audio files 116. Alternative Embodiments FIG. 12 shows an embodiment of the invention used to perform the functions of an alarm clock for use with a stereo system 40. The system includes an alarm clock controller 132 such as the one illustrated in FIG. 13. The alarm clock controller 132 includes a wireless LAN transceiver 316 and the functional components required to allow the alarm clock remote controller 132 to operate as a node on the wireless LAN. The user can input a wake-up time into a PC 34 using a GUI or on alarm clock controller 132, which is sent, via the LAN communication link 6, to digital audio converter 32. Digital audio converter 32 may include a switched AC power conversion function that is used to switch on the stereo receiver 44 at the specified time in order to wake up a person sleeping in the room. The audio content that is played on the stereo at the time of wake-up can be pre-selected according to the users preferences. The alarm clock controller includes several buttons used to perform such functions as inputting a wake up time, tagging a web page, or turning the stereo off (snooze button 304). The alarm clock controller 132 includes a display 312 and several control buttons 308 used to perform such functions as inputting a wake up time and tagging digital audio. In an alternative embodiment, the alarm clock controller includes an IR transceiver and other necessary components for establishing an IR communication link to digital audio converter 32. The IR communication link to digital audio converter 32 is used here instead of a wireless LAN communication link to the PC 34. The alarm clock controller module retains the same functionality as previously described, but must communicate with the system via digital audio converter 32. In a further embodiment, digital audio converter 32 remote control 52 functions as the alarm clock controller. The user can use the remote control 52 to set the wake-up time for the stereo to turn on and/or use the remote control 521 to switch the stereo off (snooze function). The user-defined button can be programmed by the user to function as a snooze button. FIG. 14 shows an embodiment of the invention where a PDA docked with a wireless LAN adapter 148 is used as an enhanced controller and/or player used with the system. FIG. 15 shows the PDA removed from the wireless LAN adapter 148. The PDA is used as the system controller and is used to manage the audio content that is delivered to the stereo by manipulating software on the PC 34 through a wireless LAN communication link to the PC 34. For example, the user can create or edit a playlist that is stored in the database module 80 on the PC 34, by using a browser GUI on the PDA. The PDA can be similarly used to perform functions such as volume control, song skip, and pause. Furthermore, earphones can be connected to the wireless LAN adapter through the audio out jack on the module and the PDA can be used to play audio content stored on the PC 34. An audio data stream from the PC 34 is sent to the wireless LAN adapter module, where is decoded and converted into an analog audio signal that is sent to earphones. In this effect, the wireless LAN adapter module is functioning as digital audio converter 32, but has the added advantage of being portable. A custom user interface application on the PDA is used as the user interface. The PDAs that are included in this system are PDAs that are currently sold as standalone PDA devices such as the Palm III, made by Palm Inc. FIG. 13 shows a generic PDA. By docking a PDA with the wireless LAN adapter, the PDA essentially becomes a node in the LAN established by the wireless LAN access point 28 connected to the PC 24. Through the use of the wireless LAN adapter, in conjunction with software on the PDA and software on the PC 24, the PDA can send data to and receive data from the PC 24. FIG. 14 shows a PDA docked with a wireless LAN adapter 148. Electrical contacts on the rear end of the PDA make contact with electrical contacts 608 on the wireless LAN adapter 148 in order to establish a data communication link. There is a printed circuit board that contains the electronic components that constitute the functional data-manipulating aspect of wireless LAN adapter. Batteries are included to supply power to the wireless LAN adapter 148. The wireless LAN adapter further includes an audio output jack. In the preferred embodiment, the antenna is located internal to the PDA, mounted to the printed circuit board. The PDA can also be incorporated into the system by using onboard IR capabilities. In this scenario, the PDA would communicate with the system via an IR communication link to the Wireless LAN-to-audio converter and would be used to perform similar functions to those of the remote control 521 described in one embodiment. In another embodiment, a PDA is used that contains the processing power to decode and convert digital audio files. An example of such a PDA is the Compaq iPaq, manufactured by Compaq Computer. In this case, a wireless LAN Compact Flash transceiver card can be added to the CompactFlash card slot on the iPaq. A streaming player software application is also installed on the PDA that allows the PDA to interconnect to they system control application 76 on the PC 34 as if it were digital audio converter 32. A GUI on the PDA allows the user to select playlists and control the streaming of digital audio files to the PDA. The Home PC 34 to Stereo Player System has several permutations that have not yet been explicitly mentioned, but are implied: the system can be wholly controlled through the PC 34 and can be used without the use of a remote control 521 and or a PDA; digital audio converter 32 can be internally incorporated into a new stereo device; the buttons on digital audio converter 32 can be regarded as optional; the switched power line on digital audio converter 32 can be regarded as optional; the wireless LAN adapter can be internally incorporated into a new PDA device; the audio in/out jack on the HRF Adapter Sled Module and its associated functions can be regarded as optional; HRF antennas can be located internal or external to digital audio converter 32s they serve. In another embodiment the LAN connection between the PC 34 and device is Ethernet. In a different embodiment, the LAN connection between the PC 34 and digital audio converter 32 is an networking technology that uses the existing phone lines in the home as the physical layer. In yet another embodiment, the LAN connection between the PC 34 and digital audio converter 32 is a networking technology that uses the existing AC powerlines in the home as the physical layer. In another embodiment, a residential storage gateway or a storage gateway system is used in place of or in addition to the PC 34 to run the system control application 76, connect to the Internet 8, and store file based content. In another embodiment, the system control application 76 including server module 88, database module 80, and GUI module 84 can be run on a set-top box that includes a cable modem and a hard disk drive and can perform the same functions. An audio converter device and a method for using the same have been described. Although the present invention is described herein with reference to specific embodiments, many modifications and variations therein will readily occur to those with ordinary skill in the art. Accordingly, all such variations and modifications are included within the intended scope of the present invention as defined by the following claims.
<SOH> BACKGROUND <EOH>The rapid buildup of telecommunications infrastructure combined with substantial investment in Internet-based businesses and technology has brought Internet connectivity to a large segment of the population. Recent market statistics show that a majority of households in the U.S. own at least one personal computer (PC), and a significant number of these PCs are connected to the Internet. Many households include two or more PCs, as well as various PC productivity peripherals such as printers, scanners, and the like. Decreases in the cost of PC components such as microprocessors, hard disk drives, memory, and displays, have driven the commoditization of PCs. Although the majority of household PCs are connected to the Internet by dialup modem connections, broadband connectivity is being rapidly adopted, and is decreasing in price as a variety of technologies are introduced and compete in the marketplace. A large majority of households in the U.S. and Europe are viable for at least one or more type of broadband connection, such as cable, DSL, optical networks, fixed wireless, or two-way satellite transmission. A market for home networking technology has emerged, driven by the need to share an Internet connection between two or more PCs, and to connect all the PCs to productivity peripherals. There has been innovation in local area network (LAN) technology based on end-user desire for simplicity and ease of installation. Installing Ethernet cable is impractical for a majority of end-users, therefore a number of no-new-wires technologies have been introduced. The Home Phoneline Networking Association (HPNA) promotes networking products that turn existing phone wiring in the home into an Ethernet physical layer. Adapters are required that allow each device to plug into any RJ-11 phone jack in the home. The adapter modifies the signal from devices so that it can be carried by the home phone lines. Existing HPNA products provide data-rates equivalent to 10base-T Ethernet, approximately 10 Mbps. Networking technology that uses the AC power wiring in the home to carry data signals has also appeared. Similar to HPNA devices, adapters are required to convert data signals from devices into voltage fluctuations carried on to and off of the AC wires, allowing any AC outlet to become a network interface. Although both HPNA and power line networking products are convenient to use because they require no new wires, the advantage of AC power line products over HPNA is that AC power outlets are more ubiquitous than RJ-11 phone jacks. Wireless radio-frequency (RF) LAN technology has also been introduced into the home networking market. Theoretically, wireless technology is the most convenient for the end user to install. There are currently two prevalent standards for wireless networking, Institute of Electrical and Electronics Engineers (IEEE) 802.11b and HomeRF. Both of these systems utilize the unlicensed 2.4 Ghz ISM band as the carrier frequency for the transmission of data. Both of these technologies have effective ranges of approximately 150 feet in a typical household setting. IEEE 802.11b is a direct sequence spread spectrum technology. HomeRF is a frequency-hopping spread spectrum technology. Adapters that are RF transceivers are required for each device to communicate on the network. In addition to utilizing Transmission Control Protocol/Internet Protocol (TCP/IP) protocols, IEEE 802.11b and HomeRF include additional encryption and security protocol layers so that the user's devices have controlled access to data being sent through the LAN. Due to market competition and the effect of Moore's Law, home networking technology is greatly increasing in performance and availability, while decreasing in price. For example, the current data-rate roadmap shows HomeRF increasing from 10 Mbps to 20 Mbps, utilizing the 5 Ghz band. The IEEE 802.11 technology roadmap shows the introduction of 802.11a at 54 Mbps, also utilizing the 5 Ghz band. It is important to note that LAN data-rates are increasing much faster than wide-area data-rates, such as the data-rates provided by “last mile” technologies including DSL, DOCSIS. Wireless wide area data-rates are also improving slowly. Current digital cellular technology provides less than 64 Kbps data-rates, with most systems providing throughput in the 20 Kbps range. The MP3 digital audio format is an audio encoding technology that allows consumers to further compress digital audio files such as those found on Compact Disks, to much smaller sizes with very little decrease in sound quality. The MP3 format is the audio layer of MPEG-2 digital audio and video compression and transmission standard. For example, the MP3 format allows for compression of audio content to approximately 1 million bytes per minute of audio, at near Compact Disk quality. This capability, combined with a decrease in the cost of flash memory, a type of non-volatile silicon-based mass memory, has made it possible to develop portable digital audio playback devices. These are devices that are significantly smaller than portable CD players because they contain no moving parts, only flash memory, a microprocessor for decoding MP3 compressed audio content, and batteries. However, the cost per bit of audio content with portable digital audio playback devices is still very high because of the high cost of flash memory. The typical portable digital audio playback device includes enough flash memory to store about one CD's worth of digital music. The result is that the user is burdened with having to continually manually change the music files in the device by plugging the device into the PC and operating a user interface, if they want to listen to a wide range of music. PC-based MP3 software players have been created that provide a convenient graphical user interface and software decoding of MP3 files. Some technology allows users to play MP3 files on their PC, using an existing sound card with external speakers. However, to listen to MP3s the user must interface with the PC, using a mouse and keyboard, and must be nearby the PC sound output equipment. The smaller size of MP3 encoded audio files has also enabled these files to be shared by users across the Internet, since the transfer of these files takes an acceptable amount of time. Internet-based digital music access and distribution service businesses have appeared that provide various means for users to gain access to digital audio files. In addition to music, many other types of audio content are now available in digital format, such as spoken-word content, news, commentary, and educational content. Digital files containing audio recordings of books being read aloud are available for download directly from their website. At the same time, there is a very large installed base of stereo systems in households throughout the world. The majority of these systems are capable of producing high fidelity audio if the audio inputs into the stereo system are of high quality. What is needed is a system that allows users to play all of the digital content that is stored on their PC, on their existing audio equipment. This system should include an audio content management system, and should allow the user to control and manipulate the content that is stored on the PC, at the stereo system. This system should also provide the ability to stream audio from sources beyond the PC on the Internet. There should be a seamless interface that allows user to manage both locally cached content and Internet streams.
<SOH> SUMMARY <EOH>An audio converter device and a method for using the same are provided. In one embodiment, the audio converter device receives the digital audio data from a first device via a local area network. The audio converter device decompresses the digital audio data and converts the digital audio data into analog electrical data. The audio converter device transfers the analog electrical data to an audio playback device.
20041029
20070123
20050317
75161.0
3
GRIER, LAURA A
AUDIO CONVERTER DEVICE AND METHOD FOR USING THE SAME
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,977,015
ACCEPTED
Apparatus and method for controlling polarization of an optical signal
In one aspect of the invention, a polarization controller includes a first polarization beam splitter operable to receive an input optical signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization. The polarization controller further includes at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization.
1. An optical processing system, comprising: a light pipe operable to communicate at least a portion of an optical signal for processing, the optical signal comprising a plurality of wavelengths; a first beam splitter operable to divide the optical signal into at least a first part and a second part, the first part of the optical signal having an input state of polarization; an optical signal separator operable to receive at least the first part of the optical signal and to communicate at least a portion of the first part to a polarization adjustment device for processing, the polarization adjustment device comprising: a first polarization beam splitter operable to receive the at least a portion of the first part of the optical signal and to separate the at least a portion of the first part of the optical signal into a first and a second principal mode of polarization; and at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a second beam splitter that is shared with at least one other of the phase shifters, the at least three stages of phase shifters comprising a first stage coupled to the first polarization beam splitter and a second stage coupled to a second polarization beam splitter, wherein the second beam splitter that is shared comprises a partially transmitting mirror; a combiner operable to combine one or more phase shifted portions of the first part of the optical signal into a phase shifted output signal; and an optical reflector operable to receive at least some of the phase shifted optical signal and to communicate the phase shifted optical signal to an output. 2. The optical processing system of claim 1, wherein at least some of the plurality of wavelengths comprise a different center wavelength. 3. The optical processing system of claim 1, wherein the optical signal comprises three bands of light and wherein each of the three bands of light comprise 40 nanometers or more of optical bandwidth. 4. The optical processing system of claim 1, wherein the first and second beam splitters are selected from the group consisting of a substrate having one or more layers of dielectric coating, a partially silvered mirror, and a fiber coupler. 5. The optical processing system of claim 1, wherein the second beam splitter is operable to pass a first copy of the first part of the optical signal in a first direction and a second copy of the first part of the optical signal in a second direction. 6. The optical processing system of claim 5, wherein the first copy and second copy have substantially equal quantities of wavelengths. 7. The optical processing system of claim 5, wherein the first copy and second copy have substantially unequal amplitudes. 8. The optical processing system of claim 1, wherein light pipe comprises an optical fiber. 9. The optical processing system of claim 1, further comprising one or more polarization converters operable to receive the optical signal and to change at least one of a first and second principal modes of polarization of the optical signal. 10. The optical processing system of claim 9, wherein the polarization converter is operable to change the at least one of the first and second principal modes of polarization of the optical signal to an orthogonal mode of polarization. 11. The optical processing system of claim 9, wherein the polarization converter is operable to form a substantially common polarization state for the optical signal. 12. The optical processing system of claim 9, wherein the polarization converter is selected from the group consisting of wave plates, transverse electrical transverse magnetic converters, Faraday converters, polarization beam splitters, and mirrors. 13. The optical processing system of claim 1, wherein the optical signal separator is a wavelength division demultiplexer. 14. The optical processing system of claim 1, wherein the optical signal separator is a beam splitter with one or more dielectric layers. 15. The optical processing system of claim 1, wherein the phase shift introduced by each of the phase shifters operates to orient an outgoing state of polarization of at least a portion of the first part of the optical signal. 16. The optical processing system of claim 1, wherein at least one phase shifter comprises a reflective surface for reflecting at least a portion of the first part of the optical signal. 17. The optical processing system of claim 1, wherein at least one of the phase shifters is formed on a semiconductor substrate. 18. The optical processing system of claim 17, wherein the semiconductor substrate is selected from the group consisting of silicon and polysilicon. 19. The optical processing system of claim 1, wherein at least one phase shifter comprises an array of phase shifting devices formed on a semiconductor substrate. 20. The optical processing system of claim 1, wherein at least one phase shifter changes state based on a voltage applied to the phase shifter. 21. The optical processing system of claim 1, wherein at least one phase shifter comprises a micro-electro-optic system (MEMS) device, the MEMS device comprising: an inner conductive layer; a conductive moveable mirror layer disposed outwardly from the inner conductive layer and forming a space between the moveable mirror layer and the inner conductive layer; wherein the moveable mirror layer is operable to move relative to the inner conductive layer in response to a voltage difference between the moveable mirror layer and the inner conductive layer. 22. The optical processing system in claim 1, wherein the three stages of phase shifters are serially connected. 23. The optical processing system of claim 1, wherein at least some of the phase shifters operate in parallel on different portions of the first part of the optical signal received from the optical signal separator. 24. The optical processing system of claim 1, wherein the combiner comprises a wavelength division multiplexer that multiplexes the phase shifted portions of the first part of the optical signal into a phase shifted multiple wavelength output signal. 25. The optical processing system of claim 1, wherein the optical reflector comprises one or more mirrors. 26. The optical processing system of claim 1, wherein the optical reflector operates to change the direction of the phase shifted output signal to the output. 27. The optical processing system of claim 1, wherein the optical reflector comprises one or more substantially flat mirrors. 28. The optical processing system of claim 1, further comprising one or more reflective surfaces to communicate the optical signal to the polarization adjustment device. 29. The optical processing system of claim 1, further comprising electronic circuitry to generate one or more control signals for controlling the at least three stages of phase shifters. 30. A method of processing multiple wavelengths of light, the method comprising: communicating at least a portion of an optical signal for processing, the optical signal comprising a plurality of wavelengths; dividing the optical signal into at least a first part and a second part, the first part of the optical signal having an input state of polarization; separating the first part of the optical signal into at least a first portion of optical signal wavelengths and a second portion optical signal wavelengths; receiving at least the first portion of optical signal wavelengths at a polarization adjustment device; using the polarization adjustment device, controlling a state of polarization of at least the first portion the optical signal wavelengths, wherein controlling the state of polarization of the first portion of the optical signal wavelengths comprises: separating the first portion the optical signal wavelengths into a first principal mode of polarization and a second principal mode of polarization; and introducing at least three stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization, wherein at least one phase shift stage shares a beam splitter with at least one other phase shift stage and wherein the beam splitter that is shared comprises a partially transmitting mirror; combining one or more phase shifted portions of the first portion the optical signal wavelengths into a phase shifted output signal; and communicating the phase shifted optical signal to an output. 31. The method of claim 30, wherein the beam splitter that is shared is operable to pass a first copy of the first portion of the optical signal wavelengths in a first direction and a second copy of the first portion of the optical signal wavelengths in a second direction. 32. The method of claim 31, wherein the first copy and second copy have substantially equal quantities of wavelengths. 33. The method of claim 30, further comprising manipulating at least one of a first principal mode of polarization and a second principal modes of polarization of the optical signal. 34. The method of claim 33, wherein manipulating at least one of the first and second principal modes of polarization operates to form a substantially common polarization state for the optical signal. 35. The method of claim 30, wherein the introduction of the phase shift operates to orient an outgoing state of polarization of at least a portion of the first portion of the optical signal wavelengths. 36. The method of claim 30, wherein the least one phase shift state comprises a micro-electro-optic system (MEMS) device, the MEMS device comprising: an inner conductive layer; a conductive moveable mirror layer disposed outwardly from the inner conductive layer and forming a space between the moveable mirror layer and the inner conductive layer; wherein the moveable mirror layer is operable to move relative to the inner conductive layer in response to a voltage difference between the moveable mirror layer and the inner conductive layer. 37. An optical processing system, comprising: a light pipe operable to communicate at least a portion of an optical signal for processing, the optical signal comprising a plurality of wavelengths; a first beam splitter operable to divide the optical signal into at least a first part and a second part, the first part of the optical signal having an input state of polarization; an optical signal separator operable to receive at least the first part of the optical signal and to communicate at least a portion of the first part to a polarization adjustment device for processing, the polarization adjustment device comprising: at least two stages of phase shifters each operable to receive a first and a second principal mode of polarization of the first part of the optical signal, and to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters, wherein the beam splitter that is shared comprises a partially transmitting mirror and wherein each of the phase shift stages is operable to introduce a phase shift between the first and second principal modes in less than one milli-second; a combiner operable to combine one or more phase shifted portions of the first part of the optical signal into a phase shifted output signal; and an optical reflector operable to receive at least some of the phase shifted optical signal and to communicate the phase shifted optical signal to an output. 38. The optical processing system of claim 37, wherein the second beam splitter is operable to pass a first copy of the first part of the optical signal in a first direction and a second copy of the first part of the optical signal in a second direction. 39. The optical processing system of claim 38, wherein the first copy and second copy have substantially equal quantities of wavelengths. 40. The optical processing system of claim 37, further comprising one or more polarization converters operable to receive the optical signal and to change at least one of a first and second principal modes of polarization of the optical signal. 41. The optical processing system of claim 40, wherein the polarization converter is operable to form a substantially common polarization state for the optical signal. 42. The optical processing system of claim 37, wherein the phase shift introduced by each of the phase shifters operates to orient an outgoing state of polarization of at least a portion of the first part of the optical signal. 43. The optical processing system of claim 37, wherein at least one phase shifter comprises an array of phase shifting devices formed on a semiconductor substrate. 44. The optical processing system of claim 37, wherein at least one phase shifter comprises a micro-electro-optic system (MEMS) device, the MEMS device comprising: an inner conductive layer; a conductive moveable mirror layer disposed outwardly from the inner conductive layer and forming a space between the moveable mirror layer and the inner conductive layer; wherein the moveable mirror layer is operable to move relative to the inner conductive layer in response to a voltage difference between the moveable mirror layer and the inner conductive layer. 45. The optical processing system in claim 37, wherein the two stages of phase shifters are serially connected. 46. The optical processing system of claim 37, wherein the optical reflector comprises one or more substantially flat mirrors. 47. The optical processing system of claim 37, further comprising electronic circuitry to generate one or more control signals for controlling the at least three stages of phase shifters. 48. A method of processing multiple wavelengths of light, the method comprising: communicating at least a portion of an optical signal for processing, the optical signal comprising a plurality of wavelengths; dividing the optical signal into at least a first part and a second part, the first part of the optical signal having an input state of polarization; separating the first part of the optical signal into at least a first portion of optical signal wavelengths and a second portion optical signal wavelengths; receiving at least the first portion of optical signal wavelengths at a polarization adjustment device; using the polarization adjustment device, controlling a state of polarization of at least the first portion the optical signal wavelengths, wherein controlling the state of polarization of the first portion of the optical signal wavelengths comprises: separating the first portion the optical signal wavelengths into a first principal mode of polarization and a second principal mode of polarization; and introducing at least two stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization, wherein at least one phase shift stage shares a beam splitter with at least one other phase shift stage, wherein the beam splitter that is shared comprises a partially transmitting mirror, and wherein each of the phase shift stages are operable to introduce a phase shift between the first and second principal modes in less than one milli-second; combining one or more phase shifted portions of the first portion the optical signal wavelengths into a phase shifted output signal; and communicating the phase shifted optical signal to an output.
RELATED APPLICATIONS This application is a continuation of application Ser. No. 09/746,125, entitled “Apparatus and Method for Controlling Polarization of an Optical Signal,” filed Dec. 22, 2000. Application Ser. No. 09/746,125 is related to application Ser. No. 09/746,850, entitled “Apparatus and Method for High Speed Optical Signal Processing,” filed on Dec. 22, 2000; to application Ser. No. 09/746,822, entitled “Apparatus and Method for Optical Add/Drop Multiplexing,” filed on Dec. 22, 2000; and to application Ser. No. 09/746,813, entitled “entitled “Apparatus and Method for Providing Gain Equalization,” filed on Dec. 22, 2000. TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of communication systems, and more particularly to an apparatus and method operable to facilitate control of the state of polarization of one or more optical signals. BACKGROUND OF THE INVENTION As optical systems continue to increase the volume and speed of information communicated, polarization controllers are becoming increasingly important optical networking elements. For example, polarization controllers are essential in polarization multiplexed lightwave transmission systems. These systems can operate in a number of ways. In one embodiment, alternate bits can be polarized orthogonal to one another and combined to create a faster overall transmission rate. In another embodiment, densely packed adjacent wavelengths can be orthogonally polarized to minimize interaction between the adjacent wavelengths. In either case, a polarization controller is used to appropriately align the signals' states of polarization. As another example, polarization controllers can be useful in upgrading the operation of polarization sensitive optical components. Where an optical component's performance changes depending on the state of polarization of the signal it processes, a polarization controller can be used to align the signal's state of polarization with the state that maximizes the device's performance. Polarization controllers also find application in devices used to mitigate polarization mode dispersion arising in optical signals. Most all optical fibers exhibit non-circular—typically elliptical—core shapes, which result in the fiber having two principal axes having different modal indices. The orientation of these axes varies randomly with position and time. Signals polarized parallel to the two principal axes experience differential delay, which—coupled with the random variation in polarization modes—leads to pulse broadening, intersymbol interference, and bit error ratio (BER) impairment. These types of phenomena are typically referred to as polarization mode dispersion. Polarization mode dispersion can limit an optical system's transmission range by 1/R2, where R represents the system's channel rate. Many communication systems consider unacceptable any pulse broadening greater than ten percent of the bit period. As a result, it has been estimated that polarization mode dispersion renders over twenty percent of all currently deployed fiber unsuitable for transmission at ten Giga-bits per second, and over 75% of all installed fiber unsuitable for transmission at forty Giga-bits per second. Polarization controllers can be used in polarization mode dispersion compensators, for example, to help align the principal states of polarization with appropriate axes of a polarization delay line. Various techniques have been devised to attempt to control or modify the state of polarization of optical signals. For example, butterfly polarization controllers exist consisting of multiple rings of fiber that are physically rotated with respect to each other. This approach, however, is too slow to be effective for most applications. Another approach is to mechanically squeeze the fiber at strategic locations and times. This technique is also typically to slow to be of practical use. Lithium niobate based polarization controllers have been produced that exhibit acceptable speeds. However, these devices can be prohibitively expensive, even in a single wavelength application. Another approach uses polarization rotators constructed from micro-machined movable mirrors to help rotate the state of polarization of an incoming signal. This approach suffers, however, because it requires either physical rotation of the polarization rotators, or requires insertion of bulk wave plates between each of the polarization rotators. These limitations make it difficult, if not impossible, to package arrays of the polarization controllers, and can result in high fabrication costs. The design and fabrication cost of these devices generally renders them unsuitable for multiple wavelength applications. Another device that is somewhat related to a polarization controller, which is designed for integrated waveguide implementation, uses two phase shift stages coupled to a variable delay line. This approach suffers because requiring a variable delay line typically results in greater expense than a fixed delay element, and generally requires more complex and expensive control circuitry. SUMMARY OF THE INVENTION The present invention recognizes a need for a method and apparatus operable to economically facilitate control of an optical signal's state of polarization. In accordance with the present invention, an apparatus and method operable to assist in polarization control are provided that substantially reduce or eliminate at least some of the shortcomings associated with prior approaches. In one aspect of the invention, a polarization controller comprises a first polarization beam splitter operable to receive an input optical signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization. The polarization controller further comprises at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In another aspect of the invention, a polarization controller comprises a polarization beam splitter operable to separate an optical signal into a first and a second principal mode of polarization, and at least two stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter comprises a beam splitter that is shared with at least one other of the phase shifters, and at least one of the phase shifters comprises a micro-electro-optic system (MEMS) device comprising a moveable mirror layer operable to receive one of the principal modes of polarization and to change its position to contribute to a relative phase difference between the first and second principal modes. In still another aspect of the invention, a polarization controller comprises at least two stages of phase shifters each operable to receive a first and a second principal mode of polarization of an optical signal, and to introduce a phase shift between the first and second principal modes. At least one phase shifter includes a beam splitter that is shared with at least one other of the phase shifters, and each of the phase shift stages is operable to introduce a phase shift between the first and second principal modes in less than one milli-second. One other aspect of the invention comprises an endlessly rotatable polarization controller including at least two stages of phase shifters each operable to receive a first and a second principal mode of polarization of an optical signal, and to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. Each of the phase shift stages comprises a micro-electro-mechanical system (MEMS) device including a moveable mirror layer operable to change its position to contribute to a relative phase shift between the first and second modes, the moveable mirror layer operable to change positions at a faster rate than a rate of change of the polarization of the optical signal. In another aspect of the invention, a polarization mode dispersion (PMD) compensator comprises a first polarization beam splitter operable to receive an input optical signal and to separate the signal into a first and a second principal mode of polarization and at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter comprises a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters comprising a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter wherein the second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to principal axes of a fixed delay element coupled to the second polarization beam splitter. In yet another aspect of the invention, a PMD compensator comprises a variable delay line and a polarization controller coupled to the variable delay line. The polarization controller is operable to receive an optical signal having an input state of polarization and to align an output state of polarization of the optical signal to the variable delay line. The polarization controller comprises a polarization beam splitter operable to separate the optical signal into a first and a second principal mode of polarization, and at least two stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter includes a beam splitter that is shared with at least one other of the phase shifters. At least one of the phase shifters comprises a micro-electro-optic system (MEMS) device comprising a moveable mirror layer operable to receive one of the principal modes of polarization and to change its position to contribute to a relative phase difference between the first and second principal modes. Another aspect of the invention comprises a variable delay line including a first polarization maintaining fiber coupled to a first polarization beam splitter, the first polarization beam splitter operable to receive an input optical signal and to separate the signal into a first and a second principal mode of polarization. The variable delay line further includes at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters comprise a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter, wherein the second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to principal axes of a second polarization maintaining fiber coupled to the second polarization beam splitter. In another aspect of the invention, a system operable to facilitate mitigation of polarization mode dispersion in optical signals carrying multiple wavelengths of light comprises a wavelength division demultiplexer operable to receive the optical signal and to separate the optical signal into a plurality of wavelengths. The system further comprises an array of phase shift based polarization controllers coupled to the wavelength division demultiplexer. Each polarization controller is operable to receive one wavelength and to introduce a phase shift between two principal modes of polarization of the wavelength to align the wavelength with two principal axes of a delay element, the principal axes of the delay element comprising a fast principal axis and a slow principal axis. The delay element is operable to receive the phase shifted wavelengths and to communicate a leading mode of polarization parallel with the slow axis and a lagging mode of polarization parallel with the fast axis. In another aspect of the invention, an optical communication system comprises an optical source operable to communicate an optical signal, an optical receiver operable to receive the optical signal, and a plurality of fiber spans coupling the optical source to the optical receiver. The system further comprises a plurality of in-line optical amplifiers each coupled between two of the plurality of fiber spans, and a polarization mode dispersion (PMD) compensator coupled between the receiver and the in-line optical amplifier closest to the receiver. The system still further includes a margin enhancing element coupled to one of the fiber spans and operable to increase the margin of the optical signal relative to noise associated with the optical signal. In still another aspect of the invention, a system operable to facilitate polarization multiplexing of multiple signal wavelengths comprises a wavelength division demultiplexer operable to receive an optical signal carrying substantially orthogonally polarized neighboring wavelength signals and to substantially separate the neighboring wavelength signals from one another. The system further comprises an array of phase shift based polarization controllers coupled to the wavelength division demultiplexer, each operable to receive one wavelength and adjust the state of polarization of the wavelength to facilitate separation of the wavelength from its neighboring wavelengths. Each of the phase shift-based polarization controllers comprises a first polarization beam splitter operable to receive an input wavelength signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization, and at least three stages of phase shifters. Each phase shifter stage is operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In another aspect of the invention, a system operable to facilitate coherent optical communication comprises a local oscillator operable to generate a local optical signal and an optical mixer operable to receive an incident optical signal and the local optical signal and to combine the incident optical signal with the local optical signal to generate a combined signal. The system further includes a polarization controller operable to receive either the local optical signal or the incident optical signal and to adjust the state of polarization of the received signal to ensure that the received signal is not polarized orthogonally to the other signal when the signals are combined at the optical mixer. The polarization controller comprises a first polarization beam splitter operable to receive an input wavelength signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization and at least three stages of phase shifters. Each phase shifter stage is operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In yet another aspect of the invention, a method of controlling the state of polarization of an optical signal comprises receiving an optical signal having an input state of polarization and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization. The method further comprises introducing at least three stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization with a desired output state of polarization. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. According to yet another aspect of the invention, a method of controlling the state of polarization of an optical signal comprises receiving an optical signal having an input state of polarization and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization. The method further comprises introducing at least two stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization with a desired output state of polarization. Each of the at least two stages of phase shift are introduced by one of at least two phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage, at least one phase shift stage comprising a micro-electro-optic system (MEMS) device operable to change its position to alter the phase of the first principal mode relative to the phase of the second principal mode. In another aspect of the invention, a method of mitigating polarization mode dispersion comprises separating an optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further comprises introducing at least three stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal axis of a fixed delay element and the lagging mode with a fast principal axis of the fixed delay element. The method also includes communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. In yet another aspect of the invention, a method of mitigating polarization mode dispersion comprises separating an optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further includes introducing at least two stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal polarization axis of a variable delay element and the lagging mode with a fast principal polarization axis of the variable delay element. In addition, the method includes communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least two stages of phase shift are introduced by one of the at least two phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. At least one phase shift stage comprises a micro-electro-optic system (MEMS) device operable to change its position to alter the phase of the first principal mode relative to the phase of the second principal mode. In still another aspect of the invention, a method of providing variable delay between modes of polarization in an optical signal comprises receiving an optical signal from a first polarization maintaining fiber and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further includes introducing at least three stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal axis of a second polarization maintaining fiber and the lagging mode with a fast principal axis of the second polarization maintaining fiber. The method also comprises communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. In another aspect of the invention, a method of mitigating polarization mode dispersion in multiple wavelengths of an optical signal comprises separating an optical signal into a plurality of wavelengths and communicating at least some of the wavelengths to an array of polarization controllers, each polarization controller operable to receive one wavelength. At each polarization controller, the method comprises separating the wavelength into a first principal mode of polarization and a second principal mode of polarization, introducing phase shift between the first and second modes of polarization to align the principal modes of polarization with principal axes of a delay element, and communicating one principal mode parallel to one principal axis of the delay element and the other principal mode parallel to the other principal axis of the delay element. Depending on the specific features implemented, particular embodiments of the present invention may exhibit some, none, or all of the following technical advantages. One aspect of the present invention provides an effective and cost efficient mechanism for controlling the polarization of one or more optical signals. The invention provides significant advantages over other polarization controller designs, by facilitating alignment of an optical signal's state of polarization without requiring the use of physical rotation of the compensator, physical squeezing of the fiber communication line, the use of expensive lithium niobate waveguide devices, the use of bulk wave plates between stages of phase shifters, or the use of variable delay elements. The novel polarization controller may be implemented, for example, in a PMD compensator, in a polarization multiplexed lightwave transmission system, in a coherent optical communication system, or in conjunction with one or more polarization sensitive optical components. In a particular embodiment where the polarization controller is implemented into a PMD compensator, the controller facilitates mitigation of polarization mode dispersion with either a fixed or a variable delay line, but does not require the use of more expensive variable delay elements. Implementing phase shifter based polarization controllers using MEMs devices that do not require intermediate bulk waveguide devices allows for fabrication of arrays of these devices at an incremental additional cost to fabricating a single compensator. This aspect of the invention provides significant advantages in facilitating rapid, effective, and economical polarization control, particularly in a multiple wavelength environment. Other technical advantages are readily apparent to one of skill in the art from the attached figures, description, and claims. BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention, and for further features and advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings, in which: FIG. 1a is a block diagram of an exemplary embodiment of an apparatus operable to provide high speed optical signal processing according to the teachings of the present invention; FIG. 1b is a block diagram showing an exemplary geometry associated with one embodiment of an apparatus operable to provide high speed optical signal processing according to the teachings of the present invention; FIGS. 1c-1d are block diagrams showing other exemplary embodiments of apparatus operable to provide high speed optical signal processing according to the teachings of the present invention; FIGS. 2a-2c are block diagrams of various embodiments of apparatus operable to provide high speed optical signal processing according to the teachings of the present invention; FIGS. 3a-3c are block diagrams showing a plurality of views of various embodiments of moveable mirrors operable for use with the apparatus described in FIGS. 1 and 2 and constructed according to the teachings of the present invention; FIG. 4 is a block diagram of one embodiment of a variable attenuator constructed according to the teachings of the present invention; FIG. 5a is a block diagram of one embodiment of a one-by-two switch constructed according to the teachings of the present invention; FIG. 5b is a block diagram of one embodiment of a two-by-two switch constructed according to the teachings of the present invention; FIG. 5c is a block diagram of one embodiment of an n-by-n switch constructed according to the teachings of the present invention; FIG. 6 is a flowchart showing one example of a method of facilitating optical signal processing according to the teachings of the present invention; FIGS. 7a-c are block diagrams showing various embodiments of polarization controllers constructed according to the teachings of the present invention; FIG. 7d is a graph showing example switching speeds associated with one particular embodiment of the invention; FIGS. 8a-8h are block diagrams showing various embodiments of systems implementing polarization mode dispersion (PMD) compensators, PMD compensator designs, and components suitable for use in PMD compensators constructed according to the teachings of the present invention; FIG. 9 is a flowchart showing one example of a method of controlling the polarization of an optical signal and of mitigating polarization mode dispersion according to the teachings of the present invention; FIGS. 10a-10b are block diagrams showing a system and components thereof operable to mitigate polarization mode dispersion in optical signals having multiple wavelengths according to the teachings of the present invention; FIG. 11 is a flowchart showing one example of a method of mitigating polarization mode dispersion of optical signals having multiple wavelengths according to the teachings of the present invention; FIG. 12 is a block diagram showing an exemplary embodiment of a polarization multiplexing system constructed according to the teachings of the present invention; FIG. 13 is a block diagram of an exemplary system operable to facilitate coherent optical communication according to the present invention; FIG. 14a is a block diagram of an exemplary embodiment of a multiple channel communication system having gain equalization capabilities constructed according to the teachings of the present invention; FIG. 14b is a block diagram of another exemplary embodiment of a multiple channel communication system having gain equalization capabilities constructed according to the teachings of the present invention; FIG. 14c is a block diagram of an exemplary gain equalizer suitable for use in a single or multiple band communication system and constructed according to the teachings of the present invention; FIG. 15 is a flowchart showing one example of a method of facilitating gain equalization of a plurality of wavelengths according to the teachings of the present invention; FIG. 16a is a block diagram showing one embodiment of an exemplary wave division add/drop multiplexer architecture constructed according to the teachings of the present invention; FIGS. 16b-16c are block diagrams showing various example embodiments of add/drop multiplexers constructed according to the teachings of the present invention; FIG. 16d is a block diagram showing a plurality of add/drop multiplexers as shown in FIG. 10b arranged to collectively form a wave division add/drop multiplexer according to the teachings of the present invention; and FIG. 17 is a flowchart showing one example of a method of facilitating add/drop multiplexing of optical signals according to the teachings of the present invention. DETAILED DESCRIPTION OF THE INVENTION I. Building Blocks for High Speed Optical Signal Processing FIG. 1a is a block diagram of one exemplary embodiment of an apparatus 10a operable to provide high speed optical signal processing. Throughout this document, the term “signal processing” includes attenuation, switching, phase shifting, polarization control, mitigation of polarization mode dispersion, or any other manipulation of one or more optical signals. Apparatus 10a includes a beam splitter 20a, which communicates with mirrors 30a and 40a. Beam splitter 20a may comprise any structure or combination of structures operable to pass a first copy of an optical signal in one direction and a second copy of the optical signal in another direction. For example, in a particular embodiment, beam splitter 20a may comprise a partially silvered mirror. As another example, beam splitter 20a may comprise a mirror having one or more layers of a dielectric coating. As still another example, beam splitter 20a may comprise a fiber coupler. Throughout this document, the terms “copy” and “signal copy” are used to describe optical signals that are at least substantial copies of the input optical signal, each having at least substantially equal quantities of wavelengths as the other. Depending on the type of beam splitter used to create the multiple signal copies, the two copies may or may not have equal intensities. For example, a 50/50 beam splitter will generate two substantially identical copies of the input signal—substantially equal in content and intensity. Other types of beam splitters, however, may create uneven distributions of intensities in the resulting signal “copies.” Beam splitters having various ratios other than 50/50 could be used consistent with the present invention. However, an approximately 50/50 beam splitter typically provides a good contrast ratio by maintaining the optical symmetry of a physically symmetrical device. Apparatus 10a includes a plurality of mirrors, in this case a first mirror 30a and a second mirror 40a. Throughout this document, the term “mirror” refers to an at least substantially reflective surface or collection of surfaces. At least one of mirrors 30a and 40a comprises a moveable at least substantially reflective surface or collection of surfaces. In this example, second mirror 40a comprises a fixed mirror structure. The location of second mirror 40a relative to beam splitter 20a does not change during operation of the device. In this embodiment, first mirror 30a, however, comprises a moveable mirror layer of a micro-electro-optic system (MEMS) device operable to be displaced anywhere between positions 32a and 34a. Movement of first mirror 30a can be, for example, in response to a control signal, such as a control voltage. Although this embodiment includes just one moveable mirror, apparatus 10a could alternatively comprise additional moving mirrors. Some embodiments of apparatus using multiple moving mirrors will be described below. In the illustrated embodiment, first copy 62a of input optical signal 60a meets first mirror 30a at a grazing angle THETA. In a similar manner, second copy 64a of signal 60a meets second mirror 40a at approximately angle THETA. In the example shown in FIG. 1, angle THETA comprises approximately forty-five degrees. Other grazing angles could be used without departing from the scope of the invention. In addition, mirrors 30a and 40a could receive first and second signal copies 62a and 64a at different angles from one another without departing from the present invention. Maintaining symmetry between the arms of the device, however, provides an advantage of increasing the contrast ratio at the device's output. In this particular embodiment, apparatus 10a further includes a beam splitter 50a operable to receive first copy 62a and second copy 64a of input signal 60a, after those signals have been reflected off of mirrors 30a and 40a, respectively. Beam splitter 50a combines components of first copy 62a and second copy 64a of input signal 60a to result in first output signal 72a and second output signal 74a. Beam splitter 50a can be similar in structure and function to beam splitter 20a described above. In some embodiments (described more fully below), beam splitters 20a and 50a could comprise locations on a single beam splitting device. In the illustrated embodiment, first and second mirrors 30a and 40a are separated from beam splitter 20a by a distance (d). Apparatus 10a can introduce a difference (DELTA d) in signal path (d) by moving first mirror 30a in an at least substantially piston-like motion by a distance DELTA L. Throughout this document, the term “piston-like” motion refers to a motion in which the moveable mirror is intended to be displaced in an approximately parallel plane to the previous mirror position. In other words, a “piston-like” motion is intended to substantially maintain the grazing angle THETA between at least a portion of the moveable surface of first mirror 30a and first signal copy 62a. Moving the mirror layer 30a in a substantially piston-like motion to substantially maintain the grazing angle THETA results in an advantage of reducing signal dispersion when the signal copies are combined. In practice, for various reasons, physical embodiments of the invention may not exhibit true “piston-like” motion, although such embodiments are intended to be within the scope of the invention. For example, the moveable mirror layer may be anchored at its ends and may exhibit some curvature between the anchor points as it moves from one position to another. In addition, variances in resistance across the moveable mirror layer may result in one portion of the moveable mirror layer experiencing more movement than another portion. The invention is intended to encompass these embodiments within the definition of “piston-like” motion. FIG. 1b is a block diagram showing an exemplary geometry associated with one embodiment of an apparatus operable to provide high speed optical signal processing according to the present invention. Line 32′ in FIG. 1b represents a position of first mirror 30a that would provide a distance (d) between beam splitter 20a and first mirror 30a residing at a first position 32′. Line 32a shows a modified position of first mirror 30a after a piston-like movement resulting in a displacement of DELTA L from position 32a′. As shown in FIG. 1b, moving first mirror 30a from position 32a′ to position 32a by distance DELTA L creates a difference of DELTA d in the length of the signal path of first signal copy 62a. This difference in signal path translates to a difference in phase between first signal copy 62a and second signal copy 64a of input signal 60a. The phase difference between first and second copies 62a and 64a results in an interference, which alters the amplitude of output signal 72a relative to that of input signal 60a. In operation, because first copy 62a of input signal 60a travels a different signal path length than second copy 64a of input signal 60a, a phase difference between the two signal copies results in interference between the two signals when they are combined. For a given change in the signal path length, the amplitude of first output 72a is proportional to cos2 of one half of the phase difference PHI between signal copies 62a and 64a. In a similar manner, for a given change in the signal path length, the amplitude of second output 74a is proportional to sin2 of one half of the phase difference PHI between signal copies 62a and 64a. FIGS. 1c and 1d show additional exemplary embodiments of apparatus operable to provide high speed optical signal processing. FIG. 1c is a block diagram of an apparatus 10b, which operates in a similar manner to apparatus 10a, but uses a single beam splitting device 20b to comprise a first beam splitter operable to separate the input signal 60b into signal copies 62b and 64b, and a second beam splitter operable to combine components of the reflected signal copies to form output signals 72b and 74b. Beam splitter 20b communicates with a plurality of at least substantially reflective surfaces including mirrors 30b and 40b. Beam splitter 20b is similar in structure and function to beam splitters 20a and 50a discussed with respect to FIG. 1a. As in apparatus 10a described with respect to FIG. 1a, apparatus 10b includes at least one moveable mirror, in this case first mirror 30b. In this example, moving mirror 30b is similar in structure and function to first mirror 30a in FIG. 1a. Apparatus 10b could include additional and/or other moving mirrors without departing from the scope of the invention. Apparatus 10b also includes mirrors 90b and 80b operable to reflect signal copies 62b and 64b back toward beam splitter 20b, where components of the reflected signals can be combined to form output signals 72b and 74b. In operation, apparatus 10b receives optical input signal 60b at beam splitter 20b. Beam splitter 20b communicates a first signal copy 62b toward first mirror 30b, and communicates a second signal copy 64b toward second mirror 40b. First mirror 30b is operable to be displaced by a distance DELTA L to create a path length difference DELTA d between the signal path lengths of first signal copy 64a and second signal copy 64b. The difference in path length creates a phase difference between the signal copies, which results in a change in amplitude of the signal relative to input signal 60b. By selectively varying the position of, for example, first mirror 30b, apparatus 10b can control the intensity of output signals 72b and 74b. FIG. 1d is a block diagram of another example configuration of an apparatus 10c operable to facilitate high speed optical signal processing. Apparatus 10c operates in a similar manner to apparatus 10a and 10b, but uses a single beam splitter 20c, and orients first and second mirrors 30c and 40c at ninety-degree grazing angles THETA. Apparatus 10c includes a beam splitter 20c, which communicates with a plurality of at least substantially reflective surfaces including mirrors 30c and 40c. Beam splitter 20c is similar in structure and function to beam splitters 20a and 50a discussed with respect to FIG. 1a. As in apparatus 10a described with respect to FIG. 1a, apparatus 10c includes at least one moveable mirror, in this case first mirror 30c. In this example, moving mirror 30c is similar in structure and function to first mirror 30c in FIG. 1a. Apparatus 10c could include additional and/or other moving mirrors without departing from the scope of the invention. Apparatus 10c also includes a circulator 65c operable to receive input signal 60c and to communicate that signal to beam splitter 20c, while also receiving output signal 72c and communicating that signal away from the source of input signal 60c. In operation, apparatus 10c receives optical input signal 60c at beam splitter 20c. Beam splitter 20c communicates a first signal copy 62c toward first mirror 30c, and communicates a second signal copy 64c toward second mirror 40c. First mirror 30c is operable to be displaced by a distance DELTA L to create a path length difference DELTA d between the signal path lengths of first signal copy 64a and second signal copy 64b. The difference in path length creates a phase difference between the signal copies, which results in a change in amplitude of the signal relative to input signal 60c. By selectively varying the position of, for example, first mirror 30c, apparatus 10c can control the intensity of output signals 72c and 74c. The aggregate difference in signal path length (DELTA d) achieved for a given mirror displacement DELTA L can be improved in a variety of ways. FIGS. 2a-2c are block diagrams of various embodiments of apparatus operable to provide additional phase shift between signal copies for a given per-mirror displacement. Apparatus 100 shown in FIG. 2a is similar in structure and function to apparatus 10a shown in FIG. 1a, but includes moveable mirror elements in each arm of the device. Apparatus 100 includes a first beam splitter 120, which receives an input signal 160 and sends a first signal copy 162 toward a first mirror 130, and a second signal copy 164 toward a second mirror 140. First and second mirrors 130 and 140 reflect first and second signal copies 162 and 164 toward a second beam splitter 150. Second beam splitter 150 combines components of the reflected first and second signal copies 162 and 164 to form first output 172 and second output 174. In this example, both first mirror 130 and second mirror 140 comprise moveable mirror structures. Each of mirrors 130 and 140 is operable to move relative to the other to contribute to a difference in path length of the signals received and reflected toward second beam splitter 150. Using multiple moving mirrors facilitates the same overall path difference with each mirror moving only a fraction of the distance DELTA L. For example, where the angle THETA is forty five degrees, for a desired total path difference of DELTA d, each of first and second mirrors 130 and 140 moves a distance DELTA L/2, each creating a path difference of DELTA d/2, combining for a total path difference of DELTA d. As a particular example, first mirror 130 may move away from first beam splitter 120 from position 132 to position 134 to increase the path length of first signal copy 162 by DELTA d/2. Second mirror 140 may move toward first beam splitter 120 from position 144 to position 142 to decrease the path length of second signal copy 164 by DELTA d/2. The combined effect of the movement of first and second mirrors 130 and 140 is to create a total path difference of DELTA d, resulting in a desired phase difference and output intensity. Implementing multiple moving mirrors provides an advantage of decreasing the displacement of each moving mirror. This, in turn, decreases the drive voltage necessary to operate each moving mirror, and increases the speed at which the position of the mirrors, and hence the intensity of the output signal, can be manipulated. Although apparatus 100 is described with respect to the configuration shown in FIG. 1a, multiple moving mirrors could be similarly be implemented in other embodiments, such as those shown in FIGS. 1c-1d. Another way to reduce the amount of displacement experienced by each moving mirror for a given level of phase difference is to implement additional moving mirrors in each arm of the device. For example, FIG. 2b shows an apparatus 110 having multiple moveable mirrors on each arm between the first beam splitter 120 and the second beam splitter 150. Apparatus 110 shown in FIG. 2b is similar in structure and function to apparatus 100 shown in FIG. 2a and apparatus 105 shown in FIG. 2a. Apparatus 110 includes a first beam splitter 120, which receives an input signal 160 and sends a first signal copy 162 toward a first mirror 130a, and a second signal copy 164 toward a second mirror 140a. First mirror 130a reflects first signal copy 162 toward a third mirror 130b that, in turn, reflects first signal copy 162 toward a fixed mirror 180 and on to second beam splitter 150. Similarly, second mirror 140a reflects second signal copy 164 toward a fourth mirror 140b that, in turn, reflects second signal copy 164 toward a fixed mirror 190 and on to second beam splitter 150. Second beam splitter 150 combines components of the reflected first and second signal copies 162 and 164 to form first output 172 and second output 174. In this example, each of mirrors 130a-130b and mirrors 140a-140b comprises a moveable mirror structure. Each of mirrors 130a-130b and 140a-140b is operable to move to contribute to a difference in path length of the signals received and reflected toward second beam splitter 150. In addition, although mirrors 180 and 190 are shown as fixed mirrors, one or more of those mirrors could alternatively comprise moveable mirror structures. Using multiple moving mirrors in each arm of device 100 facilitates an overall path difference L with each mirror moving only a fraction of the distance DELTA L. For example, where the angle THETA is forty five degrees, for a desired total path difference of DELTA d, each of first and second mirrors 130 and 140 moves a distance DELTA L/4, each creating a path difference of DELTA d/4, combining for a total path difference of DELTA d. In a particular example, mirrors 130a-b may move from positions 132 to positions 134 to increase the path length of first signal copy 162 by DELTA d/2. Second mirrors 140a-b may move from positions 144 to positions 142 to decrease the path length of second signal copy 164 by DELTA d/2. The combined effect of the movement of first and second mirrors 130a-b and 140a-b is to create a total path difference of DELTA d, resulting in a desired phase difference and output intensity. The embodiment shown in FIG. 2b provides an advantage of further decreasing the necessary displacement of moveable mirrors 130 and 140. This decreases the drive voltage needed to move each mirror and increases the speed of the device. This concept also applies to other embodiments of the invention, including those shown in FIGS. 1c-1d. Still another way to reduce the amount of displacement experienced by each moving mirror while still attaining a given level of phase difference is to reduce the grazing angle (THETA) between signals 162 and 164 on first and second mirrors 130 and 140, respectively. In a particular embodiment, first and second beam splitters 120 and 150 form a rhombus with first and second mirrors 130 and 140. Referring to FIG. 1b to illustrate, the path difference DELTA d can be calculated as DELTA d=DELTA L/sin(THETA). Reducing the grazing angle THETA reduces the term sin(THETA), resulting in a greater path difference DELTA d for a given change in mirror location represented by the distance DELTA L. Apparatus 115 shown in FIG. 2c is similar in structure and function to apparatus 100 shown in FIG. 2a, and apparatus 110 shown in FIG. 2b. Apparatus 115 includes a first beam splitter 120, which receives an input signal 160 and sends a first signal copy 162 toward a first mirror 130, and a second signal copy 164 toward a second mirror 140. First and second mirrors 130 and 140 reflect first and second signal copies 162 and 164 toward a second beam splitter 150. Second beam splitter 150 combines components of the reflected first and second signal copies 162 and 164 to form first output 172 and second output 174. In this example, both first mirror 130 and second mirror 140 comprise moveable mirror structures. Each of mirrors 130 and 140 is operable to move relative to the other to contribute to a difference in path length of the signals received and reflected toward second beam splitter 150. In the illustrated embodiment, for a desired total path difference of DELTA d, each of first and second mirrors 130 and 140 may move a distance DELTA L, each creating a path difference of DELTA L/sin(THETA), combining for a total path difference of DELTA d. The smaller the angle THETA, the larger the path difference created for a given mirror displacement. Said another way, using mirrors at small grazing angles to signals 162 and 164, desired path differences can be created with smaller mirror displacements. This results in smaller drive voltages needed to move the mirrors, and faster device operation. Efficiency and speed advantages can be compounded by implementing combinations of the embodiments shown in FIGS. 2a-2c. For example, a desired phase difference can be introduced between signal copies 162 and 164 using minimal mirror displacement by implementing multiple moving mirrors in each arm of the device, where one or more of the mirrors has grazing angle with the incoming signal that is less than forty five degrees. FIGS. 3a-3c are block diagrams showing a plurality of views of various embodiments of moveable mirrors suitable for use with the apparatus described in FIGS. 1 and 2. FIG. 3a is a block diagram showing a movable mirror 130, which can be used in devices shown in FIGS. 2a-2d and describe above. In the particular example shown in FIG. 3a, movable mirror device 130a comprises a micro-mechanical electro-optical switching (“MEMS”) device. MEMS device 130a includes a reflective conducting layer 135a disposed outwardly from an inner conductive layer 131a or 133a. Reflective conducting layer 135a comprises one or more at least substantially reflective structures that are operable to at least substantially conduct electricity. Reflective conducting layer 135a, in this embodiment, comprises a layer of metal, such as aluminum, that is substantially reflective of optical signals 162 incident thereon and substantially conductive of electricity. Reflective conducting layer 135a and inner conductive layer 133a may comprise single layers of one material, or may alternatively comprise multiple layers of one or more materials. Reflective conducting layer 133a resides outwardly from inner conductive layer 131a and/or 133a. Throughout this document, the term “inner conductive layer” is used to refer to material disposed inwardly from a moveable mirror layer, which is operable to at least substantially conduct electricity. Inner conductive layer 133a may comprise, for example, semiconductor substrate 131a, which has been doped sufficiently to render it at least substantially conductive. In another embodiment, a layer 133a of metal or a layer of doped polysilicon can be formed outwardly from semiconductor substrate 131a, and that layer 133a can comprise the “inner conductive layer.” It is not necessary that the inner conductive layer comprise a continuous structure. Inner conductive layer 133 could, for example, comprise a series of adjacent electrically coupled strips (or other discontinuous structures) of material. MEMS device 130a is formed so that a space 137 resides between reflective conducting layer 135a and inner conductive layer 131a (or 133a if used). Various layers interstitial to layers 135 and substrate 131 may be formed for various purposes. Regardless of any other structures formed, however, some amount of space 137 resides between reflective conducting layer 135 and substrate 131, to facilitate reflective conducting layer 135a moving inwardly toward substrate 131a. MEMS device 130 receives optical signals 162 at a grazing angle THETA to reflective conducting layer 135a. Reflecting conducting layer 135a reflects a substantial copy of signal 162 away from MEMS device 130a. Movement of reflective conducting layer 135a toward substrate 131a is accomplished by establishing a voltage differential between reflective conducting layer 135a and substrate 131a or, if used, conductive layer 133a. This voltage differential creates an electrostatic force between the two at least substantially conductive layers, which tends to pull reflective conducting layer 135a toward substrate 131a. In the illustrated embodiment, reflective conducting layer 135a is biased with a voltage 136, while inner conductive layer 133a is coupled to ground 138. Other voltage biasing techniques may be used. For example, voltage 136 may be applied to inner conductive layer 133a, and reflective conducting layer 135a may be grounded. As another example, a first voltage may be applied to reflective conducting layer 135a, while a second voltage, which is different from the first voltage, is applied to inner conductive layer 133a. Any biasing scheme operable to establish a voltage differential between layers 135a and substrate 131a, or layer 135a and layer 133a (if used), is within the scope of the invention. Of course, semiconductor substrate 131a may itself comprise the “inner conductive layer.” FIG. 3b is a block diagram of another embodiment of a moving mirror 130b useful, for example, in devices shown in FIG. 2a-2d. Moving mirror device 130b also comprises a MEMS device. MEMS device 130b includes a substrate 131b, and may also include a conductive layer 133b. Conductive layer 133b is similar in structure and function to conductive layer 133a shown in FIG. 3a. Substrate 131b is similar in structure and function to substrate 131a shown in FIG. 3a. MEMS device 130b also includes a plurality of reflective conducting strips 135b. Reflective conducting strips may comprise any material operable to substantially reflect an incident optical signal 162 and to substantially conduct electricity. Reflective conducting strips 135b may comprise, for example, doped polysilicon or a metal, such as aluminum. In addition, inner conductive layer 133b and/or reflective conductive strips 135b may comprise multiple layered structures. Various structures may be formed interstitial to reflective conducting layer 135b and substrate 131b for accomplishing various functions and results. Regardless of what structures are formed interstitial to layers 135b and substrate 131b, a space 137 is formed between reflective conducting strips 135b and substrate 131b to facilitate movement of reflecting conductive strips 135b toward substrate 131b. Movement of reflective conducting strips 135b toward substrate 131b is accomplished by establishing a voltage differential between strips 135b and substrate 131b (or conductive layer 133b, if used). As a particular example, strips 135b may be coupled to ground 138, while substrate 131b (or conductive layer 133b) is coupled to a voltage source 136. Again, other methods of creating a voltage differential could be used. For example, strips 135b could be coupled to a voltage source, while substrate 131b (or conductive layer 133b) are coupled to a ground, or differential voltage sources could be coupled to each of these layers. FIG. 3c shows another view of MEMS device 130b. As shown in FIG. 3, each end of each of strips 135b is anchored to, for example, substrate 131b. In this embodiment, all strips 135b are coupled to the same voltage potential. When a voltage differential is created between strips 135b and conductive layer 133b, all strips 135b move toward substrate 131b. The embodiment depicted in FIGS. 3b and 3c provides an advantage of controlling air damping during movement of strips 135b toward substrate 131b. In particular, air gaps 139 between strips 135b allow air in space 137 to escape when strips 135b move toward substrate 131b. Air gaps 139 can be optimally sized to provide adequate control of air damping, while minimizing loss associated with optical signals 162 impinging on strips 135b. Although the illustrated embodiment shows strips 135b as being elongated rectangular strips, other shapes and configurations could be used without departing from the present invention. In addition, although the illustrated embodiment shows each of strips 135b as being substantially identical to other strips 135b, various of strips 135b could have different dimensions than others without departing from the present invention. As a particular example of a biasing technique, moveable mirror devices 130a and/or 130b could be implemented in a configuration such as device 105 shown in FIG. 2b. Device 105 could be biased to switch between a state where moveable mirror elements of mirrors 130 and 140 reside at positions 132 and 144, respectively, to a state where those mirror elements switch to positions 134 and 142, respectively. This switching action would create a longer path length (DELTA d/2) for first signal copy 162 and a shorter path length (DELTA d/2) for second signal copy 164, resulting in a total path difference of DELTA d. Mirrors 130 and 140 could be biased to accomplish this switching, for example, by applying a control voltage to mirror 140 and no voltage to mirror 130 while device 105 remains in the first state. This would cause mirror 140 to remain in position 144 and mirror 130 to remain in position 132. When switching is desired, device 105 can terminate the control voltage applied to mirror 140, causing the moveable mirror element to return to position 142, and apply a control voltage to mirror 130, causing the moveable mirror element to be drawn to position 134. Other biasing techniques could be used consistent with the present invention. II. Variable Attenuation One particular aspect of the invention involves a novel variable attenuator and method for providing variable attenuation. FIG. 4 shows a block diagram of one embodiment of a variable attenuator 200. Variable attenuator 200 is described with reference to a configuration similar to that of apparatus 100 shown in FIG. 1a. Attenuator 200 could alternatively be constructed using other configurations, such as those shown in FIGS. 1c-1d. In this example, variable attenuator 200 includes a first beam splitter 220, which receives an input signal 260 and sends a first signal copy 262 toward a first mirror 230, and a second signal copy 264 toward a second mirror 240. First and second mirrors 230 and 240 reflect first and second signal copies 262 and 264 toward a second beam splitter 250. Second beam splitter 250 combines components of the reflected first and second signal copies 262 and 264 to form output signal 272. One or both of mirrors 230 and 240 can comprise a moveable mirror structure operable to vary its location anywhere between position 232 and position 234 to result in a change in the length of the path of first and/or second signal copies 262 and 264 through attenuator 200. In operation, control signals 236 and/or 239 are selectively applied to moveable mirrors 230 and/or 240, respectively, to cause one or more of those mirrors to move relative to first and/or second beam splitters 220 and 250. The further mirrors 230 and/or 240 are moved, the higher the degree of phase shift between first and second signal copies 262 and 264. The intensity of output signal 272 is proportional to cos2 of one half of the phase difference PHI between first and second signal copies 262 and 264. Therefore, by controlling the amount of movement each mirror 230 and/or 240 experiences, the intensity or attenuation of output signal 272 can be regulated. Although variable attenuator 200 is shown as having only one mirror 230/240 in each arm of the device, additional mirrors could be implemented in each arm without departing from the scope of the invention. In addition, although grazing angle THETA in FIG. 4 is shown as approximately forty-five degrees, other grazing angles could be implemented consistent with the invention. III. Optical Switching In another aspect of the invention, a novel digital switching architecture and methodology is presented. FIG. 5a shows a block diagram of a one-by-two optical switch 300. In this example, optical switch 300 is similar in structure to variable attenuator 200, which bears similarity to the configuration shown in FIG. 1a. Optical switch 300 could, however, alternatively be constructed using other configurations, such as those shown in FIGS. 1c-1d. In the illustrated embodiment, optical switch 300 includes a first beam splitter 320, which receives an input signal 360 and sends a first signal copy 362 toward a first mirror 330, and a second signal copy 364 toward a second mirror 340. First and second mirrors 330 and 340 reflect first and second signal copies 362 and 364 toward a second beam splitter 350. Second beam splitter 350 combines components of the reflected first and second signal copies 362 and 364 to form output signals 372 and 374. One or both of mirrors 330 and 340 can comprise a moveable mirror structure operable to vary its position to result in a change in the length of the path of and phase difference between first and/or second signal copies 362 and 364. The intensity of first output signal 372 is proportional to cos2 of one half of the phase difference PHI between first and second signal copies 362 and 364. The intensity of second output signal 374 is proportional to sin2 of one half the phase difference PHI between first and second signal copies 362 and 364. Therefore, when there is no phase difference (or a phase difference of 2−Pi, or an even multiple thereof), first output 372 is at a maximum, while second output 374 is zero, or near zero. When the phase difference equals an odd multiple of Pi, second output 374 is at a maximum, while first output 372 is zero, or near zero. By varying the positions of mirrors 330 and/or 340 to switch between a phase difference of, for example, approximately zero and Pi, optical switch 300 facilitates switching between first output 372 and second output 374. FIG. 5b is a block diagram showing one embodiment of a two-by-two switch 310. Two-by-two switch 310 is similar in structure and function to one-by-two switch 300 described with respect to FIG. 5a, except two-by-two switch 310 receives both a first input 360a (labeled “A1”) and a second input 360b (labeled “A2”) at beam splitter 320. Of course, optical switch 310 could also be constructed using elements having other configurations, such as those depicted in FIGS. 1c-1d. In this example, beam splitter 320 sends a copy of each input signal 360a and 360b toward first and second mirrors 330 and 340, which reflect those signal copies toward beam splitter 350. Depending on the position of mirrors 330 and/or 340, switch 310 provides pass through or cross over operation to outputs 372 and 374. For example, mirrors 330 and/or 340 could be positioned to provide no phase shift between the signal copies of each arm, resulting in pass through operation where input 360a passes through to output 372 and input 360b passes through to output 374. Alternatively, mirrors 330 and/or 340 could move to provide a phase shift resulting in cross-over operation, where input 360a crosses over to output 374 and input 360b crosses over to output 372. Of course, mirrors 330 and 340 could also be initially positioned to provide cross-over operation in a first state, and pass-through operation when one or more of the mirrors are moved. FIG. 5c is a block diagram showing another example of a two-by-two optical switch 400, and optionally added components to enable further switching stages. Elements represented in dashed lines comprise optional elements that can be added to provide additional switching stages. As previously discussed, although optical switch 400 uses a elements similar in configuration to those shown in FIG. 1a, optical switch 400 could implement elements having alternative configurations, such as those shown in FIGS. 1c-1d. In a basic two-by-two embodiment (ignoring the elements shown as coupled by dashed lines), switch 400 includes a first optical switch element 405, which receives a first optical signal 460a. Switch 400 further includes a second optical switch element 410, which receives a second optical signal 460b. Each of first and second optical switch elements 405 and 410 includes a first beam splitter 420, which receives input signals 460a and 460b, respectively, and sends a first signal copy 462 toward a first mirror 430, and a second signal copy 464 toward a second mirror 440. First and second mirrors 430 and 440 reflect first and second signal copies 462 and 464 toward a second beam splitters 450. Second beam splitters 450 combine the reflected first and second signal copies 462 and 464 to form output signals 472a-b and 474a-b. In the illustrated embodiment, output signals 472b and 474a are communicated toward a beam combiner 456, which combines those signals to create output signal 480. Also in this embodiment, output signals 472a and 474b reflect off of mirror 452 and 454, respectively, toward a beam combiner 458, which combines those signals to create output signal 490. Beam combiners 456 and 458 may comprise any structure or combination of structures operable to receive a plurality of signals and combine those signals into one or more output signals. For example, beam combiners 456 and 458 may each comprise a 50/50 beam splitter. Some or all of mirrors 430a-b and 440a-b can comprise moveable mirror structures operable to vary their positions to result in changes in the length of the path of and phase difference between first and/or second signal copies 462 and 464. By varying the positions of mirrors 430 and/or 440 to switch between a phase difference of, for example, approximately zero and Pi, each of optical switches 400 facilitates switching between first output 472 and second output 474. Through appropriate combinations of mirror movements, switch 400 can operate in either pass-through or cross-over mode. For example, mirrors 430a and/or 440a can be operated to create no phase shift between first and second signal copies 462a and 464a, while mirrors 430b and 440b can be manipulated to create no phase difference between first and second signal copies 262b and 264b. This operation would result in a pass-though mode of operation, allowing signals 460a and 460b to pass through to outputs 480 and 490, respectively. In particular, in this mode of operation, a zero phase difference between first and second signal copies 462b and 464b results in output 474b being near zero, while output 472b is near a maximum. An approximately Pi phase difference between first signal copy 462a and second signal copy 464a results in output 472a being near a maximum, while output 474a is near zero. Output 480, which is a combination of outputs 472b (maximum) and 474a (zero), therefore, equals output 472b, which corresponds to signal 460b. Output 490, which is a combination of outputs 472a (maximum) and 474b (zero), therefore, equals output 472a, which corresponds to input signal 460a. As another example, mirrors 430a and/or 440a can be manipulated to create approximately a Pi phase difference between first and second signal copies 462a and 464a, while mirrors 430b and 440b can be operated to create an approximately Pi phase difference between first and second signal copies 262b and 264b. This operation would result in a cross-over mode of operation, causing signal 460a to cross over to output 480, while signal 460b crosses over to output 490. Although FIG. 5c is a block diagram showing one embodiment of a two-by-two switch, additional switching elements could be combined in a similar manner to create an n-by-n optical switch. For example, by implementing components shown in dashed lines in FIG. 5c and substituting 2×2 switches for beam combiners 456 and 458, switch 400 becomes a four-by-four switch. In that embodiment, beam splitter 420a receives input signals 460a and 460d, while beam splitter 420b receives input signals 460b and 460c. In this embodiment, each switch 405 and 410 comprises a two-by-two switch operable to provide either pass through or cross over operation of its input signals 460. For example, where mirrors 430 and 440 are positioned to create a Pi phase shift facilitating pass through operation, inputs 460a and 460b pass through to outputs 490 and 480, respectively. Likewise, inputs 460c and 460d pass through to outputs 495 and 485, respectively. Where, however, mirrors 430 and/or 440 introduce no phase shift, inputs 460a and 460b cross over to outputs 480 and 490, respectively; while inputs 460c and 460d cross over to outputs 485 and 495, respectively. Although this example shows examples of two-by-two and a four-by-four switches, an n-by-n switch can similarly be constructed from additional combinations of two-by-two switches in a similar manner. Although switches 300, 310, and 400 are shown as having only one mirror in each arm of the devices, additional mirrors could be implemented in each arm without departing from the scope of the invention. Moreover, although grazing angle THETA in FIGS. 5a-5c is shown as approximately forty-five degrees, other grazing angles could be implemented consistent with the invention. FIG. 6 is a flowchart showing one example of a method 500 of facilitating optical signal processing. Method 500 begins at step 510 where beam splitter 120 (e.g., FIG. 2b) receives optical signal 160. Beam splitter 120 communicates copies of input signal 160 toward a first mirror and a second mirror at step 515. This may include, for example, a partially silvered mirror receiving input signal 160 and communicating a first signal copy 162 toward first movable mirror 130, and a second signal copy 164 toward second movable mirror 140. First and second mirrors 130 and 140 receive signal copies 162 and 164 at grazing angles other than 90 degrees. In a particular embodiment, mirrors 130 and 140 may receive signal copies 162 and 164 at grazing angles less than 45 degrees. This configuration provides an advantage of minimizing displacement of mirrors 130 and/or 140 to achieve a given signal path difference. One or more mirrors 130 and/or 140 comprises a MEMS device having a moveable mirror layer that changes its position in a substantially piston-like motion at step 520 to result in a difference in phase between signal copies 162 and 164. This may include, for example, first mirror layer 130 switching from position 132 to position 134, and/or mirror layer 140 switching from position 144 to position 142. First and second mirrors 130 and 140 reflect signal copies 162 and 164, respectively, toward an output at step 525. This may include, for example, first and second mirrors 130 and 140 reflecting signal copies 162 and 164 toward a second beam splitter 150. Alternatively, first and second mirrors 130 and 140 may reflect signal copies to additional moveable mirror elements (see, e.g. FIG. 2c). Implementing additional moving mirrors in each arm of device 105 provides an advantage of minimizing the displacement of any one of the movable mirrors while attaining a given signal path difference. Phase shifted components of first and second signal copies 162 and 164 are combined at step 530 to produce one or more output signals 172 and/or 174. Depending on the level of displacement of mirrors 130 and/or 140, device 105 can operate to provide, for example, phase shifting, variable attenuation, and/or switching functionality on input signal 160. IV. Polarization Controllers FIG. 7a is a block diagram showing an exemplary embodiment of a polarization controller 610. In this particular embodiment, polarization controller 610 comprises a phase shift-based polarization controller. Rather than requiring physical rotation of the polarization controller, polarization controller 610 uses phase shifts between the principal modes of input signal 616 to orient the output states of polarization. In the particular example shown in FIG. 7a, polarization controller 610 includes three stages of phase shifters 620, 622, and 624, each operable assist in translating the input state of polarization to a desired output state of polarization. In this embodiment, first phase shifter 620 couples to a polarization beam splitter 618, which receives input optical signal 616 and separates the two principal modes of polarization. Each of phase shifters 620-624 introduces a phase shift between these two principal modes of polarization. Each phase shifter 620-624 comprises a device or collection of devices operable to introduce a phase shift into an optical signal it receives. Phase shifters 620-624 may comprise, for example, micro-electro-mechanical systems (MEMS) comprising moveable mirror elements in each arm facilitating a phase shift between signal copies communicated through each arm. Any device operable to introduce a phase shift into an optical signal, however, may be used. In this example, beam splitters 626 and 628 couple second phase shifter 622 to first phase shifter 620 and third phase shifter 624, respectively. In one embodiment, at least two phase shift stages share a common beam splitter. The example shown in FIG. 7a depicts phase shifters 620-624 sharing two common beam splitters 626 and 628. In another embodiment, phase shifters 620-624 could, for example, all share one common beam splitter. In any case, each of beam splitters 626-628 may comprise, for example, a partially silvered mirror, a mirror having one or more layers of a dielectric coating, or a fiber coupler. In a particular embodiment, each of beam splitters 620-624 comprises an approximately 50/50 beam splitter. While other beam splitter ratios can be used consistent with the scope of the invention, an approximately 50/50 beam splitter maintains the symmetry of the device to provide a good contrast ratio. In one particular embodiment, beam splitters 626 and 628 may each comprise a mode coupling beam splitter. For example, beam splitters 626 and 628 may include or be coupled to a polarization converter to render beam splitters 626 and 628 mode coupling. This embodiment ensures that polarization controller 610 can convert any arbitrary state of polarization (including eigen modes) into any other state of polarization. In addition, this embodiment produces a single output from polarization beam splitter 619, which reduces polarization dependent losses that might otherwise be associated with systems having multiple outputs. The embodiment of polarization controller 610 shown in FIG. 7a also includes a polarization beam splitter 619, which receives a phase shifted signal from third phase shifter 624, and aligns the two principal modes of polarization of that signal as desired. The embodiment shown in FIG. 7a provides significant advantages over other polarization controller designs, by facilitating reorientation of the principal modes of polarization without requiring the use of physical rotation of the compensator, physical squeezing of the fiber communication line, the use of expensive lithium niobate waveguide devices, or the use of additional beam splitter elements due to the presence of bulk wave plates between stages of phase shifters. FIG. 7b is a block diagram of one particular configuration of a polarization controller 610a. Polarization controller 610a as shown in FIG. 7b includes a plurality of phase shifter stages 620-624 each comprising a MEMS-based device, such as the device described above with respect to FIG. 4. Although each of phase shifter stages 620-640 has a similar configuration to apparatus 100 shown in FIG. 2a, phase shifter stages 620-640 could implement other configurations, such as those shown in FIGS. 1c-1d. In the illustrated example, each phase shifter 620-624 includes two arms 662 and 664, at least one of which comprises a moveable mirror structure 630 and/or 640. Mirrors 630 and/or 640 are operable to move in response to one or more control signals to result in a change in the length of the signal path and, therefore, a phase shift between signal copies communicated through the arms of phase shifters 620-624. Phase shifter stages 620-624 are coupled together by beam splitters 626 and 628. In this example, phase shifter stages 620 and 622 share beam splitter 626, while phase shifter stages 622 and 624 share beam splitter 628. In this example, polarization beam splitter 618 receives optical input signal 616 and separates the two principal modes of polarization onto a first signal path 662 and a second signal path 664. A polarization beam splitter 619 receives phase shifted signals from third phase shifter stage 624 and aligns the principal modes of polarization with the principal axes of delay line 612. The heretofore described embodiment of polarization controller 610a succeeds in transforming any input states of polarization that are not eigen modes of the system. For example, s-polarized and p-polarized waves are not transformed into any other state using that configuration. To facilitate transforming any arbitrary state of polarization (including eigen modes) into any other state of polarization, FIG. 7b also shows the optional use of polarization converter 635 to the first phase shift stage (630a/640a) of polarization controller 610a. As a particular example, assume that polarization beam splitter 618 operates to reflect the s-polarized waves and to transmit the p-polarized waves. Polarization converter 635 receives the p-polarized waves and converts them to s-polarized waves, so that beam splitter 628 can combine s-polarized waves coming from first and second arms 662 and 664 and communicate the combined signals toward the second phase shift stage. Although this example shows polarization converter 635 coupled between MEMS device 640a and beam splitter 626, polarization converter 635 could alternatively reside between polarization beam splitter 618 and MEMS device 640a. In addition, polarization converter 635 could alternatively reside in first arm 662 of polarization controller 610a. The polarization controller of FIG. 7b also shows the optional use of a polarization converter 637 coupled to the last phase shift stage (630c/640c). Polarization converter 637 operates to convert the polarization of the received signal to match that of the signal in the opposing arm of the phase shift stage, so that polarization beam splitter 619 will concentrate the output into one output signal. Polarization converter 637, can reduce or eliminate polarization dependent losses otherwise associated with the output signal. Although this example shows polarization converter 637 coupled between MEMS device 640c and beam splitter 619, polarization converter 635 could alternatively reside between polarization beam splitter 619 and MEMS device 640c. In addition, polarization converter 637 could alternatively reside in first arm 662 of polarization controller 610a. Polarization converters 635 and 637 may comprise any device or combination of devices operable to flip the polarization of an incoming signal to an orthogonal mode of polarization. Wave plates, Transverse Electrical Transverse Magnetic (TETM) converters, Faraday converters, and mirrors positioned so as to flip the polarization of an incoming signal to a polarization orthogonal to the input state of polarization provide just a few examples of polarization converts suitable for use with this system. Although FIG. 7b shows the optional use of a single polarization converter in the first and last phase shift stages, alternatively, a polarization converter could reside in each arm of the first and/or last phase shift stages. In this manner, the physical symmetry of the device can be maintained, so as to increase the contrast ratio of the device. As one particular non-limiting example, where polarization converters are used in each arm of the first and/or last phase shift stage, each polarization converter can comprise a half wave plate—one oriented at forty-five degrees to the mode axis, the other oriented parallel to the mode axis. Multiple polarization converters in a single phase shift stage may, but need not, be formed from like materials. FIG. 7c shows an alternate embodiment of a polarization controller 610b operable to transform any linear input state of polarization to any arbitrary output state of polarization. In this example, polarization controller 610b includes a polarization beam splitter 658 coupled to at least two substantially reflective surfaces 660 and 670. In a particular embodiment, at least one of the substantially reflective surfaces 660, 670 comprises a MEMS based device operable to undergo a substantially piston like movement to introduce a difference in signal path length and a corresponding difference in phase between a first signal copy 661 and second signal copy 662. Reflective surfaces 660 and 670 are further coupled to a beam splitter 668, which is still further coupled to at least substantially reflective surfaces 680 and 690. In a particular embodiment, at least one of the substantially reflective surfaces 680, 690 comprises a MEMS based device operable to undergo a substantially piston like movement to introduce a difference in signal path length and a corresponding difference in phase between signal copies received. In operation, polarization beam splitter 658 receives input optical signal 656 and generates two at least substantial copies of that signal. Polarization beam splitter 658 communicates one copy toward first substantially reflective surface 660 and the other copy toward second substantially reflective surface 67 At least one of reflective surfaces 660 and 670, in response to a control signal, changes its position to create a phase difference between the signal copies received at beam splitter 668. Beam splitter 668 receives first and second signal copies 661 and 663, combines components of those signals, and communicates the combined components toward reflective surfaces 680 and 690. At least one of reflective surfaces 680 and/or 690, in response to a control signal, changes its position to create a further phase difference between the signal copies received from beam splitter 668. Reflective surfaces 680 and 690 reflect the further phase shifted signal copies toward beam splitter 668, which receives the signal copies and combines components of those signals. Beam splitter 668 then communicates the combined components toward reflective surfaces 660 and 670, which introduce yet a further phase shift between the principal modes, and communicate the further phase shifted modes toward polarization beam splitter 658. Polarization beam splitter 658 communicates a phase shifted output 673 toward a circulator 675, which directs the phase shifted output signal from polarization controller 610b. As with polarization controller 610a, polarization controller 610b may optionally include a polarization converter 636. Polarization converter 636 operates to facilitate polarization control of eigen modes and operates to reduce polarization dependent losses. Polarization controller 610b includes three stages of phase shift. Reflective surfaces 660 and 670 comprise the first and third phase shift stages, while reflective surfaces 680 and 690 comprise the second phase shift stage. In this example, all phase shift stages share a single beam splitter 668. By sharing one beam splitter between multiple phase shift stages, this embodiment of the invention advantageously reduces the number of components required to provide polarization control. For example, this embodiment reduces the number of beam splitters needed, and also reduces the number of polarization converters necessary to both process eigen modes and reduce or eliminate polarization dependent losses. In addition, this embodiment facilitates implementing a single polarization beam splitting device to serve as both the first (input) polarization beam splitter and the second (output) polarization beam splitter. Polarization controllers 610a and 610b can be used in a variety of signal processing applications. For example, use in conjunction with polarization sensitive optical components, use in polarization multiplexed lightwave transmission systems, use in coherent communication systems, and use in polarization mode dispersion compensators are just a few examples of applications for polarization controllers 610a and 610b. If the characteristic for which the polarization controller is being used changes at a rate that is slower than the reset speed of the polarization controller and, ideally, if the polarization controller can switch at a rate faster than the bit rate of the information being processed, the polarization controller can be made infinitely rotatable (also known as “reset free” or “endless polarization rotation”). In other words, the polarization controller can be used to provide one phase adjustment along the Poincare Sphere, reset, and provide a second phase adjustment modulo 2Pi from the first phase adjustment. In this manner, phase shifters 620-624 can emulate a single large phase shift using numerous smaller phase shifts between changes in polarization. Through this technique, polarization controller 610a can simulate an ability to provide a number of rotations on the Poincare Sphere, without actually having the physical range that would otherwise be necessary to perform the transformation. One example of a device that is capable of switching at speeds faster than most signals' polarization changes is a MEMS-based phase shifter stage—in particular those operable to undergo substantially piston-like motion and using multiple moving mirror strips to control air damping. For example, in mitigating polarization mode dispersion, polarization controller 610a can switch at speeds faster than once each milli-second, the approximate time scale on which polarization mode dispersion varies. Therefore, MEMS-based phase shifter stages 620-624 capable of switching at speeds significantly greater than, for example, once each milli-second can be implemented to provide an endlessly rotatable polarization controller in a PMD compensator. FIG. 7D is a graph showing realized switching speeds using one particular embodiment of polarization controller 610, which implements MEMS based phase shift stages similar to the device depicted in FIG. 3a. In this example, trace 152 shows a switching of the phase shift stages in response to a control voltage 150. As shown in this example, rise times of seven hundred micro-seconds have been obtained. Other switching speeds may be ascertainable, depending on the processing demands and particular device characteristics utilized. For example, faster switching speeds can be obtained using an embodiment similar to that shown in FIG. 3b. Another technique for producing an infinitely rotatable polarization controller is to implement at least four stages of phase shifters. For example, although the embodiments shown in FIGS. 7b and 7c include three stages of phase shifters, one or more additional phase shift stages could be cascaded with the illustrated stages to render the controllers endlessly rotatable based on the number of phase shift stages being used. Using four or more stages of phase shifters, for example, allows for resetting one stage of phase shifters, while one or more other stages is processing the signal. This facilitates endless polarization rotation while maintaining lower switching speeds. FIGS. 8-13 provide various examples of methods and apparatus employing polarization controllers of the present invention. For ease of description, FIGS. 8-13 illustrate various examples using details of polarization controller 610a shown in FIG. 7b. It should be noted that other embodiments, such as polarization controller 610b shown in FIG. 7c (or various derivatives thereof) could also be used in the examples given in FIGS. 8-13 without departing from the scope of the invention. One aspect of the invention provides novel methods and apparatus useful in mitigating polarization mode dispersion (PMD). FIGS. 8a-8h are block diagrams showing various embodiments of systems implementing PMD compensators, PMD compensator designs, and components suitable for use in PMD compensators. FIG. 8a is a block diagram of an optical communication system 550 implementing a PMD compensator along with one or more margin enhancing elements. As optical communication systems communicate information at higher and higher rates, the need for mitigating polarization mode dispersion increases. In addition, as the bit rate increases, so does the need for more system margin. Conventional systems operating at, for example, ten Giga-bits per second have implemented margin enhancing techniques, such as distributed Raman amplification, forward-error-correction, and dispersion management. To date, however, no system has emerged which optimizes the location and/or operation of one or more of these margin enhancement techniques in conjunction with mitigation of polarization mode dispersion. In one aspect of the invention, an optical communication system is presented that optimizes the use of PMD compensators in conjunction with one or more margin enhancing devices. System 550 shown in FIG. 8a shows an example of one such system. System 550 includes a plurality of fiber spans 551a-551n coupled between an optical source 552 and an optical receiver 568. In-line amplifiers 558a-558n reside between fiber spans 551 to provide amplification of the optical signals traversing those spans. These amplifiers may comprise, for example, erbium doped amplifiers, Raman amplifiers, or any other suitable optical amplifying device. System 564 also includes a PMD compensator 564 operable to reduce polarization mode dispersion in the optical signals being communicated. In this embodiment, PMD compensator 564 resides somewhere along the fiber span coupling the last in-line filter 558n and receiver 568. System 550 also includes one or more pre-amplifiers 554 coupled to or integral with optical source 552, and one or more post-amplifiers 566 coupled to or integral with optical receiver 568. One or more post-amplifiers 566 could reside either before the input or after the output of PMD compensator 564. Coupling PMD compensator 564 at or near the final fiber span provides an advantage of optimizing the optical signal to nose ratio. Placing PMD compensator close to the end of the transmission system results in attenuating both the signal and the noise equally, allowing the system to maintain a good signal-to-noise ratio. In this embodiment, system 550 implements a plurality of margin enhancing techniques. For example, system 550 includes a dispersion compensator 556 near the optical source and a dispersion compensator 562 close to the optical receiver. This embodiment facilitates pre-amplification, in line amplification, and post-amplification dispersion compensation. For example, dispersion compensators could reside prior to the first amplification stage, between various amplifications stages, and/or after the last amplification stage. This example also implements distributed Raman amplification to enhance the system margin. In particular, system 550 implements counter-propagating pumps 560a-560n, which help prevent coupling of pump fluctuations to the optical signals being communicated by system 550. Also in this example, system 550 utilizes forward-error-correction circuitry 570 at or accessible to receiver 568. Although this particular example shows the use of three margin enhancing techniques, the invention does not require each of these techniques. Rather, by implementing a polarization mode dispersion compensator and at least one margin enhancing technique, this aspect of the invention provides significant advantages in facilitating optical signal transmission at speeds of, for example, forty Giga-bits per second or more. In addition, by locating the PMD compensator near the optical receiver, system 550 maintains a good signal-to-noise ratio. FIG. 8b is a block diagram showing one embodiment of a PMD compensator 600 including a polarization controller (PC) coupled to a delay element controlled through control circuitry 614. In a particular embodiment, polarization controller 610 may be similar in structure and function to polarization controller 610 shown in FIG. 7a. PMD compensator 600 operates to reestablish a linear polarization between the various modes of an incoming optical signal 616, by delaying the mode associated with the faster axis of the fiber to result in an equalization in communication speeds of both principal axes. In operation, PMD compensator 600 receives an optical signal 616 at polarization controller 610. In one embodiment, polarization controller 610 is operable to receive an optical signal having any arbitrary state of polarization and to convert the signal to one having a linear state of polarization. In another embodiment, polarization controller 610 operates to receive an optical signal having any arbitrary state of polarization and to convert that signal to one having any other state of polarization. Polarization controller 610 adjusts the state of polarization of each of the principal modes of input signal 616, and passes the adjusted signal to a delay element 612, which delays the leading mode and/or speeds up the lagging mode of polarization. The output from delay element 612, or an electrical version thereof, is then fed back to control block 614, which generates control signals for use by polarization controller 610 in continually adjusting the state of polarization of each principal mode. FIG. 8c is a block diagram showing one possible embodiment of a polarization controller 610 coupled to a delay element 612. In this particular embodiment, polarization controller 610 comprises a phase shift-based polarization controller comprising at least three stages of phase shifters 620, 622, and 624, each operable to provide one degree of freedom in translating the input state of polarization to a desired output state of polarization. In this embodiment, first phase shifter 620 couples to a polarization beam splitter 618, which receives input optical signal 616 and separates the two principal modes of polarization. Phase shifters 620-624 introduce phase shifts between these two principal modes of polarization. In the illustrated embodiment, beam splitters 626 and 628 couple second phase shifter 622 to first phase shifter 620 and third phase shifter 624, respectively. In this example, each of phase shifters 620-624 shares a common beam splitter 626 or 628. Phase shifters 620-624 may comprise, for example, micro-electro-mechanical systems (MEMS) comprising moveable mirror elements in each arm facilitating a phase shift between signal copies communicated through each arm of the phase shifter, as shown in FIGS. 7b and 7c. Sharing beam splitters between phase shifter stages provides an advantage of reducing the number of components necessary by eliminating the need for bulk wave plates between each phase shift stage. This reduces the cost and complexity of device fabrication, particularly in multiple wavelength applications. The embodiment of polarization controller 610b shown in FIG. 7c facilitates sharing a single beam splitter between three stages of phase shifters. The embodiment of polarization controller 610 shown in FIG. 8c also includes a polarization beam splitter 619, which receives a phase shifted signal from third phase shifter 624, separates the two principal modes of polarization of that signal to ultimately facilitate transmission of the lagging mode of polarization parallel to a faster principal axis of delay element 612, and transmission of the leading mode of polarization parallel to a slower principal axis of delay element 612. The embodiment shown in FIG. 7c facilitates implementing the first and second polarization beam splitters as a single beam splitting device 658. Delay element 612 can comprise any device—hardware, software, firmware, or combination thereof operable to provide a delay to one component of an optical signal with respect to another component of that signal. In a particular embodiment, delay element may comprise, for example, a length of polarization maintaining fiber (PMF) that has been intentionally formed so that one of its principal axes is faster than the other. Where delay element 612 comprises a fixed delay element, polarization controller 610 should comprise at least three stages of phase shifters 620-624 to ensure adequate flexibility in aligning the principal modes of polarization of input signal 616 to the fast and slow axes of fixed delay element 612. Polarization controller 610 could alternatively, however, comprise additional phase shift stages beyond the three shown in FIG. 7b. Where PMD compensator 600 comprises a fixed delay element 612, polarization controller 610 can comprise any number of phase shift stages greater than two. Additional stages of phase shifters provide an advantage of allowing the use of more simple control algorithms in control block 614. Other typed of delay elements could be used consistent with the invention. For example, delay element 612 could comprise one or more retardation plates, or other suitable birefringent material. In another embodiment, delay element 612 could comprise a variable delay line comprising, for example, a polarization controller coupled between lengths of polarization maintaining fiber. In still another embodiment, delay element 612 could comprise an electronic delay circuit. Chirped HiBi fiber gratings provide still another example of a delay element applicable to the present invention. For ease of description, the following examples will assume use of polarization maintaining fiber as a delay element. Other delay elements could be used consistent with the invention. The embodiment shown in FIG. 8c provides significant advantages over other PMD compensator designs, by mitigating the effects of polarization mode dispersion without requiring the use of physical rotation of the compensator, physical squeezing of the fiber communication line, the use of expensive lithium niobate waveguide devices, or the use of bulk wave plates between each stage of phase shifters. Moreover, while this embodiment can be used with a variable delay line, it does not require the use of more expensive variable delay elements. Instead, it facilitates the use of an inexpensive fixed delay element, such as a length of polarization maintaining fiber. Where polarization controller 610 implements a polarization converter coupled to the last phase shift stage, the polarization controller generates a single output. In that case, a delay element can be coupled directly to the output of the polarization controller. FIGS. 8d-8e are block diagrams showing illustrative examples of coupling delay elements 612a and 612b, respectively, to a polarization controller that does not use a polarization converter to result in a single output. In FIG. 8d, delay element 612a comprises a fixed delay element including a polarization beam splitter 613 coupled to a length of polarization maintaining fiber 615. In this example, mirrors 607 and 609 reflect the two phase shifted outputs of polarization beam splitter 619 toward polarization beam splitter 613. Polarization beam slitter 613 acts as a signal combiner to form output 617, which is communicated to polarization maintaining fiber 615. Delay element 612b shown in FIG. 8e includes a first delay line 621 and a second delay line 623, each coupled to polarization beam splitter 619. In this particular example, each of delay lines 612 and 623 comprises a length of polarization maintaining fiber. In the illustrated embodiment, polarization beam splitter 619 directs a first phase shifted principal mode of polarization toward first delay line 621, and directs a second phase shifted principal mode of polarization toward a mirror 631, which reflects the second principal mode toward second delay line 623. A mirror 633 receives a delayed phase shifted principal mode from second delay line 623, and directs that signal toward a polarization beam splitter 625. Polarization beam splitter 625 receives the delayed phase shifted principal modes of polarization from delay lines 621 and 623, and combines those signals into a compensated output 627. The embodiments of delay elements 612a and 612b shown in FIGS. 8d and 8e are intended for illustrative purposes only. Other delay elements and/or configurations of elements could be used without departing from the scope of the invention. A related aspect of the invention comprises a method and apparatus for facilitating variable delay for use, for example, in a PMD compensator. FIG. 8f is a block diagram of one embodiment of a variable delay line 700. Variable delay line 700 comprises at least one polarization controller 710 coupled between a pair of polarization maintaining fibers (PMF) 712a-712b. Polarization maintaining fibers 712 are similar in structure and function to fixed delay element 612 described with respect to FIG. 8b. Polarization controller 710 is similar in structure and function to polarization controller 610 described with respect to FIGS. 7a and 8a. In operation, first polarization maintaining fiber 712 receives an optical signal 705 having its two principal modes of polarization oriented for transmission substantially parallel with the principal axes of first polarization maintaining fiber 712a. First polarization maintaining fiber 712a communicates the lagging mode of polarization of signal 705 parallel to its faster axis, and communicates the leading mode of polarization of signal 705 parallel to its slower axis to generate a partially compensated signal 706. Polarization controller 710 receives partially compensated signal 708 and performs a phase shift on that signal to align the principal modes with the principal axes of second polarization maintaining fiber 712b. Second polarization maintaining fiber 712b then communicates the leading mode of polarization of signal 708 on its slower principal axis, and communicates the lagging mode of polarization of signal 708 on its slower principal axis. In this example, a polarization beam splitter 713b receives the phase shifted signal from polarization beam splitter 719 of polarization controller 710, and facilitates transmission of the leading principal mode parallel to the slow axis and the lagging principal mode parallel to the fast axis of polarization maintaining fiber 712b. By implementing multiple stages of polarization maintaining fiber coupled to a polarization controller, variable delay line 700 facilitates more granular control over compensation than a fixed delay element. To add still more granularity of control, additional stages of polarization maintaining fiber separated by additional polarization controllers can be cascaded serially. FIG. 8g is a block diagram showing one embodiment of a PMD compensator 750 implementing variable delay line 700. PMD compensator 750 includes a polarization controller 760 coupled to variable delay line 700 and a control block 714. Polarization controller 760 comprises a first polarization beam splitter 762 operable to receive optical signal 716 and to separate the principal modes of polarization of that signal, and a beam splitter 764 operable to align the principal modes of polarization of the phase shifted signal with the principal axes of variable delay line 780. In the illustrated embodiment, polarization controller 760 includes just two phase shifters 770 and 772 separated by a beam splitter 766. In a particular embodiment, beam splitter 766 may comprise an approximately 50/50 beam splitter. Implementing a variable delay line, such as variable delay line 700, allows PMD compensator to utilize a two stage phase-shift based polarization controller 760. While additional stages of phase shifters in polarization controller 760 could be used without departing from the scope of the invention, using variable delay line 700 facilitates similar PMD compensation to a three or more stage phase shift polarization controller, while eliminating a stage of phase shifters. FIG. 8h is a block diagram showing one possible embodiment of a two-stage phase shift based polarization controller 755 coupled to a variable delay element 780. In this example, each phase shifter stage 770-772 of polarization controller 755 comprises a MEMS-based device, such as the device described above with respect to FIG. 4. Although phase shifter stages 770-772 have a similar configurations to apparatus 100 shown in FIG. 2a, phase shifter stages 770-772 could implement other configurations, such as those shown in FIGS. 1c-1d. In this example, each phase shifter 770-772 includes two arms, at least one of which comprises a moveable mirror structure 730 and/or 740. Mirrors 730 and/or 740 are operable to move in response to one or more control signals to result in a change in the length of the signal path and, therefore, a phase shift between signal copies communicated through the arms of phase shifters 770-772. Phase shifter stages 720 and 722 share a beam splitter 766 coupled between those stages. Polarization beam splitter 762 receives optical input signal 716 and separates the two principal modes of polarization onto a first signal path directed toward mirror 730a, and a second signal path directed toward mirror 740a. Each phase shift stage 770 and 772 introduces a phase shift between the principal modes of polarization of signal 716. A beam splitter 764 receives phase shifted signals from second phase shifter stage 772 and aligns the principal modes of polarization with the principal axes of variable delay line 780. Variable delay line 780 may comprise any device or combination of devices operable to provide a tunable delay line. Using the configuration shown in FIG. 8h, two stage polarization controller 755 can receive an input signal having any arbitrary state of polarization, and can generate an output signal having a linear state of polarization. Variable delay line 780 can then complete the PMD compensation by introducing variable levels of delay into one or more modes of polarization of the phase shifted signal from polarization controller 755. Consequently, the PMD compensator of FIG. 8h provides efficient and cost effective PMD compensation for signals having any state of polarization. FIG. 9 is a flowchart showing one example of a method 900 of controlling the polarization of a signal and ultimately mitigating polarization mode dispersion. Method 900 begins at step 902 where polarization controller 610 receives optical signal 616 at step 902. Polarization controller 610 separates optical signal 616 into a leading principal mode of polarization and a lagging principal mode of polarization at step 904. This may include, for example, polarization beam splitter 618 receiving optical signal 616, and communicating first mode 662 toward first mirror 630 and communicating second mode 664 toward second mirror 640. Polarization controller 610 introduces phase shift between the leading and lagging modes of polarization at step 920. This may include, for example, first phase shift stage 620 introducing a first phase shift at step 906, and communicating phase shifted modes 662 and 664 to first beam splitter 626 at step 908. In a particular embodiment, beam splitter 626 may comprise a mode coupling beam splitter operable to flip the polarization of one of the signal copies to facilitate processing of eigen modes. First beam splitter 626 communicates substantial copies of phase shifted modes toward first and second mirrors 630b and 640b, where a second phase shift is introduced at step 912. First and second mirror 630b and 640b communicate the twice phase shifted modes 662 and 664 to second beam splitter 628 at step 914. Second beam splitter 628 receives the twice phase shifted modes and communicates copies of those signals to first and second mirrors 630c and 640c, where a third phase shift is introduced at step 918. In a particular embodiment, second beam splitter 628 may comprise a mode coupling beam splitter operable to flip the polarization of one of the modes, to facilitate communication of a single output signal and reduce polarization dependent losses. Polarization beam splitter 619 receives phase shifted principal modes of polarization 662 and 664 and separates the principal modes of polarization at step 922. Steps 902 through 922 have described one example of a method of controlling polarization in an optical signal. This method may find application, for example, in a PMD compensator as discussed below, or in a polarization multiplexed lightwave transmission system, in a coherent communication system, or in conjunction with polarization sensitive optical components. One particular method of mitigating polarization mode dispersion continues at step 924 where polarization controller 610 communicates the phase shifted principal modes of polarization to delay element 612. Although delay element 612 may comprise any of a variety of devices operable to introduce delay, in a particular embodiment, polarization controller 610 aligns the leading mode of polarization with a slow axis of a polarization maintaining fiber 612a at step 926, and aligns the lagging mode of polarization parallel to a fast axis of the polarization maintaining fiber 612a at step 928. Using a phase shift based polarization controller, PMD compensator 600 operates to align any arbitrary state of polarization with any other arbitrary state of polarization to result in mitigation of polarization mode dispersion. FIGS. 10a-10b are block diagrams showing various embodiments of a system and components thereof operable to mitigate polarization mode dispersion in multiple-wavelength optical signals. Where optical signals comprise multiple wavelengths, each wavelength will rotate in polarization differently as it traverses the optical fiber. Consequently, compensating for polarization mode dispersion must be done on a wavelength-by-wavelength basis. Conventional solutions to PMD compensation that offer endlessly rotatable operation—such as those using lithium niobate based polarization controllers—are very expensive, even on a single wavelength application. As optical systems implement more and more communication channels (using more and more wavelengths), the cost of PMD compensation using conventional equipment quickly becomes prohibitive. One aspect of the invention provides an architecture that is easily and inexpensively replicated to facilitate arrays of PMD compensators capable of processing any number of wavelengths of light. System 800 as shown in FIG. 10a includes an array of polarization controllers 810. Each polarization controller in array 810 comprises a MEMS-based phase shift polarization controller. System 800 also includes a delay element 812. Delay element 812 may comprise a fixed delay element, such as polarization maintaining fiber 612 shown in FIG. 8d, or a variable delay element, such as variable delay line 710 shown in FIG. 8f. In the illustrated embodiment, all polarization controllers share a single delay element 812. Alternatively, system 10 could implement multiple delay elements 812, each servicing one or more polarization controllers of array 810. Where delay element 612 comprises a fixed delay element, each polarization controller of array 810 comprises three or more stages of phase shifters, such as in polarization controller 610 shown in FIG. 8d. Where delay element 612 comprises a variable delay element such as variable delay line 710 shown in FIG. 8f, each polarization controller of array 810 may comprise as few as two stages of phase shifters, as in polarization controller 760 shown in FIG. 8g. In the illustrated embodiment, system 800 further includes a wavelength division demultiplexer 807 coupled to the output of delay element 812, and an array of detectors 823. Wavelength division multiplexer 807 is operable to receive a compensated signal 817 from delay element 812, separate the various wavelengths of that signal, and pass those wavelengths to a detector 823. Detectors 823 convert the optical signals received into electrical signals for processing in an array of control circuitry 814. Control circuitry 814 generates control signals 821a-821n, which are communicated to associated polarization controllers of array 810. In an alternative embodiment, demultiplexer 807 and array of detectors 823 could be replaced by a variable filter or a scanning filter operable to sequentially filter each wavelength from signal 817, and to pass each wavelength to control array 814. Control array 814 could, for example, communicate control signals to array of polarization controllers 810 and also communicate a signal to the scanning filter instructing the filter to deliver the next wavelength. In operation, wavelength division demultiplexer 802 receives an optical input signal 816 having a plurality of wavelengths, and separates signal 816 into a plurality of individual wavelength signals 806a-806n. In one embodiment, polarization controllers of array 810 each receive one of wavelengths 806a-806n for processing. Alternatively, system 800 may communicate only some of wavelengths 806 to polarization controller array 810, and allow other wavelengths 806 to bypass polarization controller array 810 through bypass path 823. This may be useful, for example, where system 10 provides PMD compensation for communication systems using only some of the wavelengths of signal 816. In those cases, system 10 can provide efficiencies of compensating only those wavelengths being utilized, allowing non-utilized wavelengths to pass without processing. Polarization controllers of array 810 receiving utilized wavelengths introduce phase shift into those signals to align the principal modes of polarization to the appropriate axes of delay element 812. Wave division multiplexer 804 receives phase shifted signals 808a-808n from polarization controller array 810, multiplexes those signals into a one or more phase shifted optical signals for communication to delay element 812. Delay element 812 communicates the leading mode of polarization parallel to its faster axis, and communicates the lagging mode of polarization parallel to its slower axis to mitigate polarization mode dispersion. Control array 814 receives compensated signals 817 and generates control signals 821 for feedback to polarization controllers of array 810. In a particular embodiment, control array 814 comprises an array of electronic circuitry, which receives electronic signals from one or more detectors 823 operable to convert optical signals to electrical signals. Control signals 821 may comprise, for example, voltage signals operable to control the amount of movement in moveable mirror structures, such as 630 and 640 shown in FIG. 7b or mirrors 730 and 740 shown in FIG. 8h. Controlling the amount of displacement of these mirrors controls the change in path length of signals communicating with those mirrors and, therefore, the phase shift of the resulting signals. This embodiment provides an advantage of facilitating use of readily available electronic control circuitry for system 800. FIG. 10b is a block diagram showing one possible embodiment of polarization controller array 810. Polarization controller array 810 may be useful, for example, in a multiple-wavelength PMD compensator. Alternatively, polarization controller array 810 could be applied to any system where it is desirable to control the polarization of multiple wavelengths in one or more optical signals. Although each polarization controller of array 810 is depicted as similar to polarization controller 610a of FIG. 7a, polarization controllers 810a-810n could alternatively comprise polarization controllers, such as controller 610b shown in FIG. 7c (or derivatives thereof). In this example, each polarization controller 810a-810n of array 810 includes a polarization controller similar to that shown in FIG. 7b. Each phase shifter stage 820a-n through 824a-n (referred to generally as phase shifter stages 820-824) comprises a MEMS-based device, such as the device described above with respect to FIG. 4. Each phase shifter stage 820-824 includes two arms, at least one of which comprises a moveable mirror structure 630 and/or 640. Mirrors 630 and/or 640 are operable to move in response to one or more control signals 821 to result in a change in the length of the signal path and, therefore, a phase shift between signal copies communicated through the arms of phase shifters 820-824. Phase shifter stages 820-824 are coupled together by beam splitters 826 and 828. Beam splitters 826-828 may comprise, for example, approximately 50/50 beam splitters. In this example, polarization beam splitter 818 receives various wavelengths 806a-806n of optical input signal 816 and separates the two principal modes of polarization in those signals onto a first signal path and a second signal path. A polarization beam splitter 819 receives phase shifted signals from third phase shifter stages 824 and aligns the principal modes of polarization with the principal axes of delay element 812. Although the illustrated embodiment shows three stages of phase shifters, additional stages could be implemented consistent with the present invention. Moreover, where delay element 812 comprises a variable delay line, each polarization controller in array 810 could comprise as few as two stages of phase shifters. Although this example shows just one MEMs device in each arm of each phase shifter stage, additional MEMs devices could be implemented without departing from the invention. Furthermore, although MEMs devices 830 and 840 are shown at an approximately forty-five degree grazing angle, these devices could be located at other grazing angles to the signals being reflected. Implementing phase shifter based polarization controllers and/or variable delay lines using MEMs devices allows for fabrication of arrays of these devices at an incremental additional cost to fabricating a single compensator. This aspect of the invention provides significant advantages in facilitating rapid, effective, and economical PMD compensation, particularly in a multiple wavelength environment. FIG. 11 is a flowchart showing one example of a method 930 of mitigating polarization mode dispersion in multiple wavelengths of an optical signal. Method 930 begins at step 935 where system 800 receives optical signal 816 having a plurality of constituent wavelengths. System 800 separates optical signal 816 into a plurality of individual wavelength signals at step 940. This may include, for example, wavelength division demultiplexer 802 receiving optical signal 816 and separating optical signal 816 into a plurality of wavelength signals 806a-806n. System 800 communicates at least some of the wavelengths 806 to array 810 of polarization controllers at step 945. This step may also include, for example, diverting one or more wavelengths 806 to a bypass path 823 where those wavelengths 806 are not to be processed by system polarization controllers 810. Each polarization controller of array 810 separates its associated wavelength 806 into a first and a second principal mode of polarization at step 950. This may include, for example, polarization beam splitter 818 receiving one or more wavelengths 806 and separating those wavelengths into their principal modes of polarization. Each polarization controller of array 810 next introduces phase shift between the first and second modes of polarization of each wavelength at step 955. This may include, for example, introducing at least three stages of phase shift between the first and second modes of polarization to align each of the first and second modes with a principal axis of a fixed delay element. Alternatively, this may include introducing at least two stages of phase shift between the first and second modes of polarization to align each of the first and second modes with a principal axis of a variable delay line. In addition, polarization converters 635 and 637 could operate to flip polarizations of one of the signal copies, to facilitate processing of, for example, eigen modes, and to reduce polarization dependent losses. Polarization controllers of array 810 communicate phase shifted principal modes of polarization for transmission through delay element 812 at step 960. This may include, for example, multiplexing the plurality of wavelength signals 806 into a single optical signal fed to a common delay element 812. Alternatively, this may include communicating each phase shifted wavelength signal 806 to a separate delay element 812. Communicating principal modes of polarization through delay element 812 may further comprise determining a control signal based at least in part on an output from delay element 812, and altering the phase shift introduced in array of polarization controllers 810 based on the control signal. In a particular example, optical output 817 may be used as an input to one or more detectors 823, which convert optical signals 817 to electrical signals fed to control array 814. Control array 814, in that embodiment, may comprise electronic circuitry operable to generate electrical control signals 821 to control the amount of phase shift introduced into each wavelength 806. Although array 810 of polarization controllers has been described as being useful in mitigating polarization mode dispersion, a similar array could be equally applicable to other situations in which it is useful to control polarization of multiple wavelength signals. For example, array 810 is equally suitable for use in conjunction with polarization sensitive optical components, polarization multiplexed lightwave transmission systems, and/or coherent communication systems. FIG. 12 is a block diagram showing an exemplary embodiment of a polarization multiplexing system 1800. To meet the ever increasing bandwidth demands of current and future communication systems, optical communication systems often communicate information using multiple wavelengths multiplexed into one or several optical signals. Current filter technology often becomes a limiting factor in the number of optical wavelengths that can be communicated in any given signal. For example, a filter at the receiving end of the transmission system should be capable of at least substantially isolating each wavelength carrying information from its neighboring wavelengths. Current filter technology often limits the density of wavelengths that can be packed into any given signal. One way of increasing the density of wave division multiplexed signals is to alternately polarize neighboring wavelengths so that each wavelength is polarized orthogonally to its neighboring wavelength. A polarization controller can then be used to aid in the filtering at the receiving end of the transmission line to isolate each wavelength from its neighboring wavelengths. In this way, polarization controllers can be used to increase the spectral efficiency of the communication system. System 1800 shown in FIG. 12 provides another example of an application for an array of polarization controllers useful in controlling the polarization of individual wavelength signals of a wavelength division multiplexed signal. System 1800 includes a first source bank of transmitters 1802 and a second source bank of transmitters 1804. First and second banks of transmitters may comprise any devices operable to generate optical signals having different wavelengths. In this example, first source bank 1802 generates odd wavelengths Lamda1-Lamdan, while second source bank 1804 generates even wavelengths Lamda2 through Lamdan+1. In this example, Lamda2 has neighboring wavelengths Lamda1 and Lamda3, and Lamda4 has neighboring wavelengths Lamda3 and Lamda5. First and second source banks 802 and 804 generate neighboring wavelength signals to those generated by the other source bank. Wavelength division multiplexers 806 and 808 are coupled to first source bank 802 and second source bank 804, respectively. Wavelength division multiplexers 1806 and 1808 each multiplex the individual wavelength signals received into a multiple wavelength signal 1812 and 1814, respectively. System 1800 also includes a polarization beam splitter 1816, which receives multiple wavelength signals 1812 and 1814, and orthogonally polarizes those signals for transmission over the principle modes of polarization of an optical communication link 1820. Optical communication link 1820 may comprise a number of lengths of optical fiber, and may include one or more amplifier stages 1822a-1822n as pre-amplifiers, post-amplifiers, and/or inline amplifiers to communication link 1820. System 1800 further includes a wave division demultiplexer 1824 coupled to optical communication link 1820. Wave division demultiplexer 1824 receives multiple wavelength signals 1812 and 1814 communicated over the principle modes of polarization of communication link 1820, and separates the individual wavelength signals. In a particular embodiment, System 1800 may include filters 1826a-1826n. Filters 1826 operate to at least substantially isolate the desired wavelength signal from its neighboring wavelength signals. System 1800 also includes an array of polarization controllers 1810. Each polarization controller of array 1810 operates to provide any necessary adjustment to the state of polarization of the incoming signal wavelength to facilitate a polarization selection element separating the neighboring orthogonally polarized wavelengths. In a particular embodiment, array 1810 is similar in structure and function to array 810 described in FIG. 10b. Each polarization controller of array 1810 comprises a plurality of phase shift stages, where at least one of the phase shift stages shares a beam splitter with another of the phase shift stages, such as in polarization controller 610a shown in FIG. 7b. In one particular embodiment, each polarization controller of array 1810 may comprise three phase shift stages, where all phase shift stages share a common beam splitter, such as in polarization controller 610b shown in FIG. 7c. In one particular example, each of the phase shift stages may, for example, include MEMS-based devices, such as those shown in FIGS. 3a-3c, operable to undergo a substantially piston-like motion to introduce a phase shift between copies of the optical signal being phase shifted. Each polarization controller of array 1810 operates to control polarization of one wavelength signal. By implementing an array of polarization controllers, such as shown in FIG. 10b, the invention facilitates processing of densely packed wavelengths at a small incremental cost over the cost of processing a single wavelength. In addition, system 1800 includes a plurality of polarization selection elements 1828a-1828n. In a particular embodiment, each polarization selection element may comprise, for example, a polarization beam splitter or a polarizer. Polarization selection elements 1828 operate to separate the desired signal wavelength from its orthogonally polarized neighboring wavelengths. System 1800 also includes an array 1830 of detectors. Array of detectors 1830 operates to receive optical signals from polarization selection elements 1828 and to form electrical signals 1834a-1834n, which can be fed to array 1832 of control circuitry. Control circuitry array 1832 may comprise, for example, electronic control circuitry operable to receive feedback signals from polarization selection elements 1428 and to generate control signals 1836a-1836n operable to effect an adjustment of polarization controllers 1810. Receivers 1840a-1840n receive individual wavelength signals from polarization selection elements 1828. In operation, system 1810 generates a plurality of neighboring wavelength signals at one or more source banks 1802, 1804, and communicates those signals to two or more wavelength division multiplexers 1806, 1808. Each wavelength division multiplexer 1806, 1808 receives a plurality of wavelength signals and multiplexes those signals into a multiple wavelength optical signal 1812, 1814, respectively. Polarization beam splitter 1816 receives the multiple wavelength optical signals and communicates each signal along a separate principle mode of polarization of an optical fiber 1820. Wavelength division demultiplexer 1824 receives the multiple wavelength signals and separates the individual wavelength signals therefrom. Each polarization controller of array 1810 of polarization controllers receives one of the wavelength signals and adjusts the state of polarization of that wavelength signal to assist in separating that wavelength signal from its neighboring wavelength signals. Filters 1826 and polarization selection elements 1828 at least substantially isolate the individual wavelength signal from any remnants of neighboring wavelength signals, and communicate the individual wavelength signals to receivers 1840. Control array 1832 receives input from polarization selection elements 1828 and generates control signals 1836, which are communicated to polarization controllers of array 1810. These control signals facilitate adjustment of the state of polarization of the incoming wavelength signals to ensure that those signals can be identified distinctly from neighboring wavelength signals. FIG. 13 is a block diagram of an exemplary system 1900 operable to facilitate coherent optical communication. Coherent optical communication typically involves combining an optical signal carrying desired information (an incident signal) with a higher power signal from a local oscillator to create a cross product of the two signals, which is of higher power than the incident signal. By substantially matching the phases of the incident signal with the local oscillator signal, the power of the cross product can be maximized and made significantly larger in magnitude than the incident signal. The cross product portion of the signal is more easily detectable than the incident signal, thus increasing the sensitivity of the optical system and increasing the system's tolerance to noise. The equation below mathematically illustrates the operation of a coherent optical system, such as system 1900. Iph=R[Pinc+Ploc+2(PincPloc)1/2 cos(winct−wloct)] In this equation, Iph is the intensity of the combined signal received at the photo-detector; R is the responsibility of the photo-detector; Pinc is the power of the incident signal; and Ploc is the power of the local oscillator signal. Because the local oscillator signal is known, it can easily be filtered from the output signal. By using a local oscillator signal having a power that is significantly larger than the power of the incoming signal, the cross product term of this equation—assuming the incident signal and local oscillator signal have substantially equal polarizations—will overwhelm the power of the incident signal, such that the incident signal can be ignored compared to the cross product. Because the polarization of the incident signal can vary over time, it is desirable to implement a polarization controller to ensure that the incident signal is not orthogonally polarized to the local oscillator signal. Thus, coherent optical communication systems provide another application for polarization controllers. System 1900 shown in FIG. 13 illustrates a generic example of a system for providing coherent optical communication. This example shows an embodiment of a system operable to facilitate coherent optical communication of multiple wavelength signals 1902a-1902n (Lamda1-Lamdan) System 1900 includes an optical mixer 1906 for each wavelength signal 1902a-1902n. Each optical mixer receives an incident wavelength signal 1902 from a wavelength division demultiplexer 1903, and a local oscillator signal 1904 from a local oscillator 1912. Optical mixers 1906 combine incident wavelength signals 1902 with local oscillator signals 1904, and communicate the combined signal to a photo-detector 1908. Local oscillators 1912 reside in feedback loops 1920 between photo-detectors 1908 and optical mixers 1906. Coherent system 1900 may comprise a homodyne or a heterodyne system. In a homodyne system, the frequencies of the incident signal and the local oscillator signal are approximately equal. In that case, the output of photo-detector 1908 carries the phase difference information of the incident signal and the local oscillator signal. Where coherent system 1900 comprises a homodyne system, local oscillator may be preceded by, for example a loop filter operable to generate an output that drives the local oscillator. In addition, these systems may implement an isolator downstream from the local oscillator to ensure that optical signals are not fed back to the local oscillator. Heterodyne systems are those in which the frequency of the incident signal and the local oscillator signal differ by a frequency generally referred to as the “intermediate frequency.” Heterodyne systems may implement, for example, an intermediate frequency filter between the photo-detector and the local oscillator. The output of the intermediate frequency filter is used to drive an automatic frequency controller coupled between the intermediate frequency filter and the local oscillator. The automatic frequency controller generates an output that is proportional to the difference of the frequency of the intermediate frequency filter output and a desired intermediate frequency value. This signal can be used to maintain the frequency difference between the local oscillator output and the received signal. To help ensure that the incident wavelength signals 1902 and the local oscillator signals 1904 are not orthogonally polarized, system 1900 includes at least one polarization controller for each wavelength signal 1902 being processed. In the illustrated embodiment, an array 1910 of polarization controllers may reside within feedback loop 1920 to adjust the state of polarization of the local oscillator signals 1904 relative to the incident wavelength signals 1902. Alternatively, or in addition, an array 1910 of polarization controllers could reside in line with incident wavelength signals 1902, to facilitate adjustment of the state of polarization of those signals relative to the local oscillator signals 1904. In operation, system 1900 receives incident optical wavelength signals at optical mixers 1906, and combines those signals with optical signals 1904 generated by local oscillators 1912. Optical mixers 1906 communicate combined signals to photo-detectors 1908, which generate electrical equivalents of the optical signals received. A control signal derived from the outputs from photo-detectors 1908 is communicated through feedback loops 1920 to local oscillators 1912 and/or control circuitry coupled thereto. Local oscillators 1912 generate local oscillator signals 1904 in response to the outputs of photo-detectors 1908. In a particular embodiment, array 1910 of polarization controllers is coupled to local oscillators 1912. Each polarization controller of array 1910 includes, or is coupled to control circuitry operable to determine an adjustment needed to the state of polarization of the local oscillator signal 1904 to ensure that incident wavelength signal 1902 is not polarized orthogonally to local oscillator signal 1904. Polarization controllers of array 1910 can then adjust the state of polarization of the local oscillator signals 1904 to more closely align with the state of polarization of the corresponding incident wavelength signals 1902. As discussed above, array 1910 could alternatively, or in addition reside in line with incident wavelength signals 1902 and operate to adjust the state of polarization of those signals. Each array of polarization controllers could be similar in structure and function to array 810 shown in FIG. 10b. In that embodiment, each polarization controller of array 1910 comprises a plurality of phase shift stages, where at least one of the phase shift stages shares a beam splitter with another of the phase shift stages, such as in polarization controller 610a shown in FIG. 7b. In one particular embodiment, each polarization controller of array 1810 may comprise three phase shift stages, where all phase shift stages share a common beam splitter, such as in polarization controller 610b shown in FIG. 7c. System 1900 may be particular well suited to this type of polarization controller, since the state of polarization of the local oscillator is known. In one particular example, each of the phase shift stages may, for example, include MEMS-based devices, such as those shown in FIGS. 3a-3c, operable to undergo a substantially piston-like motion to introduce a phase shift between copies of the optical signal being phase shifted. By implementing an array of polarization controllers, such as shown in FIG. 10b, the invention facilitates processing of multiple wavelengths at a small incremental cost over the cost of processing a single wavelength. V. Gain Equalization in Multiple-Wavelength Optical Signals FIG. 14a is a block diagram of an exemplary embodiment of a multiple channel communication system 1000 having gain equalization capabilities. Existing systems have used the conventional (“C”) band of wavelengths to communicate optical signals. With the increasing demand for bandwidth, the capacity of communication systems is being expanded by the addition of new communication bands. System 1000 utilizes not only the C-band 1012 of wavelengths, but also the long wavelength (“L”) band 1024 and the short wavelength (“S”) band 1026. In this embodiment, each band 1012-1016 is approximately 40 nanometers wide. Other bandwidths could be utilized consistent with the invention. System 1000 includes an optical fiber 1010 operable to communicate a plurality of wavelength bands 1012, 1014, and 1016. In the illustrated embodiment, each band 1012-1016 is amplified using one of optical amplifiers 1022-1026, respectively. Optical amplifiers 1022-1026 may comprise, for example, thulium-doped amplifiers, Raman amplifiers, and/or rare-earth doped amplifiers, such as erbium-doped amplifiers. As additional bands are added to a communication system, the net power of the fiber is increased. The invention recognizes that when multiple bands of wavelength are communicated using a single system, longer wavelength signals tend to rob energy from shorter wavelength signals. As a consequence, it is desirable to introduce additional attenuation for longer wavelength signals to compensate for the introduced gain tilt. System 1000 addresses this need by including a gain equalizer 1030, which comprises a device operable to provide variable attenuation to one or more selected wavelengths. In a particular embodiment, a single gain equalizer 1030 is coupled to the outputs of a plurality of amplifiers 1012-1016 in parallel. System 1000 provides an advantage of compensating for gain tilt in a multiple channel system, while maintaining an acceptable signal to noise ratio. By coupling gain equalizer 1030 to the output side of amplifiers 1012-1016, system 1000 avoids attenuating the inputs to amplifiers 1012-1016, which would degrade the signal to noise ratio. In operation, system 1000 receives optical signal 1010 comprising a plurality of wavelength bands 1012-1016. Each of wavelength bands 1012-1016 is passed through a respective optical amplifier 1022-1026, where the optical signals are amplified. Gain equalizer 1030 receives amplified optical signals from amplifiers 1022-1026, and attenuates the signals on a per wavelength basis. In a particular embodiment, gain equalizer 1030 attenuates longer wavelength signals more than shorter wavelength signals to adjust for a gain tilt caused by the longer wavelength signals robbing energy from shorter wavelength signals. FIG. 14b is a block diagram of another exemplary embodiment of a multi-channel communication system 1100 having gain equalization capabilities. System 1100 includes an optical fiber 1110 operable to communicate a plurality of wavelength bands 1112, 1114, and 1116. In the illustrated embodiment, each band 1112-1116 is amplified using one of multiple stage optical amplifiers 1122-1126, respectively. Each optical amplifier 1122-1126 comprises a plurality of stages; in this example two stages. Each amplifier 1122-1126 may comprise, for example, thulium-doped amplifiers, Raman amplifiers, and/or rare-earth doped amplifiers, such as erbium-doped amplifiers. In the illustrated embodiment, system 1100 includes gain amplifiers 1030a-1030c coupled intermediate two stages of each of the multi-stage amplifiers 1022-1026. Implementing a gain equalizer for each of the bands 1112 provides an advantage of facilitating optimization of each gain equalizer for a more narrow range of wavelengths. Moreover, coupling gain equalizers between stages of the multi-stage amplifiers provides an advantage of maintaining an acceptable optical signal-to-noise ratio, while reducing the risk of saturating optical amplifiers. FIG. 14c is a block diagram of one example of a gain equalizer 1200 suitable for use in a single band communication system or a multiple band communication system. In this embodiment, gain equalizer 1200 comprises a phase-shift based gain equalizer operable to provide variable gain or attenuation on a per-wavelength basis by introducing interference between two instances of the optical signal. Gain equalizer 1200 includes a wavelength demultiplexer 1280 operable to receive optical signal 1260 and to separate optical signal 1260 into a plurality of wavelengths 1260a-1260n. Gain equalizer 1200 further includes a wavelength multiplexer 1290 operable to receive processed versions of wavelengths 1260a-n and to multiplex those wavelengths into one or more optical output signals 1272. In some cases, optical input signal 1260 may comprise wavelengths that need not be processed by gain equalizer 1200. In particular embodiments, gain equalizer 1200 includes a bypass 1275 coupled between demultiplexer 1280 and multiplexer 1290. Bypass 1275 facilitates communication of selected wavelengths between demultiplexer 1280 and multiplexer 1290 without the need to process those signals. Gain equalizer 1200, therefore, provides an advantage in systems, such as metro communication systems, which may use multiple wavelengths, but not require processing of all wavelengths all of the time. In this example, gain equalizer 1200 comprises a plurality of phase shift stages, each operable to receive one wavelength 1260 and to introduce attenuation or gain into that wavelength depending on a phase shift operating on that signal 1260. Although the phase shift stages shown in FIG. 14c have a similar configuration to those shown in FIG. 2a, other configurations could be implemented, such as those shown in FIGS. 1c-1d. In this example, each phase shift stage receives from a first beam splitter 1220a a first copy 1262 and a second copy 1264 of its associated wavelength 1260. Each phase shift stage includes at least a first mirror 1230 and a second mirror 1240, operable to receive the first and second signal copies 1262 and 1264, respectively. At least one of first and second mirrors 1230 and 1240 comprises a moveable mirror operable to change its position relative to first beam splitter 1220 to create a change in the length of the signal path traveled by first signal copy 1262 relative to the length of the signal path traveled by second signal copy 1264. This change in signal path length corresponds to a phase shift between the two signal copies, which results in an interference when the signal copies are combined at a second beam splitter 1250. System 1200 may implement any moveable mirror structure, such as one of the moveable mirror structures described with respect to FIGS. 3a-3c. By controlling the amount and direction that each mirror 1230 and/or 1240 is moved, system 1200 facilitates variable gain or attenuation of each wavelength 1260a-1260n of signal 1260. Using micro-electro-optic system (MEMS) based mirrors, such as those described with respect to FIGS. 3a-3c, provides an advantage of facilitating large scale replication of each phase shift stage. For example, each plurality of first mirrors 1230 could be simultaneously formed on a single semiconductor substrate 1295. Likewise, each plurality of second mirrors 1240 could be simultaneously formed on a single semiconductor substrate. One aspect of the invention, therefore, facilitates construction of gain equalizers capable of processing numerous wavelengths for a small incremental cost over a single stage of attenuators. This aspect of the invention provides significant cost savings in processing signals carrying information on multiple channels or wavelengths. FIG. 15 is a flowchart showing one example of a method 1300 of facilitating gain equalization of an optical signal having a plurality of wavelengths. The method 1300 begins at step 1310 where gain equalizer 1200 receives optical signal 1260 and separates wavelengths 1260a-1260n at step 1320. This may include, for example, demultiplexing input signal 1260 into its constituent wavelengths. Gain equalizer 1200 may bypass wavelengths that do not need to be processed by communicating those wavelengths over bypass 1275. Other wavelengths are communicated to one or more first beam splitters 1220 of each attenuator of equalizer 1200 at step 1330. Beam splitters 1220 of each attenuator communicate a first copy of the input wavelength 1262 toward first mirrors 1230 at step 1350, and communicate a second copy 1264 toward second mirrors 1240. In this example, at least one of first mirror 1230 and second mirror 1240 comprises a MEMS device having a moveable mirror layer operable to move in an at least substantially piston-like motion relative to a semiconductor substrate. One or more MEMS devices 1230 and/or 1240 receive control signals at step 1360 causing their respective moveable mirror layers to undergo an at least substantially piston-like movement, changing the moveable mirror layer's location with respect to beam splitter 1220. First and second mirrors 1230 and 1240 reflect wavelength signal copies 1262 and 1264 toward an output at step 1370. The output may comprise, for example, beam splitter 1250. In other embodiments, beam splitter 1220 may comprise the input and the output to the attenuator. In any case, components of the wavelength signal copies are combined at step 1380 to generate an output wavelength signal that varies in amplitude from the input wavelength signal 1260 due to a phase shift caused by the piston-like movement of one or more moveable mirror layers of mirrors 1230 and/or 1240. VI. Optical Add/Drop Multiplexing FIG. 16a is a block diagram showing one embodiment of an exemplary system 1400 operable to perform wave division add/drop multiplexing. System 1400 includes a wave division demultiplexer 1410 operable to receive an optical signal 1460 and to separate optical signal 1460 into a plurality of wavelengths 1460a-1460n. System 1400 further includes a wavelength multiplexer 1490 operable to receive processed versions of wavelengths 1460a-n and to multiplex those wavelengths into one or more optical output signals 1472. System 1400 further comprises an array 1445 of MEMS-based optical add/drop multiplexers, each operable to facilitate add/drop multiplexing of one of wavelengths 1460a-n. In a particular embodiment, MEMS array 1445 may comprise an array of MEMS having moveable mirror structures operable to be displaced in an at least substantially piston-like motion to create an interference between two substantial copies of the wavelength signal. Implementing array 1445 using MEMS-based arrays facilitates wave-division add/drop multiplexing on any number of wavelengths 1460a-n at a small incremental cost over facilitating add/drop multiplexing for a single wavelength signal. As a result, system 1400 provides a cost effective mechanism for wave-division add/drop multiplexing large numbers of wavelengths. In some cases, optical input signal 1460 may comprise wavelengths that need not be processed by array 1445. In particular embodiments, system 1400 includes a bypass 1475 coupled between demultiplexer 1410 and multiplexer 1490. Bypass 1475 facilitates communication of selected wavelengths between demultiplexer 1410 and multiplexer 1490 without the need to process those signals. System 1400, therefore, provides an advantage in systems, such as metro communication systems, which may use multiple wavelengths, but not require processing of all wavelengths all of the time. In operation, system 1400 receives input signal 1460 and demultiplexes that signal into a plurality of wavelength signals 1460a-1460n. Some of wavelengths 1460a-n may be routed over bypass 1475, while others are directed toward array 1445 of MEMS-based add/drop multiplexers. MEMS-based add/drop multiplexers receive wavelengths 1460a-n and may drop the received wavelength in favor of an added wavelength signal to replace the dropped wavelength. Processed wavelengths 1460a-n and bypassed wavelengths 1460a-n are then combined at wavelength division multiplexer 1490 and communicated as output signal 1472. FIG. 16b is a block diagram showing one particular example of a MEMS-based add/drop multiplexer (ADM) 1405. In the illustrated embodiment, ADM 1405 is similar in structure and operation to two-by-two switch 310 shown in FIG. 5b. The invention is equally applicable to other configurations, such as that shown in FIG. 1c. ADM 1405 includes a first beam splitter 1420, which receives both an input optical signal 1461, as well as an added signal 1465. Beam splitter 1420 generates a first copy and a second copy of both input signal 1461 and added signal 1465. ADM 1405 communicates the first copies along a first signal path 1462 and the second copies along a second signal path 1464. A first mirror 1430 receives first signal copies from signal path 1462 and reflects those signal copies toward an output, in this case second beam splitter 1450. A second mirror 1440 receives second signal copies from signal path 1464 and reflects those signal copies toward an output, in this case second beam splitter 1450. The reflected first and second signal copies are combined at the output, in this case a second beam splitter 1450. By changing the position of one or more of the mirrors 1430 and 1440 residing between the input and the output of the phase shifter, a phase shift is introduced between the first and second signal copies. By introducing a particular phase shift, ADM 1405 can facilitate pass through operation, or add/drop operation. In a pass through mode of operation, ADM 1405 operates to communicate input signal 1461 to an output 1472 for further transmission. In an add/drop mode, ADM 1405 operates to drop input signal 1461 at drop output 1474, and to communicate added signal 1465 to output 1472 for transmission in lieu of input signal 1461. Some or all of mirrors 1430 and 1440 can comprise moveable mirror structures operable to vary their positions to result in a change in the length of the path of and phase difference between first and/or second signal copies communicated along signal paths 1462 and 1464. For example, the intensity of transmitted output signal 1472 is proportional to cos2 of one half of the phase difference between first and second signal copies of the input signal 1461, and the sin2 of one half of the phase difference between the first and second copies of added signal 1465. Likewise, the intensity of dropped output signal 1474 is proportional to sin2 of one half of the phase difference between first and second signal copies of the input signal 1461, and the cos2 of one half of the phase difference between the first and second copies of added signal 1465. Therefore, when there is no phase difference (or a phase difference of 2Pi, or an even multiple thereof) input signal 1461 is communicated as transmitted output 1472. Where there is a Pi (or odd multiple of Pi) phase difference, input signal 1461 is dropped at drop output 1474, and added signal 1465 is communicated over transmitted output 1472. By varying the positions of mirrors 1430 and/or 1440 to switch between a phase difference of, for example, approximately zero and Pi, ADM 1405 facilitates either passing input signal 1461 through to transmitted output 1472, or dropping input signal 1461 in favor of added signal 1465 for transmission over transmitted output 1472. Although the illustrated embodiment shows just one MEMs device in each arm of the phase shifter, additional MEMs devices could be implemented without departing from the invention. Furthermore, although MEMs devices 1430 and 1440 are shown at an approximately forty-five degree grazing angle, these devices could be located at other grazing angles to the signals being reflected. FIG. 16c is a block diagram showing another example of a MEMS-based add/drop multiplexer (ADM) 1500. In the illustrated embodiment, ADM 1500 includes a drop phase shift stage 1505 that is separate from an add phase shift stage 1510. This embodiment may be particularly useful, for example, where it is desired to reduce or eliminate interference between input and added signals that would otherwise traverse the same phase shift stage. In this example, drop phase shift stage 1505 receives an optical input signal 1560 and operates to either communicate signal 1560 to add phase shift stage 1510, or to drop signal 1560 from the circuit. Add phase shift stage 1510 operates to either input signal 1560 from drop phase shift stage 1505 or to receive an added optical signal 1565, and to communicate the received signal to output 1572. In this example, add phase shift stage 1505 includes a beam splitter 1520a, which receives input signal 1560 and sends a first signal copy 1562a toward a first mirror 1530a, and a second signal copy 1564a toward a second mirror 1540a. First and second mirrors 1530a and 1540a reflect first and second signal copies 1562a and 1564a toward a second beam splitter 1550a. In this embodiment, second beam splitter 1550a combines components of the reflected first and second signal copies 1562a and 1564a to form output signals 1572a and 1574a. Add phase stage 1510 is similar in structure and function to drop phase stage 1505. Add phase stage 1510 includes a beam splitter 1520b, which receives either signal 1574a being passed through from add phase stage 1505, or an added signal 1565. Beam splitter 1520b sends a first signal copy 1562b of the signal it receives toward a first mirror 1530b, and a second signal copy 1564b toward a second mirror 1540b. First and second mirrors 1530b and 1540a reflect first and second signal copies 1562b and 1564b toward a second beam splitter 1550b. In this embodiment, second beam splitter 1550b combines components of the reflected first and second signal copies 1562b and 1564b to form output signal 1576. Some or all of mirrors 1530 and 1540 can comprise moveable mirror structures operable to vary their positions to result in a change in the length of the path of and phase difference between first and/or second signal copies 1562 and 1564. By varying the positions of mirrors 1530a and/or 1540a to switch between a phase difference of, for example, approximately zero and Pi, drop phase stage 1505 facilitates switching between passing input signal 1560 though stage 1505 and dropping signal 1560 from stage 1505. Similarly, by varying the positions of mirrors 1530b and/or 1540b to switch between a phase difference of, for example, approximately zero and Pi, drop phase stage 1505 facilitates outputting either pass through signal 1574, or added signal 1565 at output 1576. Although this embodiment shows pass-through operation between stages over output 1574 and drop operation over port 1572, add/drop multiplexer could be reconfigured to communicate pass-through signals from port 1572 to port 1565 and drop signals from port 1574. In that embodiment, signals would pass through from the drop stage to the add stage at port 1572 where mirrors 1530a/1540a are positioned to provide a Pi phase shift, and would be dropped at port 1574 where those mirrors were positioned to provide no phase shift. Likewise, the input signal would pass through add stage to output 1576 where mirrors 1530b/1540b are positioned to create a Pi phase shift, whereas added signal 1565 would pass to output 1576 where those mirrors create no phase shift. In operation, ADM 1500 receives input signal 1560 at beam splitter 1520a and communicates a first signal copy 1562a toward first mirror 1530a and a second signal copy 1564a toward second mirror 1540a. Mirrors 1530a and 1540a reflect first and second signal copies 1562a and 1564a toward beam splitter 1550a, which operates to combine components of those signals to generate an output signal. Depending on the position of mirrors 1530a and/or 1540a, drop phase shift stage 1505 will either pass input signal 1560 toward add phase shift stage 1510, or will drop input signal 1560 at output 1572, sending no signal to add phase shift stage 1510. Add phase shift stage 1510 either receives pass through input signal 1574 from drop phase shift stage 1505, or receives added signal 1565. Mirrors 1530b and/or 1540b are then positioned to pass the received signal to output 1576. For example, in this embodiment if add phase shift stage 1510 receives a pass through signal 1574, mirrors 1530b and/or 1540b are positioned to introduce approximately no phase shift (or a multiple of 2Pi phase shift) between signal copies 1562b and 1564b to result in pass through signal 1574 being communicated through output 1576. On the other hand, if add phase shift stage instead receives added signal 1565, mirrors 1530b and/or 1540b are positioned to introduced an approximately Pi (or odd multiple of PI) phase shift between signal copies 1562b and 1564b to result in added signal 1565 being communicated through output 1576. FIG. 16d is a block diagram showing a plurality of add/drop multiplexers as shown in FIG. 16b arranged to collectively form a wave division add/drop multiplexer 1600. In this example, each ADM of array 1610 is similar to that shown in FIG. 16c. Of course, an array of add/drop multiplexers could likewise be formed from add/drop multiplexers such as those shown in FIG. 16b. In the illustrated embodiment, each drop phase shift stage includes two arms, at least one of which comprises a moveable mirror structure 1630a and/or 1640a. Mirrors 1630a and/or 1640a are operable to move in response to one or more control signals to result in a change in the length of the signal path and, therefore, a phase shift between signal copies communicated through the arms of the drop phase shift stages. Depending on the positions of mirrors 1630a1-n and/or 1640a1-n, wavelength signals 1660a-1660n can be selectively dropped or passed as inputs to the add phase shift stages. Each add phase shift stage includes two arms, at least one of which comprises a moveable mirror structure 1630b and/or 1640b. Mirrors 1630b and/or 1640b are operable to move in response to one or more control signals to result in a change in the length of the signal path and, therefore, a phase shift between signal copies communicated through the arms of the drop phase shift stages. Depending on the positions of mirrors 1630b1-n and/or 1640b1-n, either pass though signals 1674 or added signals 1665 can be selectively communicated to outputs 1676. Although the illustrated embodiment shows just one MEMs device in each arm of each phase shifter stage, additional MEMs devices could be implemented without departing from the invention. Furthermore, although MEMs devices 1630 and 1640 are shown at an approximately forty-five degree grazing angle, these devices could be located at other grazing angles to the signals being reflected. Using micro-electro-optic system (MEMS) based mirrors, such as those described with respect to FIGS. 3a-3c, provides an advantage of facilitating large scale replication of each add/drop stage. For example, each plurality of first mirrors 1530 could be simultaneously formed on a single semiconductor substrate. Likewise, each plurality of second mirrors 1540 could be simultaneously formed on a single semiconductor substrate. One aspect of the invention, therefore, facilitates construction of add/drop multiplexers capable of processing numerous wavelengths for a small incremental cost over a single stage add/drop multiplexer. This aspect of the invention provides significant cost savings in processing signals carrying information on multiple channels or wavelengths. FIG. 17 is a flowchart showing examples of a method 1700 of facilitating optical add/drop multiplexing. Steps 1705 through 1730 describe a method 1702 applicable to both single phase shift solutions as well as embodiments using separate phase shift stages for add and drop operations. In an embodiment using one phase shift stage to facilitate both pass-through operation and add/drop operation, the method 1700 begins at step 1705 where optical add/drop multiplexer (ADM) 1405 receives an optical input signal 1461. This may include, for example, receiving from a wave division multiplexer one wavelength of an optical signal at a beam splitter 1420. This may further include receiving an added signal 1465 at beam splitter 1420. ADM 1405 generates copies of the signals received by beam splitter 1420 at step 1710 and communicates, at step 1715, those copies toward first and second mirrors 1430 and 1440, respectively. Depending on the desired function, ADM 1405 may position one or more of the mirrors to contribute to phase shift between the first and second signal copies. This may include, for example, one or both of mirrors 1430 and 1440 receiving control signals operable to cause a moveable mirror element to move toward an inner conductive layer. Through the use of moving mirror elements, ADM 1405 can introduce a phase shift sufficient to either pass input signal 1461 transmitted output 1472, or to drop input signal 1461 in favor of added signal 1465, which will then be communicated from transmitted output 1472. For example, mirrors 1430 and/or 1440 can introduce no phase shift (or a multiple of 2 Pi) between the signal copies, causing input signal 1461 to pass toward transmitted output 1472 at step 1735. Alternatively, mirrors 1430 and/or 1440 can introduce a Pi (or odd multiple of Pi) phase shift at step 1725 to cause input signal 1461 to be dropped at output 1474. In that case, added signal 1465 is communicated as transmitted output 1472 at step 1730. Of course, the locations of input for input signal 1461 and added signal 1465 could be flipped without departing from the invention. In that case, a Pi (or odd multiple of Pi) phase difference would cause the input signal 1461 to be communicated at output 1472, while a zero (or 2Pi, or multiple of 2Pi) phase difference would cause added signal 1465 to be communicated as output 1472. Steps 1705 through 1730 are also applicable to an embodiment using separate phase shift stages for the add and drop operations. In that case, the method 1700 begins at step 1705, where optical add/drop multiplexer (ADM) 1500 receives an optical input signal 1560. This may include, for example, receiving from a wave division multiplexer one wavelength of an optical signal at a beam splitter 1520a. ADM 1500 generates copies of that signal at step 1710 and communicates, at step 1715, the copies toward first and second mirrors 1530a and 1540a, respectively. Depending on the desired signal processing function, ADM 1500 may position one or more of the mirrors to contribute to phase shift between the first and second signal copies at step 1720. This may include, for example, one or both of mirrors 1530a and 1540a receiving control signals operable to cause a moveable mirror element to move toward an inner conductive layer. ADM 1500 can introduce a phase shift sufficient to either pass input signal 1560 toward second stage 1510, or to drop input signal 1560 at output 1572, depending on the particular configuration being utilized. In the particular example shown in FIG. 16b, mirrors 1530a and/or 1540a can introduce no phase shift (or a multiple of 2 Pi phase shift) between the signal copies, causing input signal 1560 to pass toward second phase 1510 at step 1735. Alternatively, mirrors 1530a and/or 1540a can introduce a Pi (or odd multiple of Pi) phase shift at step 1725 to cause input signal 1560 to be dropped at output 1572. In that case, an added signal 1565 is input to second stage 1510 at step 1730. Regardless of whether the input signal 1560 is passed to second stage 1510 or whether added signal 1565 is introduced at second stage 1510, beam splitter 1520b of second stage 1510 generates copies of the signal received at step 1740. The signal copies are communicated to first and second mirrors 1530b and 1540b at step 1745. Again depending on the configuration and signal processing desired, ADM 1500 can positions one or more of the mirrors 1530b and/or 1540b to contribute to phase shift between the first and second signal copies. This may include, for example, one or both of mirrors 1530b and 1540b receiving control signals operable to cause a moveable mirror element to move toward an inner conductive layer. ADM 1500 can introduce a phase shift sufficient to either pass input signal 1560 toward output 1576, or to pass added signal 1565 to output 1576. For example, mirrors 1530b and/or 1540b can introduce no phase shift (or a multiple of 2 Pi phase shift) between the signal copies, causing input signal 1560 to pass to output 1576 at step 1765. Alternatively, mirrors 1530b and/or 1540b can introduce Pi (or odd multiple of Pi) phase shift at step 1755 to cause added signal 1565 to be output at step 1760. Of course, the phase shifts discussed herein are for exemplary purposes only. Other configurations could use other phase shift combinations to achieve the desired signal processing consistent with the invention. These steps can be duplicated at each add/drop multiplexer in an array of add/drop multiplexers to facilitate processing of any number of individual wavelength signals. This aspect of the invention provides a significant advantage in providing cost effective signal processing in multiple wavelength systems. Although various aspects of the present invention have been described in several embodiments, a myriad of changes, variations, alterations, transformations, and modifications may be suggested to one skilled in the art, and it is intended that the present invention encompass such changes, variations, alterations, transformations, and modifications as fall within the spirit and scope of the appended claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>As optical systems continue to increase the volume and speed of information communicated, polarization controllers are becoming increasingly important optical networking elements. For example, polarization controllers are essential in polarization multiplexed lightwave transmission systems. These systems can operate in a number of ways. In one embodiment, alternate bits can be polarized orthogonal to one another and combined to create a faster overall transmission rate. In another embodiment, densely packed adjacent wavelengths can be orthogonally polarized to minimize interaction between the adjacent wavelengths. In either case, a polarization controller is used to appropriately align the signals' states of polarization. As another example, polarization controllers can be useful in upgrading the operation of polarization sensitive optical components. Where an optical component's performance changes depending on the state of polarization of the signal it processes, a polarization controller can be used to align the signal's state of polarization with the state that maximizes the device's performance. Polarization controllers also find application in devices used to mitigate polarization mode dispersion arising in optical signals. Most all optical fibers exhibit non-circular—typically elliptical—core shapes, which result in the fiber having two principal axes having different modal indices. The orientation of these axes varies randomly with position and time. Signals polarized parallel to the two principal axes experience differential delay, which—coupled with the random variation in polarization modes—leads to pulse broadening, intersymbol interference, and bit error ratio (BER) impairment. These types of phenomena are typically referred to as polarization mode dispersion. Polarization mode dispersion can limit an optical system's transmission range by 1/R 2 , where R represents the system's channel rate. Many communication systems consider unacceptable any pulse broadening greater than ten percent of the bit period. As a result, it has been estimated that polarization mode dispersion renders over twenty percent of all currently deployed fiber unsuitable for transmission at ten Giga-bits per second, and over 75% of all installed fiber unsuitable for transmission at forty Giga-bits per second. Polarization controllers can be used in polarization mode dispersion compensators, for example, to help align the principal states of polarization with appropriate axes of a polarization delay line. Various techniques have been devised to attempt to control or modify the state of polarization of optical signals. For example, butterfly polarization controllers exist consisting of multiple rings of fiber that are physically rotated with respect to each other. This approach, however, is too slow to be effective for most applications. Another approach is to mechanically squeeze the fiber at strategic locations and times. This technique is also typically to slow to be of practical use. Lithium niobate based polarization controllers have been produced that exhibit acceptable speeds. However, these devices can be prohibitively expensive, even in a single wavelength application. Another approach uses polarization rotators constructed from micro-machined movable mirrors to help rotate the state of polarization of an incoming signal. This approach suffers, however, because it requires either physical rotation of the polarization rotators, or requires insertion of bulk wave plates between each of the polarization rotators. These limitations make it difficult, if not impossible, to package arrays of the polarization controllers, and can result in high fabrication costs. The design and fabrication cost of these devices generally renders them unsuitable for multiple wavelength applications. Another device that is somewhat related to a polarization controller, which is designed for integrated waveguide implementation, uses two phase shift stages coupled to a variable delay line. This approach suffers because requiring a variable delay line typically results in greater expense than a fixed delay element, and generally requires more complex and expensive control circuitry.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention recognizes a need for a method and apparatus operable to economically facilitate control of an optical signal's state of polarization. In accordance with the present invention, an apparatus and method operable to assist in polarization control are provided that substantially reduce or eliminate at least some of the shortcomings associated with prior approaches. In one aspect of the invention, a polarization controller comprises a first polarization beam splitter operable to receive an input optical signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization. The polarization controller further comprises at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In another aspect of the invention, a polarization controller comprises a polarization beam splitter operable to separate an optical signal into a first and a second principal mode of polarization, and at least two stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter comprises a beam splitter that is shared with at least one other of the phase shifters, and at least one of the phase shifters comprises a micro-electro-optic system (MEMS) device comprising a moveable mirror layer operable to receive one of the principal modes of polarization and to change its position to contribute to a relative phase difference between the first and second principal modes. In still another aspect of the invention, a polarization controller comprises at least two stages of phase shifters each operable to receive a first and a second principal mode of polarization of an optical signal, and to introduce a phase shift between the first and second principal modes. At least one phase shifter includes a beam splitter that is shared with at least one other of the phase shifters, and each of the phase shift stages is operable to introduce a phase shift between the first and second principal modes in less than one milli-second. One other aspect of the invention comprises an endlessly rotatable polarization controller including at least two stages of phase shifters each operable to receive a first and a second principal mode of polarization of an optical signal, and to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. Each of the phase shift stages comprises a micro-electro-mechanical system (MEMS) device including a moveable mirror layer operable to change its position to contribute to a relative phase shift between the first and second modes, the moveable mirror layer operable to change positions at a faster rate than a rate of change of the polarization of the optical signal. In another aspect of the invention, a polarization mode dispersion (PMD) compensator comprises a first polarization beam splitter operable to receive an input optical signal and to separate the signal into a first and a second principal mode of polarization and at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter comprises a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters comprising a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter wherein the second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to principal axes of a fixed delay element coupled to the second polarization beam splitter. In yet another aspect of the invention, a PMD compensator comprises a variable delay line and a polarization controller coupled to the variable delay line. The polarization controller is operable to receive an optical signal having an input state of polarization and to align an output state of polarization of the optical signal to the variable delay line. The polarization controller comprises a polarization beam splitter operable to separate the optical signal into a first and a second principal mode of polarization, and at least two stages of phase shifters each operable to introduce a phase shift between the first and second principal modes. At least one phase shifter includes a beam splitter that is shared with at least one other of the phase shifters. At least one of the phase shifters comprises a micro-electro-optic system (MEMS) device comprising a moveable mirror layer operable to receive one of the principal modes of polarization and to change its position to contribute to a relative phase difference between the first and second principal modes. Another aspect of the invention comprises a variable delay line including a first polarization maintaining fiber coupled to a first polarization beam splitter, the first polarization beam splitter operable to receive an input optical signal and to separate the signal into a first and a second principal mode of polarization. The variable delay line further includes at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters comprise a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter, wherein the second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to principal axes of a second polarization maintaining fiber coupled to the second polarization beam splitter. In another aspect of the invention, a system operable to facilitate mitigation of polarization mode dispersion in optical signals carrying multiple wavelengths of light comprises a wavelength division demultiplexer operable to receive the optical signal and to separate the optical signal into a plurality of wavelengths. The system further comprises an array of phase shift based polarization controllers coupled to the wavelength division demultiplexer. Each polarization controller is operable to receive one wavelength and to introduce a phase shift between two principal modes of polarization of the wavelength to align the wavelength with two principal axes of a delay element, the principal axes of the delay element comprising a fast principal axis and a slow principal axis. The delay element is operable to receive the phase shifted wavelengths and to communicate a leading mode of polarization parallel with the slow axis and a lagging mode of polarization parallel with the fast axis. In another aspect of the invention, an optical communication system comprises an optical source operable to communicate an optical signal, an optical receiver operable to receive the optical signal, and a plurality of fiber spans coupling the optical source to the optical receiver. The system further comprises a plurality of in-line optical amplifiers each coupled between two of the plurality of fiber spans, and a polarization mode dispersion (PMD) compensator coupled between the receiver and the in-line optical amplifier closest to the receiver. The system still further includes a margin enhancing element coupled to one of the fiber spans and operable to increase the margin of the optical signal relative to noise associated with the optical signal. In still another aspect of the invention, a system operable to facilitate polarization multiplexing of multiple signal wavelengths comprises a wavelength division demultiplexer operable to receive an optical signal carrying substantially orthogonally polarized neighboring wavelength signals and to substantially separate the neighboring wavelength signals from one another. The system further comprises an array of phase shift based polarization controllers coupled to the wavelength division demultiplexer, each operable to receive one wavelength and adjust the state of polarization of the wavelength to facilitate separation of the wavelength from its neighboring wavelengths. Each of the phase shift-based polarization controllers comprises a first polarization beam splitter operable to receive an input wavelength signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization, and at least three stages of phase shifters. Each phase shifter stage is operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In another aspect of the invention, a system operable to facilitate coherent optical communication comprises a local oscillator operable to generate a local optical signal and an optical mixer operable to receive an incident optical signal and the local optical signal and to combine the incident optical signal with the local optical signal to generate a combined signal. The system further includes a polarization controller operable to receive either the local optical signal or the incident optical signal and to adjust the state of polarization of the received signal to ensure that the received signal is not polarized orthogonally to the other signal when the signals are combined at the optical mixer. The polarization controller comprises a first polarization beam splitter operable to receive an input wavelength signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization and at least three stages of phase shifters. Each phase shifter stage is operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization. In yet another aspect of the invention, a method of controlling the state of polarization of an optical signal comprises receiving an optical signal having an input state of polarization and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization. The method further comprises introducing at least three stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization with a desired output state of polarization. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. According to yet another aspect of the invention, a method of controlling the state of polarization of an optical signal comprises receiving an optical signal having an input state of polarization and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization. The method further comprises introducing at least two stages of phase shift between the first and second modes of polarization to align the first and second modes of polarization with a desired output state of polarization. Each of the at least two stages of phase shift are introduced by one of at least two phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage, at least one phase shift stage comprising a micro-electro-optic system (MEMS) device operable to change its position to alter the phase of the first principal mode relative to the phase of the second principal mode. In another aspect of the invention, a method of mitigating polarization mode dispersion comprises separating an optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further comprises introducing at least three stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal axis of a fixed delay element and the lagging mode with a fast principal axis of the fixed delay element. The method also includes communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. In yet another aspect of the invention, a method of mitigating polarization mode dispersion comprises separating an optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further includes introducing at least two stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal polarization axis of a variable delay element and the lagging mode with a fast principal polarization axis of the variable delay element. In addition, the method includes communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least two stages of phase shift are introduced by one of the at least two phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. At least one phase shift stage comprises a micro-electro-optic system (MEMS) device operable to change its position to alter the phase of the first principal mode relative to the phase of the second principal mode. In still another aspect of the invention, a method of providing variable delay between modes of polarization in an optical signal comprises receiving an optical signal from a first polarization maintaining fiber and separating the optical signal into a first principal mode of polarization and a second principal mode of polarization, one of the first and second modes comprising a leading mode and one of the first and second modes comprising a lagging mode. The method further includes introducing at least three stages of phase shift between the leading and lagging modes of polarization to align the leading mode with a slow principal axis of a second polarization maintaining fiber and the lagging mode with a fast principal axis of the second polarization maintaining fiber. The method also comprises communicating the leading mode parallel to the slow axis and the lagging mode parallel to the fast axis. Each of the at least three stages of phase shift are introduced by one of at least three phase shift stages, at least one phase shift stage sharing a beam splitter with at least one other phase shift stage. In another aspect of the invention, a method of mitigating polarization mode dispersion in multiple wavelengths of an optical signal comprises separating an optical signal into a plurality of wavelengths and communicating at least some of the wavelengths to an array of polarization controllers, each polarization controller operable to receive one wavelength. At each polarization controller, the method comprises separating the wavelength into a first principal mode of polarization and a second principal mode of polarization, introducing phase shift between the first and second modes of polarization to align the principal modes of polarization with principal axes of a delay element, and communicating one principal mode parallel to one principal axis of the delay element and the other principal mode parallel to the other principal axis of the delay element. Depending on the specific features implemented, particular embodiments of the present invention may exhibit some, none, or all of the following technical advantages. One aspect of the present invention provides an effective and cost efficient mechanism for controlling the polarization of one or more optical signals. The invention provides significant advantages over other polarization controller designs, by facilitating alignment of an optical signal's state of polarization without requiring the use of physical rotation of the compensator, physical squeezing of the fiber communication line, the use of expensive lithium niobate waveguide devices, the use of bulk wave plates between stages of phase shifters, or the use of variable delay elements. The novel polarization controller may be implemented, for example, in a PMD compensator, in a polarization multiplexed lightwave transmission system, in a coherent optical communication system, or in conjunction with one or more polarization sensitive optical components. In a particular embodiment where the polarization controller is implemented into a PMD compensator, the controller facilitates mitigation of polarization mode dispersion with either a fixed or a variable delay line, but does not require the use of more expensive variable delay elements. Implementing phase shifter based polarization controllers using MEMs devices that do not require intermediate bulk waveguide devices allows for fabrication of arrays of these devices at an incremental additional cost to fabricating a single compensator. This aspect of the invention provides significant advantages in facilitating rapid, effective, and economical polarization control, particularly in a multiple wavelength environment. Other technical advantages are readily apparent to one of skill in the art from the attached figures, description, and claims.
20041028
20050906
20050428
97199.0
2
JUBA JR, JOHN
APPARATUS AND METHOD FOR CONTROLLING POLARIZATION OF AN OPTICAL SIGNAL
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,977,121
ACCEPTED
Vitamin D deficiencies
Methods for determining the amount of vitamin D compounds in a sample are provided. The methods can employ LC-MS/MS techniques and optionally the use of deuterated internal standards. Methods for diagnosing vitamin D deficiencies are also provided.
1. A method for determining an amount of 25-hydroxyvitamin D2 in a sample, wherein said method comprises using a mass spectrometry technique to determine said amount of 25-hydroxyvitamin D2. 2. The method of claim 1, wherein said mass spectrometry technique comprises a tandem mass spectrometry (MS/MS) technique. 3. The method of claim 1, wherein said mass spectrometry technique comprises an LC-MS/MS technique. 4. The method of claim 3, wherein said LC comprises an on-line extraction of said sample. 5. The method of claim 4, wherein said on-line extraction occurs after said sample has been de-proteinized. 6. The method of claim 3, wherein said LC-MS/MS technique comprises the use of a triple quadrupole instrument in Multiple Reaction Monitoring (MRM), positive-ion mode. 7. The method of claim 6, wherein said LC-MS/MS technique comprises a Q1 scan tuned to select a precursor ion that corresponds to the [M+H+]s of 25-hydroxyvitamin D2. 8. The method of claim 1, wherein said sample is a biological sample. 9. The method of claim 8, wherein said biological sample is a mammalian biological sample. 10. The method of claim 9, wherein said mammalian biological sample is a human biological sample. 11. The method of claim 10, wherein said human biological sample is a blood, urine, lachrymal, plasma, serum, or saliva sample. 12. The method of claim 8, wherein said sample is a food sample. 13. The method of claim 8, wherein said sample is a dietary supplement sample. 14. The method of claim 5, wherein said de-proteinization comprises precipitation of one or more proteins in said sample. 15. The method of claim 14, wherein said one or more proteins are precipitated by treating said sample with one or more reagents selected from the group consisting of acetonitrile, NaOH, and KOH. 16. The method of claim 3, wherein said LC-MS/MS technique comprises atmospheric pressure chemical ionization. 17. The method of claim 7, wherein said method comprises determining an amount of 25-hydroxyvitamin D3 in said sample using said LC-MS/MS mass spectrometry technique. 18. The method of claim 17, wherein said LC-MS/MS technique comprises a Q1 scan tuned to select, independently, precursor ions that correspond to the [M+H+] of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. 19. The method of claim 18, wherein said LC-MS/MS technique comprises monitoring MRM precursor-product ion pair transitions having m/z values of 401.4/383.3 for 25-hydroxyvitamin D3 and 413.0/395.3 for 25-hydroxyvitamin D2. 20. The method of claim 17, wherein said method comprises determining said amounts of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 using a standard calibration curve. 21. The method of claim 20, wherein said internal standard is d6-25-hydroxyvitamin D3. 22. The method of claim 21, wherein said d6-25-hydroxyvitamin D3 internal standard has a MRM parent-daughter ion pair transition m/z values of 407.4/389.5. 23. A method for determining whether or not a mammal has a vitamin D deficiency, said method comprising determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from said mammal, wherein a total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of <25 ng/mL indicates that said mammal has said vitamin D deficiency. 24. A method for determining whether or not a mammal has hypervitaminosis D, said method comprising determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from said mammal, wherein a total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of >80 ng/mL indicates said mammal has said hypervitaminosis D. 25. A method for monitoring vitamin D replacement therapy in a mammal, said method comprising determining the amount of 25-hydroxyvitamin D2 in a sample from said mammal.
TECHNICAL FIELD This document relates to methods and materials for detecting vitamin D compounds (e.g., 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3) in a sample. BACKGROUND Vitamin D compounds are derived from dietary ergocalciferol (from plants, vitamin D2) or cholecalciferol (from animals, vitamin D3), or by conversion of 7-dihydrocholesterol to vitamin D3 in the skin upon UV-exposure. Vitamin D2 and D3 are subsequently 25-hydroxylated in the liver to form 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3). 25OHD2 and 25OHD3 represent the main body reservoir and transport form of vitamin D; they are stored in adipose tissue or are tightly bound by a transport protein while in circulation. The exact levels of 25OHD2 and 25OHD3 that reflect optimal body stores are uncertain. Mild to modest deficiency can be associated with osteoporosis or secondary hyperparathyroidism. Severe deficiency may lead to failure to mineralize newly formed osteoid in bone, resulting in rickets in children and osteomalacia in adults. Current immunoassay-based analytical methods for detecting 25OHD2 and 25OHD3 cannot selectively differentiate between 25OHD2 and 25OHD3 and can under-detect the amount of 25-OHD2. HPLC methods can use labor intensive extraction processes followed by long chromatographic run times. SUMMARY This document provides materials and methods that can be used to measure 25OHD2 and 25OHD3 levels in a sample. For example, 25OHD2 and 25OHD3 can be selectively detected and quantitated using mass spectrometric techniques. The materials and methods are useful to aid in the diagnosis of vitamin D deficiencies or hypervitaminosis D, and to monitor vitamin D replacement therapies. In one embodiment, this document provides a LC-MS/MS method employing on-line sample extraction to allow for the sensitive, accurate, and precise quantification of 25OHD2, 25OHD3, or both, in samples such as serum and plasma. Unlike manual immunoassays, the methods provided herein can be highly automated, can separately measure 25OHD2 and 25OHD3, and can use an internal standard to monitor recovery of the sample extraction process. In addition, the methods can provide superior analytical performance as compared to immunoassays. In general, one embodiment provides a method for determining an amount of 25-hydroxyvitamin D2 in a sample. The method includes using a mass spectrometry technique to determine the amount of 25-hydroxyvitamin D2. The MS technique can employ atmospheric pressure chemical ionization. The mass spectrometry technique can be a tandem mass spectrometry (MS/MS) technique, or a LC-MS/MS technique. The LC can include an on-line extraction of the sample. The LC-MS/MS technique can include the use of a triple quadrupole instrument in Multiple Reaction Monitoring (MRM), positive-ion mode, and can include a Q1 scan tuned to select a precursor ion that corresponds to the [M+H+]s of 25-hydroxyvitamin D2. In another embodiment, the amount of 25-hydroxyvitamin D3 can also be determined in addition to the amount of 25-hydroxyvitamin D2. In this embodiment, an LC-MS/MS technique can include a Q1 scan tuned to select, independently, precursor ions that correspond to the [M+H+] of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. An LC-MS/MS technique can include monitoring MRM precursor-product ion pair transitions having m/z values of 401.4/383.3 for 25-hydroxyvitamin D3 and 413.0/395.3 for 25-hydroxyvitamin D2. An internal standard, such as a deuterated 25-hydroxyvitamin D2 or D3, can be employed in any of the methods described herein. In certain cases, the internal standard is d6-25-hydroxyvitamin D3 having a MRM parent-daughter ion pair transition m/z value of 407.4/389.5. A sample can be a biological or non-biological sample. A sample can be a human biological sample, such as a blood, urine, lachrymal, plasma, serum, or saliva sample. In another embodiment, a method for determining whether or not a mammal has a vitamin D deficiency is provided. The method includes determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from the mammal. Any of the methods described herein can be used to determine these amounts. A total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of <25 ng/mL indicates that the mammal has the vitamin D deficiency. In yet another embodiment, a method for determining whether or not a mammal has hypervitaminosis D is provided. The method includes determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from the mammal, where a total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of >80 ng/mL indicates the mammal has hypervitaminosis D. A method for monitoring vitamin D replacement therapy in a mammal is also provided. The method includes determining the amount of 25-hydroxyvitamin D2 in a sample from the mammal using one of the methods described herein. A lower concentration of 25-hydroxyvitamin D2 relative to the vitamin D replacement therapy is indicative of one or more of the following: non-compliance with the replacement therapy, malabsorption of vitamin D supplements, and resistance to 25-hydroxyvitamin D2. Other features and advantages of the invention will be apparent from the following detailed description, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention pertains. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The disclosed materials, methods, and examples are illustrative only and not intended to be limiting. Skilled artisans will appreciate that methods and materials similar or equivalent to those described herein can be used to practice the invention. DESCRIPTION OF DRAWINGS FIG. 1 is a Q1 scan of 25OHD2 and 25OHD3. FIG. 2A is a 25OHD2 product ion scan. FIG. 2B is a 25OHD3 product ion scan. DETAILED DESCRIPTION Materials and methods for determining the amount of 25OHD2 and/or 25OHD3 in a sample, such as a sample from a patient in a clinical setting, are provided. The methods can be highly automated to allow for the efficient analysis of a number of samples in minimal time. In addition, the methods can be highly sensitive and can allow for the accurate differentiation of 25OHD2 and 25OHD3, thus avoiding the under-detection of one or both of the analytes by other methods. On-line extraction methods can be employed, further minimizing sample handling and optimizing run time. A method described herein can include the use of mass spectrometry techniques, such as tandem mass spectrometry (MS/MS) techniques. In certain cases, a liquid chromatography tandem mass spectrometry (LS-MS/MS) technique can be used. A mass spectrometry technique can include the use of a triple quadrupole instrument in Multiple Reaction Monitoring, positive ion mode. Depending on the analyte of interest, a MS/MS technique can include a Q1 scan that is tuned to select precursor ions that correspond to the positive ions ([M+H+]) of 25OHD2 and/or 25OHD3. Precursor-product ion pairs transitions characteristic for 25OHD2 and/or 25OHD3 can be monitored. An internal standard, such as deuterated 25OHD3, can be added to any sample, e.g., to evaluate sample recovery, precision, and/or accuracy. Samples and Sample Preparation A sample for analysis can be any sample, including biological and non-biological samples. For example, a sample can be a food (e.g., meat, dairy, or vegetative sample) or beverage sample (e.g., orange juice or milk). A sample can be a nutritional or dietary supplement sample. In certain cases, a sample can be a biological sample, such as a tissue (e.g., adipose, liver, kidney, heart, muscle, bone, or skin tissue) or biological fluid (e.g., blood, serum, plasma, urine, lachrymal fluid, or saliva) sample. The biological sample can be from a mammal. A mammal can be a human, dog, cat, primate, rodent, pig, sheep, cow, or horse. A sample can be treated to remove components that could interfere with the mass spectrometry technique. A variety of techniques known to those having skill in the art can be used based on the sample type. Solid and/or tissue samples can be ground and extracted to free the analytes of interest from interfering components. In such cases, a sample can be centrifuged, filtered, and/or subjected to chromatographic techniques to remove interfering components (e.g., cells or tissue fragments). In yet other cases, reagents known to precipitate or bind the interfering components can be added. For example, whole blood samples can be treated using conventional clotting techniques to remove red and white blood cells and platelets. A sample can be de-proteinized. For example, a plasma sample can have serum proteins precipitated using conventional reagents such as acetonitrile, KOH, NaOH, or others known to those having ordinary skill in the art, optionally followed by centrifugation of the sample. In certain cases, an internal standard can be added to a sample prior to sample preparation. Internal standards can be useful to monitor extraction/purification efficiency. For example, 25OHD2 and 25OHD3 can bind to serum proteins such as vitamin D-binding globulin. An internal standard can be added to a sample and allowed to equilibrate for a period of time, e.g., 5, 10, 15, 20, 25, 30, 60, 120 or more minutes. Equilibration temperature can be from about 10° C. to about 45° C., or any value in between (e.g., 15, 25, 30, 35, 37, 42, or 44° C.). In certain cases, equilibration can be at room temperature for about 15 minutes. An internal standard can be any compound that would be expected to behave under the sample preparation conditions in a manner similar to that of one or more of the analytes of interest. For example, a stable-isotope-labeled version of an analyte of interest can be used, such as a deuterated version of an analyte of interest. While not being bound by any theory, the physicochemical behavior of such stable-isotope-labeled compounds with respect to sample preparation and signal generation would be expected to be identical to that of the unlabeled analyte, but clearly differentiable by mass on the mass spectrometer. In certain methods, deuterated 25OHD2 or deuterated 25OHD3 can be employed. For example, d6-25OHD3 can be used. To improve run time and minimize hands-on sample preparation, on-line extraction and/or analytical chromatography of a sample can be used. On-line extraction and/or analytical chromatography can be used, e.g., in LC-MS/MS techniques. For example, in certain methods, a sample, such as a deproteinized plasma sample, can be extracted using an extraction column, followed by elution onto an analytical chromatography column. The columns can be useful to remove interfering components as well as reagents used in earlier sample preparation steps (e.g., to remove reagents such as acetonitrile). Systems can be co-ordinated to allow the extraction column to be running while an analytical column is being flushed and/or equilibrated with solvent mobile phase, and vice-versa, thus improving efficiency and run-time. A variety of extraction and analytical columns with appropriate solvent mobile phases and gradients can be chosen by those having ordinary skill in the art. Analytes that elute from an analytical chromatography column can be then measured by mass spectrometry techniques, such as tandem mass spectrometry techniques. Mass Spectrometry After sample preparation, a sample can be subjected to a mass spectrometry (MS) technique. A mass spectrometry technique can use atmospheric pressure chemical ionization (APCI) in the positive ion mode to generate precursor positive ions. In APCI techniques, analytes of interest exist as charged species, such as protonated molecular ions [M+H+] in the mobile phase. During the ionization phase, the molecular ions are desorbed into the gas phase at atmospheric pressure and then focused into the mass spectrometer for analysis and detection. Additional information relating to atmospheric pressure chemical ionization is known to those of skill in the art; see U.S. Pat. No. 6,692,971. MS analysis can be conducted with a single mass analyzer (MS) or a “tandem in space” analyzer such as a triple quadrupole tandem mass spectrometer (MS/MS). Using MS/MS, the first mass filter (Quadrople 1, Q1) can select, or can be tuned to select, independently, one or more of the molecular ions of 25OHD2, 25OHD3, and the internal standard. The second mass filter (Q3) is tuned to select specific product or fragment ions related to the analyte of interest. Between these two mass filtration steps, the precursor molecular ions can undergo collisionally-induced dissociation (CID) at Q2 to produce product or fragment ions. The previously-described mass spectrometry technique can also be referred to as multiple reaction monitoring, or MRM. In multiple reaction monitoring, both quadrupoles Q1 and Q3 can be fixed (or tuned) each at a single mass, whereas Q2 can serve as a collision cell. The precursor [M+H+] ions of 25OHD2 and 25OHD3 typically produce product ions that reflect the loss of water from the sample. Accordingly, precursor-product ion pair transitions for 25OHD2 can have m/z values of 413.0 and 395.3, while 25OHD3 can have precursor-product ion pair transitions having m/z values of 401.4 and 383.3. Similarly, the internal standard d6-25OHD3 can have precursor-product ion pair transitions having m/z values of 407.4 and 389.5. The amount of each can be determined by comparing the area of precursor or product transitions, or both, of 25OHD2 and/or 25OHD3, with those of a standard calibration curve, e.g., a standard calibration curve generated from a series of defined concentrations of pure 25OHD2 and/or 25OHD3 standards. Variables due to the extraction and the LC-MS/MS instrumentation can be normalized by normalizing peak areas of the analyte of interest to the peak areas of the internal standard. Any tandem MS machine and LC-MS/MS machine can be used, including the API 4000 triple quadrupole tandem mass spectrometer (ABI-SCIEX, Toronto, Canada). Software for tuning, selecting, and optimizing ion pairs is also available, e.g., Analyst Software Ver. 1.4 (ABI-SCIEX). Methods for Diagnosis The methods described herein can be used in various diagnostic applications to monitor vitamin D-related pathologies, vitamin D and calcium homeostasis, and vitamin D replacement therapies. For example, the total amount of 25OHD2 and 25OHD3 in a sample, such as a human patient sample, can be compared with clinical reference values to diagnose a vitamin D deficiency or hypervitaminosis D. One set of clinical reference values is set forth below, and represents clinical decision values that can apply to human males and females of all ages, rather than population-based reference values. Such population-based reference values have been found to vary widely depending on ethnic background, age, geographic location of the studied population, and sampling season, and correlate poorly with concentrations associated with biologically and clinically relevant vitamin D effects. Clinical reference values, total 25OHD2 and 25OHD3 <10 ng/mL Severe deficiency* 10 ng/mL-25 ng/mL Mild to moderate deficiency** 25 ng/mL-80 ng/mL Optimum levels*** >80 ng/mL Toxicity possible *Could be associated with ostemalacia or rickets **May be associated with increased risk of osteoporosis or secondary hyperparathyroidism ***Optimum levels in the normal population ****80 ng/mL is the lowest reported level associated with toxicity in patients without primary hyperparathyroidism who have normal renal function. Most patients with toxicity have levels in excess of 150 ng/mL. Patients with renal failure can have very high 25OHD2 and 25OHD3 levels without any signs of toxicity, as renal conversion to the active hormones is impaired or absent. In one embodiment, a method for determining whether or not a mammal has a vitamin D deficiency is provided. The method can involve determining the amount of 25OHD2 and 25OHD3 in a sample from the mammal, such as a human. The amounts can be determined using any of the methods provided herein. Based on the clinical reference values set forth herein, a total amount of 25OHD2 and 25OHD3 of less than 25 ng/mL in the sample can indicate that the mammal has a vitamin D deficiency. In another embodiment, a method for determining whether or not a mammal has hypervitaminosis D is provided. The method can involve determining the amount of 25OHD2 and 25OHD3 in a sample from the mammal. Based on the clinical reference values set forth herein, a total amount of 25OHD2 and 25OHD3 of more than 80 ng/mL in the sample can indicate that the mammal has hypervitaminosis D. In yet another embodiment, a method for monitoring vitamin D replacement therapy in a patient is provided. The method can involve determining the amount of 25OHD2 in a sample from the patient using any of the methods described herein. A lower than expected concentration of 25OHD2 relative to the amount expected from the replacement therapy can be indicative of patient non-compliance, malabsorption of vitamin D supplements, or resistance to 25OHD2. EXAMPLES Example 1 Development of a High-Throughput LC-MS/MS Assay Using on-Line Extraction for the Measurement of 25OHD2 and 25OHD3 Materials 25OHD2 and 25OHD3 were purchased from Sigma (St. Louis, Mo.). Each compound was reconstituted separately in ethanol and analyzed for concentration by UV Spectrophotometry at 264 nm using an ethanol blank. The analytes were combined in a stock solution and stored at −20° C. Working standards were prepared by diluting the stock solution in stripped serum (Sera Care Inc.) with concentrations of 0-200 ng/mL (0-500 nmol/L). Deuterated d6-25OHD3 was purchased from AS VITAS (Norway) for use as an internal standard. The compound was reconstituted in ethanol and stored at −20° C. A working internal standard solution was created by diluting the stock internal standard in 70% methanol containing 1 μg/mL estriol. Sample Preparation 25 μL of working internal standard was added to 200 μL sample. The sample was then incubated for 15 minutes at room temperature to allow the internal standard time to equilibrate with any binding proteins in the sample. Proteins were then precipitated by addition of 200 μL of acetonitrile and separated from the supernatant by centrifugation. The supernatant was then transferred to a 96-deep-well plate and covered with a template film until analysis. On-Line Extraction and LC-MS/MS On-line extraction and HPLC chromatography of the supernatants was performed using a Cohesive Technologies TX4 Turbo Flow system with 1.0×50 mm Cyclone extraction columns and 3.3 cm×4.6 mm, 3 μm LC-18 (Supelco) analytical columns. 50 μL of the supernatant was injected onto the Cyclone extraction column with a mobile phase of 50% methanol, 0.005% formic acid at 4.0 mL/min for 30 seconds. While the supernatant was injected onto the extraction column, the LC-18 analytical column was equilibrated with 17.5% methanol, 0.005% formic acid at 0.75 mL/min. The analytes were then eluted from the extraction column for 90 seconds with methanol, 0.005% formic acid at 0.2 mL/min, mixed at a T-valve with 17.5% methanol, 0.005% formic acid flowing at 0.55 mL/min to give a mobile phase of 39.5% methanol, 0.005% formic acid, onto the analytical column. There was a step gradient to 87% methanol, 0.005% formic acid for the analytical column, and the analytes were measured by tandem mass spectrometry. The extraction column and analytical column were then equilibrated with original conditions for 1 minute. Analytes were analyzed on an API 4000 triple-quadrupole tandem mass spectrometer (ABI-SCIEX, Toronto, Canada) using Analyst Software, Ver. 1.4 (ABI-SCIEX). An atmospheric pressure chemical ionization (APCI) source was used at a temperature of 400° C. The MS/MS parameters were curtain gas 10, GS1 22, CAD 6, NC 3, DP, 31, EP, 10, CE 13 and CXP 10. The ion transitions monitored were m/z 401.4/383.3 for 25OHD3, m/z 413.0/395.3 for 25OHD2 and m/z 407.4/389.5 for d6-25OHD3. Samples Serum separator (SST), serum-clot, EDTA, and sodium heparin tubes from 5 normal volunteers were collected to assess stability and specimen type. Due to the lack of 25-OH D2 in normal donors samples, specimen-type suitability was established by a recovery study on each sample type. Stability samples were also spiked prior to storage. Linearity was established by diluting 5 elevated samples from the Diasorin RadioImmunoAssay (RIA) (Stillwater, Minn.) in stripped serum (stripped of endogenous vitamin D). The 25OHD2 and 25OHD3 values obtained from the undiluted sample were used to calculate the expected values of the diluted sample. The percentage of observed/expected was then calculated for each dilution and used as a measure of linearity. To create quality control pools and establish precision, stripped serum was separated into 3 pools and spiked with 25OHD2 and 25OHD3 to a low, medium and high level. Each pool was separated into 20-mL aliquots and frozen at −80° C. One 20-mL aliquot was thawed, separated into 1.0-mL aliquots and refrozen at −20° C. Inter-assay precision was established by running an aliquot of each pool each day for 15 days. Sensitivity was established by inter-assay precision on a low pool diluted in stripped serum. Intra-assay precision was established by running 20 separate samples on each of 3 levels on the same assay. A method comparison was done on 100 samples for the LC-MS/MS method, the Diasorin RIA, the ADVANTAGE automated chemiluminescent immunoassay (Nichols Diagnostics), and the LIASON automated chemiluminescent immunoassay (Diasorin, Stillwater, Minn.). The samples were separated into 5 aliquots and frozen at −20° C. An aliquot was used for each method. LC-MS/MS Characteristics of 25OHD2 and 25OHD3 The Q1 scan (FIG. 1) and the Q3 scan (FIG. 2) of 25OHD2 (MW 412) and 25OHD3 (MW 400) were obtained by infusing a 5 μg/mL solution at 10 μL/min. The autotune mode of Analyst software was used to select and optimize ion pairs. Ion pairs were also checked manually and found to be the same. Each compound had an optimum Q1 ion corresponding to [M+H+] and an optimum Q3 ion corresponding to a H2O loss. The deuterated internal standard d6-25OHD3 gave a similar ion pair of m/z 407 to 389. FIG. 3 shows a LC-MS/MS chromatogram of a sample. By collecting data for two minutes, the Cohesive system can collect data on one channel while extracting another sample on the second channel. Recovery data for each sample type is listed in Table 1. This data demonstrates that each specimen type is acceptable and that the stripped serum used for the standards is an acceptable standard matrix. TABLE 1 Sensitivity, n = 15 Low, n = 15 Medium, n = 15 High, n = 15 25OHD2 4.2 ng/mL 17 ng/mL 42 ng/mL 110 ng/mL CV 14.0% 5.0% 6.5% 5.7% 25OHD3 1.7 ng/mL 24 ng/mL 55 ng/mL 132 ng/mL CV 12.9% 8.0% 7.4% 5.9% The linearity data had a percent observed mean of 109% for 25OHD2 with a range of 93-125%. The 25OHD3 percent observed mean was 103% with a range of 96-118%. Sensitivity was also checked by linearity. One sample for 25OHD2 diluted to 4.1 ng/mL had a percent observed of 96%, and one sample for 25OHD3 diluted to 1.3 ng/mL had a percent observed of 106%. Precision data is provided in Table 1. 25OHD2 and 25OHD3 had inter-assay precision of <10% in the low, medium and high range. Sensitivity was established at 4 ng/mL for 25OHD2 and 2 ng/mL for 25OHD3 based on an inter-assay CV of <20% on the sensitivity pool. 25OHD2 and 25OHD3 were found to be stable at ambient and refrigerated temperatures for 7 days. Day 7 ambient samples (serum, EDTA plasma, and heparin plasma) had a mean difference of 7.6% from day 0 values with a range of −9.7% to 23.8%. Day 7 refrigerated samples (serum, EDTA plasma and heparin plasma) had a mean difference of 1.6% from day 0 values with a range of −24.2% to 11.9%. Samples were also stable for 3 freeze/thaw cycles. Samples (serum, EDTA plasma and heparin plasma) after 3 freeze/thaw cycles had a mean difference of 0.6% from unfrozen fresh values with a range of −11.5% to 11.5%. Carry over was assessed by injecting stripped serum supernatants after supernatants of spiked samples (1720-8130 ng/mL) on each system. Three levels of 25OHD2 and 25OHD3 were used with stripped serum run after each level. The amount of detectable 25OHD2 and 25OHD3 in the stripped serum was divided by the concentrations in the spiked samples. 25OHD2 had a carry over of 0.05%-0.14% and 25OHD3 had a carry over of 0.14%-0.24%. Method comparison correlation data for the four assays tested is in Table 2. Slopes ranged from 1.01-1.03, and r values ranged from 0.87-0.92 for samples that were 25OHD2 negative (only 25OHD3 present). Slopes ranged from 0.48-0.94 and r values ranged from 0.59-0.89 for 25OHD2 positive patients (25OHD2 and 25OHD3 present), indicating the immunoassays used in this comparison underestimate 25OHD2 levels. TABLE 2 Assay Slope y-intercept r 25OHD2 Negative patients Diasorin RIA 1.03 3.3 0.92 Liason 1.02 4.3 0.87 Advantage 1.01 3.3 0.89 25OHD2 Positive patients Diasorin RIA 0.94 4.4 0.89 Liason 0.91 11.9 0.83 Advantage 0.48 10.9 0.59 Linearity data demonstrate that the stripped serum is an acceptable matrix for standards. Values of the linearity study range from 211 ng/mL in an undiluted sample to as low as 1.3 ng/mL in a diluted sample. This data reinforces the linear range of the standards 0-200 ng/mL. Carry-over is negligible. Any sample following a sample >1000 ng/mL is repeated to prevent any contamination. The method comparison data shows good correlation for 25OHD3 samples between all assays. The poor correlation of the Advantage assay in 25OHD2 positive samples indicates the Advantage assay underestimates 25OHD2. A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
<SOH> BACKGROUND <EOH>Vitamin D compounds are derived from dietary ergocalciferol (from plants, vitamin D2) or cholecalciferol (from animals, vitamin D3), or by conversion of 7-dihydrocholesterol to vitamin D3 in the skin upon UV-exposure. Vitamin D2 and D3 are subsequently 25-hydroxylated in the liver to form 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3). 25OHD2 and 25OHD3 represent the main body reservoir and transport form of vitamin D; they are stored in adipose tissue or are tightly bound by a transport protein while in circulation. The exact levels of 25OHD2 and 25OHD3 that reflect optimal body stores are uncertain. Mild to modest deficiency can be associated with osteoporosis or secondary hyperparathyroidism. Severe deficiency may lead to failure to mineralize newly formed osteoid in bone, resulting in rickets in children and osteomalacia in adults. Current immunoassay-based analytical methods for detecting 25OHD2 and 25OHD3 cannot selectively differentiate between 25OHD2 and 25OHD3 and can under-detect the amount of 25-OHD2. HPLC methods can use labor intensive extraction processes followed by long chromatographic run times.
<SOH> SUMMARY <EOH>This document provides materials and methods that can be used to measure 25OHD2 and 25OHD3 levels in a sample. For example, 25OHD2 and 25OHD3 can be selectively detected and quantitated using mass spectrometric techniques. The materials and methods are useful to aid in the diagnosis of vitamin D deficiencies or hypervitaminosis D, and to monitor vitamin D replacement therapies. In one embodiment, this document provides a LC-MS/MS method employing on-line sample extraction to allow for the sensitive, accurate, and precise quantification of 25OHD2, 25OHD3, or both, in samples such as serum and plasma. Unlike manual immunoassays, the methods provided herein can be highly automated, can separately measure 25OHD2 and 25OHD3, and can use an internal standard to monitor recovery of the sample extraction process. In addition, the methods can provide superior analytical performance as compared to immunoassays. In general, one embodiment provides a method for determining an amount of 25-hydroxyvitamin D2 in a sample. The method includes using a mass spectrometry technique to determine the amount of 25-hydroxyvitamin D2. The MS technique can employ atmospheric pressure chemical ionization. The mass spectrometry technique can be a tandem mass spectrometry (MS/MS) technique, or a LC-MS/MS technique. The LC can include an on-line extraction of the sample. The LC-MS/MS technique can include the use of a triple quadrupole instrument in Multiple Reaction Monitoring (MRM), positive-ion mode, and can include a Q1 scan tuned to select a precursor ion that corresponds to the [M+H + ]s of 25-hydroxyvitamin D 2 . In another embodiment, the amount of 25-hydroxyvitamin D3 can also be determined in addition to the amount of 25-hydroxyvitamin D2. In this embodiment, an LC-MS/MS technique can include a Q1 scan tuned to select, independently, precursor ions that correspond to the [M+H + ] of 25-hydroxyvitamin D 2 and 25-hydroxyvitamin D 3 . An LC-MS/MS technique can include monitoring MRM precursor-product ion pair transitions having m/z values of 401.4/383.3 for 25-hydroxyvitamin D 3 and 413.0/395.3 for 25-hydroxyvitamin D 2 . An internal standard, such as a deuterated 25-hydroxyvitamin D2 or D3, can be employed in any of the methods described herein. In certain cases, the internal standard is d 6 -25-hydroxyvitamin D 3 having a MRM parent-daughter ion pair transition m/z value of 407.4/389.5. A sample can be a biological or non-biological sample. A sample can be a human biological sample, such as a blood, urine, lachrymal, plasma, serum, or saliva sample. In another embodiment, a method for determining whether or not a mammal has a vitamin D deficiency is provided. The method includes determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from the mammal. Any of the methods described herein can be used to determine these amounts. A total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of <25 ng/mL indicates that the mammal has the vitamin D deficiency. In yet another embodiment, a method for determining whether or not a mammal has hypervitaminosis D is provided. The method includes determining the amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in a sample from the mammal, where a total amount of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 of >80 ng/mL indicates the mammal has hypervitaminosis D. A method for monitoring vitamin D replacement therapy in a mammal is also provided. The method includes determining the amount of 25-hydroxyvitamin D2 in a sample from the mammal using one of the methods described herein. A lower concentration of 25-hydroxyvitamin D 2 relative to the vitamin D replacement therapy is indicative of one or more of the following: non-compliance with the replacement therapy, malabsorption of vitamin D supplements, and resistance to 25-hydroxyvitamin D2. Other features and advantages of the invention will be apparent from the following detailed description, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention pertains. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The disclosed materials, methods, and examples are illustrative only and not intended to be limiting. Skilled artisans will appreciate that methods and materials similar or equivalent to those described herein can be used to practice the invention.
20041029
20100420
20060504
93324.0
G01N3300
1
WARDEN, JILL ALICE
VITAMIN D DEFICIENCIES
UNDISCOUNTED
0
ACCEPTED
G01N
2,004
10,977,365
ACCEPTED
Methods and apparatus for orthopedic implants
Methods and apparatus for orthopedic implants.
1-16. (canceled) 17. A guide for guiding a tool for use in removal of bone adjacent to a prosthesis, said guide comprising: a first portion thereof co-operable with said tool; and a second portion co-operable with the prosthesis. 18. The guide of claim 17, wherein the first portion of said guide defines a channel there through, the tool guidable within the channel. 19. The guide of claim 18, wherein the channel has a generally arcuate shape. 20. The guide of claim 17, wherein said guide comprises a first orientation feature for cooperation with the orientation feature on the prosthesis. 21. The guide of claim 18, wherein said first mentioned channel is adapted for cooperation with the tool for removal of a first portion of bone adjacent a first portion of the prosthesis; and further comprising a second channel adapted for cooperation with the tool for removal of a second portion of bone adjacent a second portion of the prosthesis. 22. (canceled) 23. A method for removing an implanted prosthesis to prepare a patent for total joint revision arthroplasty comprising: providing a guide defining an opening therein; placing the guide in cooperation with the prosthesis; providing a tool adapted for cooperation with the opening; inserting the tool at least partially within the opening; causing the tool to move relatively to the prosthesis; advancing the tool within the opening at least partially around the periphery of the prosthesis; and extracting the prosthesis from the patient. engaging a tibial cut guide with the position reference; and guiding a cutter with the cut guide to cut the proximal tibia. 24. The method of claim 23, wherein the placing the guide step comprises placing a guide location feature of the guide in cooperation with a prosthesis location feature of the prosthesis. 25-48. (canceled) 49. A bone preparation device, comprising: a guide body; a bone removal device having a longitudinal axis extending between a proximal portion and a distal portion; and a guide member movably engaged between said guide body and said bone removal device, wherein said bone removal device may be movably guided by said guide member with respect to said guide body through a predetermined pattern. 50. The apparatus of claim 49, wherein said bone removal device is coupled to a power source adjacent said proximal end. 51. The apparatus of claim 49, wherein said guide member is configured to simultaneously control axial displacement of said bone removal device with respect to said guide body and movement transverse to said longitudinal axis to generate a substantially non-linear predetermined pattern. 52. A kit, comprising: an implant having an outer surface for substantial engagement with a bone surface, said outer surface having an indentation; a guide body; a bone removal device having a longitudinal axis extending between a proximal portion and a distal portion; and a guide member movably engaged between said guide body and said bone removal device, wherein said bone removal device may be movably guided by said guide member with respect to said guide body through a predetermined pattern to define a projection in a bone surface substantially corresponding to said indentation. 53. A kit, comprising: an implant having an outer surface for substantial engagement with a bone surface, said outer surface having a surface feature selected from the set consisting of an indentation or a projection; a guide body; a bone removal device having a longitudinal axis extending between a proximal portion and a distal portion; and a guide member movably engaged between said guide body and said bone removal device, wherein said bone removal device may be movably guided by said guide member with respect to said guide body through a predetermined pattern to define a feature in a bone surface substantially corresponding to said surface feature. 54. A kit for preparation of a bone cavity in a bone for implantation of a joint prosthesis, said kit comprising: a guide defining an elongated opening therethrough, said guide including opposed first and second surfaces thereof, the first surface of said guide being in cooperation with the bone, said guide including a retractable feature cooperative therewith, the retractable feature having a first position for cooperation with the bone and a second position wherein the retactable feature is spaced from the bone to assist in the placement of the guide against the bone and the removal of the guide from the bone; and a rotatable tool translatable along an axis perpendicular to an axis of the opening of said guide, said tool adapted for removal of bone to form the bone cavity, said tool including a portion thereof for cooperation with the second surface of said guide. 55. The kit of claim 54, wherein the second surface of said guide is spaced from and parallel to the first surface of said guide. 56. The kit of claim 54, wherein the portion of said tool comprises a collar. 57. The kit of claim 54, wherein the second surface of said guide includes a first portion thereof having a first angular orientation with the first surface of said guide and a second portion thereof skewed with respect to the first surface of said guide. 58. The kit of claim 54, wherein the opening of said guide has a generally oval shape. 59. The kit of claim 54: wherein said guide further comprises a third surface spaced between the first surface and the second surface, opposed to the first surface and skewed with respect to the first surface and the second surface; and wherein said tool further comprises a collar for cooperation with the third surface to assist in positioning said tool. 60. The kit of claim 59, wherein the third surface includes a first portion thereof having a first angular orientation with the first surface of said guide and a second portion thereof skewed with respect to the first portion of the third surface. 61. The kit of claim 54, wherein said tool further comprises a generally spherical cutting tip. 62. The kit of claim 54, wherein said guide further comprises a handle. 63. The kit of claim 62, wherein said handle is removably secured to said guide, said guide including a first handle feature for receiving the handle and a second handle feature spaced from the first handle feature for receiving the handle.
RELATED APPLICATIONS This application is a continuation of co-pending U.S. application Ser. No. 10/756,817 filed Jan. 13, 2004, which is a continuation of co-pending U.S. application Ser. No. 09/799,325 filed Mar. 5, 2001, now U.S. Pat. No. 6,695,848, which is a continuation-in-part of U.S. application Ser. No. 09/261,528, filed Mar. 3, 1999, now U.S. Pat. No. 6,197,064, which was a continuation of U.S. application Ser. No. 08/892,286, now U.S. Pat. No. 5,879,354, which was a divisional of U.S. application Ser. No. 08/649,465, filed May 17, 1996, now U.S. Pat. No. 5,755,803, which was a continuation-in-part application of U.S. application Ser. No. 08/603,582, filed Feb. 20, 1996, now U.S. Pat. No. 5,810,827, which was a continuation-in-part application of U.S. application Ser. No. 08/300,379, filed Sep. 2, 1994, now U.S. Pat. No. 5,514,139, dated May 7, 1996, and which was also a continuation-in-part application of U.S. application Ser. No. 08/479,363, now U.S. Pat. No. 5,643,272, which is a continuation-in-part of U.S. application Ser. No. 08/342,143, filed Nov. 18, 1994, now U.S. Pat. No. 5,597,379, which is a continuation-in-part application of U.S. application Ser. No. 08/300,379, filed Sep. 2, 1994, now U.S. Pat. No. 5,514,139, dated May 7, 1996. The entire disclosures of these related applications are expressly incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention generally relates to methods and apparatus for orthopedic surgical navigation and alignment techniques and instruments. 2. Related Art Different methods and apparatus have been developed in the past to enable a surgeon to remove bony material to create specifically shaped surfaces in or on a bone for various reasons including to allow for attachment of various devices or objects to the bone. Keeping in mind that the ultimate goal of any surgical procedure is to restore the body to normal function, it is critical that the quality and orientation of the cut, as well as the quality of fixation, and the location and orientation of objects or devices attached to the bone, is sufficient to ensure proper healing of the body, as well as appropriate mechanical function of the musculoskeletal structure. In total knee replacements, a series of planar and/or curvilinear surfaces, or “resections,” are created to allow for the attachment of prosthetic or other devices to the femur, tibia and/or patella. In the case of the femur, it is common to use the central axis of the femur, the posterior and distal femoral condyles, and/or the anterior distal femoral cortex as guides to determine the location and orientation of distal femoral resections. The location and orientation of these resections are critical in that they dictate the final location and orientation of the distal femoral implant. It is commonly thought that the location and orientation of the distal femoral implant are critical factors in the success or failure of the artificial knee joint. Additionally, with any surgical procedure, time is critical, and methods and apparatus that can save operating room time, are valuable. Past efforts have not been successful in consistently and/or properly locating and orienting distal femoral resections in a quick and efficient manner. The use of oscillating sawblade based resection systems has been the standard in total knee replacement for over 30 years. Due to their use of this sub-optimal cutting tool, the instrumentation systems all possess certain limitations and liabilities. Perhaps the most critical factor in the clinical success of TKA is the accuracy of the implant's placement. This can be described by the degrees of freedom associated with each implant; for the femoral component these include location and orientation that may be described as Varus-Valgus Alignment, Rotational Alignment, Flexion-Extension Alignment, A-P location, Distal Resection Depth Location, and Mediolateral Location. Conventional instrumentation very often relies on the placement of ⅛ or {fraction (3/16)} inch diameter pin or drill placement in the anterior or distal faces of the femur for placement of cutting guides. In the case of posterior referencing systems, the distal resection cutting guide is positioned by drilling two long drill bits into the anterior cortex. As these long drills contact the oblique surface of the femur they very often deflect, following the path of least resistance into the bone. As the alignment guides are disconnected from these cutting guides, the drill pins will “spring” to whatever position was dictated by their deflected course thus changing their designated, desired alignment to something less predictable and/or desirable. This kind of error is further compounded by the “tolerance stacking,” inherent in the use of multiple alignment guides and cutting guides. Another error inherent in these systems further adding to mal-alignment is deflection of the oscillating sawblade during the cutting process. The use of an oscillating sawblade is very skill intensive as the blade will also follow the path of least resistance through the bone and deflect in a manner creating variations in the cut surfaces which further contribute to prosthesis mal-alignment as well as poor fit between the prosthesis and the resection surfaces. Despite the fact that the oscillating saw has been used in TKA for more than 30 years, orthopedic salespeople still report incidences where poor cuts result in significant gaps in the fit between the implant and the bone. It is an often repeated rule of thumb for orthopedic surgeons that a “Well placed, but poorly designed implant will perform well clinically, while a poorly placed, well designed implant will perform poorly clinically.” One of the primary goals of the invention described herein is to eliminate errors of this kind to create more reproducible, consistently excellent clinical results in a manner that requires minimal manual skill on the part of the surgeon. None of the previous efforts of others disclose all of the benefits and advantages of the present invention, nor do the previous efforts of others teach or suggest all the elements of the present invention. OBJECTS AND SUMMARY OF THE INVENTION Many of the specific applications of the method and apparatus of the present invention described herein apply to total knee replacement, a surgical procedure wherein planar surfaces and/or curvilinear surfaces must be created in or on bone to allow for proper attachment or implantation of prosthetic devices. However, it should be noted that it is within the scope of the present invention to apply the methods and apparatus herein described to the removal of any kind of material from bones in any other application where it is necessary, desirable or useful to remove material from bones. The apparatus of the present invention comprises a number of components including a positioning apparatus, a pattern apparatus and a cutting apparatus. The pattern apparatus is oriented and located by the use of the positioning apparatus which references the geometry of a bone to be resected and/or other anatomic landmarks. When used to resect a distal femur, the positioning apparatus also references the long axis of the femur. Once the positioning apparatus has been properly located, aligned, and initially fixed in place, the pattern apparatus may be attached thereto, and then adjusted according to the preferences of the surgeon utilizing the apparatus, and then the pattern apparatus can be rigidly fixed to a bone to be resected. This ensures the pattern apparatus is properly located and oriented prior to the use of the cutting apparatus to remove material from the bone. More specifically, when the method and apparatus of the present invention are used in connection with resecting a distal femur, the positioning apparatus is located and aligned utilizing the intramedullary canal of the femur, (thereby approximating the long axis of the femur), the distal surfaces of the femoral condyles, the anterior surface of the distal femur, and the posterior surfaces of the femoral condyles, which are referenced to indicate the appropriate location and orientation of the pattern apparatus. Fixation means may be used to fix the positioning apparatus, as well as the pattern apparatus to the distal femur. Means may be present in the positioning apparatus and/or pattern device for allowing the following additional adjustments in the location and orientation of the pattern device: 1. internal and external rotational adjustment; 2. varus and valgus angular adjustment; 3. anterior and posterior location adjustments; 4. proximal and distal location adjustment; and 5. flexion and extension angular adjustment. Cannulated screws, fixation nails or other fixation means may then be used to firmly fix the pattern apparatus to the distal femur. The positioning apparatus may then be disconnected from the pattern apparatus and removed from the distal femur. Thus, the location and orientation of the pattern apparatus is established. The pattern device possesses slot-like features, or a cutting path, having geometry that matches or relates to the desired geometry of the cut. When used in connection with resecting a knee, the cutting path resembles the interior profile of the distal femoral prosthesis. The cutting path guides the cutting apparatus to precisely and accurately remove material from the distal femur. Thus, the distal femur is thereby properly prepared to accept a properly aligned and located distal prosthesis. In preparing a patella, the pattern device may be an integral part of the positioning apparatus which is oriented and located by referencing the geometry of the patella itself as well as the structures of the patellofemoral mechanism to determine the location and orientation of a predominantly planar resection. The cutting device may then be employed to perform the resection of the patella by traversing the path dictated by the pattern device, thus dictating the final location and orientation of the patella prosthesis. The apparatus of the present invention comprises a number of components including an ankle clamp, an alignment rod, a fixation head, cutting guide clamps having an integral attachment mechanism, and a milling bit. The method of present invention includes the steps of attaching the ankle clamp about the ankle, interconnecting the distal end of the alignment rod with the ankle clamp, interconnecting the fixation head with the proximal end of the alignment rod, partially attaching the fixation head to the proximal tibia, aligning the alignment rod, completely attaching the fixation head to the proximal tibia, interconnecting the cutting guide clamps with the alignment rod, positioning the cutting guide clamps about the proximal tibia, securing the cutting guide clamps to the tibia at a proper location, removing the fixation head, and cutting the proximal tibia with the milling bit. The implant of the present invention has an outer bearing surface and an inner attachment surface. The outer bearing surface functions as a joint contact surface for the reconstructed bone. The inner attachment surface contacts a bone and is attached thereto. The inner attachment surface of the implant is curvilinear from an anterior to a posterior area of the femur, as is conventionally known, and is also curvilinear from a medial to a lateral area of the femur to approximate the shape of natural femur. The resection of the femur for accommodating the implant can be properly performed by a milling device employing one or more curvilinear milling bits. There are numerous advantages associated with the curvilinear implant of the present invention. First, it will allow for a very thin implant cross-section and therefore necessitate the removal of the least amount of viable osseous tissue. Accordingly, the kinematics of the artificial joint could be made to be as close as possible to that of a healthy, natural knee joint. In addition, the curvilinear geometry of the implant dramatically decreases the stress risers inherent in conventional rectilinear femoral implants and allows for a thinner cross-sectional geometry while potentially increasing the resistance of the implant to mechanical failure under fatigue or impact loading. Conversely, the curvilinear geometry of the implant may also allow for an advantageous reduction in the flexural rigidity of the implant which may result in avoidance of the “stress-shielding” inherent in rigid implant designs. This curvilinear implant of the present invention could also result in a less expensive femoral implant because of the reduced amount of material needed for the implant, as well as an improved, more natural, and even stronger knee replacement. The cross-section of the implant could be varied to assist in seating the implant and to increase the strength and fit of the implant. The implants of the present invention having curvilinear implant surfaces could be fabricated of metal, plastic, or ceramic or any other material. Further, the thickness of the implants and the material required to fabricate the implant could be reduced as the implants are adapted to increasingly curvilinear surfaces. The resected surfaces of a femur or other bone to accept the implant of the present invention could be prepared by the apparatus and method for resection shown and described in the prior related applications set forth herein, the entire disclosures of which are expressly incorporated herein by reference. The apparatus of the present invention comprises a number of components including a positioning and drill guide, a cutting guide and a cutting apparatus. The drill guide is used to create holes in the medial and lateral sides of the femur that correspond to the fixation features of the cutting guide. The cutting guide is oriented and located by inserting fixation nubs connected to the cutting guide into the medial and lateral holes in the femur. The cutting guide can then be further affixed to the femur. The cutting apparatus can then be used with the cutting guide to resect the femur. A conventional cutting block used with a conventional oscillating saw can also be positioned and interconnected with a femur in a similar manner using the drill guide of the present invention to create medial and lateral holes. A cutting guide can then be attached to the holes. A conventional cutting block can be interconnected with the cutting guide for attachment of the block to the femur. This invention can also be used in connection with a cortical milling system, i.e., a cutting system for providing a curvilinear cutting path and curvilinear cutting profile. Likewise, a tibial cutting guide can similarly be positioned on a tibia with a drill guide. It is a primary object of the present invention to provide an apparatus for properly resecting the distal human femur. It is also an object of this invention to provide an apparatus for properly orienting a resection of the distal human femur. It is an additional object of the resection apparatus of the present invention to properly locate the resection apparatus with respect to the distal human femur. It is even another object of the resection apparatus of the present invention to properly orient the resection apparatus with respect to the distal human femur. It is another object of the resection apparatus of the present invention to provide a guide device for establishing the location and orientation of the resection apparatus with respect to the distal human femur. It is still a further object of the resection apparatus of the present invention to lessen the chances of fatty embolisms. It is even a further object of this invention is to provide a resection apparatus capable of forming some or all of the resected surfaces of the distal human femur. It is another object of the resection apparatus of the present invention to provide an apparatus which is simple in design and precise and accurate in operation. It is also an intention of the resection apparatus of the present invention to provide a guide device for determining the location of the long axis of the femur while lessening the chances of fatty embolism. It is also an object of the resection apparatus of the present invention to provide a device to physically remove material from the distal femur in a pattern dictated by the pattern device. It is even another object of the resection apparatus of the present invention to provide a circular cutting blade for removing bone from the distal human femur to resection the distal human femur. It is also an object of the present invention to provide a method for easily and accurately resecting a distal human femur. These objects and others are met by the resection method and apparatus of the present invention. It is a primary object of the present invention to provide methods and apparatus for femoral and tibial resection. It is another object of the present invention to provide a method and apparatus for properly, accurately and quickly resecting a bone. It is also an object of this invention to provide a method and apparatus for properly orienting and locating a resection of a bone. It is a further object of the present invention to provide a method and apparatus to properly locate and orient the resection apparatus with respect to a bone. It is another object of the present invention to provide methods and apparatus for femoral and tibial resection which are simple in design and precise and accurate in operation. It is an additional object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern dictated by a pattern device and/or the geometry of a cutting device. It is a further object of the present invention to provide methods and apparatus for resecting a bone which allows one to visually inspect the location of the cut or cuts prior to making the cut or cuts. It is yet a further object of the present invention to provide a method and apparatus for resecting a bone which physically removes material from the bone along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting a bone which employs a milling bit or form cutter for removing material from the bone. It is a further object of the present invention to provide methods and apparatus for femoral and tibial resection wherein the apparatus can be located on a bone to be cut in a quick, safe and accurate manner. It is a primary object of the present invention to provide a method and apparatus for properly resecting the proximal human tibia in connection with knee replacement surgery. It is also an object of the present invention to provide a method and apparatus for resecting the proximal human tibia which minimizes the skill necessary to complete the procedure. It is another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which properly orients the resection of the proximal tibia. It is even another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which is easy to use. It is yet another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which orients the resection in accordance with what is desired in the art. It is still yet another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which minimizes the amount of bone cut. It is a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which allows one to visually inspect the location of the cut prior to making the cut. It is even a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which is simple in design and precise and accurate in operation. It is yet a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which physically removes material from the proximal tibia along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which employs a milling bit for removing material from the proximal tibia. It is also an object of the present invention to provide a method and apparatus for resecting the proximal human tibia which includes a component which is operated, and looks and functions, like pliers or clamps. It is even another object of the present invention to provide an alternate embodiment of the method and apparatus for resecting the proximal human tibia which includes a component that resembles a U-shaped device for placing about the tibia. It is even a further object of the present invention to provide an alternate embodiment of the method and apparatus for resecting the proximal human tibia which includes a component that resembles an adjustable, square, U-shaped device for placing about the tibia. These objects and others are met and accomplished by the method and apparatus of the present invention for resecting the proximal tibia. It is a primary object of the present invention to provide a method and apparatus for removing material from bones. It is another object of the present invention to provide a method and apparatus for properly resecting bone. It is also an object of this invention to provide a method and apparatus for properly orienting a resection of a bone. It is a further object of the present invention to provide a method and apparatus to properly orient the resection apparatus with respect to a bone. It is an additional object of the present invention to provide a method and apparatus for properly locating a bone resection. It is a further object of the present invention to provide a method and apparatus to properly locate the resection apparatus with respect to a bone. It is even another object of the resection apparatus of the present invention to provide a guide device and method of use thereof for establishing the location and orientation of the resection apparatus with respect to a bone. It is an additional object of the present invention to provide a method and apparatus for making a curvilinear bone resection. It is still a further object of the resection apparatus of the present invention to lessen the chances of fatty embolisms. It is even further object of this invention to provide a method and apparatus capable of forming or re-forming some or all of the surfaces or resected surfaces of a bone. It is another object of the present invention to provide a method and apparatus which is simple in design and precise and accurate in operation. It is also an intention of the present invention to provide a method and apparatus for determining the location of the long axis of a bone while lessening the chances of fatty embolisms. It is also an object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern. It is an additional object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern dictated by a pattern device and/or the geometry of a cutting device. It is even another object of the resection apparatus of the present invention to provide a cylindrical or semi-cylindrical cutting device and method of use thereof for removing material from a bone. It is also an object of the present invention to provide a method and apparatus for easily and accurately resecting a bone. It is also an object of the present invention to provide a method and apparatus for resecting a bone which minimizes the manual skill necessary to complete the procedure. It is even another object of the present invention to provide a method and apparatus for resecting a bone which is easy to use. It is still yet another object of the present invention to provide a method and apparatus for resecting a bone which minimizes the amount of bone removed. It is a further object of the present invention to provide a method and apparatus for resecting a bone which allows one to visually inspect the location of the cut or cuts prior to making the cut or cuts. It is yet a further object of the present invention to provide a method and apparatus for resecting a bone which physically removes material from the bone along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting a bone which employs a milling bit or form cutter for removing material from the bone. It is even another object of the present invention to provide a method and apparatus for removing material from a bone such that both the cutting path and cutting profile are predominantly curvilinear. It is a primary object of the present invention to provide an apparatus to properly replace damaged bony tissues. It is also an object of this invention to provide an apparatus to properly replace damaged bony tissues in joint replacement surgery. It is also an object of the present invention to provide an implant for the attachment to a distal femur in the context of knee replacement surgery. It is an additional object of the present invention to provide a method and apparatus for making a curvilinear implant. It is another object of the present invention to provide an implant having a reduced thickness to reduce the amount of material required to make the implant. It is even another object of the present invention to provide an implant having curvilinear fixation surfaces for increasing the strength of the implant. It is another object of the present invention to provide an implant having a fixation surface that is anterior-posterior curvilinear and mediolateral curvilinear. It is another object of the present invention to provide an implant that has a fixation surface that is shaped to resemble a natural distal femur. It is also an object of the present invention to provide an implant apparatus for allowing proper patellofemoral articulation. It is a further object of the present invention to provide for minimal stress shielding of living bone through reduction of flexural rigidity. It is an additional object of the present invention to provide an implant apparatus having internal fixation surfaces which allow for minimal bony material removal. It is another object of the present invention to provide an implant apparatus with internal fixation surfaces that minimize stress risers. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for precise fixation to curvilinear body resections. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for precise apposition to curvilinear body resections. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for curvilinear interior fixation geometries closely resembling the geometry of the external or articular geometry of the implant apparatus. It is also an object of this invention to provide a method and apparatus for properly locating and orienting a prosthetic implant with respect to a bone. It is another object of the present invention to provide an implant which is simple in design and precise and accurate in operation. It is also an object of the present invention to provide an implant which minimizes the manual skill necessary to complete the procedure. It is still yet another object of the present invention to provide an implant which minimizes the amount of bone removed. It is even another object of the present invention to provide a method and apparatus for removing material from a bone such that both the cutting path and cutting profile are predominantly curvilinear. BRIEF DESCRIPTION OF THE DRAWINGS Other important objects and features of the invention will be apparent from the following detailed description of the invention taken in connection with the accompanying drawings in which: FIG. 1. is an exploded view of the resection apparatus of the present invention showing the positioning apparatus body, the angular adjustment component and the rotational alignment component. FIG. 2 is a side plan view of the guide device of the resection apparatus of FIG. 1 attached to a distal human femur. FIG. 3 is an exploded view of the pattern device of the resection apparatus of the present invention. FIG. 4 is a side plan view of the resection apparatus shown in FIG. 2 with the pattern device fixed to the distal human femur. FIG. 5 is an exploded front view of the cutting device of the resection apparatus of the present invention. FIG. 6 is a top plan view of the pattern device and the cutting device of the resection apparatus of the present invention affixed to the distal human femur. FIG. 7 is a side plan view of an intermedullary rod having a helical groove for use with the resection apparatus shown in FIG. 1. FIG. 8 is a partially exploded side plan view of an embodiment of the tibial resection apparatus of the present invention shown attached to the tibia, wherein the cutting guide clamps are of a fixed size and directly interconnect with the alignment rod. FIG. 9 is a top plan view of the tibial resection apparatus, shown in FIG. 8 prior to insertion of the milling bit into the apparatus. FIG. 10 is a partially exploded side plan view of another embodiment of the tibial resection apparatus shown in FIG. 8, wherein the cutting guide clamps interconnect with the alignment rod by means of a cutting guide clamp linkage. FIG. 11 is a side plan view of an embodiment of the cutting guide clamps shown in FIG. 8, wherein the cutting guide clamps are adjustable. FIG. 12 is a top plan view of the cutting guide clamps shown in FIG. 11. FIG. 13 is a perspective view of an embodiment of the tibial resection apparatus shown in FIG. 8, showing the proximal tibial referencing stylus attached to the cutting guide clamps. FIG. 14 is a cross-sectional view of the profile of the ends of the clamp members taken along line A-A in FIG. 12. FIG. 15 is a cross-sectional view of the profile of the ends of the cutting guides taken along line B-B in FIG. 12, the ends of the clamps mating with the ends of the cutting guides for positioning the cutting guides with respect to the clamps. FIG. 16 is a perspective view of an alternate embodiment of a U-shaped cutting guide for use in the present invention. FIG. 17 is a top plan view of another alternate embodiment of a square U-shaped cutting guide for use in the present invention. FIG. 18 is a perspective view of another alternate embodiment of a partial cutting guide for use in the present invention when the patellar tendon, patella, or quad tendon interferes with placement of the cutting guide about the tibia. FIG. 19 is a rear perspective view of an embodiment of the pattern apparatus of the present invention. FIG. 20 is a front perspective view of the pattern apparatus shown in FIG. 19. FIG. 21 is a partially exploded side plan view of the positioning apparatus shown in FIG. 19. FIG. 22 is an exploded perspective view of the cross-bar of the pattern apparatus shown in FIG. 19. FIG. 23 is a partially cut away side plan view of the pattern plate/cross-bar attachment linkage for interconnecting the pattern plate to the cross-bar as shown in FIG. 19. FIG. 24 is a perspective view of the positioning apparatus of the present invention. FIG. 25 is a top plan view of the positioning apparatus shown in FIG. 24. FIG. 26 is an exploded perspective view of the positioning apparatus shown in FIG. 24. FIG. 27 is an exploded perspective view of the protractor rod guide assembly portion of the positioning apparatus shown in FIG. 24. FIGS. 28A-28D are plan views of another embodiment of a rod guide assembly for use with the positioning apparatus shown in FIG. 24. FIG. 29 is a side plan view of an embodiment of the fixation device for affixing the pattern apparatus shown in FIG. 19 to a bone. FIG. 30 is a partial side plan view of the pattern apparatus shown in FIG. 19, showing the posterior/anterior referencing guide. FIG. 31 is a side plan view of another embodiment of the pattern apparatus shown in FIG. 19. FIG. 32 is a side plan view of another embodiment of the positioning apparatus shown in FIG. 24 for use in performing ligament balancing; FIGS. 32A and 32B are cross-sectional views along section A-A in FIG. 32. FIGS. 33A and B are front plan views of an embodiment of the cutting apparatus of the present invention for cutting a bone a in curvilinear cross-sectional plane. FIG. 34 is a perspective view of a handle for guiding a milling bit along a cutting path. FIG. 35 is a perspective view of another embodiment of the pattern apparatus shown in FIG. 19, having a milling bit engaged therewith. FIG. 36 is a side plan view of the pattern apparatus shown in FIG. 35 with the milling bit disengaged from the pattern apparatus. FIG. 37 is another side plan view of the pattern apparatus shown in FIG. 36 showing the milling bit engaged with the pattern apparatus. FIG. 38 is a perspective view of a femoral implant having a curved implant bearing surface. FIG. 39 is a side plan view of the femoral implant shown in FIG. 38. FIG. 40 is a side plan view of another embodiment of the pattern apparatus and positioning apparatus of the present invention for resecting a patella. FIG. 41 is a top plan view of the patella resection apparatus shown in FIG. 40. FIG. 42 is a front plan view of the patella resection apparatus shown in FIG. 40. FIG. 43 is a perspective view of another embodiment of the pattern apparatus of the present invention for cutting a bone. FIG. 44 is a perspective view of another embodiment of the alignment apparatus shown in FIG. 24. FIG. 45 is a partially exploded side plan view of another embodiment of the pattern apparatus of the present invention for cutting a bone. FIG. 46 is a partially exploded perspective view of the interconnection of a handle with milling bit for use in connection with pattern plate shown in FIG. 45. FIG. 47 is front plan view of another cutting apparatus for use in connection with the present invention. FIG. 48 is a side plan view of the femoral implant shown in FIG. 38, FIGS. 48A, 48B, 48C and 48D being sectional views taken along lines A-A, B-B, C-C and D-D of FIG. 48, respectively. FIG. 49 is a side plan view of the curvilinear milling bit and resection guide shown in FIG. 35. FIG. 50 is a side plan view of another embodiment of the femoral implant shown in FIG. 38. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown generally in FIGS. 1-6, the resecting apparatus of the present invention comprises a number of components, namely positioning apparatus generally indicated at 10 comprising positioning body generally indicated at 12, angular adjustment block generally indicated at 32, rotational alignment device generally indicated at 50, pattern device generally indicated at 59 and cutting means generally indicated at 90. As shown in detail in FIG. 1, the positioning apparatus, generally indicated at 10, includes a positioning body generally indicated at 12 having sides 13, top surface 14, front surface 15, back surface 19 and cross member 18. Extending from a lower end of the positioning body 12 is positioning tongue 20 having an upper surface 22. Extending into the positioning body 12 from top surface 14 to the cross member 18 and through the front and back surfaces 15 and 19, is a gap generally defined by slots 16 and partial slot walls 17. Sides 13 include apertures 24 for receiving locking screws 25. Also extending through the body 12 from the back surface 19 to the front surface 15 are apertures 27 for receiving fixation screws 26. The positioning apparatus 10 receives and holds angular adjustment block generally indicated at 32. Angular adjustment block 32 includes a front surface 34 having wings 36 sized to be received by the slots 16 in the positioning body 12 to hold the angular adjustment block 32. The angular adjustment block 32 is locked into place in the positioning body 12 by means of locking screws 25, which extend through apertures 24 in the positioning body 12 and contact the wings 36 of the angular adjustment block 32 to secure the angular adjustment block 32 to the positioning body 12. The angular adjustment block 32 establishes the angular alignment and anterior/posterior location of the positioning apparatus 10. The angular adjustment block 32 also includes back surface 38 and an aperture 40 extending from the back surface 38 through the angular adjustment block 32 to the front surface 34. The aperture 40 receives an intermedullary rod 42 therethrough. The intermedullary rod 42 comprises a shaft 43 and a handle 44. The shaft 43 extends through the angular adjustment block 32 and into the intermedullary canal which extends along the axis of the femur to aid in establishing the orientation of the resection apparatus of the present invention as hereinafter described. The rotational alignment device, generally indicated at 50, includes a shaft 51 having a groove 52 therealong and a block 53 having a back surface 54 and wings 56. The rotational alignment device 50 is interconnected with the positioning body 12 by means of the wings 56 received in slots 16 of the positioning body 12. The rotational alignment device 50 may be secured to the positioning body 12 by means of locking screws 25 which extend through apertures 24 in the positioning body 12 to contact the wings 56. The locking screws 25 may be made of various configurations depending upon their specific function. Importantly, the locking screws 25 are used to rigidly affix one component or device to another to ensure that the relative locations and orientations are maintained despite the rigors of surgery. As shown in FIG. 2, wherein the positioning body 12 is fitted with the angular adjustment block 32 and the rotational alignment device 50, the entire positioning apparatus 10 is connected to a human femur 7 by means of the shaft 43 of the intermedullary rod 42. The shaft 43 extends through the angular adjustment block 32, and thereby through the positioning body 12 into the intermedullary canal which extends along the axis of the femur 7. The intermedullary rod 42, shown in FIG. 7, has a groove 41 transversing a helical path 45 along the axis of the shaft 43. The groove 41 relieves intermedullary pressure that leads to fatty embolisms. The basic concept of the intermedullary rod 42 with the groove 41, is that as it is inserted into the femur, which contains liquid fatty tissue, the liquid fatty tissue is drawn up the groove 41 of the intermedullary rod 42 to draw the fatty liquid tissue out of the femur. Preferably, the intermedullary rod would have a hexagonal head, (not shown) to permit it to be driven by a powered device such as an electrical hand held tool. Importantly, the groove 41 does not have a cutting edge, which would risk perforation of the femoral cortex. Accordingly, the device does not cut solid material, but removes liquid material from the intermedullary canal. Therefore, the risk of fatty embolism is reduced. After positioning body 12 is properly located against the femur 7 by means of the intermedullary rod 42 and the angular adjustment block 32, fixation screws 26 may be advanced through the apertures 27 in the positioning body 12 until they make contact with the distal femoral condyles of the femur 7, and are then driven into the distal femoral condyles of the femur 7 to initially affix the positioning apparatus to the distal femur 7. It should be noted that the fixation screws 26 may also be advanced and adjusted to make up for deficiencies in the distal femoral condyles. Accordingly, the positioning body 12 is positioned such that the front surface 15 is put into contact with the distal femoral condyles by direct contact, and the tongue 20 is positioned under the femur 7 and in contact therewith. As can be seen in FIG. 2, the shaft 51 of the rotational alignment device 50 extends above the femur 7 and allows for rotation of the pattern device 59, hereinafter described, about the distal femur 7. Additionally, the rotational alignment device 50 allows for the anterior/posterior positioning of the pattern device 59 with respect to the femur 7. Importantly, the configurations of the positioning body 12, the angular adjustment block 32 and the rotational alignment device 50 are not limited to the structure set forth herein, but may be of different shapes and may interconnect in different ways. These components may even be formed as a unitary or partially unitary device. As shown in FIG. 3, the pattern device 59 includes pattern plates 60 having tops 61, and cutting paths, generally indicated at 62, extending therethrough. The cutting paths 62 outline the desired resection shape of the distal femur 7. Generally, the cutting paths 62 could include a first vertical path 64, extending to a first diagonal path 65, extending to a second diagonal path 66, extending to a second vertical path 67, extending to a third diagonal path 68 and then extending to a horizontal path 69. Alternatively, the cutting paths 62 could describe any desired resection shape for the femur 7. The pattern plates 60 also include locking screws 75 for interconnecting the pattern plates 60 with a crossbar 80. The pattern device 59 of the present invention preferably includes two pattern plates 60 held in a spaced apart relationship by crossbar 80. The crossbar 80 separates the pattern plates 60 sufficiently to permit the pattern plates 60 to extend along the sides of the distal femur 7. The crossbar 80 includes a front surface 82, back surface 84, a top surface 83, a central aperture 86 extending from the front surface 82 to the back surface 84, a lock aperture 88 extending through the top surface 83, and a lock screw 89. The central aperture 86 of the crossbar 80 receives the shaft 51 of the rotational alignment device 50. Accordingly, the pattern device 59 is interconnected with the positioning apparatus 10 so that the pattern device 59 is properly oriented with respect to the femur 7. Upon proper positioning of the crossbar 80, with respect to the shaft 51 of the rotational alignment device 50, lock screw 89 is extended through lock aperture 88 to contact the shaft 51 to lock the crossbar 80 and, accordingly, the pattern device 59, onto the shaft 51 of the rotational alignment device 50, and accordingly, to positioning apparatus 10. This completed assembly is attached to the femur 7, as shown in FIG. 4. As additionally shown in FIGS. 3 and 4, the pattern plates 60 include plate apertures 72 for receiving cannulated screws 70 which have apertures extending therethrough for receiving fixation nails 71 therethrough. Accordingly, after the pattern device 59 is interconnected with the positioning apparatus 10, and properly located and oriented with respect to the femur 7, the cannulated screws 70 are extended through the plate aperture 72 to contact the sides of the distal femur 7. Then, in order to fix the pattern plates 60 with respect to the femur 7, the fixation nails 71 are driven into the distal femur 7 to lock the pattern plate 60 into position on the distal femur 7. The cannulated screws 70 have sharp leading edges for allowing decisive purchase in the distal femur 7 before the introduction of the fixation nails 71 to complete fixation of the pattern device 59 to the distal femur 7. The pattern plates 60 by virtue of the cutting paths 62, dictate the shape of the resection of the femur 7. The cutting paths 62 are essentially channels through the pattern plates 60. The cutting paths 62 receive the cutting device and guide it as it resects the surface of the distal femur 7. The pattern plates 60 straddle the distal femur 7 mediolaterally and are suspended by the crossbar 80. Likewise, crossbar 80 maintains the proper relationship between the pattern plates 60 before and during the resection of the distal femur 7. The location of the crossbar 80 and accordingly, the pattern plates 60, may be adjusted with respect to the positioning apparatus 10 by adjusting the position of the block 53 of the rotational alignment device 50 within the slots 16 of the positioning body 12, and locking the same with locking screws 25. The cutting paths 62 in the pattern plates 60 receive and guide the cutting device shown in FIG. 5 and generally indicated at 90. The cutting device 90 performs the actual cutting of the femur 7 to resect the femur 7. The cutting device may be of any known configuration. In a preferred embodiment, the cutting device is a drill. The drill 90 is generally cylindrical in shape and may possess helical cutting teeth along its length to cut the femur 7. The drill 90 includes a hexagonal end 95 to permit the use of an electric powered drive, typically an electric drill. Further, the drill 90 includes drill bushings 92 at the ends of the drill 90 to provide a non-metallic bearing between the cutting paths 62 in the pattern plates 60 to avoid galling and to ensure smooth articulation of the drill 90 along the cutting path 62. Positioned between the drill bushings 92 and the drill 90 are retention springs 94 which are essentially coil springs retained within the drill bushings 92 to allow the drill bushings 92 to be easily attached and removed from the drill 90. These retention springs 94 are commercially available in medical grade stainless steels. The drill bushings 92 retain the retention springs 94 which hold the drill bushings 92 in position 92 on the drill 90 while allowing the drill bushings 92 to rotate freely. The drill 90 may also include circumferential grooves 91 for allowing attachment and retention of the drill bushings 92 by means of the retention springs 94. Importantly, the configuration of the drill 90 can vary in accordance with what is known in the art, as long as the cutting device can follow the cutting paths 62 in the pattern plates 60 to resect the femur 7. As shown in FIG. 6, after the pattern device 59 is attached to the distal femur 7, and positioned accordingly by means of the positioning apparatus 10, and secured to the distal femur 7 by means of cannulated screws 70 and fixation nails 71, positioning apparatus 10 may be removed from connection to the distal femur 7 leaving the pattern device 59 attached to the distal femur 7 to permit resecting of the distal femur. The drill 90 is then positioned within the cutting paths 62 between the pattern plates 60. Next the drill 90 is rotated by power means in connection with the hexagonal end 95, and is then moved along the cutting path 62 to resect the distal femur 7. It should also be noted that the cutting means could be operated by hand. Instead of two pattern plates 60, a single pattern plate could be employed if it is sufficiently sturdy to support and guide the drill. The pattern plates 60 may also comprise plates having edges in the shape of the desired distal femoral resection pattern. Thus, the cutting device may be drawn along the edges of the pattern plates to resect the distal femur. Further, any cutting device that can be employed to follow the cutting paths in the pattern plates is considered to be within the scope of this invention. The resection apparatus of the present invention, through proper use as previously described, provides extremely accurate and reproducible bone cuts. While the anterior and distal areas of the femur will almost always be able to be prepared in this manner, interference from soft tissue such as fat and ligaments may prohibit satisfactory preparation of the posterior femur. The preparation of any remaining femoral surfaces may be completed in any manner known in the art after using the instrumentation of the present invention. As shown in FIGS. 8-13, the tibial resection apparatus of the present invention includes a number of components, namely, cutting guide clamps generally indicated at 210, cutting guides generally indicated at 220, ankle clamp generally indicated at 250, alignment rod generally indicated at 260, cutting guide clamp linkage generally indicated at 270, fixation block generally indicated at 280, proximal tibial referencing stylus generally indicated at 290, and milling bit generally indicated at 255. It should be noted that the cutting guides 220 may be formed integrally with the cutting guide clamps 210 as shown in FIGS. 8 and 9, or as separate members as shown in FIGS. 11, 12 and 13. Also, the cutting guides 220 may ride the alignment 260 as shown in FIGS. 8 and 9, or they may interconnect with the alignment rod 260 by means of cutting guide clamp linkage 270, as shown in FIGS. 11, 12 and 13. As shown in FIG. 8, the ankle clamp 250 is attached at or just above the ankle and exterior to the skin. Any conventional ankle clamp may be used to firmly engage the ankle, or to engage the tibia above the ankle, to obtain a reference point for the other components of the present invention. The ankle clamp is interconnected with and locked into place on the alignment rod 260 in any way known in the art. Preferably, though not necessarily, the alignment rod 260 is vertically adjustable with respect to the ankle clamp 250. This vertical adjustment can be achieved at the ankle clamp 250, at the interconnection of the ankle clamp 250 and the alignment rod 260, or within the alignment rod 260 itself. As shown in FIG. 8, the alignment rod includes a first lower end 262 having an aperture 263 extending vertically therein for telescopically receiving a second upper end 265 of the alignment rod 260. A set screw 264 is provided for fixing the upper end 265 with respect to the lower end 262. The fixation block 280 is interconnected with an upper end of the alignment rod 260 by means of an aperture 282 in the fixation block 280 sized to receive the alignment rod 260 therethrough, or in any other manner known in the art. A set screw 284 may be provided to extend into the fixation block 280, through set screw aperture 286 in fixation block 280, to contact the alignment rod 260, to lock the fixation block 280 onto the alignment rod 260. The fixation block 280 additionally includes apertures extending vertically therethrough for receiving fixation pins 288 for affixing the fixation block 280 to the proximal tibia 208. In operation, the ankle clamp 250 is attached about the ankle, or about the tibia just above the ankle, on the exterior of the skin. The fixation block 280 is already interconnected with the alignment rod 260. It is preliminarily positioned over the proximal tibia 208, and one of the fixation pins 288 is driven into the proximal tibia 208. Thereafter, the alignment rod 260 is adjusted to establish proper varus/valgus alignment and flexion/extension angulation as is conventionally known. Upon proper alignment of the alignment rod 260, the other fixation pin 288 is driven into the proximal tibia 208 to completely fix the fixation block 280 to the proximal tibia 208 to lock in the proper alignment of the alignment rod 260. Then, the fixation block 280 may be locked into position on the alignment rod 260. After properly aligning and locking in the alignment of the alignment rod 260, the cutting guide clamps 210 and the cutting guides 220 may be employed. The cutting guide clamps 210 are interconnected with the alignment rod 260 by means of cutting guide linkage 270. Alternatively, the cutting guide clamps 210 could directly interconnect with the alignment rod 260 through apertures in the cutting guide clamps 210, as shown in FIGS. 8 and 9. As shown in FIG. 10, the cutting guide clamp linkage 270 comprises a body 271 having an alignment rod aperture 272 for receiving and riding the alignment rod 260 and a pivot locking set screw 274 which extends into the cutting guide clamp linkage 270 through set screw aperture 275 for contacting the alignment rod 260 and locking the cutting guide clamp linkage 270 with respect to the alignment rod 260. It should be pointed out that it may be desirable for the alignment rod 260 to have a flattened surface extending longitudinally along the alignment rod 260 for co-acting with set screw 274 for maintaining proper alignment between the cutting guide clamp linkage 270 and the alignment rod 260. The cutting guide clamp linkage 270 also includes a pivot shaft 276 rigidly interconnected with the body 271 of the cutting guide clamp linkage 270 by member 277 to position the pivot shaft 276 a distance away from the body 271 such that the cutting guide clamps 210 can be interconnected with the pivot shaft 276 and can be properly utilized without interfering with the body 271 of the cutting guide clamp linkage 270. After the alignment rod 260 is properly aligned and locked into position, the cutting guide clamp linkage 270 is moved into its approximate desired position at the proximal tibia 208. It should be noted that the cutting guide clamp linkage 270 of present invention is positioned on the alignment rod 260 at the beginning of the procedure, prior to aligning the alignment rod 260, and prior to interconnecting the fixation block 280 with the alignment rod 260. However, it is within the scope of the present invention to provide a cutting guide clamp linkage 270 which is attachable to the alignment rod 260 after the alignment rod 260 has been aligned and locked into position. After the cutting guide clamp linkage 270 is preliminarily approximately located, it is locked into place on the alignment rod 260. Thereafter, the cutting guide clamps 210 may be interconnected with the pivot shaft 276 by means of corresponding pivot apertures 217 in the cutting guide clamps 210. As shown in FIGS. 11 and 12, the cutting guide clamps 210 include opposing hand grips 212 for grasping and manipulating the cutting guide clamps 210. Crossbar members 214 extend from the hand grips 212 to clamp members 218. The crossbar members 214 cross over each other at cross over point 215 whereat the crossbar members 214 have mating recessed portions 216 which function to maintain the hand grips 212 in the same plane as the clamp members 218. At the cross over point 215, the crossbar members 214 can pivot with respect to each other such that movement of the hand grips 212 towards each other moves the clamp members 218 together, and likewise, movement of the hand grip members 212 away from each other serves to move the clamp members 218 apart in the same manner as scissors or pliers. At the cross over point 215, the crossbar members 214 have corresponding pivot apertures 217 for receiving the pivot shaft 276 of the cutting guide clamp linkage 270. Thus, the cutting guide clamps 210 pivot about the pivot shaft 276 of the cutting guide clamp linkage 270. It should be noted that the crossbar members 214 could be interconnected with each other by a rivet or other means known in the art, or could be entirely independent pieces which co-act as set forth above only upon being seated on pivot shaft 276. The clamp members 218 of the cutting guide clamps 210 include cutting guide adjustment screw apertures 219 at the far ends thereof for receiving A-P adjustment screws 230 for adjustably interconnecting the cutting guides 220 with the clamp members 218, for adjustable movement in the direction shown by arrow C in FIG. 11. The clamp members 218 may be adjustably interconnected with the cutting guides 220 in any way known in the art. In one embodiment, the cutting guide adjustment screw apertures 218 are threaded and the cutting guides 220 have corresponding elongated apertures 228 extending over a portion of the length thereof for receiving the A-P adjustment screws at a desired location therealong. The A-P adjustment screws include a head 231, a retaining head 232, and a threaded shaft 234. When the cutting guides 220 are positioned correctly with respect to the clamp members 218, the A-P adjustment screws 230 are tightened down to lock the cutting guides 220 onto the clamp members 218 by actuating the head 231 to turn down the threaded shaft 234 with respect to the clamp member 218. Note the retaining head 232 of the A-P adjustment screws prevent the shaft 234 from being backed off out of engagement with the clamp member 218. As shown in FIGS. 14 and 15, respectively, the clamp members 218 are shaped with opposing interior edges having chamfers 238 and the opposite exterior edges of the cutting guides 220 have mating recesses 239, both of said profiles extending along the contacting surfaces of the clamp members 218, as seen along line A-A in FIG. 12, and the cutting guides 220, as seen along line B-B in FIG. 12, to maintain a proper planar alignment therebetween. It should of course be noted that any other method known in the art may be employed to maintain the clamp members 218 and the cutting guides 220 in alignment. Additionally, the cutting guides 220 may include A-P adjustment screw recesses 237 for receiving the head 231 of the A-P adjustment screw 230. The cutting guides 220 further include tibia attachment means for attaching the cutting guides 220 to the tibia 208. Any known attachment means may be employed to attach the cutting guides 220 to the tibia 208. As shown in FIGS. 9 and 11, a preferred attachment means for attaching the cutting guides 220 to the tibia 208 are pins 236 extending through pin apertures 227 in the cutting guides 220. The pins 236 may be captured in the pin apertures 227, or they may be entirely separate. Preferably, means exist on the cutting guides 220 for preliminarily attaching the cutting guides 220 to the tibia 208 prior to pinning the cutting guides 220 thereto, so that after proper positioning of the cutting guides 220, the hand grips 212 can be actuated by squeezing the hand grips 212 together to contact the cutting guides 220 against the tibia 208 so that the cutting guides 220 are preliminarily attached to the tibia 208. Such means may include a plurality of small pins captured by the cutting guide 220, or any other suitable means. After the preliminary attachment of the cutting guides 220 to the tibia 208, final attachment may be made by attachment pins 236 or by any other means known in the art. The cutting guides 220, importantly, include cutting slots 222 which each comprise lower cutting slot guide surface 223 and upper cutting slot retaining surface 225, as well as cutting slot entrance and exit 224 at one end thereof and cutting slot end wall 226 at the other end thereof. The cutting slot 222 is of a length sufficient to extend across the proximal tibia 208, at a desired angle to the intermedullary canal, at the widest point of the proximal tibia 208, to allow the entire upper surface of the proximal tibia 208 to be cut. The cutting slot 222 is of a size sufficient to receive a cylindrical milling bit 255 such as that shown in FIG. 16 and described in U.S. Pat. No. 5,514,139, filed Sep. 2, 1994 by Goldstein, et al. The milling bit 255 comprises central cutting portion 257 having helical cutting teeth along its length for cutting bone. The milling bit 255 further comprises spindles 256 extending from the central cutting portion 257 for supporting the central cutting portion 257. The milling bit 255 is inserted into and received in the cutting slot 222 through cutting slot entrance 224, along the direction shown by arrow A in FIG. 16. Note that the cutting slot entrance 224 may be of a wider slot area or an upturned portion of the slot 222 or the milling bit 255 may merely be inserted and removed from the slot 222 at an end thereof. The spindles 256 extend through and co-act with the lower cutting guide surface 223 and the upper retaining surface 225 of the cutting slot 222 to guide the milling bit 255 along the cutting slot 222 to resect the proximal tibia 208, along the direction shown by arrow B in FIG. 16. At an end of one or both of the spindles 256 is a means for engaging the milling bit 255 with a drive means such as an electric drill, or other drive means. This engagement means may include a hexagonal head on one of the spindles, or any other suitable method of engagement known in the art. Additionally, bushings may be employed, either on the milling bit 255 or captured by the cutting slot 222, to provide a non-metallic bearing between the spindles 256 of the milling bit 255 and the cutting slot 222 to avoid galling and to ensure smooth articulation of the milling bit 255 along the cutting slots 222. Importantly, the configuration of the milling bit 255 may be varied in accordance with what is known in the art, as long as the cutting device can follow the cutting path of the cutting slot to resect the proximal tibia. Additionally, it should also be pointed out that other cutting tools may be used in accordance with the present invention, including an oscillating or reciprocating saw or other means for resecting the tibia by following the cutting slots on the cutting guides. After the cutting guide clamps 210 are preliminarily located along the alignment rod 260, the cutting guides 220 are adjusted with respect to the clamp members 218 for proper anterior-posterior positioning to extend along the proximal tibia 208 for guiding the milling bit 255. Importantly, the cutting slots 222 should extend beyond the edges of the proximal tibia 208. Once proper anterior-posterior alignment is obtained, the cutting guides 220 may be locked into place on the clamp members 218. Thereafter, a proximal tibial referencing stylus 290 may be attached to a referencing bracket 292 on the cutting guides 220. The referencing bracket 292 may be positioned in any location on the cutting guides 220, or on any other convenient component of the tibia resection system of the present invention. Alternatively, the referencing stylus 290 may be formed as part of a component of the present invention, or as a separate component which could function merely by contacting the cutting guides 220 of the present invention or any other component thereof. The referencing stylus 290, shown in FIG. 13, includes stylus body 294 which may be interconnected with the referencing bracket 292 in any manner known in the art, preferably by a quick release and connect mechanism or a threaded connection. The stylus body 294 supports a stylus arm 296, which is rotatable with respect to the stylus body 294 and configured to extend out and down from the stylus body 294 to contact the proximal tibia 208 at a tip 298 of the stylus arm 296. The stylus body 294, arm 296 and tip 298 are sized to contact the proximal tibia 208 to reference the positioning of the cutting guides 220 to cut the proximal tibia at a proper distance below the proximal tibia 208 as is known in the art. The stylus arm 296 may include more than one tip 298, such other tips extending down from the stylus body 294 in varying distances. In operation, one determines the desired location of the stylus tip 298, unlocks the cutting guide clamp linkage 270 to permit the linkage 270 to move up and down the alignment rod 260, and places the tip 298 on the lowest point of the proximal tibia 208 to reference the position of the cutting guides with respect to the proximal tibia 208 and with respect to the alignment rod 260. Thereafter, the cutting guide clamp linkage 270 is locked to the alignment rod 260 to lock the cutting guides 220 into the proper position on the alignment rod 260, and accordingly, into proper position with respect to the proximal tibia 208. Thereafter, the hand grips 212 are actuated to press the cutting guides 220 against the proximal tibia 208 to preliminarily lock them into position on the proximal tibia 208. Next, the cutting guides 220 are fixed to the proximal tibia 208 by pins 236 or any other desired fixation means. The fixation block 280 can then be removed from the proximal tibia 208, and the proximal tibia 208 may be resected. The cutting operation is similar to the cutting operation set forth in U.S. Pat. No. 5,514,139, filed Sep. 2, 1994 by Goldstein, et al. Essentially, the cutting operation comprises inserting the milling bit 255 into the cutting guide slots 222 through the slot entrance/exit 224 to position the central cutting portion 257 between the cutting guides 220, the spindles 256 extending through the cutting guide slots 222. After the milling bit 255 is positioned, the drive means may be interconnected therewith, actuated, and the milling bit 255 moved along the cutting slots 222 to resect the proximal tibia 208. It should be noted that a handle may be provided for attachment to the spindle which is not driven so that such spindle may be guided evenly through the cutting slots 222 to facilitate the cutting procedure. Alternatively, a handle can be provided which interconnects with both spindles to further facilitate control of the milling bit 255 during the cutting procedure. Additionally, the bushings that fit over the spindles 256 of milling bit 255 and ride in the cutting slots 222 may be captured in the ends of the handle and the milling bit received therethrough. Additionally, it should be pointed out that it is within the scope of the present invention to modify the cutting slots 222 such that the upper retaining surface is eliminated, and the milling bit 255 merely follows the lower cutting guide surface 223. With the cylindrical milling bit 255 herein described, this is especially viable as the milling bit 255 tends to pull down into the bone as it is cutting, thereby primarily utilizing the lower cutting guide surface 223 of the cutting guide 220. As shown in FIGS. 16-18, various other embodiments of the cutting guides are considered within the scope of the present invention. The cutting guide 320 shown in FIG. 16 is of a generally U-shaped configuration, having cutting guide slots 322, lower cutting guide surface 323, upper retaining surface 325, pin apertures 327 and alignment rod aperture 328. This cutting guide 320 is used in the same manner as the cutting guides hereinbefore described, the differences being that the cutting guide 320 interconnects directly with the alignment rod and that various size cutting guides must be provided to accommodate various sized tibias. Likewise, the cutting guide 320, shown in FIG. 17, operates in the same manner as the cutting guide devices hereinbefore described, but it does not include cutting guide clamps. The cutting guide 320 includes cutting slots 322, and it interconnects directly with alignment rod by means of aperture 328. The distance between facing members 330 can be adjusted by moving base members 332 and 334 with respect to each other to size the cutting guide 320 for the tibia to be cut. Upon proper sizing, the base members 332 and 334 may be locked with respect to each other by set screw 336 or any other means known in the art. FIG. 18 shows an embodiment of the cutting guide for use when the patellar tendon, the patella, or the quad tendon interferes with the placement of the other cutting guides of the present invention. As shown in FIG. 18, the cutting guide 350 may be directly interconnected with the alignment rod, and positioned on the tibia as hereinbefore set forth. Basically, this embodiment of the invention includes only one cutting guide. The cutting guide 350 and the cutting guide slot 322 may be wider than in the previous embodiments to help stabilize the milling bit in operation. In this embodiment, the milling bit may be first plunged across the tibia, and then moved therealong. The milling bit may be spring loaded to increase resistance as it is plunged through the cutting guide to bias the bit against being plunged too far across the tibia to cause damage to the tissue about the tibia. Additionally, a support member, not shown, could be provided to extend from the cutting guide 350, over and across the tibia to the other side thereof where it could have a slot to capture the milling bit and provide additional support thereto. The reference numerals 338, 360 and 392 correspond to the reference numerals 238, 260 and 292 respectively. As shown generally in FIGS. 19-23, the pattern apparatus of the present invention, generally indicated at 430, comprises pattern plates, generally indicated at 432, and crossbar apparatus, generally indicated at 440. Pattern Plates Pattern plates 432 include fixation apertures 434 extending therethrough for accepting fixation means, as will hereinafter be described, for affixing the pattern plates 432 to a bone. The pattern plates 432 further include a cutting path 436 for dictating the path along which a bone is to be cut. As shown in FIGS. 19-23, which are directed to an embodiment of the present invention for resecting a distal femur, the cutting path 436 in the pattern plates 432 matches the profile of a femoral component of a knee prosthesis for resecting the femur to accept the femoral component of the prosthesis. Importantly, as will hereinafter be described, the cutting path 436 could be identical in size and shape to an interior bearing surface of a femoral component of the knee prosthesis, or could vary in size and shape in accordance with alternative methods and apparatus used to perform the resection. For example, the cutting path could be larger than the desired resection, but a larger cutting tool could be used to arrive at a resection of the desired the desired size. In the embodiment of the present invention shown in FIG. 21, the cutting path 436 includes an anterior end 436A, an anterior cut portion 436B, an anterior chamfer portion 436C, a distal cut portion 436D, a posterior chamfer portion 436E, a posterior cut portion 436F, and a posterior end 436G. Alternatively, the cutting path 436 could be of any desired shape in accordance with the prosthesis systems of the various manufacturers of such prosthesis, the desires of the surgeon utilizing the apparatus and/or the application for which a bone is to be cut. Although a single pattern plate 432 may be employed in resecting a femur or other bone (and in some cases, i.e., a partial femur resection, it may be preferable to employ a single pattern plate 432), two pattern plates 432 are generally employed to co-act with each other to support a cutting means on two sides of a bone to be cut. In the case of resecting a femur, a preferred embodiment of the present invention, as shown in FIGS. 19-21, comprises two pattern plates 432 positioned on opposing sides of a femur. The pattern plates 432 are interconnected with each other, and maintained in proper alignment with respect to each other by a crossbar apparatus generally indicated at 440, to straddle a bone. The pattern plates 432 include crossbar apertures 438 for interconnecting with the crossbar apparatus 440. The pattern plates may also include crossbar slots 439 for permitting quick connect/disconnect between the pattern plates 432 and the crossbar apparatus 440. Of course, it should be noted that the pattern plates 432 could interconnect with the crossbar in any other manner known in the art, or especially with bone cutting applications other than resecting the femur, the pattern plates 432 could be used without a crossbar. Crossbar Apparatus The crossbar apparatus 440 includes a number of component parts, namely, T-bar 442 having a top 444 and a stem 446 interconnected with and extending from the top 444 in the same plane. The T-bar 442, shown in the figures, comprises a flat metal member having a uniform rectangular cross-section through both the top 444 and the stem 446. Three threaded lock apertures 448 are formed through the T-bar 442, one at each end of the top 444 and at the far end of the stem 446. Lock screws 450, having gripable heads 452 and shafts 454 with threaded waists 456, threadably engage the threaded lock apertures 448 in the T-bar 442. The lock screws 450 further include pin holes 458 extending radially through the shafts 454 at the terminal ends thereof for receiving pins 459 for capturing the lock screws 450 on the T-bar 442. The crossbar apparatus 440 further includes linkages 460 having a first end for interconnection with the T-bar 442 and a second end for supporting and engaging pattern plates 432. The first ends of the linkage 460 include a lower flat surface 462 for contacting the T-bar 442, overhanging shoulders 464 for contacting the sides of the T-bar 442, and an upper flat surface 466 for contact with the lock screws 450 for locking the linkages 460 onto the T-bar 442. As shown in detail in FIG. 23, the second ends of the linkage 460 include cylindrical supports 468 for supporting the pattern plates 432 thereon. The cylindrical supports 468 include axial extending apertures 469 for receiving capture pins 470 therethrough, the capture pins 470 including flanged ends 472 and threaded ends 474. The capture pins 470 serve to capture pattern lock nuts 476 on the linkages 460, the capture pins 470 extending through the axial apertures 469, the flanged ends 472 retaining the capture pins 470 therein, the threaded ends 474 extending out of the cylindrical supports 469 and into the threaded interior 477 of the pattern lock nuts 476. The cylindrical supports 468 receive the crossbar apertures 438 of the pattern plates 432 and the pattern lock nuts 476 are threaded down onto the capture pins 470 to secure the pattern plates 432 to the crossbar apparatus 440. Of course, other embodiments of the crossbar apparatus sufficient for supporting the pattern plates of the present invention are considered within the scope of the present invention. Positioning Apparatus As shown in FIGS. 24-28, the positioning apparatus of the present invention is generally indicated at 510. The positioning apparatus generally comprises positioning body 520 and alignment apparatus 580. The positioning body 520 comprises a frame 522 having sides 524, bottom 526 and top 528 arranged to form a frame having a rectangular aperture defined therewithin. The top 528 further includes a head 530 formed thereon having a linkage aperture 532 extending therethrough at an upper end thereof, and having a lock aperture 534 extending from the upper edge of the head to the linkage aperture 532. A lock screw 536 having a threaded shaft 538 extends into and is threadably engaged with the lock aperture 534 for locking the head 530 to a linkage, namely crossbar linkage 540. Crossbar linkage 540 includes a first end having an upper flat surface 542 for interconnecting with the crossbar in a manner similar to the pattern plate linkages for attaching the pattern plates to the crossbar as hereinbefore described. The crossbar linkage 540 further includes a shaft 544 which is received by the linkage aperture 532 in the head 530 to interconnect the positioning body 520 with the crossbar linkage 540 and hence with the crossbar apparatus 440 and the pattern apparatus 430. The positioning body can then be locked onto the crossbar linkage 540 by means of lock screw 536. The end of shaft 544 of the crossbar linkage 540 includes projections 546 extending axially from the shaft 544. When the shaft 544 is positioned in the linkage aperture 532, the projections 546 extend beyond the frame 522 and are received in slots 556 in alignment indicator 550 for keying the orientation of the alignment indicator 550 with the alignment of the crossbar linkage 540, and hence with the alignment of the crossbar apparatus 440 and the pattern apparatus 430. The alignment indicator 550 includes an alignment arrow 552 for indicating alignment on a scale that may be set forth on the positioning body 520. An indicator pin 558 having a shaft 559 may be employed to pin the alignment indicator 550 to the crossbar linkage 540. Attachable to the bottom 526 of the positioning body 520 is skid 560. The skid 560 includes skid apertures 562, one of which may include an aperture flat 564 for ensuring proper alignment and positioning of the skid 560 with respect to the positioning body 520. The skid 560 is attached to the bottom 526 of the positioning body 520 by means of skid bolts 566 having threaded shafts 568 which co-act with threaded apertures in the bottom 526 of the positioning body 520. Of course, the skids could be formed integrally as part of the positioning body. The sides 524 of the positioning body 520 include slots 570 extending in a facing relationship along the sides 524. The slots extend from exterior surfaces of the sides to interior surfaces thereof, i.e., to the interior rectangular aperture formed within the positioning body 520. Alignment Apparatus The alignment apparatus 580 interconnects with the positioning body 520 by means of alignment guide body 582 which is a U-shaped member having sides 584 and a bottom 586. The alignment guide body 582 is sized to fit within the rectangular aperture formed within the positioning body 520. The alignment guide body 582 is retained within the positioning body by means of guide studs 572 that extend through the sides 524 of the positioning body 520 within the slots 570 and into guide apertures 588 at one side of the alignment guide body 582. At the other side of the alignment guide body 582 a lock stud 584 extends through the slot 570 in the side 524 of the positioning body 520 and into a threaded lock aperture 589 in the alignment guide body 582. The guide studs 572 and the lock stud 574 co-act to maintain the alignment guide body 582 within the positioning body 520, and the lock stud 574 can be threaded down to lock the vertical position of the alignment guide body 582 with respect to the positioning body 520. At upper ends 590 of the sides 584 of the alignment guide body 582 are plate apertures 591. The alignment plate 592 includes bolt apertures 595 aligned with the plate apertures 591 of the alignment guide body 582, and plate bolts 594 extend through the bolt apertures 595 in the alignment plate 592 and into the plate apertures 591 to secure the alignment plate 592 to the alignment guide body 582. The alignment plate 592 further includes rod guide aperture 597 which receives rod guide bolt 596 therethrough to interconnect the alignment plate 592 with the IM rod guide 610 as will hereinafter be described. Additionally, the alignment plate 592 includes lock slot 606 extending through the alignment plate 592 along an arc for purposes hereinafter described. The IM rod guide 610 includes IM rod aperture 612 for receiving an IM rod therethrough. The IM rod guide 610 is interconnected at a forward end with the alignment plate 592 by means of plate attachment aperture 614 on the rod guide 610 which receives rod guide bolt 596 therein, after such bolt 596 passes through the alignment plate 592 to secure the rod guide 610 in a pivoting relationship with respect the alignment plate 592 at forward ends of the rod guide 610 and the alignment plate 592. The IM rod guide 610 is additionally interconnected with the alignment plate 592 by rod guide lock bolt 600 which includes a threaded shaft 210 and pin aperture 602. The rod guide lock bolt 600 extends through the slot 606 in the alignment plate 592 and through threaded lock bolt aperture 616 in the rod guide 610 where it is captured by means of capture pin 618 extending through the pin aperture 602. The IM rod guide further includes rod guide handle 620 which is configured to be easily manipulated. The alignment plate 592 further includes a printed angular rotation scale which indicates the degree of angular rotation between the rod guide 620 and the alignment apparatus, and hence, the angular rotation between the IM rod and the positioning body 520. After such alignment is determined, it can be locked into place by tightening down rod guide lock bolt 600. Thereafter, with such angular rotation fixed, the pattern apparatus 430 can be positioned with respect to the bone to cut, and the positioning apparatus 510 can be removed from interconnection with the IM rod and the pattern apparatus 430, the IM rod removed from the bone, and bone cutting can be initiated. In another embodiment, as shown in FIGS. 28A, 28B, 28C and 28D, IM rod guide block 630 is used instead of the alignment plate 592 and the alignment guide body 582. The IM rod guide block 630 includes a rear surface 632, a front surface 634, a top surface 636 and sides 638. The sides 638 include retaining flanges 640 at the rear and front surfaces for retaining the IM rod guide block 630 within the rectangular aperture formed by the positioning body 520. The IM rod guide block 630 further includes IM rod aperture 642 extending through the block 630 from the rear surface 632 to the front surface 634 for accepting the IM rod therethrough. The rod aperture 642 extends through the guide block 630 at an angle A with respect to axis of the guide block for accommodating the varus/valgus orientation of the femur. The guide block 630 is part of a set of blocks having rod apertures of various angles extending therethrough, i.e., 5, 7, 9, 11, 13 degrees, for use with femurs having varying angles of orientation. The guide block 630 also includes lock aperture 646 for locking the proper vertical position of the guide block 630 with respect to the positioning body 620. The guide block 630 may additionally include two apertures 644 for accepting an anterior referencing arm for use in determining the anterior/posterior size of the femur. It should be noted that other alignment means for aligning the positioning apparatus with respect to a bone to be cut are considered within the scope of the present invention. Fixation Means Various fixation means, including those known in the art, can be used to fix the pattern plate or plates to the femur or other bone to be cut. FIG. 29 shows a preferred fixation means, generally indicated at 660. The fixation means 660 includes a spike plate 664 carrying on one side thereof a spike or spikes 662 for contacting, and even extending into, bone 661. At the other side of the spike plate 664 is spike plate socket 666 for receiving plate driving ball 668 in a keyed relationship therewith. The driving ball 668 is interconnected to an end of driving sleeve 670 and which has a threaded aperture extending therein from the opposite end thereof. A driving screw 672 having a threaded shaft 674 co-acts with the internally threaded driving sleeve 670 such that the rotation of the driving screw 672 either propels or retracts the driving sleeve 670, as well as the spike or spikes 662, with respect to the driving screw 672. The driving screw 672 further includes a captured head 678 and capture flange 676. The captured head 678 is received within a fixation aperture 434 in the pattern plate 432, the capture flange 676 preventing the captured head 678 from passing through the fixation aperture 434. A driving cap 680 is interconnected with the captured head 678 at the outside of the pattern plate 432. The driving cap 680 includes a shaft 682 received by the captured head 678, a flanged head 684 for contacting against the outside of the pattern plate 432, and a driver recess 686 of any desirable configuration for receiving driving means such as a flat, phillips or hex head driving means for driving the driving cap 680 to drive the driving screw 672 to move the spike or spikes 662 towards or away from a bone. Importantly, this type of fixation means allows for fixation of the pattern plates 432 to even osteoporotic bones. Additionally, this fixation means is self-adjusting to fit changing contours of bones. Further, because of its relatively low profile, this fixation means does not interfere with soft tissue about a bone to be cut. Other types of fixation means include cannulated screws, pins, spring loaded screws, captured screws, spiked screws and/or combinations thereof, all of which are considered within the scope of the present invention and could be used in connection with the present invention. Anterior/Posterior Referencing The apparatus of the present invention further includes built-in anterior/posterior referencing means as shown in FIG. 30 for use in connection with preparation of the distal femur in total knee replacement. As is known in the art, anterior/posterior referencing refers to proper positioning of the distal femur cuts with respect to the anterior and/or posterior sides of the femur or other bone to be cut. The anterior/posterior difference between femoral implant sizes may vary by as much as 3 to 5 millimeters between sizes. Of course, many femurs are between sizes. Disregarding proper positioning of the cutting guide and the associated femur cuts could lead to flexion contracture (where the bone is slightly below size and the implant adds too much material to posterior side of femur which results in the inability to move the knee into flexion because the extra posterior material contacts the tibial implant components) and/or anterior notching of the femur (where the bone is slightly above size and the anterior runout point of the anterior cut is recessed in the anterior side of the bone in a sharp notch, thus seriously weakening the structural integrity of the distal femur, especially under cyclic fatigue or impact loading conditions). Anterior referencing systems have a major advantage over posterior referencing systems in that they theoretically never notch the anterior cortex of the femur. The drawback of anterior referencing is that a slightly larger bone results in collateral ligament laxity in flexion and a slightly smaller bone will result in collateral ligament tightening in flexion (flexion contracture). Posterior referencing systems have a major advantage over anterior referencing systems in that they theoretically never develop flexion contracture. The drawback is that a slightly large femur is prone to anterior notching, which can increase the likelihood of distal femoral fractures under either impact loading or cyclic fatigue loading. Another approach to anterior/posterior referencing is a hybrid design that allows for both anterior and posterior referencing. The positioning apparatus 510 references the posterior femoral condyles (posterior referencing), while the pattern plates 432 allow for precise referencing of the anterior femoral cortex. The anterior referencing device can be as simple as that shown in FIG. 30, wherein a referencing pin 694 is placed through the anterior-most cutting paths 436 of the pattern plates 432 to contact the anterior femoral cortex 661. The pattern plates 432 include markings S (smaller size) and L (larger size). When the pin 694 falls between the S and L marks, the pattern plates 432 are the proper size and are properly positioned for that femur. If the pin 694 falls outside the range marked by S and L towards the S side, a smaller size pattern plate should be used, and conversely, if the pin 694 falls outside the range on the L side, a larger size pattern plate should be used. Alternatively, the pattern plate 432 could be adjusted vertically via means not shown to compensate for between-size bones. In another embodiment, the pattern plate could include a plunger assembly at the anterior end of the cutting path. The plunger could be movable vertically to contact the femur and indicate size of the femur with respect to the pattern plate in use. As such, the plunger could be incrementally marked from +4 to −4 millimeters with 0 being the proper size for the pattern plates in use. Again, the pattern plates could be sized up or down if the femur is off of the scale, or the pattern plates could be moved up or down to compensate for between size bones depending upon surgeon preference. If, for example, a bone registers a +2, anterior notching of the femur would occur. To avoid this, the pattern plates could be moved anteriorally 1 millimeter to +1. In this manner, anterior notching would be minimized and the posterior femoral condyles would only lack 1 millimeter of material, which should not be detrimental as some ligamentous laxity in flexion is acceptable because the collateral ligaments are normally slightly looser in flexion than they are in extension. It should be noted that the radii or curve in the anterior-most area of the cutting path will assure that anterior notching is easily avoidable. Pattern Plate with Tracking Means Another embodiment of the pattern plates of the present invention is shown in FIG. 31. In this embodiment, the pattern plates, generally indicated at 710, basically comprise only the lower edge, or bearing surface 716 of the cutting path 436 of pattern plates 432 shown in FIGS. 19-21. Accordingly, the pattern plate 710 includes fixation apertures 712 and crossbar aperture 714. The milling apparatus bears against the bearing surface and follows the same therealong to resect the bone in accordance with the shape of the bearing surface 716. Of course, the bearing surface could be smaller or larger than the desired cut location depending on the size of the milling apparatus. The pattern plate 710 could further include a groove or guide means 718 extending in the pattern plate alongside the bearing surface and the milling apparatus could include an arm or other retaining linkage 717 extending from the handle or bushing of the milling apparatus and into the groove 718 for engagement with the groove 718 for guiding or retaining the milling apparatus along the bearing surface 716 of the pattern plate 710. Alternatively, it should be noted that the bearing surface could also comprise just the upper surface of the cutting path 436 of the pattern plates 432, as shown in FIGS. 19-21. Ligament Balancing As shown in FIG. 32, an alternative embodiment of the alignment guide body 730 can be used for performing ligament balancing. The alignment guide body 730 of this embodiment can include a skid 732 formed as a part of the guide body 730, or attachable thereto. The skid 732 is of a relatively thick cross-section, approaching or equal to the cross-section of the guide body 730. The guide body 730 is attached to the femur 661 and the femur may be moved from extension to flexion and back, while the ligament tension of the collateral ligaments is reviewed. Ligamentous release can be performed to balance the ligaments. Further, shims 736, in either a rectangular cross-section (FIG. 32A) or an angled cross-section (FIG. 32B), can be used in connection with the alignment guide body 830 and skid 732. These shims could be positioned between the underside of the skid 732 and the resected tibia. Milling Means In a preferred embodiment of the invention, a cylindrical milling bit is used for following the cutting path described in the pattern plates for resecting a bone. Importantly, it is within the scope of the present invention to use a flat reciprocating bit, much like a hacksaw, for following the cutting paths described in the pattern plates for resecting a bone. Further, it may be desirable to make all or some of the cuts using a cylindrical milling bit or a flat reciprocating bit having a smooth center section without cutting means. An advantage of a cutting tool without cutting means along a center portion thereof is the protection of posterior cruciate ligament during resection of the femur. Accordingly, one cutting tool could be used to make the anterior cut, the anterior chamfer, the distal cut and the posterior chamfer, while another cutting tool, with a smooth center portion, could be used to make the posterior cut to avoid any chance of jeopardizing the posterior cruciate ligament. Additionally, the milling bits herein described can be used with or without a guide handle as will hereinafter be described. Further, it should be pointed out that it is within the scope of the present invention to fabricate the milling bit or other cutting tool from metal as heretofore known, or to alternatively fabricate the milling bit or other cutting tool from a ceramic material. An advantage of a ceramic milling bit or cutting tool is that such resists wear and, accordingly would be a non-disposable component of the present invention which would help to reduce the cost of the system of the present invention. Three Dimensional Shaping Initially, it should be noted that the term cutting profile the profile geometry of a mediolateral section taken normal to the cutting path through the bony surfaces created by cutting the bone. As shown in FIG. 33, in an alternate embodiment of the present invention, a milling apparatus having a three-dimensional profile, or a form cutter, can be used to shape a bone in three-dimensions. The curved profile milling bit 750, like the milling bits used in the previous embodiments of the present invention, includes cutting teeth 752 along the length thereof and spindles 754 at the ends thereof. This milling bit 730 can follow a pattern described by pattern plates and can be guided with a handle as will be hereinafter described. Importantly, by using a milling bit having a curved profile, one can cut a femur to resemble the natural shape of the femur, i.e., the resected femur would include condylar bulges and a central notch. This would reduce the amount of bony material that must be removed from the femur while maintaining the structural integrity of the femur. Of course, any prosthetic implant used for attachment to a femur resected by the curved profile milling bit would necessarily have an appropriately contoured inner fixation surface for mating with contoured surface of the femur. Additionally, it should be noted that the curved profile milling bit could have one or more curvilinear bulges along the length thereof, as shown in FIG. 33, or alternatively, could have one or more bulges discretely formed along the length thereof as shown in FIG. 35. Guide Handle As shown in FIG. 34, a guide handle, generally indicated at 698 may be used to guide the milling bit along the cutting path of the pattern plate. The guide handle 698 comprises a grip portion 700 which is grasped by the user for manipulating the guide handle 698 and accordingly, the milling bit. The grip portion 700 is interconnected with a crossbar member 702 which includes a extension member 703 telescopically interconnected therewith. The crossbar member 702 and the extension member 703 may be positioned perpendicular with respect to grip portion 700. The extension member 703 is telescopically movable in and out of crossbar member 702. Means may be provided for locking the relative position of the extension with respect to the crossbar. Also, it should be noted that the grip portion may rigidly or pivotally be interconnected with the crossbar as desired. Extending from outer ends of the crossbar 702 and the extension member 703 are sidebars 704 in facing and parallel relationship. The sidebars 704 have two ends, the first of which are interconnected with the crossbar and the extension member, and the second of which are configured to receive and capture spindles or bushings of a milling bit in spindle bushings 706. The spindle bushings are positioned in a facing relation and could include captured bushings. The captured bushings receive the spindles of a milling bit. The captured bushings are sized to be received by the cutting path in the pattern plates and co-act therewith to guide a milling bit therealong. Accordingly, after the pattern plate or plates are attached to a bone, the milling bit is placed into the cutting path. Next a milling handle 698 is positioned such the spindle bushings are aligned with the spindles of the milling bit. Next, the extension is actuated to retract into the crossbar to move the spindle bushings onto the spindles of the milling bit where they are captured. Next, the spindle bushings are positioned within the cutting path of a pattern plate or plates. If necessary, the extension and crossbar can be locked down to lock the entire apparatus. Next, the milling bit is actuated and the grip portion of the handle is grasped and manipulated to move the milling bit along the cutting path to cut a bone. Distally Positioned Pattern Plate As shown in FIGS. 35-37, in an alternate embodiment of the present invention for resecting a femur, the plates could take the form of a rail assembly, generally indicated at 760, positioned distally of the distal femur 661. The plates could be affixed to the femur by fixation arms 762, attached at one or more points to the rail assembly 760, and including fixation apertures 764 for receiving fixation screws or other fixation means for attaching the fixation arms 762, and hence the rail assembly 760, to a distal femur 661. The rail assembly 760 includes one or more guide rails 766 which match the shape of the desired resection, though the rails may be larger or smaller depending on the dimensions of the milling apparatus used and the positioning of the assembly 760 with respect to the femur. In the case that the assembly 760 includes two guide rails 766, as shown, an end rail 768 may be used to interconnect such guide rails 766. The end rail 768 could be replaced by a connection means similar to the crossbar apparatus 440, hereinbefore described. The rail assembly may be positioned on the distal femur in accordance with the teachings contained herein, or in any other manner known in the art. After alignment, according to any means disclosed herein or known or developed, and after fixation of the assembly to a femur, a milling bit 770 may be used to follow the guide rails 766 to resect the femur 661, the guide spindles 772, or bushings (not shown), of the milling bit 770, contacting and riding the guide rails 766. Importantly, the rail assembly 760 is attached to a femur and used in much the same way as the pattern plates previously described with the exception that the rail assembly can be positioned substantially distal of the femur, thereby potentially requiring less exposure and possibly resulting in less interference for placement thereof. The rail assembly 760 could further include an upper retaining rail for forming a slot or cutting path for capturing the milling bit therein. Additionally, it should be noted that any milling bit described herein could be used with rail assembly 760 including a curved profile milling bit. Curvilinear Implants As shown in FIGS. 38 and 39, an implant 780 may have curvilinear interior surfaces 782, as well as a more conventional curvilinear exterior surface. The particular example cited herein is a femoral implant used in total knee arthroplasty but the principles described herein may be applied to any application where foreign or indigenous material is affixed to an anatomic feature. The curvilinear bone surfaces necessary for proper fixation of such an implant may be generated through the use of the curvilinear milling or form cutter and the curvilinear cutting path means discussed herein. While it is possible to use multiple form cutters with differing geometries and, therefore, an implant with an internal geometry that varies along the cutting path from the anterior to the posterior of a femur, for the sake of intraoperative time savings a single form cutter is preferable. The mediolateral cross-sectional internal geometry of such an implant, and therefore the necessary resected bony surfaces of the femur, are consistent about the cutting path in a single form cutter system. It should be noted that the implant may possess a notch between members 784 (posterior femoral implant condyles) in the areas approximately in between the distal and posterior femoral condylar areas to accommodate the posterior cruciate ligament and other factors. Because of the notch between the posterior femoral condyles it may not be necessary for the form cutter to cut any material in the notch. It may be desirable to provide outer flat surfaces 785 with an adjoining curvilinear surface 782 positioned therebetween. Other combinations of flat or curvilinear surfaces are also within the scope of the present invention. Additionally, it may be advantageous to utilize a secondary form cutter as shown in FIG. 47 for use in creating a slot or slots in or near the distal area of the femur after it has been resected. Such a secondary cutter 790 would include engagement means 792 for engagement with driving means, and a shaft 794 carrying cutters 796 for cutting slots into the femur through one or more of the resected surfaces thereof. Through the inclusion of an additional or adjunct cutting path in the pattern means, it would be advantageous to utilize the form cutter to create the aforementioned slots to accommodate the fixation fins which may be molded as an integral part of the interior surface of the implant. These fins would provide mediolateral fixation stability in addition to that provided by the trochlear groove geometry of the implant. Further, the fins also provide for additional surface area for bony contact and ingrowth to increase implant fixation both in cemented and cementless total knee arthroplasty. There are numerous advantages to the femoral component herein described. Foremost, it will allow for the thinnest implant cross-section possible (perhaps 3 mm to 6 mm in thickness) and therefore necessitate the removal of the least amount of viable osseous tissue. This is especially critical in situations where the probability of revision surgery is high and the amount of viable bone available for revision implant fixation and apposition is a significant factor in the viability of the revision procedure. Since the form cutter configuration allows for similar amounts of tissue to be removed from the trochlear groove, the bony prominences surrounding the trochlear groove, the femoral condyles, and the other articular surfaces of the femur, the external geometry of the femoral implant can be optimized for patellofemoral articulation as well as tibiofemoral articulation. In essence, the kinematics of the artificial joint could be made to be as close as possible to that of a healthy, natural knee joint. In addition, the curvilinear geometry of the implant dramatically decreases the stress risers inherent in conventional rectilinear femoral implants and allows for a thinner cross-sectional geometry while potentially increasing the resistance of the implant to mechanical failure under fatigue or impact loading. Conversely, the curvilinear geometry of the implant may also allow for an advantageous reduction in the flexural rigidity of the implant which may result in avoidance of the “stress-shielding” inherent in rigid implant designs. Stress shielding being a phenomenon that may occur when living bony tissue is prevented from experiencing the stresses necessary to stimulate its growth by the presence of a stiff implant. This phenomenon is analogous to the atrophy of muscle tissue when the muscle is not used, i.e., when a cast is placed on a person's arm the muscles in that arm gradually weaken for lack of use. Additionally, the curvilinear implant design may allow for the use of a ceramic material in its construction. Since ceramics are generally relatively weak in tension, existing ceramic implant designs contain very thick cross-sections which require a great deal of bony material removal to allow for proper implantation. Utilization of ceramics in the curvilinear implant will not only allow for the superior surface properties of ceramic, but also avoid the excessively thick cross-sections currently required for the use of the material. This could result in a less expensive femoral implant because of the reduced amount of material needed for the implant, as well as an improved, more natural, and even stronger knee replacement. It may be desirable to vary the cross-section of the implant 780 to assist in seating the implant and to increase the strength and fit of the implant. The implants of the present invention having curvilinear implant surfaces could be fabricated of metal, plastic, or ceramic or any other material. Further, the thickness of the implants and the material required to fabricate the implant could be reduced as the implants are adapted to increasingly curvilinear surfaces. Also, it should be pointed out the such implants with curvilinear implant surfaces require less bone to be removed to obtain a fit between the implant and the bone. Finally, it should be noted that curvilinear milling bits hereinbefore described would work well for preparing a bone to receive an implant with curvilinear interior implant surface. Patella Shaping The apparatus for preparing a patella, as shown in FIGS. 40-42, comprises a plier-like patella resection apparatus generally indicated at 800. The patella resection apparatus 800 includes grip handles 802 for manipulating the apparatus, cross-over members 804 pivotally interconnected with each other by pin 806, and patella clamp members 808 extending from the cross-over members in parallel and facing relation. The patella clamp members 808 have beveled edges 810 for contacting and supporting a patella along the outer edges thereof. Guide member structures 812 are mounted on each of the patella clamp members 808 to form a retainer for a cutting means to follow a cutting path defined by the upper surface of the clamp members. Bushings 814 are captured within the retainer and the cutting path for receiving a cutting means 816 and guiding the cutting means 816 along the cutting path. In preparing the patella, the pattern device may be an integral part of the positioning apparatus which is oriented and located by referencing the geometry of the patella itself as well as the structures of the patellofemoral mechanism to determine the location and orientation of a predominantly planar resection. The cutting device may then be employed to perform the resection of the patella by traversing the path dictated by the pattern device, thus dictating the final location and orientation of the patella prosthesis. Bone Substitution and Shaping Referring now to FIG. 43, another embodiment of the pattern apparatus of the present invention for cutting bone is shown. This embodiment of the invention includes pattern plates 832 having cutting paths 836 described therein. The pattern plates 832 may be positioned on a bone 828 having a tumor or other pathology 829 associated therewith. The pattern plates 832 may be interconnected by crossbars 838 with opposing pattern plates (not shown) positioned on the opposite side of the bone 828. Further, each set of pattern plates 832 could be interconnected by means of positioning rod 839 extending between the crossbars 838 to maintain the relative location and orientation between the sets of pattern plates 832. The pattern plates can be positioned along the bone in accordance with what is known in the art, disclosed herein or hereafter developed. After the pattern plates are properly positioned, they can be affixed to the bone 828 with fixation means extending through fixation apertures 834. After the pattern plates are properly located and affixed to the bone, cutting can commence by traversing a cutting means along the cutting paths 836 of the pattern plates 832. By this step, the tumor or other pathology 829 can be cut from the bone 828 and a bone graft or other surgical procedure can be implemented to repair and/or replace the bone that has been cut. The benefits of cutting a bone with the pattern plates of the present invention include providing smooth and even cuts to the bone to facilitate fixation of bone grafts or other means for repairing and/or replacing bone. Further, the same pattern plates can be used to cut another identical sized and shaped bone for grafting to the first bone to replace the cut away bone. Alternate Positioning and Alignment Guide An alternate positioning and alignment guide is generally indicated at 840 in FIG. 44. The positioning body 840 comprises a crossbar linkage 842 and an alignment indicator 844 at an upper end thereof for interconnecting with a crossbar to align pattern plates interconnected with such crossbar. The positioning body 840 also includes an alignment block 846 for interconnecting with an intramedullary rod in much the same manner as the IM rod guide block shown in FIG. 28. The alignment block 846 is vertically movable along the positioning body 840 and can be locked into a desired position by means of lock screw 860 which bears against a flange 848 of the alignment block 846. The positioning body 840 further includes skids 850 for contacting the posterior surface of the distal femoral condyles for referencing same. Unicondylar and/or Single Pattern Plate Support As shown in FIGS. 45 and 46, one pattern plate of the present invention can be used by itself to guide a cutting means along a cutting path to cut a bone. Such an application is particularly useful for unicondylar resecting of a femur. Use of a single pattern plate 862 is facilitated by bushing 868 having an outer flange 870 with a bearing surface 872 and an internal bore 874 sized to receive a spindle 865 of a cutting tool therein. The bushing 868 is sized to fit into the cutting path 864 of the pattern plate 862, the bearing surface 872 of the flange 870 contacting the side of the pattern plate 862. Washer 876 includes a central bore 878 sized to receive the far end of the bushing 868 extending past the pattern plate 862, the washer bearing against the side of the pattern plate 862 opposite the side that the bearing surface 872 of the flange 870 of the bushing 868 bears against. Thus, the washer and the bushing co-act to form a stable link with a pattern plate. As shown in FIG. 46, this link can be fortified by means of bearing arms 880 interconnected with the bushing and the washer, or formed integrally as part thereof, which by pressure means are forced together to retain the bushing within the cutting path of the pattern plate. After the bushing is captured within the cutting path, the spindle of the cutting means can be inserted through the bushing and interconnected with means 866 for driving the cutting means. Alternatively, it should be pointed out that when using a single pattern plate to cut a bone, it may be desirable to support the cutting means at the pattern plate and also at the other end thereof. One could effect such desired support at the other end of the cutting means by a brace or other linkage interconnecting the other end of the cutting means with a secondary support or anchor means positioned on the opposite side of the bone or at another location. Revisions Conventional revisions require removal of the old implant and the referencing of uncertain landmarks. Revisions, by means of the present invention, allow for reference of the implant while it is still on the bone. One can obtain varus/valgus referencing, distal resection depth, posterior resection depth and rotational alignment by referencing the geometry of the implant with the alignment guide. An extramedullary alignment rod can be used to facilitate flexion/extension alignment. The fixation screws can then be advanced to touch the bone and mark their location by passing standard drill bits or pins through the cannulations in the fixation screws and into the bone. Then, the pattern and guide device are removed, the old implant removed, and the pattern device repositioned by means of the marked location of the fixation screws and then fixed into place. Accordingly, the cuts for the new implant, and thus the new implant itself, are located and orientated based off of the old implant. This results in increased precision and awareness of the final implant location and orientation as well as potential intraoperative time savings. The particular example of the present invention discussed herein relates to a prosthetic implant for attachment to a femur in the context of total knee arthroplasty, i.e., a femoral implant. However, it should be pointed out that the principles described herein may be applied to any other applications where foreign or indigenous material is affixed to any other anatomic feature. As shown generally in FIGS. 38 and 48, the implant apparatus of the present invention, generally indicated at 910, comprises curvilinear interior fixation surface 920 as well as curvilinear exterior bearing surface 940. Importantly, the implant of the present invention includes curvilinear surfaces extending from an anterior to a posterior area of the femur and/or implant, as is conventionally known, as well as curvilinear surfaces extending from a medial to a lateral area of the femur and/or implant to approximate the shape of natural femur. In other words, the fixation path (i.e., corresponding to the cutting path along which the milling bit rides to resect the femur; indicated by arrow A in FIG. 38) as well as the fixation profile (as one proceeds along the cutting profile orthogonally to the cutting path; indicated by arrow B in FIG. 38) are both predominantly curvilinear. As such, the cutting profile (arrow B) of the interior fixation surface 920 could include a curved or flat area 922 and another curved or flat area 924 therebetween. Preferably, the outer areas 922 are flat or relatively flat and the inner area 924 is curved to approximate the shape of a natural distal femur 912. It should be pointed out that the outer areas 922 could be curved, and the inner area 924 could also be curved, but embodying differing radii of curvature. Additionally, it should be pointed out that the geometry of the internal fixation surface 920 of the implant 910 could be varied as desired. As such, any combination of flat surfaces and curvilinear surfaces could be used. As shown in FIG. 48, and in more detail in FIGS. 48A, 48B, 48C and 48D, the cross-sectional thickness and mediolateral width of the implant of the present invention could vary along the implant 910. This variance results from merging a cutting tool to cut a bone, i.e., the implant 910 closely resembles in size and shape the material removed from the bone. Accordingly, the cut starts as a point 925 and grows in depth and width. The curvilinear bone surfaces necessary for proper fixation of such an implant 910 may be generated through the use of the curvilinear milling bit or form cutter and the curvilinear cutting path means discussed in the previous related applications set forth herein, the entire disclosures of which are expressly incorporated herein by reference. Basically, the milling bit has a profile resulting in form cutter configuration which is concentric about its longitudinal axis to effect a curvilinear cutting profile for receiving the implant of the present invention. One embodiment of such a form cutter is shown in FIGS. 35 and 49. While it is possible to use multiple form cutters with differing geometries and therefore an implant 910 with an internal geometry that varies along the cutting path from the anterior to the posterior of a femur, for the sake of intraoperative time savings, a single anatomically optimal form cutter is preferable. The form cutter shown in FIGS. 35 and 49 comprises a cutting guide 950 having cutting paths 952 interconnected by member 954. A milling bit 960 having cylindrical milling areas 962 at the ends, and a curved milling area 964 at the center could be used. Of course, the milling areas carry cutting teeth. Spindles 961 interconnected at each end of the milling bit 960 could engage and ride the cutting path 952 of the cutting guide 950. The milling bit 960 is then guided along the cutting path 952 by means of a handle. Importantly, the shape of the milling bit 960 could be varied as desired to create a resection having a desired cutting path as well as a desired cutting profile. The mediolateral cross-sectional internal geometry of such an implant 910, and therefore the necessary resected bony surfaces of the femur, are consistent about the cutting path in a single form cutter system. It should be noted that the implant 910 may possess a notch 970 between members 972 (posterior femoral implant condyles) in the areas approximately between the distal and posterior femoral condylar areas to accommodate the posterior cruciate ligament, as well as for other reasons. Because of the notch 970 between the posterior femoral condyles, the form cutter may not cut any material in the notch 970. Additionally, it may be advantageous to utilize a secondary form cutter as shown in FIG. 47 for use in creating a slot or slots in or near the distal area of the femur before or after it has been resected. Such a secondary cutter 790 would include engagement means 792 for engagement with driving means, and a shaft 794 carrying one or more cutters 796 for cutting slots into the femur through one or more of the resected surfaces thereof. Through the inclusion of an additional or adjunct cutting path in the pattern means, it would be advantageous to utilize the form cutter to create the aforementioned slots in the distal femur to accommodate the fixation fins which may be molded as an integral part of the interior surface of the implant 910. An implant with fixation fins is shown in FIG. 50. The fins 980 would provide mediolateral fixation stability in addition to that provided by the trochlear groove geometry of the implant 910. Further, the fins also provide for additional surface area for bony contact and ingrowth to increase implant fixation both in cemented and cementless total knee arthroplasty. FIG. 33b shows another embodiment of a milling bit, generally indicated at 754 for creating a curvilinear cutting path and curvilinear cutting profile in femur 756. In this embodiment, the transition from a first cutting area 984 to a second cutting area 986 is continuous and smooth. This milling bit 754 also includes spindles 981 at the ends thereof for engagement with pattern means to guide the milling bit along a cutting path. There are numerous advantages to the femoral component herein described. Foremost, it will allow for the thinnest implant cross-section possible (perhaps 3 mm to 6 mm in nominal thickness) and therefore necessitate the removal of the least amount of viable osseous tissue. This is especially critical in situations where the probability of revision surgery is high and the amount of viable bone available for revision implant fixation and apposition is a significant factor in the viability of the revision procedure. Since the form cutter configuration allows for similar amounts of tissue to be removed from the trochlear groove, the bony prominences surrounding the trochlear groove, the femoral condyles, and the other articular surfaces of the femur, the external geometry of the femoral implant can be optimized for patellofemoral articulation as well as tibiofemoral articulation. In essence, the kinematics of the artificial joint could be made to be as close as possible to that of a healthy, natural knee joint. In addition, the curvilinear geometry of the implant dramatically decreases the stress risers inherent in conventional rectilinear femoral implants and allows for a thinner cross-sectional geometry while potentially increasing the resistance of the implant to mechanical failure under fatigue or impact loading. The implant could have a relatively consistent cross-sectional thickness throughout the implant, or it could be varied as desired. The curvilinear geometry of the implant may also allow for an advantageous reduction in the flexural rigidity of the implant which may result in avoidance of the “stress-shielding” inherent in rigid implant designs. Stress shielding being a phenomenon that may occur when living bony tissue is prevented from experiencing the stresses necessary to stimulate its growth by the presence of a stiff implant. This phenomenon is analogous to the atrophy of muscle tissue when the muscle is not used, i.e., when a cast is placed on a person's arm the muscles in that arm gradually weaken for lack of use. Further, the curvilinear implant of the present invention could allow for the use of a ceramic material in its construction. Since ceramics are generally relatively weak in tension, existing ceramic implant designs contain very thick cross-sections which require a great deal of bony material removal to allow for proper implantation. Utilization of ceramics in the curvilinear implant would not only allow for the superior surface properties of ceramic, but also avoid the excessively thick cross-sections currently required for the use of the material. The curvilinear implant of the present invention could result in a less expensive femoral implant because of the reduced amount of material needed for the implant, as well as an improved, more natural, and even stronger knee replacement. It may desirable to vary the cross-section of the implant to assist in seating the implant, to increase the joint kinematics and to increase the strength and fit of the implant. The implant of the present invention could be fabricated of metal, plastic, or ceramic or any other material or combination thereof. Further, the thickness of the implants and the material required to fabricate the implant could be reduced as the implants are adapted to increasingly curvilinear surfaces. Also, it should be pointed out that such implants with curvilinear implant surfaces require less bone to be removed to obtain a fit between the implant and the bone. Finally, it should be noted that curvilinear milling bits hereinbefore described would work well for preparing a bone to receive an implant with curvilinear interior implant surface. Importantly, by using a milling bit having a curved profile, one can cut a femur to resemble the natural shape of the femur, i.e., the resected femur would include condylar bulges and a central notch. This would reduce the amount of bony material that must be removed from the femur while maintaining the structural integrity of the femur. Of course, any prosthetic implant used for attachment to a femur resected by the curved profile milling bit would necessarily have an appropriately contoured inner fixation surface for mating with contoured surface of the femur. Additionally, it should be noted that the curved profile milling bit could have one or more curvilinear bulges along the length thereof, as shown in FIGS. 35 and 49, or alternatively, could have one or more bulges discretely formed along the length thereof. The complete disclosures of the patents, patent applications and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention generally relates to methods and apparatus for orthopedic surgical navigation and alignment techniques and instruments. 2. Related Art Different methods and apparatus have been developed in the past to enable a surgeon to remove bony material to create specifically shaped surfaces in or on a bone for various reasons including to allow for attachment of various devices or objects to the bone. Keeping in mind that the ultimate goal of any surgical procedure is to restore the body to normal function, it is critical that the quality and orientation of the cut, as well as the quality of fixation, and the location and orientation of objects or devices attached to the bone, is sufficient to ensure proper healing of the body, as well as appropriate mechanical function of the musculoskeletal structure. In total knee replacements, a series of planar and/or curvilinear surfaces, or “resections,” are created to allow for the attachment of prosthetic or other devices to the femur, tibia and/or patella. In the case of the femur, it is common to use the central axis of the femur, the posterior and distal femoral condyles, and/or the anterior distal femoral cortex as guides to determine the location and orientation of distal femoral resections. The location and orientation of these resections are critical in that they dictate the final location and orientation of the distal femoral implant. It is commonly thought that the location and orientation of the distal femoral implant are critical factors in the success or failure of the artificial knee joint. Additionally, with any surgical procedure, time is critical, and methods and apparatus that can save operating room time, are valuable. Past efforts have not been successful in consistently and/or properly locating and orienting distal femoral resections in a quick and efficient manner. The use of oscillating sawblade based resection systems has been the standard in total knee replacement for over 30 years. Due to their use of this sub-optimal cutting tool, the instrumentation systems all possess certain limitations and liabilities. Perhaps the most critical factor in the clinical success of TKA is the accuracy of the implant's placement. This can be described by the degrees of freedom associated with each implant; for the femoral component these include location and orientation that may be described as Varus-Valgus Alignment, Rotational Alignment, Flexion-Extension Alignment, A-P location, Distal Resection Depth Location, and Mediolateral Location. Conventional instrumentation very often relies on the placement of ⅛ or {fraction (3/16)} inch diameter pin or drill placement in the anterior or distal faces of the femur for placement of cutting guides. In the case of posterior referencing systems, the distal resection cutting guide is positioned by drilling two long drill bits into the anterior cortex. As these long drills contact the oblique surface of the femur they very often deflect, following the path of least resistance into the bone. As the alignment guides are disconnected from these cutting guides, the drill pins will “spring” to whatever position was dictated by their deflected course thus changing their designated, desired alignment to something less predictable and/or desirable. This kind of error is further compounded by the “tolerance stacking,” inherent in the use of multiple alignment guides and cutting guides. Another error inherent in these systems further adding to mal-alignment is deflection of the oscillating sawblade during the cutting process. The use of an oscillating sawblade is very skill intensive as the blade will also follow the path of least resistance through the bone and deflect in a manner creating variations in the cut surfaces which further contribute to prosthesis mal-alignment as well as poor fit between the prosthesis and the resection surfaces. Despite the fact that the oscillating saw has been used in TKA for more than 30 years, orthopedic salespeople still report incidences where poor cuts result in significant gaps in the fit between the implant and the bone. It is an often repeated rule of thumb for orthopedic surgeons that a “Well placed, but poorly designed implant will perform well clinically, while a poorly placed, well designed implant will perform poorly clinically.” One of the primary goals of the invention described herein is to eliminate errors of this kind to create more reproducible, consistently excellent clinical results in a manner that requires minimal manual skill on the part of the surgeon. None of the previous efforts of others disclose all of the benefits and advantages of the present invention, nor do the previous efforts of others teach or suggest all the elements of the present invention.
<SOH> OBJECTS AND SUMMARY OF THE INVENTION <EOH>Many of the specific applications of the method and apparatus of the present invention described herein apply to total knee replacement, a surgical procedure wherein planar surfaces and/or curvilinear surfaces must be created in or on bone to allow for proper attachment or implantation of prosthetic devices. However, it should be noted that it is within the scope of the present invention to apply the methods and apparatus herein described to the removal of any kind of material from bones in any other application where it is necessary, desirable or useful to remove material from bones. The apparatus of the present invention comprises a number of components including a positioning apparatus, a pattern apparatus and a cutting apparatus. The pattern apparatus is oriented and located by the use of the positioning apparatus which references the geometry of a bone to be resected and/or other anatomic landmarks. When used to resect a distal femur, the positioning apparatus also references the long axis of the femur. Once the positioning apparatus has been properly located, aligned, and initially fixed in place, the pattern apparatus may be attached thereto, and then adjusted according to the preferences of the surgeon utilizing the apparatus, and then the pattern apparatus can be rigidly fixed to a bone to be resected. This ensures the pattern apparatus is properly located and oriented prior to the use of the cutting apparatus to remove material from the bone. More specifically, when the method and apparatus of the present invention are used in connection with resecting a distal femur, the positioning apparatus is located and aligned utilizing the intramedullary canal of the femur, (thereby approximating the long axis of the femur), the distal surfaces of the femoral condyles, the anterior surface of the distal femur, and the posterior surfaces of the femoral condyles, which are referenced to indicate the appropriate location and orientation of the pattern apparatus. Fixation means may be used to fix the positioning apparatus, as well as the pattern apparatus to the distal femur. Means may be present in the positioning apparatus and/or pattern device for allowing the following additional adjustments in the location and orientation of the pattern device: 1. internal and external rotational adjustment; 2. varus and valgus angular adjustment; 3. anterior and posterior location adjustments; 4. proximal and distal location adjustment; and 5. flexion and extension angular adjustment. Cannulated screws, fixation nails or other fixation means may then be used to firmly fix the pattern apparatus to the distal femur. The positioning apparatus may then be disconnected from the pattern apparatus and removed from the distal femur. Thus, the location and orientation of the pattern apparatus is established. The pattern device possesses slot-like features, or a cutting path, having geometry that matches or relates to the desired geometry of the cut. When used in connection with resecting a knee, the cutting path resembles the interior profile of the distal femoral prosthesis. The cutting path guides the cutting apparatus to precisely and accurately remove material from the distal femur. Thus, the distal femur is thereby properly prepared to accept a properly aligned and located distal prosthesis. In preparing a patella, the pattern device may be an integral part of the positioning apparatus which is oriented and located by referencing the geometry of the patella itself as well as the structures of the patellofemoral mechanism to determine the location and orientation of a predominantly planar resection. The cutting device may then be employed to perform the resection of the patella by traversing the path dictated by the pattern device, thus dictating the final location and orientation of the patella prosthesis. The apparatus of the present invention comprises a number of components including an ankle clamp, an alignment rod, a fixation head, cutting guide clamps having an integral attachment mechanism, and a milling bit. The method of present invention includes the steps of attaching the ankle clamp about the ankle, interconnecting the distal end of the alignment rod with the ankle clamp, interconnecting the fixation head with the proximal end of the alignment rod, partially attaching the fixation head to the proximal tibia, aligning the alignment rod, completely attaching the fixation head to the proximal tibia, interconnecting the cutting guide clamps with the alignment rod, positioning the cutting guide clamps about the proximal tibia, securing the cutting guide clamps to the tibia at a proper location, removing the fixation head, and cutting the proximal tibia with the milling bit. The implant of the present invention has an outer bearing surface and an inner attachment surface. The outer bearing surface functions as a joint contact surface for the reconstructed bone. The inner attachment surface contacts a bone and is attached thereto. The inner attachment surface of the implant is curvilinear from an anterior to a posterior area of the femur, as is conventionally known, and is also curvilinear from a medial to a lateral area of the femur to approximate the shape of natural femur. The resection of the femur for accommodating the implant can be properly performed by a milling device employing one or more curvilinear milling bits. There are numerous advantages associated with the curvilinear implant of the present invention. First, it will allow for a very thin implant cross-section and therefore necessitate the removal of the least amount of viable osseous tissue. Accordingly, the kinematics of the artificial joint could be made to be as close as possible to that of a healthy, natural knee joint. In addition, the curvilinear geometry of the implant dramatically decreases the stress risers inherent in conventional rectilinear femoral implants and allows for a thinner cross-sectional geometry while potentially increasing the resistance of the implant to mechanical failure under fatigue or impact loading. Conversely, the curvilinear geometry of the implant may also allow for an advantageous reduction in the flexural rigidity of the implant which may result in avoidance of the “stress-shielding” inherent in rigid implant designs. This curvilinear implant of the present invention could also result in a less expensive femoral implant because of the reduced amount of material needed for the implant, as well as an improved, more natural, and even stronger knee replacement. The cross-section of the implant could be varied to assist in seating the implant and to increase the strength and fit of the implant. The implants of the present invention having curvilinear implant surfaces could be fabricated of metal, plastic, or ceramic or any other material. Further, the thickness of the implants and the material required to fabricate the implant could be reduced as the implants are adapted to increasingly curvilinear surfaces. The resected surfaces of a femur or other bone to accept the implant of the present invention could be prepared by the apparatus and method for resection shown and described in the prior related applications set forth herein, the entire disclosures of which are expressly incorporated herein by reference. The apparatus of the present invention comprises a number of components including a positioning and drill guide, a cutting guide and a cutting apparatus. The drill guide is used to create holes in the medial and lateral sides of the femur that correspond to the fixation features of the cutting guide. The cutting guide is oriented and located by inserting fixation nubs connected to the cutting guide into the medial and lateral holes in the femur. The cutting guide can then be further affixed to the femur. The cutting apparatus can then be used with the cutting guide to resect the femur. A conventional cutting block used with a conventional oscillating saw can also be positioned and interconnected with a femur in a similar manner using the drill guide of the present invention to create medial and lateral holes. A cutting guide can then be attached to the holes. A conventional cutting block can be interconnected with the cutting guide for attachment of the block to the femur. This invention can also be used in connection with a cortical milling system, i.e., a cutting system for providing a curvilinear cutting path and curvilinear cutting profile. Likewise, a tibial cutting guide can similarly be positioned on a tibia with a drill guide. It is a primary object of the present invention to provide an apparatus for properly resecting the distal human femur. It is also an object of this invention to provide an apparatus for properly orienting a resection of the distal human femur. It is an additional object of the resection apparatus of the present invention to properly locate the resection apparatus with respect to the distal human femur. It is even another object of the resection apparatus of the present invention to properly orient the resection apparatus with respect to the distal human femur. It is another object of the resection apparatus of the present invention to provide a guide device for establishing the location and orientation of the resection apparatus with respect to the distal human femur. It is still a further object of the resection apparatus of the present invention to lessen the chances of fatty embolisms. It is even a further object of this invention is to provide a resection apparatus capable of forming some or all of the resected surfaces of the distal human femur. It is another object of the resection apparatus of the present invention to provide an apparatus which is simple in design and precise and accurate in operation. It is also an intention of the resection apparatus of the present invention to provide a guide device for determining the location of the long axis of the femur while lessening the chances of fatty embolism. It is also an object of the resection apparatus of the present invention to provide a device to physically remove material from the distal femur in a pattern dictated by the pattern device. It is even another object of the resection apparatus of the present invention to provide a circular cutting blade for removing bone from the distal human femur to resection the distal human femur. It is also an object of the present invention to provide a method for easily and accurately resecting a distal human femur. These objects and others are met by the resection method and apparatus of the present invention. It is a primary object of the present invention to provide methods and apparatus for femoral and tibial resection. It is another object of the present invention to provide a method and apparatus for properly, accurately and quickly resecting a bone. It is also an object of this invention to provide a method and apparatus for properly orienting and locating a resection of a bone. It is a further object of the present invention to provide a method and apparatus to properly locate and orient the resection apparatus with respect to a bone. It is another object of the present invention to provide methods and apparatus for femoral and tibial resection which are simple in design and precise and accurate in operation. It is an additional object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern dictated by a pattern device and/or the geometry of a cutting device. It is a further object of the present invention to provide methods and apparatus for resecting a bone which allows one to visually inspect the location of the cut or cuts prior to making the cut or cuts. It is yet a further object of the present invention to provide a method and apparatus for resecting a bone which physically removes material from the bone along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting a bone which employs a milling bit or form cutter for removing material from the bone. It is a further object of the present invention to provide methods and apparatus for femoral and tibial resection wherein the apparatus can be located on a bone to be cut in a quick, safe and accurate manner. It is a primary object of the present invention to provide a method and apparatus for properly resecting the proximal human tibia in connection with knee replacement surgery. It is also an object of the present invention to provide a method and apparatus for resecting the proximal human tibia which minimizes the skill necessary to complete the procedure. It is another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which properly orients the resection of the proximal tibia. It is even another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which is easy to use. It is yet another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which orients the resection in accordance with what is desired in the art. It is still yet another object of the present invention to provide a method and apparatus for resecting the proximal human tibia which minimizes the amount of bone cut. It is a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which allows one to visually inspect the location of the cut prior to making the cut. It is even a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which is simple in design and precise and accurate in operation. It is yet a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which physically removes material from the proximal tibia along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting the proximal human tibia which employs a milling bit for removing material from the proximal tibia. It is also an object of the present invention to provide a method and apparatus for resecting the proximal human tibia which includes a component which is operated, and looks and functions, like pliers or clamps. It is even another object of the present invention to provide an alternate embodiment of the method and apparatus for resecting the proximal human tibia which includes a component that resembles a U-shaped device for placing about the tibia. It is even a further object of the present invention to provide an alternate embodiment of the method and apparatus for resecting the proximal human tibia which includes a component that resembles an adjustable, square, U-shaped device for placing about the tibia. These objects and others are met and accomplished by the method and apparatus of the present invention for resecting the proximal tibia. It is a primary object of the present invention to provide a method and apparatus for removing material from bones. It is another object of the present invention to provide a method and apparatus for properly resecting bone. It is also an object of this invention to provide a method and apparatus for properly orienting a resection of a bone. It is a further object of the present invention to provide a method and apparatus to properly orient the resection apparatus with respect to a bone. It is an additional object of the present invention to provide a method and apparatus for properly locating a bone resection. It is a further object of the present invention to provide a method and apparatus to properly locate the resection apparatus with respect to a bone. It is even another object of the resection apparatus of the present invention to provide a guide device and method of use thereof for establishing the location and orientation of the resection apparatus with respect to a bone. It is an additional object of the present invention to provide a method and apparatus for making a curvilinear bone resection. It is still a further object of the resection apparatus of the present invention to lessen the chances of fatty embolisms. It is even further object of this invention to provide a method and apparatus capable of forming or re-forming some or all of the surfaces or resected surfaces of a bone. It is another object of the present invention to provide a method and apparatus which is simple in design and precise and accurate in operation. It is also an intention of the present invention to provide a method and apparatus for determining the location of the long axis of a bone while lessening the chances of fatty embolisms. It is also an object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern. It is an additional object of the present invention to provide a method and apparatus to physically remove material from a bone in a pattern dictated by a pattern device and/or the geometry of a cutting device. It is even another object of the resection apparatus of the present invention to provide a cylindrical or semi-cylindrical cutting device and method of use thereof for removing material from a bone. It is also an object of the present invention to provide a method and apparatus for easily and accurately resecting a bone. It is also an object of the present invention to provide a method and apparatus for resecting a bone which minimizes the manual skill necessary to complete the procedure. It is even another object of the present invention to provide a method and apparatus for resecting a bone which is easy to use. It is still yet another object of the present invention to provide a method and apparatus for resecting a bone which minimizes the amount of bone removed. It is a further object of the present invention to provide a method and apparatus for resecting a bone which allows one to visually inspect the location of the cut or cuts prior to making the cut or cuts. It is yet a further object of the present invention to provide a method and apparatus for resecting a bone which physically removes material from the bone along a surface dictated by a guide device. It is still a further object of the present invention to provide a method and apparatus for resecting a bone which employs a milling bit or form cutter for removing material from the bone. It is even another object of the present invention to provide a method and apparatus for removing material from a bone such that both the cutting path and cutting profile are predominantly curvilinear. It is a primary object of the present invention to provide an apparatus to properly replace damaged bony tissues. It is also an object of this invention to provide an apparatus to properly replace damaged bony tissues in joint replacement surgery. It is also an object of the present invention to provide an implant for the attachment to a distal femur in the context of knee replacement surgery. It is an additional object of the present invention to provide a method and apparatus for making a curvilinear implant. It is another object of the present invention to provide an implant having a reduced thickness to reduce the amount of material required to make the implant. It is even another object of the present invention to provide an implant having curvilinear fixation surfaces for increasing the strength of the implant. It is another object of the present invention to provide an implant having a fixation surface that is anterior-posterior curvilinear and mediolateral curvilinear. It is another object of the present invention to provide an implant that has a fixation surface that is shaped to resemble a natural distal femur. It is also an object of the present invention to provide an implant apparatus for allowing proper patellofemoral articulation. It is a further object of the present invention to provide for minimal stress shielding of living bone through reduction of flexural rigidity. It is an additional object of the present invention to provide an implant apparatus having internal fixation surfaces which allow for minimal bony material removal. It is another object of the present invention to provide an implant apparatus with internal fixation surfaces that minimize stress risers. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for precise fixation to curvilinear body resections. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for precise apposition to curvilinear body resections. It is another object of the present invention to provide an implant apparatus having internal fixation surfaces for curvilinear interior fixation geometries closely resembling the geometry of the external or articular geometry of the implant apparatus. It is also an object of this invention to provide a method and apparatus for properly locating and orienting a prosthetic implant with respect to a bone. It is another object of the present invention to provide an implant which is simple in design and precise and accurate in operation. It is also an object of the present invention to provide an implant which minimizes the manual skill necessary to complete the procedure. It is still yet another object of the present invention to provide an implant which minimizes the amount of bone removed. It is even another object of the present invention to provide a method and apparatus for removing material from a bone such that both the cutting path and cutting profile are predominantly curvilinear.
20041029
20110628
20050707
96932.0
4
HOFFMAN, MARY C
METHODS AND APPARATUS FOR ORTHOPEDIC IMPLANTS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,977,535
ACCEPTED
Led light bar
A light emitting diode (LED) warning signal light, the warning signal light comprising a plurality of light sources constructed and arranged with a reflector or culminator, the LED light source being in electrical communication with a controller and a power supply, battery, or other electrical source. The warning signal light provides various colored light signals for independent use or use on an emergency vehicle. The warning light signals may include a strobe light, revolving light, an alternating light, a flashing light, a modulated light, a pulsating light, an oscillating light or any combination thereof. The controller may further be adapted to regulate or modulate the power intensity exposed to the illuminated LED's to create a variable intensity light signal.
1-38. (canceled) 39. A light bar comprising: a) a longitudinally extending base; b) at least one light emitting diode assembly connected to said base, said at least one light emitting diode assembly having a plurality of light emitting diode light sources receiving power from a power source; and c) a supplemental illumination support engaged to said base, said supplemental illumination support having a plurality of light emitting diode light sources, said light emitting diode light sources being constructed and arranged for transmission of at least one light signal. 40. The light bar according to claim 39, further comprising a light signal activator in electric communication with said light emitting diode light sources for illumination of at least one warning light signal. 41. The light bar according to claim 40, further comprising a first reflector positioned proximate to said at least one light emitting diode assembly. 42. The light bar according to claim 41, further comprising a second reflector positioned proximate to said supplemental illumination support. 43. The light bar according to claim 42, each supplemental illumination support comprising a rotational device engaged to said light emitting diode light sources, said rotational device constructed and arranged to rotate said light emitting diode light sources. 44. The light bar according to claim 42, each supplemental illumination support comprising a rotational device engaged to said second reflector, said rotational device being constructed and arranged to rotate said second reflector. 45. The light bar according to claim 42, said at least one light emitting diode assembly comprising a plurality of sectors of said light emitting diode light sources. 46. The light bar according to claim 42, wherein said at least one light emitting diode assembly is constructed and arranged to be modular having electrical couplers. 47. The light bar according claim 42, wherein said light signal activator is in electric communication with said light emitting diode light sources, said light signal activator being constructed and arranged to selectively activate said light emitting diode light sources thereby producing at least two different types of visually distinct warning light signals. 48. The light bar according to claim 42, wherein said light signal activator is in electric communication with said light emitting diode light sources and said light signal activator is constructed and arranged to independently illuminate said light emitting diode light sources. 49. The light bar according to claim 42, wherein at least two different types of visually distinct warning light signals are produced simultaneously. 50. The light bar according to claim 42, wherein at least two different types of visually distinct warning light signals are produced in at least one combination.
The present invention relates to light emitting diode (LED) warning signal lights having modulated power intensity for use by emergency vehicles and is based upon Provisional U.S. Patent Application No. 60/147,240, filed Aug. 4, 1999, which is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION Light bars or emergency lights of the type used on emergency vehicles such as fire trucks, police cars, and ambulances, utilize warning signal lights to produce a variety of light signals. These light signals involve the use of various colors and patterns. Generally, these warning signal lights consist of incandescent and halogen light sources having reflective back support members and colored filters. Many problems exist with the known methods for producing warning light signals. One particular problem with known light sources is their reliance on mechanical components to revolve or oscillate the lamps to produce the desired light signal. Additionally, these components increase the size of the light bar or emergency lights which may adversely affect the vehicles aerodynamic characteristics. Moreover, there is an increased likelihood that a breakdown of the light bar or light source will occur requiring the repair or replacement of the defective component. Finally, the known light bars and light sources require a relatively large amount of electrical current during operation. The demands upon the electrical power system for a vehicle may therefore exceed available electrical resources reducing optimization of performance. Halogen lamps or gaseous discharge xenon lamps generally emanate large amounts of heat which is difficult to dissipate from a sealed light enclosure or emergency light and which may damage the electronic circuitry contained therein. In addition, these lamps consume large amounts of current requiring a large power supply or battery or electrical source which may be especially problematic for use with a vehicle. These lamps also generate substantial electromagnetic emissions which may interfere with radio communications for a vehicle. Finally, these lamps, which are not rugged, have relatively short life cycles necessitating frequent replacement. Another problem with the known warning signal lights is the use of filters to produce a desired color. Filtering techniques produce more heat that must be dissipated. Moreover, changing the color of a light source requires the physical removal of the filter from the light source or emergency light and the replacement of a new filter. Furthermore, filters fade or flake over time rendering the filters unable to consistently produce a desired color for observation in an emergency situation. These problems associated with traditional signaling lamps are exacerbated by the fact that creating multiple light signals requires multiple signaling lamps. Further, there is little flexibility in modifying the light signal created by a lamp. For example, changing a stationary lamp into one that rotates or oscillates would require a substantial modification to the light bar which may not be physically or economically possible. The present invention generally relates to electrical lamps and to high brightness light-emitting diode or “LED” technology which operates to replace gaseous discharge or incandescent lamps as used with vehicle warning signal light sources. In the past, illumination lamps for automobile turn signals, brake lights, back-up lights, and/or marker lights/headlights frequently have accompanying utility parabolic lens/reflector enclosures which have been used for utility warning signals or emergency vehicle traffic signaling. These signaling devices as known are commonly referred to as “unmarked corner tubes,” or “dome tubes. A problem with these illumination lamps is the cost and failure rate of the known “unmarked corner tubes,” or “dome lights.” The failure rate of these devices frequently results in a significant amount of “down time” for a vehicle to effectuate replacement. Further, an officer is frequently unaware that a vehicle light is inoperative requiring replacement. This condition reduces the safety to an officer during the performance of his or her duties. In addition, the reduced life cycle and failure rate of the known illumination devices significantly increases operational costs associated with material replacement and labor. A need, therefore, exists to enhance the durability, and to reduce the failure rate, of illumination devices used with vehicles while simultaneously reducing the cost of a replacement illumination source. In the past, the xenon gaseous discharge lamps have utilized a sealed compartment, usually a gas tube, which may have been filled with a particular gas known to have good illuminating characteristics. One such gas used for this purpose was xenon gas, which provides illumination when it becomes ionized by the appropriate voltage application. Xenon gas discharge lamps are used in the automotive industry to provide high intensity lighting and are used on emergency vehicles to provide a visible emergency signal light. A xenon gas discharge lamp usually comprises a gas-filled tube which has an anode element at one end and a cathode element at the other end, with both ends of the tube being sealed. The anode and cathode elements each have an electrical conductor attached, which passes through the sealed gas end of the lamp exterior. An ionizing trigger wire is typically wound in a helical manner about the exterior of the glass tube, and this wire is connected to a high voltage power source typically on the order of 10-12 kilowatts (kw). The anode and cathode connections are connected to a lower level voltage source which is sufficient to maintain illumination of the lamp once the interior gas has been ionized by the high voltage source. The gas remains ignited until the anode/cathode voltage is removed; and once the gas ionization is stopped, the lamp may be ignited again by reapplying the anode/cathode voltage and reapplying the high voltage to the trigger wire via a voltage pulse. Xenon gas lamps are frequently made from glass tubes which are formed into semicircular loops to increase the relative light intensity from the lamp while maintaining a relatively small form factor. These lamps generate extremely high heat intensity, and therefore, require positioning of the lamps so as to not cause heat buildup in nearby components. The glass tube of a xenon lamp is usually mounted on a light-based pedestal which is sized to fit into an opening in the light fixture and to hold the heat generating tube surface in a light fixture compartment which is separated from other interior compartment surfaces or components. In a vehicle application, the light and base pedestal are typically sized to fit through an opening in the light fixture which is about 1 inch in diameter. The light fixture component may have a glass or plastic cover made from colored material so as to produce a colored lighting effect when the lamp is ignited. Xenon gas discharge lamps naturally produce white light, which may be modified to produce a colored light, of lesser intensity, by placing the xenon lamp in a fixture having a colored lens. The glass tube of the xenon lamp may also be painted or otherwise colored to produce a similar result, although the light illumination from the tube tends to dominate the coloring; and the light may actually have a colored tint appearance rather than a solid colored light. The color blue is particularly hard to produce in this manner. Because a preferred use of xenon lamps is in connection with emergency vehicles, it is particularly important that the lamp be capable of producing intense coloring associated with emergency vehicles, i.e., red, blue, amber, green, and clear. When xenon lamps are mounted in vehicles, some care must be taken to reduce the corroding effects of water and various chemicals, including road salt, which might contaminate the light fixture. Corrosive effects may destroy the trigger wire and the wire contacts leading to the anode and cathode. Corrosion is enhanced because of the high heat generating characteristics of the lamp which may heat the air inside the lamp fixture when the lamp is in use, and this heated air may condense when the lamp is off resulting in moisture buildup inside the fixture. The buildup of moisture may result in the shorting out of the electrical wires and degrade the performance of the emission wire, sometimes preventing proper ionization of the gas within the xenon gas discharge lamp. Warning lights, due to the type of light source utilized, may be relatively large in size which in turn may have an adverse affect upon adjacent operational components. In addition, there is an increased likelihood for a breakdown of the light source requiring repair or replacement of components. Another problem with the known warning signal lights is the use of rotational and/or oscillating mechanisms which are utilized to impart a rotational or oscillating movement to a light source for observation during emergency situations. These mechanical devices are frequently cumbersome and difficult to incorporate and couple onto various locations about a vehicle due to the size of the device. These mechanical devices also frequently require a relatively large power source to impart rotational and/or oscillating movement for a light source. Another problem with the known warning signal lights is the absence of flexibility for the provision of variable intensity for the light sources to increase the number of available distinct and independent visual light effects. In certain situations it may be desirable to provide variable intensity for a light signal, or a modulated intensity for a light signal, to provide a unique light effect to facilitate observation by an individual. In addition, the provision of a variable or modulated intensity for a light signal may further enhance the ability to provide a unique desired light effect for observation by an individual. No warning lights are known which are flexible and which utilize a variable light intensity to modify a standard lighting effect. The warning lights as known are generally limited to a flashing light signal. Alternatively, other warning signal lights may provide a sequential illumination of light sources. No warning or utility light signals are known which simultaneously provide for modulated and/or variable power intensity for a known type of light signal to create a unique and desirable type of lighting effect. No warning signal lights are known which provide irregular or random light intensity to a warning signal light to provide a desired lighting effect. Also, no warning light signals are known which provide a regular pattern of variable or modulated light intensity for a warning signal light to provide a desired type of lighting effect. It has also not been known to provide a warning light signal which combines either irregular variable light intensity or regular modulated light intensity to provide a unique and desired combination lighting effect. It has also not been known to provide alternative colored LED light sources which may be electrically controlled for the provision of any desired pattern of light signal such as flashing, pulsating, oscillating, modulating, rotational, alternating, strobe, and/or combination light effects. In this regard, a need exists to provide a spatially and electrically efficient LED light source for use on an emergency or utility vehicle which provides the appearance of rotation, or other types of light signals. In view of the above, there is a need for a warning signal light that: (1) Is capable of producing multiple light signals; (2) Produces the appearance of a revolving or oscillating light signal without relying upon mechanical components; (3) Generates little heat; (4) Uses substantially less electrical current; (5) Produces significantly reduced amounts of electromagnetic emissions; (6) Is rugged and has a long life cycle; (7) Produces a truer light output color without the use of filters; (8) Is positionable at a variety of locations about an emergency vehicle; and (9) Provides variable power intensity to the light source without adversely affecting the vehicle operator's ability to observe objects while seated within the interior of the vehicle. Other problems associated with the known warning signal lights relate to the restricted positioning of the signal light on a vehicle due to the size and shape of the light source. In the past, light sources due to the relatively large size of light bars or light sources, were required to be placed on the roof of a vehicle or at a location which did not interfere with, or obstruct, an operator's ability to visualize objects while seated in the interior of the vehicle. Light bars or light sources generally extended perpendicular to the longitudinal axis of a vehicle and were therefore more difficult to observe from the sides by an individual. The ease of visualization of an emergency vehicle is a primary concern to emergency personnel regardless of the location of the observer. In the past, optimal observation of emergency lights has occurred when an individual was either directly in front of, or behind, an emergency vehicle. Observation from the sides, or at an acute angle relative to the sides, frequently resulted in reduced observation of emergency lights during an emergency situation. A need therefore exists to improve the observation of emergency lights for a vehicle regardless of the location of the observer. A need also exists to improve the flexibility of placement of emergency lights upon a vehicle for observation by individuals during emergency situations. A need exists to reduce the size of light sources on an emergency vehicle and to improve the efficiency of the light sources particularly with respect to current draw and reduced aerodynamic drag. In addition, the flexibility of positioning of light sources about a vehicle for observation by individuals is required to be enhanced to optimize utility for a warning signal light. In order to satisfy these and other needs, more spatially efficient light sources such as LED's are required. It is also necessary to provide alternative colored LED light sources which may be electrically controlled for the provision of any desired pattern of light signal such as flashing, alternating, pulsating, oscillating, variable, modulating, rotational, and/or strobe light effects without the necessity of spatially inefficient and bulky mechanical devices. In the past, illumination of an area to the front or to the sides of an emergency vehicle during low light conditions has been problematic. Take-down lights have been utilized by law enforcement personnel for a number of purposes including, but not necessarily limited to, enhancing observation of an individual in a vehicle on a roadway subject to investigation and to hide the location of an officer, or to block or deter observation of an officer by individuals during law enforcement activities. The take-down lights as known have generally been formed of halogen or gaseous discharge xenon lamp illumination sources which have a relatively short useful life, are bulky, have relatively large current draw requirements, and which require frequent replacement. A need exists for a take-down light which has significant illumination characteristics, is spatially efficient, has a long useful life, and has reduced current draw requirements for use on a law enforcement vehicle or as used as a utility light source. The alley lights as known also suffer from the deficiencies as identified for the take-down lights during dark illumination conditions. Alley lights are used to illuminate areas adjacent to the sides of a vehicle. In the past, the intersection clearing lights have been predominately formed of halogen, incandescent, and/or gaseous discharge xenon illumination sources. The drawbacks associated with these types of illumination sources are the relatively high current draw, reduced useful life and durability necessitating frequent replacement, large RF electromagnetic emissions which increase radio interference and other draw backs as previously discussed. A need therefore exists for an intersection clearing light which solves these and other identified problems and which further has significant illumination characteristics, is spatially efficient, has a long useful life, and has reduced current draw requirements for use on a vehicle or as a utility light source. A problem has also existed with respect to the use of emergency lights on unmarked law enforcement vehicles. In the past, emergency lights for unmarked law enforcement vehicles have consisted of dome devices which are formed of revolving mechanisms. These lights are usually withdrawn from a storage position under a motor vehicle seat for placement upon dashboard of a law enforcement vehicle. In undercover situations it has been relatively easy to identify dashboard affixation mechanisms used to secure these types of dome illumination devices to a dashboard. The known dome devices are also clumsy, have large current draw requirements, and are difficult to store in a convenient location for retrieval in an emergency situation by an individual. A need therefore exists for an emergency vehicle or utility warning light which is spatially efficient, easily hidden from view, and is transportable by an individual for retrieval during an emergency situation. A need also exists for a new emergency vehicle light bar which is aerodynamic and which provides for both a longitudinal illumination element and an elevated pod illumination device. A need exists for a light bar having enhanced illumination properties and flexibility for provision of new and additional warning light signals including, but not limited to, strobe, variable, modulated, alternating, pulsating, rotational, oscillating, flashing, and/or sequential light signals for use within an emergency situation. GENERAL DESCRIPTION OF THE INVENTION According to the invention, there is provided a light emitting diode (LED) warning signal light which may be depicted in several embodiments. In general, the warning signal light may be formed of a single row or an array of light emitting diode light sources configured on a light support and in electrical communication with a controller and a power supply, battery, or other electrical source. The warning signal light may provide various light signals, colored light signals, or combination light signals for use in association with a vehicle or by an individual. These light signals may include a strobe light, a pulsating light, a revolving light, a flashing light, a modulated or variable intensity light, an oscillating light, an alternating light, and/or any combination thereof. Additionally, the warning signal light may be capable of displaying symbols, characters, or arrows. Rotating and oscillating light signals may be produced by sequentially illuminating columns of LED's on a stationary light support in combination with the provision of variable power intensity from the controller. However, the warning signal light may also be rotated or oscillated via mechanical means. The warning signal light may also be transportable and may be conveniently connected to a stand such as a tripod for electrical connection to a power supply, battery, or other electrical source as a remote stand-alone signaling device. For the replacement LED lamp, extending from the standard mounting base may be a light source which one or a plurality of LED lamp modules which may be formed of the same or different colors as desired by an individual. Additionally, rotating and oscillating light signals may be produced by substitution of an LED light source in an oscillating or reflective light assembly. In addition, the warning signal light and/or replacement warning signal light may be electrically coupled to a controller used to modulate the power intensity for the light sources to provide for various patterns of illumination to create an illusion of rotation or other type of illusion for the warning signal light without the use of mechanical devices. A reflective light assembly may also be provided. The reflective light assembly may rotate about a stationary light source or the light source may rotate about a stationary reflector. In another alternative embodiment, the reflective assembly may be positioned at an acute angle of approximately 45° above a stationary LED panel or solitary light source, where the reflector may be rotated about a pivot point and axis to create the appearance of rotation for the light source. The light source may be utilized in conjunction with the reflective assembly and may also be electrically coupled to a controller for the provision of pulsating, oscillating, alternating, flashing, stroboscopic, revolving, variable, and/or modulated light intensity for observation by an individual. The controller is preferably in electrical communication with the power supply and the LED's to modulate the power intensity for the LED light sources for provision of a desired type of warning light effect. The warning signal light may be formed of an array of LED's, a single row of LED's or a solitary LED mounted upon and in electrical communication with a substantially flat light support which includes a circuit board or LED mounting surface. The light support may have any desired dimensions and may be approximately three inches by three inches or smaller at the discretion of an individual. Each light support may include an adhesive, magnetic, and/or other affixation mechanism to facilitate attachment at various locations on and/or around an emergency vehicle. Each individual light support may be positioned adjacent to and be in electrical communication with another light support through the use of suitable electrical connections. A plurality of light supports or solitary light sources may be electrically coupled in either a parallel or series manner to the controller. A plurality of light sources each containing an array or singular LED may be in electrical communication with a power supply and a controller to selectively illuminate the LED's to provide for the appearance of a revolving, modulating, strobe, oscillating, alternating, pulsating, and/or a flashing light source or any combination thereof. The controller is also preferably in electrical communication with the power supply and the LED's, to regulate or modulate the power intensity for the LED light sources for variable illumination of the LED light sources as observed by an individual. The warning signal lights may encircle an emergency vehicle at the discretion of an individual. In addition, the light support may be encased within a waterproof enclosure to prevent moisture or other contamination of the LED light sources. The individual LED's and/or arrays of LED's may be used as take-down and/or alley lights by law enforcement vehicles to illuminate dark areas relative to the emergency vehicle. The take-down light source may be stationary or may be coupled to one or more rotational mechanisms at the discretion of an individual. The intersection clearing light may be a particular application of the alley light as mounted to a motor for oscillation of the light source forwardly and rearwardly relative to an emergency vehicle. The intersection clearing mode preferably rotates or oscillates the alley lights forwardly and rearwardly on both sides of a light bar or emergency vehicle as the emergency vehicle enters an intersection. The intersection clearing light mode preferably warns all traffic perpendicular to the direction of travel of the emergency vehicle as to the presence of an emergency vehicle within an intersection. The intersection clearing light may be mounted to each exterior end of a light bar. When the intersection clearing light mode is not in operation the alley light or take-down light may be used to provide illumination at any desired angle relative to the passenger or drivers areas of an emergency vehicle. A portable pocket LED warning signal light may also be provided having a base and a power adaptor for use in unmarked law enforcement vehicles. The portable pocket LED warning signal light may also be connected to, or have, an integral controller for the provision of a variety of unique light signals including but not necessarily limited to rotational, alternating, pulsating, oscillating, flashing, modulated, strobe, and/or sequential illumination of rows or columns of LED's. The portable pocket LED may also include one or more reflective culminators to enhance the performance of the warning or utility signal light. A new and unique light bar may also be provided having one or more elevated pod illumination elements. Each pod illumination element may be raised with respect to a light bar by one or more supports which extend upwardly from the base. The pod illumination elements may alternatively be oval or circular in shape at the discretion of an individual. The light bar may also include one or more longitudinal light elements integral to the base which extend transversely to the roof of an emergency vehicle. The longitudinal light elements may be configured similar to light bars as described and depicted in FIGS. 32, 36, 37, 38, 39, and 50. A principal advantage of the present invention is to provide a warning signal light capable of simulating revolving or oscillating light signals without the use of mechanical components. Another principal advantage of the present invention is that the warning signal light is capable of producing several different types of light signals or combinations of light signals. Still another principal advantage of the present invention is to be rugged and to have a relatively longer life cycle than traditional warning signal lights. Still another principal advantage of the present invention is to produce a truer or pure light output color without the use of filters. Still another principal advantage of the present invention is to allow the user to adjust the color of the light signal without having to make a physical adjustment to the light source from a multi-colored panel. Still another principal advantage of the present invention is that it may be formed into various shapes. This allows the invention to be customized for the particular need. Still another principal advantage of the present invention is the provision of an LED light source which is formed of a relatively simple and inexpensive design, construction, and operation and which fulfills the intended purpose without fear of failure or risk of injury to persons and/or damage to property. Still another principal advantage of the present invention is the provision of an LED light source which is flexible and which may easily replace existing illumination devices used as turn signals, brake lights, back-up lights, marker lights, and headlights in utility lens/reflector enclosures. Still another principal advantage of the present invention is the provision of an LED light source for creation of bright bursts of intense white or colored light to enhance the visibility and safety of a vehicle in an emergency signaling situation. Still another principal advantage of the present invention is the provision of an LED light source which is flexible and may easily replace existing illumination devices at a much more economic expense and further having a reduced failure rate. Still another principal advantage of the present invention is the provision of an LED light source which produces brilliant lighting in any of the colors associated with an emergency vehicle light signal such as red, blue, amber, green, and/or white. Still another principal advantage of the present invention is the provision of an LED light source which is highly resistant to corrosive effects and which is impervious to moisture build-up. Still another principal advantage of the present invention is the provision of an LED light source which has an extended life cycle and continues to operate at maximum efficiency throughout its life cycle. Still another principal advantage of the present invention is the provision of an LED light source which draws less current and/or has a reduced power requirement from a power source for a vehicle. Still another principal advantage of the present invention is the provision of an LED light source which is simple and may facilitate the ease of installation and replacement of a xenon, halogen, and/or incandescent light source from a motor vehicle. Still another principal advantage of the present invention is the provision of an LED light source which reduces RF emissions which may interfere with other radio and electronic equipment in an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED light source which functions under cooler operating temperatures and conditions thereby minimizing the exposure of heat to adjacent component parts which, in turn, reduces damage caused by excessive heat. Still another principal advantage of the present invention is the provision of an LED light source having simplified electronic circuitry for operation as compared to xenon gaseous discharge lamps, halogen lamps, and/or incandescent lamps as used with an emergency vehicle. Still another principal advantage of the present invention is the provision of a warning signal light which may be easily visualized during emergency situations thereby enhancing the safety of emergency personnel. Still another principal advantage of the present invention is the provision of a warning signal light which includes LED technology and which is operated by a controller to provide any desired type or color of light signal including but not limited to rotational, pulsating, oscillating, strobe, flashing, alternating, and/or modulated light signals without the necessity for mechanical devices. Still another principal advantage of the present invention is the provision of a warning signal light which is capable of simultaneously producing several different types of light signals. Still another principal advantage of the present invention is the provision of a warning signal light which includes light emitting diode technology which is flexible and which may be attached to any desired location about the exterior of an emergency vehicle. Still another principal advantage of the present invention is the provision of an emergency warning signal light for emergency vehicles which has improved visualization, aerodynamic efficiency, and increased electrical efficiency. Still another principal advantage of the present invention is the provision of an LED light source which is flexible and which may be connected to a modulated power source to provide variable power intensity for the light source which in turn is used to create the appearance of rotation and/or oscillation without the use of mechanical rotation or oscillating devices. Still another principal advantage of the present invention is the provision of an LED take-down light which provides significant illumination properties for flooding of an area in front of a law enforcement vehicle with light during dark illumination conditions. Still another principal advantage of the present invention is the provision of an LED alley light which has significant illumination characteristics for flooding of an area to the sides of a law enforcement vehicle with light during dark illumination conditions. Still another principal advantage of the present invention is the provision of an LED alley light which may be rotated for illumination of areas adjacent to a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED take-down light which enables a law enforcement officer to easily visualize the occupants of a vehicle disposed in front of a law enforcement vehicle. Still another principal object of the present invention is the provision of an LED take-down light which has significant illumination characteristics which prohibits an individual located in a temporarily stopped vehicle from observing the location or actions or law enforcement personnel within or adjacent to a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED take-down light and/or alley light having prolonged useful life for use on a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED take-down or alley light which is formed of sturdy construction having reduced current draw requirements for a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED take-down or alley light which is spatially efficient for use upon a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED pocket warning signal light for use with unmarked law enforcement vehicles. Still another principal advantage of the present invention is the provision of an LED warning signal light which eliminates the necessity for bulky rotational mechanisms. Still another principal advantage of the present invention is the provision of an LED warning signal light which may be easily carried within the pocket of an undercover law enforcement officer. Still another principal advantage of the present invention is the provision of an LED warning signal light which may be easily retrieved for use upon an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED warning signal light which may be easily connected to a power source of a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED warning signal light which may be easily positioned upon the dash board of a law enforcement vehicle. Still another principal advantage of the present invention is the provision of an LED warning signal light which may be easily and completely hidden from view during periods of non-use. Still another principal advantage of the present invention is the provision of an LED light bar which is aerodynamically efficient for use upon an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED light bar which is aesthetically pleasing in visual appearance for use upon an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED light bar which may easily replace an existing light bar for an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED light bar having improved flexibility for providing alternative and unique light signals or lighting effects for use with an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED alley light which is visible to traffic perpendicular to the direction of travel of an emergency vehicle within an intersection. Still another principal advantage of the present invention is the provision of an LED alley light which reduces RF electromagnetic and/or radio emission interference for an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED alley light which is a longer useful life for use upon an emergency vehicle. Still another principal advantage of the present invention is the provision of an LED alley light which may easily adapted for use within existing light bar for an emergency vehicle. Still another principal advantage of the present invention is the provision of a warning signal light which may be easily customized by the user via the use of a microprocessor/controller. Still another principal advantage of the present invention is the provision of an LED light source having improved reliability as compared to xenon gaseous discharge lamps and/or incandescent lamps as currently used in association with emergency vehicles. A feature of the invention is the provision of a plurality of light emitting diodes (LED's), integral to a circuit board or LED mounting surface, where the LED's may be aligned in a single row or in vertical columns and horizontal rows. Another feature of the invention is the mounting of a panel of LED's to a mechanical device which rotates or oscillates the panel during use as a warning signal light on an emergency vehicle. Yet another feature of the invention is the provision of a plurality of LED's mounted to a flexible circuit board which may be manipulated into any desired configuration and which may be used to produce rotating, oscillating, pulsating, flashing, alternating, and/or modulated warning signal light for an emergency vehicle. Yet another feature of the invention is the provision of an LED support member supporting an array of colored LED's and a controller capable of selectively illuminating the LED's of the same color to produce a single or mixed colored light signal. Still another feature of the invention is the provision of a light emitting diode support member having an array of LED's disposed about at least two sides and a controller capable of producing light signals on each side which are independent and/or different from each other. Still another feature of the invention is the provision of an LED support member having an array of LED's angularly offset with respect to the LED support member for the provision of a horizontal light signal as viewed by an individual when the LED support member is mounted within the interior of the forward or rear windshield of a vehicle. Still another feature of the invention is the provision of an LED support member which may be easily connectable and/or removed from a transportable support such as a tripod for placement of an LED warning signal light at any location as desired by an individual. Still another feature of the invention is the provision of an LED support member which may be easily connectable to an emergency vehicle, including but not limited to automobiles, ambulances, trucks, motorcycles, snowmobiles, and/or any other type of vehicle in which warning signal or emergency lights are utilized. Still another feature of the present invention is the provision a base having one or more LED's mounted thereon where said base is adapted for insertion into a standard one inch opening presently used for receiving xenon strobe tubes as a replacement LED warning light signaling light source. Still another feature of the present invention is the provision a base having one or more LED's mounted thereon which is adapted for insertion into a mechanical device which rotates or oscillates a light source during use as a warning signal light on an emergency vehicle. Still another feature of the present invention is the provision a microprocessor/controller which is in electrical communication with the LED light sources to selectively activate individual LED's to produce a flashing, strobe, alternating, rotating, oscillating, modulated and/or pulsating warning light signals. Still another feature of the present invention is the provision an LED light signal which may be easily electrically coupled to a controller. Still another feature of the present invention is the provision a warning signal light having a plurality of strip LED light sources affixed to the exterior of an emergency vehicle where the strip LED light sources are in electrical communication with a controller. Still another feature of the present invention is the provision a warning signal light having a controller in electrical communication with a plurality of strip LED light sources for the provision of modulated power intensity utilized to create the appearance of a rotational, pulsating, oscillating, flashing, strobe, or alternating warning light signal. Still another feature of the present invention is the provision an LED light source where the power may be modulated by the controller to produce variable power intensity for the light sources to produce various desired patterns of illumination. Still another feature of the present invention is the provision of a warning signal light having LED technology which includes an array, a single row or a solitary LED light source mounted to a light support. Still another feature of the present invention is the provision of a strip warning signal light having LED technology which includes a light support having one or more LED light sources where the light support has a size dimension approximating three inches by three inches or smaller. Still another feature of the present invention is the provision of a strip warning signal light having LED technology where a plurality of strip LED light supports may be affixed in surrounding engagement to the exterior of an emergency vehicle. Still another feature of the present invention is the provision of a strip warning signal light having LED technology where a light support is enclosed within a transparent and water resilient enclosure to prevent water penetration and/or other contamination. Still another feature of the present invention is the provision of a warning signal light having a plurality of light supports affixed to the exterior of an emergency vehicle where the controller is in electrical communication with each of the light supports. Still another feature of the present invention is the provision of a warning signal light having a controller in electrical communication with a single light source for the provision of a modulated power intensity to the light source. Still another feature of the present invention is the provision of an LED light source where the power may be modulated by the controller to produce variable power intensity for the light source to provide various desired patterns or combinations of patterns of illumination. Still another feature of the present invention is the provision of an LED light source which includes a reflective device which rotates about the LED light source to provide a warning light signal. Still another feature of the present invention is the provision of an LED light source which includes a reflective device which is flat, concave, convex and/or parabolic for reflection of the light emitted for the LED light source. Still another feature of the present invention is the provision of an LED light source which includes a reflector mounted at an acute angel of approximately 45 degrees relative to the LED light source for reflection of light in a direction as desired by an individual. Still another feature of the present invention is the provision of an LED light source which includes a reflector mounted at an acute angle of approximately 45 degrees relative to the LED light source where the reflector may be rotated about the LED light source for reflection of light in a direction as desired by an individual. Still another feature of the present invention is the provision of an LED light source where a single LED light source or an array of LED light sources may be rotated and simultaneously a reflective device may be rotated to provide a warning signal light. Still another feature of the present invention is the provision of an LED light source which may include a conical shaped reflector positioned above a light source. Still another feature of the present invention is the provision of a rotatable or stationary filter mounted between an LED light source and a reflector. Still another feature of the present invention is the provision of a rotatable or stationary reflector or culminator which may include transparent and/or reflective sections. Still another feature of the present invention is the provision of an LED light source where the individual LED light sources or arrays of LED light sources may be rotated for transmission of light through the transparent and/or opaque sections of a filter for the provision of a unique warning signal light effect. Still another feature of the present invention is the provision of a conical reflector which may include concave and/or convex reflective surfaces to assist in the reflection of light emitted from an LED light source. Still another feature of the present invention is the provision of an LED light support having a longitudinal dimension and a single row of LED's which provide a desired type of warning light signal. Still another feature of the present invention is the provision of an LED light support having a frame adapted to hold a circuit board or LED mounting surface. Still another feature of the present invention is the provision of an LED light support where the circuit board or LED mounting surface includes one or more heat sink wells where an individual LED is positioned within each of the heat sink wells. Still another feature of the present invention is the provision of an LED light support having one or more reflectors or elongate mirrors disposed in the frame to reflect light emitted from the LED light sources is a desired direction. Still another feature of the present invention is the provision of an LED light support having a culminator reflector which may be formed of one or more conical reflector cups which are utilized to reflect light emitted from the light sources in a direction desired by an individual. Still another feature of the present invention is the provision of an LED light support having a lens cover attached to the frame to minimize water penetration or contamination exposure into the interior of the frame. Still another feature of the present invention is the provision of an LED light support having a positioning support functioning as a culminator reflector which additionally positions individual LED's at a desired location relative to the interior of the frame. Still another feature of the present invention is the provision of an LED light support having a switch which may be manipulated to terminate power from a power supply or to terminate communication to a controller. Still another feature of the present invention is the provision of an LED light support having an affixation mechanism which may be integral or attached to the frame where the affixation mechanism is adapted to enable the light support to be secured to a vehicle at a desired location. A feature of the present invention is the provision of an LED take-down light having a single LED or an array of LED's of white colored light for illumination of an area in front of a law enforcement vehicle during dark illumination periods. Still another feature of the present invention is the provision of an LED take-down light incorporated into a light bar having reflectors or culminators and LED illumination sources of white colored light for illumination of an area in front of a law enforcement vehicle during dark illumination periods. Still another feature of the present invention is the provision of an LED take-down light formed of one or more LED light sources of white colored light as connected to, or integral with, a circuit board which is electrically coupled to a power source for an emergency vehicle. Still another feature of the present invention is the provision of an LED alley light having a single LED or an array of LED's of white colored light for illumination of an area to the sides of an emergency vehicle during dark illumination periods. Still another feature of the present invention is the provision of an LED alley light which may be mounted to rotational device for providing illumination at acute angles relative to the sides of an emergency vehicle. Still another feature of the present invention is the provision of an LED alley light having one or more culminators integral to each individual LED light source to reflect light along a desired line of illumination to the sides of an emergency vehicle. Still another feature of the present invention is the provision of an LED warning signal light which is sized and marked to provide the appearance of a small pocket calculator. Still another feature of the present invention is the provision of an LED personal warning signal light having one or more culminator is positioned adjacent to each individual LED light source to reflect light along a desired line of illumination. Still another feature of the present invention is the provision of an LED personal warning signal light having a pliable spine for exposure of two faces where each face may contain a plurality of LED light sources. Still another feature of the present invention is the provision of an LED warning signal light having plug-in connectors for coupling to an electrical power source for an emergency vehicle such as a cigarette lighter receptacle. Still another feature of the present invention is the provision of an LED personal warning signal light having at least one illumination face including a plurality of colored LED light sources. Still another feature of the present invention is the provision of an LED personal warning signal light which includes a battery for provision of a light signal when connection to an electrical power source is not immediately available. Still another feature of the present invention is the provision of an LED personal warning signal light which may be easily transported within the pocket of an individual and hidden from view during undercover operations by law enforcement personnel. Still another feature of the present invention is the provision of an LED light bar having one or more supported or elevated pod illumination elements. Still another feature of the present invention is the provision of an LED light bar having longitudinally extending illumination elements. Still another feature of the present invention is the provision of an LED light bar having oval or circular pod illumination elements. Still another feature of the present invention is the provision of an LED light bar having end cap illumination elements which are integral to the distal ends of the longitudinally extending illumination elements. Still another feature of the present invention is the provision of an LED intersection clearing light signal to oscillate the alley light 45° forwardly and 45° rearwardly to a perpendicular axis for an emergency vehicle for communication to traffic adjacent to an intersection as to the presence of an emergency vehicle and/or emergency situation. Still another feature of the present invention is the provision of an LED intersection clearing light signal which is generally not used simultaneously to an alley light for an emergency vehicle. Still another feature of the present invention is the provision of an LED intersection clearing light signal which oscillates forwardly and rearwardly from the sides of an emergency vehicle to communicate the presence of the emergency vehicle within an intersection. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial perspective view of an emergency vehicle equipped with a light bar containing warning signal lights according to an embodiment of the invention; FIG. 2 is a partial front elevation view of an emergency vehicle equipped with a light bar containing warning signal lights referring to an embodiment of the invention; FIG. 3 is a perspective view of a warning signal light attached to a gyrator according to an embodiment of the invention; FIG. 4 is a perspective view of a warning signal light according to an embodiment of the invention depicting the sequential activation of columns of light-emitting diodes (LED's). FIG. 5 is a perspective view of a warning signal light according to an embodiment of the invention depicting sequential activation of rows of LED's; FIG. 6 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 7 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 8 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 9 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 10 is a perspective view of a warning light signal according to an embodiment of the invention; FIGS. 1A, 11B, and 11C are schematic diagrams of the controller circuitry in accordance with an embodiment of the invention; FIG. 12 is a perspective view of a warning signal light according to an embodiment of the invention; FIG. 13 is a perspective detailed view of a warning signal light attached to the interior of a windshield of an emergency vehicle; FIG. 14 is a side plan view of a warning signal light mounted to an interior surface of an emergency vehicle window having auxiliary offset individual LED light sources; FIG. 15 is an environmental view of a warning signal light as engaged to a remote support device such as a tripod; FIG. 16 is a detailed isometric view of a xenon strobe tube and standard mounting base; FIG. 17 is a detailed isometric view of the replacement LED light source and standard mounting base; FIG. 18 is a detailed isometric view of an incandescent lamp light source and standard mounting base; FIG. 19 is a detailed isometric view of a replacement LED lamp and standard mounting base; FIG. 20 is a front view of a standard halogen light source mounted in a rotating reflector; FIG. 21 is a detailed rear view of a rotating reflector mechanism; FIG. 22 is a detailed front view of the LED light source mounted to a rotating reflector; FIG. 23 is a detailed front view of a replacement LED light source; FIG. 24 is a detailed side view of a replacement LED light source; FIG. 25 is a detailed isometric view of a replacement LED light source and cover; FIG. 26 is a detailed isometric view of a reflector or culminator; FIG. 27 is a detailed isometric view of a culminator cup; FIG. 28 is an alternative cross-sectional side view of a culminator cup; FIG. 29 is an alternative cross-sectional side view of a culminator cup; FIG. 30 is an alternative cross-sectional side view of a culminator cup; FIG. 31 is an exploded isometric view of an alternative culminator assembly and LED light source; FIG. 32 is an alternative partial cut away isometric view of an alternative culminator assembly and LED light source; FIG. 33 is an environmental view of an emergency vehicle having strip LED light sources; FIG. 34 is an alternative detailed partial cut away view of a strip LED light source; FIG. 35 is an alternative detailed view of an LED light source having sectors; FIG. 36 is an alternative detailed view of a circuit board or LED mounting surface having heat sink wells; FIG. 37 is an alternative detailed isometric view of a reflector assembly; FIG. 38 is an alternative cross-sectional side view of the frame of a reflector assembly; FIG. 39 is an alternative cross-sectional side view of a frame of a reflector assembly; FIG. 40 is an alternative detailed side view of a reflector assembly; FIG. 41 is an alternative detailed isometric view of a reflector assembly; FIG. 42 is an alternative detailed side view of a reflector assembly; FIG. 43 is a graphical representation of a modulated or variable light intensity curve; FIG. 44 is an alternative detailed partial cross-sectional side view of a reflector assembly; FIG. 45 is a partial phantom line top view of the reflector assembly taken along the line of 45-45 of FIG. 44; FIG. 46 is an alternative graphical representation of a modulated or variable light intensity curve; FIG. 47 is an alternative isometric view of a reflector assembly; FIG. 48 is a detailed back view of an individual LED light source; FIG. 49 is a detailed front view of an individual LED light source; FIG. 50 is a detailed end view of one embodiment of a reflector assembly; FIG. 51 is a perspective view of a modular warning light signal according to an embodiment of the invention; FIG. 52 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 53 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 54 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 55 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 56 is a detailed front view of a replacement LED light source; FIG. 57 is a detailed side view of a replacement LED light source; FIG. 58 is a detail isometric view of a replacement LED light source and cover; FIG. 59 is an environmental view of an LED personal warning signal light positioned on a dashboard for an emergency vehicle and electrically coupled to a power source such as cigarette lighter receptacle; FIG. 60 is a detail isometric view of the LED personal warning signal light and electrical coupler; FIG. 61 is an environmental view of an LED take-down light source and an LED alley light source mounted to the light bar of an emergency vehicle; FIG. 62 is a top environmental view of an LED take-down light source and an LED alley light source mounted to the light bar of an emergency vehicle; FIG. 63 is an isometric view of an LED light bar for an emergency vehicle; FIG. 64 is a side view of an LED light bar for an emergency vehicle; FIG. 65 is a cross-sectional top view of the take-down and alley light; and FIG. 66 is an exploded isometric view of the take-down light and alley light. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A warning signal light according to the principles of the invention is indicated generally herein as numeral 10. FIGS. 1 and 2 depict light bar 70 mounted to an emergency vehicle 104. Light bar 70 includes base 72, mounting means 74, cover 82, and warning signal lights 10. Also included in light bar 70 are gyrators 90 used to impart motion to warning signal lights 10. Referring to FIGS. 3 and 9, warning signal light 10 comprises light support 12, light sources 30, controller 50 (shown in FIG. 11), and connecting portion 40 for attaching the warning signal light 10 to light bar 70 or gyrator 90. The warning signal light 10 operates to create a warning signal for use by an emergency vehicle 104 by selectively activating light sources 30 using controller 50. Alternatively, warning signal light 10 may be formed of a solitary LED light source 30 at the discretion of an individual. Light sources 30 are preferably light emitting diodes (LED's) and are generally arranged in aligned columns 32 and rows 34 as shown in FIGS. 7 and 9. Each of the light emitting diodes (LED's) may have shoulder portion 38 adjacent LED support 12 and dome 36. LED's 30 are situated to be in electric communication with controller 50 and a power supply, a battery, or power source. The use of light emitting diodes (LED's) to replace traditional halogen, incandescent, or gaseous discharge xenon lamps reduces heat generation, current draw, and electromagnetic emissions, while increasing lamp life and producing a more true output light color. The controller 50 is used to selectively activate columns 32, rows 34, or individual LED's 30, to illuminate any number of a plurality of visually distinct types of warning light signals at any moment; to illuminate more than one of a plurality of visually distinct types of warning light signals simultaneously at any moment; to illuminate one of a plurality of combinations or patterns of visually distinct warning light signals at any moment, or over any desired period of time, or to illuminate more than one of a plurality of combinations or patterns of visually distinct warning light signals over any desired period of time. The plurality of visually distinct warning light signals may include, but are not necessarily limited to, a strobe light signal, a pulsating light signal, an alternating light, a modulated light signal, a flashing light signal, the illusion of a rotating or an oscillating light signal, a reverse character message, or images such as arrows. It should be noted that the controller 50 may also incorporate into any selected warning light signal variable or modulated power intensity to facilitate the provision of a desired unique lighting effect. For example, the controller 50 may illuminate one or more LED light sources 30 to establish a single warning light signal at a given moment. Alternatively, the controller 50 may illuminate one or more light emitting diode light sources 30 to provide two or more warning light signals at any given moment. Further, the controller 50 may simultaneously, consecutively, or alternatively, illuminate one or more LED light sources 30 to establish any desired combination or pattern of illuminated visually distinct warning light signals at any given moment or over a desired period of time. The combination and/or pattern of visually distinct warning light signals may be random or may be cycled as desired by an individual. The illumination of one or more patterns or combinations of warning light signals facilitates the continued observation by an individual. Occasionally, the concentration or attention of an individual is diminished when exposed to a repetitive or to a monotonous light signal. The desired purpose for illumination of a warning light signal is thereby reduced. The provision of a pattern, combination, and/or random illumination of visually distinct warning light signals maximizes the concentration or attention to be received from an individual observing a warning light signal. The purpose of the warning light signal is thereby promoted. FIGS. 11A, 11B, and 11C show an embodiment of controller 50 capable of selectively activating columns 32, rows 34 or individual LED's 30. Controller 50 generally comprises microprocessor 52 and circuitry 53 and is preferably contained within, attached to, or an element of, LED support 12. It is envisioned that controller 50 may be programmed by an external controller 55 and powered through cable R. In one embodiment, controller 50 generally comprises circuit board 54 or LED mounting surface having microprocessor 52 attached to a low voltage power supply, battery, or electrical source 56. Microprocessor 52 is configured through circuitry 53 to selectively activate columns 32 of LED's 30. Transistors Q9 and Q10 are in electronic communication with microprocessor 52, power supply, battery, or electrical source 56, and their respective columns 32.9 and 32.10 of LED's 30. Columns 32 of LED's 30 are connected to transistors Q1-Q8, which are in turn connected to microprocessor 52 through resistors R1-R8. Microprocessor 52 is capable of selectively activating transistors Q1-Q8 to allow current flowing through transistors Q9 and Q-10 to activate the selected column 32 of LED's 30. This circuit is capable of producing a strobe light signal, an alternating light signal, a modulated signal, a revolving light signal, a pulsating light signal, an oscillating light signal, or flashing light signal, a reverse character message, or images such as arrows. In one embodiment, a rotating or oscillating light signal may be established by the sequential illumination of entire columns 32 of LED's 30 by turning a desired number of columns on and then sequentially illuminating one additional column 32 while turning another column 32 off. Alternatively, the rotating or oscillating warning light signal may be created by selectively activating columns 32 of LED's 30. The following algorithm may be used to provide a counterclockwise revolving light signal (FIG. 9): 1) column A is activated at 0% duty cycle (column A 0%), column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 2) column A 25%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 3) column A 50%, column B 25%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 4) column A 75%, column B 50%, column C 25%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 5) column A 100%, column B 75%, column C 50%, column D 25%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 6) column A 100%, column B 100%, column C 75%, column D 50%, column E 25% column, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 7) column A 75%, column B 100%, column C 100%, column D 75%, column E 50%, F 25%, column G 0%, column H 0%, column I 0%, and column J 0%; 8) column A 50%, column B 75%, column C 100%, column D 100%, column E 75%, column F 50%, column G 25%, column H 0%, column I 0%, and column J 0%; 9) column A 25%, column B 50%, column C 75%, column D 100%, column E 100%, column F 75%, column G 50%, column H 25%, column I 0%, and column J 0%; 10) column A 0%, column B 25%, column C 50%, column D 75%, column E 100%, column F 100%, column G 75%, column H 50%, column I 25%, and column J 0%; 11) column A 0%, column B 0%, column C 25%, column D 50%, column E 75%, column F 100%, column G 100%, column H 75%, column I 50%, and column J 25%; 12) column A 0%, column B 0%, column C 0%, column D 25%, column E 50%, column F 75%, column G 100%, column H 100%, column I 75%, and column J 50%; 13) column A 0%, column B 0%, column C 0%, column D 0%, column E 25%, column F 50%, column G 75%, column H 100%, column I 100%, and column J 75%; 14) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 25%, column G 50%, column H 75%, column I 100%, and column J 100%; 15) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 25%, column H 50%, column I 75%, and column J 100%; 16) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 25%, column I 50%, and column J 75%; 17) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 25%, and column J 50%; 18) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 25%; 19) column A 0%, column B 0%, column C 0%, column D 0%, column E 0%, column F 0%, column G 0%, column H 0%, column I 0%, and column J 0%; 20) return to step 1). A clockwise revolving light signal may be created by performing steps 1-19 in descending order then repeating the steps. An oscillating light signal may be created by performing: (a) steps 7 through 16 in ascending order; (b) steps 7 through 16 in descending order; and (c) repeating (a) and (b). A second embodiment of controller 50 provides a means for activating LED's 30 individually to allow for greater flexibility in the type of warning light signal created. This embodiment of the invention is capable of displaying information in different colors or patterns. Depending on the size of the display, it may be necessary to scroll the symbols or characters across the display to accommodate for a larger visual appearance. It is envisioned that the mirror image of patterns, symbols, or characters could be displayed making the message easily readable by drivers viewing the signal in a rear view mirror. It is also envisioned that this embodiment of the invention could display arrows indicating a direction a vehicle is to travel or other images as shown in FIG. 2. In addition, combinations of warning signal lights, direction arrows, and other information carrying signals or images, could be displayed simultaneously by the invention. LED support 12 is envisioned to have several embodiments. One embodiment, shown in FIG. 9, consists of a panel 14 having front 16, back 18, top 20, bottom 22 and sides 24. LED's 30 are arranged on front 16, with domes 36 extending therefrom, in columns 32 and rows 34. LED's 30 are in electric communication with controller 50 which may be contained or sealed within LED support 12 to provide protection from the elements. Another embodiment of warning signal light 10 is depicted in FIG. 10. Here, the backs 18 of two panels 14 are attached together to allow for a light signal to be produced on two sides. The two panels 14 form LED support 12. Alternatively, it is envisioned that a single panel 14 having LED's arranged about front 16 and back 18 could be used as well. FIGS. 6 and 8 show further embodiments of warning signal light 10. In FIG. 8, panels 14 are used to form an LED support 12 having four sides and generally shaped as squared. FIG. 6 shows panels 14 connected to form an LED support 12 having three sides and generally triangular in shape. In both embodiments, LED's 30 are arranged about the fronts 16 of the panels 14. It is further envisioned that panels 14 may be integral to each other. Yet another embodiment of warning signal light 10, consists of a flexible panel 14 and controller 50 to allow LED support 12 to be formed into various shapes. FIG. 5 shows LED support 12 formed into a cylinder. Further variations include the use of flexible panels 14 to form other shapes such as semicircles (FIG. 12) or to simply conform to a surface of an emergency vehicle (FIGS. 13 and 14). This embodiment is particularly useful for undercover vehicles which generally position the warning signal lights inside the vehicle. For example, panel 14 could be attached to the front, rear, or side window of an undercover police vehicle. It should be noted that numerous other shapes could be formed from panels 14 including those formed from combinations of flat, curved, and flexible panels at the preference of an individual. In each of the embodiments discussed above, the array of LED's 30 may be formed of the same or differently colored LED's. Generally, each column 32 or row 34 may consist of a series of differently colored LED's. Controller 50 may be configured to select the color of the LED's to be illuminated forming the light signal. Accordingly, the user may select a blue, red, white, yellow, green, or amber color or any combination thereof to be used as the color of light signal. Alternatively, the warning signal 10 may be formed of individual LED's 30 which may be selectively illuminated at the discretion of an individual. It is also envisioned that the controller 50 may control warning signal lights 10 having multiple sides (FIGS. 5, 6, 8, and 10) such that each side is capable of producing warning light signals or combination warning light signals that are independent and/or different from those produced upon the other sides. For example, the squared shape warning signal light shown in FIG. 8 may produce or simulate a red revolving light on first side 15.1, while second side 15.2 is simultaneously producing a blue oscillating light, while third side 15.3 is producing or simulating a stationary white light, and while fourth side 15.4 is producing a white strobe light. Another embodiment of warning signal light 10 is depicted in FIGS. 1 and 2 as light bar 70 which extends from driver side 100 to passenger side 102 of emergency vehicle 104. Cover 82 protects light bar 70 from the elements. Each side of light bar 70 may have LED's 30 to produce or simulate warning light signals on each side of emergency vehicle 104. Furthermore, controller 50 may be used to create multiple warning light signals on each side of light bar 70. For example, controller 50 may create a simulated revolving blue light positioned at front passenger side 102 of light bar 70, oscillating white lights positioned at front driver side 100, and yellow arrows there between. Additional or alternative warning light signals may be produced out the back 18 and sides of light bar 70. It is further envisioned that light bar 70 may consist of a single light source, a single row of light source or a large array of LED's 30 across each side (not shown). This embodiment provides the largest display and, therefore, is best suited to display desired combinations of warning lights and images. It should be noted that the identified types of warning light signals, combinations and/or patterns of warning light signals, may also be reproduced through the illumination of a single row of LED light sources 30. Mechanical rotation and oscillation of warning signal lights 10 about axis A is possible by way of attachment to gyrator 90 depicted in FIG. 3. Gyrator 90 mounted to light bar 70, generally comprises electric motors 96 having cables 97. Gyrator 90 is configured to receive connecting portion 40 of warning signal light 10. Cable 97 is preferably connected to a power supply and either an external controller 55 or controller 50. Gyrator 90 may be capable of rotating or oscillating warning signal light 10 about a single or dual axis of rotation A. FIG. 3 shows gyrator 90 configured to rotate or oscillate warning signal light 10 about a vertical axis A by way of motor 96.1 and oscillate warning signal light 10 about a horizontal axis A by way of motor 96.2. Rotation or oscillation of warning signal light 10 about vertical axis A is accomplished through direct attachment of connecting portion to motor 96.1. Oscillation of warning signal light 10 about horizontal axis A is accomplished by attaching swivel arm 99 to bracket 99.1 and post 99.2 which is mounted to motor 96.2. Alternative methods for imparting rotation or oscillation motion to warning signal light 10 may be accomplished through the use of electric motors, toothed gears, and worm gears. In addition, maintaining electrical communication between a power supply and an external controller 55 with a revolving or oscillating warning signal light 10 may be accomplished using brushes or other means without sacrificing the operation of the warning signal light 10. In another embodiment as depicted in FIGS. 13 and 14, emergency vehicle 104 may include a front or rear windshield 106. The front or rear windshield 106 is generally angularly offset with respect to the vehicle at an approximate angle of 45 degrees. In this embodiment, the mounting of a panel 14 of light sources 30 in flush contact with the interior of a front or rear windshield 106 occurs through the use of angular offsets 108 for the light sources 30 such that light emitted from the light sources 30 occur at a horizontal visual line (V) which is substantially parallel to the plane of a vehicle and not at an approximate angle of 45 degrees upward, which corresponds to the angle for the front or rear windshield 106. In this embodiment, the ease of visualization of the light source 30 is significantly enhanced by the downward angular offsets 108 which position the light sources 30 along parallel visual lines of sight (V). LED supports 12 or panels 14 may then be positioned in any desired location within the interior of a vehicle in flush contact or proximate to the front or rear windshield 106. A suitable cable 97 is required to provide electrical power for illumination of the light sources 30. It should be noted that the angle of incidence for the angular offsets 108 may vary considerably dependent upon the make or model for the vehicle to include the warning signal lights 10. It should be further noted that the warning signal light 10 may be used with an automobile, motorcycle, snowmobile, personal water craft, boat, truck, fire vehicle, helicopter, and/or any other type of vehicle receptive to the use of warning signal lights 10. It should be further noted that LED support 12 or panel 14 may be mounted to the interior top dashboard of a vehicle proximate to the front windshield 106 or to the interior top rear dashboard proximate to the rear windshield 106 of a vehicle. Mounting of a light support 12 or panel 14 to either the front or rear dashboards may minimize the necessity for inclusion of angular offset 108 for the light sources 30. It should be further noted that LED supports 12 or panels 14 may be releasably affixed to the interior of the front or rear windshields 106 via the use of suction cups, hook-and-loop fabric material such as Velcro®, and/or any other releasable affixation mechanism at the preference of an individual. An individual may then adjust and reposition the location of the light support 12 or panels 14 anywhere within the interior of a vehicle as desired for maximization of visualization of the warning signal lights 10. In another alternative embodiment as depicted in FIG. 15, warning signal light 10 may function as a remote, revolving, or stationary beacon. In this embodiment, LED support 12 or panel 14 is preferably releasably connected to a transportable support 120 via the use of a bracket. The transportable support 120 may be a tripod having telescoping legs or may be any other type of support as preferred by an individual. In this embodiment, LED light support 12 or panel 14 is electrically connected to an elongate electrical extension cable 97 which may include any desired adapter for electrical connection to a power source which may be a vehicle. The remote light support 12 or panel 14 may also include plug-in adapters for electrical connection to any desired electrical power source other than a vehicle as is available. The transportable support 120 may also include gyrator 90 as earlier described to provide a desired rotational or oscillatory motion for warning signal light 10. A controller 50 having a microprocessor 52 may also be integral to, or in electrical communication with, LED's 30 for the provision of multi-colored lights, flashing, alternating, modulated, moving characters, arrows, stroboscopic, oscillating and/or revolving warning light signals as desired by an individual. In this embodiment, the warning signal light 10 may be physically separated from an emergency vehicle 104 any desired distance to facilitate or enhance the safety of a potentially dangerous situation necessitating the use of warning signal lights 10. In addition, it should be noted that a series of remote warning signal lights 10 may be electrically coupled to each other for any desired distance to again facilitate the safety of a situation necessitating the use of warning signal lights 10. FIG. 16 shows a perspective view of a xenon lamp 1. Xenon lamp 1 has a base pedestal 2 which is typically formed of rubber, plastic, or other insulating material. Base pedestal 2 has a top surface 3 which may support a glass tube 4 which may have a looped curve such that an anode end and a cathode end are each supported on a top surface. The anode and cathode ends may be sealed and respective electrical conductors 5 and 6 may pass through the sealed ends and through the top surface 3. A trigger wire 7 may be helically wound about the exterior surface of the glass tube 4 and the ends of the trigger wire 7 may be passed through the top surface 3 of the base pedestal 2 to form a third conductor on the underside of the base pedestal 2. Base pedestal 2 may have an upper cylinder portion 8 extending from a lower shoulder all of which may extend above the top surface 3. The upper cylindrical portion 8 may include an upper shoulder 9. A glass dome (not shown) may be sized to fit over the xenon lamp 1 and glass tube 4 for resting on the upper shoulder 9. The glass dome may be preferably made from a transparent or silicate glass material capable of withstanding heat stress. The outer diameter of the glass dome is typically about one inch which is sized to fit through the conventional opening in a typical vehicle lamp fixture. The exterior glass dome surface typically has a much lower temperature during operation than the exterior surface of the glass tube 4 forming a part of the xenon lamp 1. The temperature drop between the glass tube 4 and the glass dome facilitates the use of coloring of the dome to provide a colored lamp by virtue of the xenon light intensity passing through the colored dome. The xenon lamp 1 is preferably aligned for insertion into a conventional opening 248 of a light reflector 260 (FIGS. 20 and 21). The light receptacle opening 248 in the light reflector 260 is typically about one inch in diameter; and the glass dome and base pedestal 2 are preferably sized to fit within the light receptacle opening 248. The xenon lamp 1 in its final construction may include a cover plate (not shown) affixed over the bottom opening of the base pedestal 2 for affixation to a light reflector 260 via the use of screws which pass through the screw apertures 9.1. The anode, cathode, and trigger wire 7 preferably traverse the base pedestal 2 and may include a plug 9.2 which is adapted for engagement to a controller/power supply for a motor vehicle. The light reflector 260 may be a conventional light reflector of the type found in vehicles having a clear plastic or glass lens cover. The glass or lens cover may be fitted over the front edge of the reflector 260 in a manner which is conventional with vehicle lamps. It should be noted that the light reflector 260 may be parabolically or other shaped at the preference of an individual. The light reflector 260 may be mounted to a motor for rotation about a vertical axis. In this embodiment the light source/replacement lamp 200 may be integrally connected or affixed to the reflector 260 for simultaneous rotation about the vertical axis during use of the motor. Alternatively, the light source/replacement lamp 200 may be fixed proximate to the vertical axis where the light reflector 260 is rotated around the stationary replacement lamp 200 to provide for the visual appearance of a rotational light source. The glass domes as used with the xenon lamps 1 may be colored with any color as preferred by an individual including but not limited to red, blue, amber, green, and/or white. It should be noted that the light fixture incorporating the light reflector 260 may be a headlight fixture or a turn signal light fixture where the xenon lamp 1 is mounted into the light reflector 260 on either side of a centrally-mounted halogen light bulb which may be used as a headlight lamp. In this case, the light fixture could perform its normal function as a headlight and could alternatively flash several additional colors, depending upon the needs of the user. This configuration provides an emergency flashing light construction which is wholly concealed within a normal head lamp of a vehicle and is, therefore, not readily visible from outside the vehicle unless the lights are flashing. This construction may find application in an unmarked emergency vehicles such as might be used by some law enforcement officers. In operation, the LED replacement lamp 200 may be constructed as a replacement part for a conventional incandescent or xenon gaseous discharge lamp. The standard mounting base 204 and LED support assembly 212 may be sized to readily fit into the same light opening as an incandescent lamp would require, although it is apparent the electrical driving circuit for the LED replacement lamp 200 may require modifications to accommodate the LED operating principles. LED warning signal lamp 200 may be used in a variety of locations about a vehicle. It should be noted that the use of the LED warning signal lamps 200 are not necessarily limited to positioning adjacent to the head lamp or headlight, tail light, or turn signal illumination devices for an emergency vehicle 104. The LED warning signal lamp 200 may be used as a rotational, pulsating, or oscillating reflector light within the interior adjacent to a front, rear, and/or side window of a vehicle. It is also envisioned that the controller 50 may control warning signal lights 200 independently of one another such that each warning signal lamp 200 is capable of producing warning light signals which are independent and/or different from those produced at another location about an emergency vehicle 104. For example, a front left location may produce a red colored light while simultaneously a front right location may produce an amber colored light and a right rear location may produce a green colored light and a left rear location may produce a blue colored light. The controller 50 may then alternate the color of the light illuminated from the warning signal lamp 200 in each area as desired by an individual. Alternatively, the controller 50 may sequentially activate warning signal lamps 200 positioned about an emergency vehicle 104 to simultaneously produce a desired color or alternating sequence of colors. It should also be noted that the controller 50 may simultaneously illuminate all LED warning signal lamps 200 to produce a flashing or strobe light which may be particularly useful in certain emergency situations. It should be further noted that the controller 50 may selectively illuminate individual LED warning signal lamps 200 in any desired color, pattern, and/or combination as desired by an individual. Referring to FIG. 17 in detail, an LED replacement lamp 200 is depicted. In this embodiment the LED replacement lamp 200 includes a standard mounting base 204 which preferably includes a top surface 206. Extending upwardly from the top surface 206 is preferably an upper cylindrical portion 208 which includes an upper shoulder 210. Extending upwardly from the upper shoulder 210 is preferably an LED support assembly 212 which includes one or more LED lamp modules 213. The LED lamp modules 213 may be of the same or different colors at the discretion of an individual. A wire 202 is preferably in electrical communication with the plurality of LED lamp modules 213 to provide for electrical communication with the controller 50 to individually activate or illuminate LED lamp modules 213 as preferred by an individual. A plug-in connector 40 is preferably coupled to the wire 202 for engagement to the controller 50 and/or power source of an emergency vehicle 104. The LED replacement lamp 200 is preferably adapted to be positioned in a one inch light receptacle opening 248 (approximate size) which has been previously placed through the backside of a reflector assembly 260. The LED replacement lamp 200 is preferably used to replace a xenon gaseous discharge lamp or incandescent lamp as previously mounted to a base which is inserted into opening 248 in a reflector assembly 260. Illumination of one or more individual LED lamp modules 213, as mounted in the reflector assembly 260, enables the reflector assembly/lens to take on the appearance of a warning signal or emergency signaling lamp. The LED replacement lamp 200 preferably replaces the xenon gaseous discharge or incandescent lamp assemblies with high brightness, long life LED technology. Referring to FIG. 18, an incandescent lamp or quartz halogen H-2 lamp is depicted and in general is indicated by the numeral 220. The incandescent lamp assembly 220 is preferably formed of a standard mounting base 222. A vertical post 224 preferably extends upwardly from the standard mounting base 222. The incandescent light bulb 226 is preferably mounted in the vertical post 224. The vertical post 224 may extend below the standard mounting base 222 to provide for electrical coupling with a wire 228 which preferably includes a standard pin connector 230. The standard pin connector 230 is preferably adapted for electrical communication to a power supply and/or controller 50 for activation of the incandescent lamp assembly 220. The incandescent lamp assembly 220 may be stationary or mounted in a rotational light reflector 260 as desired by an individual. The light bulb 226 may be a halogen H-2, 55 watt, lamp at the discretion of an individual. As depicted in FIG. 19, LED replacement lamp 200 is adapted to replace the incandescent lamp assembly 220 in a stationary or rotational light reflector 260. The LED replacement lamp 200 as depicted in FIG. 19 preferably includes a standard mounting base 234 and a vertical post 236. It should be noted that the vertical post 236 may extend upwardly from the standard mounting base 234 and may alternatively extend below the standard mounting base 234 at the preference of an individual. An LED mounting area 238 may be preferably integral or affixed to the upper section of the vertical post 236. The LED mounting area 238 preferably includes a plurality of individual LED module lamps 240 which may be individually, sequentially, or illuminated in combination with other light sources at the preference of an individual. The individual LED module lamps 240 are preferably in electrical communication with a wire 242 which includes an integral standard wire connector 244. The wire connector 244 is preferably adapted to be plugged into a controller 50 or power supply. Communication is thereby provided for selective illumination of the individual LED module lamps 240. It should be noted that a group of individual LED module lamps 240 are mounted in the LED mounting area 238. It should also be noted that the LED replacement lamp 200 is preferably adapted to replace the incandescent lamp assembly 220 or a xenon gaseous discharge lamp assembly base of FIG. 16 or 18. The purpose of the LED replacement lamp assembly 200 is to replace existing xenon gaseous discharge and incandescent lamps with new LED technology while simultaneously utilizing existing standard bases in a standard lamp enclosure. For example, an individual may choose to replace a halogen “H-2” 55 watt lamp with an “LED-2” lamp in an existing rotating light fixture with no other structural modifications, yet achieving the advantages of less power consumption, greater reliability, easier installation, less RF emissions (which reduces interference with radio or electronic equipment), cooler operating temperatures, simplified circuitry, longer life, greater durability and duty capability, and simultaneously providing pure and easier-to-see color light output. As depicted in FIG. 20, a rotational light reflector 246 is disclosed. The rotational light fixture 246 includes a reflector assembly 260 having a standard opening 248. The incandescent light assembly 220 is preferably positioned in the standard opening 248 for extension of the vertical post 224 outwardly from the reflector assembly 260 for positioning of the light bulb 226 in a desired location. Light emitted from the standard halogen light bulb 226 preferably reflects off the parabolic-shaped reflector assembly 260 for transmission of light in a direction as indicated by arrows AA for visualization by individuals. Reflector assembly 260 and light source 226 may be rotated via the use of gears 250 which are preferably driven by electrical motors not shown. In this manner, the rotational light fixture 246 including the reflector assembly 260 may be rotated at any desired velocity as preferred by an individual. As may be seen in FIG. 21, a rear or back view of the rotational light fixture 246 is provided. As may be seen in FIG. 21, the light source is preferably positioned in the standard opening 248. The wire 228 as in electrical communication with the light source and is preferably connected via the standard pin connector 230 for electrical communication with a power source. As depicted in FIG. 22, an alternative rotational light fixture 252 is depicted. Rotational light fixture 252 preferably includes a reflector assembly 260 which may be parabolic in shape for the transmission of light along a common axis as depicted by arrows BB for visualization by an individual. In this embodiment, the individual LED module lamps 240 may be positioned to the front of the reflector assembly 260 through the use of a frame 254. The frame 254 may be integral or connected to a gear 250 as desired by an individual. The gear 250 may be driven by a motor for rotation of the light fixture 252. It should be noted that the individual LED module lamps 240 are preferably in electrical communication with a power source not shown. It should be further noted that the rotational light fixture 252 may also be adapted for the provision of an oscillating or pulsating warning light signal at the preference of an individual. An alternative replacement LED lamp 200 is depicted in FIGS. 23-25. In this embodiment the LED replacement lamp 200 includes a standard mounting base 270. The standard mounting base 270 also preferably includes a plurality of teeth 272. The teeth 272 are preferably adapted for mating coupling with gears integral to a motor and/or reflector 260, or rotational light fixture 246 to facilitate rotation and/or oscillation of the replacement LED lamp 200. The standard mounting base 270 also preferably includes a top surface 274 opposite to the teeth 272. An upper cylinder portion 276 is preferably adjacent to the top surface 274. The upper cylinder portion 276 preferably includes an upper shoulder 278. Extending upwardly from the upper shoulder 278 is preferably a circuit board, LED mounting surface, or support 280 which preferably includes one or more LED illumination sources 282. The LED illumination sources 282 may be of the same or different colors at the preference of an individual. A wire 284 is preferably in electrical communication with the LED illumination sources 282 to provide for communication and contact with the controller 50 for combination and/or individual illumination of the LED illumination sources 282. A standard plug-in connector may be integral to the wire 284 to facilitate coupling engagement to the controller 50 and/or power source for a vehicle 104. The circuit board or LED mounting surface 280 is preferably adapted to have a first side 286 and an opposite side 288. Preferably a plurality of LED illumination sources 282 are disposed on both the first side 286 and the opposite side 288 of the replacement lamp 200. A glass dome or protector 290 is preferably adapted for positioning over the circuit board or LED mounting surface 280 for sealing engagement to the top surface 274 of the standard mounting base 270. The glass dome 290 may be formed of transparent plastic material or a transparent or silicate glass material capable of withstanding heat stress at the preference of an individual. It should be further noted that the glass dome 290 preferably protects the circuit board or LED mounting surface 280 and the LED illumination sources 282 from contamination and from exposure to moisture during use of the replacement lamp 200. In this regard, the sealing lip 292 of the glass dome 290 preferably is securely affixed to the top surface 274 to effectuate sealing engagement therebetween. The outer diameter of the glass dome 290 is preferably about one inch which is sized to fit within the conventional opening 248 in a typical lamp fixture or reflector assembly 260. The replacement lamp 200 depicted in FIGS. 23, 24, and 25 is also adapted to be positioned in a one inch light receptacle opening 248 which has been placed into a reflector assembly 260. Illumination of one or more individual LED illumination sources 282 as disposed on the circuit board or LED mounting surface 280 enables the replacement lamp 200 to take on the appearance of a warning signal or emergency signaling lamp. The replacement lamp as depicted in FIGS. 23, 24, and 25 may alternatively permit the circuit board 280 to extend below the upper shoulder 278 to facilitate affixation and positioning relative to the standard mounting base 270. The controller 50 may regulate the illumination of the LED light sources 282 individually, or in combination, to provide a desired warning lighting effect for the replacement lamp 200. Also, the controller 50 may illuminate the LED light sources 282 individually, or in combination, independently with respect to the first side 286 and the opposite side 288 to provide different warning light effects to be observed by an individual dependant upon the location of the person relative to the replacement lamp 200. The controller 50 may also simultaneously or independently regulate the power intensity to the LED illumination sources 282 to provide for a modulated or variable light intensity for observation by an individual. It should also be noted that the LED illumination sources 282 may be formed of the same or different colors at the preference of an individual to provide a desired type of warning light effect for the replacement lamp 200. In an alternative embodiment, the LED warning signal lamps 10 or LED replacement lamps 200 may be electrically coupled to a controller 50 which in turn is used to provide a modulated power intensity for the light source. A modulated power intensity enables the provision of various power output or patterns of illumination for creation of a plurality of visually distinct warning light signals without the use of mechanical devices. In these embodiments, the controller 50 illuminates selected light sources 282 and the controller 50 may also regulate and/or modulate the power supplied to the light source 282 thereby varying the intensity of the observed light. In addition, the controller 50 may modulate the power supplied to the LED warning signal lamps 10 or LED replacement lamps 200 in accordance with a sine wave pattern having a range of 0 to full intensity. At the instant of full intensity, the controller 50 may also signal or regulate a power burst for observation by an individual. The controller 50 operating to regulate and/or modulate the power intensity for the warning signal lamps 10 or LED replacement lamps 200 in conjunction with illumination and non-illumination of selected light source 282 may establish the appearance of a rotational warning light source or pulsating light source without the necessity of mechanical rotational or oscillating devices. The current draw requirements upon the electrical system of an emergency vehicle 104 is thereby significantly reduced. Spatial considerations for an emergency vehicle are also preferably optimized by elimination of mechanical, rotational and/or oscillation devices. The controller 50 may also regulate the modulated power intensity for the provision of a unique variable intensity warning light signal. The unique variable intensity light source is not required to cycle through a zero intensity phase. It is anticipated that in this embodiment that the range of intensity will cycle from any desired level between zero power to full power. A range of power intensity may be provided between thirty percent to full power and back to thirty percent as regulated by the controller 50. It should also be further noted that an irregular pattern of variable power intensity may be utilized to create a desired type of warning light effect. In addition, the controller 50 may also sequentially illuminate adjacent columns 32 to provide a unique variable rotational, alternating, oscillating, pulsating, flashing, and/or combination variable rotational, alternating, pulsating, oscillating, or flashing visual warning light effects. A pulsating warning light signal may therefore be provided through the use of modulated power intensity to create a varying visual illumination or intensity effect without the use of rotational or oscillating devices. The controller 50 may also modulate the power intensity for any combination of light sources 30 or 282 to provide a distinctive or unique type of warning light signal. The use of a controller 50 to provide a modulated power intensity for a light source may be implemented in conjunction with replacement lamps 200, flexible circuit boards having LED light sources 30, paneled circuit boards or LED mounting surfaces having LED light sources 30, light bars 70 having LED light sources 30, a cylindrical, square, rectangular, or triangular-shaped circuit boards having LED light sources 30 and/or any other type or shape of LED light sources including but not limited to the types depicted in FIGS. 1-50 herein. Further, the controller 50 may be utilized to simultaneously provide modulated or variable light intensity to different and/or independent sections, areas, and/or sectors 326 of a light source (FIG. 35). Also, the controller 50 may be utilized to simultaneously provide modulated or variable light intensity to different and/or independent sectors, areas, and/or sections 326 of the forward facing side or rearward facing side of the light bar 70 for the provision of different warning light signals or a different warning light effects on each side. In this embodiment it is not required that the forward facing and rearward facing sides of the light bar 70 emit the identical visual patterns of illuminated light sources 30. The controller 50 may regulate and modulate the variable light intensity of any desired sector 326 of the forward facing side independently from the rearward facing side of the light bar 70. The controller 50 may thereby provide any desired pattern and/or combination of patterns of warning light signals through the utilization of variable and/or modulated light intensity for the forward facing side, and a different type or set of patterns and/or combination of patterns of warning light signals having variable or modulated light intensity for the rearward facing side of the light bar 70 as desired by an individual. It should be further noted that an infinite variety of patterns and/or combinations of patterns of warning light signals may be provided for the forward facing side and the rearward facing side of the light bar 70 a the preference of an individual. The use of the controller 50 to modulate the power intensity for a light source 30 to provide a unique warning light signal may be utilized within any embodiment of an LED light source 10, light bar 70 light support, replacement lamp 200 or reflector assembly as described in FIGS. 1-50 herein. It should be further noted that the modulation of the power intensity for a light source 30 or replacement lamp 200 may be used in conjunction, or as a replacement to, the sequential illumination of rows, columns, and/or individual LED light sources 30 to provide a desired type of unique warning light effect. The modulated power intensity may be regulated by the controller 50 to create a unique warning light signal within a single sector 326 or in conjunction with multiple separated or adjacent sectors 326 of light bar 70 or light support for the provision of any desired composite emergency warning light signal. All individual LED light sources 30 within a light bar 70 or light support may be simultaneously exposed to incrementally increased modulated power intensity to provide for an incremental increase in illumination. A power burst at full power may be provided at the discretion of an individual. The modulation of the power intensity in conjunction with the incremental increase in illumination of all LED light sources 30 within light bar 70 or light support may provide the appearance of rotation of a warning light signal when observed by an individual. The power exposed to the individual light sources 30 may then be incrementally decreased at the preference of an individual. It should be noted that the power is not required to be regularly incrementally increased or decreased or terminated. It is anticipated that any pulsating and/or modulated variable light intensity may be provided by the controller 50 to the LED light sources 30. It should also be noted that all individual LED light sources 30 within a light bar 70 are not required to be simultaneously and incrementally illuminated to provide for the appearance of rotation. For example, a light bar 70 or light support may be separated into one or more distinct segments 326 which are formed of one or more columns 32 of LED light sources 30. a particular segment 326 may be selected as a central illumination band which may receive the greatest exposure to the modulated or variable power intensity and, therefore, provide the brightest observable light signal. An adjacent segment 332 may be disposed on each side of the central illumination band 330 which in turn may receive modulated or variable power intensity of reduced magnitude as compared to the central illumination band 330. A pair of removed segments 333 may be adjacent and exterior to the segments 332, and in turn, may receive exposure to a modulated power source of reduced intensity as compared to segments 332. The number of desired segments may naturally vary at the discretion of an individual. The controller 50 may thereby regulate a power source to provide a modulated or variable power intensity to each individual segment 330, 332, or 333 (FIG. 35) to provide for a unique warning light effect for the light bar 70 or light support. It should be further noted that light supports 12 may be flat and rigid, pliable, moldable, triangular, cylindrical, partially cylindrical, and/or any other shape as desired by an individual provided that the essential functions, features, and attributes described herein are not sacrificed. The provision of a modulated power intensity to the light bar 70 or light support may also be coupled with or in combination to the sequential illumination of columns 32 as earlier described. In this situation, the warning light signal may initially be dim or off as the individual columns 32 are sequentially illuminated and extinguished for illumination of an adjacent column or columns 32. The power intensity for the illuminated column or columns 32 may simultaneously be incrementally increased for a combination unique rotational and pulsating modulated or variable warning light signal. In addition, the controller 50 may be programmed to provide the appearance of rotation pulsation and/or oscillation at the discretion of an individual. Each individual LED light source 30 preferably provides an energy light output of between 20 and 200 or more lumens as desired by an individual. Each light support 12 may contain a plurality of rows 34 and columns 32 of individual LED light sources 30. The light supports 12 are preferably in electrical communication with the controller 50 and power supply. The supports 12 preferably are controlled individually to create a desired warning light signal for an emergency vehicle 104 such as rotation, alternating, oscillation, strobe, flashing, or pulsating as preferred by an individual. Each support 12 may be controlled as part of an overall warning light signal or pattern where individual supports 12 may be illuminated to provide a desired type or combination light signal in addition to the provision of a modulated or variable power intensity for the light source 30. Modulated power intensity may be regulated by the controller 50 to create the appearance of rotation within a single support 12 or in conjunction with multiple separated, independent or adjacent supports 12 for the provision of a composite emergency warning light signal. It should be noted that each portion, section, sector, or area 326 of light bar 70 or light support may be controlled as part of an overall warning light signal or pattern where individual sections or sectors 326 may be illuminated to provide a desired type of warning light signal including but not limited to rotation and/or oscillation through the use of a modulated or variable power intensity. Alternatively, the controller 50 may provide for the random generation of light signals without the use of a preset pattern at the preference of an individual. Controller 50 may be used to selectively activate individual LED's 30 to create a pulsating light signal, a strobe light signal, a flashing light signal, an alternating light signal, and/or an alternating colored flashing light signal for an emergency vehicle. Controller 50 provides a means for activating LED's 30 individually to allow for greater flexibility in the type of warning light signal created. This embodiment of the invention is also capable of displaying information in a variety of different colors or sequential illumination of colors. Referring to FIG. 33, the emergency vehicle 300 preferably includes a light bar or light support 302 which may include one or more panels of LED light sources 306. A strip LED light source 308 may also be secured to the exterior of the emergency vehicle 300 at any location as desired by an individual. It is anticipated that the strip LED light source 308 may preferably encircle an entire emergency vehicle 300 to enhance the visualization of the emergency vehicle 300 as proximate to an emergency situation. Referring to FIG. 34, the strip LED light source 308 is preferably comprised of a circuit board 310 having an array 312 of individual LED light sources 306. The LED light sources 306 are preferably in electrical communication with each other via electrical contacts 314. Each circuit board 310 is preferably in electrical communication with a power supply and/or controller 50 via the use of wires 316. Each individual LED light source 306 as included within a strip LED light source 308 may be enclosed within a reflector 370 to facilitate and maximize light output along a desired visual line of sight. It should be noted that the LED light sources 306 preferably have maximum illumination at an angle of incidence approximately 40°-45° downwardly from vertical. The strip LED light sources 308 preferably include a back-side. The back-side preferably includes an adhesive, magnetic, or other affixation device which may be used to secure the strip LED light sources 308 to the exterior of an emergency vehicle 300 in any desired pattern or location. The strip LED light sources 308 may also be enclosed within a transparent cover 324 which prevents moisture or other contamination from adversely affecting the performance of the LED light sources 306 during use of the strip LED light source 308. Wires of adjacent strip LED light sources 308 may preferably be intertwined to extend across a vehicle for coupling to a power supply at a central location. The wires are preferably connected to the controller 50 which may be used to regulate the illumination of individual LED light sources 306 and/or individual panels of the strip LED light sources 308 to provide for the appearance of sequential, pulsating, alternating, oscillating, strobe, flashing, modulated, and/or rotational lights for an emergency vehicle 300. It should be noted that the individual LED light sources 306 within the strip LED light source 308 may be of a single or variety of colors as desired by an individual. Alternatively, adjacent strip LED light sources 308 may be electrically coupled to each other in a parallel or series electrical connection for communication to a centrally located controller and power source. The individual LED light sources 306 as incorporated into the array 312 of the strip LED light sources 308 are preferably sturdy and do not fail or separate from a vehicle 300 when exposed to rough operating conditions. It should be further noted that any individual strip of LED light sources 308 may be easily replaced as required. The transparent cover 324 for the strip LED light sources 308 is preferably formed of sturdy and resilient plastic material which prevents water penetration and/or contamination to the circuit board 310 and/or individual light sources 306. Each individual LED light source 306 preferably provides an energy light output of between 20 and 200 or more lumens as desired by an individual. The strip LED light sources 308 may individually be any size as preferred by an individual. It is anticipated that the strip LED light sources 308 may have the approximate dimensions of three inches in length, three inches in width, and one-half inch in thickness for use in affixation to the exterior of an emergency vehicle 300. It should be noted, however, that any desired size of strip LED light sources 308 may be selected by an individual for use in association with the exterior of the emergency vehicle 300 including the use of a series of solitary light sources 306. Referring to FIG. 35, a panel 304 of individual LED light sources 306 is depicted. The panel 304 may form the illumination element for the strip of LED light sources 308 and/or light bar 70 or light support 12, 302 as affixed to an emergency vehicle 300. Each panel 304 preferably contains a plurality of rows 34 and columns 32, 328 of individual LED light sources 306. The panels 304 are preferably in electrical communication with the controller 50 and power supply (now shown). The panels 304 preferably are controlled individually to create a desired warning light signal for an emergency vehicle 300 such as rotation, alternating, pulsating, sequencing, oscillation, modulated strobe, or flashing as preferred by an individual. Each panel 304 may be controlled as part of an overall warning light signal or pattern where individual panels 304 may be illuminated to provide the appearance of rotation and/or oscillation motion through the use of a modulated power intensity light source without the use of mechanical devices. It should also be noted that the strip LED light sources 308 may be organized into distinct sections, segments, and/or sectors 326 for individual illumination by the controller 50. Each distinct segment, section, and/or sector 326 may therefore be illuminated with a visually different and distinct type of light signal with, or without, modulated or variable power intensity for the creation of a desired type of unique warning lighting effect for a vehicle. An infinite variety of color and/or pattern combinations or sequences may be established for the emergency vehicle 300 through the use of the controller 50. Modulated power intensity may be regulated by the controller 50 to create the appearance of rotation or pulsation within a single panel 304, strip 308, or in conjunction with multiple separated or adjacent panels 304 or strips 308 for the provision of a composite warning light signal as desired by an individual. The warning light signal for each or a group of panels 304 or strips 308 may also be regulated by the controller 50 for the provision of a modulated power intensity for an observable warning light signal. All individual LED light sources 306 within a panel 304 or strip 308 may also be exposed to incrementally increased modulated power intensity to provide for an incremental increase in illumination for a warning light signal. The modulation of the power intensity of LED light sources 306 within panel 304 or strips 308 thereby may provide the appearance of rotation of a light signal when observed by an individual. The power modulation or light intensity curve is anticipated to resemble a sine wave pattern when the warning light signal provides the appearance of rotation (FIG. 43). The power to the individual light sources 306 may then be incrementally decreased at the preference of an individual. It should be noted that the power is not required to be terminated. It should also be noted that each individual LED light source 306 is not required to receive the same level of power output from the controller 50. Therefore different individual LED light sources 306 may receive different power output levels within a single warning light signal. Individual LED light sources 306 within panel 304 are not required to be simultaneously and incrementally illuminated to provide for the appearance of rotation. It is anticipated that a pulsating and/or modulated variable light intensity may be provided by the controller 50 for regulation of the power output from thirty percent to maximum and back to thirty percent which affords a desirable type of pulsating modulated variable light effect. The provision of a modulated power intensity to the panels 304 may also be coupled with or in combination to the sequential illumination of columns 328 as earlier described. In this situation, the warning light signal may initially be dim or off as the individual columns 328 are sequentially illuminated and extinguished for illumination of an adjacent column or columns 328. The power intensity for the illuminated column or columns 328 may simultaneously be incrementally increased for a combination unique rotational and pulsating modulated light signal. In addition, the controller 50 may be programmed to provide the appearance of rotation pulsation and/or oscillation at the discretion of an individual. It should be noted that the provision of a modulated light or power intensity may be implemented in association with a light bar or light support 302, a cylindrical panel, a strip of lights 308, flat panels 304, or any other type of light source as desired by an individual for use with an emergency vehicle 300. Referring to FIGS. 48 and 49, an individual LED light source 306 is depicted in detail. The LED light source 306 preferably include a ceramic and/or heat resistant base 334. Centrally within the ceramic and heat-resistant base 334 is positioned a light source 336. The light source 336 is preferably enclosed within a protective cover 338. Extending outwardly from the individual light source 306 are a pair of contact paddles 340 which preferably provide for the electrical contacts for illumination of the light sources 336 during use of the individual light sources 306. The back of the LED light source 306 includes a slug 342. The slug 342 is designed to be positioned within circular openings 344 of a circuit board or LED mounting surface 346 (FIG. 36). The circuit board or LED mounting surface 346 preferably establishes a heat sink within an aluminum base or frame 348 as depicted in FIGS. 38 and 39. The LED light sources 306 as depicted in FIGS. 48 and 49 preferably provide for a light intensity varying between 20 and 200 lumens or higher at the discretion of an individual. The positioning of the slug 342 in the circular openings 344 of the circuit board or LED mounting surface 346 also preferably establishes a heat sink. A heat sink is desirable because the individual LED light sources 306 may have a sufficient level of power output during use to develop heat. As a result, the slugs 342 are positioned within the circular opening 344 and may be fully engaged to an adhesive for affixation to an aluminum base 349 (FIGS. 38 and 39). This combination assists in the dissipation of heat during use of the individual LED light sources 306 enhancing the performance of the light support 302. As may be seen in FIGS. 31, 32, 37 and 50, in an alternative embodiment, the light bar or light support 302 or panel 304 may be formed of a single row of LED light sources 306. Within this embodiment, the LED light sources 306 are positioned within circular openings 344 of circuit board or LED mounting surface 346 (FIG. 37). Circuit board 346 may be affixed to aluminum base 348 through the use of adhesive including glass beads where the circular openings 344 preferably establish a heat sink for the individual LED light sources 306. The use of adhesive including glass beads to affix the LED light sources 306 and circuit board 346 to the aluminum base 348 preferably assists in the creation of electrical contact for the light bar or light support 302. As depicted in FIG. 37 the top surface of the circuit board or LED mounting surface 346 may include two reflectors or mirrors 350. The reflectors or mirrors 350 are preferably elongate and are positioned substantially parallel to each other and are adjacent or aligned to the rows of individual LED's 306. The reflectors or mirrors 350 preferably diverge upwardly and outwardly from a position proximate to the LED light source 306 and aluminum base 348. As such, the mirrors 350 have a separation distance which is narrow proximate to the LED light sources 306, where the separation distance becomes larger as the distance vertically from the aluminum base 348 increases. As earlier described, the brightest or most intense light of the individual LED light sources 306 is provided at an acute angle of approximately 40° to 42°. The reflector or mirror 350 as angled upwardly and outwardly relative to the row of LED light sources 306 reflects light exiting the LED light sources 306 along a desired line of sight which corresponds to perpendicular observation by an individual. The reflectors or mirrors 350 maximize the efficiency of the light sources 306 by reflecting light along the line of sight to be observed by an individual during an emergency situation. The reflectors or mirrors 350 may have a polished or non-polished surface at the preference of an individual depending on the brightness desired for the light support 302. The reflectors or mirrors 350 may also include one or more reflective sections 374 and/or transparent or clear sections 372. The transparent or clear sections 372 and the reflective sections 374 are described in detail with reference to FIGS. 27-30 herein. It should be noted that the surface of the reflectors or mirrors 350 may include any desired combination of sections, patterns, stripes, rows, and/or columns of clear or transparent sections 372 and/or reflective sections 374 as desired by an individual for a reflection of light illuminated from the individual LED light sources 306 during the provision of a warning light signal. Wires 354 preferably connect the circuit board 346 to the power supply and controller 50. A modulated power source as earlier described may thereby be provided to the light support 302 which includes the reflector or mirrors 350. In this embodiment, the sequential illumination of individual LED's 306 may occur to provide a desired type of warning light signal. Also, the circuit board 346 as engaged to the base 348 may be separated into segments 326 of LED light sources 306 for use in combination with a modulated power intensity electrical source. As depicted in FIGS. 38 and 39, the frame 348 includes a base 349. The base 349 may include a holding cavity 358. In the holding cavity 358 is preferably positioned a circuit board or LED mounting surface 360 which includes a plurality of circular openings 344. In each circular opening 344, is preferably positioned an individual LED light source 306. Above the holding cavity 358 is preferably a first support 362 and a second support 363. The first support 362 and second support 363 preferably have an angled interior edge 364. Each angled interior edge 364 is preferably adapted to receive a reflector or mirror 350. Each mirror 350 is preferably utilized to reflect light illuminated from an individual light source 306 along a visual line of sight as depicted by arrow AA of FIG. 39. The first and second supports 362, 363 also preferably include a positioning ledge or notch 366 which is adapted to receive a glass or transparent plastic cover lens 368 which serves as a protector for the frame 348 and individual LED light sources 306. Referring to FIG. 50, the frame 348 may be elongate having a first end 380 and a second end (not shown). The first end 380 and the second end preferably each include and affixation area 382 which may be threaded for receiving engagement to a fastener 384 as preferred by an individual. A bracket 386 may be rotatably engaged to the first end 380 and second end at the preference of an individual by tightening of the fasteners 384 relative to the affixation areas 382. The bracket 386 preferably includes and angled portion 388 which may include a second fastener 390 which may include suction cups. Alternatively, the second fastener 390 may be screws, bolts, and/or rivets for attachment of the frame 348 at a desired location relative to the interior or exterior of a vehicle 300. Referring to FIGS. 26-30, a reflector or culminator for the individual LED light sources 306 is disclosed. The reflector or culminator is indicated in general by the numeral 370. The reflector or culminator 370 may be conical in shape and may be configured to encircle an individual LED light source 306. The reflector or culminator 370 may be partially transparent. The reflectors 370 may have a clear section 372 and a reflective section 374. In FIG. 29, the clear section 372 is preferably positioned proximate to the LED light source 306 and the reflective section 374 is preferably positioned to the top of the reflector 370. In FIG. 28, the reflective section 374 is preferably positioned proximate to the LED light source 306 and the clear section 372 is preferably positioned to the top of reflector or culminator 370. As may be seen in FIG. 30, the entire interior surface of the reflector or culminator 370 may be formed of a reflective section 374. It should be noted that any combination of clear sections 372 and reflective sections 374 may be utilized at the discretion of an individual. It should be noted that a plurality of clear sections 374 may be utilized within each reflector or culminator 370 at the discretion of an individual. The use of a combination of clear sections 372 and reflective sections 374 enable an individual to select a configuration for the provision of partial illumination along an angle which is not parallel to a desired line of sight. An individual may thereby be able to observe an illuminated light signal from the side or top of a light bar or light support 302 as opposed to being aligned with a desired line of sight. Each of the culminator or reflector cup 370 preferably includes an angled interior surface which extends upwardly and diverges outwardly from a central opening 394. Each central opening 394 is preferably constructed and adapted for positioning approximate to and over an LED light source 306. Each of the culminator or reflector cups 370 also preferably includes an angled exterior surface which extends upwardly and diverges outwardly from a bottom or base which is preferably positioned approximate to an LED mounting surface or circuit board 346. Referring to FIG. 26 an array of culminator cups or reflectors 270 may be formed into a culminator assembly or array 392. The culminator assembly or array 392 is preferably adapted for positioning over an array of LED light sources 306. Examples of arrays of LED light sources 306 which may be utilized with a culminator assembly 392 are depicted in FIGS. 3-10, 12, 14, 15, 23-25, 31, 32, 34, 35, 37, 39, 40, 44, and 47. Each culminator array 392 is preferably formed of a reflective material which has plurality of reflective cups 370 disposed there through. Each opening 394 is adapted for positioning over an LED light source 306. The culminator array 392 preferably has a sufficient thickness to establish an interior reflective surface having a sufficient dimension to reflect light as emitted from the LED light sources 306. Alternatively, the interior surface of each reflector cup 370 may be entirely or partially coated with reflective material at the discretion of an individual. It should be noted that the entire culminator assembly 392 is not required to be formed of reflective material if the interior surface of the reflector cups 370 are coated with reflective material. The culminator array 392 may be formed in any shape as desired by an individual including but not necessarily limited to square, rectangular, triangular, linear, circular, oval, and special or other irregular shapes for use in reflecting light emitted from an LED light source 306. The interior surface of any desired number of culminator cups 370 may also be coated with reflective 374 and non-reflective 372 sections as earlier described. It should be noted that the strip LED light source 308 and LED light sources 306 in frame 348 are preferably designed to operate on a 12 volt power supply which is available in a standard emergency vehicle battery. It should also be noted that the frame 348 and strip LED light source 308 are preferably enclosed in a waterproof protector to minimize the risk of contamination or failure from any exposure to moisture or dust or dirt. The use of the strip LED light sources 308 and frame 348 preferably minimize the necessity to modify the exterior of an emergency vehicle 300 through the placement of holes or other apertures. In these embodiments, the wires 354 and 316 may be adhesively secured to the exterior of a vehicle for entry into the power source and controller 50 at a common location. It should be noted that the strip LED light source 308 may be used on other devices and are not necessarily limited to use on an emergency vehicle 300. It is anticipated that the strip LED light sources 308 may be used on a variety of apparatus including but not limited to snowmobiles, water craft, helmets, airplanes, or any other device which may accept use of an LED light source. In FIGS. 40-43 a warning signal light 400 is depicted which in general includes a light source 402 and a rotatable reflector 404. The light source 402 may include one or more individual LED illumination devices 406. The light source 402 may include a base 408 which may be mounted on a post 410. The light source 402 may either be stationary or rotate at the preference of an individual. A motor 412 is preferably electrically connected to a power supply for rotation of a wheel or gear 414. The wheel or gear 414 is connected to the motor 412 by a shaft 416. The wheel or gear 414 is in contact with, or is engaged to, a rotatable collar 418 which may be adapted to rotate freely about the post 410 during operation of the motor 412. The wheel or gear 414 may be formed of rubber material or any other desired material as preferred by an individual. Alternatively, the wheel 414 may include teeth and function as a gear for engagement to corresponding grooves and teeth as integral to the exterior surface of the collar 418. An aperture 420 may pass through post 410 to receive wires 422 for the provision of power to LED light source 402. A washer or support device 424 vertically supports rotatable collar 418 on post 410 from a position below collar 418. A positioner 426 functions to restrict the vertical movement of the collar 418 upwardly during engagement of the motor 412 and rotation of the wheel 414 and collar 418. A horizontal support arm 428 extends outwardly from collar 418. A vertical support arm 430 extends upwardly form horizontal support arm 428. Angular support arm 432 extends inwardly and upwardly from vertical support arm 430 for positioning of a reflector or mirror 434 above light source 402. The reflector or mirror 434 is preferably positioned at an approximate angle of forty-five degrees relative to the light source 402. Light as emitted vertically from the light source 402 may then reflect from the reflector 434 along a substantially perpendicular line of visual sight. The reflector 434 rotated ninety degrees is depicted in phantom line as an oval due to the angular offset of approximately forty-five degrees. The use of motor 412 rotates wheel 414 which in turn rotates collar 418 and reflector 434 in a circular direction about light source 402 for the provision of an observed rotational warning light source. In addition, the light source 402 may be electrically coupled to a controller 50 to provide a modulated, alternating, variable, pulsating, or oscillating light source at the preference of an individual simultaneously to the rotation of the reflector 434 about light source 402. Referring to FIG. 41 the warning signal light 400 includes a light source 402 which is rotatable in conjunction with the reflector 434. In this embodiment the motor 412 is connected to a first gear which is enclosed within casing 436. A second gear is also enclosed within casing 436 and is coupled to the first gear for rotation of the reflector 434. A vertical rod 438 is preferably affixed or integral to the second gear. The vertical rod 438 supports the LED light source 402 as positioned adjacent to reflector 434. An angled brace 440 is also preferably engaged to rod 438. Angled brace 440 supports reflector 434 during rotation of reflector 434 which represents a circular motion as depicted by arrow 442. In this embodiment reflector 434 is arcuate in shape and may be parabolic at the discretion of an individual. Light emitted from light source 402 may then be reflected by the arcuate reflector 434 along a desired line of sight. The engagement of the motor 412 rotates the light source 402 and reflector 434 to provide a rotational light source as observed by an individual. It should also be noted that the light source 402 may be coupled to a controller 50 to provide for a modulated, alternating variable, and/or pulsating light signal in conjunction with the rotation of the reflector 434. Referring to FIG. 42, the reflector 434 is not required to be flat and may include a convex or concave face 444. The provision of a convex or concave face 444, is utilized to assist in the creation of a unique variable light effect as observed by an individual. Light as emitted from the light source 402 may then be reflected at any desired angle other than perpendicular for observation by an individual. The pulsating intensity of the light as observed by an individual may then be unique, especially when used in conjunction with the rotated reflector 434 and variable or modulated power intensity from the controller 50. In addition, the use of a convex or concave reflector 444 may expand or enhance the observation of the warning signal light 400 by individuals beyond a perpendicular line of sight. The warning signal light 400 may then be observed above or below a light source 402. The reflector 434 as rotated ninety degrees is depicted in phantom line and is generally oblong or oval in shape. FIG. 43 represents graphically the variable or pulsating illumination of the observed light as reflected from the reflector 434 of FIG. 42. Time is represented along the x-axis and increasing brightness is depicted along the y-axis. The graph of FIG. 43 shows the gradual increase in brightness of the observed light as the reflector 434 is rotated to a maximum illumination corresponding to direct in line observation of the warning light signal and then the gradual decrease in observed light intensity as the reflector 434 is rotated away from direct in line sight. It should be noted that the observed warning light signal is not required to be extinguished and may be reduced to a minimum observable intensity of approximately thirty percent. Referring to FIG. 44, the warning signal light 400 in general includes a light source 402 which may be rotated through the use of a motor 412 for transmission of light through a filter 446 for reflection from a conical reflector 448 as mounted to the interior of a light bar or light support 450. Power for motor 412 is supplied through wires 452 from a power source not shown. Power for the light sources 402 is provided through wires 454 in support 456. Brushes 458 may be in electrical communication with the power from the wires 454 to transmit electrical current to a second set of brushes 460 utilized to communicate power to the light sources 402. The base 462 of the light source 402 may preferably be formed of an electrically conductive material to facilitate the provision of power to the light sources 402. A shaft 464 preferably extends between the motor 412 and the base 462 where operation of the motor 412 rotates the shaft 464 and the base 462 having the light sources 402. Light is transmitted vertically upward from the light sources 402 through the filter 446. (FIGS. 44 and 45.) The filter 446 may include one or more sections of tinted material 466. The filter 446 may be stationary or may be rotatable at the discretion of an individual. The tinted material 466 may be any color as desired by an individual or opaque to establish a desired illumination effect for an emergency warning signal light. Any number of tinted sections 466 or transparent areas may be placed on the filter 446. The filter 446 may be formed of glass or plastic or other sturdy material at the preference of an individual. The tinted sections 466 may be integral to or placed upon the filter 446 as desired. The filter 446 may be attached to the conical reflector 448 by a fastener 468. The conical reflector 448 preferably includes a straight reflective edge 470. Alternatively, the reflective edge 470 may be concave or convex as desired by an individual to establish a unique lighting effect. The conical reflector 448 is preferably affixed to and descends from the top of a light bar or light support 450 as may be attached to an emergency vehicle 300. Light transmitted upwardly from the light sources 402 passes through either a substantially transparent section or through the tinted or opaque material 466 which may block light transmission or alter the color of the light as desired. Light is then reflected from the conical reflector 448 at a desired angle for transmission through the vertical sections of the light bar or light support 450 for observation by an individual. FIG. 46 represents graphically the intensity of the observed light as reflected from the conical reflector 448 of FIG. 44. Time is represented along the x-axis and observed brightness is represented along the y-axis. The observed light signal transmitted from the warning signal light of FIG. 44 is much steeper which corresponds to a shorter period of observation more similar to a flashing light signal. It should be noted that the light sources may also be coupled to a controller 50 for the provision of a variable, modulated and/or pulsating light effect. Referring to FIGS. 31 and 32 a modular light support 480 in general includes an LED mounting surface 482 having one or more LED light sources 306, a culminator assembly 484 and a cover 324. The LED mounting surface 482 is preferably elongate and includes a plurality of LED light sources 306. In general, one to five LED light sources 306 are disposed in a linear orientation along the LED mounting surface 482 which may be a circuit board as earlier described. The LED mounting surface 482 also preferably includes a first end 486 and a second end 488. An opening 490 is preferably positioned through the LED mounting surface 482 proximate to each of the first end 486 and second end 488. The culminator assembly 484 preferably includes a plurality of reflector cup areas 492. The culminator assembly 484 preferably includes a plurality of support walls 494 and a top surface 496. The culminator assembly 484 preferably includes a plurality of openings 490. Each of the openings 490 is preferably sized to receivingly position and hold the individual LED light source 306 during assembly of the modular light support 480. The reflector cup areas 492 are preferably equally spaced along the culminator 484 to correspond to the spacing between the individual light sources 306 as disposed on the LED mounting surface 482. The cover 324 is preferably transparent permitting transmission of light emitted from the LED light supports 306 therethrough. The cover 324 preferably includes a forward face 498, a pair of end faces 500, a top face 502 and a bottom face 504. Each of the pair of end faces 500 preferably includes a receiving notch 506 which is adapted to receivingly engage the LED light mounting surface 482 during assembly of the modular light support 480. An affixation opening 508 preferably traverses the forward face 498 proximate to each of the pair of end faces 500. A fastener 510 preferably passes through the affixation opening 508 for engagement to the opening 490 to secure the LED mounting surface 482 into the receiving notch 506. It should be noted that the culminator assembly 484 is then positioned within the interior of the cover 324 where the top surface 496 is proximate to the forward face 498. The illumination of the LED light sources 306 then transmits light through the forward face 498 for observation of an emergency warning light signal. Specifically referring to FIG. 32 one or more modular light support 480 may be positioned adjacent to each other for the creation of a light bar or light stick 512. The modular light supports 480 and/or light bar or light stick 512 may be coupled to a controller 50 which may independently and/or in combination provide a plurality of independent and visually distinct warning light signals as earlier described. In addition, the controller 50 may provide modulated and/or variable power intensity to the individual LED light sources 306 to establish unique warning light signal effects. It should also be noted that the controller 50 may individually illuminate LED light sources 306 to provide for one or a combination of colored light signals as desired by an individual. Any number of modular light supports 480 may be positioned adjacent to each other to comprise a light bar or light stick 512 at the preference of an individual. It should be further noted that a plurality of modular light supports 480 may be positioned at any location about the exterior or within the interior of a vehicle at the discretion of an individual. In one embodiment each of the individual modular light supports 480 will be electrically coupled to a power supply and controller for the provision of unique individual and visually distinctive warning light signals and combination warning light signals as earlier described. Referring to FIG. 47 and alterative embodiment of a reflector assembly is disclosed. In general, the reflector assembly of FIG. 47 includes an enclosure 518. Positioned within the interior of enclosed 518 is preferably a motor 520 having a shaft 522 and a gear 524. A first support 526 preferably has a periphery having a plurality of teeth 528 adapted to releasably engage the gear 524. The first support 526 preferably includes a mirror bridge 530 which is preferably used to position a mirror 532 and a proximate angle of 45° relative to a LED light source 306. Preferably within the interior of the first support 526 is located a culminator assembly 534 which may include one or more reflective cups as earlier described. Individual LED light sources 306 are preferably positioned within each of the culminator cups of the culminator assembly 534 to maximize the direction of emitted light for reflection from the mirror 542. On the opposite side of gear 524 is located second support 536. Second support 536 also includes a periphery having a plurality of teeth 528, a mirror bridge 530, a mirror 532, and a culminator assembly 534 disposed adjacent to a plurality of individual LED light sources 306. A third support 538 is preferably adjacent to the second support 536. The third support 538 also preferably includes a periphery having a plurality of teeth 528, a mirror bridge 530, and a mirror 532 disposed at a 45° angle above a culminator assembly 534. A plurality of individual LED light sources 306 are preferably disposed within the reflector cups of the culminator assembly 534. It should be noted that the teeth 528 of the third support 538 and second support 536 are preferably coupled so that rotational motion provided to the second support 536 by the gear 524 is transferred into rotational motion of the third support 538. In operation, the individual LED light sources 306 are preferably connected to a power source and/or a controller 50 as earlier described. The controller 50 may provide for any type of unique lighting effect including modulated or variable power intensity as earlier described. An infinite number of independent visually distinctive warning light signals may be provided for the rotational reflector as depicted in 487. It should also be noted that an infinite number of warning light signal combinations may also be provided by the controller 50 for use with the rotational reflector of FIG. 47. Each of the mirrors 542 may be positioned for reflection and transmission of light to a desired field of vision relative to the rotational reflector. A flashing and/or rotational light source may be provided for observation by an individual. It should be noted that the first support 526, second support 546, and third support 538 may be synchronized to provide for a unique warning signal light for observation by an individual. It should be further noted that the engagement of the motor 520 for rotation of the gear 524 simultaneously rotates the first support 526, second support 536 and third support 538 for the provision of a warning light signal. LED technology enables the selection of a desired wave length for transmission of light energy from the individual LED light sources 306. Any wave length of visible or non-visible light is available for transmission from the LED light sources 306. As such, generally no filters are required for use with individual LED light sources 306. The individual LED light sources 306 may be selected to provide for any desired color normally associated with the use in emergency vehicles such as amber, red, yellow, blue, green and/or white. It should be further noted that the controller 50 may simultaneously display any number of combinations of warning light signals. For example, the controller 50 may provide for a solitary light signal for transmission from a light source. Alternatively, the controller 50 may effect the transmission of two signals simultaneously from the identical light source where a first warning light signal is emitted from one portion of the light source and a second warning light signal is emitted from a second portion of the light source. Alternatively, the controller 50 may alternate the two warning light signals where the first area of the light source first transmits a first warning light signal and secondly transmits a second warning light signal. The second area of the light source initially transmits the second warning light signal and then transmits the first warning light signal. Further, the controller may transmit two independent and visually distinct warning light signals simultaneously within different areas of light source. The controller 50 may also reverse the warning light signals for simultaneous transmission between different areas of the light source. Further, the controller 50 may regulate the transmission of more than two visually distinct types of warning light signals from a light source at any given moment. The controller 50 may alternate warning light signals within different areas or enable transmission of warning light signals in reverse alternating order for the creation of an infinite variety of patterns of visually distinct warning light signals for use within an emergency situation. The controller 50 may also permit the transmission of a repetitive pattern of warning light signals or a random pattern of visually distinct warning light signals at the preference of an individual. Turning to the embodiment shown in FIG. 51. FIG. 51 shows a possible configuration of a warning signal light 600 having modular components. In the embodiment shown a light support 602 has a plurality of module receiving ports 604. The module receiving ports 604 are constructed and arranged to provide electrical communication respectively to a module support member 610 of a module 606 received therein. Each of the module support members 610 may be made up of connection teeth or contacts 608 which electrically contact and engage the receiving ports 604 when inserted therein. Each module 606 has at least one visible light signal display surface 612 which has one or more light sources 30 removably mounted thereon. Preferably the light sources 30 are light emitting diodes, such as have been previously discussed. About each light source 30 may be a culminator 370 as earlier described. Furthermore, each culminator 370 may include a reflective surface 616 at least partially disposed thereon. Reflector 616 more efficiently direct the light emitted from light source 30 in a desired direction. In an additional embodiment of the invention the reflector 616 may be adjustable so as to redirect and/or focus light emitted from the light source 30 during use. Also, the visible surface 612 or the individual culminator cup 370 and reflectors 616 may also have one or more lenses equipped thereon to provide the warning signal light with the ability to magnify and/or diffuse emitted light as may be desired. In the embodiment shown, the module support members 610 and the module receiving ports 604 respectively are uniform in size. The uniformity of the ports 604 and the members 610 allows modules 606 to be readily replaced and also provides the invention with the capacity to have variously sized and shaped modules 606 to be interchanged and arranged in various configurations as desired by a user. For example a relatively elongated module, such as is indicated by reference numeral 606a, could be positioned in any of the various ports 604 shown and could likewise be replaced with any other module such as the more vertically oriented module 606b, or the remaining module type 606c. Such modularity and standardization of connections provides the present invention with a tremendous variety of module configurations which may be readily reconfigured as desired. In addition to providing a variety of module types, the present invention also provides for a variety of mechanisms to be associated with the ports 604. In the embodiment shown for example, a rotation mechanism 618 has a port 604 mounted thereon. Any number of rotation mechanisms 618 could be included on the surface of the support 602 such as is shown. Alternatively a similar mechanism or mechanisms could be included on one or more surfaces of a module 606 to provide a dedicated rotation module. The rotation mechanism 618 could also be configured as a gyrator or other motion producing device. It must also be noted however that the three types module varieties 606a, 606b and 606c presently shown and described are merely three examples of potential module sizes and shapes. It should be understood that modules 606 may be configured in any size or shape as desired. As indicated above, in order to ensure the greatest ease of use and elegance in design, it may be desirable to provide the various modules 606 with uniform support members 610 and also provide the support 602 with similarly uniform ports 604. However, in order to ensure that only certain module types are utilized in certain ports, it is recognized that the present invention could also utilize a support 602 having a variety of port 604 configurations with modules 606 having module supports 610 sized to correspond with specific ports and/or ports 604. In keeping with the modular construction of the present invention, it should also be understood that the support 602, like most of the components thus described could be embodied in a variety of shapes and sizes. Preferably, the support 602 is a circuit board with a number of ports 604 included thereon. In one aspect of the invention, the support 602 could be embodied as several supports with each support having a unique arrangement of modules and light sources. The electronic schematics shown in FIGS. 52-55 show some possible configurations and their associated electronic connections between the various components of the invention. Starting in FIG. 52, an embodiment of the invention is showed where the controller 50 is in electronic communication with one or more supports 602, which are in turn in electronic communication with one or more modules 606, which are in turn in electronic communication with one or more light sources 30. FIG. 53 shows a similar series of electric pathways, but in the present embodiment the controller 50 may also be in direct electric communication with each of the various components, support(s) 602, module(s) 606 and light source(s) 30, independent of one another. In the embodiment shown in FIG. 54, the individual visible surfaces 612 of the various modules 606 may be controlled by the controller 50. Though not indicated in the schematic, the various components: supports 602, modules 606, visible surfaces 612 and light sources 30 may be independently controlled by the controller 50 or may be selectively activated via the electronic pathway shown. In the embodiment shown in FIG. 55, a support 602 includes a controller 50. Each controller 50 is in electronic communication with an external controller 55 in the manner previously discussed above. The embodiment shown in FIG. 55 could include numerous independently controlled supports 602 which are in communication with the external controller 55. It should also be noted that individual controllers 55 could also be included with each modules 606 to provide for a warning signal light having numerous predetermined light signals or patterns which could be displayed by sending a single signal from the external controller 55 to the various controllers 50. In reference to the various embodiments shown in FIGS. 52-55, one of ordinary skill in the art will recognize that additional components could be added to any of the various embodiments shown and that numerous configurations other than those shown or described could be created. The present invention is directed to all possible arrangements of the various components described herein regardless of the number, type or arrangement of the components described herein. It should also be noted that the controller 50 and/or external controller 55 described in relation to FIGS. 52-55 may provide modulated and/or variable power to individual light sources 30 or modules 606 as earlier described. It should also be noted that the controller 50 or external controller 55 may selectively illuminate any combination of individual light sources 30 or modules 606 to provide an infinite variety of patterns and/or combinations of patterns for a warning light signal independently of, or in combination with, the provision of modulated or variable power intensity as earlier described. Turning to FIGS. 56-58, several views of an example of a module 606 is shown. Typically, a module will include a base portion 620 and light mounting portion 622. The base portion 620 will include the support member 610 which will typically include a plurality of electric contacts 608. The support member 610 and the electric contacts 608 are removably engageable to a port 604 as previously described. The contacts 608 provide the module 606 with an electric path to the support 602 and controller 50 such as is shown in FIGS. 51-55. The light mounting portion 622 preferably is a vertically oriented circuit board 630 which includes one or more light sources 30 and associated culminator cups 370 with reflective surfaces 616 removably mounted thereon. The light sources are preferably LEDs. As shown in FIG. 51 the light mounting portion 622 may be enclosed in a transparent cover or dome such as protector 290. As depicted in FIGS. 61, 62, 65, and 66, an LED take-down light 700 and an LED alley light 702, 800, 808 are shown as being integral to a light bar 704, 760 mounted to an emergency vehicle 706. The LED take-down light 700 may be formed of one or more LED's 336 as earlier described. The LED's 336 forming the LED take-down light 700 may each be surrounded by a culminator 370 as depicted and described with reference to FIGS. 26-32 having one or more reflective sections 374 for transmission of light along a desired line of illumination. Alternatively, a reflector 350, 434 may be positioned adjacent to LED light sources 336 as described in reference to FIGS. 37-47. The reflector 350, 434 used in conjunction with take-down light 700 may be stationary or may be rotatable through the use of a rotational device at the preference of an individual. The LED's 336 forming the LED take-down light 700 may also be angularly offset with respect to horizontal to provide illumination along a preferred line of illumination as earlier described and depicted within FIGS. 13 and 14. The LED take-down light 700 may be integral to, or mounted upon, the light bar 704, 760 at the discretion of an individual. It should be noted that the LED take-down light 700 may be formed of panels or modules of LED illumination sources as depicted and described in FIGS. 31-32 and 51-58. The LED take-down light 700 may also include circuit boards as earlier depicted and described further using culminator reflectors 370, within a frame or support assembly as earlier described. The LED take-down light 700 preferably provides enhanced utility for an emergency vehicle warning signal light system for reduction of current draw requirements, electromagnetic emissions while simultaneously providing increased useful life, and enhanced true light output color for an illumination source. The use of an LED take-down light 700 incorporating LED technology improves illumination of areas in front of an emergency vehicle by flooding the area occupied by a stopped vehicle with light while simultaneously secreting the actions and location of law enforcement personnel during law enforcement activities. The illumination of the LED take-down light 700 also assists in enhancing the visibility of an emergency vehicle during dark illumination conditions which in turn improves the safety for law enforcement personnel. The LED take-down light 700 is preferably coupled to a power supply, battery, or other low voltage power source. The take-down light 700 may also be electrically coupled to a controller 50 for illumination of all or part of the LED light sources 336 to provide for a desired level of illumination for an area adjacent to an emergency vehicle. The controller 50 may alternatively provide a constant light effect, strobe light signal, pulsating light signal, flashing light signal, the illusion of rotation or oscillation for the light signal, or a modulated light signal or may include images or characters as earlier described. Further, the intensity of the LED light sources 336 may be selectively regulated by a controller 50 dependent upon the darkness of the conditions to be illuminated during law enforcement activities. The controller 50 may be coupled to a light or photosensitive detector to assist in the selection of a desired level of light output dependent upon the environmental conditions encountered by the law enforcement personnel during use of the LED take-down light 700. The LED take-down light 700 may be formed of one or more adjacent panels or modules 480 of LED illumination sources 336 along a front face 710, 764 for a light bar 704, 760. Alternatively, a plurality of panels or modules 480 of LED light sources 336 may be formed along the front face 710, 764 of the light bar 704, 760 as well as a plurality of panels or modules 480 of LED light sources 336 along the rear face 712, 776 of the light bar 704, 760. It should be noted that the panels or modules 480 selected for the LED illumination sources 336 may be linear, square, rectangular and/or may have two or more sides, or may be a single illumination source at the discretion of an individual. Each individual panel or module 480 of LED illumination sources 336 may be independently illuminated by a controller 50 to provide one of a plurality of individual and distinct warning light effects as earlier described. For example, a first, third, and fifth panel or modules 480 of LED sources 336 may be illuminated where the second and fourth panels or modules 480 are not illuminated. Alternatively, the first, third, and fifth panels or modules 480 of LED light sources 336 may be continuously illuminated and the second and fourth panels or modules 480 may be illuminated to provide a flashing or strobe light signal. It should be noted that illumination of any combination of panels or modules 480 may be provided as desired to create a preferred unique warning light signal for the LED take-down light 700. A constant illumination signal may be provided or a flashing, strobe, and/or modulated light intensity may occur to provide one of a plurality of distinct light signals as desired within an emergency situation. It should be further noted that the LED light sources 336 within the LED take-down light 700 may be angularly offset as depicted within FIG. 14 to provide a maximum illumination at a preferred distance adjacent to the front of a law enforcement vehicle. The LED take-down light 700 may be used within any desired type of emergency vehicle including but not limited to automobiles, motorcycles, snowmobiles, personal watercraft, boats, trucks, fire vehicles, ambulances, and/or helicopters. The LED take-down light 700 may be preferably releasably secured to the top of an emergency vehicle or light bar 704, 760 through the use of standard affixation mechanisms including, but not limited to, the use of suction cups, hook and loop fasteners, brackets, screws, bolts, and/or other fasteners at the preference of an individual. It should be noted that the LED take-down light 700 may be permanently secured to a light bar 704, 760 or may be releasably attached thereto for separation and use as a remote beacon as described in FIG. 15. The take-down light 700 may alternatively be formed of strips of LED light sources 308 as previously disclosed with respect to FIG. 34. During use of strip LED light sources 308 a culminator/reflector 370 may be used for positioning adjacent to each individual LED light source 336 to reflect light along a desired line of illumination. The strip LED light sources 308 may preferably include adhesive backing material and transparent protective covers to prevent contamination including exposure to water which may adversely affect the performance of the individual LED light sources 336. The adhesive backing material may be used to permanently or releasably secure the strips of LED light sources 308 in a desired location within the LED take-down light 700. Alternatively, the take-down light 700 may be integral to light bars previously illustrated and described. As depicted in FIGS. 61, 62, 65, and 66, the LED alley lights 800, 808 provide illumination perpendicularly outward from a vehicle illuminating areas adjacent to the drivers side and passengers side of the vehicle 706. The LED Alley lights 800, 808 are almost identical in construction and functionality to the LED take-down light 700. The LED alley lights 800, 808 may be mounted to a mechanical pivot, gears, and/or rotational device which may include an electric motor. The rotation of the mechanical pivot, or gears may alternatively be terminated to permit fixed angular illumination of areas adjacent to a law enforcement vehicle 706 which are not perpendicular to either the drivers or passenger sides in a manner similar to the functionality and operation of a spot light. In this regard, the LED alley lights 800, 808 may be manipulated forwardly, rearwardly, upwardly, and/or downwardly to provide illumination of a desired area relative to an emergency vehicle 706. The LED alley lights 800, 808 may be integral to, or removable from, the light bar 704, 760. As such, the LED alley lights 800, 808 may be releasably secured to the ends of the light bar 760 through the use of fasteners 778 such as bolts and nuts, screws, adhesives, straps, and/or hook and loop fabric material at the preference of an individual. It should be noted that an individual may simultaneously illuminate the LED take-down light 700 and the LED alley lights 800, 808 or may alternatively illuminate the LED alley lights 800, 808 independently from the LED take-down light 700 as desirable within an emergency situation. Referring to FIGS. 61, 62, 65, and 66, the take-down light 700 may be positioned inside of a housing, base, or enclosure 780 which preferably has a transparent surface 782 permitting light as emitted from LED light sources 784 to pass therethrough. Within the interior of the base/housing 780 are preferably located one or more light emitting diode light sources 784. Each LED light source 784 may include one or more individual light emitting diodes 786 as integral to circuit board 788. The functions and operation of LED light sources, LED's, and circuit boards are earlier described with reference to FIGS. 31 and 32 herein. Each LED light source 784 may also include electrical couplers or connectors 790 which may be adapted for penetrating engagement into a receiving slot 792. The LED light sources 784 may be modular as earlier described with reference to FIGS. 51-58 to facilitate ease of replacement herein. An individual may thereby easily replace and/or substitute an LED light source 784 with another light source having the same or different colors or intensity characteristics as desired by an individual. It should be noted that the circuit board 788 and/or LED light sources 784 may be panels or strips as described with reference to FIGS. 34 and 35. The circuit board 788 may additionally include heat sink wells 344 as described with reference to FIG. 36. The LED light sources 784 may be either removably or fixedly secured to the housing/enclosure 780 at the preference of an individual. It is therefore apparent that alternative colors may easily replace current LED's 786 and/or replacement LED modules by insertion into and/or removal from a corresponding receiving slot 792. The LED lights 786 are preferably spaced about circuit board 788 in any desired pattern and/or combination including the use of a linear configuration. Adjacent to each LED light source 784 is preferably positioned a reflector which may be a culminator 730, 534, as earlier described in reference to FIGS. 26-32 and 47. Alternatively, a reflector or mirror 802, 434, 350, as described in reference to FIGS. 21, 22, 37-39, 40-42, and 47, may positioned adjacent to LED light sources 784 to reflect light emitted by LED's 786 in a desired direction for maximization of illumination characteristics for the alley lights 800, 808 and/or take-down light 700. The utility of the alley lights 800, 808 and/or take-down light 700 is thereby enhanced. The reflectors 370, 534, 434, 802, or 350 may be integral and/or attached to circuit board 788 or to a frame or support adjacent to circuit board 788 to reflect light emitted from LED's 786 along a desired line of illumination. The reflector/culminators 370, 534, 434, 802, or 350 may be secured in a desired location through the use of adhesives and/or mechanical devices. Within the housing/enclosure 780 is preferably located a motor 794 having a worm gear 796 engaged to a shaft 798. Engagement of motor 794 rotates shaft 798 in turn rotating worm gear 796. The motor 794 is preferably electrically coupled to the electrical system and/or controller 50 for the emergency vehicle. A first alley light 800 may be positioned within housing 780 proximate to motor 794. The first alley light 800 may be stationary and/or rotatable relative to the light bar 760 at the preference of an individual. The first alley light 800 is preferably adapted to flood the environment perpendicular to the sides of a vehicle with light, such as down and “alley”, by a passing emergency or law enforcement vehicle. The first alley light 800 is preferably formed of one or more LED's 786 which are preferably each positioned within a culminator reflector 802 for reflection and maximization of light transmission along a desired path of illumination. The first alley light 800 may or may not be engaged to a gear 804. If rotation of the first alley light 800 is desired, then gear 804 may include a receiving slot 792 to provide electrical connection and power to the LED light source 784 for provision of light. Gear 804 may also be coupled to worm gear 796 for the provision of rotation and/or oscillation motion. If motion of first alley light 800 is not desired, then stationary positioning of LED light sources 784 relative to housing 780 may be provided with suitable electrical connection to a vehicle power source. Take-down light 700, first alley light 800, second alley light 808 may be alteratively formed in any shape as earlier described in reference to FIGS. 4-10, 12, 23-25, 31, 32, 34, 35, 37-39, 51, and 56-58. Take-down light 700, first alley light 800, and second alley light 808 may be stationary within housing 780. A second gear 806 may be provided for central positioning within housing 780. The second gear 806 may preferably be coupled to gear 804 which may in turn be coupled to worm gear 796 as connected to shaft 798. Rotation of shaft 798 by motor 794 thereby imparts rotation of gear 804 and second gear 806. Alternatively, the shaft 798 may be elongate including worm gear 796 for direct coupling to second gear 806. Rotation of 360° or oscillating rotation of second gear 806 may therefore be provided. Second gear 806 may also include a receiving slot 792 adapted to receivingly engage electronical connectors 790 as integral to circuit board 788 of LED light sources 784. Light sources 784 also preferably include a plurality of individual LEDs 786 which may each be positioned within a culminator 534, 370, 802 as earlier described. A controller 50 as earlier described may be electrically connected to each LED light sources 784 as coupled to either gear 804, second gear 806, third gear 810, and/or housing 780 for selectively illumination of individual LED's 786, or for illumination of a combination of LED's 786 as desired. It should be noted that the features as earlier described for controller 50 are equally applicable for use with the take-down light 700, first alley light 800, and second alley light 808, relative to distinct types and combinations of types of warning light signals including the use of modulated and/or variable light or power intensity for the creation of a desired unique or combination warning light effect. Second gear 806 may be further coupled to third gear 810 which may include a receiving slot 792 adapted for electrical coupling to connector 790 of take-down light 700. Second alley light 808 is preferably designed to be rotated and to sweep forwardly to the front of an emergency vehicle at such times when the intersection clearing light mode has been activated. During activation of the intersection clearing light mode, the take-down light 700 as electrically coupled or integral to third gear 810 will rotate sweeping to the outside corner of an emergency vehicle. The controller 50 is preferably in electrical communication with the take-down light 700, the first alley light 800, and the second alley light 808. Any number of take-down lights 700 or alley lights 800, 808 may be used in association with a light bar 704, 760. The controller 50 additionally regulate the rotation of the motor 794 for imparting rotation to the take-down light 700, and/or the alley lights 800 and 808. The controller 50 activating the motor 794 may selectively initiate an intersection clearing illumination mode or sequence. Motor 794 causes the shaft 798 to rotate imparting motion to the worm gear 796. The rotation of the worm gear 796 may be transferred to the first alley light 800 through the coupling to the first gear 804. Alternatively, the worm gear 796 may be directly coupled to the second gear 806. In another embodiment, motion may be imparted to the second gear 806 through the use of a tie bar 842 as connected between the second gear 806 and the first gear 804. Rotation of the worm gear 796 rotates first gear 804 whereupon motion may be transferred to the second gear 806 for movement of the second alley light 808. Rotation may be further transferred to the take-down light 700 via the coupling of the third gear 810 to the second gear 806. The tie bar 824 may extend between gear 804 and second gear 806 to synchronize motion, rotation, and illumination of the first alley light 800 relative to the second alley light 808 and take-down light 700. Each of the first alley light 800, second alley light 808, and take-down light 700, are preferably in electrical communication with a power source for a vehicle and are further in communication with the controller 50. The controller 50 may independently impart motion to the take-down light 700, first alley light 800, and second alley light 808. The alley lights 800, 808, and take-down light 700 may be selectively illuminated without initiation of rotational motion as regulated by the controller 50. Alternatively, the controller 50 may signal engagement of the motor 794 to impart rotation to any one of the first alley light 800, second alley light 808, and/or take-down light 700 for use as an intersection clearing light. The controller 50 is therefore capable of simultaneously regulating motion of the rotational devices such as gears 804, 806, and 810 and illumination of selected individual or groups of LED's 786 to provide independent or combination light effects. The intersection clearing light mode may generally be initiated by the controller 50 which signals motor 794 to rotate second gear 806 either through rotation of first gear 804 or through direct contact with worm gear 796. The first or at rest position for the second alley light 808 preferably directs the transmission of light in the direction depicted by arrow 812 which is generally perpendicular to the longitudinal axis of a vehicle. As the intersection clearing light mode is engaged, the counter clockwise rotation of gear 804 causes the clockwise forward rotation of the second gear 806 according to arrow 814 until an angle of forward rotation 816 is achieved. The direction of forward rotation 816 preferably transmits light emitted from LED light sources 784 forwardly towards a corner of a vehicle at an approximate angle α of 45°. The controller 50 may then continue to rotate the gears 804, or 806, in a counter clockwise direction for 360° rotation, or alternatively the controller 50 may signal the motor 794 to reverse direction to rotate the second alley light 808 rearwardly back to the first at rest position indicated by number 812. During the clockwise rotation the second gear 806, third gear 810 and take-down light 700 may be rotated in a counter clockwise direction. The initial at rest position for the take-down light 700 is forwardly with respect to the alley lights 800, 808. The engagement of the intersection clearing light mode rotates the take-down light 700 outwardly towards the sides of an emergency vehicle from a first position indicated at 818 to a second position indicated at 820 as depicted by arrow 822. Alternatively, the first alley light 800 may be rotated simultaneously with the second alley light 808 by engagement between the first gear 804 and second gear 706. Synchronous rotation between the first alley light 800 and the second alley light 806 may be provided through the use of the tie bar 824 or through direct coupling engagement of gears 804 and 806. In an alternative embodiment as depicted in FIG. 66, the first gear 804 is not required to be connected to the second gear 806 with the exception of the tie bar 824. The tie bar 824 preferably extends between the first gear 804 and the second gear 806 and is pivotally and rotatably engaged to each of the first and second gears 804, 806 respectively. The initial positioning of the tie bar 824 on the first gear 804 may be initially indicated as the at 0° location. The initial position of the tie bar 824 on the second gear 806 may also be initially indicated as the at 0° location where the tie bar 824 extends in a linear direction between the first and second gears 804, 806 proximate to the circumference of each of the first and second gears 804, 806 respectively. The second alley light 808 is initially positioned for transmission of light outwardly from the housing 780 opposite to the location of the tie bar 824. The second alley light 808 is preferably positioned for light transmission at a location approximately 180° from the tie bar 824 on the second gear 806. As the motor 794 is engaged, the first gear 804 may be rotated in either a clockwise or counter clockwise direction relative to the housing 780. A clockwise rotation or the first gear 804 will be described herein for transfer of motion to the second gear 806 and third gear 810. Alternatively, the motor 794 may be configured to rotate the first gear 804 in a clockwise direction for a desired period of time or distance, and then reverse directions for counterclockwise rotation of the second gear 806 for a desired period of time or distance. It should also be noted that in an oscillating sequence the first gear 804 may be initially rotated 90° in a clockwise direction or counter clockwise direction and then the direction of rotation may be reversed for rotation of 90° or 180°, whereupon rotation may again be reversed for continued rotation of either 90° or 180° in the initial direction. In a 360° rotation cycle of the first gear 804 in a clockwise direction, motion is transferred to the second gear 806 and third gear 810 in a push-pull configuration through the tie bar 824. Clockwise rotation of the first gear 804 from a position of 0° to a position of approximately 90° causes the second gear 806 to be pulled by the tie bar 824 moving the position of the second alley light 808 from an initial position of 180° to a position of approximately 270°. Continued rotation of the first gear 804 from a position at 90° to a 180° location preferably causes the second gear 806 to be pushed by the tie bar 824 causing the second alley light 808 to be rotated in a reverse direction from a 270° position back to a 180° position. Continued rotation of the first gear 804 in a clockwise direction from a position 180° to a 270° location in turn causes the tie bar 824 to pull the second gear 806 causing the second alley light 808 to continue to be rotated in a reverse direction from a position of 180° to a 90° location. Continued rotation of the first gear 804 in a clockwise direction from a 270° position to a 360° or initial position in turn causes the tie bar 824 to push the second gear 806 causing the second alley light 808 to reverse directions to be rotated from a 90° position to an initial or starting position of 180°. Rotational motion is also, in turn, transferred to the third gear 810 due to the coupling engagement with the second gear 806. The rotational motion of the third gear 810 relative to the second gear 806 is in the opposite direction. The initial positioning of the take-down light 700 on the third gear 810 is preferably offset relative to the second alley light 808. The initial positioning of the second alley light 808 may be indicated as 180° and the initial position of the take-down light 700 may be initially indicated as 270°. The third gear 810 and the take-down light 700 are, therefore, preferably initially rotated from 270° in a counter clockwise direction to approximately 180°. The rotation of the third gear 810 and the take-down light 700 is then reversed from 180° back to 270° and then to 360° where rotation may be reversed back to 270° at the preference of an individual. The take-down light 700 therefore wags and oscillates between 360° or 0° to 180° through an initial positioning of 270°. Simultaneously, the second alley light 808 is wagged or oscillated between 90° and 270° through an initial position of approximately 180°. The offset positioning of the second alley light 808 relative to the take-down light 700 prevents obstructed contact between the two light sources 784 permitting free rotational motion therebetween. The offset positioning of the second alley light 808 relative to the take-down light 700 enables the utilization of oversized or enlarged LED light sources 784 as engaged to the second or third gears 806, 810 respectively. The illumination as transmitted by the LED light sources 784 may thereby be significantly increased for unobstructed rotation between the second and third gears 806, 810. Alternatively, the rotation of the second gear 806 and third gear 810 may occur through an arc of approximately 360°. It should be noted that the controller 50 is not required to continuously illuminate either the take-down light 700, first alley light 800, and/or second alley light 808 where the area of illumination will not be visible to an individual relative to a vehicle. Alternatively, the first gear 806, and third gear 810 may be rotated to a desired position such as indicated by the numbers 820, 816, and oscillated for return to an initial position 818, 812, at the discretion of an individual. The controller 50 may regulate the rotation of the gear 804, second gear 806, and third gear 810, for illumination of LED's 786 during use as an intersection clearing light. The intersection clearing light, take-down light, and/or alley lights, are preferably positioned inside the housing 780 located at the distal ends of LED light bar 760 as depicted in FIG. 63. The intersection clearing light, take-down light, and/or alley lights preferably provide illumination to the sides and further preferably provide illumination angularly with respect to the sides of a vehicle. The intersection clearing lights, take-down lights, and/or alley lights may additionally include a switch for regulation of rotation of the take-down lights 700 and alley lights 800 or 808, to a desired angle where upon rotation may be terminated. In this situation, the take-down lights 700, and/or alley lights 800, 808, may be utilized in a manner similar to a spotlight integral to a vehicle and as controlled by an operator. The controller 50 or switch may be utilized to provide any desired angle of illumination for the take-down light 700 within an arc of approximately 180° relative to the front and sides of a vehicle between an angle of approximately 45° forwardly and inwardly to an approximate angle of 135° rearwardly and outwardly with respect to the front and sides of a vehicle. The controller 50 or switch may also be utilized to provide any desired angle of illumination for the alley lights 800, 808, within an arc of approximately 140° relative to the sides of a vehicle between an angle of approximately 70° forwardly and outwardly to an approximate angle of 70° rearwardly and outwardly from the sides of an emergency vehicle. A wide area of illumination to the front and sides of an emergency vehicle is thereby provided by the alley lights 800, 808, and take-down light 700 either independently and/or in combination. The controller 50 may independently illuminate either the alley lights 800, 808, and/or take-down lights 700 as desired by an individual. In an alternative embodiment, a plurality of take-down lights 700 may be positioned adjacent to each other and disposed along the longitudinal length of the of a light bar 760 above the front face 764 and/or rear face 766. Alternatively, the take-down lights 700 may be formed of a plurality of LED light sources 784 positioned adjacent to each other along the entire length of the front face 764 and/or rear face 766 of a light bar 760. (FIG. 63.) The LED light sources 336, 786 in this embodiment are preferably connected to the controller 50. The controller 50 may selectively illuminate one or more LED lights 336, 786 to provide any desired intensity of light to be used in a take-down situation by law enforcement personnel. As depicted in FIGS. 31, 32, and 63, a single row of LED light sources 336, 786 is disposed on front face 764 and rear face 766 of LED light bar 760. Alternatively, a plurality of rows and/or columns of LED light sources 336, 786 as generally illustrated and described in relation to FIGS. 7, 9, 12, 34, and 35, may be utilized on front face 764 and/or rear face 766 to provide for a desired level of illumination from light bar 760. In addition, it should be noted that a linear culminator assembly 484 (FIGS. 31, 32), or a culminator assembly 392 in the form of an array (FIG. 26), may be positioned adjacent to LED light sources 336, 786. Alternatively, reflectors 350 such as mirrors as illustrated in FIGS. 37-39, may be engaged to front face 764 and/or rear face 766 adjacent to LED light sources 336, 786 to reflect light along a desired line of illumination. A transparent surface 782 is preferably in sealing engagement with the housing 780 to prevent moisture or other contamination from adversely affecting the performance of the take-down light 700 and/or the alley lights 800, 808. The transparent surface 782 is preferably of sufficient strength and durability to not fracture, break, and/or fail when exposed to adverse environmental and/or weather conditions including but not limited to the exposure to rock or gravel strikes. Referring to FIGS. 59 and 60, a personal LED warning signal light 730 is shown. The personal LED warning signal light 730 is preferably formed of a plurality of individual LED light sources 732 which may provide illumination in any desired color as preferred by an individual. The individual LED light sources 732 may be selectively illuminated by a controller 50 as earlier described for the provision of any desired combination or pattern of visually distinctive warning light signals during use within an emergency situation. The personal LED warning signal light 730 may be formed of columns or rows of individual LED light sources 732 which may in turn be sequentially illuminated to provide the appearance of a scrolling or rotating light source at the preference of an individual. The individual light sources 732 may be formed in an array, panel, or single line, and may include an adhesive backing as earlier described. Further, the individual LED sources 732 may be offset as depicted within FIG. 14 to maximize light output along a desired line of illumination as preferred by an individual. The personal LED warning signal light 730 preferably includes a circuit board or LED mounting surface 482 which may be electrically coupled to a controller 50 for the illumination of any desired type of lighting effect. The types of lighting effects available for illumination by the personal warning signal light 730 include but are not necessarily limited to, a constant light signal, a strobe light signal, a pulsating light signal, a flashing light signal, a rotating light signal, an oscillating light signal, a modulated light signal, or an alternating light signal, or any combination thereof. The personal LED warning signal light 730 may also include a culminator or reflector 370 as earlier described disposed about the LED light sources 732. The culminator or reflector 370 preferably assists in the maximization of light output along a desired line of illumination for the personal LED warning signal light 730. The culminator 370 may also be angularly offset to conform to any angular offset of LED light sources 732. The personal LED warning signal light 730 preferably includes the benefits of having reduced heat generation, current draw, electromagnetic emissions, and increased useful life while enhancing true light output color within a compact size. The personal LED warning signal light 730 may be formed of rows and columns of the same or different colored LED light sources 732 at the preference of an individual. In the preferred embodiment the personal LED warning signal light 730 is the approximate size of a hand held calculator which may be easily transported within the pocket of law enforcement personnel. The personal LED warning signal light 730 may be enclosed within a hard or soft sided case 734. Alternatively, the case 734 may have an exterior appearance designed to secrete the function of the personal LED warning signal light 730. For example, the case 734 may be configured to have a first area having a removable or retractable cover to reveal the LED light sources 732. Alternatively, the case 734 may be formed to resemble an article used to transport tobacco products similar to a cigarette case. Alternatively, the case 734 may include a removable or retractable face which is designed in appearance to resemble a hand held calculator, personal electronics device, and/or electronic address book. The personal LED warning light 730 preferably includes a plug in adaptor 736 which is used to establish an interface for coupling engagement to the cigarette lighter receiver of a motor vehicle. A low voltage power supply is thereby available for the personal LED warning signal light 730 when used in conjunction with a motor vehicle. The plug in adaptor 736 may also resemble a power cord for a cellular telephone thereby hiding the function of the personal LED warning signal light 730. Alternatively, the personal LED warning signal light 730 may be powered by one or more batteries 738. During use, the personal LED warning signal light 730 may then be withdrawn and opened to expose a first panel 740 and a second panel 742. The first panel 740 and the second panel 742 are preferably joined together by a hinge 744. Following opening, the plug in adaptor 736 may be engaged to either the first panel 740 or to the second panel 742 and to a cigarette lighter receptacle for the provision of low voltage power to the personal LED warning signal light 730. The personal LED warning signal light 730 may then be placed upon the dashboard 746 of a motor vehicle or held for use as a warning signal light by undercover law enforcement personnel. The first panel 740 and the second panel 742 may each include a tacky and/or adhesive base 748 which preferably functions to assist in the retention of the personal LED warning signal light 730 upon the dashboard 746 of a vehicle. It should be noted that the individual LED light sources 732 may be angularly offset with respect to the first panel 740 and/or second panel 742 at the discretion of an individual. The personal warning signal 730 may include a frame 830 having a back surface 832. The frame 830 preferably includes a lip 834 which is adapted for positioning and retention of a transparent protector 836. The transparent protector 836 is preferably water resistant and prevents water and/or other contamination from adversely affecting the performance of the LED light sources 732. The frame 830 also preferably includes a pair of parallel sides 838, hinge side 840, and support side 842. The support side 842 may be angled to facilitate positioning upon the dashboard of a vehicle. An opaque cover or second panel 742 preferably includes a receiving ledge 844 which is preferably adapted for nesting and covering engagement relative to the parallel sides 838 during closure of the second panel or opaque cover 742 over the transparent protector 836. The second panel 742 therefore preferably conceals the LED light sources 732 of the personal warning light 730 during periods of non-use. The personal warning signal light 730 preferably has a first nested closed position and a second open signaling position as indicated in FIGS. 59 and 60. The personal warning signal light 730 may also include a switch which is adapted to detect the closure of the second panel 742 relative to the first panel 740 for termination of power and illumination of the LED light sources 732. The personal warning signal light 730 may also include a power saving feature to prolong the utility and life of internal batteries 738. An electrical receiving port having a cover may be placed in either the support side 842 or the tacky or adhesive base 748. The electrical receiving port is adapted to receivingly engage a plug 848 of a power cord 850. The power cord 850 is preferably adapted to include an adapter 736 for insertion into the cigarette lighter receiving port of a vehicle. Alternatively, the plug 848 may be inserted into a electrical receiving port integral to either the opaque exterior surface 846 and/or frame 830 at the preference of an individual. The personal warning signal light 730 preferably includes an internal controller 50 as earlier described. Alternatively, the personal warning signal light 730 may include an external programmable controller as earlier described. Also, the personal warning signal light 730 may include a selector switch for activation of prestored and/or programmed light signals to be regulated by the controller 50 during illumination of the LED light sources 732. It should be noted that the controller 50 may regulate the illumination of LED light sources 732 either individually and/or in combination for the provision of any of the independent and visually distinct or combination warning light signals as earlier described. The personal warning signal light 730 may be configured in any shape as desired by an individual including, but not necessarily limited to, square, rectangular, round, and/or oval at the preference of an individual. The personal warning signal light 730 preferably has a reduced thickness dimension following closure of the second panel 742 relative to the frame 834 for placement in the first nesting closed position. The second panel 742 also preferably functions to provide for sealing engagement to the frame 830 to prevent moisture and/or other contamination from adversely affecting the performance of the LED light sources 732. The LED light sources 732 are preferably rugged and shock absorbent facilitating transportation and prolonged usefulness by an individual. Referring to FIGS. 63 and 64 an LED light bar 760 is disclosed. The LED light bar 760 may be formed of a base 762 which extends longitudinally, traversing the roof of an emergency vehicle. The base 762 preferably includes a front face 764 and a rear face 766. Each of the front and rear faces 764, 766 preferably include LED illumination devices 336, 786 which may be configured similarly to the modular light support 480 identified and described relative to FIGS. 31-32. It should be noted that the LED illumination devices 336, 786 along the front face 764 and rear face 766 are preferably positioned within the interior of the base 762 and are enclosed therein by a transparent protective cover 860 to minimize contamination from the environment and/or exposure to water during use of the LED light bar 760. The transparent protective cover 860 may be placed into sealing engagement with either the front face 764 and/or rear face 766 through the use of a gasket and/or sealant or any other preferred mechanical and/or chemical sealing mechanism as desired by an individual. The protective cover 860 as engaged to the front face 764 and rear face 766 is preferably formed of a transparent material such as plastic, and/or glass to provide for transmission of light from individual LED light sources 336, 786 for observation by an individual. As earlier depicted with reference to FIGS. 31 and 32 the LED light sources 336, 786 may be formed into modular units which may be regularly spaced along the front face 764 and rear face 766. The LED light sources 336, 786 integral to the front face 764 and/or rear face 766 are each preferably positioned within a culminator 370 as earlier described. It should be noted that the reflector devices as depicted and described with reference to FIGS. 37-39 may be incorporated into modular light supports 480 for utilization along a front face 764 and/or rear face 766 of LED light bar 760. The number of light emitting diode light sources 336, 786 forming each individual modular unit 480 may vary at the discretion of an individual. Preferably each modular unit 480 includes between 2 and 20 LED light sources 336, 786. Each of the LED light sources 336, 786 is preferably electrically connected to a circuit board 346 having heat sink wells 344 as earlier described in reference to FIG. 36. The construction of the modular light supports 480 and LED light sources 336, 786 facilitates ease of color modification and versatile alternative configurations for light transmission from the light bar 760. The LED light sources 336, 786 as integral to the base 762 proximate to the front face 764 and/or rear face 766 may be formed of one or more colors at the preference of an individual. The modular light supports 480 also may preferably include electrical couplers or connectors 790 as earlier described. Each modular light support 480, and/or individual LED light source 336, 786 is preferably in electrical communication with the controller 50 as earlier described. The controller 50 preferably regulates the illumination of LED light sources 336, 786 to provide any desired color, pattern, combination of patterns, and/or types of light signals including, but not necessarily limited to, flashing, stroboscopic, modulated, variable, pulsating, oscillating, alternating, rotating, illumination of arrows, and/or other types of variable light signals or combination of light signals as earlier described. The controller 50 may also preferably regulate the illumination of modules 480 and/or individual LED light sources 336, 786 independently between the front face 764 and the rear face 766. The controller 50 may also regulate the individual illumination of LED light sources 336, 786 within sections and/or sectors along the front face 764 independently with respect to each other and independently with respect to the rear face 766. It should be apparent that the controller 50 may regulate the illumination of LED light sources 336, 786 in any desired individual combination, pattern, or sector, as desired by an individual for the provision of an infinite variety of different types of light signals. For example, one portion of the front face 764 may transmit a stroboscopic light signal. Simultaneously and/or alternatively, another portion or sector of the front face 764 may transmit a different colored flashing light signal. Alternatively, a third portion of the front face 764 may transmit a third color of a pulsating modulated or variable lighting effect. The controller 50 may additionally alternate any desired pattern of types of lighting effects independently between the front face 764 and/or rear face 766 as desired by an individual. The examples illustrated herein are, by no means, restrictive of the infinite variety of combinations or types of light signals which may be regulated by the controller 50 during use of the LED light bar 760. The controller 50 is preferably in electrical communication with the modular light supports 480, LED light sources 336, 786 take-down lights 700, alley lights 800, 808, and pod illumination devices 770 during use of the LED light bar 760. The controller 50 may therefore regulate the modular light sources 480, take-down lights 700, alley lights 800, 808, and pod illumination devices 770 either simultaneously, independently, and/or in combination during use of the LED light bar 760. Further, the controller 50 is also preferably in electrical communication with rotational and/or reflector devices such as earlier described with reference to the intersection clearing light. Further, the controller 50 is also in electrical communication with the reflector as described in detail with respect to FIG. 47 which may be positioned within the pod illumination devices 770. Light bar 760 preferably includes base 762 which is elevated with respect to the roof of an emergency vehicle to enhance visualization during use. The base 762 may be supported above the roof of an emergency vehicle by a plurality of feet 870. The feet 870 are preferably secured to the roof or rain channels of a vehicle through mechanical affixation mechanisms. In a preferred embodiment, preferably four feet 870 extend from the base 762 to the roof of an emergency vehicle. Extending between each pair of feet 870 is preferably at least one support bar 872 which serves as a frame for elevation of the LED light bar 760 above the roof of a vehicle. The feet 870 are preferably adjustable to facilitate use on various makes and/or models of emergency vehicles as may be desired by an individual. The LED take-down light 700 and/or alley lights 800, 808 may be integral to the base 762 proximate to each of the first and second ends 862, 864 of light bar 760. An end cap 772 may be secured to the first and second ends 862, 864 of the base 762. Each end cap 772 preferably enclosed the take-down light 700 and alley lights 800, 808 as earlier described. The end caps 772 may be elevated above or alternatively may rest upon the roof of an emergency vehicle and may assist to support the longitudinally extending base 762. The end caps 772 preferably provide for visualization of the LED light bar 760 from the sides of an emergency vehicle. The end caps 772 are preferably formed of materials identical to the base 762 which are aerodynamically efficient to promote utility of the LED light bar 760 as used in association with an emergency vehicle. Each end cap 772 may have the same width dimension as the base 762 or have larger or smaller dimension at the preference of an individual. As earlier described a series of take-down lights 700 may be disposed proximate to front face 764 and/or rear face 766 at the discretion of an individual. Each of the plurality of take-down lights 700 will preferably be coupled to a controller 50 for independent and/or selective illumination, or illumination in combination, with other types of light signals described herein. Alternatively, one or more of the independent light sources 336, 786 as disposed about the front face 764 and/or rear face 766 may be independently illuminated by the controller 50 to function and serve as a take-down light 700 utilized to flood an area in front of, or to the rear of, an emergency vehicle. Supports 774 preferably extend angularly upwardly and forwardly from the base 762 for elevation and positioning of the pod illumination devices 770 above the base 762. The supports 774 preferably are substantially vertical and are angled inwardly and forwardly toward the front face 764 of the LED light bar 760. The supports 774 may be formed of any material as preferred by an individual provided that the essential functions, features, and attributes described herein are not sacrificed. The supports 774 are preferably aerodynamically designed to improve the efficiency for the LED light bar 760. Each pod illumination device 770 is preferably elevated by at least one and preferably two supports 774. The elevation of the pod illumination devices 770 above the light bar 760 via the supports 774 enhances illumination source differentiation of light signals as observed by individuals during use of the LED light bar 760. The pod illumination devices 770 may either be circular, oval, square, rectangular, or any other shape as desired by an individual. The supports 774 are preferably secured to the pod illumination 770 devices for elevated positioning relative to the base 762. The pod illumination devices 770 preferably include LED light sources 336, 786 as earlier described. The visualization of the LED light bar 760 is enhanced by the pod illumination device 770 permitting observation at all angles relative to an emergency vehicle. The pod illumination devices 770 may be formed of a frame 866 comprised of metal, plastic, rubber, and/or any other sturdy material at the preference of an individual. The frame 866 preferably includes a transparent protective cover 868 which functions to prevent moisture or other contamination from adversely affecting the performance of the LED light source 336, 786. The transparent protective cover 868 is preferably formed of a material such as plastic or glass to permit light transmission therethrough during use of the light bar 760. Each LED light bar 760 preferably has at least one and preferably two or more pod illumination devices 770 for the provision of warning light signals for observation by individuals. Each of the pod illumination devices 770 are preferably disposed proximate to either the first end 862 and/or second end 864 of light bar 760. A controller 50 is preferably in electrical communication with the LED light sources 336, 786 integral to the pod illumination devices 770 to provide for an infinite variety unique lighting signals including, but not limited to oscillating, pulsating, flashing, strobe, modulated, alternating, rotational, and/or any combination thereof including the provision of variable colored light signals. It should be noted that the controller 50 may independently illuminate the pod illumination devices 770 or provide different light signals within each pod illumination device 770 as preferred by an individual. The use of LED light sources 336, 786 within the pod illumination devices 770 prolongs the useful life, requires less current draw, produces truer light output color, and reduces RF electromagnetic emissions as compared to traditional light sources such as halogen, gaseous discharge xenon lamps, and/or incandescent lamp sources. Each pod illumination device 770 may include individual columns and rows of multicolored LED light sources 336, 786. Each individual light emitting diode light source 336, 786 integral to the pod illumination device 770 may also be enclosed within a culminator and/or reflector 370 as earlier described having reflective and/or transparent sections at the preference of an individual. Alternatively or additionally, each pod illumination device 770 may also include a reflector assembly as illustrated and earlier described within FIG. 47 which includes a culminator 370, 534 and rotational mechanism or motor 794 as positioned within the frame 866. The motor 794 preferably provides rotational or oscillating motion to the reflector 532. Alternatively, reflector devices as earlier described with reference to FIGS. 37-42, and 44-45 may be incorporated into pod illumination devices 770. The pod illumination devices 770 also preferably include a frame 866 having a cover or top 874 which is removable to provide access to either a reflector assembly, culminator, modular light supports 480 and/or LED light sources 336, 786 for repair or replacement therein. The cover or top 874 is preferably affixed to the pod illumination devices 770 by any conventional means including but not limited to the use of screws and/or wing nuts at the preference of an individual. Alternatively, the pod illumination devices 770 may include flexible circuit boards as illustrated and described in FIGS. 4, 5, and 12. Moreover, the individual LED light sources 336, 786 may be relatively flat as depicted within FIGS. 3, 6, 7, 8, 9, and 10. The pod illumination devices 770 and frame 866 preferably provide an aerodynamic encasement for the LED light sources 336,786. It should also be noted that the LED light sources 336, 786 may be angularly offset as previously described in reference to FIG. 14 to enhance visualization of the emitted light signal along a desired line of sight. The LED light bar 760 is preferably formed of an aesthetically pleasing visual shape providing a high technology appearance to enhance the visualization of a law enforcement vehicle. The LED light bar 760 is preferably of aerodynamic design to reduce drag during use of an emergency vehicle. The pod illumination devices 770 may include modular light supports 480, 606 as earlier described in reference to FIGS. 23-25, 31-32, and 51-58 herein. Alternatively, the light emitting diode light sources 336, 786 as disposed in pod illumination devices 770 may be configured in any desired shape or panel as earlier described in reference to FIGS. 4-10, 12, 14, 23-25, 31-32, 34, 35, and 37-46, herein. The LED light sources 336, 786 may therefore be replaceable along with a circuit board, or alternatively, the entire pod illumination device 770 may be replaceable at the preference of an individual. The controller 50 preferably functions to regulate the types of warning light signals as earlier described during the use of stationary LED's 336, 786 within the pod illumination device 770. If modular LED light sources 480, 606 are utilized within pod illumination devices 770 then rotational mechanisms as described in FIGS. 21, 22, 40-42, 44, 47, 51, 63, and/or 65, may be utilized individually, exclusively, and/or in combination with controller 50 to provide a desired rotating and/or oscillating warning signal light. Alternatively, the module light sources 480, 606 are not required to be utilized in association with a rotational device where the controller 50 may be exclusively utilized to selectively illuminate individual and/or combinations of LED's 336, 786 to provide a desired type of warning light signal. If non-modular light sources 336, 786 are utilized within pod illumination device 770, then rotational mechanisms as described in FIGS. 21, 22, 40-42, 44, 47, 51, 63, and 65, may be utilized individually, exclusively, and/or in combination with a controller 50 to provide a desired rotating and/or oscillating warning light signal. Alternatively, the non-modular LED light sources 336, 786 are not required to be utilized in association with a rotational device where the controller may be exclusively utilized to selectively illuminate individual and/or combinations of LED's 336, 786, to provide a desired type of warning light signal. It should be noted that any type or configuration of light support, LED's, and/or reflector devices described with reference to FIGS. 1-66 herein may be modified for inclusion and use within either LED light bar 760 and/or pod illumination devices 770 at the discretion of an individual. It should be further noted that any feature and/or combination of features described with reference to FIGS. 1-66 herein may be modified for inclusion and use within either LED light bar 760 and/or pod illumination devices 770 at the discretion of an individual. As may be seen in the FIGS. 63-65 the LED light bar 760 may be modular in construction for ease of replacement of component elements such as the pod illumination device 770. The LED light bar 760 may be constructed and arranged as a one piece unit including the base 762, end caps 772, supports 774, and pod illumination devices 770. Alternatively, the elements of the base 762, pod illumination devices 770, end caps 772, and supports 774 may be releasably secured to each other by any desired affixation mechanism provided that the essential functions, features, and attributes described herein are not sacrificed. The rotational light signal provided by the LED light bar 760 and particularly the pod illumination devices 770 may be provided by mechanical rotational elements as earlier described, mirror rotational elements, and/or a controller 50 for selectively illuminating individual columns and/or rows of light emitting diodes 336,786. In addition to being directed to the embodiments described above and claimed below, the present invention is further directed to embodiments having different combinations of the features described above and claimed below. As such, the invention is also directed to other embodiments having any other possible combination of the dependent features claimed below. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof; and it is, therefore, desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Light bars or emergency lights of the type used on emergency vehicles such as fire trucks, police cars, and ambulances, utilize warning signal lights to produce a variety of light signals. These light signals involve the use of various colors and patterns. Generally, these warning signal lights consist of incandescent and halogen light sources having reflective back support members and colored filters. Many problems exist with the known methods for producing warning light signals. One particular problem with known light sources is their reliance on mechanical components to revolve or oscillate the lamps to produce the desired light signal. Additionally, these components increase the size of the light bar or emergency lights which may adversely affect the vehicles aerodynamic characteristics. Moreover, there is an increased likelihood that a breakdown of the light bar or light source will occur requiring the repair or replacement of the defective component. Finally, the known light bars and light sources require a relatively large amount of electrical current during operation. The demands upon the electrical power system for a vehicle may therefore exceed available electrical resources reducing optimization of performance. Halogen lamps or gaseous discharge xenon lamps generally emanate large amounts of heat which is difficult to dissipate from a sealed light enclosure or emergency light and which may damage the electronic circuitry contained therein. In addition, these lamps consume large amounts of current requiring a large power supply or battery or electrical source which may be especially problematic for use with a vehicle. These lamps also generate substantial electromagnetic emissions which may interfere with radio communications for a vehicle. Finally, these lamps, which are not rugged, have relatively short life cycles necessitating frequent replacement. Another problem with the known warning signal lights is the use of filters to produce a desired color. Filtering techniques produce more heat that must be dissipated. Moreover, changing the color of a light source requires the physical removal of the filter from the light source or emergency light and the replacement of a new filter. Furthermore, filters fade or flake over time rendering the filters unable to consistently produce a desired color for observation in an emergency situation. These problems associated with traditional signaling lamps are exacerbated by the fact that creating multiple light signals requires multiple signaling lamps. Further, there is little flexibility in modifying the light signal created by a lamp. For example, changing a stationary lamp into one that rotates or oscillates would require a substantial modification to the light bar which may not be physically or economically possible. The present invention generally relates to electrical lamps and to high brightness light-emitting diode or “LED” technology which operates to replace gaseous discharge or incandescent lamps as used with vehicle warning signal light sources. In the past, illumination lamps for automobile turn signals, brake lights, back-up lights, and/or marker lights/headlights frequently have accompanying utility parabolic lens/reflector enclosures which have been used for utility warning signals or emergency vehicle traffic signaling. These signaling devices as known are commonly referred to as “unmarked corner tubes,” or “dome tubes. A problem with these illumination lamps is the cost and failure rate of the known “unmarked corner tubes,” or “dome lights.” The failure rate of these devices frequently results in a significant amount of “down time” for a vehicle to effectuate replacement. Further, an officer is frequently unaware that a vehicle light is inoperative requiring replacement. This condition reduces the safety to an officer during the performance of his or her duties. In addition, the reduced life cycle and failure rate of the known illumination devices significantly increases operational costs associated with material replacement and labor. A need, therefore, exists to enhance the durability, and to reduce the failure rate, of illumination devices used with vehicles while simultaneously reducing the cost of a replacement illumination source. In the past, the xenon gaseous discharge lamps have utilized a sealed compartment, usually a gas tube, which may have been filled with a particular gas known to have good illuminating characteristics. One such gas used for this purpose was xenon gas, which provides illumination when it becomes ionized by the appropriate voltage application. Xenon gas discharge lamps are used in the automotive industry to provide high intensity lighting and are used on emergency vehicles to provide a visible emergency signal light. A xenon gas discharge lamp usually comprises a gas-filled tube which has an anode element at one end and a cathode element at the other end, with both ends of the tube being sealed. The anode and cathode elements each have an electrical conductor attached, which passes through the sealed gas end of the lamp exterior. An ionizing trigger wire is typically wound in a helical manner about the exterior of the glass tube, and this wire is connected to a high voltage power source typically on the order of 10-12 kilowatts (kw). The anode and cathode connections are connected to a lower level voltage source which is sufficient to maintain illumination of the lamp once the interior gas has been ionized by the high voltage source. The gas remains ignited until the anode/cathode voltage is removed; and once the gas ionization is stopped, the lamp may be ignited again by reapplying the anode/cathode voltage and reapplying the high voltage to the trigger wire via a voltage pulse. Xenon gas lamps are frequently made from glass tubes which are formed into semicircular loops to increase the relative light intensity from the lamp while maintaining a relatively small form factor. These lamps generate extremely high heat intensity, and therefore, require positioning of the lamps so as to not cause heat buildup in nearby components. The glass tube of a xenon lamp is usually mounted on a light-based pedestal which is sized to fit into an opening in the light fixture and to hold the heat generating tube surface in a light fixture compartment which is separated from other interior compartment surfaces or components. In a vehicle application, the light and base pedestal are typically sized to fit through an opening in the light fixture which is about 1 inch in diameter. The light fixture component may have a glass or plastic cover made from colored material so as to produce a colored lighting effect when the lamp is ignited. Xenon gas discharge lamps naturally produce white light, which may be modified to produce a colored light, of lesser intensity, by placing the xenon lamp in a fixture having a colored lens. The glass tube of the xenon lamp may also be painted or otherwise colored to produce a similar result, although the light illumination from the tube tends to dominate the coloring; and the light may actually have a colored tint appearance rather than a solid colored light. The color blue is particularly hard to produce in this manner. Because a preferred use of xenon lamps is in connection with emergency vehicles, it is particularly important that the lamp be capable of producing intense coloring associated with emergency vehicles, i.e., red, blue, amber, green, and clear. When xenon lamps are mounted in vehicles, some care must be taken to reduce the corroding effects of water and various chemicals, including road salt, which might contaminate the light fixture. Corrosive effects may destroy the trigger wire and the wire contacts leading to the anode and cathode. Corrosion is enhanced because of the high heat generating characteristics of the lamp which may heat the air inside the lamp fixture when the lamp is in use, and this heated air may condense when the lamp is off resulting in moisture buildup inside the fixture. The buildup of moisture may result in the shorting out of the electrical wires and degrade the performance of the emission wire, sometimes preventing proper ionization of the gas within the xenon gas discharge lamp. Warning lights, due to the type of light source utilized, may be relatively large in size which in turn may have an adverse affect upon adjacent operational components. In addition, there is an increased likelihood for a breakdown of the light source requiring repair or replacement of components. Another problem with the known warning signal lights is the use of rotational and/or oscillating mechanisms which are utilized to impart a rotational or oscillating movement to a light source for observation during emergency situations. These mechanical devices are frequently cumbersome and difficult to incorporate and couple onto various locations about a vehicle due to the size of the device. These mechanical devices also frequently require a relatively large power source to impart rotational and/or oscillating movement for a light source. Another problem with the known warning signal lights is the absence of flexibility for the provision of variable intensity for the light sources to increase the number of available distinct and independent visual light effects. In certain situations it may be desirable to provide variable intensity for a light signal, or a modulated intensity for a light signal, to provide a unique light effect to facilitate observation by an individual. In addition, the provision of a variable or modulated intensity for a light signal may further enhance the ability to provide a unique desired light effect for observation by an individual. No warning lights are known which are flexible and which utilize a variable light intensity to modify a standard lighting effect. The warning lights as known are generally limited to a flashing light signal. Alternatively, other warning signal lights may provide a sequential illumination of light sources. No warning or utility light signals are known which simultaneously provide for modulated and/or variable power intensity for a known type of light signal to create a unique and desirable type of lighting effect. No warning signal lights are known which provide irregular or random light intensity to a warning signal light to provide a desired lighting effect. Also, no warning light signals are known which provide a regular pattern of variable or modulated light intensity for a warning signal light to provide a desired type of lighting effect. It has also not been known to provide a warning light signal which combines either irregular variable light intensity or regular modulated light intensity to provide a unique and desired combination lighting effect. It has also not been known to provide alternative colored LED light sources which may be electrically controlled for the provision of any desired pattern of light signal such as flashing, pulsating, oscillating, modulating, rotational, alternating, strobe, and/or combination light effects. In this regard, a need exists to provide a spatially and electrically efficient LED light source for use on an emergency or utility vehicle which provides the appearance of rotation, or other types of light signals. In view of the above, there is a need for a warning signal light that: (1) Is capable of producing multiple light signals; (2) Produces the appearance of a revolving or oscillating light signal without relying upon mechanical components; (3) Generates little heat; (4) Uses substantially less electrical current; (5) Produces significantly reduced amounts of electromagnetic emissions; (6) Is rugged and has a long life cycle; (7) Produces a truer light output color without the use of filters; (8) Is positionable at a variety of locations about an emergency vehicle; and (9) Provides variable power intensity to the light source without adversely affecting the vehicle operator's ability to observe objects while seated within the interior of the vehicle. Other problems associated with the known warning signal lights relate to the restricted positioning of the signal light on a vehicle due to the size and shape of the light source. In the past, light sources due to the relatively large size of light bars or light sources, were required to be placed on the roof of a vehicle or at a location which did not interfere with, or obstruct, an operator's ability to visualize objects while seated in the interior of the vehicle. Light bars or light sources generally extended perpendicular to the longitudinal axis of a vehicle and were therefore more difficult to observe from the sides by an individual. The ease of visualization of an emergency vehicle is a primary concern to emergency personnel regardless of the location of the observer. In the past, optimal observation of emergency lights has occurred when an individual was either directly in front of, or behind, an emergency vehicle. Observation from the sides, or at an acute angle relative to the sides, frequently resulted in reduced observation of emergency lights during an emergency situation. A need therefore exists to improve the observation of emergency lights for a vehicle regardless of the location of the observer. A need also exists to improve the flexibility of placement of emergency lights upon a vehicle for observation by individuals during emergency situations. A need exists to reduce the size of light sources on an emergency vehicle and to improve the efficiency of the light sources particularly with respect to current draw and reduced aerodynamic drag. In addition, the flexibility of positioning of light sources about a vehicle for observation by individuals is required to be enhanced to optimize utility for a warning signal light. In order to satisfy these and other needs, more spatially efficient light sources such as LED's are required. It is also necessary to provide alternative colored LED light sources which may be electrically controlled for the provision of any desired pattern of light signal such as flashing, alternating, pulsating, oscillating, variable, modulating, rotational, and/or strobe light effects without the necessity of spatially inefficient and bulky mechanical devices. In the past, illumination of an area to the front or to the sides of an emergency vehicle during low light conditions has been problematic. Take-down lights have been utilized by law enforcement personnel for a number of purposes including, but not necessarily limited to, enhancing observation of an individual in a vehicle on a roadway subject to investigation and to hide the location of an officer, or to block or deter observation of an officer by individuals during law enforcement activities. The take-down lights as known have generally been formed of halogen or gaseous discharge xenon lamp illumination sources which have a relatively short useful life, are bulky, have relatively large current draw requirements, and which require frequent replacement. A need exists for a take-down light which has significant illumination characteristics, is spatially efficient, has a long useful life, and has reduced current draw requirements for use on a law enforcement vehicle or as used as a utility light source. The alley lights as known also suffer from the deficiencies as identified for the take-down lights during dark illumination conditions. Alley lights are used to illuminate areas adjacent to the sides of a vehicle. In the past, the intersection clearing lights have been predominately formed of halogen, incandescent, and/or gaseous discharge xenon illumination sources. The drawbacks associated with these types of illumination sources are the relatively high current draw, reduced useful life and durability necessitating frequent replacement, large RF electromagnetic emissions which increase radio interference and other draw backs as previously discussed. A need therefore exists for an intersection clearing light which solves these and other identified problems and which further has significant illumination characteristics, is spatially efficient, has a long useful life, and has reduced current draw requirements for use on a vehicle or as a utility light source. A problem has also existed with respect to the use of emergency lights on unmarked law enforcement vehicles. In the past, emergency lights for unmarked law enforcement vehicles have consisted of dome devices which are formed of revolving mechanisms. These lights are usually withdrawn from a storage position under a motor vehicle seat for placement upon dashboard of a law enforcement vehicle. In undercover situations it has been relatively easy to identify dashboard affixation mechanisms used to secure these types of dome illumination devices to a dashboard. The known dome devices are also clumsy, have large current draw requirements, and are difficult to store in a convenient location for retrieval in an emergency situation by an individual. A need therefore exists for an emergency vehicle or utility warning light which is spatially efficient, easily hidden from view, and is transportable by an individual for retrieval during an emergency situation. A need also exists for a new emergency vehicle light bar which is aerodynamic and which provides for both a longitudinal illumination element and an elevated pod illumination device. A need exists for a light bar having enhanced illumination properties and flexibility for provision of new and additional warning light signals including, but not limited to, strobe, variable, modulated, alternating, pulsating, rotational, oscillating, flashing, and/or sequential light signals for use within an emergency situation.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>FIG. 1 is a partial perspective view of an emergency vehicle equipped with a light bar containing warning signal lights according to an embodiment of the invention; FIG. 2 is a partial front elevation view of an emergency vehicle equipped with a light bar containing warning signal lights referring to an embodiment of the invention; FIG. 3 is a perspective view of a warning signal light attached to a gyrator according to an embodiment of the invention; FIG. 4 is a perspective view of a warning signal light according to an embodiment of the invention depicting the sequential activation of columns of light-emitting diodes (LED's). FIG. 5 is a perspective view of a warning signal light according to an embodiment of the invention depicting sequential activation of rows of LED's; FIG. 6 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 7 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 8 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 9 is a perspective view of a warning light signal according to an embodiment of the invention; FIG. 10 is a perspective view of a warning light signal according to an embodiment of the invention; FIGS. 1A, 11B , and 11 C are schematic diagrams of the controller circuitry in accordance with an embodiment of the invention; FIG. 12 is a perspective view of a warning signal light according to an embodiment of the invention; FIG. 13 is a perspective detailed view of a warning signal light attached to the interior of a windshield of an emergency vehicle; FIG. 14 is a side plan view of a warning signal light mounted to an interior surface of an emergency vehicle window having auxiliary offset individual LED light sources; FIG. 15 is an environmental view of a warning signal light as engaged to a remote support device such as a tripod; FIG. 16 is a detailed isometric view of a xenon strobe tube and standard mounting base; FIG. 17 is a detailed isometric view of the replacement LED light source and standard mounting base; FIG. 18 is a detailed isometric view of an incandescent lamp light source and standard mounting base; FIG. 19 is a detailed isometric view of a replacement LED lamp and standard mounting base; FIG. 20 is a front view of a standard halogen light source mounted in a rotating reflector; FIG. 21 is a detailed rear view of a rotating reflector mechanism; FIG. 22 is a detailed front view of the LED light source mounted to a rotating reflector; FIG. 23 is a detailed front view of a replacement LED light source; FIG. 24 is a detailed side view of a replacement LED light source; FIG. 25 is a detailed isometric view of a replacement LED light source and cover; FIG. 26 is a detailed isometric view of a reflector or culminator; FIG. 27 is a detailed isometric view of a culminator cup; FIG. 28 is an alternative cross-sectional side view of a culminator cup; FIG. 29 is an alternative cross-sectional side view of a culminator cup; FIG. 30 is an alternative cross-sectional side view of a culminator cup; FIG. 31 is an exploded isometric view of an alternative culminator assembly and LED light source; FIG. 32 is an alternative partial cut away isometric view of an alternative culminator assembly and LED light source; FIG. 33 is an environmental view of an emergency vehicle having strip LED light sources; FIG. 34 is an alternative detailed partial cut away view of a strip LED light source; FIG. 35 is an alternative detailed view of an LED light source having sectors; FIG. 36 is an alternative detailed view of a circuit board or LED mounting surface having heat sink wells; FIG. 37 is an alternative detailed isometric view of a reflector assembly; FIG. 38 is an alternative cross-sectional side view of the frame of a reflector assembly; FIG. 39 is an alternative cross-sectional side view of a frame of a reflector assembly; FIG. 40 is an alternative detailed side view of a reflector assembly; FIG. 41 is an alternative detailed isometric view of a reflector assembly; FIG. 42 is an alternative detailed side view of a reflector assembly; FIG. 43 is a graphical representation of a modulated or variable light intensity curve; FIG. 44 is an alternative detailed partial cross-sectional side view of a reflector assembly; FIG. 45 is a partial phantom line top view of the reflector assembly taken along the line of 45 - 45 of FIG. 44 ; FIG. 46 is an alternative graphical representation of a modulated or variable light intensity curve; FIG. 47 is an alternative isometric view of a reflector assembly; FIG. 48 is a detailed back view of an individual LED light source; FIG. 49 is a detailed front view of an individual LED light source; FIG. 50 is a detailed end view of one embodiment of a reflector assembly; FIG. 51 is a perspective view of a modular warning light signal according to an embodiment of the invention; FIG. 52 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 53 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 54 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 55 is a block diagram of an electrical schematic of an embodiment of the invention; FIG. 56 is a detailed front view of a replacement LED light source; FIG. 57 is a detailed side view of a replacement LED light source; FIG. 58 is a detail isometric view of a replacement LED light source and cover; FIG. 59 is an environmental view of an LED personal warning signal light positioned on a dashboard for an emergency vehicle and electrically coupled to a power source such as cigarette lighter receptacle; FIG. 60 is a detail isometric view of the LED personal warning signal light and electrical coupler; FIG. 61 is an environmental view of an LED take-down light source and an LED alley light source mounted to the light bar of an emergency vehicle; FIG. 62 is a top environmental view of an LED take-down light source and an LED alley light source mounted to the light bar of an emergency vehicle; FIG. 63 is an isometric view of an LED light bar for an emergency vehicle; FIG. 64 is a side view of an LED light bar for an emergency vehicle; FIG. 65 is a cross-sectional top view of the take-down and alley light; and FIG. 66 is an exploded isometric view of the take-down light and alley light. detailed-description description="Detailed Description" end="lead"?
20041028
20060425
20050512
66479.0
1
HUSAR, STEPHEN F
LED LIGHT BAR
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,977,685
ACCEPTED
Walkie/rider truck
A walkie/rider truck which has a platform at the rear of the truck body and a holding bar to be grasped by one hand of the operator standing on the platform. A switch box is attached to the holding bar and houses at least one key switch in order to switch the driving control means into a creeping mode. This switch is also provided to switch a driving control means into a fast travel mode.
1. A walkie/rider truck comprising a truck body, a driving motor in the truck body, load bearing means, a platform at the rear of the truck body for an operator, a steering arm having one end which for steering purposes is supported by the truck body for rotation about a vertical axis and for pivoting about a horizontal axis, the steering arm having an upper upright position range and a lower approximately horizontal position range which define braking ranges, a steering head connected to the other end of the steering arm, control means for the driving motor which provide a creeping mode, a first speed mode defining speeds higher than those of the creeping mode and a second speed mode defining speeds above those of the first speed mode, at least one travel switch on the steering head which is connected to the drive control device for controlling the speed of the driving motor, the speed switch having a neutral position and at least one actuation position, a holding bar on the truck body which extends transverse to the longitudinal axis of the truck and which can be grasped by the operator by one hand if he stands on the platform, with the other hand grasping the steering head, a switch box attached to the holding bar, the switch box having at least one key switch which has a neutral position and an actuation position, the key switch being connected to the driving control device, braking means which inter alia are actuated by braking control means, if the steering arm is in one of the braking ranges, the key switch being also connected to the braking control means, the driving control means and the braking control means being such that upon actuation of the key switch from the neutral position to the actuation position the driving motor is accelerated within the second speed mode if the steering arm is in a position outside of the braking ranges and that upon an actuation of the key switch from the neutral to the actuation position the driving motor is brought into the creeping mode if the steering arm is in the upper braking range and the travel switch is actuated from the neutral to the actuation position, the speed in the creeping mode being also controlled by the position of the travel switch. 2. The walkie/rider truck of claim 1, wherein the acceleration of the driving motor in the creeping mode is significantly smaller than in the first or the second speed mode. 3. The walkie/rider truck of claim 1, wherein the key switch to effect the creeping mode must be permanently actuated. 4. The walkie/rider truck of claim 3, wherein upon release of the key switch in the creeping mode the driving motor is switched into an idle mode, and the travel switch must be brought primarily into a neutral position to effect the first or second speed mode. 5. The walkie/rider truck of claim 1, wherein on both sides of a centrally located key switch further key switches are located for the actuation of the load bearing means and a horn. 6. The walkie/rider truck of claim 1, wherein the key switch is arranged such that it can be actuated by the thumb of the hand which grasps the holding bar. 7. The walkie/rider truck of claim 1, wherein the switch box is attached to the lower side of the holding bar.
CROSS-REFERENCE TO RELATED APPLICATIONS Not applicable. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH Not applicable. BACKGROUND OF THE INVENTION Such a truck is for example disclosed by U.S. Pat. No. 6,382,359 B1. It comprises a driving portion including a truck body and a load bearing means for receiving and bearing a load. A platform is attached to the truck body so that an operator selectively can stand on the platform or may walk aside the truck. A steering arm is linked to the truck body and is pivotable about a horizontal axis. The steering arm is also rotatable about a vertical axis. By the rotation about the vertical axis a steerable wheel of the truck is steered. The steering arm includes a steering rod, a steering head being connected to one end of the steering rod. Individual control elements are provided at the steering head to actuate the truck. For example a travel switch is provided at the steering arm, e.g. in the form of a manual grip which is rotatable about its longitudinal axis and can rotate from a neutral position to a desired value for the speed of the driving motor for the truck. In connection with such a truck it is also known to attach a bail-shaped handle above the truck body which extends transverse to the longitudinal axis of the truck and which can be grasped with one hand when the operator stands on the platform while the other hand grasps the steering head. It is also known to attach a switch box to the handle which includes at least one key switch. The key switch can be provided in addition to control elements and switches of the steering head, for example to actuate the load bearing means, the horn or the like. From EP 1 125 819 B1 it has become known to provide a steering arm-actuated truck wherein the steering arm defines braking ranges in two angular end positions, i.e. in the upper approximately upright position and the lower approximately horizontal position. In these angular ranges a braking device of the truck is actuated. Despite an actuation of the travel switch the truck cannot be moved in this operational condition. From this publication it has also become known to provide a specific additional travel switch at the steering arm. Upon actuation of the specific travel switch the truck can be also driven although the steering arm is in one of the braking ranges, however, with reduced acceleration. The maximum speed of the truck, however, is not limited with actuated specific travel switch. BRIEF SUMMARY OF THE INVENTION The invention provides a walkie/rider truck wherein with one actuation element two different operational conditions for the truck can be effected. In accordance with the above described truck the truck according to the invention includes a bail-shaped handle or holding bar with a switch box which has at least one key switch. The key switch is connected with the control means for the driving means and the braking means. If the key switch is actuated outside of the braking ranges of the steering arm, the truck can be accelerated to a relatively high speed e.g. up to 12 km/h. In this case the driving motor of the truck is in the highest or second speed mode. If the truck is controlled without actuation of the key switch only by the travel switch the driving motor is in the first speed mode having speed values below the speed values of the second speed mode. If the key switch is actuated when the steering arm is in the upper braking range, the driving motor is brought into the creeping mode wherein the maximum speed in both travel directions is limited to for example 1.5 km/h. The creeping mode can be only reached if upon actuation of the key switch in the upper braking range of the steering arm the travel switch is in its neutral position. A creeping travel is only possible if the travel switch has been previously brought into the neutral position. It is, however, conceivable to neglect the neutral position of the travel switch and to initiate the creeping mode independent of the sequence of the actuation of the key switch and the travel switch if the key switch is actuated the steering arm is in the upper braking range. Furthermore, the order of succession of the actuation of the key switch and the travel switch, respectively, can be changed provided the travel switch has been first brought to the neutral position. According to an embodiment of the invention, the acceleration of the driving motor in the creeping mode is significantly smaller than in the first or second speed mode, e.g. reduced to 50%. In the invention it is possible either to permanently actuate the key switch or only for a limited time. If the key switch is permanently actuated and released during the creeping mode, the driving motor is automatically switched to the idle mode. In order to achieve the first or second speed mode, the travel switch first must be brought into the neutral position if not already being in this position. The key switch is arranged such that it can be actuated by the thumb of the hand which grasps the holding bar. The operator, thus, can actuate the key switch without releasing the holding bar. To this purpose it is according to an embodiment of the invention advantageous if the switch box is attached to the lower side of the holding bar. Further actuation elements can be provided in the switch box, e.g. a key switch for the actuation of the load bearing means or the horn. BRIEF DESCRIPTION OF THE DRAWINGS An advantageous formation of the invention is described in more detail by way of subsequent drawings. FIG. 1 is a diagrammatic view of a truck according to the invention, and FIG. 2 an enlarged detail of the truck of FIG. 1. DETAILED DESCRIPTION OF THE INVENTION While this invention may be embodied in many different forms, there are described in detail herein a specific preferred embodiment of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiment illustrated DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a walkie/rider truck 10 as for example has become known from the U.S. Pat. No. 6,382,359. It includes a truck body 12, and a platform 14 provided at the rear of the truck body. A steering arm 16 is linked to the upper side of the truck body 12 and has a steering rod 18 and a steering head 20. The steering rod 18 is pivotally supported about a horizontal axis at the upper side of truck body 12. Furthermore, the steering arm 16 can be rotated about a vertical axis for steering a not shown steerable wheel of truck 10. A reverse U-shaped holding bar 24 is provided at the upper side of the truck body 12. The operator may grasp the holding bar 24 with one hand if he stands on the platform 14. He can selectively stand on the right or left side of platform 14 depending upon whether he is right- or left-handed. If he stands on the right side, he seizes bar 24 with his right hand and actuates the steering head 20 with his left hand. If he stands on the left side of platform 14, it is vice versa. At the front side of the truck a load bearing means in form of a bearing fork is provided, one tine of the fork can be seen at 26. The bearing fork accommodates a pallet 28 upon which a load is arranged. A battery 33 is located between the load bearing means and the truck body 12. The truck 10 includes a not shown driving motor controlled by driving control means also not shown. The driving control means are controlled from the steering head 16. Furthermore, driving means to lower or elevate the load bearing means are provided. Such a driving means are also not shown. Finally, the truck has braking means for the driven wheel. The braking means is actuated by braking control means. The braking control means inter alia are controlled by the steering arm 16 in an upper approximately vertical angular range and in a lower approximate horizontal angular range. Thus, the truck cannot be moved if the steering arm 16 is in one of these angular ranges. Details of this specific braking control are not to be described in detail. They are generally known by the already mentioned U.S. Pat. No. 6,382,359 B1 or the EP 1 125 819 B1. As can be seen in FIG. 1 a switch box 38 is arranged at an approximately horizontally extending rod 34 of holding bar 24. The switch box is attached to the lower side of the holding bar and is inclined downwardly. The switch box includes a key switch arrangement 38. The key switch arrangement 38 has a central key switch 40, a left key switch 42 and a right key switch 44. The left key switch 42 serves to actuate the elevating and lowering of the load bearing means of truck 10. The right key switch 44 for example actuates a horn. The central key switch 40 is a high-speed key switch. If during normal travel the key switch 40 is actuated for a short duration or permanently, the driving motor of truck 10 is brought into the second speed mode wherein the truck can be accelerated to a maximum speed, e.g. 12 km/h. If the key switch 40 is not actuated, the truck 10 travels with lower speed and can only be accelerated to a maximum speed of for example 6 km/h. In the shown truck the key switch 40 has a further function if the steering arm 16 is in the upper braking range. If in this position of the steering arm the key switch 40 is actuated, the driving control means is brought into a creeping mode. In this creeping mode the truck can be accelerated for example to a maximum speed of 1.5 km/h. Thus, the key switch 50 serves for two functions, with the creeping mode having the effect that the truck can be travelled and maneuvered also with the steering arm in the upright position. Frequently it is not possible to pivot the steering arm 16 downwards in a brake-free range owing to an obstacle near the truck. If the truck 10 is to be brought from the creeping mode into the first or second speed mode, first the travel switch—in FIG. 1 one of the grips 42 of the steering head 20—is to be brought into a neutral position before the truck can be accelerated by rotating one of the grips 42. In order to accelerate the driving motor, one of the grips 42 is rotated about its longitudinal axis, with the travelling direction be determined by the rotational direction of the grip. This is known for such steering heads. It has already been mentioned that the key switch arrangement 38, in particular key switch 40, can be actuated by the thumb of the hand which grasps the holding bar 34. The operator must not release the holding bar in order for example to switch into the creeping mode. In FIG. 2 it can be seen further that the holding bar 24 and a lower transverse bar 46 form a unit which can be formed of plastic material and can be attached to the upper side of truck body 12. The kind of fastening is not shown. A housing for the switch box 36 can be formed separately or can be formed integrally with bar 34. The electrical connections between the key switches 40 to 44 to the mentioned control means can be located within the holding bar 24 which may be hollow. This is also not illustrated. The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims. Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below. This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
<SOH> BACKGROUND OF THE INVENTION <EOH>Such a truck is for example disclosed by U.S. Pat. No. 6,382,359 B1. It comprises a driving portion including a truck body and a load bearing means for receiving and bearing a load. A platform is attached to the truck body so that an operator selectively can stand on the platform or may walk aside the truck. A steering arm is linked to the truck body and is pivotable about a horizontal axis. The steering arm is also rotatable about a vertical axis. By the rotation about the vertical axis a steerable wheel of the truck is steered. The steering arm includes a steering rod, a steering head being connected to one end of the steering rod. Individual control elements are provided at the steering head to actuate the truck. For example a travel switch is provided at the steering arm, e.g. in the form of a manual grip which is rotatable about its longitudinal axis and can rotate from a neutral position to a desired value for the speed of the driving motor for the truck. In connection with such a truck it is also known to attach a bail-shaped handle above the truck body which extends transverse to the longitudinal axis of the truck and which can be grasped with one hand when the operator stands on the platform while the other hand grasps the steering head. It is also known to attach a switch box to the handle which includes at least one key switch. The key switch can be provided in addition to control elements and switches of the steering head, for example to actuate the load bearing means, the horn or the like. From EP 1 125 819 B1 it has become known to provide a steering arm-actuated truck wherein the steering arm defines braking ranges in two angular end positions, i.e. in the upper approximately upright position and the lower approximately horizontal position. In these angular ranges a braking device of the truck is actuated. Despite an actuation of the travel switch the truck cannot be moved in this operational condition. From this publication it has also become known to provide a specific additional travel switch at the steering arm. Upon actuation of the specific travel switch the truck can be also driven although the steering arm is in one of the braking ranges, however, with reduced acceleration. The maximum speed of the truck, however, is not limited with actuated specific travel switch.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The invention provides a walkie/rider truck wherein with one actuation element two different operational conditions for the truck can be effected. In accordance with the above described truck the truck according to the invention includes a bail-shaped handle or holding bar with a switch box which has at least one key switch. The key switch is connected with the control means for the driving means and the braking means. If the key switch is actuated outside of the braking ranges of the steering arm, the truck can be accelerated to a relatively high speed e.g. up to 12 km/h. In this case the driving motor of the truck is in the highest or second speed mode. If the truck is controlled without actuation of the key switch only by the travel switch the driving motor is in the first speed mode having speed values below the speed values of the second speed mode. If the key switch is actuated when the steering arm is in the upper braking range, the driving motor is brought into the creeping mode wherein the maximum speed in both travel directions is limited to for example 1.5 km/h. The creeping mode can be only reached if upon actuation of the key switch in the upper braking range of the steering arm the travel switch is in its neutral position. A creeping travel is only possible if the travel switch has been previously brought into the neutral position. It is, however, conceivable to neglect the neutral position of the travel switch and to initiate the creeping mode independent of the sequence of the actuation of the key switch and the travel switch if the key switch is actuated the steering arm is in the upper braking range. Furthermore, the order of succession of the actuation of the key switch and the travel switch, respectively, can be changed provided the travel switch has been first brought to the neutral position. According to an embodiment of the invention, the acceleration of the driving motor in the creeping mode is significantly smaller than in the first or second speed mode, e.g. reduced to 50%. In the invention it is possible either to permanently actuate the key switch or only for a limited time. If the key switch is permanently actuated and released during the creeping mode, the driving motor is automatically switched to the idle mode. In order to achieve the first or second speed mode, the travel switch first must be brought into the neutral position if not already being in this position. The key switch is arranged such that it can be actuated by the thumb of the hand which grasps the holding bar. The operator, thus, can actuate the key switch without releasing the holding bar. To this purpose it is according to an embodiment of the invention advantageous if the switch box is attached to the lower side of the holding bar. Further actuation elements can be provided in the switch box, e.g. a key switch for the actuation of the load bearing means or the horn.
20041029
20080101
20060504
62365.0
B66B128
0
COLON SANTANA, EDUARDO
WALKIE/RIDER TRUCK
UNDISCOUNTED
0
ACCEPTED
B66B
2,004
10,977,701
ACCEPTED
Lossless adaptive golomb/rice encoding and decoding of integer data using backward-adaptive rules
A method and system of lossless adaptive Golomb/Rice (G/R) encoding of integer data using a novel backward-adaptive technique having novel adaptation rules. The adaptive G/R encoder and decoder (codec) and method uses adaptation rules that adjust the G/R parameter after each codeword is generated. These adaptation rules include defining an adaptation value and adjusting the G/R parameter based on the adaptation value. If the adaptation value equals zero, then the G/R parameter is decreased by an integer constant. If the adaptation value equals one, then the G/R parameter is left unchanged. If the adaptation value is greater than one, then the G/R parameter is increased by the adaptation value. In addition, the adaptive G/R encoder and method include fractional adaptation, which defines a scaled G/R parameter in terms of the G/R parameter and updates and adapts the scaled G/R parameter to slow down the rate of adaptation.
1. A method for processing digital data, comprising: encoding an input value of the digital data using a Golomb/Rice (G/R) parameter to generate a codeword for the input value; updating G/R parameter using a backward-adaptive technique having adaptation rules after the codeword is generated; and repeating the encoding and updating for each value of the digital data. 2. The method as set forth in claim 1, further comprising: defining an adaptation value; and decreasing the G/R parameter if the adaptation value equals zero. 3. The method as set forth in claim 2, further comprising decreasing the G/R parameter by an integer constant if the adaptation value equals zero. 4. The method as set forth in claim 2, further comprising leaving the G/R parameter unchanged if the adaptation value equals one. 5. The method as set forth in claim 4, further comprising increasing the G/R parameter if the adaptation value is greater than one. 6. The method as set forth in claim 5, further comprising increasing the G/R parameter by the adaptation value if the adaptation value is greater than one. 7. The method as set forth in claim 1, further comprising: defining a scaling parameter; and defining a scaled G/R parameter as equal to the G/R parameter multiplied by the scaling parameter. 8. The method as set forth in claim 7, further comprising updating scaled G/R parameter instead of the G/R parameter by using a backward-adaptive technique having adaptation rules after the codeword is generated. 9. The method as set forth in claim 8, further comprising: setting the scaling parameter equal to sixteen; and determining the value of the G/R parameter based on a decay parameter of the digital data. 10. The method as set forth in claim, wherein the digital data further comprises integer vectors having values such that: (a) a most probable value for each value is zero; and (b) nonzero values have probabilities that decrease as the nonzero values increase. 11. A computer-readable medium having computer-executable instructions for performing the method recited in claim 1. 12. A computer-readable medium having computer-executable instructions for encoding digital integer data having integer values, comprising: encoding each of the integer values using adaptive Golomb/Rice (G/R) encoding and a G/R parameter k to generate a codeword for each of the integer values; defining a scaled G/R parameter K using the G/R parameter k; and updating the scaled G/R parameter K after each codeword is generated using backward adaptation rules. 13. The computer-readable medium of claim 12, further comprising: defining a scaling parameter L; and defining the scaled G/R parameter K as K=k multiplied by L. 14. The computer-readable medium of claim 13, further comprising setting the scaling parameter equal to a value that is a power of two. 15. The computer-readable medium of claim 12, wherein the digital integer data further comprises a vector x containing N integers and wherein each element x(n) of the vector x, where n=0 to N−1, has a probability distribution such that a most probably value is zero and values farther away from zero have fast decreasing probabilities. 16. The computer-readable medium of claim 15, wherein the probability distribution is given by the equation: P ⁡ ( x , θ ) = 1 - θ 1 + θ ⁢ θ  x  and wherein a parameter θ controls a rate of decay in probability as the absolute value of x grows. 17. The computer-readable medium of claim 12, further comprising: defining an adaptation value p; and replacing K with (K−B3) if p=0, wherein B3 is an integer constant. 18. The computer-readable medium of claim 17, further comprising leaving K unchanged if p=1. 19. The computer-readable medium of claim 18, further comprising replacing K with (K+p) if p>1. 20. The computer-readable medium of claim 17, further comprising: defining a parameter u as 2 x if x>0; defining u as −2 x−1 if x<0; and defining p=u>>k, meaning p equals u shifted to the right k places. 21. A computer-implemented process for encoding and decoding digital integer data, comprising: encoding each value x of the digital integer data using adaptive Golomb/Rice (G/R) encoding and a G/R parameter k; defining a scaled G/R parameter as K=k*L, wherein L is a scaling parameter; using a backward-adaptive technique having adaptation rules to update the scaled G/R parameter K after each value x of the digital integer data is encoded; appending the encoded values of the digital integer data into a bitstream; and decoding the bitstream using a G/R decoder to recover exactly each value x of the digital integer data. 22. The computer-implemented process of claim 21, further comprising: Replacing x with a mapping parameter u=2 x if x>0; Replacing x with u=−2 x−1 if x<0; and Defining an adaptation parameter p as u shifted to the right k places, p=u>>k. 23. The computer-implemented process of claim 22, wherein the adaptation rules further comprise replacing K with (K−B3) if p=0, wherein B3 is an integer constant. 24. The computer-implemented process of claim 23, wherein the adaptation rules further comprise leaving K unchanged if p=1. 25. The computer-implemented process of claim 24, wherein the adaptation rules further comprise replacing K with (K+p) if p>1. 26. One or more computer-readable media having computer-readable instructions thereon which, when executed by one or more processors, cause the one or more processors to implement the computer-implemented process of claim 21. 27. An adaptive Golomb/Rice (G/R) encoder for encoding digital integer data containing integer values, comprising: a Golomb/Rice (G/R) encoder having a G/R parameter k for encoding the integer values; and a means for updating the G/R parameter k after each of the integer values is encoded using a backward adaptive technique having adaptation rules. 28. The adaptive G/R encoder as set forth in claim 27, wherein the adaptation rules further comprise a means for updating the G/R parameter k as follows: defining an adaptation value, p; decreasing k by an integer constant if p=0; leaving k unchanged if p=1; and increasing k by p if p>1. 29. The adaptive G/R encoder as set forth in claim 28, further comprising a means for defining a scaled G/R parameter K, as follows: defining a scaling parameter, L; defining S=s*L; and defining K=k*L. 30. The adaptive G/R encoder as set forth in claim 29, further a means for updating K instead of k using the adaptation rules. 31. A method for decoding an encoded bitstream, comprising: receiving a codeword from the encoded bitstream; decoding the codeword using a Golomb/Rice (G/R) parameter; updating the G/R parameter using a backward-adaptive technique having adaptation rules after the codeword is decoded; and repeating the decoding and updating for each codeword of the encoded bitstream to recover a reconstructed digital data. 32. The method as set forth in claim 31, further comprising: defining an adaptation value; decreasing the G/R parameter if the adaptation value equals zero; leaving the G/R parameter unchanged if the adaptation value equals one; and increasing the G/R parameter if the adaptation value is greater than one. 33. The method as set forth in claim 32, further comprising decreasing the G/R parameter by an integer constant if the adaptation value equals zero. 34. The method as set forth in claim 32, further comprising increasing the G/R parameter by the adaptation value if the adaptation value is greater than one. 35. The method as set forth in claim 31, further comprising: defining a scaling parameter; and defining a scaled G/R parameter as equal to the G/R parameter multiplied by the scaling parameter. 36. A computer-readable medium having computer-executable instructions for performing the method recited in claim 31. 37. A process for decoding digital integer data that have been encoded into an encoded bitstream by an encoding process that encodes input value of the digital integer data using a Golomb/Rice (G/R) parameter to generate a codeword for the input value, updates the G/R parameter using a backward-adaptive technique having adaptation rules after the codeword is generated, and repeats the encoding and updating for each input value of the digital integer data, the process comprising: receiving a series of codewords from the encoded bitstream; decoding each of the codewords using adaptive G/R decoding and a G/R parameter k; defining a scaled G/R parameter K using the G/R parameter k; and updating the scaled G/R parameter K after each codeword is decoded using the backward-adaptive technique having adaptation rules. 38. The process of claim 37, further comprising: defining an adaptation value p; and replacing the scaled G/R parameter K with (K−B3) if p=0, wherein B3 is an integer constant. 39. The process of claim 37, further comprising leaving the scaled G/R parameter K unchanged if p=1. 40. The process of claim 37, further comprising replacing the scaled G/R parameter K with (K+p) if p>1.
TECHNICAL FIELD The present invention relates in general to the processing of digital data and more particularly to an improved method and system of lossless encoding and decoding of integer data using Golomb/Rice encoding having novel backward-adaptive rules. BACKGROUND OF THE INVENTION Data compression is becoming increasingly important as the size of computer data (such as text, audio, video, image and program files) continues to grow. Data compression is a way of encoding digital data into an encoded representation that uses fewer bits than the original data. Representing the data in fewer bits means that the data occupies less storage space and requires less transmission bandwidth. In general, data compression compresses a data by predicting the most frequently-occurring data and storing it in less space. Specifically, data compression involves at least two different tasks: (1) defining a data model to predict the probabilities of the input data; and (2) using a coder to generate codes from those probabilities. In addition, some data compression techniques mathematically transform and quantize the data to achieve even greater compression. A compression technique may be lossless or lossy. A lossless compression technique is reversible such that the original data before encoding and the decompressed data after decoding are bit-for-bit identical. Lossy compression uses the fact there is much repetition in data that can be thrown away with much loss in quality. Lossy compression accepts the loss of some of the original data in order to achieve a higher compression. Lossless compression typically is used to compress text or binary data, while lossy compression typically is used for audio, image and video data. However, even lossy compression techniques can sometimes use a lossless compression technique. For example, two commonly-used kinds of compression (or coding) technique are transform coding and predictive coding. For such kinds of compression systems, the original data is transformed and then quantized (rounded to nearest integers), or predicted based on (fixed or adaptive) signal models, and the prediction errors (differences between the original and predicted data) are then quantized. In both, cases, the data after quantization are in integer form. Once these integers are obtained, a lossless compression technique is used to encode the quantized values, in order to reduce the number of bits needed to represent the data. The set of these integer values usually has an associated probability distribution function (PDF). These PDFs have a distribution such that if the data properties are well modeled by the predictor, in predictive coding, then the prediction error should be close to zero most of the time. Similarly, in transform coding, most of the quantized transform coefficients are zero. FIG. 1 illustrates a typical probability distribution for these integer values; zero is the most likely value, and the probabilities of nonzero values decrease nearly exponentially fast as the magnitude increases. The data has a probability distribution shown in FIG. 1 because the data that is being encoded using the lossless compression technique is not the original data. FIG. 1 is the integer data resulting from quantizing transform coefficients or prediction errors. Mathematically, the problem is to find an efficient solution to encoding a vector x containing N integers. Each of the elements x(n), n=0, 1, . . . , N−1, has a value according to a probability distribution similar to that in FIG. 1, so that the most probable value is zero, and values farther away from zero have fast decreasing probabilities. A simple mathematical model for probability distributions like the one in FIG. 1 is the Laplacian, or two-sided geometric (TSG) distribution, characterized by a parameter θ: P ⁡ ( x , θ ) = 1 - θ 1 + θ ⁢ θ  x  ( 1 ) Note that the parameter θ controls the rate of decay in probability as |x| grows. The larger the value of θ, the faster the decay. The parameter θ can be directly related to the probability that x=0, that is P(0,θ)=(1−θ)/(1+θ). Also, the expected magnitude of the source symbol is: E ⁡ [  x  ] = 2 ⁢ ⁢ θ 1 - θ 2 ( 2 ) The entropy of the source is given in bits/symbol by H ⁡ ( x ) = log 2 ⁡ ( 1 + θ 1 - θ ) - 2 ⁢ ⁢ θ 1 - θ 2 ⁢ log 2 ⁡ ( θ ) ( 3 ) Thus, a good encoder should map a vector of N values of x into a bitstream containing not much more than N·H(x) bits, the theoretical minimum. The Laplacian distribution is a common model in media compression systems, for either prediction errors in predictive coders (like most lossless audio and image coders) or for quantized transform coefficients (like most lossy audio, image, and video coders). There have been many proposed encoders for sources with a Laplacian/TSG distribution. A simple but efficient encoder is the Golomb-Rice encoder. First, the TSG source values x are mapped to nonnegative values u by the simple invertible mapping: u = Q ⁡ ( x ) = { 2 ⁢ x , x ≥ 0 - 2 ⁢ x - 1 x < 0 ( 4 ) that is equivalent to seeing u as the index to the reordered alphabet {0, −1, +1, −2, +2, . . . }. The new source u has a probability distribution that approximates that of a geometric source, for which Golomb codes are optimal, because they are Huffman codes for geometric sources, as long as the Golomb parameter is chosen appropriately. An example of Golomb-Rice (G/R) codes is shown in Table 1 for several values of the parameter m. It should be noted that when m equals a power of two, a parameter k is used, which is related to m by m=2k. The main advantage of G/R codes over Huffman codes is that the binary codeword can be computed by a simple rule, for any input value. Thus, no tables need to be stored. This is particularly useful for modern processors, for which reading from a memory location that stores a table entry can take longer than executing several instructions. It is easy to see that the parameter m determines how many consecutive codeword have the same number of bits. That also indicates that computing the codeword involves computing u/m, where u is the input value. For most processors, an integer division takes many cycles, so the G/R code for general m is not attractive. When m=2k is chosen, which corresponds to a Rice then the division u/m can be replaced by a shift, because u/m=u>>k (where >> denotes a right shift operator). Thus, computing the G/R code for any input u is easy; simply compute p=u>>k and v=u−(p<<k). The code is then formed by concatenating a string with p 1's with the k-bit binary representation of v. TABLE 1 Input m = 1 m = 2 m = 4 m = 8 value k = 0 k = 1 m = 3 k = 2 m = 5 . . . k = 3 0 0 00 00 000 000 0000 1 10 01 010 001 001 0001 2 110 100 011 010 010 0010 3 1110 101 100 011 0110 0011 4 11110 1100 1010 1000 0111 0100 5 111110 1101 1011 1001 1000 0101 6 1111110 11100 1100 1010 1001 0110 7 11111110 11101 11010 1011 1010 0111 8 111111110 111100 11011 11000 10110 10000 9 1111111110 111101 11100 11001 10111 10001 10 11111111110 1111100 111010 11010 11000 10010 11 111111111110 1111101 111011 11011 11001 10011 12 1111111111110 11111100 111100 111000 11010 10100 13 1111111111110 11111101 1111010 111001 110110 10101 . . . . . . . . . . . . . . . . . . It is clear from Table 1 that the choice of the G/R parameter k must depend on the statistics of the source. The slower the decay of probability as u increases, the larger k should be chosen. Otherwise, the codeword lengths grow too quickly. A simple rule for choosing k is that the codeword length for a given input value u should approximate the logarithm base 2 of the probability of occurrence of that value. Although G/R codes are optimal for geometrically-distributed sources, they are not optimal for encoding symbols from a Laplacian/TSG source via the mapping in Equation 4. This is because for an input variable x with a TSG distribution, the variable u from Equation 4 has a probability distribution that is close to but not exactly geometric. In practice, the performance is close enough to optimal (e.g. with a rate that is typically less than 5% above the entropy), so G/R codes are quite popular. The optimal codes for TSG sources involve a set of four code variants, which are more complex to implement and improve compression by 5% or less in most cases. Therefore, in most cases G/R coders provide the best tradeoff between performance and simplicity. In FIG. 1, the probability distribution is represented by a single parameter, which is the rate of decay of the exponential. The faster the rate of decay, then the more likely is the value of zero. This means that in many cases zero is so likely that runs of zeros become very likely. In other words, if the probability distribution rate of decay is fast enough then encoding runs is a good idea. Encoding runs of zeros means that just a few bits are used to take care of many entries in the input data. Prediction errors are much more likely to be zero if the data matches the model used by the predictor in predictive coding, for example. It is possible, however, even with a good model, to every once in a while have a large value. This can occur when a boundary is reached, such as a pixel value goes from a background value to a foreground value. Every now and then big numbers can occur. When this happens, one type of encoding technique that is more useful than Run-Length encoding is known as a “Run-Length Golomb/Rice (RLGR)” encoding technique. One such RLFT encoding technique is disclosed in U.S. Pat. No. 6,771,828 to Malvar entitled “System and Method for Progressively Transform Coding Digital Data” and U.S. Pat. No. 6,477,280 to Malvar entitled “Lossless Adaptive Encoding of Finite Alphabet Data”. In reality, with the source of data varying, the probabilities will not stay constant and will vary over time. This is true with, for example, images and audio. Typically, these probability variations in the input data are handled in a variety of different ways. In JPEG, for example there is an entropy coder (a Huffman coder) whereby codewords of different lengths are used for different values to be encoded. The Huffman table is usually pre-designed, that is, typically a number of images are obtained, their probabilities are measured, and an average model is constructed that is used for all images. One problem with this approach is that with every portion of an image there is a loss in encoding efficiency, because the probability model being used by the entropy coder is good on average but not necessarily good for that portion of the image. From Table 1 it can be seen that there are two main issues with Golomb/Rice codes: (1) the probability decay parameter θ, or equivalent the probability P(x=0) must be known, so the appropriate value of k can be determined; and (2) if the decay parameter is too small, the entropy H(x) is less than 1, and thus the Golomb/Rice code is suboptimal, since its average codeword length cannot be less than 1 bit/symbol. In practice, the first issue (estimation of the optimal Golomb/Rice parameter) is usually addressed by dividing the input vector into blocks of a predetermined length. For each block, the encoder makes two passes over the data. In the first pass, the average magnitude of input values is computed. For that, the parameter θ can be estimated from Equation 2, and the corresponding optimal k can be determined. In a second pass, the encoder generates the bitstream for the block by first outputting the value of k in binary form, followed by the concatenated strings of Golomb/Rice codes for the data values within the block. This is the approach used in essentially all lossless compression systems that use Golomb/Rice codes, such as JPEG-LS for lossless image compression, SHORTEN for lossless audio compression, and others. This is called a “blockwise adaptation” or “forward adaptation” model. The forward adaptation model is forward in the sense that the encoder looks at the data first before encoding, measures a statistical parameter (usually the average magnitude), and then encodes based on that parameter and puts the value of the parameter used to encode the data in a header, for use by the decoder. Instead of trying to code the data all at once, the data is broken up into small portions, or blocks. For each block, the statistics of that block are measured, a statistical parameter is measure for that portion of data that matches what is in the buffer, and the entropy coder is adjusted to that parameter. In the encoded file a header is inserted that indicates the value of the parameter being used to encode that block of data. The second issue in practice, namely, encoding sources with very low entropy, is usually addressed using a blockwise adaptation or forward adaptation model, and if the average magnitude value of the input symbols in the block is small enough that the estimated entropy H(x) is less than 1, then the encoder uses Run-Length coding, instead of Golomb/Rice coding. Although these approaches work well in practice, they have two main disadvantages. One disadvantage is that the encoder needs to read each input block twice, such that two passes are performed on the data: a first time to compute the average magnitude to determine the Golomb/Rice parameter, and a second time to perform the actual encoding. This requires the encoder to perform additional work and adds complexity. In some applications encoding time is not an issue, but for digital cameras, for example, it can slow down the encoding process or increase the cost of random-access memory. In particular, the forward adaptation model must first look at the data and measure the statistics, find model parameters, and then encode. This is not an issue if the encoder runs on a personal computer having a great deal of processing power. However, if pictures taken with a cell phone, they are being encoded by the cell phone itself, where processing power is much more limited. The second and most important disadvantage involves the difficulty in choosing the block size. If the block size is too large, the statistics could change dramatically within the block. On the other hand, if the block size is too small, then the overhead of having to tell the decoder which parameter was used to encode that block of data becomes burdensome. For every block, the encoder must store what parameters values are being used to encode that block. At some point the overhead required to encode the small block is not worth the compression achieved. This is creates a trade-off. On the one hand, if a small block is used, the statistics of the block can be matched, however, measuring the statistics is difficult because there are few numbers, and the overhead of encoding is great. On the other hand, if a large block is used, the problem is that the statistics can vary greatly within the block. In practice, it is hard to find a compromise between those two conflicting factors, so that the block size is usually chosen to be between 128 and 2,048 samples, depending on the type of data to be encoded. One solution is to use a backward-adaptive technique in the encoder. With backward adaptation, encoding starts with the decoder and encoder agreeing on initial states is for each block. In other words, each parameter is initialized to a predetermined value, and then the encoding begins. Every time the encoder produces an output symbol, that symbol can be sent to the decoder immediately, because the decoder knows the parameter values used to encode it. After the encoder outputs a symbol, it then computes new values for the encoding parameters, depending on the symbol that was output, according to a predetermined adaptation rule. The decoder knows the parameter adaptation rule, and therefore it can also compute the new values for the encoding parameters. Thus, the encoding parameters are adjusted after every encoded symbol, and the encoder and decoder are always in sync, that is, the decoder tracks the changes in the encoding parameters. This means that the encoder does not need to send the decoder any overhead information in terms of what parameter values were used to encode the data. Therefore, what is needed is a lossless Golomb/Rice (G/R) encoder and decoder (codec) and method that provides efficient compression and is capable of handling and encoding any input integer number that may appear. Moreover, what is also needed is an adaptive G/R codec and method that avoids the aforementioned problems with forward adaptation by using a backward-adaptive technique to provide fast tracking and efficient compression of the input data. SUMMARY OF THE INVENTION The invention disclosed herein includes an adaptive Golomb/Rice (G/R) encoder and decoder (codec) and method for lossless encoding and decoding of integer data. The adaptive G/R codec and method uses a novel backward-adaptive technique having novel adaptation rules. Using backward adaptation, the adaptive G/R codec and method quickly learns any changes in the statistics of the input data. In addition, the adaptive G/R codec and method is capable of encoding any input integer value. The adaptive G/R codec and method also uses novel adaptation rules that adjust the encoding parameter after each encoded symbol. No probability tables or codeword tables are necessary, so the adaptive G/R codec and method can fit within a small memory footprint. The adaptive G/R codec and method thus is well-suited for modern processors, where memory access usually takes many more cycles than instruction fetching and execution. It is also well-suited for small devices with limited memory and limited processing power, because the adaptive G/R codec and method does not need to buffer the input data in blocks, and does not need to process each data value twice. One of the main advantages of the adaptive G/R and method is that the G/R parameter (k) is adjusted and updated after every codeword that is generated. This allows any changes in the statistics of the input data be tracked very quickly. No overhead is necessary to transmit the G/R parameter to the decoder, because their changes are tracked by the decoder. Because the adaptation rules are simple, the computational complexity of using backward adaptation is low. Thus, the adaptive G/R codec and method is attractive for many practical applications. The adaptive G/R method includes using encoding and adaptation rules. The encoding rules dictate that the next input value x is encoded by first mapping it to a nonnegative value u via a simple 1-1-mapping rule (u=2 x if x>0, and u=−2 x−1, if x<0 ), and then encoding u using a Golomb/Rice encoder with parameter k, so the output codeword is denoted as GR(u,k). After a symbol is encoded, then adaptation rules are applied. The adaptive G/R method uses simple but novel adaptation rules. The adaptation rules for k are as follows. From the input value u (recall that the G/R coder always operates on u values), a temporary value p is computed by p=u>>k (where >> denotes a right-shift operator). If p=0, then a scaled version of k, namely K, is decreased by a fifth integer constant, B3. If p=1, then k is left unchanged. If p>1, then K is increased by p. In this manner, the parameter k is updated for the G/R encoder in both the first and second modes, after each codeword is generated. The value of k to be used for generating the next codeword is then computed as k=K/L, where L is a fixed parameter (recall that division by L is just a shift operator if L is chosen as a power of two). It can be seen from the description of the adaptation rules above that the adaptive G/R method also includes a feature called “fractional adaptation”. Fractional adaptation allows for a finer control of the rate of adaptation. First, a scaling parameter, L, is defined, and the value of L is typically set to a power of two. Next, a scaled G/R parameter, K=k*L, is defined. When using the adaptation rules for k, the scaled parameter value K is incremented or decremented by integer constants, depending on the generated codeword. After adaptation of K, the final parameter value k is computed by k=K/L. In this way, the integer increment for K can be seen as fractional increments for k, which allow for smoother control of the value of k, thus with better tracking of changes in the input statistics. If k was adjusted by integer increments after every encoded symbol, its value would fluctuate too much. Such noise in parameter values would lead to a decrease in the compression ratio (the ratio in the number of bits needed to store the input data in straight binary format to the number of bits needed to store the encoded bitstream). In a tested embodiment, the scaling parameter equals sixteen and the value of the G/R parameter is based on a decay parameter of the digital data. An adaptive G/R encoder includes modules and means for incorporating the adaptive G/R method described above. The digital integer data includes integer vectors having values. The values are such that a most probable value for each value is zero, and nonzero values have probabilities that decrease as the nonzero values increase. The adaptive G/R method also includes a process for encoding and decoding data. The process includes encoding each value x of the digital integer data using adaptive Golomb/Rice (G/R) encoding and a G/R parameter k, and defining a fractional G/R parameter as K=k*L, where L is a scaling parameter. The process also includes using a backward-adaptive technique having adaptation rules to update the fractional G/R parameter K after each value x of the digital integer data is encoded, and appending the encoded values of the digital integer data into a bitstream. The process also includes decoding the bitstream using a G/R decoder to recover exactly each value x of the digital integer data. An adaptive G/R decoder and method works by using decoding rules corresponding to the encoding rules above, and using the same adaptation rules described above. The decoding rule at the decoder reverses the previously described encoding rule at the encoder. Namely, the decoder reads as many bits from the input bitstream (or file) as necessary, depending on the current value of the GR parameter k. In this manner, the decoder reads a complete codeword corresponding to a valid Golomb/Rice code GR(u,k), according to Table 1. Since the Golomb/Rice code is uniquely decodable for every parameter k, the decoder then can decode that codeword. In other words, the decoder can determine the value of the symbol u that was present at the encoder. From u, the decoder can determine the corresponding data value x simply by using the inverse 1-1 mapping rule. In particular, if u is even, then x=u/2, and, if u is odd, then x=−(u+1)/2. The decoding process described above is performed to decode an input codeword into an output value or string of values that matches exactly what was seen at the encoder. Thus, the decoding process is lossless. After decoding a codeword from the input bitstream or file as described above, the decoder then computes the same adaptation rules as described for the encoder above. In this manner, the decoder will adjust the values of the parameter k in exactly the same way as the encoder does. Thus, the parameter will have the correct value for decoding the next bitstream (or file) codeword. BRIEF DESCRIPTION OF THE DRAWINGS The present invention can be further understood by reference to the following description and attached drawings that illustrate aspects of the invention. Other features and advantages will be apparent from the following detailed description of the invention, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the present invention. Referring now to the drawings in which like reference numbers represent corresponding parts throughout: FIG. 1 illustrates a typical probability distribution for integer values that works well with the adaptive run-length Golomb/Rice (RLGR) encoder and method disclosed herein. FIG. 2A is a block diagram illustrating an exemplary implementation of an encoder portion of the adaptive Golomb/Rice (G/R) codec and method disclosed herein. FIG. 2B is a block diagram illustrating an exemplary implementation of a decoder portion of the adaptive Golomb/Rice (G/R) codec and method disclosed herein. FIG. 3 illustrates an example of a suitable computing system environment in which the adaptive G/R codec and method shown in FIG. 2 may be implemented. FIG. 4 is a general block diagram illustrating components of the adaptive G/R encoder shown in FIG. 2. FIG. 5 is a general flow diagram illustrating the general operation of the adaptive G/R encoder and method shown in FIGS. 2 and 4. FIG. 6 is a flow diagram illustrating further details of the adaptive G/R encoder and method shown in FIG. 5. FIG. 7 is a detailed flow diagram of the operation of the Golomb/Rice (G/R) parameter adaptation module of the adaptive G/R codec and method shown in FIG. 4 FIG. 8 is a detailed flow diagram of the computation of the adaptation value used by the Golomb/Rice (G/R) parameter adaptation module shown in FIG. 7. FIG. 9 is a working example illustrating the encoding details of the adaptive G/R encoder shown in FIGS. 2 and 4, including the G/R parameter k adaptation rules. DETAILED DESCRIPTION OF THE INVENTION In the following description of the invention, reference is made to the accompanying drawings, which form a part thereof, and in which is shown by way of illustration a specific example whereby the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention. I. INTRODUCTION The adaptive Golomb/Rice (G/R) codec and method disclosed herein can be used in a wide variety of compression applications. For example, the adaptive G/R codec and method may be used in database applications to encode indices. The indices typically are positive, integer numbers that have a probability distribution similar to FIG. 1 because small values for the indices are more likely than large values. Another example is using the adaptive G/R codec and method for encoding head position of hard disks. Until the hard disk is full, data is more likely to be at the beginning of the hard disk than at the end. Therefore, small head values are more likely than large head values, such that the input data has a probability distribution similar to FIG. 1. The adaptive G/R codec and method disclosed herein is an improved technique for the lossless compression of integer data. Vectors containing integer values are mapped by the encoder into a bitstream, which later then can be reconstructed exactly by the decoder. Using backward-adaptation for improved performance, the adaptive G/R codec and method quickly learns and adapts to changes in the statistics of the input data. The adaptive G/R codec and method uses a backward-adaptation strategy that adjusts the G/R parameter after each encoded symbol. Probability tables or codeword tables are unnecessary, which allows the adaptive G/R encoder and method to fit in a very small memory footprint. The adaptive G/R codec and method thus is particularly well-suited for modern processors, where memory access takes usually many more cycles than instruction fetching and execution. One key advantage of the adaptive G/R codec and method over previous kinds of entropy coders is that its backward-adaptation strategy quickly learns changes in the statistics of the data. Thus, in practice the adaptive G/R codec and method has exhibited better performance than other kinds of encoders, such as Huffman coders, block-adaptive Golomb/Rice encoders or context-adaptive arithmetic encoders. Another advantage of using a backward-adaptation strategy for the encoding parameters is that probability estimators are not needed. Still another advantage of the adaptive G/R codec and method is that it performs adaptation after each encoded symbol, in a single pass over the data, thus producing better compression results and faster encoding than encoders that use blockwise or forward adaptation. II. GENERAL OVERVIEW FIGS. 2A & B are block diagrams illustrating an exemplary implementation of an adaptive Golomb/Rice (G/R) codec and method disclosed herein. In FIG. 2A, a block diagram for an encoder portion of the adaptive G/R codec and method is shown. In FIG. 2B, a block diagram for the decoder portion of the adaptive G/R codec and method is shown. It should be noted that FIGS. 2A & B are merely two of several ways in which the adaptive G/R codec and method may implemented and used. Referring to FIG. 2A, the adaptive G/R encoder 200 runs on a first computing device 210. The adaptive G/R encoder 200 inputs and processes integer data 220. In general, given the integer data 220, such as a vector containing integer values, the adaptive G/R encoder 200 encodes or maps the integer data 220 into an encoded bitstream 230. The integer data 220 typically contains vectors of integers such that the most probable value is zero and any nonzero values have probabilities that decrease as the values increase. This type of integer data typically has a probability distribution function (PDF) similar to that shown in FIG. 1. After the integer data is encoded, the encoded bitstream 230 may be stored or transmitted. Referring to FIG. 2B, a G/R decoder 240 resides on a second computing device 250. It should be noted that although shown as separate computing devices, the first computing device 210 and the second computing device 250 may be the same computing device. In other words, the G/R encoder 200 and decoder 240 may reside on the same computing device. In general, the G/R decoder 240 processes the encoder bitstream 230 and outputs a reconstructed integer data 260. Because the adaptive G/R encoder 200 performs lossless encoding of the integer data 220, the G/R decoder 240 can read the encoded bitstream 230 and reconstruct exactly the original data vector contained in the integer data 220. It should be noted that in practical applications a device or equipment may incorporate a G/R encoder but not a G/R decoder (for example, a digital camera). Similarly, a device or equipment may incorporate a G/R decoder but not a G/R encoder (for example, a digital audio player or a digital picture viewer). III. EXEMPLARY OPERATING ENVIRONMENT The adaptive Golomb/Rice (G/R) codec and method are designed to operate in a computing environment and on a computing device, such as the first computing device 210 and the second computing device 250 shown in FIG. 2. The computing environment in which the adaptive G/R codec and method operates will now be discussed. The following discussion is intended to provide a brief, general description of a suitable computing environment in which the adaptive G/R codec and method may be implemented. FIG. 3 illustrates an example of a suitable computing system environment in which the adaptive G/R codec and method shown in FIG. 2 may be implemented. The computing system environment 300 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 300 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 300. The adaptive G/R codec and method is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the adaptive G/R codec and method include, but are not limited to, personal computers, server computers, hand-held, laptop or mobile computer or communications devices such as cell phones and PDA's, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like. The adaptive G/R codec and method may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The adaptive G/R codec and method may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices. With reference to FIG. 3, an exemplary system for implementing the adaptive G/R codec and method includes a general-purpose computing device in the form of a computer 310. The computer 310 is an example of the first computing device 210 and the second computing device 250 shown in FIG. 2. Components of the computer 310 may include, but are not limited to, a processing unit 320, a system memory 330, and a system bus 321 that couples various system components including the system memory to the processing unit 320. The system bus 321 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus. The computer 310 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by the computer 310 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer 310. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. Note that the term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media. The system memory 330 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 331 and random access memory (RAM) 332. A basic input/output system 333 (BIOS), containing the basic routines that help to transfer information between elements within the computer 310, such as during start-up, is typically stored in ROM 331. RAM 332 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 320. By way of example, and not limitation, FIG. 3 illustrates operating system 334, application programs 335, other program modules 336, and program data 337. The computer 310 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 3 illustrates a hard disk drive 341 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 351 that reads from or writes to a removable, nonvolatile magnetic disk 352, and an optical disk drive 355 that reads from or writes to a removable, nonvolatile optical disk 356 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 341 is typically connected to the system bus 321 through a non-removable memory interface such as interface 340, and magnetic disk drive 351 and optical disk drive 355 are typically connected to the system bus 321 by a removable memory interface, such as interface 350. The drives and their associated computer storage media discussed above and illustrated in FIG. 3, provide storage of computer readable instructions, data structures, program modules and other data for the computer 310. In FIG. 3, for example, hard disk drive 341 is illustrated as storing operating system 344, application programs 345, other program modules 346, and program data 347. Note that these components can either be the same as or different from operating system 334, application programs 335, other program modules 336, and program data 337. Operating system 344, application programs 345, other program modules 346, and program data 347 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 310 through input devices such as a keyboard 362 and pointing device 361, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, radio receiver, or a television or broadcast video receiver, or the like. These and other input devices are often connected to the processing unit 320 through a user input interface 360 that is coupled to the system bus 321, but may be connected by other interface and bus structures, such as, for example, a parallel port, game port or a universal serial bus (USB). A monitor 391 or other type of display device is also connected to the system bus 321 via an interface, such as a video interface 390. In addition to the monitor, computers may also include other peripheral output devices such as speakers 397 and printer 396, which may be connected through an output peripheral interface 395. The computer 310 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 380. The remote computer 380 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 310, although only a memory storage device 381 has been illustrated in FIG. 3. The logical connections depicted in FIG. 3 include a local area network (LAN) 371 and a wide area network (WAN) 373, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet. When used in a LAN networking environment, the computer 310 is connected to the LAN 371 through a network interface or adapter 370. When used in a WAN networking environment, the computer 310 typically includes a modem 372 or other means for establishing communications over the WAN 373, such as the Internet. The modem 372, which may be internal or external, may be connected to the system bus 321 via the user input interface 360, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 310, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 3 illustrates remote application programs 385 as residing on memory device 381. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used. IV. SYSTEM COMPONENTS FIG. 4 is a general block diagram illustrating components of the adaptive G/R encoder 200 shown in FIG. 2. The adaptive G/R encoder receives as input an input value (or string of values) 400. The Golomb/Rice (G/R) encoding module 410 is used to encode the input value (or string) 400 to obtain a codeword 420. After the encoding of each input value (or string) 400, the encoding parameter is adapted to track the statistics of the input data. A Golomb/Rice (G/R) parameter adaptation module 430 is used to update the original G/R parameter using a backward-adaptive technique and novel adaptation rules. This yields an updated G/R parameter 440. The adaptation of the G/R parameter will be discussed in detail below. Once the parameter has been updated, a next input value 450 is processed by the adaptive GR encoder 200 using the updated G/R parameter 440. V. OPERATIONAL OVERVIEW The operation of the adaptive G/R encoder 200 and method used therein as shown in FIGS. 2 and 4 now will be discussed. FIG. 5 is a general flow diagram illustrating the general operation of the adaptive G/R encoder and method shown in FIGS. 2 and 4. The method begins by inputting digital data to be encoded (box 500). In one tested embodiment, the input digital data is integer data in the form of a vector having elements that are integer values. It should be noted that the each input digital data value can be any integer value, not restricted to a particular range (e.g. binary or binary-plus-sign, as it is common in other entropy coders). Next the digital data is encoded using a G/R parameter (box 510). The digital data is encoded using a G/R parameter that has been initialized to a certain value. However, because the statistics of the input digital data may vary, the G/R encoder 200 is adaptive. This adaptation allows the adaptive G/R encoder 200 to track the statistics of the input digital data and adapt to those statistics quickly, to provide greater encoding efficiency. The adaptive G/R encoder 200 and method update the G/R parameter using a backward-adaptive technique (box 520). This updating of the G/R parameter occurs after each value or string of values of the input digital data is encoded. Moreover, the backward-adaptive technique includes novel adaptation rules, which are discussed in detail below. The encoded digital data then is output (box 530). Next, the next value or string of the input digital data is processed using the method just described. The updated value of the G/R parameter is used in the encoding the next input value or string. This process is repeated until all the digital data has been encoded into an encoded bitstream. FIG. 6 is a flow diagram illustrating further details of the adaptive G/R encoder and method shown in FIG. 5. Specifically, a value or string of the digital data is received as input (box 600). Next, the input value or string is encoded using a G/R parameter (box 610). After the input value or string has been encoded, the G/R parameter is updated. This adaptation process begins by defining a scaled G/R parameter (box 620). The scaled G/R parameter is used to slow down the adaptation of the G/R parameter such that the optimal parameter values can be more closely tracked. The scaled G/R parameter is discussed in more detail below. Next, the scaled G/R parameter is updated using a backward-adaptive technique and novel adaptation rules (box 630). The encoded input value or string is appended to the encoded bitstream and the next value or string from the digital data to be encoded is input (box 640). The process begins again to encode the next value or string using the updated scaled G/R parameter. VI. OPERATIONAL DETAILS The operational details of the adaptive G/R encoder 200 and method of FIGS. 4, 5 and 6 discussed above will now be discussed. Golomb/Rice (G/R) Parameter Adaptation Module FIG. 7 is a detailed flow diagram of the operation of the Golomb/Rice (G/R) parameter adaptation module 430 of the adaptive G/R encoder 200 and method shown in FIG. 4. In general, the G/R parameter adaptation module 430 updates an initial G/R parameter using a backward-adaptive technique having novel adaptation rules. The update is performed after each value or string of the digital data is encoded. The operation begins by receiving as input the initial G/R parameter (box 705) and an adaptation value (box 710), whose computation will be described later. A determination then is made as to whether the adaptation value equals zero (box 715). If so, then the adaptation rules are to decrease the scaled G/R parameter by an integer constant (box 720). If the adaptation value does not equal zero, a determination is made whether the adaptation value is equal to one (box 725). If so, then the adaptation rules leave the scaled G/R parameter unchanged (box 730). If not, then the adaptation rules are to increase the scaled G/R parameter by the adaptation value (box 735). Once the G/R parameter has been adapted, the current G/R parameter is replaced with the updated G/R parameter (box 740). This is obtained by dividing the scaled G/R mode parameter by a fixed scaling factor and keeping the integer part of the result. Since the adaptation adjusts the scaled G/R mode parameter by integer steps, the actual G/R parameter behaves as if it were adapted by fractional steps. Again, this is an example of “fractional adaptation”, which permits finer control of the speed of adaptation. Of course, if the G/R parameter is left unchanged (box 730) then there is no updating to perform, and the current G/R parameter is the same. Finally, the updated G/R parameter is output (box 745). FIG. 8 is a detailed flow diagram of the computation of the adaptation value used by the Golomb/Rice (G/R) parameter adaptation module 430 shown in FIG. 7. Referring also to FIGS. 7 and 9, the adaptation value computation module 800 produces the adaptation value (box 710) that is an input to the flow diagram in FIG. 7. The operation begins by receiving two inputs, the current G/R parameter value (box 805) and the input value (box 810). Next, the input value is shifted to the right by as many places as the value of the G/R parameter (box 820). The resulting value is the adaptation value, which then is output (box 830). VII. WORKING EXAMPLE In order to more fully understand the adaptive G/R encoder and method disclosed herein, the operational details of an exemplary working example are presented. It should be noted that this working example is only one way in which the adaptive G/R encoder and method may be implemented. The adaptive Golomb/Rice (G/R) codec and method is an extension of the PTC entropy encoder disclosed in U.S. Pat. No. 6,477,280 cited above. However, the PTC entropy encoder of U.S. Pat. No. 6,477,280 is used for encoding binary data (typically bit-planes of integer data). The adaptive G/R codec and method disclosed herein can encode integer data having any input value. In other words, the adaptive G/R codec and method disclosed herein can encode data of any alphabet. One advantage of the adaptive G/R encoder and method disclosed herein is that, unlike the PTC entropy encoder, there is no need to know the largest possible number of the input data. Instead, the adaptive G/R encoder and method can handle any size input value, no matter how large. This means that the adaptive G/R encoder assumes that the input data has a Laplacian distribution as shown in FIG. 1, and suddenly a large number appears in the input data, the adaptive G/R encoder and method is able to encode that large number. While more bits will be used to encode that large number than a smaller number, the large number will be encoded. However, the penalty using more bits will only be paid for that large number when it occurs, and not for every other value. This is due to the new mode selection and adaptation rules set forth below. With the PTC entropy encoder the input data is received, broken into bit planes, and then each bit plane is encoded with a G/R encoder. In the adaptive G/R codec and method disclosed herein, the adaptive G/R codec and method is extended to the handle Laplacian data directly. This has the advantage that the adaptive G/R codec and method uses single-pass encoding, which makes is significantly faster than the PTC entropy encoder. The input data of the PTC entropy encoder had a Laplacian distribution, where small numbers are more likely. Sometimes small numbers are so much more likely that encoding runs of zeros is more efficient for a particular part of the bitstream. However, the PTC entropy encoder would pick up the data, do one pass on the most significant bit plane, and go back and do one pass in the next bit plane. For example, if the data was 16 bits, a pass was first done on bit #16 and encoded. Of course, most of the data will be zero, because that bit only gets split for very large numbers, then keeps going down. As bits #5, 4, 3, 2, and 1 are reached these bits have lots of zeros and ones, which means that it gets to a point that encoding them does not help at all. Usually the least significant bit is so random that a bit is used to encode the bit, that is, each input bit is directly copied to the output. The problem with the PTC entropy encoder is that encoding in bit planes requires several passes at the data. In particular, the PTC entropy encoder has to encode the most significant bit, the next bit, then the next bit, and so on. Clearly, this will take significantly more time, and in some cases the PTC entropy encoder is 1.5 to 3 times slower than the adaptive G/R encoder and method disclosed herein. Encoding Rules The adaptive G/R codec and method uses novel encoding rules that are based on the G/R parameter, k. Table 2 sets forth the coding rules for the adaptive G/R codec and method for mapping integer values x to a binary bitstream. TABLE 2 Adaptive x ≧ 0: u = 2 |x| code = GR(u, k) Golomb/Rice x < 0: u = 2 |x| − 1 In this working example, a mapping value, u, is defined. The input values, x, of the adaptive G/R codec and method can be positive or negative. The input value x is mapped to a u value, where u is only positive. Thus, the signed input value, x, is converted into an unsigned equivalent representation, u. Equation 4 sets forth the mapping from x to u. In particular, the mapping says that 0 maps to 0, 1 maps to 1, −1 maps to 2, 2 maps to 3, −2 maps to 4, and so forth, such that the u value is always positive. This is done so the G/R table (Table 1) can be used, because the G/R table is only for nonnegative values. This mapping allows the adaptive G/R codec and method to handle any input alphabet. In other words, because the G/R table is used (which can handle any input number), the input alphabet can be infinite and the adaptive G/R codec and method can handle any size number input. The adaptive G/R codec and method is only limited by the size of the numbers that the operating system can handle. It should be noted that in practice the G/R encoding Table 1 does not need to be stored in memory. It is easy to see that the table entries have enough structure that the codewords can be easily computed for any value of u and the encoding parameter k. Given the u data, Table 2 states that the mapping value u of the input value x is encoded using an adaptive G/R encoder and the G/R encoding rule exemplified by Table 1. Thus, the codeword used to encode x is based on the values of u and k. The G/R parameter k is updated using a backward-adaptive technique and novel adaptation rules, as discussed in detail below. The rules in Table 2 precisely define how the encoder encodes, which means that the decoder can use the same rules in Table 2 to recover (or decode) the encoded data. Fractional Adaptation Fractional adaptation uses the scaled G/R parameter K instead of the G/R parameter k. Fractional adaptation is a way to slow down adaptation. It is possible to use the adaptive G/R codec and method without fractional adaptation. However, without fractional adaptation the adaptation usually changes too quickly and typically fails to track the optimal parameters for the input data correctly. In this working example, the adaptation of the k parameter is performed using the scaled K parameter. Thus, K is updated instead of k. The relationship between k and K is as follows: k=K/L, where L is a scaling parameter as explained above. Thus, when the adaptation is performed, the value of K is adapted and K is divided by L to obtain the value of k. Note that all values are integers, so by k=K/L it is meant the integer part of the result. Also recall that the fixed scaling parameter L is set to a value equal to a power of 2 (e.g. L=16), then division by L can be efficiently performed by shift operators. Fractional adaptation is preferred because the adaptive G/R codec and method makes an adjustment of the G/R parameter k for every code that is generated. In other words, after a input value or string is encoded the adaptation rules are performed. If k is adapted directly via integer-valued changes, then because they are integer numbers, all that can be done is stay the same or increase or decrease by at least 1. However, suppose the input data is getting bigger, meaning that the parameters should be increased. Fractional adaptation allows a fractional increment of k. For example, k could be increased by 0.5 instead of 1. However, this is not allowed, because k is an integer parameter. So fractional adaptation performs an integer increment in K, and divides K by L to give an fractional increment of k. This ensures that there is no oscillation in the parameter k. Instead of using fractional adaptation it is possible to define a flag such that if there is a decrease or increase in the data then a certain number of encoding cycles passes before increasing or decreasing the parameters. A new parameter could be defined that keeps track of the number of encoding cycles. In other words, the parameter would keep track of how many times that the condition (input data increasing or decreasing) should happen before the parameters are changed. It should be noted, however, that this technique was tried, and the fractional adaptation provided superior results. Golomb/Rice (k) Parameter Adaptation The G/R parameter k is adapted after each input value or string is encoded. When fractional adaptation is used, the scaled G/R parameter K is actually adapted, instead of k directly. Table 3 sets forth the adaptation rules for the G/R parameter k. After encoding a value u, the adaptation is controlled by the adaptation value of p=u>>k, meaning that u is shifted to the right k places. After adaptation, the value of k is set to k=K/L, where L is a constant. In this working example, L=16. TABLE 3 p = 0 decrease K by setting K K − B3 p = 1 no change p > 1 increase K by setting K K + p The G/R code from Table 1 depends on the parameter k. For example, if the value after an incomplete run is 13, the GR code for 13 is “1111111111110” (for k=0) and if k=1 it is “11111101”. The larger k is, the smaller the number representing 13 will be. And the smaller k is, the larger the number representing 13 will be. Thus, the parameter k must be known. This means that the adaptive G/R codec and method can do a good job if it chooses a good value for k. However, it is not always advantageous to use large values of k because it will produce longer strings for smaller values of the input data, as shown in Table 1. In other words, a good choice for the value of k depends on the input data. If the value is 13, then using a large value of k is a good idea. However, suppose that the value after the incomplete run is “1”. Then, a smaller value of k is desirable. Thus, for small values after the incomplete run, it is better to use a small k, and for large values it is better to use a large k. Thus, the choice of k is related to the probability of the values. In the prior art there is a body of theoretical work to this effect: that if the probability for the input data is known (for example, if the input data is Laplacian where there is a single parameter than controls the decay), there are well-known formulas that from that decay parameter the parameter k to be used can be computed. This gives on average the mapping to use as few bits as possible. Thus, it is important for the k parameter to be adaptive. That way, if on the input data there are big values coming up, k should be increased, because for big values larger k is better. On the other hand, if there are smaller values coming up, k should be decreased. Instinctively, it can be seen that for big numbers k should be increased and for small numbers k should be decreased. Then as long as k is changed at a small enough pace (such as when using fractional adaptation), the optimal parameters for the input data will always be tracked correctly. The adaptation rules for k shown in Table 3 are significantly new. In the adaptive G/R codec and method, any value can come up, so this value must be encoded. The encoding is done using the adaptive G/R encoder and the G/R parameter k. Referring to Table 3, the input data is x. The input data x can be any integer number, small x's are more likely (can be positive or can be negative). However, G/R encoding is only for positive numbers. A straightforward mapping of x is used (see equation 4) to map x into u. The adaptation of k is controlled by the adaptation value p, which is defined as u shifted to the right k places. Thus, the adaptation value p is a scaled down version of u. Or, equivalently, the p parameter is an integer approximation to u/2k. Shifting k places to the right is equivalent to dividing the number by 2k. For example, if a number is shifted 5 bits to the right this is the same as dividing the number by 32 (or 25). The remainder is thrown away, and just the quotient is used. Referring to Table 3, if the adaptation value p is equal to zero, then K is updated and replaced by K decreased by an integer constant, B3. If the adaptation value p is equal to one, then K is unchanged. If the adaptation parameter p is greater than one, then K is updated and replaced by K decreased by the adaptation value p. If the adaptation value of p is equal to one, it means that the value of u was close to 2k, and those are the kinds of values for which the parameter k is correct. Thus, as shown in Table 3, there is no change. If the value of the adaptation value p is 0, which means that the input value was smaller than 2k. This means it is time to start decreasing k (because the input values are smaller than 2k). The case where the adaptation value p is greater than 1 is much less likely because the input values are not likely to be very big. But if the numbers are big and p>1, then it is time to start increasing the k parameter. Adaptive G/R Encoder FIG. 9 is a working example illustrating the encoding details of the adaptive G/R encoder 200, shown in FIGS. 2 and 4, including the G/R parameter k adaptation rules. The process begins (box 905) by reading the input value u (box 910). The two main processes of the adaptive G/R encoder 200 are G/R Encoding (box 915) and G/R Parameter Adaptation (box 920). The G/R Encoding 915 process begins by computing an adaptation value p and v (box 925). The bitstream is appended with p bits equal to one (box 930). The k-bit binary value of v then is appended to the bitstream (box 935). These operations comprise the adaptive Golomb/Rice encoder as defined in Table 1. The G/R Parameter Adaptation 920 process includes determining whether the adaptation value p is equal to one (box 940). If so, then the adaptation value p is left unchanged (point 945). Otherwise, another determination is made whether the adaptation value p equals zero (box 950). If not, then K is updated and replaced by K decreased by the integer constant, B3 (box 955). Otherwise, K is updated and replaced by K increased by the adaptation value p (box 960). Finally, the process sets k equal to K divided by L (box 965) and the process finishes (box 970). Results The adaptive G/R codec and method of this working example has been implemented in applications for image, audio, and map data compression. The results of using the adaptive G/R codec and method in these applications have been compression ratios that are comparable to the most sophisticated entropy coders, but in a simpler implementation. In particular, with respect to existing entropy encoders for integer data, the adaptive G/R codec and method achieves compression rates near the theoretical maximum (dictated by the source entropy) for a large class of source symbol probability distributions, like the one in FIG. 1. By way of example, well-known Golomb-Rice and Huffman encoders are efficient only for source entropies of 1 bit per symbol or higher. VIII. DECODING The adaptive G/R codec and method also includes a decoder that can be precisely implemented based on the encoder description above. Referring to FIG. 2B, a computing device (box 250) can implement just the G/R decoder 240. The adaptive G/R decoder 240 and method receive codewords from an encoded bitstream (box 230). Next, the adaptive G/R decoder 240 decodes the codewords by applying the reverse rules set forth above for the adaptive G/R encoder 200. Next, the G/R parameter is adapted using exactly the same rules as those for the adaptive G/R encoder. Finally, the decoded (or reconstructed) integer data is output (box 260). Since the encoding rules are uniquely decodable and the adaptation rules for the decoder are identical to those of the encoder, the previous descriptions of the encoding rule and adaptation rules also describe precisely the operations of the decoder. The foregoing description of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description of the invention, but rather by the claims appended hereto.
<SOH> BACKGROUND OF THE INVENTION <EOH>Data compression is becoming increasingly important as the size of computer data (such as text, audio, video, image and program files) continues to grow. Data compression is a way of encoding digital data into an encoded representation that uses fewer bits than the original data. Representing the data in fewer bits means that the data occupies less storage space and requires less transmission bandwidth. In general, data compression compresses a data by predicting the most frequently-occurring data and storing it in less space. Specifically, data compression involves at least two different tasks: (1) defining a data model to predict the probabilities of the input data; and (2) using a coder to generate codes from those probabilities. In addition, some data compression techniques mathematically transform and quantize the data to achieve even greater compression. A compression technique may be lossless or lossy. A lossless compression technique is reversible such that the original data before encoding and the decompressed data after decoding are bit-for-bit identical. Lossy compression uses the fact there is much repetition in data that can be thrown away with much loss in quality. Lossy compression accepts the loss of some of the original data in order to achieve a higher compression. Lossless compression typically is used to compress text or binary data, while lossy compression typically is used for audio, image and video data. However, even lossy compression techniques can sometimes use a lossless compression technique. For example, two commonly-used kinds of compression (or coding) technique are transform coding and predictive coding. For such kinds of compression systems, the original data is transformed and then quantized (rounded to nearest integers), or predicted based on (fixed or adaptive) signal models, and the prediction errors (differences between the original and predicted data) are then quantized. In both, cases, the data after quantization are in integer form. Once these integers are obtained, a lossless compression technique is used to encode the quantized values, in order to reduce the number of bits needed to represent the data. The set of these integer values usually has an associated probability distribution function (PDF). These PDFs have a distribution such that if the data properties are well modeled by the predictor, in predictive coding, then the prediction error should be close to zero most of the time. Similarly, in transform coding, most of the quantized transform coefficients are zero. FIG. 1 illustrates a typical probability distribution for these integer values; zero is the most likely value, and the probabilities of nonzero values decrease nearly exponentially fast as the magnitude increases. The data has a probability distribution shown in FIG. 1 because the data that is being encoded using the lossless compression technique is not the original data. FIG. 1 is the integer data resulting from quantizing transform coefficients or prediction errors. Mathematically, the problem is to find an efficient solution to encoding a vector x containing N integers. Each of the elements x(n), n=0, 1, . . . , N−1, has a value according to a probability distribution similar to that in FIG. 1 , so that the most probable value is zero, and values farther away from zero have fast decreasing probabilities. A simple mathematical model for probability distributions like the one in FIG. 1 is the Laplacian, or two-sided geometric (TSG) distribution, characterized by a parameter θ: P ⁡ ( x , θ ) = 1 - θ 1 + θ ⁢ θ  x  ( 1 ) Note that the parameter θ controls the rate of decay in probability as |x| grows. The larger the value of θ, the faster the decay. The parameter θ can be directly related to the probability that x=0, that is P(0,θ)=(1−θ)/(1+θ). Also, the expected magnitude of the source symbol is: E ⁡ [  x  ] = 2 ⁢ ⁢ θ 1 - θ 2 ( 2 ) The entropy of the source is given in bits/symbol by H ⁡ ( x ) = log 2 ⁡ ( 1 + θ 1 - θ ) - 2 ⁢ ⁢ θ 1 - θ 2 ⁢ log 2 ⁡ ( θ ) ( 3 ) Thus, a good encoder should map a vector of N values of x into a bitstream containing not much more than N·H(x) bits, the theoretical minimum. The Laplacian distribution is a common model in media compression systems, for either prediction errors in predictive coders (like most lossless audio and image coders) or for quantized transform coefficients (like most lossy audio, image, and video coders). There have been many proposed encoders for sources with a Laplacian/TSG distribution. A simple but efficient encoder is the Golomb-Rice encoder. First, the TSG source values x are mapped to nonnegative values u by the simple invertible mapping: u = Q ⁡ ( x ) = { 2 ⁢ x , x ≥ 0 - 2 ⁢ x - 1 x < 0 ( 4 ) that is equivalent to seeing u as the index to the reordered alphabet {0, −1, +1, −2, +2, . . . }. The new source u has a probability distribution that approximates that of a geometric source, for which Golomb codes are optimal, because they are Huffman codes for geometric sources, as long as the Golomb parameter is chosen appropriately. An example of Golomb-Rice (G/R) codes is shown in Table 1 for several values of the parameter m. It should be noted that when m equals a power of two, a parameter k is used, which is related to m by m=2 k . The main advantage of G/R codes over Huffman codes is that the binary codeword can be computed by a simple rule, for any input value. Thus, no tables need to be stored. This is particularly useful for modern processors, for which reading from a memory location that stores a table entry can take longer than executing several instructions. It is easy to see that the parameter m determines how many consecutive codeword have the same number of bits. That also indicates that computing the codeword involves computing u/m, where u is the input value. For most processors, an integer division takes many cycles, so the G/R code for general m is not attractive. When m=2 k is chosen, which corresponds to a Rice then the division u/m can be replaced by a shift, because u/m=u>>k (where >> denotes a right shift operator). Thus, computing the G/R code for any input u is easy; simply compute p=u>>k and v=u−(p<<k). The code is then formed by concatenating a string with p 1's with the k-bit binary representation of v. TABLE 1 Input m = 1 m = 2 m = 4 m = 8 value k = 0 k = 1 m = 3 k = 2 m = 5 . . . k = 3 0 0 00 00 000 000 0000 1 10 01 010 001 001 0001 2 110 100 011 010 010 0010 3 1110 101 100 011 0110 0011 4 11110 1100 1010 1000 0111 0100 5 111110 1101 1011 1001 1000 0101 6 1111110 11100 1100 1010 1001 0110 7 11111110 11101 11010 1011 1010 0111 8 111111110 111100 11011 11000 10110 10000 9 1111111110 111101 11100 11001 10111 10001 10 11111111110 1111100 111010 11010 11000 10010 11 111111111110 1111101 111011 11011 11001 10011 12 1111111111110 11111100 111100 111000 11010 10100 13 1111111111110 11111101 1111010 111001 110110 10101 . . . . . . . . . . . . . . . . . . It is clear from Table 1 that the choice of the G/R parameter k must depend on the statistics of the source. The slower the decay of probability as u increases, the larger k should be chosen. Otherwise, the codeword lengths grow too quickly. A simple rule for choosing k is that the codeword length for a given input value u should approximate the logarithm base 2 of the probability of occurrence of that value. Although G/R codes are optimal for geometrically-distributed sources, they are not optimal for encoding symbols from a Laplacian/TSG source via the mapping in Equation 4. This is because for an input variable x with a TSG distribution, the variable u from Equation 4 has a probability distribution that is close to but not exactly geometric. In practice, the performance is close enough to optimal (e.g. with a rate that is typically less than 5% above the entropy), so G/R codes are quite popular. The optimal codes for TSG sources involve a set of four code variants, which are more complex to implement and improve compression by 5% or less in most cases. Therefore, in most cases G/R coders provide the best tradeoff between performance and simplicity. In FIG. 1 , the probability distribution is represented by a single parameter, which is the rate of decay of the exponential. The faster the rate of decay, then the more likely is the value of zero. This means that in many cases zero is so likely that runs of zeros become very likely. In other words, if the probability distribution rate of decay is fast enough then encoding runs is a good idea. Encoding runs of zeros means that just a few bits are used to take care of many entries in the input data. Prediction errors are much more likely to be zero if the data matches the model used by the predictor in predictive coding, for example. It is possible, however, even with a good model, to every once in a while have a large value. This can occur when a boundary is reached, such as a pixel value goes from a background value to a foreground value. Every now and then big numbers can occur. When this happens, one type of encoding technique that is more useful than Run-Length encoding is known as a “Run-Length Golomb/Rice (RLGR)” encoding technique. One such RLFT encoding technique is disclosed in U.S. Pat. No. 6,771,828 to Malvar entitled “System and Method for Progressively Transform Coding Digital Data” and U.S. Pat. No. 6,477,280 to Malvar entitled “Lossless Adaptive Encoding of Finite Alphabet Data”. In reality, with the source of data varying, the probabilities will not stay constant and will vary over time. This is true with, for example, images and audio. Typically, these probability variations in the input data are handled in a variety of different ways. In JPEG, for example there is an entropy coder (a Huffman coder) whereby codewords of different lengths are used for different values to be encoded. The Huffman table is usually pre-designed, that is, typically a number of images are obtained, their probabilities are measured, and an average model is constructed that is used for all images. One problem with this approach is that with every portion of an image there is a loss in encoding efficiency, because the probability model being used by the entropy coder is good on average but not necessarily good for that portion of the image. From Table 1 it can be seen that there are two main issues with Golomb/Rice codes: (1) the probability decay parameter θ, or equivalent the probability P(x=0) must be known, so the appropriate value of k can be determined; and (2) if the decay parameter is too small, the entropy H(x) is less than 1, and thus the Golomb/Rice code is suboptimal, since its average codeword length cannot be less than 1 bit/symbol. In practice, the first issue (estimation of the optimal Golomb/Rice parameter) is usually addressed by dividing the input vector into blocks of a predetermined length. For each block, the encoder makes two passes over the data. In the first pass, the average magnitude of input values is computed. For that, the parameter θ can be estimated from Equation 2, and the corresponding optimal k can be determined. In a second pass, the encoder generates the bitstream for the block by first outputting the value of k in binary form, followed by the concatenated strings of Golomb/Rice codes for the data values within the block. This is the approach used in essentially all lossless compression systems that use Golomb/Rice codes, such as JPEG-LS for lossless image compression, SHORTEN for lossless audio compression, and others. This is called a “blockwise adaptation” or “forward adaptation” model. The forward adaptation model is forward in the sense that the encoder looks at the data first before encoding, measures a statistical parameter (usually the average magnitude), and then encodes based on that parameter and puts the value of the parameter used to encode the data in a header, for use by the decoder. Instead of trying to code the data all at once, the data is broken up into small portions, or blocks. For each block, the statistics of that block are measured, a statistical parameter is measure for that portion of data that matches what is in the buffer, and the entropy coder is adjusted to that parameter. In the encoded file a header is inserted that indicates the value of the parameter being used to encode that block of data. The second issue in practice, namely, encoding sources with very low entropy, is usually addressed using a blockwise adaptation or forward adaptation model, and if the average magnitude value of the input symbols in the block is small enough that the estimated entropy H(x) is less than 1, then the encoder uses Run-Length coding, instead of Golomb/Rice coding. Although these approaches work well in practice, they have two main disadvantages. One disadvantage is that the encoder needs to read each input block twice, such that two passes are performed on the data: a first time to compute the average magnitude to determine the Golomb/Rice parameter, and a second time to perform the actual encoding. This requires the encoder to perform additional work and adds complexity. In some applications encoding time is not an issue, but for digital cameras, for example, it can slow down the encoding process or increase the cost of random-access memory. In particular, the forward adaptation model must first look at the data and measure the statistics, find model parameters, and then encode. This is not an issue if the encoder runs on a personal computer having a great deal of processing power. However, if pictures taken with a cell phone, they are being encoded by the cell phone itself, where processing power is much more limited. The second and most important disadvantage involves the difficulty in choosing the block size. If the block size is too large, the statistics could change dramatically within the block. On the other hand, if the block size is too small, then the overhead of having to tell the decoder which parameter was used to encode that block of data becomes burdensome. For every block, the encoder must store what parameters values are being used to encode that block. At some point the overhead required to encode the small block is not worth the compression achieved. This is creates a trade-off. On the one hand, if a small block is used, the statistics of the block can be matched, however, measuring the statistics is difficult because there are few numbers, and the overhead of encoding is great. On the other hand, if a large block is used, the problem is that the statistics can vary greatly within the block. In practice, it is hard to find a compromise between those two conflicting factors, so that the block size is usually chosen to be between 128 and 2,048 samples, depending on the type of data to be encoded. One solution is to use a backward-adaptive technique in the encoder. With backward adaptation, encoding starts with the decoder and encoder agreeing on initial states is for each block. In other words, each parameter is initialized to a predetermined value, and then the encoding begins. Every time the encoder produces an output symbol, that symbol can be sent to the decoder immediately, because the decoder knows the parameter values used to encode it. After the encoder outputs a symbol, it then computes new values for the encoding parameters, depending on the symbol that was output, according to a predetermined adaptation rule. The decoder knows the parameter adaptation rule, and therefore it can also compute the new values for the encoding parameters. Thus, the encoding parameters are adjusted after every encoded symbol, and the encoder and decoder are always in sync, that is, the decoder tracks the changes in the encoding parameters. This means that the encoder does not need to send the decoder any overhead information in terms of what parameter values were used to encode the data. Therefore, what is needed is a lossless Golomb/Rice (G/R) encoder and decoder (codec) and method that provides efficient compression and is capable of handling and encoding any input integer number that may appear. Moreover, what is also needed is an adaptive G/R codec and method that avoids the aforementioned problems with forward adaptation by using a backward-adaptive technique to provide fast tracking and efficient compression of the input data.
<SOH> SUMMARY OF THE INVENTION <EOH>The invention disclosed herein includes an adaptive Golomb/Rice (G/R) encoder and decoder (codec) and method for lossless encoding and decoding of integer data. The adaptive G/R codec and method uses a novel backward-adaptive technique having novel adaptation rules. Using backward adaptation, the adaptive G/R codec and method quickly learns any changes in the statistics of the input data. In addition, the adaptive G/R codec and method is capable of encoding any input integer value. The adaptive G/R codec and method also uses novel adaptation rules that adjust the encoding parameter after each encoded symbol. No probability tables or codeword tables are necessary, so the adaptive G/R codec and method can fit within a small memory footprint. The adaptive G/R codec and method thus is well-suited for modern processors, where memory access usually takes many more cycles than instruction fetching and execution. It is also well-suited for small devices with limited memory and limited processing power, because the adaptive G/R codec and method does not need to buffer the input data in blocks, and does not need to process each data value twice. One of the main advantages of the adaptive G/R and method is that the G/R parameter (k) is adjusted and updated after every codeword that is generated. This allows any changes in the statistics of the input data be tracked very quickly. No overhead is necessary to transmit the G/R parameter to the decoder, because their changes are tracked by the decoder. Because the adaptation rules are simple, the computational complexity of using backward adaptation is low. Thus, the adaptive G/R codec and method is attractive for many practical applications. The adaptive G/R method includes using encoding and adaptation rules. The encoding rules dictate that the next input value x is encoded by first mapping it to a nonnegative value u via a simple 1-1-mapping rule (u=2 x if x>0, and u=−2 x−1, if x<0 ), and then encoding u using a Golomb/Rice encoder with parameter k, so the output codeword is denoted as GR(u,k). After a symbol is encoded, then adaptation rules are applied. The adaptive G/R method uses simple but novel adaptation rules. The adaptation rules for k are as follows. From the input value u (recall that the G/R coder always operates on u values), a temporary value p is computed by p=u>>k (where >> denotes a right-shift operator). If p=0, then a scaled version of k, namely K, is decreased by a fifth integer constant, B3. If p=1, then k is left unchanged. If p>1, then K is increased by p. In this manner, the parameter k is updated for the G/R encoder in both the first and second modes, after each codeword is generated. The value of k to be used for generating the next codeword is then computed as k=K/L, where L is a fixed parameter (recall that division by L is just a shift operator if L is chosen as a power of two). It can be seen from the description of the adaptation rules above that the adaptive G/R method also includes a feature called “fractional adaptation”. Fractional adaptation allows for a finer control of the rate of adaptation. First, a scaling parameter, L, is defined, and the value of L is typically set to a power of two. Next, a scaled G/R parameter, K=k*L, is defined. When using the adaptation rules for k, the scaled parameter value K is incremented or decremented by integer constants, depending on the generated codeword. After adaptation of K, the final parameter value k is computed by k=K/L. In this way, the integer increment for K can be seen as fractional increments for k, which allow for smoother control of the value of k, thus with better tracking of changes in the input statistics. If k was adjusted by integer increments after every encoded symbol, its value would fluctuate too much. Such noise in parameter values would lead to a decrease in the compression ratio (the ratio in the number of bits needed to store the input data in straight binary format to the number of bits needed to store the encoded bitstream). In a tested embodiment, the scaling parameter equals sixteen and the value of the G/R parameter is based on a decay parameter of the digital data. An adaptive G/R encoder includes modules and means for incorporating the adaptive G/R method described above. The digital integer data includes integer vectors having values. The values are such that a most probable value for each value is zero, and nonzero values have probabilities that decrease as the nonzero values increase. The adaptive G/R method also includes a process for encoding and decoding data. The process includes encoding each value x of the digital integer data using adaptive Golomb/Rice (G/R) encoding and a G/R parameter k, and defining a fractional G/R parameter as K=k*L, where L is a scaling parameter. The process also includes using a backward-adaptive technique having adaptation rules to update the fractional G/R parameter K after each value x of the digital integer data is encoded, and appending the encoded values of the digital integer data into a bitstream. The process also includes decoding the bitstream using a G/R decoder to recover exactly each value x of the digital integer data. An adaptive G/R decoder and method works by using decoding rules corresponding to the encoding rules above, and using the same adaptation rules described above. The decoding rule at the decoder reverses the previously described encoding rule at the encoder. Namely, the decoder reads as many bits from the input bitstream (or file) as necessary, depending on the current value of the GR parameter k. In this manner, the decoder reads a complete codeword corresponding to a valid Golomb/Rice code GR(u,k), according to Table 1. Since the Golomb/Rice code is uniquely decodable for every parameter k, the decoder then can decode that codeword. In other words, the decoder can determine the value of the symbol u that was present at the encoder. From u, the decoder can determine the corresponding data value x simply by using the inverse 1-1 mapping rule. In particular, if u is even, then x=u/2, and, if u is odd, then x=−(u+1)/2. The decoding process described above is performed to decode an input codeword into an output value or string of values that matches exactly what was seen at the encoder. Thus, the decoding process is lossless. After decoding a codeword from the input bitstream or file as described above, the decoder then computes the same adaptation rules as described for the encoder above. In this manner, the decoder will adjust the values of the parameter k in exactly the same way as the encoder does. Thus, the parameter will have the correct value for decoding the next bitstream (or file) codeword.
20041029
20090825
20060518
68584.0
H03M746
0
NEWMAN, MICHAEL A
LOSSLESS ADAPTIVE GOLOMB/RICE ENCODING AND DECODING OF INTEGER DATA USING BACKWARD-ADAPTIVE RULES
UNDISCOUNTED
0
ACCEPTED
H03M
2,004
10,977,720
ACCEPTED
Tracking separation between an object and a surface using a reducing structure
Tracking separation between an object and a surface involves illuminating the surface and reducing the collection angle of light that reflects off of the surface in response to a change in separation between the object and the surface. Reducing the collection angle of light that reflects off of the surface causes the amount of light that is detected to be dependent on the separation distance between the object and the surface. The amount of detected light is then used as an indication of the separation distance.
1. A method for tracking separation between an object and a surface comprising: illuminating a surface; reducing a collection angle of light that is incident on a sensor in response to a change in separation between an object and the surface; detecting light subjected to the reduced collection angle; and determining separation between the object and the surface in response to the detected light. 2. The method of claim 1 wherein determining separation between the object and the surface comprises comparing a characteristic of the detected light to a lift threshold. 3. The method of claim 2 wherein the lift threshold is defined in terms of light intensity. 4. The method of claim 2 further including indicating a lift condition when the detected light reaches the lift threshold. 5. The method of claim 1 wherein detecting light subjected to the reduced collection angle comprises detecting light with an image sensor, the image sensor including an array of individual photosensors that generate navigation information. 6. The method of claim 5 wherein determining separation between the object and the surface comprises comparing a characteristic of the navigation information to a lift threshold. 7. The method of claim 6 further including indicating a lift condition when the compared characteristic of the navigation information reaches the lift threshold. 8. The method of claim 7 wherein the characteristic of the navigation information is one of total intensity, bright pixel count, dark pixel count, and intensity gradient. 9. The method of claim 1 wherein reducing the collection angle involves subjecting the reflected light to an aperture. 10. The method of claim 1 wherein reducing the collection angle involves subjecting the reflected light to a lens. 11. An optical navigation device comprising: a light source configured to illuminate a surface; a sensor configured to generate navigation information in response to light that reflects off of the surface; a reducing structure, located in an optical path between the light source and the sensor, configured to reduce a collection angle of light that is incident on the sensor in response to a change in separation between the optical navigation device and the surface; a navigation engine configured to generate lateral position information relative to the surface in response to the navigation information; and lift detection logic configured to generate lift information related to the optical navigation device relative to the surface in response to the navigation information from the sensor. 12. The system of claim 11 wherein the lift detection logic is further configured to compare a characteristic of the navigation information to a lift threshold. 13. The system of claim 12 wherein the lift detection logic is further configured to indicate a lift condition when the compared characteristic of the navigation information reaches the lift threshold. 14. The system of claim 13 wherein the characteristic of the navigation information is one of total intensity, bright pixel count, dark pixel count, and intensity gradient. 15. The system of claim 13 wherein the generation of lateral position information by the navigation engine is suspended when the lift detection logic indicates a lift condition. 16. The system of claim 11 wherein the reducing structure comprises an aperture. 17. A method for tracking separation between an optical navigation device and a surface comprising: illuminating a surface with light from an optical navigation device; reducing a collection angle of light that is incident on a sensor in response to a change in separation between the optical navigation device and the surface; collecting navigation information from light that reflects off of the surface and is subjected to the reduced collection angle; and using the navigation information to track the lateral position of the optical navigation device relative to the surface and to identify a lift condition of the optical navigation device relative to the surface. 18. The method of claim 18 wherein determining separation between the optical navigation device and the surface comprises comparing a characteristic of the navigation information to a lift threshold. 19. The method of claim 19 further including indicating a lift condition when the compared characteristic of the navigation information reaches the lift threshold. 20. The method of claim 20 further including suspending the tracking of lateral position when a lift condition is indicated.
BACKGROUND OF THE INVENTION A known optical navigation technique involves illuminating a surface, capturing successive images of the illuminated surface, and correlating the successive images with each other to determine relative lateral displacement between the images. Examples of the optical navigation technique are described in U.S. Pat. No. 5,644,139, entitled NAVIGATION TECHNIQUE FOR DETECTING MOVEMENT OF NAVIGATION SENSORS RELATIVE TO AN OBJECT, and U.S. Pat. No. 6,222,174, entitled METHOD OF CORRELATING IMMEDIATELY ACQUIRED AND PREVIOUSLY STORED FEATURE INFORMATION FOR MOTION SENSING, both of which are incorporated by reference herein. Another optical navigation technique utilizes spatial filtering as described in U.S. Pat. No. 5,729,009, entitled METHOD FOR GENERATING QUASI-SINUSOIDAL SIGNALS. These optical navigation techniques are used to track the lateral movement of a navigation device such as a computer mouse relative to a navigation surface. In many optical navigation applications there is a need to determine the separation distance between the optical navigation device and the navigation surface. For example, it is desirable to know when a computer mouse has been lifted off of the surface so that the navigation function can be suspended. Suspending the navigation function while the computer mouse is lifted off of the surface enables a user to move a cursor over long distances by “skating” the mouse. With a computer mouse that uses a rolling ball to track lateral motion, there is no need to detect lift off from the surface because the ball stops rolling as soon as it looses contact with the navigation surface. In contrast, a computer mouse that uses optical navigation may continue to track changes in lateral position while the mouse is lifted off of the surface and moved across the surface. Continuing to track changes in lateral position while the mouse is lifted off the surface makes it difficult to skate the mouse. SUMMARY OF THE INVENTION In accordance with the invention, a method for tracking separation between an object and a surface involves illuminating the surface and reducing the collection angle of light that reflects off of the surface in response to a change in separation between the object and the surface. Reducing the collection angle of light that reflects off of the surface causes the amount of light that is detected to be dependent on the separation distance between the object and the surface. The amount of detected light is then used as an indication of the separation distance. An optical navigation device that is configured for lift detection typically includes a light source, a sensor, and a reducing structure. The reducing structure is configured to pass light at a first collection angle when the surface is in a near position. The intensity of the light received at the sensor with the surface in this position is basically the same as it would be without the reducing structure. When the surface changes to a far position (e.g., by lifting the optical navigation device off of the navigation surface), the reducing structure causes the collection angle of the reflected light to be reduced. The reduction in the collection angle reduces the amount of reflected light that is collected by the image sensor. The reduction in the amount of collected light is used to identify the lift condition. Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts the path that light travels between a light source, a surface, and a sensor when the surface is in a near position. FIG. 2 depicts the path that light travels between a light source, a surface, and a sensor when the surface is in a far position. FIG. 3 depicts the light source, sensor, and surface positions from FIG. 1 with the addition of a reducing structure that is configured to reduce the collection angle of the light relative to the sensor. FIG. 4 depicts the reduced collection angle that exists when the surface is in the far position as opposed to the near position shown in FIG. 3. FIG. 5 illustrates changes in the intensity center of the reflected light that occur with changes in the surface position due to the reducing structure. FIG. 6 depicts a graph of light intensity at a sensor vs. the separation distance between a surface and an optical navigation device for the case in which a reducing structure is not used and for the case in which a reducing structure is used. FIG. 7A depicts a system for tracking separation between a surface and a light source/image sensor that utilizes collimated light where the surface and the light source/image sensor are separated by a distance that is optimized for optical navigation in the lateral direction. FIG. 7B depicts the system of FIG. 7A where the surface and the light source/image sensor are separated by a distance that is greater than the separation distance of FIG. 7A. FIG. 8A depicts image information captured by the image sensor with the surface located in the position of FIG. 7A. FIG. 8B depicts image information captured by the image sensor with the surface located in the position of FIG. 7B. FIG. 9 depicts an example of an optical navigation device having a light source, a collimating lens, a reducing structure, an image sensor, and a processor that includes lift detection logic and a navigation engine. FIG. 10 depicts the relationship between the navigation and lift detection operations that are performed by the navigation engine and lift detection logic. FIG. 11 is a process flow diagram of a method for tracking separation between an object and a surface. Throughout the description similar reference numbers are used to identify similar elements. DETAILED DESCRIPTION In accordance with the invention, the collection angle of light relative to a sensor is reduced to produce an optical system that can track separation between an object and a surface. The basic principles of the separation tracking technique are described with reference to FIGS. 1-5. FIG. 1 depicts a light source 12, a sensor 14, and a surface 16 that is separated from the light source 12 and sensor by a first distance (where the surface is referred to as being in the near position). The sensor 14 may be a 1-dimensional (1-D) or 2-dimensional (2-D) sensor array that includes an array of individual photosensors that generate navigation information such as image information or spatial filtering information or a single sensor such as a single photodiode. FIG. 1 also depicts the path that light 18, 20 travels between the light source 12, the surface 16, and the sensor 14. The path is shown relative to the center of the sensor 14. When the surface is in the near position, the light reflects off of the surface as indicated by light path 20. The collection angle of the reflected light relative to the center of the sensor 14 is identified as α. FIG. 2 depicts the path that light 18, 20 travels between the light source 12, the surface 16, and the sensor 14 when the surface 16 and light source/sensor 12, 14 are separated by a second distance (where the surface is referred to as being in the far position). When the surface 16 is in the far position, the light reflects off of the surface as indicated by light path 20. As depicted in FIG. 2, the collection angle, α, of the light relative to the center of the sensor 14 does not change from the collection angle depicted in FIG. 1. That is, the collection angles, α, in FIGS. 1 and 2 are the same. Because the collection angle does not change as the separation distance between the surface 16 and the light source/sensor 12, 14 changes, the intensity of the light detected by the sensor 14 remains nearly constant or changes very slowly with changes in the separation distance. Although the example of FIGS. 1 and 2 describes diverging light, the light source 12 may produce collimated or converging light. In these cases, the collection angle may change somewhat with changes in the separation distance depending on the implementation specifics. In these configurations, the light detected by the sensor changes slowly with changes in the separation distance. The light intensity measurements in these configurations are not particularly useful for separation tracking. In accordance with the invention, separation between the surface and the light source/sensor is tracked by reducing the collection angle of light in response to a change in separation between the surface and the light source/image sensor. FIG. 3 depicts the light source 12, sensor 14, and surface 16 positions from FIG. 1 with the addition of a reducing structure 24 that is configured to reduce the collection angle of light relative to the sensor 14 in response to a change in the separation distance. In the embodiment of FIG. 3, the reducing structure 24 is an aperture 26 that is located in an optical path between the light source 12 and the sensor 14. Specifically, the reducing structure is configured to reduce the collection angle of the light that reflects off of the surface when the separation distance between the surface 16 and the light source/sensor 12, 14 is increased from a near position to a far position. As depicted in FIG. 3, the reducing structure 24 is configured to pass light 20 at the collection angle α when the surface is in the near position. In this configuration, the intensity of the light received by the sensor 14 is basically the same as it would be without the reducing structure 24. However, when the surface 16 changes to the far position (either by movement of the light source/sensor 12, 14, movement of the surface 16, or movement of both the light source/sensor 12, 14 and the surface 16), the reducing structure 24 causes the collection angle of the reflected light to be reduced. FIG. 4 depicts the light source 12, sensor 14, and reducing structure 24 of FIG. 3 with the surface 16 located in the far position as opposed to the near position. As depicted in FIG. 4, the reducing structure 24 causes the collection angle to be reduced from collection angle α to collection angle β, where β<α. The reduction in the collection angle from α to β causes a reduction in the amount of light that is collected by the sensor 12. The reduction in the amount of collected light is used to track the separation between the surface 16 and the light source/sensor 12, 14. While FIGS. 3 and 4 depict a change in the collection angle relative to the center of the sensor 14, the reducing effect of the reducing structure 24 can also be illustrated relative to the intensity center of the reflected light. FIG. 5 illustrates how the intensity center 30 of the reflected light 32, 34 changes with changes in the surface 16 position. Referring to FIG. 5, the system is configured such that the intensity center of the reflected light 34 is at the center of the sensor 14 when the surface 16 is in the near position. However, as the surface 16 moves further away from the light source/sensor 12, 14, the reducing structure 24 causes the intensity center 30 of the reflected light 32 to shift away from the center of the sensor 14. As configured in FIG. 5, when the surface 16 is in the far position, the intensity center of the reflected light is outside the footprint of the sensor 14. The shift in the intensity center of the reflected light changes the intensity of light that is detected by the sensor 14. The change in the detected light is used to track separation between the surface 16 and the light source/sensor 12, 14. As stated above, the change in the detected light caused by the reducing structure 24 in response to increased separation between the surface 16 and the light source/sensor 12, 14 is used to track separation between the surface 16 and the light source/sensor 12, 14. In an embodiment in accordance with the invention, the technique is used to determine when an optical navigation device, such as an optical computer mouse, is lifted off of a surface. Detecting when an optical navigation device has been lifted off of a surface (referred to herein as a “lift condition”) involves establishing a lift threshold that is expressed as a characteristic of the detected light (e.g., light intensity), detecting the light that is incident on the sensor, and then comparing the characteristic of the detected light to the lift threshold. If the amount of light detected by the sensor drops below the lift threshold, a lift condition is identified. Once the amount of light detected by the sensor goes above the lift threshold, the lift condition is ended. FIG. 6 depicts a graph of total light intensity, I, at the sensor vs. the separation distance (e.g., the z dimension) between a surface and an optical navigation device for the case in which a reducing structure is not used (graph line 40) and for the case in which a reducing structure is used (graph line 42). The graph also depicts a lift threshold (dashed line 44) and a tracking threshold (dashed line 46) relative to the two graphs. In the case where a reducing structure is not used (graph line 40), the intensity of the detected light decreases relatively slowly as the distance between the surface and the optical navigation device increases. In this case, the light intensity never drops below the lift threshold over the separation distance that is included in the graph. In the case where a reducing structure is used (graph line 42), the intensity of the detected light decreases relatively quickly as the distance between the surface and the optical navigation device increases. At the point where the light intensity drops below the lift threshold (referred to as the lift distance Zlift), a lift condition is identified. The lift condition exists for as long as the detected light intensity remains below the lift threshold. The sensitivity of lift detection can be adjusted by adjusting the lift threshold. For example, lowering the lift threshold will cause a lift condition to be indicated at a larger separation distance. In a computer mouse application, the lift threshold may be pre-established to indicate a lift condition as soon as the computer mouse looses contact with the navigation surface. The lift threshold may be pre-established at a fixed setting by the product manufacturer. Alternatively, the lift threshold may be adjusted by the user of the mouse through, for example, a software interface. The tracking threshold 46 depicted in FIG. 6 indicates the minimum light intensity that is required to support reliable lateral position tracking (e.g., in the x-y plane). The point at which the light intensity drops below the tracking threshold is identified as the tracking limit (Zlimit). The tracking limit is depicted relative to the lift threshold to illustrate that a lift condition is reached at a separation distance that is less than the tracking limit (i.e., Zlift<Zlimit). That is, a lift condition exists even though reliable lateral position tracking is still possible. Although the optical navigation device is capable of reliably tracking lateral motion while the optical navigation device is lifted off of the surface, in computer mouse applications, it is desirable to purposefully suspend lateral navigation once the computer mouse is lifted off of the surface so that a user can move a cursor long distances by skating the computer mouse. In an alternative embodiment, the reducing structure is placed at a specific distance and with a specific configuration to create a condition in which the lift distance equals the tracking limit (i.e., Zlift=Zlimit). In this case, the lateral position tracking is stopped at the tracking limit. FIGS. 7A and 7B depict a system 50 for tracking separation between a surface 16 and a light source/sensor 12, 14 that utilizes a 1-D or 2-D image sensor as the sensor and collimated light 52. The system 50 includes a lens 54 to collimate light from the light source 12 and a reducing structure 24 that includes an aperture 26 and a lens 56 to reduce the collection angle of the reflected light relative to the image sensor 14. FIG. 7A depicts the case in which the surface 16 and the light source/image sensor 12, 14 are separated by a distance that is optimized for optical navigation in the lateral direction (e.g., the x-y plane). For example, in an optical mouse application, this is the separation that exists when the computer mouse is sitting on top of the navigation surface. FIG. 7B depicts the case in which the surface 16 and the light source/image sensor 12, 14 are separated by a distance (e.g., in the z-dimension) that is greater than the separation distance of FIG. 7A by Δz. For example, in an optical mouse application this is the separation that exists when the computer mouse has been lifted off of the navigation surface. Operation of the system 50 depicted in FIGS. 7A and 7B begins with generating light from the light source 12. The light from the light source 12 is collimated by the lens 54 and the collimated light 52 is incident on the surface 16. A portion of the collimated light reflects off of the surface 16 and is subjected to the reducing structure 24. Light that passes through the reducing structure 24 and that is within the collection angle from which light is received by the image sensor 14 is detected by the image sensor 14. The light detected by the image sensor 14 is converted to navigation information that is used to determine if a lift off condition exists. When the separation distance depicted in FIG. 7A exists, most of the reflected light passes through the reducing structure and the intensity center of the reflected light is aligned near the center of the image sensor 14. The collection angle of the light relative to the image sensor 14 is identified in FIG. 7A as α. An example of the navigation information 58 captured by the image sensor 14 in this case is depicted in FIG. 8A. As depicted in FIG. 8A, the intensity of the detected light is greatest near the center of the image sensor 14 and decreases as the distance from the center increases. When the separation distance depicted in FIG. 7B exists, a portion of the reflected light is prevented from being detected by the image sensor 14. This is the case because the reducing structure 24 causes the collection angle of the light to shrink from a first collection angle to a reduced collection angle in response to the change in separation as described above with reference to FIGS. 1-5. The reduced collection angle of the light relative to the image sensor 14 is identified in FIG. 7B as β, where β<α. An example of the navigation information 60 captured by the image sensor 14 in this case is depicted in FIG. 8B. As depicted in FIG. 8B, the intensity center of the detected light is no longer near the center of the image sensor 14 but has shifted towards an edge of the image sensor 14. The change in the detected navigation information is used to determine whether or not a lift condition exists. Different characteristics of the detected light can be used to determine if a lift condition exists depending on the implementation (e.g., single sensor, image correlation, spatial filtering). For example, the navigation information in the form of 1-D or 2-D image information can be reduced to a single total light intensity value that is used as the basis for lift detection. In this case, the lift threshold is pre-established as a light intensity value that is compared to the detected light intensity value. Alternatively, the navigation information can be examined in terms of, for example, a count of the number of light pixels (i.e., the number of individual photosensors that have a minimum brightness), a count of the number of dark pixels, the center of mass of the light distribution over the detector pixels, or a measure of the change in light intensity (i.e., the light gradient). Although some characteristics of the detected light are described, other characteristics of the detected light can be used to determine a lift condition. In an embodiment in accordance with the invention, the above-described technique for tracking separation between a surface and a light source/image sensor is incorporated into an optical navigation device such as a computer mouse. FIG. 9 depicts an example of an optical navigation device 70 that optionally includes glide pads 72, a light source 12, a collimating lens 54, a reducing structure 24, a sensor 14 such as a 1-D or 2-D image sensor, and a processor 74 having lift detection logic 76 and a navigation engine 78. The light source 12, collimating lens 54, reducing structure 24, and sensor 14 are configured as described above with reference to FIGS. 3-7 to enable lift detection. The glide pads 14 allow the optical navigation device 70 to move over the navigation surface 16 and ensure that a constant distance is maintained between the optical navigation device 70 and the navigation surface 16 while the optical navigation device 70 sits on the surface. The navigation engine 78 is configured to track lateral motion of the computer mouse (i.e., motion in the x-y plane) relative to the surface 16. The navigation engine 78 tracks lateral motion by, for example, correlating successive frames of image information or spatial filtering to determine relative lateral displacement. Examples of these optical navigation techniques are described in the previously referenced U.S. patents. Although some examples of navigation techniques are described herein, the particular navigation technique used does not limit the invention. Other navigation techniques are expected to be used with the invention. Further, navigation techniques that use electromagnetic signals in spectrums other than the visible spectrum may be used with the invention. The lift detection logic 76 determines whether or not a lift condition exists by comparing navigation information to, for example, a pre-established lift threshold. FIG. 10 depicts the relationship between the navigation and lift detection operations that are performed by the navigation engine 78 and lift detection logic 76. At block 80, navigation information is collected by the sensor 14. At block 82, the navigation information is compared to the lift threshold by the lift detection logic 76. At decision point 84, it is determined whether or not a lift condition exists. In an embodiment in accordance with the invention, a lift condition exists when a characteristic of the detected light reaches the lift threshold as described above. If it is determined that a lift condition does not exist (i.e., the computer mouse is sitting on the navigation surface), then the navigation information is used by the navigation logic 78 to track lateral position (block 86). If on the other hand, a lift condition does exist (i.e., the computer mouse has been lifted off of the navigation surface), lateral position tracking is suspended (block 88). In this embodiment in accordance with the invention, the lift detection logic 76 is configured to produce a binary output that indicates whether or not a lift condition exists. The navigation function is then either activated or suspended in response to the binary output from the lift detection logic 76. FIG. 11 is a process flow diagram of a method for tracking separation between an object and a surface. At block 90, a surface is illuminated. At block 92, a collection angle of light that is incident on a sensor is reduced in response to a change in separation between an object and the surface. At block 94, light subjected to the reduced collection angle is detected. At block 96, separation between the object and the surface is determined in response to the detected light. Although the reducing structure 24 is depicted as an aperture 26 or an aperture and lens 56 in FIGS. 3, 4, 7A, 7B, and 9, the reducing structure can be any element or combination of elements that reduces the collection angle of light relative to a sensor in response to a change in separation between the surface and the light source/sensor 12, 14. For example, the reducing structure may include an aperture, a lens, a reflective element, absorbing element, or any combination thereof. Although very basic optical path arrangements are described with reference to FIGS. 3-9, other more complex optical path arrangements are contemplated. For example, an actual implementation may include an optical path that includes multiple optical elements (e.g., reflectors, lenses) to manipulate the light path from the light source to the image sensor. Further, the separation tracking technique can be implemented using collimated light, diverging light, converging light, or any combination thereof. The navigation information includes image information as depicted in FIGS. 8A and 8B when image correlation is used for lateral position tracking. Alternatively, the navigation information could include, for example, spatially filtered data when spatial filtering is used for lateral position tracking. As used herein, the light source generates an electromagnetic signal in the visible spectrum. However, the terms “light” and “illuminating” should not be limited to electromagnetic signals in the visible spectrum. The technique for tracking separation can be applied to electromagnetic energy outside of the visible spectrum (e.g., radio frequency, infrared, and terahertz signals). Although the separation tracking technique is described in conjunction with an optical navigation device that uses a sensor such as a 1-D or 2-D sensor array to track lateral position, the separation tracking technique can be implemented without lateral position tracking. In an implementation that does not include lateral position tracking, separation tracking can be accomplished with a single photosensor instead of a more complex image sensor, which includes an array of individual photosensors. When a single photosensor is used, separation is determined in response to the output from the single photosensor. Although specific embodiments in accordance with the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.
<SOH> BACKGROUND OF THE INVENTION <EOH>A known optical navigation technique involves illuminating a surface, capturing successive images of the illuminated surface, and correlating the successive images with each other to determine relative lateral displacement between the images. Examples of the optical navigation technique are described in U.S. Pat. No. 5,644,139, entitled NAVIGATION TECHNIQUE FOR DETECTING MOVEMENT OF NAVIGATION SENSORS RELATIVE TO AN OBJECT, and U.S. Pat. No. 6,222,174, entitled METHOD OF CORRELATING IMMEDIATELY ACQUIRED AND PREVIOUSLY STORED FEATURE INFORMATION FOR MOTION SENSING, both of which are incorporated by reference herein. Another optical navigation technique utilizes spatial filtering as described in U.S. Pat. No. 5,729,009, entitled METHOD FOR GENERATING QUASI-SINUSOIDAL SIGNALS. These optical navigation techniques are used to track the lateral movement of a navigation device such as a computer mouse relative to a navigation surface. In many optical navigation applications there is a need to determine the separation distance between the optical navigation device and the navigation surface. For example, it is desirable to know when a computer mouse has been lifted off of the surface so that the navigation function can be suspended. Suspending the navigation function while the computer mouse is lifted off of the surface enables a user to move a cursor over long distances by “skating” the mouse. With a computer mouse that uses a rolling ball to track lateral motion, there is no need to detect lift off from the surface because the ball stops rolling as soon as it looses contact with the navigation surface. In contrast, a computer mouse that uses optical navigation may continue to track changes in lateral position while the mouse is lifted off of the surface and moved across the surface. Continuing to track changes in lateral position while the mouse is lifted off the surface makes it difficult to skate the mouse.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the invention, a method for tracking separation between an object and a surface involves illuminating the surface and reducing the collection angle of light that reflects off of the surface in response to a change in separation between the object and the surface. Reducing the collection angle of light that reflects off of the surface causes the amount of light that is detected to be dependent on the separation distance between the object and the surface. The amount of detected light is then used as an indication of the separation distance. An optical navigation device that is configured for lift detection typically includes a light source, a sensor, and a reducing structure. The reducing structure is configured to pass light at a first collection angle when the surface is in a near position. The intensity of the light received at the sensor with the surface in this position is basically the same as it would be without the reducing structure. When the surface changes to a far position (e.g., by lifting the optical navigation device off of the navigation surface), the reducing structure causes the collection angle of the reflected light to be reduced. The reduction in the collection angle reduces the amount of reflected light that is collected by the image sensor. The reduction in the amount of collected light is used to identify the lift condition. Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
20041030
20070313
20060504
96669.0
G06M700
1
LE, QUE TAN
TRACKING SEPARATION BETWEEN AN OBJECT AND A SURFACE USING A REDUCING STRUCTURE
UNDISCOUNTED
0
ACCEPTED
G06M
2,004
10,977,726
ACCEPTED
Double pull body brace
The double pull body brace comprises a one-piece panel which engages around the torso and overlaps at the front. At the overlap, it is attached to itself by means of a hook-and-loop fastener so that a wide range of adjustment is possible. In the back, spaced cord guides are mounted on said panel. Each cord guide carries a plurality of cord guide lobes. An upper cord is engaged around the upper cord guide lobes, and a lower cord is engaged around the lower cord guide lobes. These cords are separately attached to pull tabs. When donned, the user pulls on the pull tabs to separately adjust upper and lower closure tension of the body brace. When in correct adjustment, the pull tabs are attached in place by hook-and-loop fasteners.
1-20. (canceled) 21. A body brace comprising: a panel having sufficient length to wrap about a portion of the torso of a weaver; a first cord that sinuously engages a plurality of first non-rotating cord guides; the cord and cord guides coupled to the body such that pulling on the cords tightens the brace about the torso of the wearer. 22. The brace of claim 21, wherein the panel is sized and dimensioned to provide an overlapping front closure while being worn about the torso. 23. The brace of claim 21, wherein the first cord guides are disposed on a left side of the panel. 24. The brace of claim 21, wherein the first cord is pulled to one side to pull the top of the brace closed. 25. The brace of claim 21, wherein the first cord comprises a synthetic polymer. 26. The brace of claim 21, further comprising a pull tab affixed to the first cord. 27. The brace of claim 26, wherein the tab removably attaches to the panel using a hook and loop attachment mechanism. 28. The brace of claim 21, wherein the first cord guides number at least two. 29. (canceled) 30. The brace of claim 21, wherein at least one of the cord guides comprises a synthetic polymer. 31. The brace of claim 21, further comprising a pocket that is positioned on the panel, and is sized and dimensioned to receive at least one of a cushioning pad, a cold pack, a hot pack, and a stiffener. 32. The brace of claim 31, wherein at least a portion of the first cord overlies the pocket. 33. The brace of claim 30, wherein the pocket is removable attached to the panel using hook and loop fasteners. 34. The brace of claim 30: wherein the cords are disposed such that one of the cord pulls to the right to pull the top of the brace closed, and the other cord pulls to the left to pull the bottom of the brace closed; and further comprising a pull tab that is affixed to one of the cords, and that removably attaches to the panel using a hook and loop attachment mechanism. 35. The brace of claim 30, wherein both top and bottom cords and first and second cord guides comprise a synthetic polymer. 36. A body brace comprising: a panel having sufficient length to wrap about a portion of the torso of a weaver; and upper and lower cords disposed with respect to the panel such that one of the cord pulls to the right to pull the top of the brace closed, and the other cord pulls to the left to pull the bottom of the brace closed. 37. The brace of claim 36 wherein the upper cord sinuously engages a plurality of first non-rotating cord guides, and the lower cord sinuously engages a plurality of second non-rotating cord guides. 38. The brace of claim 36 further comprising a pull tab that is affixed to one of the cords, and that removably attaches to the panel using a hook and loop attachment mechanism. 39. The brace of claim 21 further including a second cord that sinuously engages a plurality of second non-rotating cord guides, wherein the first and second cords and first and second cord guides are coupled to the body such that pulling on the cords tightens the brace about the torso of the wearer. 40. The brace of claim 39 wherein the first cord is an upper cord and the second cord is a lower cord. 41. The brace of claim 39, wherein the cords are disposed such that one of the cord pulls to the right to pull the top of the brace closed, and the other cord pulls to the left to pull the bottom of the brace closed.
FIELD OF THE INVENTION This invention is directed to a lumbar support which is formed by a one-piece wraparound body panel with front closure and a back tightening system. The tightening system has right and left pull tabs which separately tighten the upper and lower potions of the body panel. BACKGROUND OF THE INVENTION Orthotic devices are provided for partial or substantial immobilization of the torso to stabilize the back. These orthotic devices are back braces which can be fitted snugly around the torso. Such back braces are effective in achieving spinal stability if worn properly. For many users, back braces are difficult to appropriately position and fasten. Without being consistently worn and properly adjusted, the effectiveness is substantially reduced. One problem with back braces is their need to conform to the torso as it changes. The torso may change from moment to moment as the patient moves between the standing and the sitting positions. In addition, the torso may change over the long term depending upon the nutritional and exercise habits of the wearer. To be fully effective, it is necessary that the back brace be tight. A system must be provided which can be easily and accurately adjustable by the wearer to provide both comfort and support in each posture so that proper spinal support is achieved. Efforts have been made to provide convenience for the wearer in adjusting the body brace. Chung U.S. Pat. No. 6,322,529 teaches the use of force multiplication to increase closing force, but this is unbalanced. Heinz U.S. Pat. No. 6,213,968 teaches separately tightening the top and bottom of his body brace, but this is unbalanced. Furthermore, the Heinz patent teaches the use of a pulley system which is complicated in the number of parts which brings reliability problems in service. SUMMARY OF THE INVENTION In order to aid in the understanding of this invention, it can be stated in essentially summary form that it is directed to a body brace. The body brace has a single one-piece wraparound body panel with an overlapping front closure thereon. Attachments are made at the back of the panel so that two tightening cords sinuously engage upper and lower portions of the body panel. When these cords are pulled, the body panel is shortened. The cords are arranged so that one cord pulls to the right to pull the top closed, and the other cord pulls to the left to pull the bottom closed. This is arranged by attaching two upper cord guides on the single body panel spaced from each other and two lower cord guides on the single body panel spaced from each other. The top cord guides have lobes thereon around which the top tightening cord extends. The bottom cord guides have lobes thereon around which the bottom tightening cord extends. A cap covers the lobes to retain the cords in place. Pockets may be provided for the receipt of stiffeners or temperature packs. It is, thus, a purpose and advantage of this invention to provide a one-piece body brace which wraps around the torso and is secured by overlapping fasteners to minimize twisting in the plane of the fasteners. It is a further purpose and advantage of this invention to provide a one-piece body panel wraparound body brace formed of a one-piece body panel which engages around the torso of the patient. Upper and lower sinuous cords are engaged on separate top and bottom one-piece molded cord guides which are laterally spaced from each other and secured onto the one-piece body panel so that, when the cords are pulled in opposite directions, the panel is effectively shortened. Separate tightening of the upper and lower cords achieves separate tightening of the upper and lower portions of the body panel. Pulling in opposite directions provides balance to the pulling forces for beneficial ergonomic effect. It is a further purpose and advantage of this invention to provide a body brace which is formed of a one-piece wraparound body panel which has spaced cord guides attached thereto. These cord guides are molded of synthetic polymer material which presents a plurality of cord guide lobes around which the tightening cord is engaged, providing a cord guide system which is simple, lightweight and free of unnecessary moving parts. It is a further purpose and advantage of this invention to provide a one-piece wraparound body brace which is easy to don and which can easily be adjusted by the user as he changes position and has a pocket under the tightening cords which can contain a temperature or cushion pad so that the body brace remains comfortable and yet provides full support as the user moves from one posture to another, due to the mechanical advantage of the tightener, so that it can be conveniently and accurately adjusted by the user, as is needed for comfort and support. It is another purpose and advantage of this invention to provide a body brace which can be quickly and easily fitted to the individual so that the user can readily take advantages of the comfort and support of a properly supplied back brace. Other purposes and advantages of this invention will become apparent from a study of the following portion of the specification, the claims and the attached drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an outside view of the double pull body brace of this invention in the flat position with the pockets opened and the inserts therein shown in exploded position. FIG. 2 is a similar view, shown with the pockets closed. FIG. 3 is a similar view shown with the cords pulled so that the net overall length of the back brace is reduced. FIG. 4 is an enlarged exploded view of one of the sets of tightening cord guides and associated cord. FIG. 5 is a similar view, showing the cord guide parts in the assembled position. FIG. 6 is a left-side view of the double pull body brace on the torso of the wearer, showing the tightening of the back brace. DESCRIPTION OF THE PREFERRED EMBODIMENT The preferred embodiment of the one-piece back brace of this invention is generally indicated at 10 in FIGS. 1, 2, 3 and 6. The back brace 10 has a one-piece panel which extends from top edge 14 to bottom edge 16 and from right end 18 to left end 20. This orientation is seen by the wearer as he dons the back brace. He holds the back brace behind him with the right end to his right and the top edge upward and engages it around his torso. The panel 12 is flexible and easily wraps around his torso with the ends overlapping. A hook-and-loop fastener system in the overlap area engages the left and right ends to hold them as desired. Loop assembly 22 is attached to the outside of the panel 12 adjacent its end to form the loop panel. A hook panel is secured to the underside of attachment panel 24 adjacent the right end. The material of the one-piece panel 12 may be synthetic polymer sheet material of good flexibility or may be a polymer netting material. The panel 12 is preferably made of flexible, breathable, substantially non-stretchable in the longitudinal direction synthetic polymer mesh fabric. The top and bottom edges of the panel are protected and strengthened by bias tape folded over and attached at the edges. The wearer places it upon himself with the panel 12 in the extended position and pulls the back brace tight around his torso at the position he desires. He can form it into slightly conical shape before the hook-and-loop system is engaged because the hook-and-loop system is amenable to attachment in different angular positions when the angle is considered in the plane of attach-ment. The pulling tight of the panel around the torso with subsequent attachment of the hook-and-loop fastener system is not sufficient to provide adequate tension in the back brace. To provide for further controllable tightening, a tightening system is provided. Attachment straps 26 and 28 are secured to the outside of panel 12 toward the back and spaced from each other. An upper cord system 30 and a lower cord system 32 are mounted on the attachment straps. The upper cord system 30 is shown in more detail in FIGS. 4 and 5. Upper left cord guide 34 is attached to the upper half of attachment strap 26, and upper right cord guide 36 is attached to the upper half of attachment strap 28. The construction of the upper left and upper right cord guides, is best seen in FIG. 4. The lower cord guides are constructed the same. The upper left cord guide has an upper left cord guide base 38 which has three cord guide lobes 40, 42 and 44 thereon. In addition, the base 38 has tie posts 46 and 47. The cord guide lobes are half round and are undercut on their half circumference. The under cut is circular in profile and is at least as large as the diameter of the cord. The under cuts are smooth so that cord 66 can be engaged therearound and smoothly moved around the lobes. For smooth movement, it is preferable that the cord guides 34 and 36 be made of a low friction polymer, such as nylon or Teflon. The upper right cord guide 36 is identical to upper left cord guide 34 and also has three cord guide lobes 50, 52 and 54 on its base 37. The cord guides are identical for manufacturing reasons, but they are not used in quite the same way. The cord 66 has an eye thereon engaged over post 49 on cord guide 36. The cord engages around lobe 40, lobe 52 and thence lobe 44 to extend out over the base 37. When the cord 66 is pulled to the right, as seen in FIG. 4, the cord guides 34 and 36 are pulled together with a 4-to-1 mechanical advantage (neglecting friction). The cord 66 is preferably a strong cord with low friction characteristics with respect to the cord guide lobes such as nylon. In order to hold the cords in place on the lobes, caps 56 and 58 are provided to cover the bases of the cord guides. The caps have half round recesses, one of which is seen at 60, to engage over the lobes. The recess 60 engages on the top of lobe 44 to hold the cord in the undercut below the top of lobe 44, see FIG. 5. The caps also hold the cord loop on he post 49. The caps can be attached in any convenient way, such as snap on bosses, by adhesives or welding. As seen in FIGS. 1, 2 and 3, the above-described upper cord system is attached on the upper part of the attachment straps 26 and 28, leaving a considerable space therebetween. An identical system of cord and cord guides, identified as lower cord system 32, is attached to the same straps 26 and 28, but below them. The upper cord system has its cord 66 extending to the right and attached to the right pull tab 68. The right pull tab 68 has the hook portion of a hook-and-loop attachment system on its underside. It is attachable to band 70 which is the loop portion of the hook-and-loop system. In FIGS. 1 and 2, the left pull tab 62 is attached close to the left attachment strap 26 because the distance between attachment straps is pulled out to its maximum. Similarly, cord 48 is a tightening cord of the lower cord system 32. It is attached to a left pull tab 62, which has the portion of a hook-and-loop system on its underside. It is fastenable in a selected location along band 64, which comprises the loop portion of the system. The band 64 is attached to the panel 12 along its longitudinal center line. The fact that the left and right pull tabs are pulled opposite each other in the back brace tightening process provides substantially balanced pull so as to eliminate the rotation of the back brace around the wearer's torso. In order to control the cords 48 and 66, panels 104 and 106 overlie them where they come away from the lower and upper cord systems on their way to the pull tabs. These panels have hooks underneath them to engage upon the loop fasteners. The cords move under these panels with a small amount of drag, which is provided by the hook-and-loop fasteners in order to prevent extraneous looping of the cords with possible tangling. The back braces are donned with the right and left ends are stretched out as far away from each other as possible, as seen in FIG. 2. The panel is wrapped around the torso and is closed by attaching the hooks under attachment panel 24 onto the loops of loop assembly 22. In normal fit, the hooks under attachment panel 24 engage in the loop assembly 22. However, for wearers with small torsos, the overlap may be greater. For this reason, strips 64, 100 and 102 of loop material extend along the outside of the back panel inward from the left end loop assembly 22. When the overlap is greater, the hooks under the attachment panel 24 engage upon these loop strips 100 and 102. Once the basic positioning and fit are accomplished and the hook-and-loop attachment system of the left and right end is engaged, the wearer grasps the pull tabs 62 and 68, frees them from their hook-and-loop attachment, and pulls laterally with respect to his body with the right pull tab 68 pulled to the right and the left pull tab 62 pulled to the left. As seen in FIG. 6, the tabs are pulled around and across the overlapping front fastener and are attached on the opposite hook-and-loop fastener. This motion brings the tabs forward to where the wearer can use maximum force in pulling the body brace into the proper adjustment. Loop 72 has a loop of ribbon attached to the outer end of the pull tab so that the user may engage his thumb therethrough for a better grasp on the pull tab 62. Similarly, loop 74 has a ribbon loop attached to the outer end of the right pull tab 68 to make a stronger and more convenient grasp of the pull tab during tightening of the double pull body brace 10 on the torso of the wearer. Since the right pull tab 62 tightens the upper cord system and the left pull tab 68 tightens the lower cord system, the upper and lower sections can be adjusted to different tightness to provide for different body contours and to provide for support situations. The one-piece panel 12 extends from one end to the other of the back brace and is sufficiently flexible so that, intermediate the attachment straps 26 and 28, the panel can wrinkle as the back brace is tightened. In addition, pocket 76 is formed on the panel 12 between the attachment straps 26 and 28. Pocket panel 78 is attached to the outside of the panel 12 on the visible side seen in FIG. 1. It forms a pocket into which a cushion pad of polymer foam or a hot or cold pack 80 can be inserted. In addition, foam pad 82 can also inserted into the pocket on the outside of the cold pack to conserve the chilling effect. The pocket 76 carries, on its left and right, strips 84 and 86 of the loop half of a hook-and-loop fastener. Pocket flap 88 carries the corresponding hook strips 90 and 92 of the hook-and-loop fastener combination. The strips 84 and 86 underlie the cords 48 and 66. When the pocket flap 88 is brought down from the open position in FIG. 1 to the closed position in FIGS. 2 and 3, the corresponding hook-and-loop strips interengage, and they interengage over the back and forth path of the cords. This serves to provide cord management. However, the position of the pocket limits the amount of closure one can achieve by pulling on the cords. It is limited to the space between the pocket 76 and the attachment straps 26 and 28. These are seen in the extended position in FIG. 2 and in the body brace tightening position in FIG. 3. As previously stated, the portion of the one-piece panel wrinkles up in those zones, but does not cause discomfort to the wearer. In addition, pockets 94 and 96 are positioned against the left end of loop assembly 22 adjacent the right end attach-ment panel 24. These can receive stiffeners, such as stiffener 98 shown at the left end of FIG. 1 if the individual application requires such a device. This invention has been described in its presently preferred embodiment, and it is clear that it is susceptible to numerous modifications, modes and embodiments within the ability of those skilled in the art and without the exercise of the inventive faculty. Accordingly, the scope of this invention is defined by the scope of the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Orthotic devices are provided for partial or substantial immobilization of the torso to stabilize the back. These orthotic devices are back braces which can be fitted snugly around the torso. Such back braces are effective in achieving spinal stability if worn properly. For many users, back braces are difficult to appropriately position and fasten. Without being consistently worn and properly adjusted, the effectiveness is substantially reduced. One problem with back braces is their need to conform to the torso as it changes. The torso may change from moment to moment as the patient moves between the standing and the sitting positions. In addition, the torso may change over the long term depending upon the nutritional and exercise habits of the wearer. To be fully effective, it is necessary that the back brace be tight. A system must be provided which can be easily and accurately adjustable by the wearer to provide both comfort and support in each posture so that proper spinal support is achieved. Efforts have been made to provide convenience for the wearer in adjusting the body brace. Chung U.S. Pat. No. 6,322,529 teaches the use of force multiplication to increase closing force, but this is unbalanced. Heinz U.S. Pat. No. 6,213,968 teaches separately tightening the top and bottom of his body brace, but this is unbalanced. Furthermore, the Heinz patent teaches the use of a pulley system which is complicated in the number of parts which brings reliability problems in service.
<SOH> SUMMARY OF THE INVENTION <EOH>In order to aid in the understanding of this invention, it can be stated in essentially summary form that it is directed to a body brace. The body brace has a single one-piece wraparound body panel with an overlapping front closure thereon. Attachments are made at the back of the panel so that two tightening cords sinuously engage upper and lower portions of the body panel. When these cords are pulled, the body panel is shortened. The cords are arranged so that one cord pulls to the right to pull the top closed, and the other cord pulls to the left to pull the bottom closed. This is arranged by attaching two upper cord guides on the single body panel spaced from each other and two lower cord guides on the single body panel spaced from each other. The top cord guides have lobes thereon around which the top tightening cord extends. The bottom cord guides have lobes thereon around which the bottom tightening cord extends. A cap covers the lobes to retain the cords in place. Pockets may be provided for the receipt of stiffeners or temperature packs. It is, thus, a purpose and advantage of this invention to provide a one-piece body brace which wraps around the torso and is secured by overlapping fasteners to minimize twisting in the plane of the fasteners. It is a further purpose and advantage of this invention to provide a one-piece body panel wraparound body brace formed of a one-piece body panel which engages around the torso of the patient. Upper and lower sinuous cords are engaged on separate top and bottom one-piece molded cord guides which are laterally spaced from each other and secured onto the one-piece body panel so that, when the cords are pulled in opposite directions, the panel is effectively shortened. Separate tightening of the upper and lower cords achieves separate tightening of the upper and lower portions of the body panel. Pulling in opposite directions provides balance to the pulling forces for beneficial ergonomic effect. It is a further purpose and advantage of this invention to provide a body brace which is formed of a one-piece wraparound body panel which has spaced cord guides attached thereto. These cord guides are molded of synthetic polymer material which presents a plurality of cord guide lobes around which the tightening cord is engaged, providing a cord guide system which is simple, lightweight and free of unnecessary moving parts. It is a further purpose and advantage of this invention to provide a one-piece wraparound body brace which is easy to don and which can easily be adjusted by the user as he changes position and has a pocket under the tightening cords which can contain a temperature or cushion pad so that the body brace remains comfortable and yet provides full support as the user moves from one posture to another, due to the mechanical advantage of the tightener, so that it can be conveniently and accurately adjusted by the user, as is needed for comfort and support. It is another purpose and advantage of this invention to provide a body brace which can be quickly and easily fitted to the individual so that the user can readily take advantages of the comfort and support of a properly supplied back brace. Other purposes and advantages of this invention will become apparent from a study of the following portion of the specification, the claims and the attached drawings.
20050302
20120327
20051201
76617.0
2
BROWN, MICHAEL A
DOUBLE PULL BODY BRACE
SMALL
1
CONT-ACCEPTED
2,005
10,977,929
ACCEPTED
Circuit interrupting device with reverse wiring protection
Resettable circuit interrupting devices, such as GFCI devices, that include reverse wiring protection, and optionally an independent trip portions and/or a reset lockout portion are provided. The reverse wiring protection operates at both the line and load sides of the device so that in the event line side wiring to the device is improperly connected to the load side, fault protection for the device remains. The trip portion operates independently of a circuit interrupting portion used to break the electrical continuity in one or more conductive paths in the device. The reset lockout portion prevents the reestablishing of electrical continuity in open conductive paths if the circuit interrupting portion is non-operational or if an open neutral condition exists.
1-23. (cancelled). 24. A circuit interrupting device comprising: a first electrical conductor capable of being electrically connected to a source of electricity; a second electrical conductor capable of conducting electrical current to a load when electrically connected to said first electrical conductor; a third electrical conductor capable of being electrically connected to user accessible plugs and/or receptacles where the first, second and third electrical conductors are electrically isolated from each other; at least one movable bridge electrically connected to the first electrical conductor, said at least one movable bridge capable of electrically connecting the first, second and third electrical conductors to each other; a circuit interrupting portion configured to cause electrical discontinuity between said first, second and third electrical conductors upon the occurrence of a predetermined condition; a reset portion configured to reestablish electrical continuity between the first, second and third electrical conductors after said predetermined condition occurs; and a reset lockout portion that prevents reestablishing electrical continuity between said first, second and third electrical conductors if said circuit interrupting portion is non-operational. 25. The circuit interrupting device of claim 24 where the reset lockout portion prevents the reestablishing of electrical continuity between said first, second and third electrical conductors if the device is reverse wired. 26. The circuit interrupting device of claim 24 where the reset lockout portion prevents the reestablishing of electrical continuity between said first, second and third electrical conductors if an open neutral condition exits. 27. The circuit interrupting device of claim 24 where the movable bridge is positioned so as to connect the first electrical conductor to the second and third electrical conductors when the device is reset and the at least one movable bridge is positioned so as to disconnect the first electrical conductor from the second and third electrical conductors when the device is in a trip condition. 28. The circuit interrupting device of claim 24 where the condition comprises a ground fault, an arc fault, an appliance leakage fault, an equipment leakage fault or an immersion detection fault. 29. The circuit interrupting device of claim 24 further comprising a trip portion that is configured to cause electrical discontinuity between the first, second and third electrical conductors. 30. The circuit interrupting device of claim 6 where the trip portion operates independently of the circuit interrupting portion. 31. The circuit interrupting device of claim 6 where the trip portion causes electrical discontinuity between the first, second and third electrical conductors even when the circuit interrupting portion is non-operational. 32. The circuit interrupting device of claim 6 where the trip portion is manually activatable and comprises mechanical components. 33. The circuit interrupting device of claim 24 further comprising a sensing circuit for detecting an occurrence of a predetermined condition. 34. The circuit interrupting device of claim 24 where the circuit interrupting portion comprises a coil and plunger assembly at least one movable bridge and a sensing circuit used to detect a predetermined condition. 35. The circuit interrupting device of claim 34 where the reset lockout portion prevents the reestablishment of continuity between the first, second and third electrical conductors when at least a portion of the sensing circuit is operational or when the coil or the plunger is nonoperational. 36. The circuit interrupting device of claim 24 where the at least one movable bridge has: a pair of contacts attached thereto where such pair is electrically connected to the first electrical conductor and positioned so as to make electrical contact with a corresponding pair of load contacts electrically connected to the second electrical conductor; and another pair of contacts attached thereto where such pair is electrically connected to the first electrical conductor and positioned so as to make electrical contact with a corresponding pair of user accessible contacts electrically connected to the third electrical conductor. 37. The circuit interrupting device of claim 24 where the first electrical conductor comprises a contact connected to electric conducting material. 38. The circuit interrupting device of claim 24 where the second electrical conductor comprises a contact connected to electric conducting material. 39. The circuit interrupting device of claim 24 where the third electrical conductor comprises a contact connected to a conducting frame forming a receptacle that is accessible to a user of the device. 40. A circuit interrupting device comprising: a first pair of terminals capable of being electrically connected to a source of electricity; a second pair of terminals capable of conducting electrical current to a load when electrically connected to said first pair of terminals; a third pair of terminals capable of being electrically connected to user accessible plugs and/or receptacles where the first, second and third pair of terminals are electrically isolated from each other; at least one movable bridge electrically connected to the first pair of terminals, said at least one movable bridge being capable of electrically connecting the first, second and third pairs of terminals to each other; a circuit interrupting portion configured to cause electrical discontinuity between said first, second and third pairs of terminals upon the occurrence of a predetermined condition; a reset portion configured to reestablish electrical continuity between the first, second and third pairs of terminals after said predetermined condition occurs; and a reset lockout portion that prevents reestablishing electrical continuity in said first, second and third electrical conductors if said circuit interrupting portion is nonoperational. 41. The circuit interrupting device of claim 40 where the at least one movable bridge is positioned so as to connect the first pair of terminals to the second and third pairs of terminals when the device is reset and the movable bridge is positioned so as to disconnect the first pair of terminals from the second and third pairs of terminals when the device is in a trip condition. 42. The circuit interrupting device of claim 40 where the condition comprises a ground fault, an arc fault, an appliance leakage fault, equipment leakage fault or an immersion detection fault. 43. The circuit interrupting device of claim 40 further comprising a trip portion that is configured to cause electrical discontinuity between the first, second and third pairs of terminals. 44. The circuit interrupting device of claim 40 further comprising a sensing circuit for detecting an occurrence of a predetermined condition. 45. The circuit interrupting device of claim 40 where the circuit interrupting device portion comprises a coil and plunger assembly, at least one movable bridge and a sensing circuit used to detect a predetermined condition. 46. The circuit interrupting device of claim 40 where the circuit interrupting portion comprises a coil and plunger assembly and a mechanical switch assembly for engaging a sensing circuit used to detect the condition. 47. The circuit interrupting device of claim 46 where the reset lockout portion prevents the reestablishment of continuity between the first, second and third pair of terminals when the coil or plunger is nonoperational or the mechanical switch assembly is nonoperational or when at least a portion of the sensing circuit is nonoperational. 48. The circuit interrupting device of claim 40 where the at least one movable bridge has: a pair of contacts attached to the at least one movable bridge where such pair is electrically connected to the first pair of terminals and positioned so as to make electrical contact with a corresponding pair of load contacts electrically connected to the second pair of terminals; and another pair of contacts attached to the movable bridge where such pair is electrically connected to the first pair of terminals and positioned so as to make electrical contact with a corresponding pair of user accessible contacts electrically connected to the third pair of terminals. 49. The circuit interrupting device of claim 40 where the first pair of terminals comprises a pair of contacts connected to electrical conductors. 50. The circuit interrupting device of claim 40 where the second pair of terminals comprises a pair of contacts connected to electrical conductors. 51. The circuit interrupting device of claim 40 where the third pair of terminals comprises a pair of contacts connected to a conducting frame forming a pair of receptacles that is accessible to a user of the device. 52. The circuit interrupting device of claim 40 where the device is a GFCI device comprising: a housing; a pair of line terminals disposed at least partially within said housing and capable of being electrically connected to a source of electricity; a pair of load terminals disposed at least partially within said housing and capable of conducting electrical current to a load when electrically connected to said line terminals; a pair of face terminals connected to a pair of user accessible receptacles where each face terminals extends from and is integral with a metallic structure disposed at least partially within said housing where said line, load and face terminal pairs are electrically isolated from each other; at least one movable bridge having a pair of bridge load contacts and a pair of bridge face contacts attached thereto where said bridge load contacts and said bridge face contacts are electrically connected to the line terminals; a circuit interrupting portion comprising at least one coil and movable plunger assembly, a mechanical switch, the mechanical switch being positioned to engage a sensing circuit used to detect a predetermined condition; and a reset portion comprising a reset button positioned to engage a portion of the sensing circuit causing the coil assembly to be activated resulting in the at least one movable bridge to be positioned so that the bridge load contacts electrically make with a corresponding pair of load terminal contacts and the bridge face contacts electrically make with a corresponding pair of face terminal contacts where the pair of load terminal contacts are electrically connected to the pair of load terminals and the pair of face terminal contacts are electrically connected to the pair of face terminals.
CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation of application Ser. No. 09/379,138 filed Aug. 20, 1999, which is a continuation-in-part of application Ser. No. 09/369,759 filed Aug. 6, 1999, which is a continuation-in-part of application Ser. No. 09/138,955, filed Aug. 24, 1998, all of which are incorporated herein in their entirety by reference. BACKGROUND 1. Field The present application is directed to reset lockout devices including resettable circuit interrupting devices and systems such as ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's), equipment leakage circuit interrupters (ELCI's), circuit breakers, contactors, latching relays and solenoid mechanisms. 2. Description of the Related Art Many electrical wiring devices have a line side, which is connectable to an electrical power supply, and a load side, which is connectable to one or more loads and at least one conductive path between the line and load sides. Electrical connections to wires supplying electrical power or wires conducting electricity to the one or more loads are at line side and load side connections. The electrical wiring device industry has witnessed an increasing call for circuit breaking devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits. In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit interrupters (GFCI), for example. Presently available GFCI devices, such as the device described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the conductive path between the line and load sides) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides. However, instances may arise where an abnormal condition, caused by for example a lightning strike, occurs which may result not only in a surge of electricity at the device and a tripping of the device but also a disabling of the trip mechanism used to cause the mechanical breaking of the circuit. This may occur without the knowledge of the user. Under such circumstances an unknowing user, faced with a GFCI which has tripped, may press the reset button which, in turn, will cause the device with an inoperative trip mechanism to be reset without the ground fault protection available. Further, an open neutral condition, which is defined in Underwriters Laboratories (UL) Standard PAG 943A, may exist with the electrical wires supplying electrical power to such GFCI devices. If an open neutral condition exists with the neutral wire on the line (versus load) side of the GFCI device, an instance may arise where a current path is created from the phase (or hot) wire supplying power to the GFCI device through the load side of the device and a person to ground. In the event that an open neutral condition exists, current GFCI devices, which have tripped, may be reset even though the open neutral condition may remain. Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists. Commonly owned application Ser. No. 09/175,228, filed Sep. 20, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists and capable of breaking electrical conductive paths independent of the operation of the circuit interrupting portion. Some of the circuit interrupting devices described above have a user accessible load side connection in addition to the line and load side connections. The user accessible load side connection includes one or more connection points where a user can externally connect to electrical power supplied from the line side. The load side connection and user accessible load side connection are typically electrically connected together. An example of such a circuit interrupting device is a GFCI receptacle, where the line and load side connections are binding screws and the user accessible load side connection is the plug connection. As noted, such devices are connected to external wiring so that line wires are connected to the line side connection and load side wires are connected to the load side connection. However, instances may occur where the circuit interrupting device is improperly connected to the external wires so that the load wires are connected to the line side connection and the line wires are connected to the load connection. This is known as reverse wiring. In the event the circuit interrupting device is reverse wired, fault protection to the user accessible load connection maybe eliminated, even if fault protection to the load side connection remains. SUMMARY The present application relates to a family of resettable circuit interrupting devices that maintains fault protection for the circuit interrupting device even if the device is reverse wired. In one embodiment, the circuit interrupting device includes a housing and phase and neutral conductive paths disposed at least partially within the housing between line and load sides. Preferably, the phase conductive path terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of conducting electricity to at least one load and a third connection capable of conducting electricity to at least one user accessible load. Similarly, the neutral conductive path, preferably, terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of providing a neutral connection to the at least one load and a third connection capable of providing a neutral connection to the at least one user accessible load; The circuit interrupting device also includes a circuit interrupting portion that is disposed within the housing and configured to cause electrical discontinuity in one or both of the phase and neutral conductive paths, between said line side and said load side upon the occurrence of a predetermined condition. A reset portion is disposed at least partially within the housing and is configured to reestablish electrical continuity in the open conductive paths. Preferably, the phase conductive path includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the phase conductive path and closing to reestablish electrical continuity in the phase conductive path, between said line and load sides. The neutral conductive path also includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the neutral conductive path and closing to reestablish electrical continuity in the neutral conductive path, between said line and load sides. In this configuration, the circuit interrupting portion causes the plurality of contacts of the phase and neutral conductive paths to open, and the reset portion causes the plurality of contacts of the phase and neutral conductive paths to close. One embodiment for the circuit interrupting portion uses an electromechanical circuit interrupter to cause electrical discontinuity in the phase and neutral conductive paths, and sensing circuitry to sense the occurrence of the predetermined condition. For example, the electromechanical circuit interrupter include a coil assembly, a movable plunger attached to the coil assembly and a banger attached to the plunger. The movable plunger is responsive to energizing of the coil assembly, and movement of the plunger is translated to movement of said banger. Movement of the banger causes the electrical discontinuity in the phase and/or neutral conductive paths. The circuit interrupting device may also include reset lockout portion that prevents the reestablishing of electrical continuity in either the phase or neutral conductive path or both conductive paths, unless the circuit interrupting portion is operating properly. That is, the reset lockout prevents resetting of the device unless the circuit interrupting portion is operating properly. In embodiments where the circuit interrupting device includes a reset lockout portion, the reset portion may be configured so that at least one reset contact is electrically connected to the sensing circuitry of the circuit interrupting portion, and that depression of a reset button causes at least a portion of the phase conductive path to contact at least one reset contact. When contact is made between the phase conductive path and the at least one reset contact, the circuit interrupting portion is activated so that the reset lockout portion is disabled and electrical continuity in the phase and neutral conductive paths can be reestablished. The circuit interrupting device may also include a trip portion that operates independently of the circuit interrupting portion. The trip portion is disposed at least partially within the housing and is configured to cause electrical discontinuity in the phase and/or neutral conductive paths independent of the operation of the circuit interrupting portion. In one embodiment, the trip portion includes a trip actuator accessible from an exterior of the housing and a trip arm preferably within the housing and extending from the trip actuator. The trip arm is preferably configured to facilitate mechanical breaking of electrical continuity in the phase and/or neutral conductive paths, if the trip actuator is actuated. Preferably, the trip actuator is a button. However, other known actuators are also contemplated. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present application are described herein with reference to the drawings in which similar elements are given similar reference characters, wherein: FIG. 1 is a perspective view of one embodiment of a ground fault circuit interrupting device according to the present application; FIG. 2 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 1, illustrating the GFCI device in a set or circuit making position; FIG. 3 is an exploded view of internal components of the circuit interrupting device of FIG. 1; FIG. 4 is a plan view of portions of electrical conductive paths located within the GFCI device of FIG. 1; FIG. 5 is a partial sectional view of a portion of a conductive path shown in FIG. 4; FIG. 6 is a partial sectional view of a portion of a conductive path shown in FIG. 4; FIG. 7 is a side elevational view similar to FIG. 2, illustrating the GFCI device in a circuit breaking or interrupting position; FIG. 8 is a side elevational view similar to FIG. 2, illustrating the components of the GFCI device during a reset operation; FIGS. 9-11 are schematic representations of the operation of one embodiment of the reset portion of the present application, illustrating a latching member used to make an electrical connection between line and load connections and to relate the reset portion of the electrical connection with the operation of the circuit interrupting portion; FIG. 12 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 1; FIG. 13 is a perspective view of an alternative embodiment of a ground fault circuit interrupting device according to the present application; FIG. 14 is side elevational view, partly in section, of a portion of the GFCI device shown in FIG. 13, illustrating the GFCI device in a set or circuit making position; FIG. 15 is a side elevational view similar to FIG. 14, illustrating the GFCI device in a circuit breaking position; FIG. 16 is a side elevational view similar to FIG. 14, illustrating the components of the GFCI device during a reset operation; FIG. 17 is an exploded view of internal components of the GFCI device of FIG. 13; FIG. 18 is a schematic diagram of a circuit for detecting ground faults and resetting the GFCI device of FIG. 13; FIG. 19 is side elevational view, partly in section, of components of a portion of the alternative embodiment of the GFCI device shown in FIG. 13, illustrating the device in a set or circuit making position; FIG. 20 is a side elevational view similar to FIG. 19, illustrating of the device in a circuit breaking position; and FIG. 21 is a block diagram of a circuit interrupting system according to the present application. DETAILED DESCRIPTION The present application contemplates various types of circuit interrupting devices that are capable of breaking at least one conductive path at both a line side and a load side of the device. The conductive path is typically divided between a line side that connects to supplied electrical power and a load side that connects to one or more loads. As noted, the various devices in the family of resettable circuit interrupting devices include: ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's) and equipment leakage circuit interrupters (ELCI's). For the purpose of the present application, the structure or mechanisms used in the circuit interrupting devices, shown in the drawings and described hereinbelow, are incorporated into a GFCI receptacle suitable for installation in a single-gang junction box used in, for example, a residential electrical wiring system. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices. The GFCI receptacles described herein have line and load phase (or power) connections, line and load neutral connections and user accessible load phase and neutral connections. The connections permit external conductors or appliances to be connected to the device. These connections may be, for example, electrical fastening devices that secure or connect external conductors to the circuit interrupting device, as well as conduct electricity. Examples of such connections include binding screws, lugs, terminals and external plug connections. In one embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion and a reset lockout. This embodiment is shown in FIGS. 1-12. In another embodiment, the GFCI receptacle is similar to the embodiment of FIGS. 1-12, except the reset lockout is omitted. Thus, in this embodiment, the GFCI receptacle has a circuit interrupting portion and a reset portion, which is similar to those described in FIGS. 1-12. In another embodiment, the GFCI receptacle has a circuit interrupting portion, a reset portion, a reset lockout and an independent trip portion. This embodiment is shown in FIGS. 13-20. The circuit interrupting and reset portions described herein preferably use electro-mechanical components to break (open) and make (close) one or more conductive paths between the line and load sides of the device. However, electrical components, such as solid state switches and supporting circuitry, may be used to open and close the conductive paths. Generally, the circuit interrupting portion is used to automatically break electrical continuity in one or more conductive paths (i.e., open the conductive path) between the line and load sides upon the detection of a fault, which in the embodiments described is a ground fault. The reset portion is used to close the open conductive paths. In the embodiments including a reset lockout, the reset portion is used to disable the reset lockout, in addition to closing the open conductive paths. In this configuration, the operation of the reset and reset lockout portions is in conjunction with the operation of the circuit interrupting portion, so that electrical continuity in open conductive paths cannot be reset if the circuit interrupting portion is non-operational, if an open neutral condition exists and/or if the device is reverse wired. In the embodiments including an independent trip portion, electrical continuity in one or more conductive paths can be broken independently of the operation of the circuit interrupting portion. Thus, in the event the circuit interrupting portion is not operating properly, the device can still be tripped. The above-described features can be incorporated in any resettable circuit interrupting device, but for simplicity the descriptions herein are directed to GFCI receptacles. Turning now to FIG. 1, the GFCI receptacle 10 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are removably secured. The face portion 16 has entry ports 20 and 21 for receiving normal or polarized prongs of a male plug of the type normally found at the end of a lamp or appliance cord set (not shown), as well as ground-prong-receiving openings 22 to accommodate a three-wire plug. The receptacle also includes a mounting strap 24 used to fasten the receptacle to a junction box. A test button 26 extends through opening 28 in the face portion 16 of the housing 12. The test button is used to activate a test operation, that tests the operation of the circuit interrupting portion (or circuit interrupter) disposed in the device. The circuit interrupting portion, to be described in more detail below, is used to break electrical continuity in one or more conductive paths between the line and load side of the device. A reset button 30 forming a part of the reset portion extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate a reset operation, which reestablishes electrical continuity in the open conductive paths. Electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 10. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference. It should also be noted that binding screws 34, 36, 38 and 40 are exemplary of the types of wiring terminals that can be used to provide the electrical connections. Examples of other types of wiring terminals include set screws, pressure clamps, pressure plates, push-in type connections, pigtails and quick-connect tabs. Referring to FIGS. 2-6, the conductive path between the line phase connection 34 and the load phase connection 36 includes contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54. The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path. Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74. The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path. Referring to FIG. 2, the circuit interrupting portion has a circuit interrupter and electronic circuitry capable of sensing faults, e.g., current imbalances, on the hot and/or neutral conductors. In a preferred embodiment for the GFCI receptacle, the circuit interrupter includes a coil assembly 90, a plunger 92 responsive to the energizing and de-energizing of the coil assembly and a banger 94 connected to the plunger 92. The banger 94 has a pair of banger dogs 96 and 98 which interact with a movable latching members 100 used to set and reset electrical continuity in one or more conductive paths. The coil assembly 90 is activated in response to the sensing of a ground fault by, for example, the sense circuitry shown in FIG. 12. FIG. 12 shows conventional circuitry for detecting ground faults that includes a differential transformer that senses current imbalances. The reset portion includes reset button 30, the movable latching members 100 connected to the reset button 30, latching fingers 102 and reset contacts 104 and 106 that temporarily activate the circuit interrupting portion when the reset button is depressed, when in the tripped position. Preferably, the reset contacts 104 and 106 are normally open momentary contacts. The latching fingers 102 are used to engage side R of each contact arm 50,70 and move the arms 50,70 back to the stressed position where contacts 52,62 touch contacts 56,66, respectively, and where contacts 72,82 touch contacts 76,86, respectively. The movable latching members 102 are, in this embodiment, common to each portion (i.e., the circuit interrupting, reset and reset lockout portions) and used to facilitate making, breaking or locking out of electrical continuity of one or more of the conductive paths. However, the circuit interrupting devices according to the present application also contemplate embodiments where there is no common mechanism or member between each portion or between certain portions. Further, the present application also contemplates using circuit interrupting devices that have circuit interrupting, reset and reset lockout portions to facilitate making, breaking or locking out of the electrical continuity of one or both of the phase or neutral conductive paths. In the embodiment shown in FIGS. 2 and 3, the reset lockout portion includes latching fingers 102 which after the device is tripped, engages side L of the movable arms 50,70 so as to block the movable arms 50,70 from moving. By blocking movement of the movable arms 50,70, contacts 52 and 56, contacts 62 and 66, contacts 72 and 76 and contacts 82 and 86 are prevented from touching. Alternatively, only one of the movable arms 50 or 70 may be blocked so that their respective contacts are prevented from touching. Further, in this embodiment, latching fingers 102 act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching. Referring now to FIGS. 2 and 7-11, the mechanical components of the circuit interrupting and reset portions in various stages of operation are shown. For this part of the description, the operation will be described only for the phase conductive path, but the operation is similar for the neutral conductive path, if it is desired to open and close both conductive paths. In FIG. 2, the GFCI receptacle is shown in a set position where movable contact arm 50 is in a stressed condition so that movable contact 52 is in electrical engagement with fixed contact 56 of contact arm 54. If the sensing circuitry of the GFCI receptacle senses a ground fault, the coil assembly 90 is energized to draw plunger 92 into the coil assembly 90 so that banger 94 moves upwardly. As the banger moves upwardly, the banger front dog 98 strikes the latch member 100 causing it to pivot in a counterclockwise direction C (seen in FIG. 7) about the joint created by the top edge 112 and inner surface 114 of finger 110. The movement of the latch member 100 removes the latching finger 102 from engagement with side R of the remote end 116 of the movable contact arm 50, and permits the contact arm 50 to return to its pre-stressed condition opening contacts 52 and 56, seen in FIG. 7. After tripping, the coil assembly 90 is de-energized so that spring 93 returns plunger 92 to its original extended position and banger 94 moves to its original position releasing latch member 100. At this time, the latch member 100 is in a lockout position where latch finger 102 inhibits movable contact 52 from engaging fixed contact 56, as seen in FIG. 10. As noted, one or both latching fingers 102 can act as an active inhibitor that prevents the contacts from touching. Alternatively, the natural bias of movable arms 50 and 70 can be used as a passive inhibitor that prevents the contacts from touching. To reset the GFCI receptacle so that contacts 52 and 56 are closed and continuity in the phase conductive path is reestablished, the reset button 30 is depressed sufficiently to overcome the bias force of return spring 120 and move the latch member 100 in the direction of arrow A, seen in FIG. 8. While the reset button 30 is being depressed, latch finger 102 contacts side L of the movable contact arm 50 and continued depression of the reset button 30 forces the latch member to overcome the stress force exerted by the arm 50 causing the reset contact 104 on the arm 50 to close on reset contact 106. Closing the reset contacts activates the operation of the circuit interrupter by, for example simulating a fault, so that plunger 92 moves the banger 94 upwardly striking the latch member 100 which pivots the latch finger 102, while the latch member 100 continues to move in the direction of arrow A. As a result, the latch finger 102 is lifted over side L of the remote end 116 of the movable contact arm 50 onto side R of the remote end of the movable contact arm, as seen in FIGS. 7 and 11. Contact arm 50 returns to its unstressed position, opening contacts 52 and 56 and contacts 62 and 66, so as to terminate the activation of the circuit interrupting portion, thereby de-energizing the coil assembly 90. After the circuit interrupter operation is activated, the coil assembly 90 is de-energized so that so that plunger 92 returns to its original extended position, and banger 94 releases the latch member 100 so that the latch finger 102 is in a reset position, seen din FIG. 9. Release of the reset button causes the latching member 100 and movable contact arm 50 to move in the direction of arrow B (seen in FIG. 9) until contact 52 electrically engages contact 56, as seen in FIG. 2. As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path. In an alternative embodiment, the circuit interrupting devices may also include a trip portion that operates independently of the circuit interrupting portion so that in the event the circuit interrupting portion becomes non-operational the device can still be tripped. Preferably, the trip portion is manually activated and uses mechanical components to break one or more conductive paths. However, the trip portion may use electrical circuitry and/or electromechanical components to break either the phase or neutral conductive path or both paths. For the purposes of the present application, the structure or mechanisms for this embodiment are also incorporated into a GFCI receptacle, seen in FIGS. 13-20, suitable for installation in a single-gang junction box in a home. However, the mechanisms according to the present application can be included in any of the various devices in the family of resettable circuit interrupting devices. Turning now to FIG. 13, the GFCI receptacle 200 according to this embodiment is similar to the GFCI receptacle described in FIGS. 1-12. Similar to FIG. 1, the GFCI receptacle 200 has a housing 12 consisting of a relatively central body 14 to which a face or cover portion 16 and a rear portion 18 are, preferably, removably secured. A trip actuator 202, preferably a button, which is part of the trip portion to be described in more detail below, extends through opening 28 in the face portion 16 of the housing 12. The trip actuator is used, in this exemplary embodiment, to mechanically trip the GFCI receptacle, i.e., break electrical continuity in one or more of the conductive paths, independent of the operation of the circuit interrupting portion. A reset actuator 30, preferably a button, which is part of the reset portion, extends through opening 32 in the face portion 16 of the housing 12. The reset button is used to activate the reset operation, which re-establishes electrical continuity in the open conductive paths, i.e., resets the device, if the circuit interrupting portion is operational. As in the above embodiment, electrical connections to existing household electrical wiring are made via binding screws 34 and 36, where screw 34 is an input (or line) phase connection, and screw 36 is an output (or load) phase connection. It should be noted that two additional binding-screws 38 and 40 (seen in FIG. 3) are located on the opposite side of the receptacle 200. These additional binding screws provide line and load neutral connections, respectively. A more detailed description of a GFCI receptacle is provided in U.S. Pat. No. 4,595,894, which is incorporated herein in its entirety by reference. Referring to FIGS. 4-6, 14 and 17, the conductive paths in this embodiment are substantially the same as those described above. The conductive path between the line phase connection 34 and the load phase connection 36 includes, contact arm 50 which is movable between stressed and unstressed positions, movable contact 52 mounted to the contact arm 50, contact arm 54 secured to or monolithically formed into the load phase connection 36 and fixed contact 56 mounted to the contact arm 54 (seen in FIGS. 4, 5 and 17). The user accessible load phase connection for this embodiment includes terminal assembly 58 having two binding terminals 60 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line phase connection 34 and the user accessible load phase connection includes, contact arm 50, movable contact 62 mounted to contact arm 50, contact arm 64 secured to or monolithically formed into terminal assembly 58, and fixed contact 66 mounted to contact arm 64. These conductive paths are collectively called the phase conductive path. Similarly, the conductive path between the line neutral connection 38 and the load neutral connection 40 includes, contact arm 70 which is movable between stressed and unstressed positions, movable contact 72 mounted to contact arm 70, contact arm 74 secured to or monolithically formed into load neutral connection 40, and fixed contact 76 mounted to the contact arm 74 (seen in FIGS. 4, 6 and 17). The user accessible load neutral connection for this embodiment includes terminal assembly 78 having two binding terminals 80 which are capable of engaging a prong of a male plug inserted therebetween. The conductive path between the line neutral connection 38 and the user accessible load neutral connection includes, contact arm 70, movable contact 82 mounted to the contact arm 70, contact arm 84 secured to or monolithically formed into terminal assembly 78, and fixed contact 86 mounted to contact arm 84. These conductive paths are collectively called the neutral conductive path. There is also shown in FIG. 14, mechanical components used during circuit interrupting and reset operations according to this embodiment of the present application. Although these components shown in the drawings are electromechanical in nature, the present application also contemplates using semiconductor type circuit interrupting and reset components, as well as other mechanisms capable of making and breaking electrical continuity. The circuit interrupting device according to this embodiment incorporates an independent trip portion into the circuit interrupting device of FIGS. 1-12. Therefore, a description of the circuit interrupting, reset and reset lockout portions are omitted. Referring to FIGS. 14-16 an exemplary embodiment of the trip portion according to the present application includes a trip actuator 202, preferably a button, that is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 14, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 15. Spring 204 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 206 that extends from the trip actuator 202 so that a surface 208 of the trip arm 206 moves into contact with the movable latching member 100, when the trip button is moved toward the trip position. When the trip actuator 202 is in the set position, surface 208 of trip arm 202 can be in contact with or close proximity to the movable latching member 100, as seen in FIG. 14. In operation, upon depression of the trip actuator 202, the trip actuator pivots about point T of pivot arm 210 (seen in FIG. 15) extending from strap 24 so that the surface 208 of the trip arm 206 can contact the movable latching member 100. As the trip actuator 202 is moved toward the trip position, trip arm 206 also enters the path of movement of the finger 110 associated with reset button 30 thus blocking the finger 102 from further movement in the direction of arrow A (seen in FIG. 15). By blocking the movement of the finger 110, the trip arm 206 inhibits the activation of the reset operation and, thus, inhibits simultaneous activation of the trip and reset operations. Further depression of the trip actuator 202 causes the movable latching member 100 to pivot about point T in the direction of arrow C (seen in FIG. 15). Pivotal movement of the latching member 100 causes latching finger 102 of latching arm 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above. An exemplary embodiment of the circuitry used to sense faults and reset the conductive paths, is shown in FIG. 18. As noted above, if opening and closing of electrical continuity in the neutral conductive path is desired, the above description for the phase conductive path is also applicable to the neutral conductive path. An alternative embodiment of the trip portion will be described with reference to FIGS. 19 and 20. In this embodiment, the trip portion includes a trip actuator 202 that at is movable between a set position, where contacts 52 and 56 are permitted to close or make contact, as seen in FIG. 19, and a trip position where contacts 52 and 56 are caused to open, as seen in FIG. 20. Spring 220 normally biases trip actuator 202 toward the set position. The trip portion also includes a trip arm 224 that extends from the trip actuator 202 so that a distal end 226 of the trip arm is in movable contact with the movable latching member 100. As noted above, the movable latching member 100 is, in this embodiment, common to the trip, circuit interrupting, reset and reset lockout portions and is used to make, break or lockout the electrical connections in the phase and/or neutral conductive paths. In this embodiment, the movable latching member 100 includes a ramped portion 100a which facilitates opening and closing of electrical contacts 52 and 56 when the trip actuator 202 is moved between the set and trip positions, respectively. To illustrate, when the trip actuator 202 is in the set position, distal end 226 of trip arm 224 contacts the upper side of the ramped portion 10a, seen in FIG. 19. When the trip actuator 202 is depressed, the distal end 226 of the trip arm 224 moves along the ramp and pivots the latching member 60 about point P in the direction of arrow C causing latching finger 102 of the latching member 100 to move out of contact with the movable contact arm 50 so that the arm 50 returns to its unstressed condition, and the conductive path is broken. Resetting of the device is achieved as described above. The circuit interrupting device according to the present application can be used in electrical systems, shown in the exemplary block diagram of FIG. 21. The system 240 includes a source of power 242, such as ac power in a home, at least one circuit interrupting device, e.g., circuit interrupting device 10 or 200, electrically connected to the power source, and one or more loads 244 connected to the circuit interrupting device. As an example of one such system, ac power supplied to single gang junction box in a home may be connected to a GFCI receptacle having one of the above described reverse wiring fault protection, independent trip or reset lockout features, or any combination of these features may be combined into the circuit interrupting device. Household appliances that are then plugged into the receptacle become the load or loads of the system. As noted, although the components used during circuit interrupting and device reset operations are electromechanical in nature, the present application also contemplates using electrical components, such as solid state switches and supporting circuitry, as well as other types of components capable or making and breaking electrical continuity in the conductive path. While there have been shown and described and pointed out the fundamental features of the invention, it will be understood that various omissions and substitutions and changes of the form and details of the device described and illustrated and in its operation may be made by those skilled in the art, without departing from the spirit of the invention.
<SOH> BACKGROUND <EOH>1. Field The present application is directed to reset lockout devices including resettable circuit interrupting devices and systems such as ground fault circuit interrupters (GFCI's), arc fault circuit interrupters (AFCI's), immersion detection circuit interrupters (IDCI's), appliance leakage circuit interrupters (ALCI's), equipment leakage circuit interrupters (ELCI's), circuit breakers, contactors, latching relays and solenoid mechanisms. 2. Description of the Related Art Many electrical wiring devices have a line side, which is connectable to an electrical power supply, and a load side, which is connectable to one or more loads and at least one conductive path between the line and load sides. Electrical connections to wires supplying electrical power or wires conducting electricity to the one or more loads are at line side and load side connections. The electrical wiring device industry has witnessed an increasing call for circuit breaking devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits. In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit interrupters (GFCI), for example. Presently available GFCI devices, such as the device described in commonly owned U.S. Pat. No. 4,595,894, use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. In the device discussed in the '894 patent, the trip mechanism used to cause the mechanical breaking of the circuit (i.e., the conductive path between the line and load sides) includes a solenoid (or trip coil). A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides. However, instances may arise where an abnormal condition, caused by for example a lightning strike, occurs which may result not only in a surge of electricity at the device and a tripping of the device but also a disabling of the trip mechanism used to cause the mechanical breaking of the circuit. This may occur without the knowledge of the user. Under such circumstances an unknowing user, faced with a GFCI which has tripped, may press the reset button which, in turn, will cause the device with an inoperative trip mechanism to be reset without the ground fault protection available. Further, an open neutral condition, which is defined in Underwriters Laboratories (UL) Standard PAG 943A, may exist with the electrical wires supplying electrical power to such GFCI devices. If an open neutral condition exists with the neutral wire on the line (versus load) side of the GFCI device, an instance may arise where a current path is created from the phase (or hot) wire supplying power to the GFCI device through the load side of the device and a person to ground. In the event that an open neutral condition exists, current GFCI devices, which have tripped, may be reset even though the open neutral condition may remain. Commonly owned application Ser. No. 09/138,955, filed Aug. 24, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists. Commonly owned application Ser. No. 09/175,228, filed Sep. 20, 1998, which is incorporated herein in its entirety by reference, describes a family of resettable circuit interrupting devices capable of locking out the reset portion of the device if the circuit interrupting portion is non-operational or if an open neutral condition exists and capable of breaking electrical conductive paths independent of the operation of the circuit interrupting portion. Some of the circuit interrupting devices described above have a user accessible load side connection in addition to the line and load side connections. The user accessible load side connection includes one or more connection points where a user can externally connect to electrical power supplied from the line side. The load side connection and user accessible load side connection are typically electrically connected together. An example of such a circuit interrupting device is a GFCI receptacle, where the line and load side connections are binding screws and the user accessible load side connection is the plug connection. As noted, such devices are connected to external wiring so that line wires are connected to the line side connection and load side wires are connected to the load side connection. However, instances may occur where the circuit interrupting device is improperly connected to the external wires so that the load wires are connected to the line side connection and the line wires are connected to the load connection. This is known as reverse wiring. In the event the circuit interrupting device is reverse wired, fault protection to the user accessible load connection maybe eliminated, even if fault protection to the load side connection remains.
<SOH> SUMMARY <EOH>The present application relates to a family of resettable circuit interrupting devices that maintains fault protection for the circuit interrupting device even if the device is reverse wired. In one embodiment, the circuit interrupting device includes a housing and phase and neutral conductive paths disposed at least partially within the housing between line and load sides. Preferably, the phase conductive path terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of conducting electricity to at least one load and a third connection capable of conducting electricity to at least one user accessible load. Similarly, the neutral conductive path, preferably, terminates at a first connection capable of being electrically connected to a source of electricity, a second connection capable of providing a neutral connection to the at least one load and a third connection capable of providing a neutral connection to the at least one user accessible load; The circuit interrupting device also includes a circuit interrupting portion that is disposed within the housing and configured to cause electrical discontinuity in one or both of the phase and neutral conductive paths, between said line side and said load side upon the occurrence of a predetermined condition. A reset portion is disposed at least partially within the housing and is configured to reestablish electrical continuity in the open conductive paths. Preferably, the phase conductive path includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the phase conductive path and closing to reestablish electrical continuity in the phase conductive path, between said line and load sides. The neutral conductive path also includes a plurality of contacts that are capable of opening to cause electrical discontinuity in the neutral conductive path and closing to reestablish electrical continuity in the neutral conductive path, between said line and load sides. In this configuration, the circuit interrupting portion causes the plurality of contacts of the phase and neutral conductive paths to open, and the reset portion causes the plurality of contacts of the phase and neutral conductive paths to close. One embodiment for the circuit interrupting portion uses an electromechanical circuit interrupter to cause electrical discontinuity in the phase and neutral conductive paths, and sensing circuitry to sense the occurrence of the predetermined condition. For example, the electromechanical circuit interrupter include a coil assembly, a movable plunger attached to the coil assembly and a banger attached to the plunger. The movable plunger is responsive to energizing of the coil assembly, and movement of the plunger is translated to movement of said banger. Movement of the banger causes the electrical discontinuity in the phase and/or neutral conductive paths. The circuit interrupting device may also include reset lockout portion that prevents the reestablishing of electrical continuity in either the phase or neutral conductive path or both conductive paths, unless the circuit interrupting portion is operating properly. That is, the reset lockout prevents resetting of the device unless the circuit interrupting portion is operating properly. In embodiments where the circuit interrupting device includes a reset lockout portion, the reset portion may be configured so that at least one reset contact is electrically connected to the sensing circuitry of the circuit interrupting portion, and that depression of a reset button causes at least a portion of the phase conductive path to contact at least one reset contact. When contact is made between the phase conductive path and the at least one reset contact, the circuit interrupting portion is activated so that the reset lockout portion is disabled and electrical continuity in the phase and neutral conductive paths can be reestablished. The circuit interrupting device may also include a trip portion that operates independently of the circuit interrupting portion. The trip portion is disposed at least partially within the housing and is configured to cause electrical discontinuity in the phase and/or neutral conductive paths independent of the operation of the circuit interrupting portion. In one embodiment, the trip portion includes a trip actuator accessible from an exterior of the housing and a trip arm preferably within the housing and extending from the trip actuator. The trip arm is preferably configured to facilitate mechanical breaking of electrical continuity in the phase and/or neutral conductive paths, if the trip actuator is actuated. Preferably, the trip actuator is a button. However, other known actuators are also contemplated.
20041028
20081209
20050324
58662.0
5
ROJAS, BERNARD
CIRCUIT INTERRUPTING DEVICE WITH REVERSE WIRING PROTECTION
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,977,969
ACCEPTED
Register assembly with adjustable faceplate connectors
A register assembly with adjustable faceplate connectors can be used to cover air duct openings that supply a flow of heated or cooled air to a room of a structure, and can also be used to cover air duct openings that receive return air from the room. The register assembly includes a faceplate that has removably attachable connectors that adapt the faceplate to be removably attached to a plurality of damper assemblies of different sizes. The plurality of connectors are adjustably connected to the faceplate to adapt the faceplate to each different size of damper assembly.
1. A register assembly with an adjustable faceplate, the register assembly comprising: a damper having a base and at least one louver on the base for controlling a flow of air across the base; a faceplate having a configuration for covering over and concealing the damper; and, at least one connector having a first portion that is removably attachable to the faceplate and a second portion that is removably attachable to the damper to removably attach the faceplate to the damper. 2. The register assembly of claim 1, further comprising: the connector being one of the plurality of connectors that are together removably attachable to the faceplate and are together removably attachable to the damper to removably attach the faceplate to the damper. 3. The register assembly of claim 2, further comprising: the plurality of connectors having a same configuration. 4. The register assembly of claim 2, further comprising: the faceplate having a peripheral edge and a plurality of notches spacially arranged around the peripheral edge; and, the first portion of each of the connectors being removably insertable into a notch of the faceplate in removably attaching the connector first portion to the faceplate. 5. The register assembly of claim 4, further comprising: one of the faceplate notch and connector first portion having a projecting tongue and the other of the notch and first portion having a groove that receives the tongue in removably attaching the connector first portion to the faceplate. 6. The register assembly of claim 1, further comprising: one of the damper base and the connector second portion having a projection and the other of the damper base and connector second portion having a recess that receives the projection in removably attaching the connector second portion to the base. 7. A register assembly with an adjustable faceplate, the register assembly comprising: a damper having a base and at least one louver on the base for controlling a flow of air across the base; a faceplate having a configuration for covering over and concealing the damper; at least one connector having a first portion that is removably attachable to the faceplate and a second portion that is removably attachable to the damper to removably attach the faceplate to the damper; the connector being one of the plurality of connectors that are together removably attachable to the faceplate and are together removably attachable to the damper to removably attach the faceplate to the damper; the first portion of each connector is configured to be engaged with the faceplate and moved in a first direction of the connector relative to the faceplate in removably attaching the first portion to the faceplate; and, the second portion of each connector is configured to be engaged with the damper and is moved in a second direction of the connector, different from the first direction, relative to the damper in removably attaching the second portion to the damper. 8. The register assembly of claim 7, further comprising: the first direction and the second direction being oriented at an angle. 9. The register assembly of claim 1, further comprising: the connector being a single piece consisting essentially of the first portion and the second portion. 10. A register assembly with an adjustable faceplate, the register assembly comprising: a plurality of different sized dampers, each damper of the plurality of dampers having a base and at least one louver on the base for controlling a flow of air across the base; a faceplate having a configuration for covering over and concealing each damper of the plurality of dampers; and, a connector that is removably attachable to the faceplate and is removably attachable to each damper of the plurality of dampers to alternatively removably attach the faceplate to each of the dampers. 11. A register assembly with an adjustable faceplate, the register assembly comprising: a plurality of different sized dampers, each damper of the plurality of dampers having a base and at least one louver on the base for controlling a flow of air across the base; a faceplate having a configuration for covering over and concealing each damper of the plurality of dampers; a connector that is removably attachable to the faceplate and is removably attachable to each damper of the plurality of dampers to alternatively removably attach the faceplate to each of the dampers; and the connector being removably attachable to the faceplate in a plurality of different positions of the connector relative to the faceplate and the connector in each position relative to the faceplate being removably attachable to a damper of the plurality of dampers. 12. The register assembly of claim 11, further comprising: the connector being one of a plurality of connectors that are together removably attachable to the faceplate and are together removably attachable to each damper of the plurality of dampers to removably attach the faceplate to each damper. 13. The register assembly of claim 12, further comprising: the plurality of connectors having a same configuration. 14. The register assembly of claim 13, further comprising: each connector being configured to be engaged with the faceplate and moved in a first direction of the connector relative to the faceplate in removably attaching the connector to the faceplate, and each connector being configured to be engaged with each damper and moved in a second direction of the connector, different from the first direction of the connector, relative to the damper in removably attaching the connector to the damper. 15. The register assembly of claim 14, further comprising: the first direction and the second direction being oriented at an angle. 16. The register assembly of claim 10, further comprising: the connector being a single piece that is removably attachable to the faceplate and each damper of the plurality of dampers. 17. A register assembly with an adjustable faceplate, the register assembly comprising: a first damper and a second damper of different sizes, the first damper and second damper each having a base and at least one louver on the base for controlling a flow of air across the base; a faceplate having a configuration for covering over and concealing both the first damper and the second damper; and, a connector that is removable attachable to the faceplate in first and second positions of the connector relative to the faceplate, the connector being removably attachable to the first damper in the first position of the connector on the faceplate and not being removably attachable to the second damper, and the connector being removably attachable to the second damper in the second position of the connector on the faceplate and not being removably attachable to the first damper. 18. The register assembly of claim 17, further comprising: the connector being one of a plurality of connectors that are together removably attachable to the faceplate in the first and second positions and are removably attachable to the first damper in the first positions of the connectors on the faceplate and are removably attachable to the second damper in the second positions of the connectors on the faceplate. 19. The register assembly of claim 18, further comprising: the plurality of connectors having a same configuration. 20. The register assembly of claim 19, further comprising: each connector being configured to be engaged with the faceplate and moved in a first direction of the connector relative to the faceplate in removably attaching the connector to the faceplate in the first and second positions, and each connector being configured to be engaged with the first and second dampers and moved in a second direction of the connector, different from the first direction of the connector, relative to the first and second dampers in removably attaching the connector to the first and second dampers. 21. The register assembly of claim 20, further comprising: the first direction and the second direction being oriented at an angle. 22. The register assembly of claim 17, further comprising: the connector being a single piece that is removably attachable to the faceplate and each of the first and second dampers.
BACKGROUND OF THE INVENTION (1) Field of the Invention The present invention pertains to a register assembly that can be used to cover duct openings that supply a flow of heated or cooled air to a room of a structure, and can also be used to cover duct openings that receive return air from the room. In particular, the register assembly is comprised of a framed faceplate, a plurality of damper assemblies of different sizes, and a plurality of connectors that are adjustably connected to the faceplate to adapt the faceplate to each different size of damper assembly. (2) Description of the Related Art Very often in the heating and cooling systems of structures, and in particular residential structures, the network of air ducts that supply heated or cooled air to the different structures are constructed in various different sizes. This at times will result in the duct openings that supply air through openings cut in the floors and walls of the structure to be of different sizes. This does not often occur in individual home constructions, but it can be found that homes constructed in different years or by different construction contractors will have air duct openings that are of different sizes. For example, air duct openings of 2.25″×10″, 2.25″×12″, 3″×10″, 4″×10″, 4″×12″, and 4″×14″ are common. The existence of air duct openings of different sizes makes choosing a register assembly for an existing home, or supplying register assemblies for a home under construction difficult. Not only must a desirable design for the register faceplate be chosen, but care must be taken to ensure that the register assembly is properly sized to fit the particular duct opening of the home. This requires that the air duct openings be carefully measured, and the properly dimensioned register assembly be obtained to fit each air duct opening. SUMMARY OF THE INVENTION The register assembly with the adjustable faceplate connectors of the present invention overcomes the disadvantages associated with the different sized air duct openings of homes and other structures. The register assembly of the invention is comprised of a framed faceplate, a plurality of damper assemblies that are each dimensioned to fit the duct opening dimensions commonly used in building construction, and a plurality of connectors that are adjustably fit to the faceplate to enable the removable attachment of the faceplate to each of the different sized damper assemblies. The one faceplate is dimensioned to cover the various different sizes of duct openings. The outer peripheral border of the faceplate is dimensioned sufficiently large to extend beyond the perimeter dimensions of each of the commonly used duct openings. One or more holes are provided through the faceplate to provide the free flow of air through the faceplate. A variety of different faceplates could be provided with the holes of the faceplate cut in a variety of different patterns. A plurality of different damper assemblies are provided, each being dimensioned to match the damper assembly with a particular size of duct opening. Each damper assembly is constructed with a base having four side walls that surround a center opening through the base. Examples of damper assemblies are disclosed in the U.S. Patents of Berger U.S. Pat. No. 6,309,297 B1 and U.S. Pat. No. 6,506,113 B2, the disclosures of each patent being incorporated herein by reference. Each damper assembly base contains one or more louvers that are movable relative to the base to control the flow of air through the damper assembly. The plurality of connectors are each adapted to attach the faceplate to each of the different sizes of damper assemblies. Each of the connectors are identical in construction, reducing their cost to manufacture. Each of the connectors are removably attachable to the faceplate and are removably attachable to each of the different sized damper assemblies without the use of separate fasteners. Thus, the entire register assembly can be assembled without separate threaded fasteners. The connectors are removably attachable to the faceplate in a variety of adjusted positions. In each of the adjusted positions of the connectors relative to the faceplate, the connectors adapt the faceplate for removable attachment to one of the various different sizes of damper assemblies. Thus, for any particular duct opening, an appropriately dimensioned damper assembly is chosen. A faceplate is chosen that has a desirable pattern of openings. The damper assembly is assembled over the air duct opening. The plurality of connectors are then removably attached to the faceplate in a particular pattern of the connectors relative to the faceplate to enable the removable attachment of the faceplate to the chosen damper assembly. The damper assembly is then removably attached to the plurality of connectors, thereby removably attaching the damper assembly to the faceplate. In the manner discussed above, the register assembly of the invention is inexpensively and easily assembled over air duct openings of various different sizes. Thus, the register assembly of the invention simplifies the assembly of the air heating and cooling system and reduces the number of different parts needed to assemble the system, thereby reducing the cost of the systems assembly. BRIEF DESCRIPTION OF THE DRAWINGS Further features of the invention are set forth in the following detailed description of the preferred embodiment of the invention and in the drawing figures wherein: FIG. 1 is a top plan view of a framed faceplate of the register assembly of the invention; FIG. 2 is a side elevation view of the faceplate of FIG. 1; FIG. 3 is an end elevation view of the faceplate of FIG. 2; FIG. 4 is a cross section of the faceplate taken along the line 4-4 of FIG. 1; FIG. 5 is a cross section of the faceplate along the line 5-5 of FIG. 1; FIG. 6 is a top plan view of one of the plurality of connectors of the invention; FIG. 7 is a side elevation view of the connector; FIG. 8 is an end elevation view of the connector; FIG. 9 is a cross-section of the connector along the line 9-9 of FIG. 6; FIG. 10 is a partial view of the one of the connectors mounted in one of its adjusted positions relative to the faceplate; FIG. 11 is a partial side view of the connector and faceplate shown on FIG. 10; FIG. 12 is a partial view of the faceplate and one of the connectors in a second adjusted position of the connector; and FIG. 13 is a partial side view of the faceplate and connector of FIG. 12. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The register assembly of the invention is designed to be used with a damper assembly of the type disclosed in the U.S. Patents of Berger U.S. Pat. No. 6,309,297 B1 and U.S. Pat. No. 6,506,113 B2, the disclosures of both being incorporated herein by reference. As stated earlier, damper assemblies of this type are provided in a variety of different sizes to fit different size air duct openings. A common feature of each of the different damper assemblies is that they include a plurality of pawl projections that each project inwardly from an interior surface of the damper base. Each of the projections is positioned to receive a tab of a faceplate that is being removably attached to the damper assembly. Because the constructions of these damper assemblies are known in the art as shown in the above-referenced patents, they are not described in further detail here or shown in the drawing figures. The register assembly of the invention is basically comprised of a framed faceplate 12 and a plurality of connectors 14 that are removably attachable to the faceplate and to an associated damper assembly. Each of the faceplate 12 and connectors 14 may be constructed from a variety of different materials such as metals, wood, or plastic. It is only desirable that the particular materials used to construct the faceplate 12 and connectors 14 have a certain degree of resilience to enable component parts of the connectors 14 to resiliently flex relative to each other, as will be explained. As seen in FIG. 1, the faceplate 12 has a rectangular configuration that is dimensioned to cover over the floor or wall opening associated with an air duct opening with which the register assembly of the invention is to be used. The faceplate 12 is designed with a framed border area 16 that extends around the top surface of the faceplate and defines the peripheral edge 18 of the faceplate. The outer dimensions of the faceplate peripheral edge 18 are also dimensioned sufficiently large so that the faceplate 12 will cover over each of the different sizes of damper assemblies available. A plurality of openings 20 are formed in the faceplate inside the border area 16. As shown in FIG. 1, the openings 20 are typically designed to have an aesthetically pleasing appearance. A variety of different patterns of openings 20 could be provided in a plurality of different faceplates. As shown in FIGS. 2-5, the framed border 16 of the faceplate 12 is positioned on an upper portion of the faceplate. The faceplate also has a lower portion defined by sidewalls 22, 24, 26, 28 that are positioned inwardly from the faceplate peripheral edge 18 and below the framed border 16 of the faceplate. The positions and dimensions of the faceplate sidewalls 22, 24, 26, 28 are determined to enable the sidewalls to be inserted into an opening cut in a floor or wall for an air duct opening. With sidewalls 22, 24, 26, 28 inserted into the floor or wall opening, the framed border 16 of the faceplate conceals the opening. A plurality of notches 34 are recessed into the elongated faceplate sidewalls 22, 24. Notches could also be provided in the shorter sidewalls 26, 28. Each of the notches 32 has a back wall 34 and a pair of opposed walls 36 that define the interior of the notch. Opposed, projecting tongues or ribs 38 project outwardly from the opposed walls 36 of each notch. The tongues 38 extend along the length of the opposed walls 36 to the notch back wall 34. In the particular embodiment of the faceplate 12 shown in the drawing figures, there are four notches 32. FIGS. 6-9 show the construction of each of the connectors 14 used with the faceplate 12 of the invention. With the faceplate 12 having four notches 32, the register assembly of the invention will make use of four connectors 14. For different numbers of notches, different numbers of connectors are used. All of the connectors 14 used with each faceplate 12 are the same in construction. Each connector 14 is basically constructed with a first portion 42 and a second portion 44 that are oriented at an angle relative to each other. In the preferred embodiment the two portions 42, 44 define a right angle. As shown in FIG. 6, the first portion 42 of the connector 12 has a rectangular configuration defined by a pair of opposite sidewalls 48 and a front wall 50 and opposite back wall 52. The first portion 42 also has a top surface 54 and an opposite bottom surface 56. An opening 58 extends through the connector first portion 42 from the top surface 54 to the bottom surface 56. The rectangular configuration of the connector first portion 42 is dimensioned to fit into each notch 32 of the faceplate 12 with the connector first portion sidewalls 48 opposing the notch opposed walls 36. As seen in FIG. 7, each of the connector sidewalls 48 is provided with a groove 62 that extends through the sidewall. The grooves 62 are dimensioned to receive the notch tongues 38 that project from the opposed walls 36 of the faceplate notches 32. Engagement of the faceplate tongues 38 in the connector grooves 62 holds the connector in the faceplate notch 32. The connector first portion 42 is dimensioned to be received in each faceplate notch 32 in two positions of the connector relative to the notch. In the first position of the connector 14 relative to the faceplate notch 32, the back wall 52 of the connector first portion is positioned against the notch back wall 34 with the notch tongues 38 positioned in the connector groove 62. In the second position of the connector 14 relative to the faceplate notches 32, the front wall 50 of the connector first portion is positioned against the notch back wall 34 with the notch tongues 38 positioned in the connector grooves 62. In each of the first and second positions of the connector 14 relative to the faceplate 12, the connectors 14 are removably attached to the faceplate 12 without the use of separate fasteners, for example screw-threaded screw and nut fasteners. Each second portion 44 of each connector 14 projects outwardly from the first portion bottom surface 56 adjacent the first portion front wall 50. As seen in FIGS. 6 and 7, each second portion 44 has a general rectangular configuration with a pair of opposite sidewalls 64 and a front wall 66 and opposite back wall 68. Both the front wall 66 and back wall 68 have respective tapered portions 72, 74 at the lower ends of the walls, as best seen in FIGS. 8 and 9. An opening 76 also passes through the connector second portion 44 from the front wall 66 to the back wall 68. The opening 76 gives the connector second portion 44 a certain resilience that enables the second portion 44 to be resiliently flexed relative to the first portion 42. The openings 76 are dimensioned to receive the projections or pawls of the damper assemblies described in the earlier referenced patents. As stated earlier, each connector 14 can be removably attached to the framed faceplate 12 in a first and second position of the connector relative to the faceplate. This adapts the faceplate 12 for removable attachment to damper assemblies of different sizes. FIG. 11 shows a partial, side sectioned view of a connector 14 inserted in a notch 32 of the faceplate 12 in the first position of the connector relative to the faceplate. It can be seen that in the first position of the connector 14, the connector second portion 44 is positioned outwardly to its greatest extent relative to the faceplate peripheral edge 18. With all of the four connectors 14 removably attached to the faceplate 12 in their first relative positions as shown in FIG. 11, the faceplate 12 is adapted for removable attachment to the larger damper assembly construction. FIG. 13 shows a partial, side sectioned view of a connector 14 removably attached in a notch 32 of the faceplate 12 in the second relative position of the connector 14 to the faceplate. In the second position of the connector 14 relative to the faceplate 12, the connector second portion is positioned radially inwardly from the faceplate peripheral edge 18 to its greatest extent, as shown in FIG. 13. This adapts the faceplate 12 for removable attachment to a damper assembly of the smaller size. Each of the second portions 44 of the connectors attached to the faceplate 12 in the relative positions shown in FIG. 13 are positioned to be inserted inside the side walls of the damper assembly base in attaching the faceplate to the damper assembly. In removably attaching the framed faceplate 12 with the removably attached connectors 14 to a damper assembly, the faceplate is first positioned over the damper assembly of the appropriate size, i.e., a larger or smaller damper assembly, with the connector second portions 44 positioned just above the projections on the interior surfaces of the damper assembly side walls. The faceplate 12 and attached connectors 14 are then moved downwardly toward the damper assembly inserting the four connector second portions 44 inside the damper assembly side walls. The tapered portions 72 of the front walls 66 of the connector second portions slide over the projections or pawls of the damper assembly causing the connector second portions 44 to resiliently flex inwardly relative to the first portions 42 and the faceplate 12. When the tapered portions 72 pass over the damper assembly projections, the connector second portions 44 snap back into their original positions relative to the first portions 42 as shown in FIGS. 8 and 9, with the damper assembly projection being received in the connector second portion opening 76. In this way, the connector second portion opening 76 acts as a recess that receives the damper assembly projection to removably attach each connector 14 to the damper assembly projection, and removably attach the faceplate 12 to the damper assembly. Although the present invention has been described above by reference to specific embodiments, it should be understood that modifications and variations of the invention may be constructed without departing from the scope of the invention defined in the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>(1) Field of the Invention The present invention pertains to a register assembly that can be used to cover duct openings that supply a flow of heated or cooled air to a room of a structure, and can also be used to cover duct openings that receive return air from the room. In particular, the register assembly is comprised of a framed faceplate, a plurality of damper assemblies of different sizes, and a plurality of connectors that are adjustably connected to the faceplate to adapt the faceplate to each different size of damper assembly. (2) Description of the Related Art Very often in the heating and cooling systems of structures, and in particular residential structures, the network of air ducts that supply heated or cooled air to the different structures are constructed in various different sizes. This at times will result in the duct openings that supply air through openings cut in the floors and walls of the structure to be of different sizes. This does not often occur in individual home constructions, but it can be found that homes constructed in different years or by different construction contractors will have air duct openings that are of different sizes. For example, air duct openings of 2.25″×10″, 2.25″×12″, 3″×10″, 4″×10″, 4″×12″, and 4″×14″ are common. The existence of air duct openings of different sizes makes choosing a register assembly for an existing home, or supplying register assemblies for a home under construction difficult. Not only must a desirable design for the register faceplate be chosen, but care must be taken to ensure that the register assembly is properly sized to fit the particular duct opening of the home. This requires that the air duct openings be carefully measured, and the properly dimensioned register assembly be obtained to fit each air duct opening.
<SOH> SUMMARY OF THE INVENTION <EOH>The register assembly with the adjustable faceplate connectors of the present invention overcomes the disadvantages associated with the different sized air duct openings of homes and other structures. The register assembly of the invention is comprised of a framed faceplate, a plurality of damper assemblies that are each dimensioned to fit the duct opening dimensions commonly used in building construction, and a plurality of connectors that are adjustably fit to the faceplate to enable the removable attachment of the faceplate to each of the different sized damper assemblies. The one faceplate is dimensioned to cover the various different sizes of duct openings. The outer peripheral border of the faceplate is dimensioned sufficiently large to extend beyond the perimeter dimensions of each of the commonly used duct openings. One or more holes are provided through the faceplate to provide the free flow of air through the faceplate. A variety of different faceplates could be provided with the holes of the faceplate cut in a variety of different patterns. A plurality of different damper assemblies are provided, each being dimensioned to match the damper assembly with a particular size of duct opening. Each damper assembly is constructed with a base having four side walls that surround a center opening through the base. Examples of damper assemblies are disclosed in the U.S. Patents of Berger U.S. Pat. No. 6,309,297 B1 and U.S. Pat. No. 6,506,113 B2, the disclosures of each patent being incorporated herein by reference. Each damper assembly base contains one or more louvers that are movable relative to the base to control the flow of air through the damper assembly. The plurality of connectors are each adapted to attach the faceplate to each of the different sizes of damper assemblies. Each of the connectors are identical in construction, reducing their cost to manufacture. Each of the connectors are removably attachable to the faceplate and are removably attachable to each of the different sized damper assemblies without the use of separate fasteners. Thus, the entire register assembly can be assembled without separate threaded fasteners. The connectors are removably attachable to the faceplate in a variety of adjusted positions. In each of the adjusted positions of the connectors relative to the faceplate, the connectors adapt the faceplate for removable attachment to one of the various different sizes of damper assemblies. Thus, for any particular duct opening, an appropriately dimensioned damper assembly is chosen. A faceplate is chosen that has a desirable pattern of openings. The damper assembly is assembled over the air duct opening. The plurality of connectors are then removably attached to the faceplate in a particular pattern of the connectors relative to the faceplate to enable the removable attachment of the faceplate to the chosen damper assembly. The damper assembly is then removably attached to the plurality of connectors, thereby removably attaching the damper assembly to the faceplate. In the manner discussed above, the register assembly of the invention is inexpensively and easily assembled over air duct openings of various different sizes. Thus, the register assembly of the invention simplifies the assembly of the air heating and cooling system and reduces the number of different parts needed to assemble the system, thereby reducing the cost of the systems assembly.
20041029
20060829
20060504
73380.0
F24F1308
0
BOLES, DEREK
REGISTER ASSEMBLY WITH ADJUSTABLE FACEPLATE CONNECTORS
SMALL
0
ACCEPTED
F24F
2,004
10,977,993
ACCEPTED
Device and method for continuously shuffling and monitoring cards
The present invention provides an apparatus and method for moving playing cards from a first group of cards into a second group of cards, wherein the second group of cards is randomly arranged or shuffled. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for moving the stack, a card-moving mechanism between the card receiver and the stack for moving cards one at a time into a selected one of the compartments, another card moving mechanism for moving cards from one of the compartments to a second card receiver and a microprocessor that controls the card-moving mechanisms and the elevator. A count of cards within specified areas of the card handling system is maintained and card handling is halted and all cards counted by adding a count of all cards not within the specified areas to the total of cards counted within the specified areas.
1. An apparatus for continuously shuffling playing cards, said apparatus comprising: a card receiver for receiving a first group of cards; a single moveable stack of card-receiving compartments generally adjacent to the card receiver, and means for moving the stack; a card-moving mechanism between the card receiver and the stack; a processing unit that controls the card-moving mechanism and the means for relatively moving the stack with respect to the card receiver so that cards placed in the card receiver are moved into a selected number of compartments; a second card-moving mechanism between the stack and the second card receiver; a second card receiver for receiving cards from the compartments, and a counting system that counts cards when 1) passed from the card receiver to the stack of card-receiving compartments, and/or 2) passed from the stack of card-receiving compartments to the second card receiver. 2. The apparatus of claim 1 wherein the counting system also counts cards present in said second card receiver. 3. The apparatus of claim 1 wherein the system maintains a count of cards in the card-receiving stacks. 4. The apparatus of claim 2 wherein the system maintains a count of the total number of cards within the stack of card receiving compartments and the second card receiver. 5. The apparatus according to claim 1, further comprising a second card moving means for emptying the compartments into the second card receiver. 6. The apparatus according to claim 5, further comprising a card present sensor operably coupled to the second card receiver. 7. The apparatus according to claim 6, wherein cards are moved from the compartments into the second card receiver in response to a reading from the card present sensor. 8. A card handler comprising: a card staging area for receiving cards to be handled; a plurality of card-receiving compartments, the card staging area and the compartments are relatively movable; a card mover generally between the staging area and the compartments for moving a card from the staging area into one of the compartments; a microprocessor programmed to identify each card in the card staging area and to actuate the card mover to move an identified card to a randomly selected compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a compartment; a drive system responsive to the microprocessor for providing relative motion between the card mover and the compartments; and a counting system for counting cards within specified areas within the card handler. 9. The card handler of claim 8 wherein the counting system counts cards entering and leaving the plurality of card-receiving compartments. 10. The card handler of claim 8 wherein a card moving system is present to move cardsfrom the plurality of card-receiving compartments to a second card receiving area. 11. The card handler of claim 8 wherein the counting system counts cards entering and leaving the plurality of card-receiving compartments and cards entering and leaving the second card receiving area. 12. The card handler of claim 11 wherein the counting system maintains a rolling count of the cards within both the plurality of card-receiving compartments and the second card receiving area. 13. The card handler according to claim 12, further comprising inputs operably coupled to the microprocessor for inputting information into the microprocessor. 14. A playing card handler comprising: a stack of compartments for accumulating cards in at least one compartment; a microprocessor programmed to randomly select the compartment which receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a selected number of compartments; a card staging area for receiving a stack of cards to be handled, wherein the stack of compartments is movable with respect to the card staging area; card moving means responsive to output signals from the microprocessor for moving between the staging area and the stack of mixing compartments; a card mover for moving cards from the compartments to a second card receiver; and the microprocessor performing as a counting system for counting cards within specified areas within the card handler. 15. The apparatus according to claim 14, further comprising a data storage medium accessible by the processing unit, wherein the data storage medium has a program stored on it, and wherein the program is configured to cause the processing unit to cause the card moving means to move cards from the staging area to random compartments. 16. The apparatus according to claim 14, wherein the microprocessor monitors, records and controls a display for the use of the apparatus. 17. The apparatus of claim 14, further comprising at least one sensor for monitoring the movement of cards. 18. The apparatus according to claim 17, wherein the data storage medium is further configured to cause the processing unit to detect a card jam. 19. A method of substantially continuously resupplying randomly arranged cards, said method comprising the steps of: providing a card receiver for receiving cards to be processed; providing a single stack of card-receiving compartments generally adjacent to the card receiver and means for moving the stack relative to a card moving mechanism; providing a card-moving mechanism between the card receiver and the stack and moving cards from the card receiver to the card-receiving compartments; providing a second card receiver for receiving processed cards; providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and counting cards within specified areas within the card handler. 20. The method of claim 19 wherein cards are counted within the stack of card-receiving compartments. 21. The method of claim 20 wherein cards are counted within the stack of card-receiving compartments and the second card receiving area. 22. The method according to claim 20, further comprising provided a processing unit for controlling the card-moving mechanism and the means for moving the stack so that cards in the card receiver are moved into random compartments. 23. The method according to claim 22, further comprising using the microprocessor to designate each card and select a compartment for receiving each designated card. 24. The method according to claim 23, wherein the designation and selection is performed before card moving operations begin. 25. A device for delivering shuffled cards comprising: a card receiver for receiving at least one stack of unshuffled cards; a plurality of individual compartments; a first card mover for moving each card in the stack individually from the card receiver to a compartment; a second card mover for moving cards from a compartment to a second card receiver upon demand; and a processing unit programmed to control the first card mover and the second card mover, wherein the processing unit randomly assigns each card in the stack to a compartment, and controls the first card mover and the second card movers upon demand. 26. The method according to claim 25, wherein between seventeen and nineteen compartments are provided. 27. The method according to claim 25, wherein the group of cards comprises one or more decks of cards selected from the group consisting of a standard 52 card deck, a standard deck with one or more wild cards, a standard deck with one or more jokers, a special deck and a partial deck. 28. The method according to claim 25, wherein every card in the group is assigned to a compartment before the first card is delivered. 29. A method of performing a security check on a card handling system used at a gaming table comprising: providing a card receiver for receiving cards to be processed; providing a single stack of card-receiving compartments generally adjacent to the card receiver and means for moving the stack; providing a card-moving mechanism between the card receiver and the stack and moving cards from the card receiver to the card-receiving compartments; providing a second card receiver for receiving processed cards; providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and counting cards within specified areas within the card handler during a period wherein cards are moved within the card handling system; wherein card movement from the card receiving compartments to the second card receiver is halted, all cards in the area of the gaming table and the second card receiver are retrieved inserted into the card receiver for receiving cards to be processed, the cards inserted into the card receiver for receiving cards to be processed are counted as they move to the stack of card-receiving compartments, and adding the number of retrieved cards counted to the number of cards counted as within specified areas within the card handler to provide a final count of cards. 30. The method of claim 29 wherein a total number of cards to be used in the play of a game on the casino gaming table is identified to a microprocessor prior to starting play of the game. 31. The method of claim 30 wherein the final count of cards is compared to the total number of cards identified to the microprocessor prior to starting play of the game. 32. The method of claim 31 wherein only cards within the stack of card-receiving compartments are counted. The method of claim 31 wherein cards are counted within the stack of card-receiving compartments and the second card receiving area. 33. A card shuffling apparatus capable of delivering a continuous supply of shuffled cards on demand, the apparatus comprising: a card shuffling chamber for randomizing cards; a card receiver and feed mechanism for receiving and feeding unshuffled cards into the shuffling chamber; at least one sensor for sensing the presence of a card as the card is being fed into the shuffling chamber; at least one sensor for sensing the presence of a card as the card is being removed from the shuffling chamber; a mechanism for removing cards from the shuffling chamber on demand to provide a continuous supply of shuffled cards; a visual display; and a microprocessor, wherein the microprocessor is programmed to: receive signals from sensors and count cards entering and being removed from the shuffling chamber and to maintain a count of cards present in the shuffling chamber; receive instructions from an apparatus user to initiate a card counting process, wherein the card counting process includes discontinuing of operation of the card removal process, pausing until cards outside of the shuffling chamber are loaded into the feed mechanism, receiving an indication from the at least one sensor for sensing the presence of a card as the card is being fed into the shuffling chamber and the at least one sensor for sensing the presence of a card as the card is being removed from the shuffling chamber of an indication of current card count status on the visual display. 34. The apparatus of claim 33 wherein the indication from the at least one sensor for sensing the presence of a card as the card is being fed into the shuffling chamber and the at least one sensor for sensing the presence of a card as the card is being removed from the shuffling chamber indicates the number of cards added and removed from the shuffling chamber. 35. The apparatus of claim 33 wherein the shuffling chamber comprises a plurality of mixing compartments, wherein the mixing compartments move relative to the card feeding mechanism. 36. The apparatus of claim 33 wherein the mechanism for providing access to a continuous supply of cards comprises a shoe. 37. The apparatus of claim 33 wherein the indication of card count status comprises a card count. 38. The apparatus of claim 33 wherein the indication of card count status comprises an error signal. 39. A method of performing a security check on an automatic card handling system comprising: Providing a card shuffling chamber; Providing a feed mechanism for delivering cards to the card shuffling chamber; Providing an unloading mechanism for removing cards from the shuffling chamber; Maintaining a current count of cards in the card shuffling chamber; Halting the card shuffling process; Loading all cards outside of the shuffling chamber into the shuffling chamber; Counting cards loaded into the shuffling chamber after halting the shuffling process; and Displaying a sum of the number of cards present in the shuffling chamber prior to halting and the cards loaded into the shuffling chamber after halting. 40. An apparatus for continuously shuffling playing cards, said apparatus comprising: a card receiver for receiving a first group of cards; a single stack of card-receiving compartments generally adjacent to the card receiver, said stack generally vertically movable, and means for moving the stack; a card-moving mechanism between the card receiver and the stack; a processing unit that controls the card-moving mechanism and the means for moving the stack so that cards placed in the card receiver are moved into a selected number of compartments; and a second card receiver for receiving cards from the compartments the card receiver for receiving the first group of cards supporting the cards so that gravity applies a force against the cards and maintains an inter-operative position between the cards and the card moving mechanism.
RELATED APPLICATIONS This application is a continuation-in-part of U.S. patent application Ser. No. 09/060,598, filed 15 Apr. 1998 and Titled “DEVICE AND METHOD FOR CONTINUOUSLY SHUFFLING CARDS.” BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, it relates to an electromechanical machine for continuously shuffling playing cards, whereby a dealer has a substantially continuously readily available supply of shuffled cards for dealing and where cards may be monitored for security purposes during play of the game. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments and include card games wherein the symbols comprise familiar, common or standard playing cards. Card games such as twenty-one or blackjack, poker, poker variations, match card games and the like are excellent casino card games. Desirable attributes of casino card games are that they are exciting, that they can be learned and understood easily by players, and that they move or are played rapidly to their wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to maximize the amount of revenue generated by a game without changing games, without making obvious changes that indicate an increased hold by the house, particularly in a popular game, and without increasing the minimum size of wagers. One approach to maximizing revenue is speeding play. It is widely known that playing time is diminished by shuffling and dealing. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, reduce non-play time, thereby increasing the proportion of playing time to non-playing time, adding to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,515,367 (Howard) is an example of a batch-type shuffler. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 5,275,411 (Breeding) discloses a machine for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. U.S. Pat. No. 3,879,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,241,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. Nos. 5,584,483 and 5,676,372 (Sines et al.) describe batch type shufflers which include a holder for an unshuffled stack of cards, a container for receiving shuffled cards, a plurality of channels to guide the cards from the unshuffled stack into the container for receiving shuffled cards, and an ejector mounted adjacent to the unshuffled stack for reciprocating movement along the unshuffled stack. The position of the ejector is randomly selected. The ejector propels a plurality of cards simultaneously from a number of points along the unshuffled stack, through the channels, and into the container. A shuffled stack of cards is made available to the dealer. U.S. Pat. No. 5,695,189 (Breeding et al.) is directed to a shuffling machine for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Aside from increasing speed and playing time, some shuffler designs have provided added protection to casinos. For example, one of the Breeding (similar to that described in U.S. Pat. No. 5,275,411) shufflers is capable of verifying that the total number of cards in the deck has not changed. If the wrong number of cards are counted, the dealer can call a misdeal and return bets to players. A number of shufflers have been developed which provide a continuous supply of shuffled cards to a player. This is in contrast to batch type shuffler designs of the type described above. The continuous shuffling feature not only speeds the game, but protects casinos against players who may achieve higher than normal winnings by counting cards or attempting to detect repeated patterns in cards from deficiencies of randomization in single batch shufflers. An example of a card game in which a card counter may significantly increase the odds of winning by card counting or detecting previously occurring patterns or collections of cards is Blackjack. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses a continuous automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The Lorber shuffler counts the number of cards in the storage device prior to assigning cards to be fed to a particular location. The Samsel, Jr. patent (U.S. Pat. No. 4,513,969) discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. U.S. Pat. No. 5,382,024 (Blaha) discloses a continuous shuffler having a unshuffled card receiver and a shuffled card receiver adjacent to and mounted for relative motion with respect to the unshuffled card receiver. Cards are driven from the unshuffled card receiver and are driven into the shuffled card receiver forming a continuous supply of shuffled cards. However, the Blaha shuffler requires specially adapted cards, particularly, plastic cards, and many casinos have demonstrated a reluctance to use such cards. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically and continuously shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 4,770,421 (Hoffman) discloses a continuous card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a fixed number of distribution schedules is provided for distributing cards into a number of pockets. The microprocessor sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the cards have been through a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are moved onto the second elevator. The Hoffman patent does not disclose randomly selecting a pocket for delivering each card. Nor does the patent disclose a single stage process which randomly arranges cards into a degree of randomness satisfactory to casinos and players. Although the Hoffman shuffler was commercialized, it never achieved a high degree of acceptance in the industry. Card counters could successfully count cards shuffled in the device, and it was determined that the shuffling of the cards was not sufficiently random. U.S. Pat. No. 5,683,085 (Johnson) describes a continuous shuffler which includes a chamber for supporting a main stack of cards, a loading station for holding a secondary stack of cards, a stack gripping separating mechanism for separating or cutting cards in the main stack to create a space and a mechanism for moving cards from the secondary stack into the spaces created in the main stack. U.S. Pat. No. 4,659,082 (Greenberg) discloses a carousel type card dispenser including a rotary carousel with a plurality of card compartments around its periphery. Cards are injected into the compartments from an input hopper and ejected from the carousel into an output hopper. The rotation of the carousel is produced by a stepper motor with each step being equivalent to a compartment. In use, the carousel is rotated past n slots before stopping at the slot from which a card is to be ejected. The number n is determined in a random or near random fashion by a logic circuit. There are 216 compartments to provide for four decks and eight empty compartments when all the cards are inserted into compartments. An arrangement of card edge grasping drive wheels are used to load and unload the compartments. U.S. Pat. No. 5,356,145 (Verschoor) discloses another card shuffler involving a carousel or “rotatable plateau.” The Verschoor shuffler has a feed compartment and two card shuffling compartments which each can be placed in first and second positions by virtue of a rotatable plateau on which the shuffling compartments are mounted. In use, once the two compartments are filled, a drive roller above one of the shuffling compartments is actuated to feed cards to the other compartment or to a discharge means. An algorithm determines which card is supplied to the other compartment and which is fed to the discharge. The shuffler is continuous in the sense that each time a card is fed to the discharge means, another card is moved from the feed compartment to one of the shuffling compartments. U.S. Pat. No. 4,969,648 (Hollinger et al.) discloses an automatic card shuffler of the type that randomly extracts cards from two or more storage wells. The shuffler relies on a system of solenoids, wheels and belts to move cards. Cards are selected from one of the two wells on a random basis so a deck of intermixed cards from the two wells is provided in a reservoir for the dealer. The patent is principally directed to a method and apparatus for detecting malfunctions in the shuffler, which at least tends to indicate that the Hollinger et al. shuffler may have some inherent deficiencies, such as misalignments of extraction mechanisms. The size of the buffer supply of shuffled cards in the known continuous shufflers is large, i.e., 40 or more cards in the case of the Blaha shuffler. The cards in the buffer cannot include cards returned to the shuffler from the previous hand. This undesirably gives the player some information about the next round. Randomness is determined in part by the recurrance rate of a card previously played in the next consecutively dealt hand. The theoretical recurrence rate for known continuous shufflers is believed to be about zero percent. A completely random shuffle would yield a 13.5% recurrance rate using four decks of cards. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none describes a device and method for providing a continuous supply of shuffled cards with the degree of randomness and reliability required by casinos until the filing of copending U.S. patent application Ser. No. 09/060,598. That device and method continuously shuffles and delivers cards with an improved recurrence rate and improves the acceptance of card shufflers and facilitate the casino play of card games. BRIEF SUMMARY OF THE INVENTION The present invention provides an electromechanical card handling apparatus and method for continuously shuffling cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in handling or sorting sheet material generally. In one embodiment, the present invention provides an apparatus for moving playing cards from a first group of unshuffled cards into shuffled groups of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that the cards are moved into a number of randomly selected compartments. Sensors act to monitor and to trigger operation of the apparatus, card moving mechanisms, and the elevator and also provide information to the microprocessor. The controlling microprocessor, including software, selects or identifies where cards will go as to the selected slot or compartment before card handling operations begin. For example, a card designated as card 1 may be directed to slot 5, a card designated as card 2 may be directed to slot 7, a card designated as card 3 may be directed to slot 3, etc. An advantage of the present invention is that it provides a programmable card-handling machine with a display and appropriate inputs for controlling and adjusting the machine. Additionally, there may be an elevator speed adjustment and sensor to adjust and monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing or eliminating the number of back up machines or units required at a casino. Since it is customary in the industry to provide free backup machines, a reduction in the number of backup machines needed presents a significant cost savings. The display may include a use rate and/or card count monitor and display for determining or monitoring the usage of the machine. Another advantage of the present invention is that it provides an electromechanical playing card handling apparatus for automatically and randomly generating a continuous supply of shuffled playing cards for dealing. Other advantages are a reduction of dealer shuffling time, and a reduction or elimination of security problems such as card counting, possible dealer manipulation and card tracking, thereby increasing the integrity of a game and enhancing casino security. Yet another advantage of the card handling apparatus of the present invention is that it converts a single deck, multiple decks, any number of unshuffled cards or large or small groups of discarded or played cards into shuffled cards ready for use or reuse in playing a game. To accomplish this, the apparatus includes a number of stacked or vertically oriented card receiving compartments one above another into which cards are inserted, one at a time, so a random group of cards is formed in each compartment and until all the cards loaded into the apparatus are distributed to a compartment. Upon demand, either from the dealer or a card present sensor, or automatically, the apparatus delivers one or more groups of cards from the compartments into a dealing shoe for distribution to players by the dealer. The present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Another advantage is that the apparatus of the present invention provides for the initial top feeding or loading of an unshuffled or discarded group of cards thereby facilitating use by the dealer. The shuffled card receiving shoe portion is adapted to facilitate use by a dealer. An additional advantage of the card handling apparatus of the present invention is that it facilitates and speeds the play of casino wagering games, particularly those games wherein multiple decks of cards are used in popular, rapidly played games (such as twenty-one or blackjack), making the games more exciting for players. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled new or played group of cards into a group of shuffled or reshuffled cards available to a dealer for distribution to players. The first step of this process is the dealer placing an initial group of cards, comprising unshuffled or played cards, into the card receiver of the apparatus. The apparatus is started or starts automatically by sensing the presence of the cards and, under the control of the integral microprocessor, it transfers the initial group of cards, randomly, one at a time, into a plurality of compartments. Groups of cards in one or more compartments are delivered, upon the dealer's demand or automatically, by the apparatus from that compartment to a card receiving shoe for the dealer to distribute to a player. According to the present invention, the operation of the apparatus is continuous. That is, once the apparatus is turned on, any group of cards loaded into the card receiver will be entirely processed into one or more groups of random cards in the compartments. The software assigns an identity to each card and then directs each identified card to a randomly selected compartment by operating the elevator motor to position that randomly selected compartment to receive the card. The cards are unloaded in groups from the compartments, a compartment at a time, as the need for cards is sensed by the apparatus. Thus, instead of stopping play to shuffle or reshuffle cards, a dealer always has shuffled cards available for distribution to players. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly and set up costs. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and outside the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be counted with minimum game interruption. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. A novel gravity feed/diverter system is described to reduce the potential for jamming and reducing the chance for multiple cards to be fed from a card feeder into selected card receiving compartments. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front perspective view depicting the apparatus of the present invention as it might be disposed ready for use in a casino on a gaming table. FIG. 2 is a perspective view, partially broken away, depicting the rear of the apparatus of the present invention. FIG. 3 is a front perspective view of the card handling apparatus of the present invention with portions of the exterior shroud removed. FIG. 4 is a side elevation view of the present invention with the shroud and other portions of the apparatus removed to show internal components. FIG. 5 is a side elevation view, largely representational, of the transport mechanism and rack assembly of the apparatus of the present invention. FIG. 5a is an expanded side elevation view of a shelf as shown in FIG. 5, showing more detail of the rack assembly, particularly the shelves forming the top and bottom of the compartments of the rack assembly. FIG. 6 is an exploded assembly view of the transport mechanism shown in FIG. 5. FIG. 7 is a top plan view, partially in section, of the transport mechanism. FIG. 8 is a top plan view of one embodiment of the pusher assembly of the present invention. FIG. 8a is a perspective view of a pusher assembly of the present invention. FIG. 9 is a front elevation view of the rack and elevator assembly. FIG. 10 is an exploded assembly view of one embodiment of a portion of the rack and elevator assembly. FIG. 11 depicts an alternative embodiment of the shelves or partitions for forming the stack of compartments of the present invention. FIG. 12 is a simplified side elevation view, largely representational, of the card handler of the present invention. FIG. 13 is a perspective view of a portion of the card handling apparatus of the present invention, namely, the second card receiver at the front of the apparatus, with a cover portion of the shroud removed. FIG. 14 is a schematic diagram of an electrical control system for one embodiment of the present invention. FIG. 15 is a schematic diagram of the electrical control system. FIG. 16 is a schematic diagram of an electrical control system with an optically-isolated bus. FIG. 17 is a detailed schematic diagram of a portion of FIG. 16. FIG. 18 is a side elevational view of a device that prevents the dealer from pushing cards in the output shoe back into the card way. FIG. 19 a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed. DETAILED DESCRIPTION This detailed description is intended to be read and understood in conjunction with appended Appendices A and B, which are incorporated herein by reference. Appendix A provides an identification key correlating the description and abbreviation of certain motors, switches and photoeyes or sensors with reference character identifications of the same components in the Figures, and gives the manufacturers, addresses and model designations of certain components (motors, limit switches and sensors). Appendix B outlines steps in a homing sequence, part of one embodiment of the sequence of operations. With regard to means for fastening, mounting, attaching or connecting the components of the present invention to form the apparatus as a whole, unless specifically described as otherwise, such means are intended to encompass conventional fasteners such as machine screws, rivets, nuts and bolts, toggles, pins and the like. Other fastening or attachment means appropriate for connecting components include adhesives, welding and soldering, the latter particularly with regard to the electrical system of the apparatus. All components of the electrical system and wiring harness of the present invention are conventional, commercially available components unless otherwise indicated, including electrical components and circuitry, wires, fuses, soldered connections, chips, boards and control system components. Generally, unless specifically otherwise disclosed or taught, the materials for making the various components of the present invention are selected from appropriate materials such as metal, metallic alloys, ceramics, plastics, fiberglass and the like, and components and materials may be similar to or adapted from components and material used to make the card handling apparatus disclosed and described in copending application Ser. No. 09/060,627, entitled “Device and Method For Forming Hands of Randomly Arranged Cards”, filed on Apr. 15, 1998 and incorporated herein by reference. In the following description, the Appendices and the claims, any references to the terms right and left, top and bottom, upper and lower and horizontal and vertical are to be read and understood with their conventional meanings and with reference to viewing the apparatus generally from the front as shown in FIG. 1. Referring then to the Figures, particularly FIGS. 1, 3 and 4, the card handling apparatus 21 of the present invention includes a card receiver 26 for receiving a group of cards to be randomized or shuffled, a single stack of card-receiving compartments 28 (see FIGS. 4 and 9) generally adjacent to the card receiver 26, a card moving or transporting mechanism 30 (see FIGS. 3 and 4) between and linking the card receiver 26 and the compartments 28, and a processing unit, indicated generally at 54 in FIG. 3, that controls the apparatus 21. The apparatus 21 includes a second card mover 192 (see FIGS. 4, 8 and 8a) for emptying the compartments 28 into a second card receiver 36. Referring to FIGS. 1 and 2, the card handling apparatus 21 includes a removable, substantially continuous exterior housing shroud 40. The shroud 40 may be provided with appropriate vents 42 for cooling. The card receiver or initial loading region, indicated generally at 26 is at the top, rear of the apparatus 21, and the second card receiver 36 is at the front of the apparatus 21. Controls and/or display features 32 are generally at the rear or dealer-facing side of the machine 21. FIG. 2 provides a view of the rear of the apparatus 21 and more clearly shows the display and control inputs and outputs 32, including power input and communication port 46. FIG. 3 depicts the apparatus 21 with the shroud 40 removed, as it might be for servicing or programming, whereby internal components may be visualized. The apparatus includes a generally horizontal frame floor 50 for mounting and supporting operational components. A control (input and display) module 56 is cantilevered at the rear of the apparatus 21, and is operably connected to the operational portions of the apparatus 21 by suitable wiring or the like. The control module 56 may carry the microprocessor (not shown), or the microprocessor is preferably located on processing unit 54 on the frame 50 inside the shroud 40. The inputs and display portion 44 of the module 56 are fitted to corresponding openings in the shroud 40, with associated circuitry and programming inputs located securely with the shroud 40 when it is in place as shown in FIGS. 1 and 2. In addition, the present invention generically and specifically a card handler or shuffling device comprising: a card staging area for receiving cards to be handled; a plurality of card-receiving compartments, the card staging area (and a card mover) and the compartments are relatively movable; a card mover generally between the staging area and the compartments for moving a card from the staging area into one of the compartments; a microprocessor programmed to identify each card in the card staging area and to relatively actuate the card mover to move an identified card to a randomly selected compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a compartment; a drive system responsive to the microprocessor for relatively moving the compartments; and a counting system for counting cards within specified areas within the card handler. The terms “relatively actuate” and relatively move” are used in this description to emphasize the point that there should be relative movement between the compartments and the card mover/card staging area. Relative movement may be caused by movement of the rack of compartments only, movement of the card mover only, or by movement of both the rack of compartments and the card mover/staging area. The alignment of the card feeder and the feeding of the card may be done as separate (in time) steps or as contemporaneous steps, with either the feeder (card mover) moving and being fed a card at the same time or having the card fed at a distinct time from the moving of the feeder (card mover). The card handler counting system preferably counts cards entering and leaving the plurality of card-receiving compartments. There may be present a card moving system to move cards from the plurality of card-receiving compartments to a second card receiving area. The card handler may have the counting system count cards entering and leaving the plurality of card-receiving compartments and cards entering and leaving the second card receiving area, and the counting system may maintain a rolling count of the cards within both the plurality of card-receiving compartments and the second card receiving area. This format could use inputs operably coupled to the microprocessor for inputting information into the microprocessor. A playing card handler according to the present invention may also comprise: a stack of compartments for accumulating cards in at least one compartment; a microprocessor programmed to randomly select the compartment which receives each card in a manner sufficient to accomplish randomly arranging the cards in each compartment, wherein the microprocessor is programmable to deliver a selected number of cards to a selected number of compartments; a card staging area for receiving a stack of cards to be handled, wherein the stack of compartments and the card staging area are movable relative to each other, by any one being independently movable or by both being movable; card moving means responsive to output signals from the microprocessor for moving between the staging area and the stack of mixing compartments; a card mover for moving cards from the compartments to a second card receiver; and the microprocessor performing as a counting system for counting cards within specified areas within the card handler. This apparatus may further comprise a data storage medium accessible by the processing unit, wherein the data storage medium has a program stored on it, and wherein the program is configured to cause the processing unit to cause the card moving means to move cards from the staging area to random compartments. The microprocessor may monitor, record and control a display for the use of the apparatus. The apparatus may further comprise at least one sensor for monitoring the movement of cards and the data storage medium may be further configured to cause the processing unit to detect a card jam. A method according to the present invention for substantially continuously replenishing a group of processed cards may comprise: providing a card receiver for receiving cards to be processed; providing a single stack of card-receiving compartments generally adjacent to the card receiver and means for moving the stack relative to a card moving mechanism; providing a card-moving mechanism between the card receiver and the stack for moving cards from the card receiver to the card-receiving compartments; providing a second card receiver for receiving processed cards; providing a second card moving mechanism for moving cards from the compartments to the second card receiver; and counting cards within specified areas within the card handler. Card Receiver Referring to FIGS. 3 and 4, the card receiver or loading region 26 includes a card receiving well 60. The well 60 is defined by upright, generally parallel card guiding side walls 62 and a rear wall 64. It includes a floor surface 66 pitched or angled downwardly toward the front of the apparatus 21. Preferably, the floor surface is pitched from the horizontal at an angle ranging from approximately five to twenty degrees, with a pitch of seven degrees being preferred. A removable, generally rectangular weight or block 68 is freely and slidably received in the well 60 for free forward and rearward movement along the floor surface 66. Under the influence of gravity, the block 68 will tend to move toward the forward end of the well 60. The block 68 has an angled, card-contacting front face 70 for contacting the back (i.e., the bottom of the bottommost card) of a group of cards placed into the well, and urges cards (i.e., the top card of a group of cards) forward into contact with the card transporting mechanism 30. The card-contacting face 70 of the block 68 is at an angle complimentary to the floor surface 66 of the well 60, for example, an angle of between approximately 10 and 80 degrees, and preferably at an angle of 40 degrees. This angle and the weight of the block keep the cards urged forwardly against the transport mechanism 30. The selected angle of the floor 66 and the weight of the block 68 allow for the free floating rearward movement of the cards and the block 68 to compensate for the rearward force and movement generated as the top or forwardmost card contacts the transport mechanism 30 and begins to move. The well 60 includes a card present sensor 74 to sense the presence or absence of cards in the well 60. Preferably, the block 68 is mounted on a roller 69 for easing the movement of the block 68, and/or the floor 66 and the bottom of the block may be formed of or coated with friction reducing material. As shown in FIG. 6, the block 68 may have a thumb or finger receiving notch 71 to facilitate moving it. Card Receiving Compartments The assembly or stack of card receiving compartments 28 is depicted in FIGS. 4, 9 and 10, and may also be referred to as a rack assembly. Referring back to FIG. 3, the rack assembly 28 is housed in an elevator and rack assembly housing 78 generally adjacent to the well 60, but horizontally spaced therefrom. An elevator motor 80 is provided to position the rack assembly 28 vertically under control of a microprocessor, in one embodiment, generally part of the processing unit 54. The motor 80 is linked to the rack assembly 28 by a continuous resilient member such as a timing belt 82. Referring to FIG. 10, which depicts a portion of the rack assembly 28 and how it may be assembled, the rack assembly 28 includes a bottom plate 92, a left hand rack 94 carrying a plurality of half shelves 96, a right hand rack 98 including a plurality of half shelves 100 and a top plate 102. Together the right and left hand racks 94, 98 and their respective half shelves 96, 100 form the individual plate-like shelf pieces 104 for forming the top and bottom walls of the individual compartments 106. The rack assembly 28 is operably mounted to the apparatus 21 by a left side rack plate 107 and a linear guide 108. It is attached to the guide by a guide plate 110. The belt 82 links the motor 80 to a pulley 112 for driving the rack assembly 28 up and down. A hall effect switch assembly 114 is provided to sense the bottom position of the rack assembly 28. FIG. 9 depicts a rack assembly 28 having 19 individual compartments 106 for receiving cards. Generally speaking, a larger number of individual compartments is preferred over fewer compartments, with 17 to 19 compartments being most preferred for randomizing four decks of cards, but it should be understood that the present invention is not limited to a rack assembly of seventeen to nineteen compartments. Preferably, the compartments 106 are all substantially the same size, i.e., the shelves 104 are substantially equally vertically spaced from each other. FIG. 7 shows, in part, a top plan view of one of the shelf members 104 and that each includes a pair of rear tabs 124 located at respective rear corners of the shelf member 104. The tabs 124 are for card guiding, and help make sure cards are moved from the transporting mechanism 30 into the rack assembly 28 without jamming by permitting the leading edge of the card to be guided downwardly into the compartment 106 before the card is released from the card moving mechanism 30. Generally, it is desirable to mount the shelves as close to the transporting mechanism 30 as possible. FIG. 11 depicts an alternative embodiment of plate-like shelf members 104 comprising a single-piece plate member 104′. An appropriate number of the single-piece plates, corresponding to the desired number of compartments 106 would be connected between the side walls of the rack assembly 28. The plate 104′ depicted in FIG. 11 includes a curved or arcuate edge portion 126 on the rear edge 128 for removing cards or clearing jammed cards, and it includes the two bilateral tabs 124, also a feature of the shelf members 104 of the rack assembly 28 depicted in FIG. 7. The tabs 124 act as card guides and permit the plate-like shelf members 104 forming the compartments 106 to be positioned as closely as possible to the card transporting mechanism 30 to ensure that cards are delivered correctly into a compartment 106 even though they may be warped or bowed. Referring back to FIG. 5, an advantage of the plates 104 (and/or the half plates 96, 100) forming the compartments 106 is depicted. As shown in more detail in FIG. 5a, each plate 104 includes a beveled or angled underside rearmost surface 130 in the space between the shelves or plates 104, i.e., in each compartment 106. Referring to FIG. 5, the distance between the forward edge 134 of the plate 104 and the forward edge 132 of the bevel 130 is preferably less than the width of a typical card. The leading edge 136 of a card being driven into a compartment 106 hits the beveled surface 130 and falls down on the top of cards already in the compartment 106 so that it comes to rest properly in the compartment 106 or on the uppermost card of cards already delivered to the compartment. To facilitate a bevel 130 at a suitable angle 137, a preferred thickness for the plate-like shelf members 104 is approximately {fraction (3/32)} of an inch, but this thickness and/or the bevel angle can be changed or varied to accommodate different sizes of cards, such as poker and bridge cards. Preferably, the bevel angle 137 is between approximately ten and 45 degrees, and more preferably is between approximately fifteen and twenty degrees. Whatever bevel angle and thickness is selected, it is preferred that cards C should come to rest with their trailing edge at least even with and, preferably rearward of edge 132 of the plate-like shelf members 104. The front of the rack assembly 28 is closed by a removable cover 142, which may be formed of opaque, transparent or semi-transparent material such as suitable metal or plastic. Card Moving Mechanism Referring to FIGS. 4, 5 and 6, a preferred card transporting or moving mechanism 30 lining the card receiving well 60 and the compartments 106 of the rack assembly 28 includes a card pickup roller assembly 150. The card pick-up roller assembly 150 is located generally at the forward portion of the well 60. The pick-up roller assembly 150 includes friction rollers 151A, 151B supported by a bearing mounted axle 152 extending generally across the well 60 whereby the card contacting surface of the roller is in close proximity to the forward portion of the floor surface 66. The roller assembly 150 is driven by a pick up motor 154 operably coupled to the axle 152 by a suitable continuous connector 156 such as a belt or chain. The card-contacting surface of the roller may be generally smooth, it may be textured or it may include one or more finger or tab-like extensions, as long as card gripping and moving is not impaired. With continued reference to FIGS. 4, 5 and 6, the preferred card moving mechanism 30 includes a pinch roller card accelerator or speed-up system 160 located adjacent to the front of the well 60 generally between the well 60 and the rack assembly 28 forwardly of the pick-up roller assembly 150. As shown in FIG. 7, it is the speed-up system 160 which nests close to the shelves 104 between the tabs 124 of the shelves. Referring back to FIGS. 4, 5 and 6, the speed-up system 160 comprises a pair of axle supported, closely adjacent speed-up rollers, one above the other, including a lower roller 162 and an upper roller 164. The upper roller 164 may be urged toward the lower roller 162 by a spring assembly 166 (FIG. 4) or the roller 162 and 164 may be fixed in slight contact or near to contact and formed of a generally firm yet resilient material which gives just enough to admit a card. Referring to FIG. 4, the lower roller 162 is a driven by a speed-up motor 166 operably linked to it by a suitable connector 168 such as a belt or a chain. The mounting for the speed-up rollers also supports a rearward card in sensor 172 and a forward card out sensor 176. FIG. 5 is a largely representational view depicting the relationship between the card receiving well 60 and the card transporting mechanism 30, and also shows a card C being picked up by the pickup roller assembly 150 and being moved into the pinch roller system 160 for acceleration into a compartment 104 of the rack assembly 28. In one embodiment, the pick-up roller assembly 150 is not continuously driven, but rather indexes and includes a one-way clutch mechanism. After initially picking up a card and advancing it into the speed-up system 160, the pick-up roller motor 154 stops when the leading edge of a card hits the card out sensor 176, but the roller assembly 150 free-wheels as a card is accelerated from under it by the speed-up system 160. In one embodiment, the speed-up pinch system 160 is continuous in operation once a cycle starts. When the trailing edge of the card passes the card out sensor 176, the rack assembly 28 moves the next designated compartment into place for receiving a card. The pick up motor 154 then reactuates. Additional components and details of the transport mechanism 30 are depicted in FIG. 6, an exploded assembly view thereof. In FIG. 6 the inclined floor surface 66 of the well 60 is visible, as are the axle mounted pickup and pinch roller assemblies 150, 160, respectively, and their relative positions. Referring to FIGS. 4 and 5, the transport assembly 30 includes a pair of generally rigid stopping plates including an upper stop plate and a lower stop plate 180, 182, respectively. The plates 180, 182 are fixedly positioned between the rack assembly 28 and the speed-up system 160 immediately forward of and above and below the pinch rollers 162, 164. The stop plates 180, 182 stop the cards from rebounding or bouncing rearwardly, back toward the pinch rollers, after they are driven against and contact the cover at the front of the rack assembly 28. Processing/Control Unit FIG. 14 is a block diagram depicting an electrical control system which may be used in one embodiment of the present invention. The control system includes a controller 360, a bus 362, and a motor controller 364. Also represented in FIG. 14 are inputs 366, outputs 368, and a motor system 370. The controller 360 sends signals to both the motor controller 364 and the outputs 368 while monitoring the inputs 366. The motor controller 364 interprets signals received over the bus 362 from the controller 360. The motor system 370 is driven by the motor controller 364 in response to the commands from the controller 360. The controller 360 controls the state of the outputs 368 by sending appropriate signals over the bus 362. In a preferred embodiment of the present invention, the motor system 370 comprises motors that are used for operating components of the card handling apparatus 21. Motors operate the pick-up roller, the pinch, speed-up rollers, the pusher and the elevator. The gate and stop may be operated by a motor, as well. In such an embodiment, the motor controller 364 would normally comprise one or two controllers and driver devices for each of the motor used. However, other configurations are possible. The outputs 368 include, for example, alarm, start, and reset indicators and inputs and may also include signals that can be used to drive a display device (e.g., a LED display—not shown). Such a display device can be used to implement a timer, a card counter, or a cycle counter. Generally, an appropriate display device can be configured and used to display any information worthy of display. The inputs 366 include information from the limit switches and sensors described above. Other inputs might include data inputted through operator or user controls. The controller 360 receives the inputs 366 over the bus 362. Although the controller 360 can be any digital controller or microprocessor-based system, in a preferred embodiment, the controller 360 comprises a processing unit 380 and a peripheral device 382 as shown in FIG. 16. The processing unit 380 in the preferred embodiment may be an 8-bit single-chip microcomputer such as an 80C52 manufactured by the Intel Corporation of Santa Clara, Calif. The peripheral device 382 may be a field programmable micro controller peripheral device that includes programmable logic devices, EPROMs, and input-output ports. As shown in FIG. 15, peripheral device 382 interfaces the processing unit 380 to the bus 362. The series of instructions stored in the controller 360 is shown in FIGS. 15 and 16 as program logic 384. In a preferred embodiment, the program logic 384 is RAM or ROM hardware in the peripheral device 382. (Since the processing unit 380 may have some memory capacity, it is possible that some of the instructions are stored in the processing unit 380.) As one skilled in the art will recognize, various implementations of the program logic 384 are possible. The program logic 384 could be either hardware, software, or a combination of both. Hardware implementations might involve hardwired code or instructions stored in a ROM or RAM device. Software implementations would involve instructions stored on a magnetic, optical, or other media that can be accessed by the processing unit 380. Under certain conditions, it is possible that a significant amount of electrostatic charge may build up in the card handler 21. Significant electrostatic discharge could affect the operation of the handler 21. It may, therefore, be helpful to isolate some of the circuitry of the control system from the rest of the machine. In one embodiment of the present invention, a number of optically-coupled isolators are used to act as a barrier to electrostatic discharge. As shown in FIG. 16, a first group of circuitry 390 can be electrically isolated from a second group of circuitry 392 by using optically-coupled logic gates that have light-emitting diodes to optically (rather than electrically) transmit a digital signal, and photo detectors to receive the optically transmitted data. An illustration of electrical isolation through the use of optically-coupled logic gates is shown in FIG. 17, which shows a portion of FIG. 16 in detail. Four Hewlett-Packard HCPL-2630 optocouplers (labeled 394, 396, 398 and 400) are used to provide an 8-bit isolated data path to the output devices 368. Each bit of data is represented by both an LED 402 and a photo detectors 404. The LEDs emit light when forward biased, and the photo detectors detect the presence or absence of the light. Data is thus transmitted without an electrical connection. Second Card Moving Mechanism Referring to FIGS. 4, 8 and 8a, the apparatus 21 includes a second card moving mechanism 34 comprising a reciprocating card unloading pusher 190. The pusher 190 includes a substantially flexible pusher arm 192 in the form of a rack having a plurality of linearly arranged apertures 194 along its length. The arm 192 is operably engaged with the teeth of a pinion gear 196 driven by an unloading motor 198 controlled by the microprocessor. At its leading or card contacting end, the pusher arm 192 includes a blunt, enlarged card-contacting head end portion 200. The end portion 200 is greater in height than the spacing between the shelf members 104 forming the compartments 106 to make sure that all the cards contained in a compartment are contacted and pushed as it is operated, even bowed or warped cards, and includes a pair outstanding guide tabs 203 at each side of the head 200 for interacting with the second card receiver 36 for helping to insure that the cards are moved properly and without jamming from the compartments 106 to the second card receiver 36. The second card moving mechanism 34 is operated periodically (upon demand) to empty stacks of cards from compartments, i.e., compartments which have received a complement of cards or a selectable minimum number of cards. Second Card Receiver When actuated, the second card moving mechanism 34 empties a compartment 106 by pushing cards therein into a second card receiver 36, which may take the form of a shoe-like receiver, of the apparatus 21. The second card receiver 36 is shown in FIGS. 1, 4, 14 and 16, among others. Referring to FIGS. 12 and 13, the second card receiver 36 includes a shoe-like terminal end plate 204 and a card way, indicated generally at 206, extending generally between the rack assembly 28 and the terminal end plate 204. When a compartment 106 is aligned with the card way 206, as shown in FIG. 12, the card way 206 may be thought of as continuous with the aligned compartment. Referring to FIG. 4, an optional cover operating motor 208 is positioned generally under the card way 206 for raising and lowering a powered cover 142 if such a cover is used. Referring back to FIGS. 4, 12 and 13, the card way 206 has a double curved, generally S-shaped surface and comprises a pair of parallel card guiding rails 210, 212, each having one end adjacent to the rack assembly 28 and a second end adjacent to the terminal end 204. Each rail 210, 212 has a card-receiving groove 213. A S-shaped card support 211 is positioned between the rails 210, 212 for supporting the central portion of a card or group of cards as it moves down the card way 206. A pair of card-biasing springs 215 are provided adjacent to the rails 210, 212 to urge the cards upwardly against the top of the grooves 213 to assist in keeping the all the cards in the group being moved into the second receiver 36 in contact with the pusher 190. The curves of the card way 206 help to guide and position cards for delivery between cards already delivered and the card-pushing block 214, which is generally similar to the block 68. The second curve portion 207 in particular helps position and align the cards for delivery between cards already delivered and the card pushing block 214. The second card receiver 36 is generally hollow, defining a cavity for receiving cards and for containing the mirror image rails 210, 212, the motor assembly 208 and a freely movable card pushing block 214. Referring to FIG. 12, the block 214 has an angled, front card contacting face 216, the angle of which is generally complementary to the angle of the terminal end plate 204. The block 214 has a wheel or roller 218 for contacting the sloping or angled floor 220 of the second card receiver 36 whereby the block moves freely back and forth. The free movement helps absorb or accommodate the force generated by the dealer's hand as he deals, i.e., the block 214 is free to bounce rearwardly. A suitable bounce limit means (such as a stop 221 mounted on the floor 220 or a resilient member, not shown) may be coupled near the block 214 to limit its rearward travel. Referring to FIG. 4, a suitable receiver empty sensor 222 may be carried by the terminal plate 204 at a suitable location, and a card jammed sensor 224 may be provided along the card way 206 adjacent to the guide rails 210, 212. The receiver empty sensor 222 is for sensing the presence or absence of cards. The sensor 223 senses the location of block 214 indicating the number of cards in the buffer, and may be operably linked to the microprocessor or directly to the pusher motor 198 for triggering the microprocessor to actuate the pusher 190 of the second transport assembly 34 to unload one or more groups of cards from the compartments 106. As depicted in FIG. 13, the terminal plate 204 may include a sloped surface 204′. The sloped surface 204′ has a raised portion closest to the terminal plate 204, and that portion fits generally under a notch 205′ in the terminal plate 204 for receiving a dealer's finger to facilitate dealing and to help preserve the flatness of the cards. The shoe 204′, the terminal plate 204 and a removable card way cover 209 may be formed as a unit, or as separable individual pieces for facilitating access to the inside of the second receiver 36. FIG. 12 is a largely representational view depicting the apparatus 21 and the relationship of its components including the card receiver 26 for receiving a group of new or played cards for being shuffled for play, including the well 60 and block 68, the rack assembly 28 and its single stack of card-receiving compartments 106, the card moving or transporting mechanism 30 between and linking the card receiver 26 and the rack assembly 28, the second card mover 190 for emptying the compartments 106 and the second receiver 36 for receiving randomized or shuffled cards. Operation/Use Appendix B outlines one embodiment of the operational steps or flow of the method and apparatus of the present invention. The start input is actuated and the apparatus 21 homes (see Appendix B). In use, played or new cards to be shuffled or reshuffled are loaded into the well 60 by moving the block 68 generally rearwardly or removing it. Cards are placed into the well 60 generally sideways, with the plane of the cards generally vertical, on one of the long side edges of the cards (see FIGS. 5 and 12). The block 68 is released or replaced to urge the cards into an angular position generally corresponding to the angle of the angled card contacting face of the block, and into contact with the pick-up roller assembly 150. As the cards are picked up, i.e., after the separation of a card from the remainder of the group of cards in the well 60 is started, a card is accelerated by the speed-up system 160 and spit or moved through a horizontal opening between the plates 180, 182 and into a selected compartment 106. Substantially simultaneously, movement of subsequent cards is underway, with the rack assembly 28 position relative to the cards being delivered by the transport mechanism 30 being selected and timed by the microprocessor whereby selected cards are delivered randomly to selected compartments until the cards in the well 60 are exhausted. In the unlikely event of a card jam during operation, for example, if one of the sensors is blocked or if the pusher hits or lodges against the rack assembly 28, the apparatus 21 may flow automatically or upon demand to a recovery routine which might include reversal of one or more motors such as the pick-up or speed-up motors, and/or repositioning of the rack assembly 28 a small distance up or down. Upon demand from the receiver sensor 222, the microprocessor randomly selects the compartment 106 to be unloaded, and energizes the motor which causes the pusher 190 to unload the cards in one compartment 106 into the second card receiver 36. The pusher is triggered by the sensor 222 associated with the second receiver 36. It should be appreciated that each cycle or operational sequence of the machine 21 transfers all of the cards placed in the well 60 each time, even if there are still cards in some compartments 106. In one embodiment, the apparatus 21 is programmed to substantially constantly maintain a “buffer” (see FIG. 12 wherein the buffer is depicted at “B”) of a selected number of cards, for example 20 cards, in the second receiver. A buffer of more or less cards may be selected. In operation, when sensor 74 detects cards present, the entire stack of unshuffled cards in the card receiver 26 is delivered one by one to the card receiving compartments 106. A random number generator is utilized to select the compartment which will receive each individual card. The microprocessor is programmed to skip compartments that hold the maximum number of cards allowed by the program. At any time during the distribution sequence, the microprocessor can be instructed to activate the unloading sequence. All compartments 106 are randomly selected. It is to be understood that because cards are being fed into and removed from the apparatus 21 on a fairly continuous basis, that the number of cards delivered into each compartment 106 will vary. Preferably, the microprocessor is programmed to randomly select the compartment 106 to be unloaded when more cards are needed. Most preferably, the microprocessor is programmed to skip compartments 106 having seven or fewer cards to maintain reasonable shuffling speed. It has been demonstrated that the apparatus of the present invention provides a recurrance rate of at least 4.3%, a significant improvement over known devices. In one exemplary embodiment, the continuous card shuffling apparatus 21 of the present invention may have the following specifications or attributes which may be taken into account when creating an operational program. Machine Parameters—4 Deck Model: 1. Number of compartments 106: variable between 13-19; 2. Maximum number of cards/compartment: variable between 10-14; 3. Initial number of cards in second card receiver: 20-24; 4. Theoretical capacity of the compartments: 147-266 cards (derived from the number of compartments x the preferred maximum number of cards/compartment); 5. Number of cards in the second card receiver 36 to trigger unloading of a compartment: variable between 6-10; 6. Delivery of cards from a compartment 106 is not tied to a predetermined number of cards in a compartment (e.g., a compartment does not have to contain 14 cards to be unloaded). The minimum number of cards to be unloaded may range from between 4 to 7 cards and it is preferred that no compartment 106 be completely full (i.e., unable to receive additional cards) at any time. In use, it is preferred that the apparatus 21 incorporates features, likely associated with the microprocessor, for monitoring and recording the number of cards in each group of cards being moved into the second card receiver 36, the number of groups of cards moved, and the total number of cards moved. In one embodiment, taking into account the above set forth apparatus attributes, the apparatus 21 may follow the following sequence of operations: Filling the Machine with Cards: 1. The dealer loads the well 60 with pre-shuffled cards; 2. Upon actuation, the apparatus 21 randomly loads the compartments 106 with cards from the well, one card at a time, picking cards from the top of the cards in the well; 3. When one of the compartments 106 receives a predetermined number of cards, unload that compartment 106 into the second card receiver 36; 4. Continue with #2. No compartment loading during second receiver loading; 5. When a second compartment 106 receives a predetermined number of cards, unload that compartment 106 into the second card receiver 36, behind cards already delivered to the second receiver 36; 6. The dealer continues to load cards in the well 60 which are randomly placed into the compartments 106; and 7. Repeat this process until the initial number of cards in receiver 36 has been delivered. In another practice of the present invention, there are three (or more or fewer) separate methods of filling the shoe. The method may be preferably randomly selected each time the machine is loaded. Step 3 (above) outlines one method. A second method is described as follows: Prior to the beginning of the filling cycle, a distinct number of compartments (e.g., four compartments) are randomly selected, and as those compartments reach a minimum plurality number of cards (e.g., six cards), those compartments unload as they are filled to at least that minimum number. The second method delays the initial loading of the shoe as compared to the first method. In a third method, as cards are loaded into the rack assembly, no cards unload until there are only a predetermined plurality number (e.g., four) compartments remaining with a maximum number (e.g., six or fewer) of cards. When this condition is met, the shoe loads from the last plurality number (e.g., four) of compartments as each compartment is filled with a minimum number (e.g., six cards) of cards. This third member delays loading even more as compared to the first and second methods. Continuous Operation 1 The dealer begins dealing; 2. When the number of cards in the second card receiver 36 goes down to a predetermined number sensed by sensor 223, unload one group of cards from one of the compartments 106 (randomly selected); 3. As cards are collected from the table, the dealer loads cards into the receiver 60. These cards are then randomly loaded into compartments 106. In case a compartment has received the maximum number of cards allowed by the program, if selected to receive another card, the program will skip that compartment and randomly select another compartment; and 4. Repeat #2 and #3 as play continues. It is preferable that the ratio of cards out or in play to the total number of cards available should be low, for example approximately 24:208. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and without the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be verified with minimum game interruption. This system may be effected by a number of different procedures, each of which is exemplary and is not intended to limit the options or alternatives that may be used to effect the same or similar results. One method of effecting this method comprises a continuous counting, analysis, reporting based on at least some (but not necessarily all) the following information provided to the microprocessor: the total initial number of cards provided to the shuffler, the number of cards dealt to each player, the number of cards dealt in a complete game, the number of cards dealt in a round, the total number of cards dealt out since new cards were introduced, the total number of cards returned to the shuffler, the difference between the number of cards dealt out and the number of cards returned to the shuffler, specific cards removed and re-supplied to the shuffler, and the like. It must be noted that continuous shufflers are intended to run with no total replacement of the cards to be shuffled, except when the used decks are replaced with new decks. As opposed to the more common batch shufflers, where a specific number of decks are shuffled, the shuffled decks are cut, the game is played with cards distributed until the cut is reached, and then the decks are reinserted into the shuffler for shuffling, the continuous shuffler maintains a large stock of cards within the shuffler assembly, with cards used in the play of a hand being reinserted into the assembly to be combined with the stock of cards that are shuffled and added to the shoe for distribution to the players. This creates the card distribution pattern where the cards are ordinarily distributed between various sections of a shuffler (e.g., a feeder, a separation rack, a shoe, etc.), a manually stored portion of cards on the table, including for example excess cards, discards, cards used in part or in whole in the play of the hand, and cards held by a player. This pattern makes it very difficult to maintain surveillance of the cards and maintain security with respect to the number or type of cards present on the table. One type of continuous shuffler that is particularly useful in the practice of the present invention comprises a shuffler with a feeder zone, separation or shuffling zone (or “rack,” depending upon the design) and shoe zone. This shuffling zone could be any type of shuffling zone or shuffling process, including those constructions known in the art, wherein the novel feature of keeping a card count of cards specifically within a specific zone within the system is maintained. This is opposed to a construction where cards are merely counted in a batch as they are initially fed into a machine or into a zone. In this practice, for example, a constant count of cards is maintained in the shuffling zone by counting the cards inserted, the cards removed, and additional cards inserted into the zone. The feeder zone is a section where cards are inserted into the shuffling apparatus, usually stacked in a collection of cards to be shuffled. The feeder zone is a storage area in the shuffling device that stores unshuffled cards and provides or feeds those cards into a shuffling function. The shuffling or separation zone is a region within the shuffling or card handling apparatus where unshuffled cards are randomly distributed or separated into compartments or receiving areas to form subsets of randomly distributed cards from the unshuffled cards provided from the feeder zone. The shuffling zone could be any region within the device that accomplishes randomization of the cards while keeping track of the actual number of cards within the zone. The shoe is the section of the shuffling apparatus where shuffled cards are stored for delivery to a) players, b) the dealer and/or to c) discard or excess piles. The shoe may receive limited numbers of cards that are replenished (usually automatically) from the separation area. The general operation of this type of system would be as follows, with various exemplary, but non-limiting options provided. Cards are inserted into the feeder region of the shuffler. A number of cards are fed, usually one at a time, into the shuffling or separation zone (hereinafter referred to as the ‘shuffling zone’). The number of cards may be all of the cards (e.g., 1, 2, 3, 4, 5 or more decks depending upon the size of the apparatus and its capacity) or less than all of the cards. The microprocessor (or a networked computer) keeps track of the number of cards fed from the feeder zone into the shuffling zone. The shuffling zone may comprise, for example, a number of racks, vertical slots, vertical compartments, elevator slots, carousel slots, carousel compartments, or slots in another type of movable compartments (movable with respect to the feeding mechanism from the feeder, which could include a stationary separation department and a movable feeder). The shuffling zone can also include a completely different style of randomization or shuffling process, such as the shuffling processes shown in Sines U.S. Pat. Nos. 5,676,372 and 5,584,483. Although the described apparatus is a batch-type shuffler, the device could be easily modified to deliver cards continuously, with a resupply of spent cards. The device, for example, could be adapted so that whenever discards are placed in the infeed tray, the cards are automatically fed into the shuffling chamber. The programming could be modified to eject hands, cards or decks on demand, rather than only shuffling multiple decks of cards. In that type of apparatus, a stack of cards is placed up on edge in the shuffling zone, with one group of card edges facing upwardly, and the opposite edges supported by a horizontal surface defining a portion of the shuffling chamber. The stack of cards is supported on both sides, so that the group of cards is positioned substantially vertically on edge. A plurality of ejectors drive selected cards out of the stack by striking an edge of a card, sending the card through a passage and into a shuffled card container. Shuffling is accomplished in one shuffling step. In this example, by equipping the shuffler with a feed mechanism that is capable of counting each card that is loaded, including the cards added into the stack during operation, and counting each card ejected from the stack, it is possible to keep track of the total number of cards within the shuffling zone at any given time. In another example of the present invention, the shuffling chamber may be similar to that shown in U.S. Pat. No. 4,586,712 (Lorber et al.). That device shows a carousel-type shuffling chamber having a plurality of radially disposed slots, each slot adapted to receive a single card. A microprocessor keeps track of he number of or empty slots during operation (see column 7, lines 5-16). In the example of a slot-type shuffling apparatus that accepts more than one card per shelf or slot, the cards are generally inserted into the particular type of compartments or slots available within the system on a random basis, one card at a time. This creates a series of segments or sub-sets of cards that have been randomly inserted into the compartments or slots. These sub-sets are stored until they are fed into the shoe. The number of cards delivered from the shuffling zone into the shoe are also counted. In this manner, a constant count of the number of cards in the shuffling zone is maintained. At various times, either random times or at set intervals or at the command of the microprocessor, cards from the separation zone are directed into the shoe. The microprocessor may signal the need for cards in the shoe by counting the number of cards removed from the shoe (this includes counting the number of cards inserted into the shoe and the number of cards removed from the shoe, so that a count of cards in the shoe may be maintained. The process may then operate as follows. At all times (continually), the microprocessor tracks the number of cards present in the shuffling zone. The dealer or other floor personnel activates the card verification process, halting the delivery of cards from the shuffling zone to the shoe. All cards on the table are then fed into the shuffling zone. The total cards in the shuffling zone (e.g., within the rack of compartments or slots) is determined. If there are cards in the shoe zone, those cards in the shoe are placed into the feeder zone. The cards are fed from the feeder zone into the shuffling zone. The total of cards 1) originally in the shuffling zone area and 2) the cards added to the feeder (and any cards already in the feeder that had not been sent to the shuffling zone before discontinuance of the handling distribution functions of the apparatus) and then fed into the separation zone are totaled. That total is then compared to the original number or programmed number of cards in the system. A comparison identifies whether all cards remain within the system and whether security has been violated. The system may indicate a secure system (e.g., the correct amount or number of cards) by a visual signal (e.g., LED or liquid crystal readout, light bulb, flag, etc.) or audio signal. Similarly, an insecure security condition (e.g., insufficient number of cards or plethora of cards) could be indicated by a different visual or audio signal, or could activate an unloading sequence. If an insecure system notice is produced, there may be an optional function of reopening the system, recounting the cards, pausing and requiring an additional command prior to unloading, allowing the dealer to add additional cards subsequently found (e.g., retained at a player's position or in a discard pile), and then recounting some or all of the cards. Alternatively, the cards in the shoe may also be accurately accounted for by the microprocessor. That is, the microprocessor in the card-handling device of the present invention may count the cards in the shuffling zone and the cards in the shoe zone. This would necessitate that sensing be performed in at least two locations (from the feeder into the shuffling zone and out of the shoe) or more preferably in at least three locations (from the feeder to the shuffling zone, from the shuffling zone to the shoe zone, and cards removed from the shoe). Therefore, the cards may be counted in at least three different ways within the apparatus and provide the functionality of maintaining a count of at least some of the cards secure within the system (that is, they cannot be removed from the system either without the assistance of the dealer, without triggering an unlock function within the system, or without visually observable activity that would be observed by players, the dealer, house security, or video observation). For example, by counting and maintaining a count only within the shuffling zone, there is no direct access to the counted cards except by opening the device. By counting and maintaining a count within only the shuffling zone and the shoe, there is no direct access to the shuffling zone, and the cards may be removed from the shoe only by the dealer, and the dealer would be under the observation of the players, other casino workers, and video camera observation. The initiation of the count will cause a minor pause in the game, but takes much less time then a shuffling operation, including both a manual shuffling operation (e.g., up to five minutes with a six deck shoe) and a mechanical shuffling operation (1-4 minutes with a one to six deck shoe, which is usually performed during the play of the game with other decks), with the counting taking one minute or less. The actual initiation of the count must be done by the dealer or other authorized personnel (e.g., within the house crew), although the card handling apparatus may provide a warning (based on time since the last count, the time of day, randomly, on a response to instructions sent from a house's control center, or with other programmed base) that a count should be performed. The count may be initiated in a number of ways, depending upon where the count is being performed. A starting point would always be providing an initial total card count of all cards to be used with the shuffler. This can be done by the machine actually counting all the cards at the beginning of the game, by the dealer specifically entering a number for the total number of cards from a keypad, or by indicating a specific game that is defined by the number of cards used in the game. The card verification process is preferably repeated automatically whenever a card access point is opened (i.e., a shoe cover or door is opened). As an example, a situation will be analyzed where the dealer decides that a count is to be made in the system where card count is maintained in the shuffling zone only. The dealer enters or presets a specific card count of 208 (two hundred and eight cards, four decks) into the microprocessor for the shuffler by pressing numbers on a keypad. The dealer will deactivate any function of the machine that takes cards out of the shuffling zone will be deactivated. All cards on the table and in the shoe will then be added to the feeder zone. The cards will be automatically fed from the feeder zone into the shuffling zone and as a security function, each counted as it passes from the feeder zone to the shuffling zone. The count from this security function (or card totaling of cards not stored in the shuffling zone) will be added by the microprocessor to the running or rolling shufling zone card count to provide a total card count. This total card count will then be compared to the preset value. In another embodiment, a four deck game of Spanish Twenty-One® blackjack will be played. The dealer indicates the game to be played, and the card handling device (shuffler) indicates that 192 (one hundred and ninety-two, that is, 4×48 cards) cards will be used. After one hour, the shuffler indicates that a count is required for security. The apparatus counts all cards in the shuffling zone and the shoe. The dealer closes a panel over the shoe to restrict access to the cards. The players' cards from the last hand, any discards, and all other cards not in the shuffling zone or shoe are then added to the feeder zone. The cards in the feeder zone are then fed into the shuffling zone and counted as the new card entry total. That new card entry total is added to the rolling total for cards held within the combined shuffling zone and shoe. If the total is 192, a green light (or other color, or LED or liquid crystal display, or audio signal) will indicate that the proper count was achieved. If the count is inaccurate, a number of different procedures may be activated, after the card handling device has appropriately indicated that there is a discrepancy between the original or initial card count and the final card count performed on command by the device. If the card count finds an insufficiency (e.g., fewer than 192 cards), the device may pause and the dealer and/or other casino employees will visually examine the table to see if cards were inadvertently left out of the count. The shuffler may also have the capability that it can abort a shuffling procedure and require a reloading of cards. If cards are found, the additional cards will be added to the feeder zone, an additional count initiated, and that second count total added to the initial final card count total. If the total still lacks correspondence to the initial count, a further search may be made or security called to investigate the absence of cards. If the device is in a “pause” mode, the dealer may activaye an unloading process or a recounting process. A complete separate count may be made again by the machine and/or by hand to confirm the deficiency. The indication of an excess of cards is a more definitive initial indication of a security issue. After such an indication, security would be called (either by floor personnel or by direct signal from the microprocesser) and an immediate count (mechanical and/or manual) of all the cards would be made. That issue would be resolved by the recount indicating the correct number of cards or an indication that an excess of cards actually exists. The device can be constructed with not only a sensor or sensors to count the cards, but also with a scanner or scanners that can read data on the cards to indicate actual card ranks and values. In this manner, particularly by reading the cards going into the shoe and being removed from the shoe, and/or reading the cards going into distinct compartments within the rack, the shuffler may monitor the actual cards within the apparatus, not merely the number of cards present. In this manner, as where a jackpot is awarded and the cards must be verified, the card handling device may quickly verify the presence of all cards by number and rank within the decks. This can also be used to verify a hand by identifying which cards are specifically absent from the total of the cards originally inserted into the gaming apparatus. For example, the player's hand with a jackpot winning hand is left in front of the player. The apparatus is activated to count and identify cards. If the apparatus indicates that A-K-Q-J-10 of Hearts are missing from the count and the player has the A-K-Q-J-10 of Hearts in front of her/him, then the jackpot hand is verified with respect to the security of the total of the playing cards. This is ordinarily done manually and consumes a significant amount of time. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. FIG. 18 is a side elevational view of an output shoe 36 incorporating a gate 400 mounted for pivotal movement about an axis 410. The gate is of sufficient size and shape to retract and avoid obstruction of card way 206 when cards are moving into output shoe 36. A leading edge of a group of cards (not shown) contacts a first surface 412, moving gate 400 upwardly and substantially in a direction shown by arrow 414. Once the group of cards passes into the shoe as shown by the position of the group of cards identified as B, the gate lowers by means of gravity to a second position shown in phantom at 416, blocking an opening to card way 206. With gate 400 in the lower resting position shown at 416, the dealer cannot inadvertently push cards B back into the card way 206 when removing cards from the shoe 36. In this manner, the card way 206 is always capable of passing another group of cards to the shoe 36, assuring a continuous supply of cards. A novel gravity feed/diverter system is described to reduce the potential for jamming and greatly reduces the chance for multiple cards being fed into the shuffling zone. In this feature, two separate features are present between the feeder zone and the separation zone as shown in FIG. 19, which is a side view of a new feeder system with a novel design for a card separator that has the potential for reducing jamming and reducing the potential for multiple card feed when a single card is to be fed. The two features shown are adjacent to the feed tray 10. The feed tray 10 angled (at other than horizontal) with respect to the horizontal plane, but could also be substantially horizontal. The cards are urged towards the features on a discriminating barrier 500 by a pickoff roller 502. The pickoff roller 502 is shown here as driven by a motor 504. The shape of the lower edge of the discriminating barrier 500 is important because it discourages more than one card at a time from passing from the feed tray 10 to the separation zone 506. In the event that two cards are accidentally moved at the same time, the discriminating barrier 500, because of the height of a lower edge 508, the barrier will allow only one card to pass through, with the second (usually top most) card striking a braking surface 510 with the discriminating barrier 500 and retarding its forward movement. The braking surfaces 510 are shown as two separate surfaces. However, the braking surface 510 can be a single continuous surface or more than two surfaces. It is important that a contact surface be provided that inhibits forward movement of a card resting upon another card. Since the friction between the two adjacent cards is minimal, the contact surface does not need to include sharply angled or substantially vertical surfaces to inhibit the forward movement of the card. Another aspect of the separator of the present invention is the presence of a brake roller assembly 511. The assembly includes a stationary top roller 512 and a driven roller 514. The spacing between top roller 512 and bottom roller 514 is selected so that only one card can pass through the barrier 500. Single cards passing through roller assembly 511 pass through speed-up roller assembly 516, and into the shuffling zone. Upon failing to advance, the apparatus may be programmed to treat the presence of the additional card (sensed by sensing elements within the shuffler, not shown) as a jam or as the next card to be advanced, without an additional card removed from the feeder zone. Separating the cards to assure that only one card at a time is fed is critical to obtaining accurate card counting and verification (unless the counting system is sufficiently advanced to enable distinguishing between the number of cards fed and counting that number of cards). Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims. APPENDIX A Motors, Switches and Sensors Item Name Description 1 ICPS Input Card Present Sensor 2 RCPS Rack Card Present Sensor 3 RHS Rack Home Switch 4 RPS Rack Position Sensor 5 UHS Unloader Home Switch 6 DPS Door Present Switch 7 RUTS Rack Unload Trigger Sensor 8 CIS Card In Sensor 9 COS Card Out Sensor 10 GUS Gate Up Switch 11 GDS Gate Down Switch 12 SWRTS Shoe Weight Release Trigger Sensor 13 SES Shoe Empty Sensor 14 SJS Shoe Jam Sensor 15 SS Start Switch Name Description POM Pick-off Motor. SUM Speed-up Motor RM Rack Motor UM Unloader Motor SWM Shoe Weight Motor GM Gate Motor SSV Scroll Switch - Vertical SSH Scroll Switch - Horizontal AL Alarm Light Display Noritake * CU20025ECPB−UIJ Power SupplyShindengen * ZB241R8, or ZB241R7K2, ZB241R7 or EOS Corporation ZUC45TS24E or Qualtek Electric 862-06/002 or Delta 06AR1 Linear GuideTHK * RSR12ZMUU+145 M, or 2RSR12Z MUU+229IM Comm. PortDigi * HRO21−ND Power SwitchDigi * SW 323−ND Power EntryBergquist * LT−101−3P APPENDIX B Homing/Power-up 1. Unloader Home 2. Door Present 3. Gate Closed 4. Card Out Sensor (COS) Clear 5. Rack Empty and Home 6. Input Shoe Empty 7. Shoe Empty 8. Card in Sensor (CIS) Clear. 9. Shoe Jam Sensor Clear An extremely desirable feature of the shuffler of the present invention is the system of monitoring and moving cards. FIG. 20 identifies the sensor and motor locations for a preferred embodiment of the invention. Representative sensors are optical sensors with a light emitter and receiver. An example of a suitable sensor is a model number EE-SPY401 available from Omron of Schaumburg, Ill. The space constraints and the specific function of each sensor described below are factors to be considered when selecting a sensor. Although optical sensors are described below, it is possible to use other types of sensors such as proximity sensors, pressure sensors, readers for information installed on the cards (e.g., magnetic readers) and the like. Sensor 600 is the dealing sensor. This sensor is capable of generating a signal for every card removed from the shoe. The signals are sent to the microprocessor, and are used to determine when the dealer removes the cards. Sensor 602 is the shoe empty sensor. This sensor generates a signal when no cards are present in the shoe. The sensor generates a signal that is sent to the microprocessor. This signal is interpreted by the microprocessor as an instruction to deliver another group of cards to the shoe. This sensor is a back-up sensor, because the shoe is normally not empty. The sensor is used primarily to verify that the shoe is empty when the machine is initially loaded with cards. Unloader trigger sensor 604 senses the amount of cards in the shoe, and generates a signal when a predetermined minimum number of cards are present in the shoe. The signal is sent to the microprocessor, and the microprocessor interprets the signal as an instruction to unload and deliver another group of cards into the shoe. In one example, the trigger sensor 604 activates a random number generator. The random number generator randomly selects a number between zero and three. The selected number corresponds to the number of additional cards to be dealt out of the shoe prior to unloading the next group of cards. If the randomly selected number is zero, the unloader immediately unloads the next group of cards. Unloader extended switch 606 generates a signal that is indicative of the position of the unloader. When the unloader is in the extended position, unloader extended switch 606 generates a signal that is received by the microprocessor. The microprocessor interprets the signal as instructions to halt forward movement of the unloader, and reverse movement. Staging switch 608 senses the position of the unloader. The sensor 608 is positioned at a point along the card way 206. As a group of cards reaches the sensor, the sensor sends a signal to the microprocessor to stop forward movement of the unloader. A group of cards is therefore staged in the card way 206. The microprocessor also receives signals from sensor 600 so that the staged group of cards is released while the dealer is removing cards from the shoe. This assures that the cards in the shoe, if pushed backwards initially, are traveling toward or resting against the exit of the shoe during unloading. In another example of the invention, the staging switch 608 unloads only when a signal from switch 600 is interrupted. Rack Emptying Sensor 610 indicates when a rack has been unloaded. The sensor is functional only when the shoe cover is open. This sensor functions during a process of emptying cards from the machine. The microprocessor interprets the signal as instructions to initiate the emptying or unloading of a rack. When the signal is interrupted, the microprocessor instructs the rack to align another compartment with the unloader. Shoe Cover Switch 612 indicates the presence of the shoe cover. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine. Door Present Switch 614 senses the presence of the door covering the opening to the racks. When the signal is interrupted, the microprocessor halts further shuffling. When the signal is reestablished, normal shuffling functions resume upon reactivating the machine. Card Out Sensor 616 indicates when a card is passing into the rack from the speed up rollers 516. The microprocessor must receive the signal in order to continue to randomly select a compartment or shelf and instruct the elevator motor 638 to move the elevator to the next randomly selected position. If the signal is interrupted, the microprocessor initiates a jam recovery routine. To recover from a card jam, the elevator is moved up and down a short distance. This motion almost always results in a trailing edge of the jammed card making contact with the speed up rollers 516. The speed up rollers then deliver the card into the compartment. If the recovery is unsuccessful, the signal will remain interrupted, operations will hault. An error signal will be generated and displayed, and instructions for manually unjamming the machine will preferably be displayed. The function of the Card Out Sensor 161 is also critical to the card counting and verification procedure described above, as the signal produces a count of cards in each shelf in the rack. Card In Sensor 618 is located on an infeed end of the speed-up rollers 516 and is used both to monitor normal operation and to provide information to the microprocessor useful in recovering from a card feed jam. During normal operation, the microprocessor interprets the generation of the signal from sensor 618, the interruption of that signal, the generation and interruption of card out sensor 616, in sequence as a condition of counting that card. If a card would travel in the reverse direction, that card would not be counted. During the jam recovery process, the interruption of the signal from sensor 618 tells the microprocessor that a jam occurring in the speed up rollers 516 has been cleared. Card Separator Empty Sensor 620 monitors the progression of the cards as the cards leave the brake roller assembly 511. Although there is another card present sensor 626 as will be described below in the input shoe 10, sensor 620 senses the presence of the card before the signal generated by sensor 626 is interrupted. Because the spacing between sensors 620, 626 is less than a card length, the information sent to the microprocessor from both sensors provides an indication of normal card movement. Switch 622 is the main power switch. Upon activating the switch, a signal is sent to the microprocessor to activate the shuffling process. In one embodiment of the invention, upon delivering power to the shuffler, a test circuit first tests the voltage and phase of the power supply. A power adapter (not shown) is provided, and the available power is converted to a D.C. power supply for use by the shuffler. Light 624 is an alarm light. The microprocessor activates the alarm light whenever a fault condition exists. For example, if the cover that closes off the mixing stack or the shoe cover is not in place, the alarm light 624 would be illuminated. If the card verification procedure is activated, and an incorrect number of cards is counted, this would also cause light 624 to illuminate. Other faults such as misdeals, card feed jams, card insertion jams, card delivery jams, and the like are all possible triggering events for the activation of alarm light 624. Feeder Empty Sensor 626 is an optical sensor located on a lower surface of the card receiving well 60. This sensor sends a signal to the microprocessor. The microprocessor interprets the signal as an indication that cards are present, and that the feed system is to be activated. When the signal is interrupted, indicating that no cards are in the well 60, the feed roller 502 stops delivering cards. In one embodiment, the lower driven roller 514 of brake roller assembly 511 runs continuously, while in the embodiment shown in FIG. 19, the lower roller runs only when feed roller 502 runs. Similarly, speed up rollers 516 can run continuously or only when the feed roller 502 and brake roller 514 is being driven. In one example, the operation of rollers 514 and 502 is intermittent, while the operation of speed up rollers 516 is continuous. Referring back to FIG. 20, Enter Key 628 and Scroll Key 630 are both operator input keys. The Enter Key 628 is used to access a menu, and to scroll down to a particular entry. The Scroll Key 630 permits the selection of a field to modify, and Enter Key 628 can be used to input or modify the data. Examples of data to be selected and or manipulated includes: the type of game being played, the number of decks in the game, the number of cards in the deck, the number of promotional cards, the total number of cards in the machine, the table number, the pit number, and any other data necessary to accomplish card verification. Enter Key 628 provides a means of selecting from a menu of preprogrammed options, such as the type of game to be played (such as blackjack, baccarat, pontoon, etc.), the number of cards in the deck, the number of promotional cards, the number of decks, etc. The menu could also include other information of interest to the house such as the date, the shift, the name of the dealer, etc. This information can be tracked and stored by the microprocessor in associated memory, and included in management reports, or in other communications to the house. A number of motors are used to drive the various rollers in the feed assembly (shown in FIG. 19). Feed roller 502 is driven by motor 504, via continuous resilient belt members 504B and 504C. Brake roller driven roller 514 is also driven by motor 504 via resilient continuous member 504B. In another embodiment, rollers 502 and 514 are driven by different motors. Speed up roller assembly 516 is driven by motor 507, via resilient belt member 507B. Each of the motors is typically a stepper motor. An example of a typical stepper motor used for this application is available from Superior Electric of Bristol, Connecticut by ordering part number M041-47103. Motor 636 drives the unloader 190 via continuous resilient member 636B. The resilient member 636B turns pulley or pinion gear 637, causing lateral motion of unloader 190. Teeth of pinion gear 637 mesh with openings 194 in the unloader (see FIG. 8). Rack motor 638 causes the rack assembly to translate along a linear path. This path is preferably substantially vertical. However, the rack could be positioned horizontally or at an angle with respect to the horizontal. For example, it might be desirable to position the rack so that it travels along a horizontal path to reduce the overall height of the device. The shaft of motor 638 includes a pulley that contacts resilient member 82 (FIG. 12). Resilient member is fixedly mounted to the rack assembly. Unloader home switch 640 provides a signal to the microprocessor indicating that the unloader 190 is in the home position. The microprocessor uses this information to halt the rearward movement of the unloader 190 and allow the unloader to cease motion. Rack home switch 642 provides a signal to the microprocessor that the rack is in the lowermost or “home” position. The “home” position in a preferred embodiment causes the feed assembly to come into approximate vertical alignment with a top shelf or opening of the rack. In another embodiment, the “home” position is not the lowermost position of the rack. Gate motor 644 drives the opening and closing of the gate. Gate down switch 646 provides a signal to the microprocessor indicating that the gate is in its lowermost position. Gate Up Switch 648 provides a signal that the gate is in its uppermost position. This information is used by the microprocessor to determine whether the shuffling process should proceed, or should be stopped. The microprocessor also controls the gate via motor 644 so that the gate is opened prior to unloading a group of cards. In a preferred device of the present invention, the number of cards in the rack assembly is monitored at all times while the shuffler is in the dealing mode. The microporcessor monitors the cards fed into and out of the rack assembly, and provides a visual warning that the number or amount of cards in the rack assembly is below a critical (predetermined, preset) number or level. When such a card count warning is issued, the microprocessor stops delivering cards to the shoe. When the cards are fed back into the machine and the number of cards in the rack assembly rises to an acceptable (preset or predetermined) level, the microprocessor resumes unloading cards into the shoe. The number of cards is dependent upon the game being dealt and the number of players present or allowed. For example, in a multi-deck blackjack game using 208 cards (four decks), the minimuj number of ards in the rack is approximately 178. At this point, a signal is sent to the visual display. When the number of cards drops to 158 (the preset number), the microprocessor will stop delivery of cards to the shoe. Limiting the number of cards outside the rack assembly maintains the integrity of the random shuffling process. Although a description of preferred embodiments has been presented, various changes including those mentioned above could be made without deviating from the spirit of the present invention. It is desired, therefore, that reference be made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to devices for handling cards, including cards known as “playing cards.” In particular, it relates to an electromechanical machine for continuously shuffling playing cards, whereby a dealer has a substantially continuously readily available supply of shuffled cards for dealing and where cards may be monitored for security purposes during play of the game. 2. Background of the Art Wagering games based on the outcome of randomly generated or selected symbols are well known. Such games are widely played in gaming establishments and include card games wherein the symbols comprise familiar, common or standard playing cards. Card games such as twenty-one or blackjack, poker, poker variations, match card games and the like are excellent casino card games. Desirable attributes of casino card games are that they are exciting, that they can be learned and understood easily by players, and that they move or are played rapidly to their wager-resolving outcome. From the perspective of players, the time the dealer must spend in shuffling diminishes the excitement of the game. From the perspective of casinos, shuffling time reduces the number of wagers placed and resolved in a given amount of time, thereby reducing revenue. Casinos would like to maximize the amount of revenue generated by a game without changing games, without making obvious changes that indicate an increased hold by the house, particularly in a popular game, and without increasing the minimum size of wagers. One approach to maximizing revenue is speeding play. It is widely known that playing time is diminished by shuffling and dealing. This approach has lead to the development of electromechanical or mechanical card shuffling devices. Such devices increase the speed of shuffling and dealing, reduce non-play time, thereby increasing the proportion of playing time to non-playing time, adding to the excitement of a game by reducing the time the dealer or house has to spend in preparing to play the game. U.S. Pat. No. 4,515,367 (Howard) is an example of a batch-type shuffler. The Howard patent discloses a card mixer for randomly interleaving cards including a carriage supported ejector for ejecting a group of cards (approximately two playing decks in number) which may then be removed manually from the shuffler or dropped automatically into a chute for delivery to a typical dealing shoe. U.S. Pat. No. 5,275,411 (Breeding) discloses a machine for automatically shuffling a single deck of cards including a deck receiving zone, a carriage section for separating a deck into two deck portions, a sloped mechanism positioned between adjacent corners of the deck portions, and an apparatus for snapping the cards over the sloped mechanism to interleave the cards. U.S. Pat. No. 3,879,954 (Erickson et al.) discloses the concept of delivering cards one at a time, into one of a number vertically stacked card shuffling compartments. The Erickson patent also discloses using a logic circuit to determine the sequence for determining the delivery location of a card, and that a card shuffler can be used to deal stacks of shuffled cards to a player. U.S. Pat. No. 5,241,140 (Huen) discloses a card dispenser which dispenses or deals cards in four discrete directions onto a playing surface, and U.S. Pat. No. 793,489 (Williams), U.S. Pat. No. 2,001,918 (Nevius), U.S. Pat. No. 2,043,343 (Warner) and U.S. Pat. No. 3,312,473 (Friedman et al.) disclose various card holders some of which include recesses (e.g., Friedman et al.) to facilitate removal of cards. U.S. Pat. No. 2,950,005 (MacDonald) and U.S. Pat. No. 3,690,670 (Cassady et al.) disclose card sorting devices which require specially marked cards, clearly undesirable for gaming and casino play. U.S. Pat. Nos. 5,584,483 and 5,676,372 (Sines et al.) describe batch type shufflers which include a holder for an unshuffled stack of cards, a container for receiving shuffled cards, a plurality of channels to guide the cards from the unshuffled stack into the container for receiving shuffled cards, and an ejector mounted adjacent to the unshuffled stack for reciprocating movement along the unshuffled stack. The position of the ejector is randomly selected. The ejector propels a plurality of cards simultaneously from a number of points along the unshuffled stack, through the channels, and into the container. A shuffled stack of cards is made available to the dealer. U.S. Pat. No. 5,695,189 (Breeding et al.) is directed to a shuffling machine for shuffling multiple decks of cards with three magazines wherein unshuffled cards are cut then shuffled. Aside from increasing speed and playing time, some shuffler designs have provided added protection to casinos. For example, one of the Breeding (similar to that described in U.S. Pat. No. 5,275,411) shufflers is capable of verifying that the total number of cards in the deck has not changed. If the wrong number of cards are counted, the dealer can call a misdeal and return bets to players. A number of shufflers have been developed which provide a continuous supply of shuffled cards to a player. This is in contrast to batch type shuffler designs of the type described above. The continuous shuffling feature not only speeds the game, but protects casinos against players who may achieve higher than normal winnings by counting cards or attempting to detect repeated patterns in cards from deficiencies of randomization in single batch shufflers. An example of a card game in which a card counter may significantly increase the odds of winning by card counting or detecting previously occurring patterns or collections of cards is Blackjack. U.S. Pat. No. 4,586,712 (Lorber et al.) discloses a continuous automatic shuffling apparatus designed to intermix multiple decks of cards under the programmed control of a computer. The Lorber et al. apparatus is a carousel-type shuffler having a container, a storage device for storing shuffled playing cards, a removing device and an inserting device for intermixing the playing cards in the container, a dealing shoe and supplying means for supplying the shuffled playing cards from the storage device to the dealing shoe. The Lorber shuffler counts the number of cards in the storage device prior to assigning cards to be fed to a particular location. The Samsel, Jr. patent (U.S. Pat. No. 4,513,969) discloses a card shuffler having a housing with two wells for receiving stacks of cards. A first extractor selects, removes and intermixes the bottommost card from each stack and delivers the intermixed cards to a storage compartment. A second extractor sequentially removes the bottommost card from the storage compartment and delivers it to a typical shoe from which the dealer may take it for presentation to the players. U.S. Pat. No. 5,382,024 (Blaha) discloses a continuous shuffler having a unshuffled card receiver and a shuffled card receiver adjacent to and mounted for relative motion with respect to the unshuffled card receiver. Cards are driven from the unshuffled card receiver and are driven into the shuffled card receiver forming a continuous supply of shuffled cards. However, the Blaha shuffler requires specially adapted cards, particularly, plastic cards, and many casinos have demonstrated a reluctance to use such cards. U.S. Pat. No. 5,000,453 (Stevens et al.) discloses an apparatus for automatically and continuously shuffling cards. The Stevens et al. machine includes three contiguous magazines with an elevatable platform in the center magazine only. Unshuffled cards are placed in the center magazine and the spitting rollers at the top of the magazine spit the cards randomly to the left and right magazines in a simultaneous cutting and shuffling step. The cards are moved back into the center magazine by direct lateral movement of each shuffled stack, placing one stack on top of the other to stack all cards in a shuffled stack in the center magazine. The order of the cards in each stack does not change in moving from the right and left magazines into the center magazine. U.S. Pat. No. 4,770,421 (Hoffman) discloses a continuous card-shuffling device including a card loading station with a conveyor belt. The belt moves the lowermost card in a stack onto a distribution elevator whereby a stack of cards is accumulated on the distribution elevator. Adjacent to the elevator is a vertical stack of mixing pockets. A microprocessor preprogrammed with a fixed number of distribution schedules is provided for distributing cards into a number of pockets. The microprocessor sends a sequence of signals to the elevator corresponding to heights called out in the schedule. Single cards are moved into the respective pocket at that height. The distribution schedule is either randomly selected or schedules are executed in sequence. When the cards have been through a single distribution cycle, the cards are removed a stack at a time and loaded into a second elevator. The second elevator delivers cards to an output reservoir. Thus, the Hoffman patent requires a two step shuffle, i.e., a program is required to select the order in which stacks are moved onto the second elevator. The Hoffman patent does not disclose randomly selecting a pocket for delivering each card. Nor does the patent disclose a single stage process which randomly arranges cards into a degree of randomness satisfactory to casinos and players. Although the Hoffman shuffler was commercialized, it never achieved a high degree of acceptance in the industry. Card counters could successfully count cards shuffled in the device, and it was determined that the shuffling of the cards was not sufficiently random. U.S. Pat. No. 5,683,085 (Johnson) describes a continuous shuffler which includes a chamber for supporting a main stack of cards, a loading station for holding a secondary stack of cards, a stack gripping separating mechanism for separating or cutting cards in the main stack to create a space and a mechanism for moving cards from the secondary stack into the spaces created in the main stack. U.S. Pat. No. 4,659,082 (Greenberg) discloses a carousel type card dispenser including a rotary carousel with a plurality of card compartments around its periphery. Cards are injected into the compartments from an input hopper and ejected from the carousel into an output hopper. The rotation of the carousel is produced by a stepper motor with each step being equivalent to a compartment. In use, the carousel is rotated past n slots before stopping at the slot from which a card is to be ejected. The number n is determined in a random or near random fashion by a logic circuit. There are 216 compartments to provide for four decks and eight empty compartments when all the cards are inserted into compartments. An arrangement of card edge grasping drive wheels are used to load and unload the compartments. U.S. Pat. No. 5,356,145 (Verschoor) discloses another card shuffler involving a carousel or “rotatable plateau.” The Verschoor shuffler has a feed compartment and two card shuffling compartments which each can be placed in first and second positions by virtue of a rotatable plateau on which the shuffling compartments are mounted. In use, once the two compartments are filled, a drive roller above one of the shuffling compartments is actuated to feed cards to the other compartment or to a discharge means. An algorithm determines which card is supplied to the other compartment and which is fed to the discharge. The shuffler is continuous in the sense that each time a card is fed to the discharge means, another card is moved from the feed compartment to one of the shuffling compartments. U.S. Pat. No. 4,969,648 (Hollinger et al.) discloses an automatic card shuffler of the type that randomly extracts cards from two or more storage wells. The shuffler relies on a system of solenoids, wheels and belts to move cards. Cards are selected from one of the two wells on a random basis so a deck of intermixed cards from the two wells is provided in a reservoir for the dealer. The patent is principally directed to a method and apparatus for detecting malfunctions in the shuffler, which at least tends to indicate that the Hollinger et al. shuffler may have some inherent deficiencies, such as misalignments of extraction mechanisms. The size of the buffer supply of shuffled cards in the known continuous shufflers is large, i.e., 40 or more cards in the case of the Blaha shuffler. The cards in the buffer cannot include cards returned to the shuffler from the previous hand. This undesirably gives the player some information about the next round. Randomness is determined in part by the recurrance rate of a card previously played in the next consecutively dealt hand. The theoretical recurrence rate for known continuous shufflers is believed to be about zero percent. A completely random shuffle would yield a 13.5% recurrance rate using four decks of cards. Although the devices disclosed in the preceding patents, particularly the Breeding machines, provide improvements in card shuffling devices, none describes a device and method for providing a continuous supply of shuffled cards with the degree of randomness and reliability required by casinos until the filing of copending U.S. patent application Ser. No. 09/060,598. That device and method continuously shuffles and delivers cards with an improved recurrence rate and improves the acceptance of card shufflers and facilitate the casino play of card games.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>The present invention provides an electromechanical card handling apparatus and method for continuously shuffling cards. The apparatus and, thus, the card handling method or process, is controlled by a programmable microprocessor and may be monitored by a plurality of sensors and limit switches. While the card handling apparatus and method of the present invention is well suited for use in the gaming environment, particularly in casinos, the apparatus and method may find use in handling or sorting sheet material generally. In one embodiment, the present invention provides an apparatus for moving playing cards from a first group of unshuffled cards into shuffled groups of cards. The apparatus comprises a card receiver for receiving the first group of cards, a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally vertically movable, an elevator for raising and lowering the stack, a card-moving mechanism between the card receiver and the stack for moving cards, one at a time, from the card receiver to a selected compartment, and a microprocessor that controls the card-moving mechanism and the elevator so that the cards are moved into a number of randomly selected compartments. Sensors act to monitor and to trigger operation of the apparatus, card moving mechanisms, and the elevator and also provide information to the microprocessor. The controlling microprocessor, including software, selects or identifies where cards will go as to the selected slot or compartment before card handling operations begin. For example, a card designated as card 1 may be directed to slot 5, a card designated as card 2 may be directed to slot 7, a card designated as card 3 may be directed to slot 3, etc. An advantage of the present invention is that it provides a programmable card-handling machine with a display and appropriate inputs for controlling and adjusting the machine. Additionally, there may be an elevator speed adjustment and sensor to adjust and monitor the position of the elevator as cards wear or become bowed or warped. These features also provide for interchangeability of the apparatus, meaning the same apparatus can be used for many different games and in different locations thereby reducing or eliminating the number of back up machines or units required at a casino. Since it is customary in the industry to provide free backup machines, a reduction in the number of backup machines needed presents a significant cost savings. The display may include a use rate and/or card count monitor and display for determining or monitoring the usage of the machine. Another advantage of the present invention is that it provides an electromechanical playing card handling apparatus for automatically and randomly generating a continuous supply of shuffled playing cards for dealing. Other advantages are a reduction of dealer shuffling time, and a reduction or elimination of security problems such as card counting, possible dealer manipulation and card tracking, thereby increasing the integrity of a game and enhancing casino security. Yet another advantage of the card handling apparatus of the present invention is that it converts a single deck, multiple decks, any number of unshuffled cards or large or small groups of discarded or played cards into shuffled cards ready for use or reuse in playing a game. To accomplish this, the apparatus includes a number of stacked or vertically oriented card receiving compartments one above another into which cards are inserted, one at a time, so a random group of cards is formed in each compartment and until all the cards loaded into the apparatus are distributed to a compartment. Upon demand, either from the dealer or a card present sensor, or automatically, the apparatus delivers one or more groups of cards from the compartments into a dealing shoe for distribution to players by the dealer. The present invention may include jammed card detection and recovery features, and may include recovery procedures operated and controlled by the microprocessor. Another advantage is that the apparatus of the present invention provides for the initial top feeding or loading of an unshuffled or discarded group of cards thereby facilitating use by the dealer. The shuffled card receiving shoe portion is adapted to facilitate use by a dealer. An additional advantage of the card handling apparatus of the present invention is that it facilitates and speeds the play of casino wagering games, particularly those games wherein multiple decks of cards are used in popular, rapidly played games (such as twenty-one or blackjack), making the games more exciting for players. In use, the apparatus of the present invention is operated to process playing cards from an initial, unshuffled new or played group of cards into a group of shuffled or reshuffled cards available to a dealer for distribution to players. The first step of this process is the dealer placing an initial group of cards, comprising unshuffled or played cards, into the card receiver of the apparatus. The apparatus is started or starts automatically by sensing the presence of the cards and, under the control of the integral microprocessor, it transfers the initial group of cards, randomly, one at a time, into a plurality of compartments. Groups of cards in one or more compartments are delivered, upon the dealer's demand or automatically, by the apparatus from that compartment to a card receiving shoe for the dealer to distribute to a player. According to the present invention, the operation of the apparatus is continuous. That is, once the apparatus is turned on, any group of cards loaded into the card receiver will be entirely processed into one or more groups of random cards in the compartments. The software assigns an identity to each card and then directs each identified card to a randomly selected compartment by operating the elevator motor to position that randomly selected compartment to receive the card. The cards are unloaded in groups from the compartments, a compartment at a time, as the need for cards is sensed by the apparatus. Thus, instead of stopping play to shuffle or reshuffle cards, a dealer always has shuffled cards available for distribution to players. The apparatus of the present invention is compact, easy to set up and program and, once programmed, can be maintained effectively and efficiently by minimally trained personnel who cannot affect the randomness of the card delivery. This means that the machines are more reliable in the field. Service costs are reduced, as are assembly and set up costs. Another concern in continuous shufflers is the fact that there has been no ability to provide strong security evaluation in the continuous shufflers, because of the very fact that the cards are continuously being reshuffled, with cards present within and outside the shuffler. This offers an increased risk of cards being added to the deck by players or being removed and held back by the player. This is a particular concern in games where the player is allowed to contact or pick up cards during play (e.g., in certain poker-type games and certain formats for blackjack). The present invention provides a particular system wherein the total number of cards in play at the table may be counted with minimum game interruption. The system of the present invention, in addition to allowing a security check on the number of cards present in the collection of decks, allows additional cards, such as promotional cards or bonus cards, to be added to the regular playing cards, the total number of cards allowable in play modified to the number of regular playing cards plus additional (e.g., special) playing cards, allowing the shuffler to be modified for a special deck or deck(s) where there are fewer than normal cards (e.g., Spanish 21® blackjack game), or otherwise modified at the direction of the house. Therefore, the shuffler would not be limited to counting security for only direct multiples of conventional 52 card playing decks. The shuffler may be provided with specific selection features wherein a game may be identified to the microprocessor and the appropriate number of cards for that game shall become the default security count for the game selected. The present invention also describes a structural improvement in the output shoe cover to prevent cards that are already within the shoe from interfering with the delivery of additional cards to the shoe. A novel gravity feed/diverter system is described to reduce the potential for jamming and reducing the chance for multiple cards to be fed from a card feeder into selected card receiving compartments. Other features and advantages of the present invention will become more fully apparent and understood with reference to the following specification and to the appended drawings and claims.
20041029
20080129
20050505
91820.0
1
LAYNO, BENJAMIN
DEVICE AND METHOD FOR CONTINUOUSLY SHUFFLING AND MONITORING CARDS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,978,076
ACCEPTED
Profiled motion and variable fill position of mold plate assembly in a food product molding machine
A mold plate drive assembly configured to provide a variable motion and fill position of the cavity of a mold plate relative to a fill position of a food product forming machine.
1. A food product molding machine, comprising: a fill plate having a plurality of fill positions; a mold plate having a plurality of cavities configured to receive a food product from the fill positions of the fill plate; and a mold plate drive assembly configured to linearly reciprocate the mold plate to and from a fill position over the fill positions; and a controller configured to control operation of the mold plate drive assembly to cause the cavities of the mold plate to stop at a plurality of selective positions relative the fill positions of the fill plate.
RELATED APPLICATIONS The present application claims priority to provisional patent application Ser. No. 60/515,097, filed Oct. 28, 2003. FIELD OF THE INVENTION This invention relates generally to a mold plate drive assembly for a food product molding machine. More specifically, the invention relates to a mold plate drive assembly configured to provide a variable motion and fill position of the cavity of a mold plate relative to a fill position of a food product forming machine. BACKGROUND OF THE INVENTION Before automation, consumers generally formed patties of food product by hand. However, demand (e.g., the fast-food industry) for high-speed and high-volume product of food products led to the development of automated machines configured to provide molded food product. Generally, such machines mold the food product under pressure into patties of various shapes and sizes. A typical application for food product molding machines is in the production of hamburger patties. Yet, the type of food product (e.g., vegetables, meat, fish, etc.) and shape (e.g., rods, patties, etc.) can vary. The molded food products are distributed to restaurants, grocery stores, etc. The demand for high volume, high-speed food product molding machinery continues to grow. However, prior art food product molding machines have several drawbacks. For example, known molding machine use hydraulic or mechanical crank systems to reciprocate the lateral back and forth motion of a mold plate from a fill position over a fill position of fill plate of the food product forming machine. These hydraulic and mechanical crank systems are cumbersome to control and do not provide consistent compaction of food product patties. Furthermore, finding the optimum fill position of a mold plate requires machining new fill positions into a fill plate, or producing several fill plates and replacing the fill plates as needed according to the characteristics of the product being molded. As can be seen, the present state of the art of mold drive assemblies incorporated into food product molding machines has definite shortcomings. SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a food product molding machine comprising a fill plate having one or more fill positions and a mold plate having a plurality of cavities configured to receive a food product from the fill positions of the fill plate. A mold plate drive assembly is configured to linearly reciprocate the mold plate to and from a fill position over the fill slots. The food product molding machine further includes controller configured to control operation of the mold plate drive assembly to cause the cavities of the mold plate to stop at a plurality of selective positions relative the fill slots of the fill plate. It is an object of the present invention to fix the mold plate speed. It is an object of the present invention to eliminate pause time. It is an object of the present invention to optimize machine speed. It is an object of the present invention for the mold plate to go into the fill position by decelerating versus stopping. It is an object of the present invention to provide a longer deceleration to the midpoint to the endpoint. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of one embodiment of a food product molding machine in accordance with the present invention. FIG. 2 is a perspective of the mold plate drive assembly removed from the machine 10 shown in FIG. 1. FIG. 3 is a detailed perspective view of a mold plate drive assembly and mold plate of FIG. 1 at a first fill position. FIG. 4 is a detailed perspective view of a mold plate drive assembly and mold plate of FIG. 1 at a second fill position. FIG. 5 is a detailed perspective view of a mold plate drive assembly and mold plate of FIG. 1 at a third fill position. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Accordingly, the present invention provides a food product molding machine having a mold plate drive system that includes a mold plate drive belt assembly. FIG. 1 shows one embodiment of the food product molding machine 10 of the present invention. The machine 10 generally includes a frame 12 that supports a food hopper 15 and a conveyor assembly 20 configured to deliver a supply of food product to an auger assembly 25. The auger assembly 25 regulates the supply of the food to a pump system. The pump system includes a series of plunger assemblies 30 configured to pressurize or force the food product through a feed chamber/manifold assembly 35 and into a cavity 37 of a mold plate 50. The pressure applied by the plunger assemblies 30 regulates the compression of the food product in the cavity 37 of the mold plate 50. A mold plate drive belt system 60 reciprocates the mold plate 50 between a fill position and a discharge position. At the fill position, the mold plate drive system 60 moves the mold plate 50 in alignment over a fill position 62 of a fill plate 63 to receive the pressurized food product into the plurality of cavities 37 in the mold plate 50. A mold cover and a breather plate (not shown) enclose the cavities 37 of the mold plate 50 when mold plate 50 is positioned over the fill position 62. After filling the cavities 37 of the mold plate 50 with food product fed under pressure from the feed chamber/manifold assembly 35, the mold plate drive system 60 slides the mold plate 50 outward from alignment with the fill position 62 toward the discharge position. At the discharge position, a knockout assembly 65 separates the one or more formed food product patties from the mold plate 50, typically deposited the formed patties onto an underlying conveyor. The number and rows of fill positions 62 in the fill plate 63 can vary. FIG. 2 shows a detailed view of the mold plate drive assembly 60 of the machine 10 of FIG. 1. The mold plate drive assembly 60 includes a controller 67 electrically connected to a more 70. The motor 70 is coupled to a drive pulley 75 that is configured to variably drive rotation of a drive belt 80. The controller 67 includes a touch screen or other input/output device 82 operable to allow an operator to input information or read output information from the controller 67. The motor 70 is preferably of a servo motor configured to receive control signals from a controller 67. Based on control signals from the controller 67, the servo motor 70 drives the cyclic reciprocation of the mold plate 50 between the fill position and the discharge position. The motor 70 and the drive pulley 75 are centrally disposed underneath the feed chamber assembly/manifold assembly 35 for ready access for maintenance or repair. The motor 70 is coupled by a mounting bracket 85 to the frame 12 of the machine 10 by a plurality of fasteners (e.g., bolts, screws, spot-welds, etc.). The type of drive belt 80 can vary. The drive belt 80 drives rotation of a driven pulley 95. A belt guard 97 encloses the drive belt 80. The driven pulley 95 is coupled to one end of a first shaft 100 and one end of a second shaft 102 extending laterally toward opposite sides of the machine 10. The other end of the first shaft 100 is coupled to a first drive cartridge 110 disposed on one side of the machine 10. The other end of the second shaft 102 is coupled to a second drive cartridge 115 disposed on the opposite side of the machine 10. Each shaft 100 and 102 includes a series of couplers 120 configured to couple each shaft 100 and 105 to the drive cartridges 110 and 115 and to the driven pulley 95. The driven pulley 95 and coupled shafts 100 and 102 are supported by a mounting bracket 117 coupled by fasteners to a main assembly plate 118 that is fixedly attached to the frame 12 of the machine 10. As shown in FIGS. 1 and 2, each drive cartridge 110 and 115 includes a drive belt 130 under tension by a belt tensioner assembly 150. The belt tensioner assembly 150 provides tensional force on the belt 130. The belt tensioner 150 of each drive cartridge 105 and 110 is coupled to a guide rod 152. The guide rod 152 rides on linear bushings and guides the linear motion of the belt tensioner 150. The cross-sectional shape (e.g., square, circular, etc.) of the guide rod 152 can vary. The guide rod 152 is coupled to a drawbar guide 155, which is defined by the upper area of belt tensioner assembly 150. The drawbar guide 155 is configured to couple with a drawbar 160 disposed laterally between the first 110 and second 115 drive cartridges. The drawbar 160 is coupled to mold plate 50. In operation, the controller 67 for the mold plate drive assembly 60 receives signals (e.g., radio frequency, electrical pulsed signals, etc.) representative of the position of the mold plate 50. The controller 67 can be configured to receive various signals form pressure sensors, limit switches, etc. representative of the pressure of the food product forced in the cavity of the mold plate 50 or the position of the mold plate 50. The controller 67 includes a processor configured by software to provide control signals to the motor 70 to control the directional drive of the pulley 75. Initially, the motor 70 drives rotation of the drive pulley 75 and attached drive belt 80, drive shafts 100 and 102, and drive pulleys 120 in each drive cartridge 110 and 115 in a first rotational direction to cause the drive belt 130 to move the belt tensioner 150, guide rod 152, drawbar guide 155, drawbar 160, and mold plate 50 to move in a first linear motion toward the fill position 62 of the fill plate 63. Upon filling of the cavity with food product to the designated pressure or for the designated dwell time, the controller signals the motor 70 to change direction. The motor 70 rotates the drive pulley 75 and attached drive belt 80, drive shafts 100 and 102, and drive pulleys 120 in a similar fashion to cause the drive belt 130 to move the belt tensioner 150, guide rod 152, drawbar guide 155, drawbar 160 of each drive cartridge 110 and 115 in a second linear direction such that the mold plate 50 slides away from the fill position 62 and toward a discharge position at the knockout assembly 65. The knockout assembly 65 discharges or releases the formed food product patties from the cavities of the mold plate 50. Thereby, the mold drive assembly 60 drives cyclic reciprocation of the mold plate 50 between the fill position and the discharge position as described above. FIGS. 3, 4, and 5 illustrate the mold drive assembly 60 configured by the controller 67 to provide a programmable mold plate position relative to the fill position 62 in the fill plate 63. Each of the FIGS. 3-5 show the mold plate drive assembly 60 stopping the cavities 37 of the mold plate 50 at variable positions relative to the fill positions 62 of the fill plate 63. The location of the cavities 37 over the fill positions 62 affects the filling and compaction of the formed food product patties. The controller 67 includes a touchscreen display 82 to allow an operator to select a fill position relative to the cavities of the mold plate 50. In FIG. 3, an operator has entered a Mid Cavity Fill Position on the touchscreen 82. The controller 67 signals the mold drive assembly 60 to stop the mold plate 50 such that the fill positions 62 are generally centered in the cavities 37 of the mold plate 50. In FIG. 4, the operator has entered A Typical Fill Position. The controller 67 signals the mold drive assembly 60 to stop the mold plate 50 such that the cavities 37 are positioned where a typical fill position is located. In FIG. 5, an operator enters Fully Back Fill Position. The controller 67 signals the drive assembly 60 to stop the mold plate 50 such that the fill positions are positioned at the rear portion of the cavities 37. The controller 67 can be configured with encoders, pressure sensors, pressure limit switches, etc. to control and determine a position of the mold plate 50 of the machine 10. The controller 67 includes memory to store a plurality of programs for modes of operation of the mold plate drive assembly 60. The controller 67 can also create a program for a mode of operation by stopping the mold plate at small increments (e.g., 0.001 inch) relative the position of the fill positions 62 in the fill plate 63 and determining a compaction and uniformity of the food product fill in the cavities 37 until finding an optimum fill position is determined. The controller 67 can also operate the drive assembly 60 to index or step the mold plate with each cycle of filling of the cavities 37 with food product, such that the cavities are stopped at multiple positions relative to the fill positions. This index or stepping of the cavities of the mold plate relative to the fill positions can further enhance uniformity and consistency of the formed patty. The index or stepping of the molding plate 50 can occur in either direction of travel of the mold plate 50. In this manner, the mold plate 50 can be repetitively moved back and forth during the filing operation, to enhance the compaction of the material in the cavities 37 of mold plate 50. The above discussion, examples, and embodiments illustrate our current understanding of the invention. However, since many variations of the invention can be made without departing from the spirit and scope of the invention, the invention resides wholly in the claims hereafter appended.
<SOH> BACKGROUND OF THE INVENTION <EOH>Before automation, consumers generally formed patties of food product by hand. However, demand (e.g., the fast-food industry) for high-speed and high-volume product of food products led to the development of automated machines configured to provide molded food product. Generally, such machines mold the food product under pressure into patties of various shapes and sizes. A typical application for food product molding machines is in the production of hamburger patties. Yet, the type of food product (e.g., vegetables, meat, fish, etc.) and shape (e.g., rods, patties, etc.) can vary. The molded food products are distributed to restaurants, grocery stores, etc. The demand for high volume, high-speed food product molding machinery continues to grow. However, prior art food product molding machines have several drawbacks. For example, known molding machine use hydraulic or mechanical crank systems to reciprocate the lateral back and forth motion of a mold plate from a fill position over a fill position of fill plate of the food product forming machine. These hydraulic and mechanical crank systems are cumbersome to control and do not provide consistent compaction of food product patties. Furthermore, finding the optimum fill position of a mold plate requires machining new fill positions into a fill plate, or producing several fill plates and replacing the fill plates as needed according to the characteristics of the product being molded. As can be seen, the present state of the art of mold drive assemblies incorporated into food product molding machines has definite shortcomings.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the present invention, there is provided a food product molding machine comprising a fill plate having one or more fill positions and a mold plate having a plurality of cavities configured to receive a food product from the fill positions of the fill plate. A mold plate drive assembly is configured to linearly reciprocate the mold plate to and from a fill position over the fill slots. The food product molding machine further includes controller configured to control operation of the mold plate drive assembly to cause the cavities of the mold plate to stop at a plurality of selective positions relative the fill slots of the fill plate. It is an object of the present invention to fix the mold plate speed. It is an object of the present invention to eliminate pause time. It is an object of the present invention to optimize machine speed. It is an object of the present invention for the mold plate to go into the fill position by decelerating versus stopping. It is an object of the present invention to provide a longer deceleration to the midpoint to the endpoint.
20041028
20070424
20050428
64612.0
1
EWALD, MARIA VERONICA
PROFILED MOTION AND VARIABLE FILL POSITION OF MOLD PLATE ASSEMBLY IN A FOOD PRODUCT MOLDING MACHINE
SMALL
0
ACCEPTED
2,004
10,978,469
ACCEPTED
Method for manufacturing semiconductor integrated circuit device
Disclosed is a technique for reducing the leak current by reducing contamination of metal composing a polymetal gate of a MISFET: Of a polycrystalline silicon film, a WN film, a W film, and a cap insulating film formed on a gate insulating film on a p-type well (semiconductor substrate), the cap insulating film, the W film, and the WN film are etched and the over-etching of the polycrystalline silicon film below them is performed. Then, a sidewall film is formed on sidewalls of these films. Thereafter, after etching the polycrystalline silicon film with using the sidewall film as a mask, a thermal treatment is performed in an oxidation atmosphere, by which a light oxide film is formed on the sidewall of the polycrystalline silicon film. As a result, the contamination on the gate insulating film due to the W and the W oxide can be reduced, and also, the diffusion of these materials into the semiconductor substrate (p-type well) and the resultant increase of the leak current can be prevented.
1. A semiconductor integrated circuit device, comprising: (a) a semiconductor substrate having a main surface; (b) a first insulating film formed in the main surface of the semiconductor substrate; (c) a silicon film formed on the first insulating film, which has a first sidewall at the position contacting to the first insulating film and a second sidewall at the position apart from the first insulating film; (d) a refractory metal film formed above the silicon film and having a third sidewall; (e) a second insulating film covering the second and third sidewalls; and (f) a third insulating film positioned between the first and second insulating films and covering the first sidewall. 2. The semiconductor integrated circuit device according to claim 1, wherein the first and third insulating films are oxide films, and the second insulating film is a silicon nitride film. 3. The semiconductor integrated circuit device according to claim 1, wherein the first sidewall is positioned away from the second insulating film in comparison to the position of the second sidewall to the second insulating film. 4. The semiconductor integrated circuit device according to claim 3, wherein the first and second sidewalls are almost perpendicular to the main surface of the semiconductor substrate. 5. The semiconductor integrated circuit device according to claim 2, wherein the silicon film is interposed between the third insulating film and the refractory metal film. 6. A semiconductor integrated circuit device, comprising: (a) a semiconductor substrate having a main surface; (b) a pair of semiconductor regions formed in the main surface of the semiconductor substrate; (c) a silicon film formed over the main surface of the semiconductor substrate via a first insulating film in a region between the pair of semiconductor regions; (d) a refractory metal film formed on the silicon film; (e) a second insulating film covering a sidewall of the refractory metal film and a sidewall of the silicon film; and (f) a third insulating film covering a sidewall of the silicon film, wherein the third insulating film is provided at a position between the first insulating film and the second insulating film. 7. The semiconductor integrated circuit device according to claim 6, wherein the second insulating film is a silicon nitride film, and the first and third insulating films are silicon oxide films. 8. The semiconductor integrated circuit device according to claim 6, wherein semiconductor integrated circuit device further comprises a fourth insulating film positioned on the refractory metal film, and a sidewall of the fourth insulating film is covered with the second insulating film. 9. The semiconductor integrated circuit device according to claim 8, wherein the second and fourth insulating films are silicon nitride films, and the first and third insulating films are silicon oxide films. 10. The semiconductor integrated circuit device according to claim 6, wherein, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is smaller than that of the silicon film dose to the refractory metal film. 11. The semiconductor integrated circuit device according to claim 6, wherein, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is wider than that of the silicon film dose to the refractory metal film. 12. The semiconductor integrated circuit device according to claim 6, wherein the silicon film is interposed between the third insulating film and the refractory metal film.
CROSS REFERENCE TO RELATED APPLICATION This application is a continuation application of U.S. Ser. No. 10/223,317, filed Aug. 20, 2002, the contents of which are incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor integrated circuit device and a technique of manufacturing the same, more particularly, the present invention relates to a gate structure of a fine MISFET (Metal Insulator Semiconductor Field Effect Transistor) and a technique effectively applied to a method of manufacturing the same. BACKGROUND OF THE INVENTION A so-called polymetal gate in which refractory metal such as tungsten is laminated on a polycrystalline silicon film is adopted in order to lower the resistance of the gate electrode of the MISFET. Meanwhile, a so-called light oxidabon treatment for forming a thermal oxide film on a sidewall of the gate electrode is performed in the etching of the gate electode because a gate insulating film under the gate electrode is also caused to be etched in the etching so that the withstand voltage of the gate insulating film is deteriorated. For example, the gazette of Japanese Patent Laid-Open No. 2001-36072 discloses a technique for preventing the oxidabon of a metal layer by means of protecting the sidewalls of the metal layer composing the polymetal gate. Also, the gazette of Japanese Patent Laid-Open No. 11-261059 discloses a technique for forming a low-resistance transistor with no metal contamination. According to this technique, the low-resistance transistor without metal contamination is formed by covering the exposed portion of a metal composing the polymetal gate of the transistor with a film of LPCVD-HTO or SiN9, and then by processing a polysilicon film 3 below it. Also, in “A fully working 0.14 μm DRAM technology with polymetal (WANNx/Poly-Si) gate” by J. W. Jung et al. in the IEDM 2000 pp. 365-368, disclosed is a deaning technique using H2SO4 and purified water performed after the etching for a gate electrode made of W/WNx and poly-i. SUMMARY OF THE INVENTION The inventors have been engaged in the research and development of the data transfer MISFET and the DRAM (Dynamic Random Access Memory) including a data storage capacitor connected in series to the data transfer MISFET. The inventors had been examining the introduction of a polymetal gate electrode capable of lowering resistance in comparison to the conventional polycide gate into the gate electrode of the data transfer MISFET. However, it had been frequently found that the product adopting such a polymetal gate structure has a tendency to increase the leak current. As a result, it had been difficult to adopt the polymetal gate for the product with severe restriction in the leak current value. In such a circumstance, the inventors have intensely examined the increase of the leak current like this. As a result, the inventors have reached the conclusion that the diffusion of metal (metal contamination) composing the polymetal gate into the semiconductor substrate causes the increase of the leak current as described later in detail. An object of the present invention is to reduce the leak current of the MISFET by reducing the contamination of the metal composing the polymetal gate. Also, another object of the present invention is to improve the retention characteristic of a memory cell induding the MISFET by reducing the leak current in the MISFET. Also, another object of the present invention is to improve the performance of the semiconductor integrated circuit device having the MISFET by reducing the leak current in the MISFET. Still another object of the present invention is to improve the yield of the semiconductor integrated circuit device. The above and other objects and novel characteristic of the present invention will be apparent from the descriptions and the accompanying drawings of this specification. The typical ones of the inventions disclosed in this application will be briefly described as follows. (1) A method of manufacturing a semiconductor integrated circuit device according to the present invention comprises the steps of performing etching to remove a second insulating film, a refractory metal film, and a predetermined thickness of a silicon film, which are deposited on a first insulating film formed on a semiconductor substrate, so as not to expose the first insulating film; selectively forming a third insulating film on a sidewall of the silicon film and on a sidewall of the refractory metal film; removing a part of the silicon film not covered with the third insulating film; and performing a thermal treatment to a surface of the silicon film in an oxidation atmosphere. (2) Also, a semiconductor integrated circuit device according to the present invention comprises: a first insulating film formed on a main surface of a semiconductor substrate; a silicon film formed on the first insulating film, which has a first sidewall on a part contacting to the first insulating film and a second sidewall on a part apart from the first insulating film; a refractory metal film formed on the silicon film and having a third sidewall; a second insulating film covering the second and third sidewalls; and a third insulating film positioned between the first and second insulating films and covering the first sidewall. (3) Also, the semiconductor integrated circuit device is characterized in that the first and third insulating films are oxide films, and the second insulating film is a silicon nitride film. (4) Also, the semiconductor integrated circuit device is characterized in that the first sidewall is at a position away from the second insulating film in comparison to the position of the second sidewall. (5) Also, the semiconductor integrated circuit device is characterized in that the first and second sidewalls are almost perpendicular to the main surface of the semiconductor substrate. (6) Also, the semiconductor integrated circuit device is characterized in that the silicon film is interposed between the third insulating film and the refractory metal film. (7) Also, a semiconductor integrated circuit device according to the present invention comprises: a semiconductor substrate having a main surface; a pair of semiconductor regions formed over the main surface of the semiconductor substrate; a silicon film formed over the main surface of the semiconductor substrate via a first insulating film in a region between the pair of semiconductor regions; a refractory metal film formed on the silicon film; a second insulating film, which covers a sidewall of the refractory metal film and a sidewall of the silicon film; and a third insulating film, which covers a sidewall of the silicon film, wherein the third insulating film is at a position between the first insulating film and the second insulating film. (8) Also, the semiconductor integrated circuit device is characterized in that the second insulating film is a silicon nitride film, and the first and third insulating films are silicon oxide films. (9) Also, the semiconductor integrated circuit device further comprises: a fourth insulating film positioned on the refractory metal film, a sidewall of which is covered with the second insulating film. (10) Also, the semiconductor integrated circuit device is characterized in that the second and fourth insulating films are silicon nitride films, and the first and third insulating films are silicon oxide films. (11) Also, the semiconductor integrated circuit device is characterized in that, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is smaller than that of the silicon film dose to the refractory metal film. (12) Also, the semiconductor integrated circuit device is characterized in that, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is wider than that of the silicon film dose to the refractory metal film. (13) Also, the semiconductor integrated circuit device is characterized in that the silicon film is interposed between the third insulating film and the refractory metal film. BRIEF DESCRIPTIONS OF THE DRAWINGS FIG. 1 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention: FIG. 2 is a plan view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 3 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 4 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 5 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 6 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 7 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 8 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 9 is a sectional view showing the principal part of a substrate illustrating a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; FIG. 10 is a sectional view showing the principal part of a substrate illustrating a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; FIG. 11 is a plan view showing the principal part of a substrate illustrating a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; FIG. 12 is a sectional view showing the principal part of a substrate illustrating the growth of a light oxide film in a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; FIG. 13 is a sectional view showing the principal part of a substrate illustrating the growth of a light oxide film in a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 14 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 15 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 16 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 17 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 18 is a plan view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM) according to an embodiment of the present invention; FIG. 19 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; FIG. 20 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention; and FIG. 21 is a sectional view showing the principal part of a substrate illustrating the method of manufacturing a semiconductor integrated circuit device (DRAM), which is used to explain the effect of an embodiment of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail based on the accompanying drawings. Note that in all of the drawings for describing the embodiments, components having the same function are denoted by the same reference symbols and the repetitive descriptions thereof will be omitted. The method of manufacturing a DRAM according to the embodiment of the present invention will be described with reference to FIGS. 1 to 18 along with the manufacturing steps performed. First, as shown in FIG. 1, a semiconductor substrate 1 made of p-type single crystal silicon having the specific resistance of about 1 to 10 Ωcm is etched to form an element isolation trench with a depth of about 350 nm. Then, the thermal oxidation at about 1000° C. is performed to the semiconductor substrate 1, thereby forming a thin silicon oxide film 5a with a thickness of about 10 nm on an inner wall of the trench. The silicon oxide film 5a is formed in order to recover the damages due to the dry etching on the inner wall of the trench and to relax the stress at the interface between the semiconductor substrate 1 and a silicon oxide film 5b buried in the trench in the next step. Next, the silicon oxide film 5b is deposited to a thickness of about 450 to 500 nm by the CVD (Chemical Vapor Deposition) method over the semiconductor substrate 1 induding the inside of the trench, and then, the silicon oxide film 5b on the trench is polished by the CMP (Chemical Mechanical Polishing) method to flatten the surface. Thus, an element isolation 2 is formed. As shown in FIG. 2, the formation of the element isolation 2 simultaneously forms active regions (L) in a thin island shape surrounded by the element isolation 2. Two data transfer MISFETs Q which share a common source or a common drain are formed on each of the active regions (L). FIG. 1 corresponds, for example, to the section taken along the line A-A in FIG. 2. Next, after implanting ions of p-type impurities (boron) into the semiconductor substrate 1, the thermal treatment at about 1000° C. is performed to diffuse the impurities, thereby forming a p-type well 3 on the semiconductor substrate 1 (refer to FIG. 1). Next, as shown in FIG. 3, a surface of the semiconductor substrate 1 (p-type well 3) is wet-cleaned with a deaning solution containing hydrofluoric add. Thereafter, by the thermal oxidation at about 800° C., a dean gate insulating film 8 with a thickness of about 6 nm is formed on a surface of the p-type well 3. Next, a low-resistance polycrystalline silicon film 9a doped with phosphorus (P) is deposited to a thickness of about 70 nm on a gate insulating film 8 by the CVD method. Subsequently, a WN (tungsten nitride) film 9b with a thickness of about 5 nm and a W (tungsten) film 9c with a thickness of about 80 nm are deposited thereon by the sputtering method, and a silicon nitride film 10 with a thickness of about 200 nm is deposited further thereon by the CVD method. Note that the WN film 9b is formed in order to prevent the polycrystalline silicon film 9a and the W film 9c from forming an undesirable silicide layer. Furthermore, although the W film 9c is used in this embodiment, it is also possible to use other refractory metal film such as a Ti (titanium) film. Next, as shown in FIG. 4, a silicon nitride film 10 is dry-etched with using a photoresist film (not shown) as a mask. Thus, a cap insulating film 10a made of a silicon nitride film is formed in a region in which a gate electrode is formed. Subsequently, the resist (not shown) left on the cap insulating film 10a is removed. Next, the W film 9c, the WN film 9b, and the polycrystalline silicon film 9a are dry-etched with using the cap insulating film 10a as a mask, thereby forming a gate electrode 9 (word line WL) induding these films. In particular, the steps of forming the gate electrode 9 will be described in detail with reference to the FIGS. 5 to 13. Note that FIGS. 5 to 13 are enlarged views showing the part near the cap insulating film 10a. First, as shown in FIG. 5, the W film 9c and the WN film 9b are dry-etched with using the cap insulating film 10a as a mask, and then, the over-etching of the polycrystalline silicon film 9a is performed so that about 10 to 40 nm thereof is etched. Note that the etching amount of the polycrystalline silicon film 9a in this etching is appropriately controlled within the range in which the polycrystalline silicon film 9a is left and the semiconductor substrate 1 (gate insulating film 8) is not exposed in the step of forming the light oxide film described later. The reason why the polycrystalline silicon film 9a is left over the semiconductor substrate 1 (on the gate insulating film 8) will be described below. For example, as shown in FIG. 19, if all of the W film 9c, the WN film 9b, and the polycrystalline silicon film 9a are etched with using the cap insulating film 10a as a mask, the gate insulating film 8 is exposed. Also, the steps of forming a light oxide film 211a as shown in FIG. 20 on the sidewall of the polycrystalline silicon film 9a and forming a silicon nitride film over the semiconductor substrate 1 are performed thereafter. In these steps, W and W oxide (e.g., WO3) are adhered onto the gate insulating film 8. Particularly, since the light oxide film 211a is formed under the oxidabon atmosphere, the sublimated W (metal) and oxygen are reacted to produce W oxide in many cases. The W and W oxide P adhered onto the gate insulating film 8 are diffused into the semiconductor substrate 1 by the following ion implantation process and the thermal treatment, which causes the leak current (FIG. 21). In this embodiment, however, the polycrystalline silicon film 9a is left on the gate insulating film 8, and as described later, the sidewall of the W film 9c and that of the WN film 9b are covered with a sidewall film SW before the semiconductor substrate 1 (gate insulating film 8) is exposed. Therefore, the metal contamination on the gate insulating film 8 in the step of forming a light oxide film can be reduced. As a result, it is possible to achieve the reduction of the leak current in the data transfer MISFET Qs. Consequently, the retention characteristic of the DRAM memory cell can be improved. Next, as shown in FIG. 6, a silicon nitride (SiN) film is deposited to a thickness of about 10 to 20 nm by the LPCVD (Low Pressure Chemical Vapor Deposition) method over the semiconductor substrate 1 and then the anisotropic etching is performed thereto, by which sidewall films (insulating film) SW are formed on the sidewalls of the W film 9c, the WN film 9b, and the polycrystalline silicon film 9a which have been exposed by the above-described dry etching. The LPCVD method enables to accurately form a silicon nitride film even in a fine trench. Next, the deaning is performed to remove foreign matters such as organic matters and heavy metal (W and W oxide described above) over the semiconductor substrate 1 (on the cap insulating film 10a and polycrystalline silicon film 9a). The organic matters exist in a dean room in which the semiconductor substrate 1 is processed and adhere onto the semiconductor substrate 1. Also, the heavy metal adheres onto the semiconductor substrate 1, for example, when performing the dry etching of the W film 9c and the WN film 9b. In addition, the heavy metal may adhere thereto when depositing the silicon nitride film. For the removal of the organic matters, deaning with a deaning solution containing, for example, H2O2 (hydrogen peroxide) and NH4OH (ammonia) is performed. Also, for the removal of the heavy metal, deaning with a deaning solution containing, for example, H2O2 (hydrogen peroxide) and NCl (hydrochloric add) is performed. As described above, according to the embodiment, since the sidewall film SW is formed on the sidewalls of the W film 9c, the WN film 9b, and the polycrystalline silicon film 9a, it is possible to use a deaning solution containing strong add such as H2O2 in the deaning for removing foreign matters such as the organic matters, heavy metal, and the like. More specifically, in the case where the W film 9c and the WN film 9b are not covered, since the W contained therein is oxidized extremely easily, it is impossible to use a deaning solution containing strong acid such as H2O2 in the deaning, and there has been no other choice but the deaning which uses a pure water or a solution containing low-concentration HF (hydrogen fluoride). As a result, a sufficient removal of the organic matters and the heavy metal can not be performed, and thus, the characteristics of the semiconductor device such as a MISFET are deteriorated. In particular, as described above, when the removal of the metal layer is insufficient, the heavy metal left on the surface of the semiconductor substrate 1 enters the semiconductor substrate 1 by the following ion implantation and the thermal treatment, resulting in the increase in the leak current. However, in this embodiment, since the sidewall film SW is formed on the sidewalls of the W film 9c and WN film 9b, it is possible to use a deaning solution containing H2O2 in the deaning and to sufficiently remove the organic matters and the heavy metals. Next, as shown in FIG. 7, the polycrystalline silicon film 9a is dry-etched with using the sidewall film SW as a mask. This dry etching forms the gate electrode 9 comprising the W film 9c, the WN film 9b, and the polycrystalline silicon film 9a. Also, a film thickness D1 of the sidewall film SW after the dry etching is about 5 nm. To leave the sidewall film SW with a thickness of 5 nm as described above, the etching selectivity (Etch SiN/Etch Si) of 14 to 15 is required between the polycrystalline silicon film 9a and the silicon nitride film. Next, the deaning to remove the foreign matters such as organic matters and heavy metal on the surface of the semiconductor substrate 1 is performed. As described above, according to the embodiment, since the sidewall film SW is formed on the sidewalls of the W film 9c and the WN film 9b, it is possible to use the deaning solution containing strong add such as H2O2 in the deaning to remove the foreign matters such as the organic matters and heavy metal. Next, as shown in FIG. 8, the thermal treatment at 800° C. is performed in the oxidation atmosphere (in the atmosphere containing O2) to form a thin oxide film (hereinafter, referred to as a light oxide film) 11a with a thickness (D2) of about 7 nm on the sidewalls of the polycrystalline silicon film 9a. The light oxide film (insulating film) 11a is formed in order to recover the damages on the gate insulating film 8 positioned under the end portion of the polycrystalline silicon film 9a caused when performing the etching of the polycrystalline silicon film 9a. As described above, when forming the light oxide film 11a, the sidewalls of the W film 9c, the WN film 9b, and (a part on the polycrystalline silicon film 9a has been covered with the sidewall film SW. Therefore, the metal contamination on the gate insulating film 8 can be reduced. As a result, the reduction in the leak current of the data transfer MISFET Qs can be achieved, and the improvement of the retention characteristic of the DRAM memory cell can be also achieved. Also, according to the embodiment, since the sidewall film SW is formed on the sidewalls of the W film 9c and the WN film 9b, it is possible to form the light oxide film 11 a by the so-called dry oxidabon, and thus, the characteristic of the MISFET can be improved. The dry oxidation mentioned here indicates an oxidation performed in the atmosphere containing no hydrogen (H2). More specifically, if performing the dry oxidation in a state where the W film 9c, the WN film 9b and the polycrystalline silicon film 9a are not covered, the abnormal oxidation is caused in the W film and the like. Therefore, there has been no choice but to use the wet hydrogen oxidabon capable of selectively oxidizing only the silicon (polycrystalline silicon film 9a). In this wet hydrogen oxidabon, oxidation process is performed in the atmosphere containing water vapor (H2O) and hydrogen, and the condition that the silicon (9a) is oxidized but the W (9b and 9c) are not oxidized can be selected by controlling the partial pressure of hydrogen. A sectional view showing the principal part of the substrate in the case where the light oxide film 211a is formed by the wet hydrogen oxidation is shown in FIG. 9. However, in this wet hydrogen oxidation, oxidation species (groups and atoms causing the oxidation) are OH groups, and the oxidation species enter the active regions L (exposed part of the p-type well 3) through the oxide film of the element isolation. As a result, the thickness of the silicon oxide film 5a is increased and the lower portion of the polycrystalline silicon film 9a composing the gate electrode is oxidized. Such a reaction is remarkable at the interface between the element isolation 2 and the active region L on the surface of the semiconductor device, and as shown in FIG. 10, the oxide film thickness (Tox2) in such a portion becomes larger than the gate insulating film thickness (Tox1). As a result, the problem of the variation in the characteristic of the MISFET composing the memory cell, for example, the variation in the threshold voltage thereof occurs. The problem of the variation in the characteristic like this becomes more and more remarkable with the downsizing (shorter channel) of the device. FIG. 10 shows a sectional view taken along the direction in which the gate electrode 9 of the semiconductor substrate shown in FIG. 9 extends. Also, FIG. 11 is a plan view showing the principal part of the semiconductor substrate shown in FIGS. 9 and 10. FIG. 9 corresponds to the section taken along the line B-B in FIG. 11, and FIG. 10 corresponds to the section taken along the line C-C in FIG. 11. In this case, the H indicates the channel width in FIG. 11. Contrary to this, since the dry oxidation in which the oxidabon species is O2 (oxygen) can be used in this embodiment, it is possible to restrain the oxidabon of the semiconductor substrate and the gate electrode. As a result, the variance in the characteristic of the MISFET composing the memory cell can be reduced. Also, in this embodiment, the over-etching of the polycrystalline silicon film 9a is performed so that about 10 to 40 nm thereof is etched. Therefore, it is possible to prevent the oxidation of the W film 9c and the WN film 9b that compose the gate electrode. More specifically, as shown in FIG. 12, if the polycrystalline silicon film 9a is not over-etched at all, and the light oxide film 311a grown from the sidewall of the polycrystalline silicon film 9a is thicker than the sidewall film SW, the light oxide film 311a contacts to the WN film 9b, and as a result, the WN film 9b and the W film 9c formed thereon are oxidized. Particularly, when using the dry oxidation as described above, the WN film 9b and the W film 9c are easily oxidized. Contrary to this, in this embodiment, since the over-etching of the polycrystalline silicon film 9a is performed so that about 10 to 40 nm thereof is etched, the light oxide film 11a grows in the direction (X direction) perpendicular to the direction (Y direction) in which the gate electrode 9 extends until the growth of the light oxide film reaches the position equal to the thickness of the sidewall film SW. Thereafter, the light oxide film 11a grows both of the X direction and the upper direction (Z direction). Therefore, a certain amount of time is required until the light oxide film grows to the position below the WN film 9b. As a result, even in the case where the thickness of the light oxide film 11a is 7 nm which is larger than that of the sidewall film (5 nm), the light oxide film 11a does not contact to the WN film 9b, and the oxidation of the WN film 9b and the W film 9c formed thereon can be prevented. In other words, it is possible to interpose the polycrystalline film 9a between the light oxide film 11a and the WN film 9b. Consequently, the device characteristic of the MISFET can be improved, and the production yield can be improved. Note that the larger the over-etching amount of the polycrystalline silicon film 9a, the larger the amount of margin for the light oxidation can be. Also, the thickness of the light oxide film 11a is sufficient if it can recover the damage due to the etching on the surface of the gate insulating film 8, and it does not have to be larger than that of the sidewall film SW. More specifically, in this embodiment, the width W1 of the upper portion of the polycrystalline silicon film 9a after forming the light oxide film 11 a is larger than the width W2 of the lower portion of the polycrystalline silicon film 9a (W1>W2). However, the relationship W1≦W2 is also applicable. When the film thickness (D2) of the light oxide film 11a is smaller than that (D1) of the sidewall film SW, the relationship between the width W1 and the width W2 of the polycrystalline silicon film 9a is W1≦W2. However, by setting the large margin for forming the light oxidation film, it becomes unnecessary to control the thickness of the sidewall film and the light oxide film so strictly. Also, the oxidation of the WN film 9b and the W film 9c due to the variation depending on the process can be prevented. Next, as shown in FIG. 14, an n−-type semiconductor region 13 is formed by implanting n-type impurities (phosphorus) into the p-type well 3 positioned at the both sides of the gate electrode 9. Through the steps so far, the data transfer MISFET Qs of an n-channel type is formed in the memory cell array area. Next, a silicon nitride film 16 is deposited to a thickness of about 50 nm over the semiconductor substrate 1 by the CVD method. The sum of the thickness of the silicon nitride film 16 and the remaining sidewall film SW is controlled so as to obtain a sufficient space for preventing the short-circuit between a terminal portion of a contact hole and the gate electrode 9 when forming contact holes 20 and 21 described later. Subsequently, after depositing a silicon oxide film 19 to a thickness of about 500 nm over the semiconductor substrate 1 by the CVD method, the silicon oxide film 19 is polished by the CMP method to flatten the surface thereof. Next, the silicon oxide film 19, the silicon nitride film 16, and the sidewall film SW are dry-etched with using a photoresist film (not shown) as a mask, thereby forming the contact holes 20 and 21 on the n−-type semiconductor region 13. In this case, the etching of the silicon oxide film 19 is performed under the condition of high etching selectivity for the silicon nitride film (16 and SW), and the etching of the silicon nitride film 16 is performed under the condition of high etching selectivity for the silicon and the silicon oxide film. Thus, the contact holes 20 and 21 are formed in a self-alignment manner with respect to the gate electrode 9. Next, the ions of the n-type impurities (phosphorus or arsenic) are implanted into the p-type well 3 (n−-type semiconductor region 13) through the contact holes 20 and 21, thereby forming an n+-type semiconductor region 17 (field relaxation layer). Next, a plug 22 is formed in each of the contact holes 20 and 21. The plug 22 is formed in such a manner as follows. That is, a low-resistance polycrystalline silicon film doped with n-type impurities such as phosphorus (P) is first deposited to a thickness of about 300 nm on the silicon oxide film 19 and in the contact holes 20 and 21 by the CVD method, and then, the polycrystalline silicon film is etched back (or polished by the CMP method) and left only in the contact holes 20 and 21. Next, as shown in FIG. 16, after depositing a silicon oxide film 23 to a thickness of about 100 nm on the silicon oxide film 19 by the CVD method, a through hole 25 is formed on the plug 22 in the contact hole 20. Subsequently, a TiN (titanium nitride) film (not shown) and a W film are sequentially deposited on the silicon oxide film 23 and in the through hole 25. Thereafter, the TiN film and the W film outside the through hole 25 are polished by the CMP method, and thus, a plug 26 is formed. Next, a bit line BL is formed on the plug 26. The bit line BL is formed in such a manner as follows. That is, after depositing a W film to a thickness of about 100 nm by the sputtering method on the silicon oxide film 23 and on the plug 26, the W film is dry-etched to form the bit line BL. Next, as shown in FIG. 17, a silicon oxide film 34 is deposited on the bit line BL by the CVD method. Subsequently, the silicon oxide film 34 and the silicon oxide film 23 formed on the plugs 22 in the contact holes 21 are dry-etched to form through holes 38. Subsequently, after depositing a conductive film such as a W film on the silicon oxide film 34 and in the through holes 38 by the CVD method, the conductive film outside the through holes 38 is polished off by the CMP method, thereby forming plugs 39. A silicon nitride film 40 is deposited on the silicon oxide film 34 and on the plugs 39 by the CVD method, and then, a silicon oxide film 41 is deposited on the silicon nitride film 40 by the CVD method. Thereafter, the silicon oxide film 41 and the silicon nitride film 40 are dry-etched, thereby forming trenches 42 on the plugs 39. Next, after depositing a conductive film such as a low-resistance polycrystalline silicon film doped with n-type impurities such as phosphorus (P) on the silicon oxide film 41 and in the trenches 42 by the CVD method, a photoresist film or the like is buried in the trenches 42. Then, the conductive film on the silicon oxide film 41 is etched back, thereby leaving the conductive film only on the inner wall of the trenches 42. Thus, a lower electrode 43 of the data storage capacitor C is formed along the inner wall of the trench 42. Next, a capacitor insulating film 44 comprising a tantalum oxide film and the like and an upper electrode 45 comprising a conductive film such as a TiN film are formed on the lower electrode 43, thereby forming the data storage capacitor C. FIG. 18 is a plan view showing the principal part of the substrate after forming the data storage capacitor C. Through the steps so far, a memory cell of the DRAM comprising the data transfer MISFET Qs and the data storage capacitor C connected thereto in series is completed. Subsequently, a silicon oxide film 50 is deposited over the semiconductor substrate 1 by the CVD method, and about two layers of wirings (not shown) are formed, and thus, the DRAM according to the embodiment is almost completed. In the foregoing, the inventions made by the inventors thereof have been described based on the embodiment in detail. However, it goes without saying that the present invention is not limited to the embodiment and various changes and modifications can be made within the scope of the present invention. Particularly, in the descriptions of the embodiment, the memory cell of a DRAM is taken as an example. However, the present invention can be widely applied to a semiconductor integrated circuit device induding a gate electrode in which a silicon film and a metal film are provided and an oxide film is formed on a sidewall of the silicon film. The advantages achieved by the typical ones of the invention disclosed in this application will be briefly described as follows. After a second insulating film, a refractory metal film, and a predetermined thickness of a silicon film, which are deposited on a first insulating film formed on a semiconductor substrate, are etched and removed so as not to expose the first insulating film, a third insulating film is selectively formed on a sidewall of the silicon film and on a sidewall of the refractory metal film. Also, after removing a part of the silicon film not covered with the third insulating film, a thermal treatment is performed to a surface of the silicon film in an oxidation atmosphere. Therefore, it is possible to prevent the contamination on the first insulating film due to the refractory metal and the oxide thereof, and the diffusion of the materials into the semiconductor substrate and the resultant increase of a leak current can be prevented. Consequently, it is possible to improve the characteristic of the semiconductor integrated circuit device, and the yield thereof can also be improved.
<SOH> BACKGROUND OF THE INVENTION <EOH>A so-called polymetal gate in which refractory metal such as tungsten is laminated on a polycrystalline silicon film is adopted in order to lower the resistance of the gate electrode of the MISFET. Meanwhile, a so-called light oxidabon treatment for forming a thermal oxide film on a sidewall of the gate electrode is performed in the etching of the gate electode because a gate insulating film under the gate electrode is also caused to be etched in the etching so that the withstand voltage of the gate insulating film is deteriorated. For example, the gazette of Japanese Patent Laid-Open No. 2001-36072 discloses a technique for preventing the oxidabon of a metal layer by means of protecting the sidewalls of the metal layer composing the polymetal gate. Also, the gazette of Japanese Patent Laid-Open No. 11-261059 discloses a technique for forming a low-resistance transistor with no metal contamination. According to this technique, the low-resistance transistor without metal contamination is formed by covering the exposed portion of a metal composing the polymetal gate of the transistor with a film of LPCVD-HTO or SiN9, and then by processing a polysilicon film 3 below it. Also, in “A fully working 0.14 μm DRAM technology with polymetal (WANNx/Poly-Si) gate” by J. W. Jung et al. in the IEDM 2000 pp. 365-368, disclosed is a deaning technique using H 2 SO 4 and purified water performed after the etching for a gate electrode made of W/WN x and poly-i.
<SOH> SUMMARY OF THE INVENTION <EOH>The inventors have been engaged in the research and development of the data transfer MISFET and the DRAM (Dynamic Random Access Memory) including a data storage capacitor connected in series to the data transfer MISFET. The inventors had been examining the introduction of a polymetal gate electrode capable of lowering resistance in comparison to the conventional polycide gate into the gate electrode of the data transfer MISFET. However, it had been frequently found that the product adopting such a polymetal gate structure has a tendency to increase the leak current. As a result, it had been difficult to adopt the polymetal gate for the product with severe restriction in the leak current value. In such a circumstance, the inventors have intensely examined the increase of the leak current like this. As a result, the inventors have reached the conclusion that the diffusion of metal (metal contamination) composing the polymetal gate into the semiconductor substrate causes the increase of the leak current as described later in detail. An object of the present invention is to reduce the leak current of the MISFET by reducing the contamination of the metal composing the polymetal gate. Also, another object of the present invention is to improve the retention characteristic of a memory cell induding the MISFET by reducing the leak current in the MISFET. Also, another object of the present invention is to improve the performance of the semiconductor integrated circuit device having the MISFET by reducing the leak current in the MISFET. Still another object of the present invention is to improve the yield of the semiconductor integrated circuit device. The above and other objects and novel characteristic of the present invention will be apparent from the descriptions and the accompanying drawings of this specification. The typical ones of the inventions disclosed in this application will be briefly described as follows. (1) A method of manufacturing a semiconductor integrated circuit device according to the present invention comprises the steps of performing etching to remove a second insulating film, a refractory metal film, and a predetermined thickness of a silicon film, which are deposited on a first insulating film formed on a semiconductor substrate, so as not to expose the first insulating film; selectively forming a third insulating film on a sidewall of the silicon film and on a sidewall of the refractory metal film; removing a part of the silicon film not covered with the third insulating film; and performing a thermal treatment to a surface of the silicon film in an oxidation atmosphere. (2) Also, a semiconductor integrated circuit device according to the present invention comprises: a first insulating film formed on a main surface of a semiconductor substrate; a silicon film formed on the first insulating film, which has a first sidewall on a part contacting to the first insulating film and a second sidewall on a part apart from the first insulating film; a refractory metal film formed on the silicon film and having a third sidewall; a second insulating film covering the second and third sidewalls; and a third insulating film positioned between the first and second insulating films and covering the first sidewall. (3) Also, the semiconductor integrated circuit device is characterized in that the first and third insulating films are oxide films, and the second insulating film is a silicon nitride film. (4) Also, the semiconductor integrated circuit device is characterized in that the first sidewall is at a position away from the second insulating film in comparison to the position of the second sidewall. (5) Also, the semiconductor integrated circuit device is characterized in that the first and second sidewalls are almost perpendicular to the main surface of the semiconductor substrate. (6) Also, the semiconductor integrated circuit device is characterized in that the silicon film is interposed between the third insulating film and the refractory metal film. (7) Also, a semiconductor integrated circuit device according to the present invention comprises: a semiconductor substrate having a main surface; a pair of semiconductor regions formed over the main surface of the semiconductor substrate; a silicon film formed over the main surface of the semiconductor substrate via a first insulating film in a region between the pair of semiconductor regions; a refractory metal film formed on the silicon film; a second insulating film, which covers a sidewall of the refractory metal film and a sidewall of the silicon film; and a third insulating film, which covers a sidewall of the silicon film, wherein the third insulating film is at a position between the first insulating film and the second insulating film. (8) Also, the semiconductor integrated circuit device is characterized in that the second insulating film is a silicon nitride film, and the first and third insulating films are silicon oxide films. (9) Also, the semiconductor integrated circuit device further comprises: a fourth insulating film positioned on the refractory metal film, a sidewall of which is covered with the second insulating film. (10) Also, the semiconductor integrated circuit device is characterized in that the second and fourth insulating films are silicon nitride films, and the first and third insulating films are silicon oxide films. (11) Also, the semiconductor integrated circuit device is characterized in that, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is smaller than that of the silicon film dose to the refractory metal film. (12) Also, the semiconductor integrated circuit device is characterized in that, with respect to the direction from one semiconductor region to the other semiconductor region, a width of the silicon film dose to the first insulating film is wider than that of the silicon film dose to the refractory metal film. (13) Also, the semiconductor integrated circuit device is characterized in that the silicon film is interposed between the third insulating film and the refractory metal film.
20041102
20070529
20050428
76000.0
2
VU, DAVID
METHOD FOR MANUFACTURING SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,978,686
ACCEPTED
Exhaust filter
An exhaust filter having a pleated filter media mounted between end caps is disclosed herein. The filter has a construction suitable for high temperature environments such as engine exhaust systems.
1. An exhaust filter comprising: a pleated filter element having first and second ends; a first end cap mounted at the first end of the filter element and a second end cap mounted at the second end of the filter element; a sealing gasket provided at the first end cap; and the filter element, the first and second end caps and the sealing gasket each being constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures that exceed 500° F. 2. The filter of claim 1, wherein the end caps include aluminized steel. 3. The filter of claim 1, wherein the filter element includes a fibrous construction. 4. The filter of claim 3, wherein the filter element includes glass fibers. 5. The filter element of claim 3, wherein the filter element includes ceramic fibers. 6. The filter of claim 1, wherein the filter element includes a filter material laminated to a mesh. 7. The filter of claim 6, wherein the filter material is laminated between two meshes. 8. The filter of claim 6, wherein the mesh is coated with a protective layer for withstanding continuous operating temperatures that exceed 500° F. 9. The filter of claim 8, wherein the protective layer includes an aluminum paste. 10. The filter of claim 8, wherein the mesh includes steel and copper, and wherein the protective layer is adapted to isolate the copper from an exhaust stream. 11. The filter of claim 1, wherein the gasket is mechanically secured to the first end cap. 12. The filter of claim 11, wherein the gasket is stapled to the first end cap. 13. The filter of claim 11, wherein the gasket includes a fibrous construction. 14. An exhaust filter comprising: a pleated filter element having first and second ends; a first end cap mounted at the first end of the filter element and a second end cap mounted at the second end of the filter element, the first end cap including an outer axial end surface; and a sealing gasket mechanically secured at the outer axial end surface of the first end cap. 15. The filter of claim 14, wherein the sealing gasket is stapled to the first end cap. 16. The filter of claim 14, wherein the gasket includes a fibrous construction. 17. The filter of claim 14, wherein the sealing gasket includes glass fibers. 18. The filter of claim 14, wherein the sealing gasket includes ceramic fibers. 19. The filter of claim 14, wherein the sealing gasket includes basalt fibers. 20. An exhaust filter comprising: a pleated filter element having first and second ends; a first end cap mounted at the first end of the filter element and a second end cap mounted at the second end of the filter element, the first end cap including an outer axial end surface; and a sealing gasket secured to the first end cap, the sealing gasket having a sheet-like construction. 21. An exhaust filter comprising: a pleated filter element having first and second ends; a first end cap mounted at the first end of the filter element and a second end cap mounted at the second end of the filter element, the first end cap including an outer axial end surface; and a sealing gasket secured to the first end cap, the sealing gasket having a fibrous construction. 22. The filter of claim 21, wherein the fibrous construction includes glass fibers.
CROSS REFERENCE TO RELATED APPLICATION The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/517,363 filed Nov. 4, 2003, which application is hereby incorporated by reference in its entirety. TECHNICAL FIELD The present invention relates generally to air filters. More particularly, the present invention relates to air filters for use in exhaust systems. BACKGROUND Engine exhaust filters can have a variety of constructions. One type of exhaust filter includes a cellular ceramic core defining a honeycomb of channels having plugged ends. Filters having this construction are disclosed in U.S. Pat. Nos. 4,276,071 and 4,851,015. Other exhaust filters include a filter media defined by a plug of wire mesh. Filters having this construction are disclosed in U.S. Pat. Nos. 3,499,269 and 4,902,487. Filters of the type indicated above can be catalyzed or un-catalyzed. Un-catalyzed filters require high temperatures to be efficiently regenerated. Catalyzed filters can be regenerated at lower temperatures, but can generate undesirable by-products such as NO2. Filters are also often used to filter the intake air drawn into an engine. U.S. Pat. Nos. 3,078,650 and 5,547,480 disclose air filters of the type used with the intake systems of engines. These filters include cylindrical pleated filter elements mounted within housings. The filter elements define hollow interiors, and the air being filtered travels radially through the pleated filter elements. While suitable for engine intake applications, these types of filters are not adapted for the high temperature environment created by engine exhaust. Engine emission regulations have become increasingly stringent. What are needed are alternative filtration systems for use in reducing engine exhaust emissions. SUMMARY One aspect of the present invention relates to an air filter having a design suitable for the air filter to be used in a relatively high temperature environment such as an engine exhaust system. In one embodiment, the air filter includes a cylindrical, pleated filter element. Examples of a variety of inventive aspects in addition to those described above are set forth in the description that follows. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the broad inventive aspects that underline the examples disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 schematically shows an example system in which filters in accordance with the principles of the present disclosure may be utilized; FIG. 2 is a cut away view of an air filter having features that are examples of inventive aspects in accordance with the principles of the present disclosure; FIG. 3 is an end view of the air filter of FIG. 2; FIG. 4 is a cross sectional view through a portion of the filter media of the air filter of FIG. 2; FIG. 5 illustrates a portion of FIG. 2 in enlarged detail; FIG. 6 illustrates another filter element having features that are examples of inventive aspects in accordance with the principles of the present disclosure; FIG. 7 is an enlarged detailed cross-sectional view of a portion of FIG. 6; FIG. 8 illustrates a filter media of the embodiment of FIG. 6 prior to folding the axial extensions to form an end sealing structure; FIG. 9 illustrates the filter media of FIG. 8 after the axial extensions have been folded to form an end sealing structure; FIG. 10 shows an end cap having features that are examples of inventive aspects in accordance with the principles of the present disclosure; FIG. 11 shows another end cap having features that are examples of inventive aspects in accordance with the principles of the present disclosure; FIG. 12 shows a further end cap having features that are examples of inventive aspects in accordance with the principles of the present disclosure; FIG. 13 is a plan view of the end cap of FIG. 10 with a clip being used to secure a gasket thereto; FIG. 14 is a cross-sectional view taken along section line 14-14; FIG. 15 is a plan view of the clip of FIGS. 13 and 14 in a precursor state; FIG. 16 is a side view of the clip of FIGS. 13 and 14 prior to being roller into a ring shape; FIG. 17 is a top view of FIG. 16; and FIG. 18 is an end view of FIG; 16. DETAILED DESCRIPTION FIG. 1 schematically illustrates an engine 20 having an intake system 22 and an exhaust system 24. An air filter 26 can be provided as part of the intake system 22 to remove particles from the air drawn into the engine 20. An air filter 28 in accordance with the principles of the present disclosure can be provided at the exhaust system 24 for removing volatile particulates as well as non-volatile particulates such as carbon-based particulates (e.g., soot) from the exhaust stream. In certain embodiments, the engine 20 can be a diesel engine such as the type used in motor vehicles such as forklifts, skid steer loaders, mining equipment, or other motor vehicles or equipment. It will be appreciated that the exhaust stream generated by the engine 20 can often have a relatively high temperature. For example, temperatures exceeding 600° F. are not uncommon. Therefore, it is preferred for the air filter 28 to have a construction suitable for operating in a relatively high temperature environment. A. Example Filter Assembly FIGS. 2 and 3 illustrate an air filter 28 having features that are examples of inventive aspects in accordance with the principles of the present disclosure. The air filter 28 includes a generally cylindrical filter media 30 mounted between end caps 32. The ends of the filter media 30 can be sealed and secured to the end caps 32 by a potting material 34. Sealing gaskets 36 are provided on axially outwardly facing surfaces 37 of the end caps 32. A cylindrical shell 38 preferably is mounted about the exterior of the filter media 30. The shell 38 defines openings for allowing the passage of air through the shell. Ends of the shell 38 are secured (e.g., welded) to the end caps 32 such that the entire assembly of parts is secured together as a unit. In certain embodiments, the top and bottom ends of the shell can include solid borders/bands to facilitate attaching the end caps thereto. In other embodiments, the end caps can be connected together by metal strips that extend along the exterior of the shell between the end caps such that the shell and filter media are captured between the end caps. It will be appreciated that various components of the air filter 28 are designed to withstand relatively high temperatures such as those generated by an exhaust stream. In certain embodiments, the shell 38 can be perforated metal or expanded metal. In other embodiments, the filter and shell can have other shapes such as a conical shape. As depicted in FIG. 2, the air filter 28 has a hollow core 40. The end caps 32 define central openings 41 in axial alignment with the hollow core 40. In this embodiment, dirty air from an exhaust system is directed into the hollow core 40 through the central opening 41 of one of the end caps 32. From within the hollow core 40, the air is forced radially outwardly through the filter media 30 and the shell 38 to the atmosphere. This type of embodiment is a reverse-flow filter, since flow proceeds from inside the filter element radially outwardly through the filter element. In alternative embodiments, the filter unit can be provided with a reinforcing core (e.g., a perforated metal core or an expanded metal core) within the filter element, and flow can proceed from outside the filter element radially inwardly through the filter element into the interior of the core. Further, while the embodiment of FIG. 2 has two open-ended caps, in alternative embodiments at least one of the end caps may be closed. In use, the filter 28 can be mounted to an exhaust pipe for conveying an exhaust stream away from an engine. For example, the filter 28 can be mounted within a filter housing secured (e.g., clamped) to the end of an exhaust pipe. When mounted within the housing, one of the gaskets forms a seal with the housing, while the other gasket forms a seal with a mounting plate that is clamped or otherwise fastened to the housing to firmly secure the filter 28 within the housing. For single gasket embodiments (e.g., embodiments with one of the end caps closed), other filter housing constructions will be used. It will be appreciated that a large number of techniques for mounting filters within air streams are known, and that all of the various techniques are within the scope of the present invention. B. Example Filter Media The filter media 30 preferably has a construction suitable for high temperature applications such as exhaust systems. In one embodiment, the filter media 30 is constructed to not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 500° F. In another embodiment, the filter media 30 is constructed to not generate harmful levels of off-gasses when exposed to continuous operating temperatures that exceed 650° F. In certain other embodiments, the filter media is constructed of a material that does not generate harmful levels of off-gasses when exposed to temperatures excursions equal to or greater than 800° F., or equal to or greater than 900° F. As defined herein, harmful levels of off-gasses include levels of harmful off-gasses that that exceed permissible regulatory limits. In one embodiment, the filter media 30 is folded into a pleated configuration, and rolled into a cylinder (see FIG. 3). As shown in FIG. 4, the filter media 30 has a laminated construction with a layer of filter material 50 secured between two layers of reinforcing material or scrim such as mesh screen 51 or expanded metal. In certain embodiments, the filter media includes a layer fibers (e.g., glass or ceramic fibers). The layer can include woven or non-woven (e.g., matted) fibers. An example material includes a fiberglass filter material is sold by Filtration Specialties Inc. under the name Dynaglas® 2201. Other materials capable of withstanding relatively high temperatures, whether fibrous or non-fibrous, can also be used. In other embodiments, the media can be supported by a single reinforcing layer rather than being sandwiched between two reinforcing layers. In certain embodiments, the screen 51 can include a mesh coated with a protective layer. The mesh can be manufactured of a metal material such as metal wire. In one embodiment, the metal material can include steel with a residual outer layer of copper. The protective layer provides a number of functions. First, the layer is preferably capable of withstanding temperatures comparable to those specified with respect to the filter media. The protective layer resists corrosion of the screen 51. In embodiments where the material of the screen includes copper, the protective layer isolates the copper from the exhaust stream to prevent the copper from reacting with sulfur in the exhaust stream and generating copper sulfate. An example protective layer includes an aluminum paint material or an epoxy coating. C. Example End Caps and Outer Shell Components such as end caps, cores or shells used in filters in accordance with the present disclosure preferably have a construction adapted to resist degradation/deterioration when exposed to high temperatures such as those present in the exhaust stream of an engine. In certain embodiments, the components are constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 500° F. In certain other embodiments, the components are constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 650° F. In certain other embodiments, the components are constructed of a material that does not generate harmful levels of off-gasses when exposed to temperatures excursions equal to or greater than 800° F., or equal to or greater than 900° F. In a preferred embodiment some or all of the components have an aluminized steel construction. D. Example Gasket The gaskets 36 preferably have a construction suitable for high temperature applications such as exhaust systems. In certain embodiments, the gaskets are constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 500° F. In certain other embodiments, the gaskets are constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 650° F. In certain other embodiments, the gaskets are constructed of a material that does not generate harmful levels of off-gasses when exposed to temperature excursions equal to or greater than 800° F., or equal to or greater than 900° F. In one embodiment, the gaskets 36 are formed by a generally flat sheet of fabric material provided in a ring shape that surrounds the central openings 41 of the end caps 32 (see FIG. 3). The fabric can have fibers arranged in a woven or non-woven (e.g., matted) construction. The gaskets can include a glass fiber construction, a ceramic fiber construction, a basalt fiber construction, or other fibrous constructions capable of withstanding the relatively high temperatures environments. In one particular embodiment, the gaskets can include a fiberglass mat laminated to fiberglass cloth. In certain embodiments, the gaskets 36 each have a generally rectangular cross-sectional profile (see FIG. 2). In one embodiment, the gaskets can include chopped “E” glass fibers having a nominal fiber diameter of 0.00036 inches needled into the mat without a resin binder. Example thicknesses of the gaskets are in the range of 0.1-1.0 inches. While fibrous gaskets are preferred, non-fibrous gaskets capable of withstanding relatively high temperature environments could also be used. In a preferred embodiment, the gaskets 36 are secured to the end caps 32 by a mechanical fastening technique. For example, the gaskets can be secured to the end caps 32 by structures such as pins, clips, screws, bolts, flanges, rivets, hooks, catches, barbs, clamps or other fastening techniques. As shown in FIGS. 2, 3 and 5, the gaskets 36 are secured to the end caps 32 by staples 60 that are uniformly spaced about the circumference of the gaskets 36. The staples 60 are shown driven through the gaskets 36 and end caps 32, and into the potting material. In one embodiment, the staples are galvanized coated. E. Example Potting Material Potting material used in filters in accordance with the present disclosure preferably has a construction adapted to resist degradation/deterioration when exposed to high temperatures such as those present in the exhaust stream of an engine. In certain embodiments, the potting material is constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 500° F. In certain other embodiments, the potting material is constructed of a material that does not generate harmful levels of off-gasses when exposed to continuous operating temperatures equal to or greater than 650° F. In certain other embodiments, the potting material is constructed of a material that does not generate harmful levels of off-gasses when exposed to temperatures excursions equal to or greater than 800° F., or equal to or greater than 900° F. In one embodiment, the potting material includes a silicone material. In another embodiment, the potting material can be replaced with a fabric layer compressed between the end caps and the ends of the filter media. The fabric layer can have a construction like the fibrous materials identified with respect to the gaskets. FIG. 6 shows an alternative filter 128 having a filter media 130 mounted between end caps 132. Seals can be provided between the end caps 132 and the ends of the filter media 130 by folding axial extensions 180 of the filter media 130 over the axial ends of the pleated filter media 130 (as shown at FIG. 7), such that the folded extensions overlap to fully cover the ends of the filter media. The axial extensions 180 can be held in place at the ends of the filter media by fastening or otherwise securing the end caps 132 to a shell (e.g., a shell similar to shell 38 of FIG. 2) such that the extensions of the filter media are fixed in place via compression from the end caps 132. In embodiments where the filter medias includes a backing/reinforcing material such a screen 51, the screen 51 preferably extends only to the axial ends 181 of the pleated filter media 130 (as shown in FIG. 8) such that the screen 51 is not present in the folded axial extensions 180 of the filter media. To manufacture the filter 130, the media 130 is pleated as shown at FIG. 8. The extensions 180 are then folded over onto adjacent pleats in a fan-like manner to completely cover the ends of the filter media 130 as shown at FIG. 9. The end caps 132 are then mounted over the ends of the filter media 130 with the folded over extensions 180 lining the interior of the caps 132. A shell is then mounted about the exterior of the filter media 130 and end caps 132 are secured to the ends of the shell to hold the assembly together as one unit. In alternative embodiments, other more rigid materials can be used as potting materials. For example, in one embodiment, a ceramic potting compound can be used. In use, the ceramic is applied to the interior of the end caps in a liquid or paste form. The ends of the filter media are then inserted into and embedded in the ceramic within the end caps. The ceramic is then allowed to cure and thus harden within the end caps. After hardening, the ceramic does not adhere well to the metal end caps any may have a tendency to fall out. Therefore, the end caps are preferably provided with structure for retaining the ceramic therein after hardening. FIG. 10 shows an end cap 232 having dimples 290 that project into ceramic potting 291 within the end cap 232 to prevent the ceramic potting 291 from dislodging from the end cap 232. FIG. 11 shows an end cap 332 having tapered walls 393 for retaining ceramic potting 391 within the end cap 332. The walls 393 converge as the walls extend from a closed end to an open end of the end cap 332. FIG. 12 shows an end cap 432 having walls 493 for retaining ceramic potting 491 within the end cap 432. Referring to FIGS. 13 and 14, the end cap 232 is shown with a clip 270 being used to retain a fibrous annular gasket 236 at the outer end surface 237 of the end cap 232. The clip 270 includes a ring portion 272 that forms a main body of the clip 270. The ring portion extends through the central holes of the end cap 232 and the gasket 236. The clip 270 also includes gasket retention fingers 274 that project radially outwardly from the upper edge of the ring portion 272. The fingers 274 overlap the gasket 236 and compress the gasket 236 against the outer end surface 237 of the end cap 232. Mechanical retention tabs 276 are provided at the lower edge of the ring portion 272. The tabs 276 provide a mechanical interlock (e.g., a snap-fit) with the interior of the end cap 232. In other embodiments, the clip 270 could be welded (e.g., spot welded) to the end cap 232. In one embodiment, the clip 270 can be made by stamping the clip from a sheet of metal. A flat, precursor clip 270a stamped from a sheet of metal is shown at FIG. 15. After stamping the precursor clip 270a, the fingers 274 and the tabs 276 are bent as shown at FIGS. 16-18. The main body is then curled in a circle, and ends 280 of the main body are attached together (e.g., by fasteners, welding a mechanical interlock, etc.) to complete the manufacturing process. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
<SOH> BACKGROUND <EOH>Engine exhaust filters can have a variety of constructions. One type of exhaust filter includes a cellular ceramic core defining a honeycomb of channels having plugged ends. Filters having this construction are disclosed in U.S. Pat. Nos. 4,276,071 and 4,851,015. Other exhaust filters include a filter media defined by a plug of wire mesh. Filters having this construction are disclosed in U.S. Pat. Nos. 3,499,269 and 4,902,487. Filters of the type indicated above can be catalyzed or un-catalyzed. Un-catalyzed filters require high temperatures to be efficiently regenerated. Catalyzed filters can be regenerated at lower temperatures, but can generate undesirable by-products such as NO 2 . Filters are also often used to filter the intake air drawn into an engine. U.S. Pat. Nos. 3,078,650 and 5,547,480 disclose air filters of the type used with the intake systems of engines. These filters include cylindrical pleated filter elements mounted within housings. The filter elements define hollow interiors, and the air being filtered travels radially through the pleated filter elements. While suitable for engine intake applications, these types of filters are not adapted for the high temperature environment created by engine exhaust. Engine emission regulations have become increasingly stringent. What are needed are alternative filtration systems for use in reducing engine exhaust emissions.
<SOH> SUMMARY <EOH>One aspect of the present invention relates to an air filter having a design suitable for the air filter to be used in a relatively high temperature environment such as an engine exhaust system. In one embodiment, the air filter includes a cylindrical, pleated filter element. Examples of a variety of inventive aspects in addition to those described above are set forth in the description that follows. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the broad inventive aspects that underline the examples disclosed herein.
20041101
20071113
20050616
61930.0
1
TURNER, SONJI
EXHAUST FILTER
UNDISCOUNTED
0
ACCEPTED
2,004
10,979,020
ACCEPTED
Method for making a blanket having a high pile density and a blanket made therefrom
A method for making a fabric having a ground and pile threads inserted between the ground threads is provided. The method comprises a step of weaving two fabrics simultaneously so that the fabrics are positioned parallel and spaced by a predetermined distance, and the pile threads are inserted alternately between the ground threads of one fabric and between those of the other fabric. Also, each pile thread is wound around one of the ground threads by one or more turns. The method further comprises cutting the pile threads between the fabrics, and heat setting the fabrics to bind the pile threads to the ground firmly. The pile threads are made of acrylic yarn, and the weight percentage of the pile threads in the fabric is between 80 and ninety-five 95, and the weight percentage of the ground threads in the fabric is the remainder.
1-15. (Cancelled) 16. A method for making a fabric, comprising the steps of: providing a ground made of a ground yarn, having spaces disposed therein; inserting a plurality of piles made of acrylic yarn into the spaces in the ground; binding the piles to the ground by heat-treating the fabric; and wherein the weight percentage in the fabric of the piles is at least approximately eighty (80) percent. 17. The method of claim 16, wherein the inserting step is done while the ground is being manufactured. 18. The method of claim 16 wherein the ground yarn is made of polyester, cotton, or a blend of polyester and cotton. 19. The method of claim 16 wherein the binding step comprises immersing the fabric in hot water and then drying the fabric. 20. The method of claim 16 wherein the binding step comprises heating the fabric with ultrasonic waves. 21. The method of claim 16 wherein the binding step comprises heating the fabric with microwaves. 22. A fabric made according to the method of claim 16. 23. The method of claim 16, further comprising the steps of: coloring the fabric with a predetermined pattern; cutting the fabric to a predetermined size for a blanket; and surrounding the edges of the cut fabric with a cloth. 24. A fabric comprising: a ground made of ground yarn, having spaces disposed therein; a plurality of piles made of acrylic yarn, inserted in the spaces in the ground, and bound to the ground; and wherein the weight percentage in the fabric of the piles is at least approximately eighty (80) percent. 25. The fabric of claim 24 wherein the ground yarn is made of polyester, cotton, or a blend of polyester and cotton. 26. (New) The fabric of claim 24 wherein the piles are bound to the ground by a weld.
RELATED APPLICATION This application is a continuation of U.S. patent application Ser. No. 10/095,761, filed Mar. 13, 2002, which is patented now as U.S. Pat. No. 6,647,601, and U.S. patent application Ser. No. 10/138,121, filed May 3, 2002. BACKGROUND OF THE INVENTION The present invention relates to a method for making a blanket. More particularly, the invention relates to a method for making a blanket having a high pile density. A fabric for a blanket is made by weaving a ground with a low-grade yarn such as a polyester yarn or a cotton yarn, and inserting pile threads in the spaces between the wefts and warps of the ground. A high-grade yarn such as an acrylic yarn is used as pile threads. Increasing the ratio of pile threads against ground threads, that is inserting pile threads denser, enhances the quality of the blanket, such as the feel or the appearance of the blanket. However, there has been a limit to increase the ratio due to the problem of inserting piles densely in the narrow spaces between the wefts and warps of the ground, and preventing the densely inserted piles from falling out when the blanket is in use. Also, it has been difficult to make the pile threads have uniform length, uniform density, and fine cut ends, thereby improving the appearance and feel of the pile threads. Accordingly, there has been a demand for an improved method for increasing the ratio of piles in the finished blanket-like products, and for improving the appearance and feel of the pile threads. SUMMARY OF THE INVENTION The present invention is contrived to overcome the conventional disadvantages. Therefore, an object of the invention is to provide a method for making a blanket with denser pile threads. Another object of the invention is to provide a blanket having a high-grade feel and appearance. Still another object of the invention is to provide a durable blanket with denser pile threads. Still another object of the invention is to provide a blanket with pile threads having uniform length, density and smooth ends. To achieve the above-described objects, the invention provides a method for making a fabric, which has a ground having a plurality of ground threads, and a plurality of pile threads inserted between the ground threads. The method comprises the steps of weaving a two fabrics simultaneously, cutting the pile threads between the two fabrics, and heat setting the fabrics to bind the pile threads to the ground firmly. In the weaving step, the two fabrics are positioned parallel with each other and spaced from each other by a predetermined distance. The pile threads are inserted alternately between the ground threads of one fabric and between the ground threads of the other fabric. Each of the pile threads is wound around one of the ground threads by one or more turns. The pile threads are made of acrylic yarn, and the weight percentage of the pile threads in the fabric is in the range between approximately eighty (80) and ninety-five (95), and the weight percentage of the ground threads in the fabric is the remainder. The ground threads are made of polyester, cotton, or a blend of polyester and cotton. More specifically, the weaving step of the method comprises the steps of inserting free ends of the plurality of the pile threads between the ground threads of one fabric, winding the pile threads around one of the ground threads of the one fabric by one or more turns, inserting the free ends of the pile threads between the ground threads of the other fabric, winding the pile threads around one of the ground threads of the second fabric by one or more turns, and repeating these steps until the two fabrics are weaved to a predetermined size. The heat setting step of the method comprises heating the fabric such that the ground threads and the pile threads contract in length and expand in diameter. he heating is done by immersing the fabric in hot water and then drying the fabric. Also, the heating may be done with ultrasonic wave or microwave. Alternatively, the heat setting step of the method comprises heating the fabric such that the ground threads and the pile threads weld together. The heating is done with ultrasonic wave or microwave. Heat is concentrated where the pile threads are bound to the ground threads. The method of making the fabric may further comprise a step of coloring the fabric with a predetermined pattern between the cutting step and the heat setting step. The invention also provides a fabric made according to the method. For making a blanket from a fabric made according to the method, the fabric is cut to a predetermined size for the blanket, and the edges of the cut fabric are surrounded with a cloth. The advantages of the present invention are numerous in that: (1) a blanket having a high-grade feel and appearance can be provided; (2) pile threads of the blanket do not fall out of the ground even after prolonged use; (3) an efficient method of increasing pile density in a blanket is provided; and (4) an improved method of finishing pile threads is provided. Although the present invention is briefly summarized, the fuller understanding of the invention can be obtained by the following drawings, detailed description and appended claims. BRIEF DESCRIPTION OF THE DRAWINGS These and other features, aspects and advantages of the present invention will become better understood with reference to the accompanying drawings, wherein: FIG. 1 is a schematic illustrative view showing a fabric having a ground and pile threads bound to the ground on one side of the ground; FIG. 2 is a view similar to FIG. 1 wherein the pile threads are bound to on both sides of the ground; FIG. 3 is a view similar to FIG. 1 wherein dense pile threads are bound on one side of the ground and short, sparse pile threads are bound on the other side of the ground; FIG. 4 is a schematic view showing that the end of a pile thread is inserted between the ground threads of one of two fabrics being weaved simultaneously; FIG. 5 is a schematic view showing that the pile thread is bent around a ground thread; FIG. 6 is a schematic view showing that the pile thread is wound around the ground thread; FIG. 7 is a schematic view showing that the end of the pile thread is guided toward the other fabric; FIG. 8 is a schematic view showing that the end of the pile thread is inserted between the ground threads of the other fabric; FIG. 9 is a schematic view showing that the pile thread is wound around a ground thread of the other fabric; FIG. 10 is a schematic view showing that a pile thread is alternated between the two fabrics, and wound around the ground threads of the fabrics; FIG. 11 is a schematic view showing that a plurality of pile threads are alternated between the two fabrics, and wound around the ground threads of the fabrics; FIG. 12 is a schematic view showing that the pile threads are cut to separate the two fabrics; FIG. 13 is a schematic view showing that the pile threads became shorter in length, and larger in diameter after heat setting; FIG. 14 is a flow diagram showing a method of making a blanket according to the invention; and FIG. 15 is a flow diagram showing a weaving step of the method. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a fabric 10 for making a blanket. The fabric 10 has a ground 12 and a plurality of pile threads 14 bound to the ground 12. The pile threads 14 are bound to the ground 12 on one side of the ground 12. The pile threads 14 protrude from the ground 12 and are spaced very densely. As the density of the pile threads 14 increases, the quality such as feel and appearance of the fabric and hence the quality of the blanket made of the fabric improves. As a pile thread, a high-grade yarn, such as an acrylic yarn is used for its superior feel, appearance and thermal insulation. As yarns for warps and wefts of the ground, low-grade yarns such as polyester, cotton, and a blend of them, etc. are used. The quality of a blanket may be checked by comparing the percentage of the piles. If the weight percentage of piles is below 70%, the quality of the blanket is so poor. As the percentage increases, the feel of the blanket becomes smooth and silky. The present invention provides a method for making a fabric for blanket that has a weight percentage of the acrylic yarn, that is, the weight percentage of the pile threads in the fabric is in the range between approximately eighty (80) and ninety-five (95), and the weight percentage of the ground threads in the fabric is the remainder. FIG. 2 shows another fabric 16 for making a blanket. The fabric 16 has a ground 18 and a plurality of pile threads 20 bound to the ground 18 on both sides of the ground 18. FIG. 3 shows another fabric 22 for making a blanket. The fabric 22 has a ground 24 and a plurality of piles 26 bound to the ground 24 on one side of the ground 24. There are some portions of piles that are wound around the wefts and warps of the ground 24 on the other side of the ground 24. After binding the pile threads 26 to the ground 24, the other side of the ground 24 is scratched so that the portions of the pile threads 26 are cut and protrude from the ground 24. The pile threads 26 on the other side of the ground 24 are shorter and less dense. FIG. 14 shows a flow diagram for the method of making the fabric. The first step 70 of the method of the present invention is weaving two fabrics and inserting pile threads. Two fabrics are positioned parallel with each other, and spaced from each other by a predetermined distance. A plurality of ground threads are weaved to make grounds for the fabrics. Weaving the grounds of the fabrics and inserting pile threads between the ground threads are performed simultaneously. The pile threads are inserted alternately between the ground threads of one fabric and between the ground threads of the other fabric. Each of the pile threads is wound around one of the ground threads by one or more turns. FIGS. 4-11 illustrate the weaving step in detail. As shown in FIG. 4, a first fabric 28 and a second fabric 30 are weaved simultaneously. The first fabric 28 and the second fabric 30 are positioned parallel with each other, and spaced from each other by a predetermined distance. A free end 32 of a pile thread 34 is inserted between ground threads 36 of a first fabric 28. FIG. 5 shows that the pile thread 30 is bent around one of the ground threads 36. FIG. 6 shows that the pile thread 34 is wound around the ground thread 36 by one turn. FIG. 7 shows that the end 32 of the pile thread 34 is guided toward the second fabric 30. FIG. 8 shows that the end 32 of the pile thread 34 is inserted between the ground threads 36 of the second fabric 30. FIG. 9 shows that the pile thread 34 is wound around the ground thread 36 of the second fabric 30 by one turn. FIG. 10 shows that the fabrics 28, 30 continue to be weaved, and the pile thread 34 is alternated between the first fabric 28 and the second fabric 30, and wound around the ground threads 36 of the first fabric 28 and second fabric 30. Although FIGS. 4-10 shows one pile thread 34 for illustrative purpose, a plurality of pile threads 34 may be wound around the ground thread 36 at the same time. FIG. 11 shows that a plurality of pile threads 34 are alternated between the two fabrics 28, 30, and wound around the ground threads 36 of the fabrics 28, 30. The number of the pile threads is controlled so that the weight percentage of the pile threads in the fabric, that is, acrylic yarn percentage in the fabric is in the range between 80 and 95. FIG. 15 shows that the weaving step 70 comprises detailed steps 82-88. In step 82, the free ends 32 of the plurality of the pile threads 34 are inserted between the ground threads 36 of the first fabric 28. In step 84, the pile threads 34 are wound around one of the ground threads 36 of the first fabric 28 by one or more turns. In step 86, the free ends 32 of the plurality of the pile threads 34 are inserted between the ground threads 36 of the second fabric 30. In step 88, the pile threads 34 are wound around one of the ground threads 36 of the second fabric 30 by one or more turns. The steps 82-88 are repeated until the first and second fabrics 28, 30 are weaved to a predetermined size. Referring FIG. 14 again, the second step 72 of the method is cutting the pile threads 34 between the first and the second fabrics 28, 30. FIG. 11 shows that a cutter 38 is positioned half way between the first fabric 28 and the second fabric 30 so that the pile threads 34 between the two fabrics 28, 30 are cut by an equal length. FIG. 12 shows that the first fabric 28 and the second fabric 30 are separated after the cutting step 72, and cut ends 40 of the pile threads 34 have been formed by the cutting step 72. Since the pile threads 34 are wound around the ground threads 36, and supported between the first fabric 28 and the second fabric 30, they are under tight tension as their weaved state before the cutting step 72. Also, the cutting is performed after the two fabrics 28, 30 are completely weaved. Thus, all of the pile threads 34 are cut just in one operation of the cutter 38. As a result, the cut ends 40 of the pile threads 34 have uniform surface height of a tolerance of ±0.5 mm (0.02 inch); variations of the height and density of the pile threads 34 along left or right direction of the fabrics 28, 30 are minimized; and the cut ends 40 have a fine cut state. As the pile threads 34 are inserted more densely, that is as the weight percentage of the pile threads 34 increases, the spaces between the ground threads 36 become wider. Since the pile threads 34 are wound around the ground threads 36 by one or more turns, the possibility that the piles would fall out of the fabrics 28, 30 during the service life of a blanket is prevented. Referring FIG. 14 again, the third step 74 of the method is coloring the fabrics 28, 30 with a predetermined pattern to get desired decorating effect of the fabrics. The fourth step 76 of the method is heat setting the first and second fabrics 28, 30 to bind the pile threads to the ground firmly. When the fabrics 28, 30 are heated, the pile threads 34 and the ground threads 36 contract in length; expand in diameter; and become softer. FIG. 13 shows that the pile threads 34 became shorter and thicker, and the ground threads 36 became closer with one another after the heat setting step 76. The thickened pile threads 34 are distributed uniformly on the surface of the fabric 28, 30, and provide good appearance and feel to the fabrics 28, 30. The heat setting step 76 is performed by immersing the entire fabric 28, 30 in hot water and then drying the fabric 28, 30. Alternatively, the heating step 76 may be performed by heating the fabric 28, 30 with ultrasonic wave or with microwave. In addition, the pile threads 34 may be welded to the ground threads 36. Ultrasonic wave energy or microwave energy is concentrated to the portion where the pile threads 34 are wound around the ground threads 36 so that they partially melt and weld together. Other portions of the pile threads 34 and the ground yarns 36, do not melt since they receive substantially lower energy that the portion where the pile threads 34 are wound around the ground threads 36. Referring FIG. 14 again, the fifth step 78 of the method is cutting the fabric 28, 30 to a predetermined size for a blanket. The sixth step 80 of the method is finishing in which edges of the cut fabric are surrounded with a cloth to hide and to protect the edges. Table 1 below shows examples of compositions of fabrics for making blankets according to the present invention. TABLE 1 COMPOSITION 1 PILE 100% ACRYLIC SPUN YARN RAW WHITE 83.5% 2/32 SMM, BRIGHT HIGH BULKY ON CONE GROUND 65% POLYESTER (S/D) 35% CARDED 11.5% COTTON BLENDED SPUN YARN 10′S/1 IN GREY ON CONE 100% POLYESTER F. YARN 150D/ 5% 48F(R/W) (S/D) 2 PILE 100% ACRYLIC SPUN YARN R/W 90% 2/32′S(BR) GROUND 100% POLYESTER F/YARN 150D R/W S/D 10% 3 PILE 100% ACRYLIC SPUN YARN RAW WHITE 80% 2/32 SMM, BRIGHT HIGH BULKY ON CONE GROUND 65% POLYESTER (S/D) 35% CARDED 12% COTTON BLENDED SPUN YARN 10′S/1 IN GREY ON CONE 100% POLYESTER F. YARN 250D/ 8% 48F(R/W) (S/D) 4 PILE 32 SMM 100% ACRYLIC HIGH BULKKY 80% BRIGHT YARN RW ON CONE GROUND POLYESTER 65%(S/D) COTTON 35% P.E. 12% YARN 10′S/1 ECC RAW WHITE 100% POLYESTER F. YARN 250D/ 8% 48F(R/W) (S/D) 5 PILE 100% ACRYLIC SPUN YARN R/W 2/32 BR 89% HIGH BULKY GROUND POLYESTER F. YARN RAW WHITE 150D 5% (S/D) POLYESTER 65%(S. D) CARDED COTTON 6% 35% BLENDED OPEN-END SPUN YARN NE 20′S/1 R/W ON CONE 6 PILE 100% ACRYLIC SPUN YARN RAW WHITE 82% 2/32 SMM BRIGHT HIGH BULKY ON CONE GROUND POLYESTER (S/D) 70% CARDED COTTON 12% 30% BLENDED SPUN YARN 10′S/1 IN GREY 100% POLYESTER F. YARN 150D/48F 6% (R/W) (S/D) 7 PILE 100% ACRYLIC SPUN YARN R/W 2/32′S 87% BR HIGH BULKY GROUND POLYESTER F. YARN RAW WHITE +50D 5% (SD) POLYESTER 80% CARDED COTTON 20% 8% BLENDED OPEN0END SPUN YARN NE 20′S/1 R/W ON CONE With the above methods, the present invention provides a high quality blankets having a superior and luxurious feel and appearance. The blankets are durable enough to keep the quality during the service life. The methods are easy to implement as part of the process of making blankets. The blankets have high pile density and the pile threads have finely finished ends. Although the invention has been described in considerable detail, other versions are possible by converting the aforementioned construction. Therefore, the scope of the invention shall not be limited by the specification specified above.
<SOH> BACKGROUND OF THE INVENTION <EOH>The present invention relates to a method for making a blanket. More particularly, the invention relates to a method for making a blanket having a high pile density. A fabric for a blanket is made by weaving a ground with a low-grade yarn such as a polyester yarn or a cotton yarn, and inserting pile threads in the spaces between the wefts and warps of the ground. A high-grade yarn such as an acrylic yarn is used as pile threads. Increasing the ratio of pile threads against ground threads, that is inserting pile threads denser, enhances the quality of the blanket, such as the feel or the appearance of the blanket. However, there has been a limit to increase the ratio due to the problem of inserting piles densely in the narrow spaces between the wefts and warps of the ground, and preventing the densely inserted piles from falling out when the blanket is in use. Also, it has been difficult to make the pile threads have uniform length, uniform density, and fine cut ends, thereby improving the appearance and feel of the pile threads. Accordingly, there has been a demand for an improved method for increasing the ratio of piles in the finished blanket-like products, and for improving the appearance and feel of the pile threads.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention is contrived to overcome the conventional disadvantages. Therefore, an object of the invention is to provide a method for making a blanket with denser pile threads. Another object of the invention is to provide a blanket having a high-grade feel and appearance. Still another object of the invention is to provide a durable blanket with denser pile threads. Still another object of the invention is to provide a blanket with pile threads having uniform length, density and smooth ends. To achieve the above-described objects, the invention provides a method for making a fabric, which has a ground having a plurality of ground threads, and a plurality of pile threads inserted between the ground threads. The method comprises the steps of weaving a two fabrics simultaneously, cutting the pile threads between the two fabrics, and heat setting the fabrics to bind the pile threads to the ground firmly. In the weaving step, the two fabrics are positioned parallel with each other and spaced from each other by a predetermined distance. The pile threads are inserted alternately between the ground threads of one fabric and between the ground threads of the other fabric. Each of the pile threads is wound around one of the ground threads by one or more turns. The pile threads are made of acrylic yarn, and the weight percentage of the pile threads in the fabric is in the range between approximately eighty (80) and ninety-five (95), and the weight percentage of the ground threads in the fabric is the remainder. The ground threads are made of polyester, cotton, or a blend of polyester and cotton. More specifically, the weaving step of the method comprises the steps of inserting free ends of the plurality of the pile threads between the ground threads of one fabric, winding the pile threads around one of the ground threads of the one fabric by one or more turns, inserting the free ends of the pile threads between the ground threads of the other fabric, winding the pile threads around one of the ground threads of the second fabric by one or more turns, and repeating these steps until the two fabrics are weaved to a predetermined size. The heat setting step of the method comprises heating the fabric such that the ground threads and the pile threads contract in length and expand in diameter. he heating is done by immersing the fabric in hot water and then drying the fabric. Also, the heating may be done with ultrasonic wave or microwave. Alternatively, the heat setting step of the method comprises heating the fabric such that the ground threads and the pile threads weld together. The heating is done with ultrasonic wave or microwave. Heat is concentrated where the pile threads are bound to the ground threads. The method of making the fabric may further comprise a step of coloring the fabric with a predetermined pattern between the cutting step and the heat setting step. The invention also provides a fabric made according to the method. For making a blanket from a fabric made according to the method, the fabric is cut to a predetermined size for the blanket, and the edges of the cut fabric are surrounded with a cloth. The advantages of the present invention are numerous in that: (1) a blanket having a high-grade feel and appearance can be provided; (2) pile threads of the blanket do not fall out of the ground even after prolonged use; (3) an efficient method of increasing pile density in a blanket is provided; and (4) an improved method of finishing pile threads is provided. Although the present invention is briefly summarized, the fuller understanding of the invention can be obtained by the following drawings, detailed description and appended claims.
20041101
20050809
20050317
99269.0
1
MUROMOTO JR, ROBERT H
METHOD FOR MAKING A BLANKET HAVING A HIGH PILE DENSITY AND A BLANKET MADE THEREFROM
SMALL
1
CONT-ACCEPTED
2,004
10,979,107
ACCEPTED
Light weight nonwoven fire retardant barrier
A non-woven flame retardant barrier can be prepared from low denier, charring fibers and substantially free of polymers made from halogenated monomers. The charring fibers can be modified viscose fibers, for example Visil®. The blend of low denier fibers can be, for example, a blend of 1.5 denier fibers and 3.0 denier fibers.
1. A non-woven flame retardant barrier comprising low denier, charring fibers and substantially free of polymers made from halogenated monomers. 2. The non-woven of claim 1, wherein the charring fibers comprise modified viscose fibers. 3. The nonwoven of claim 2, wherein the modified viscose fibers comprise Visil®. 4. The nonwoven of claim 1, wherein the charring fibers comprise more than about 50% of the formulation. 5. The nonwoven of claim 1, wherein less than about 10% of the polymers are made from halogenated monomers, not including any binder in the formulation. 6. The nonwoven of claim 2, wherein modified viscose accounts for more than about 85% of the charring fibers, not including any binder in the formulation. 7. The nonwoven of claim 1, having a basis weight of about 0.2 to about 1.0 osf. 8. The nonwoven of claim 1, having a basis weight of about 0.5 osf or less. 9. The nonwoven of claim 1, comprising a blend of low and higher denier fibers. 10. The nonwoven of claim 1, comprising a fiber of a denier of about 7 or more, and a fiber having a denier of about 3 or less. 11. The nonwoven of claim 1, comprising a blend of fibers of varying deniers. 12. The nonwoven of claim 1, comprising fibers of about 1.5 denier and about 3 denier. 13. The nonwoven of claim 1, comprising fibers of about 1.5 denier exclusively. 14. The nonwoven of claim 1, comprising fibers of about 3 denier exclusively. 15. The nonwoven of claim 12, comprising about 40-50% of fibers of 1.5 denier, about 20-40% fibers of 3 denier, and about 5-30% binder. 16. The nonwoven of claim 12, comprising about 25-75% fibers of 1.5 denier and about 75-25% of fibers of 3 denier, not including any binder in the formulation. 17. The nonwoven of claim 12, comprising a ratio of 1.5 denier fibers to 3 denier fibers of about 1:1 to about 2.5:1. 18. The nonwoven of claim 12, wherein the charring fibers comprise modified viscose fibers. 19. The nonwoven of claim 12, wherein the modified viscose fibers comprise Visil®. 20. An article comprising the nonwoven of claim 12, wherein the article meets the requirement of Cal. AB603. 21. The nonwoven of claim 1, wherein the flame retardant barrier is a highloft nonwoven. 22. The nonwoven of claim 21, wherein the loft is about ¼ inch to about 1.5 inches as manufactured. 23. An article comprising the nonwoven of claim 1. 24. The article of claim 23, wherein the article meets the requirement of Cal. AB603. 25. The article of claim 23, wherein the article is a mattress. 26. The article of claim 23, wherein the article is an insulator. 27. The article of claim 24, wherein the article is a highloft batt. 28. A method of manufacturing a nonwoven flame retardant barrier comprising: carding low denier, charring fibers; and cross-lapping the carded fibers to form a batt. 29. The method of claim 28 further comprising adding a binder to the charring fibers to create a fiber blend, and thermally bonding the fibers. 30. The method of claim 28 wherein the charring fibers comprise modified viscose fibers. 31. The method of claim 28 wherein the fiber blend is about 5 to about 30% binder. 32. The method of claim 28 further comprising blending charring fibers of 1.5 and 3 denier. 33. The method of claim 28 comprising blending charring fibers of about 1.5 denier exclusively. 34. The method of claim 28 comprising blending modified viscose fibers of about 3 denier exclusively. 35. The method of claim 29 comprising about 25-75% of charring fibers of 1.5 denier and about 75-25% of fibers of 3 denier. 36. The method of claim 28 comprising a blend of high and low denier fibers. 37. The nonwoven of claim 28, comprising a fiber of a denier of about 7 or more, and a fiber having a denier of about 3 or less. 38. The nonwoven of claim 28, comprising a blend of fibers of varying deniers. 39. The method of claim 28 further comprising needle punching the carded and lapped fibers. 40. The method of claim 28, wherein the nonwoven has a basis weight of about 0.2 to about 1.0 osf. 41. The method of claim 28, wherein the nonwoven has a loft of about ¼ inch to 1.5 inches. 42. A highloft batt produced by the method of claim 28. 43. A method of manufacturing an article comprising providing a flame retardant barrier according to claim 1, placing the barrier as a layer extending along a surface, and covering the surface with a fabric. 44. The method of claim 43 where the article comprises a mattress, mattress foundation, sofa, or chair. 45. The method of claim 43 wherein the article comprises an insulator. 46. The method of claim 44, wherein the article is a mattress, and further comprising providing a mattress material, wherein placing the barrier layer comprises placing the barrier on the top and sides of the mattress material. 47. The method of claim 44 wherein the article is a box spring and further comprising providing a box spring, wherein placing the barrier layer comprises placing the barrier material on the top and sides of the box spring.
FIELD OF THE INVENTION The present invention relates to a lightweight fire retardant barrier for use in products such as mattresses and furniture. More particularly, the invention relates to a lightweight fire retardant barrier prepared from low denier, charring fibers. The fire retardant barrier can comprise modified viscose rayon. One preferred embodiment includes use of a blend of fine denier charring fibers. Another embodiment includes the exclusive use of Visilg®. BACKGROUND Various fire-retardant products are available for use in furniture, mattresses, etc. These products are made using natural or synthetic fibers to form the basis of the fabric, which can be woven, spunlace nonwoven or knit. Fire resistance can be imparted to fibers in several ways. For example, fabric can be treated with chemicals to render it fire-retardant. However, the process of chemical treatment can weaken the fabric, causing it to crack when exposed to direct flame. Once the outlying fabric is damaged, the flame can come into contact with the underlying material, causing it to ignite. Also, treated fabrics are heavy and do not last as long as non-treated fabrics. Other fabrics are available in the art that are not as susceptible to cracking and can withstand open flame tests. One example is a 100% fiberglass flame barrier coating a woven polymer, but fiberglass barriers have low durability due to glass-to-glass abrasion. Another option is a woven or knit core-spun yarn based flame barrier, where natural and/or synthetic fibers are wrapped around a fiberglass core, a multifilament core, or a core yarn. The fibers may be treated with a fire retardant chemical or a coating of thermoplastic polyvinyl halide composition. Woven flame barriers suffer drawbacks in becoming very stiff when coated with fire retardant materials, making the final product less comfortable/desirable to a consumer. Also, woven and nonwoven knit flame barriers must be laminated to a decorative fabric or double upholstered during manufacturing, increasing costs. Another disadvantage of chemically treated fire retardant material is that the treatment adds weight to the fabric, making an already cumbersome product even more difficult to handle. Also, many chemical treatments are water soluble or otherwise impermanent. Water solubility is a drawback, making the material less durable. Chemical treatment can also be costly. Thus, there is a need in the art for a lightweight fire retardant barrier that does not require chemical treatment. Regarding nonwoven technology, fibers are bought from suppliers, usually referenced by a brand name or generic name. The fibers are carded to straighten out the fibers. Layers of carded fibers are cross lapped (one layer running north/south, then another layer running east west) over one another to build a batt. The fiber batt is then densified by either thermal bonding, needle punching, or spray bonding. Thermal bonding may be accomplished by adding low melt fibers that have a lower melting point than the other fibers and by heating the batt such that the low melt fibers melt. These fibers act as an adhesive in a web because their softening point is less than the softening point of the other fibers in the material. Needle punching involves punching a needle plate repeatedly through the batt to physically entangle the fiber layers. Typically, the more the batt is needled, the lower the loft and the higher the strength. The loft of the nonwoven can be set by the amount of needlepunching applied. With thermally bonded material, loft can be controlled by compressing the batt in the oven and blowing air through the batt as the batt is cooled. Spray bonding may be accomplished by spraying a liquid binder (e.g. latex) onto one or both sides of the carded batt and drying and curing the batt in an oven. The nonwovens are then cut and rolled for sale to manufacturers for incorporation into products such as mattresses, furniture, etc. WO 03/023108 describes a nonwoven highloft flame barrier which uses a blend of inherently flame retardant fibers and modacrylic fibers, i.e. fibers extruded from polymers made from halogenated monomers. However, modacrylic fibers are expensive, making it difficult to provide high quality, low cost products to consumers. U.S. Patent Application Publication No 2004/0097516A1 describes a fire retardant nonwoven fabric for use in household goods. However, the nonwoven fabrics disclosed in the publication include more than one type of fire retardant fiber and/or a fire retardant resin used to coat fibers. The disclosed materials also use higher denier fibers and polyethylene terephthalate, which are not advantageous for flame barrier and cost efficiency. Prior fire retardant materials generally have been produced with higher basis weight, e.g. in the 0.75-1.25 osf range for highloft barriers, and generally use relatively high denier fibers. When lower basis weight materials are produced, the material must be densified in order to increase fire resistance or charring, resulting in a product that does not have the soft feel desired for mattresses and other products. Thus, there is a further need in the art for a high loft flame barrier that retains feel characteristics desirable of mattresses, bedspreads, and the like. SUMMARY OF THE INVENTION The present invention is a non-woven flame retardant barrier containing low denier, charring fibers that is substantially free of polymers made from halogenated monomers. The invention's fire retardant property is due to the use of fibers that exhibit a charring effect when exposed to flame. This ability to char prevents the materials from catching fire and creates a flame barrier. In one embodiment, the fibers include low denier modified viscose fibers. In an exemplary embodiment, the low denier viscose fibers include Visil®. Because the present invention utilizes an inherently flame retardant barrier, there is no need for a coating and the product retains a “soft feel” quality. The present invention improves upon the prior art by eliminating the need for modacrylic fibers, thus increasing efficiency in manufacturing and decreasing cost, and providing a resilient filling material at a potential lighter weight. Further, the invention does not require the use of different types of fire retardant fibers or the addition of fire retardant/fire resistant resins. The flame retardant materials may comprise more than 50% of the formulation. In a further embodiment, less than 10% of the polymers present in the flame retardant barrier are halogenated polymers, not including any binder that may be present. Modified viscose fibers can account for more than 85% of the inherently flame retardant materials, not including any binder that may be present. The nonwoven flame retardant barrier (or nonwoven) may have a basis weight of about 0.2 to about 0.85 osf. In a further embodiment, the nonwoven has a basis weight about 0.5 osf or less. The nonwoven can also include a binder, present in an amount of greater than about 25%, by weight. The nonwoven may include a blend of fibers of about 1.5 denier and about 3 denier. Particular embodiments can have between about 40-50% fibers of 1.5 denier, about 20-40% fibers of 3 denier, and about 15-30% binder. The nonwoven can have about 25-75% fibers of 1.5 denier and about 75-25% of fibers of 3 denier, not including any binder in the formulation. The nonwoven can have a ratio of fibers of 1.5 denier to fibers of 3 denier of about 1:1 to 2.5:1. Additionally, the nonwoven may be comprised of 1.5 denier fibers exclusively, or 3 denier fibers exclusively. Higher denier fibers can also be used in a fiber blend according to the invention. For example, the nonwoven can include a blend of a low denier fiber and a higher denier fiber, or fibers of varying deniers. In one embodiment, the nonwoven can contain a fiber having a denier of about 7 or more, and a fiber having a denier of about 3 or less. The flame retardant barrier may be a highloft nonwoven. The loft can be from about ¼ inch to about 1.5 inches. In a further embodiment, the barrier has a density of about 3 ocf to about 4.5 ocf. In a particularly preferred embodiment, the flame retardant barrier is incorporated into a mattress product that meets the requirements of Cal. AB 603. The present invention also encompasses a method of manufacturing a nonwoven flame retardant barrier comprising carding low denier charring fibers and cross lapping the carded fibers to form a batt. In one embodiment, the method includes adding a binder to the fibers to create a fiber blend, and thermally bonding the fibers. In another embodiment, the fiber blend includes about 5 to about 30% binder. In a further embodiment, the method also includes needle punching the carded and lapped fibers. The invention further includes a highloft batt produced by this method. In addition, the present invention relates to a method of manufacturing an article comprising carding low denier charring fibers, cross lapping the carded fibers to form a batt, and thermally bonding or needle punching the fibers. The invention also includes the method of manufacturing an article by providing the flame retardant barrier as disclosed, placing the barrier as a layer extending along a surface, and covering the surface with a fabric. The article manufactured by these methods may be a mattress, mattress foundation, sofa, chair, partition, insulator, or other furniture or houseware products. The invention is also directed to these articles of manufacture comprising the nonwoven. In an embodiment wherein the manufactured article is a mattress, the method further comprises providing a mattress material, wherein placing the barrier layer comprises placing the barrier on the top and sides of the mattress material. In an embodiment where wherein the article being manufactured is a box spring, the method further comprises providing a box spring, wherein placing the barrier layer comprises placing the barrier material on the top and sides of the box spring. Further objectives and advantages, as well as the structure and function of preferred embodiments will become apparent from a consideration of the description, drawings, and examples. DETAILED DESCRIPTION OF THE INVENTION Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. While specific exemplary embodiments are discussed, it should be understood that this is done for illustration purposes only. A person skilled in the relevant art will recognize that other components and configurations can be used without parting from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated. The present invention relates to a nonwoven flame retardant barrier that is suitable for use in, for example, mattress and furniture applications, as well as other applications that require or benefit from the use of a fire retardant fiber material. The nonwoven is prepared from inherently flame retardant, charring low denier fibers. Inherently flame retardant fibers are known in the art and include melamines, meta-aramids, paramids, polybenzimidazole, polymides, polyamideimides, partially oxidized polyacrylonitriles, novoloids, poly (p-phenylene bezathiazoles), polyphenylene sulfides, and flame retardant viscose rayons. Additional examples are disclosed in WO 03/023108 which is hereby incorporated by reference. In particular, the present invention utilizes inherently flame retardant fibers that char upon exposure to flame or high heat. As a result of charring, nonwovens can form a barrier that interrupts the propagation of flame. Inherently flame retardant fibers include, for example, melamines, modified cellulose fibers, and viscose rayons. Modified viscose fiber is an exemplary inherently flame retardant charring fiber. The charring action of the nonwoven can be distinguished from the action of other fire retardant materials. For example, halogenated monomers act as a fire extinguisher, where the present invention acts as a true flame barrier by preventing the materials from catching fire in the first place. The nonwoven of the invention is substantially free of polymers made from halogenated monomers. It is known in the art to add polymers made with halogenated monomers which generate oxygen depleting gases that help to prevent ignition of volatile decomposition vapors from underlying materials. Examples of polymers made from halogenated monomers that have been used for this purpose include chloropolymeric fibers, such as those containing polyvinyl chloride or polyvinylidene homopolymers and copolymers; modacrylics, which are vinyl chloride or vinylidene chloride copolymer variants of acrylonitrile fibers; and fluropolymeric fibers, such as those prepared from polytetrafluroethylene (PTFE), poly(ethylenechlorotrifluoroethylene) (E-CTFE), polyvinylidene fluoride (PDVF), and polyperfluoroalkoxy (PFA) polymers. These polymers tend to be expensive, and it would be advantageous to limit the amount in a fire retardant material. Until now it has been difficult to produce a lightweight fire retardant material substantially free of polymers produced from halogenated monomers, as the reduced number of fibers that can be present in lightweight materials have been insufficient to impart the required fire retardant properties. The fire retardancy of the material is imparted by using fibers substantially free of polymers produced from halogenated monomers, although lesser amounts of polymers produced from halogenated monomers may be used. For example, less than 10% of the polymers of the formulation are made from halogenated monomers, or less than 5% of the polymers of the formulation are made from halogenated monomers, not including any binder. Alternatively, the nonwoven can be completely free of polymers made from halogenated monomers, except for any polymers made from halogenated monomers that may be added as a binder. In a preferred embodiment, the modified viscose fibers present in the fire retardant barrier include Visil®. KNAPF, cotton, melamine fibers such as Basofil, modified cellulose fibers, or other charring fibers can be present optionally in smaller quantities. Additionally, small amounts of non-charring, inherently fire retardant fibers can be incorporated. The barrier fibers can be made exclusively of Visil®. Visil® is a fire retardant rayon marketed by Sarteri Oy of Finland and is inherently flame retardant because of its high silica content (30-33% aluminosilicate modified silica, SiO2+Al2O3.) Denier is a measure of weight in grams of 9,000 meters of materials. The lower or finer the denier, the more fibers per square yard at a given weight, and the better the flame barrier. A low denier fiber according to the present invention is a fiber having a denier of less than about 3.5, about 3 or less, or less than 3. Fibers having a denier greater than about 3 or 3.5 are considered higher denier. Preferred embodiments for the nonwoven of the present invention include a blend of 25-75% fibers of 1.5 denier, and about 75-25% of fibers of 3 denier. One particular embodiment contains a blend of 1.5 and 3 denier in approximately equal parts. Other embodiments include a nonwoven comprising 1.5 denier fibers exclusively, and a nonwoven comprising 3 denier fibers exclusively. The invention also contemplates fiber blends wherein one of the fibers has a denier of greater than 3, for instance, a blend of a 7 denier fiber with a 1.5 denier fiber. Nonwovens prepared from low denier fibers unexpectedly exhibit superior fire retardant properties, especially when compared to higher denier fibers. Higher denier fibers provide bulk and substance that would be expected to create a dense char, providing better fire protection than lightweight, fine fibers. However, the inventors have discovered that fine denier fibers, because of their lightweight, fine properties, can be used to prepare an effective fire-blocking web as described herein. Additional embodiments of the invention include the use of a binder. Binders useful with the present invention include low-melt binder fibers such as bicomponent polyesters and polyolefins. A particular embodiment includes the use of a standard low melt polyester bicomponent fiber. Bicomponent fibers are made from two different polymer components, and can be combined, for example, by having one polymer in a core and another lower-melting polymer in a sheath around the core. Binders of varying deniers, including a combination thereof, are useful in the invention, and can range from, for example, about 4 denier to about 15 denier. The use of a higher denier binder fiber adds resiliency to the product, for example, by preventing compression during shipping. The nonwoven can have from about 40% to about 50% fibers of 1.5 denier, from about 20% to about 35% fibers of 3 denier and from about 15% to about 30% binder. Examples are set forth in Table 1. TABLE 1 Ratio 1.5 denier:3 % 1.5 denier % 3 denier denier inherently inherently inherently flame flame flame Basis Sam- retardant retardant % retardant weight Loft ple fibers fibers binder fibers (osf) (inches) 1 50 35 15 59:41 0.75 0.75 2 40 40 20 50:50 0.75 0.75 3 50 35 15 59:41 0.6 0.6 4 40 40 20 50:50 0.75 0.625 5 0 85 15 0:100 0.5 0.5 6 0 70 30 0:100 0.8 0.5 7 50 20 30 71.4:28.6 0.8 .375 8 40 40 20 50:50 0.5 0.5 9 35 35 30 50:50 0.75 0.5 10 40 40 20 50:50 0.6 0.5 11 55 30 15 64:36 0.65 0.65 12 55 30 15 64:36 0.85 0.85 The nonwoven flame retardant barrier of the present invention can have a basis weight ranging from about 0.25 to about 0.85 osf. In some embodiments, the basis weight is 0.5 osf or less. In the case of mattresses, the type of mattress can affect the weight of the barrier. For example, the basis weight of the nonwoven material that is suitable to impart flame resistance to a product depends on the nature of the product, such as construction and fuel load. As more flammable materials are used in construction, i.e. as the fuel load increases, the weight of the barrier material must be increased. For example, the average mattress manufacturer offers a range of products from low profile, inexpensive mattresses to thick pillow tops that are loaded with flammable foam or fiber. The weight of the barrier materials can be adjusted appropriately depending on the product that is manufactured in order to impart the needed amount of flame retardancy. One embodiment of the present invention is directed to a highloft nonwoven flame retardant barrier. Highloft describes a low density, bulky fabric, generally having a greater volume of air than fiber. Highloft material can have, for example, about one inch thickness or more per one ounce per square foot basis weight. The purpose of a highloft characteristic is to add thickness without adding weight. Highloft products are only minimally densified or compressed, if at all, in their entirety during the manufacturing process. A highloft, nonwoven barrier of the present invention has a thickness, or loft, of about ¼ inch to about 1.5 inches. A basis weight in the range of from about 0.2 to 0.85 osf yields a density from about 3 to about 4.5 ounces per cubic foot, or ocf. Thickness, and therefore density, as defined in this specification are determined in the material as manufactured. For example, in a thermally bonded non-woven, loft, thickness, and density are determined when the nonwoven is removed from the oven. Some compression may occur for example, during packaging or shipping, or in use. The highloft flame barrier that is one embodiment of the present invention retains the desired characteristics of light weight and soft touch by using a low denier fiber to achieve a higher fiber density and maintaining a loft of about ¼ to 1.5 inches by carefully blending and carding fibers. Melt levels during bonding are optimized to achieve the highest possible resiliency and loft, as is known in the art. The present invention includes flame retardant barriers of varying lofts. In articles of manufacture where fluffiness or thickness is not desired, a lower loft barrier is suitable. For example, office partitions or insulators in automobiles and aircraft are typically designed to occupy a minimum amount of space. In other products, such as appliances, fluffiness is simply unnecessary. Further, for some applications, additional layers can be added to form a composite material. The present invention contemplates all such products comprising the use of the nonwoven of the present invention, in varying lofts. The loft of the present invention can be achieved through blending and carding of low denier fibers. The fibers are blended before carding, and can be thermally bonded, spray bonded, or needlepunched after the non-woven is formed. The invention also provides for the option of thermal bonding and needlepunching on the same line. Optionally, the loft may be further modified by passing the fibers through a calendar, which is a set of driven rolls with temperature controlled oil running through them. The oil can be heated or chilled depending on the desired effect, and the distance between the rolls can be set to control the loft or modify the surface properties of the web. After bonding and/or calendering, the fibers are slit to the appropriate width and either rolled or cut into pieces. Although use of high denier fibers can result in resilient flame retardant products, high denier fibers produce an open fiber web with reduced fire-blocking ability. This is particularly true in lighter weight material where the number of fibers is more limited. In contrast, a blend of low denier fibers, for example, a blend of 3 and 1.5 denier, increases the number of fibers per square inch for a given weight. It is believed that this increase in fiber density improves the fire-blocking ability of the product by enhancing the char effect of the material. For example, by reducing the denier from 7 to 3, the quantity of the fiber is increased 2.3 times. By reducing the denier from 7 to 1.5, the fiber quantity is increased 4.7 times. In an embodiment having 65% fiber of 1.5 denier and 35% fiber of 3 denier, there are 3.86 times more fibers as would be present in a nowoven prepared exclusively from 7 denier fiber. This dramatic increase in fiber content greatly enhances the charring effect, imparting superior fire retardant ability without increasing overall weight of the nonwoven. For example, only marginal fire retardancy is achieved in a nowoven having a basis weight of 0.75 osf when prepared from 7 denier fibers exclusively. In contrast, 0.75 osf nonwovens prepared from low denier fibers according to the present invention show very good fire retardant properties. Further, using nonwovens prepared from low denier fibers according to the present invention, the basis weight can be lowered to 0.5 osf or less, or as low as 0.2 osf and still retain sufficient fire retardancy. In a preferred embodiment, the flame retardant barrier can be used to manufacture a mattress that meets the requirements of Cal. AB 603, which is a strict California test for mattress flammability that has been proposed as an industry standard in the United States. Under this test procedure, a twin mattress is ignited using a pair of gas burners and the rate of heat released is determined by oxygen consumption and carbon oxide (CO2 and CO) release. The heat release rate is recorded until all signs of burning have ceased, 30 minutes have elapsed, or the fire is so large as to require suppression. A mattress fails the test if the heat release reaches 200 kW or has a total heat release of 25MJ in the first 10 min of the test. The barrier of the present invention is manufactured by carding low denier, inherently flame retardant fibers and cross-lapping the fibers to form a batt. Fibers of varying denier or different types of fibers are blended before carding for incorporation into a fiber layer. Alternatively, alternate cross-lapped layers can have different fiber contents, so that the nonwoven has an overall composition as described herein. A binder can be added to the fibers before carding so that the fibers can be thermally bonded together. The invention also includes a batt manufactured by this process. Alternatively, the carded and lapped fibers can be needlepunched. In one embodiment, the nonwoven is a highloft with a good “feel”, and is substantially fire retardant without significant densification. The invention further relates to a method of manufacturing an article which includes carding low denier modified viscose fibers, cross-lapping the carded fibers to form a batt, and densifying the batt by rolling, thermal bonding, spray bonding, or needle punching the fibers. Articles include mattresses and furniture that can have additional layers of fire retardant and non-fire retardant materials, as is generally known in the art. Mattresses are typically constructed by providing a deck, which is a resilient mattress material such as foam, down, non-woven, or other materials as known in the art. The deck can also include mattress support structures. According to the invention, the fire retardant barrier is then placed around the deck or mattress material, for example along the top, sides, and/or bottom. Ticking is sewn directly over the barrier. Mattress foundation can be similarly constructed. For example, the fire retardant barrier can be placed on the top and sides of the box spring, which is then covered by the ticking. The ticking is placed on the sides, over the barrier layer, and covers the edges of the top of the box spring. In one embodiment, the ticking covers a three inch perimeter of the top of the box spring. The product for which the fire retardant barrier is being incorporated can in part determine whether fibers are densified/compressed during manufacture of the nonwoven. In many mattress and furniture applications, a “soft hand” is desired, meaning the article is comfortable to the touch. Here densification would not be suitable, as it would result in dense layers lacking a soft feel. However, in products where a soft touch is not important, needle punching or densification can be appropriate. Examples of such applications include office partitions and thermal or sound insulators for use in, for example, appliances, automobiles or aircraft. The nonwoven can be compressed and combined with other components to produce a product that has thermal insulation properties, but is thinner than a mattress. The other components may be separately prepared and bonded to the present fire retardant barrier to form a composite material. One such method of manufacture can include placing the nonwoven (compressed or non-compressed) as a layer extending along a surface, and covering the surface with a fabric. Composite materials can be highloft, for example for use in mattresses or cushions, or lowloft for other applications such as insulators. The nonwoven barrier of the present invention is suitable for use in many commercial applications such as furniture and mattress construction. For example, such products can include bedspreads, mattress toppers, draperies, sofas, chairs, and other furniture and housewares. The combination of fibers in the weights and percentages disclosed in this specification is particularly successful in low-cost mattresses that have fewer layers of flammable material. This is significant because low-cost mattresses account for about 75% of those sold in the U.S., and so the present invention makes fire-retardant mattresses available to a large percentage of consumers, without a significant increase in cost. Exemplary fire retardant barriers of the present invention improve upon the prior art because the barrier, and therefore the product into which it is incorporated, is lightweight as a result of using low denier fibers, for example a blend of 1.5 and 3 denier fibers. Thus the nonwoven and the product into which the nonwoven is incorporated both have a “fluffy”, or soft, feel. The blend is less expensive than other fire retardant fibers, resulting in a cost-effective, lightweight product. Because of the properties of the fiber blend, fewer layers are required to produce, for example, a fire retardant, lightweight mattress having the desired soft feel. The barrier of the present invention can also be used in the manufacture of a mattress topper or in the quilted top or sides of a mattress. Typical mattresses contain a layer of polyurethane foam or lofted fiberfil. In order to impart fire retardancy to the mattress, a layer of fire retardant materials must be inserted, such as fiberglass. The nonwoven batt of the present invention can be used to replace the fire retardant material between the mattress foam and ticking in order to meet industry and government fire retardant requirements. The foam layer itself can also be replaced with the fire retardant barrier of the present invention. This facilitates the assembly process by eliminating two layers with the single component nonwoven of the present invention. The elimination of the extra layer, at least partly offsets the cost of the charring fibers, and results in a product that is easier to produce and has superior fire retardant properties. Thus, for approximately equal cost, a mattress topper according to the present invention has greatly improved fire retardant properties, and is still soft, plush, and lightweight. In addition to bedding applications, the present invention has automotive and acoustical applications, and can be used in appliances. The nonwoven has acoustic as well as thermal insulation properties, and can be used to insulate from sound and heat that is generated by the machines themselves, or from external heat and noise. The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
<SOH> BACKGROUND <EOH>Various fire-retardant products are available for use in furniture, mattresses, etc. These products are made using natural or synthetic fibers to form the basis of the fabric, which can be woven, spunlace nonwoven or knit. Fire resistance can be imparted to fibers in several ways. For example, fabric can be treated with chemicals to render it fire-retardant. However, the process of chemical treatment can weaken the fabric, causing it to crack when exposed to direct flame. Once the outlying fabric is damaged, the flame can come into contact with the underlying material, causing it to ignite. Also, treated fabrics are heavy and do not last as long as non-treated fabrics. Other fabrics are available in the art that are not as susceptible to cracking and can withstand open flame tests. One example is a 100% fiberglass flame barrier coating a woven polymer, but fiberglass barriers have low durability due to glass-to-glass abrasion. Another option is a woven or knit core-spun yarn based flame barrier, where natural and/or synthetic fibers are wrapped around a fiberglass core, a multifilament core, or a core yarn. The fibers may be treated with a fire retardant chemical or a coating of thermoplastic polyvinyl halide composition. Woven flame barriers suffer drawbacks in becoming very stiff when coated with fire retardant materials, making the final product less comfortable/desirable to a consumer. Also, woven and nonwoven knit flame barriers must be laminated to a decorative fabric or double upholstered during manufacturing, increasing costs. Another disadvantage of chemically treated fire retardant material is that the treatment adds weight to the fabric, making an already cumbersome product even more difficult to handle. Also, many chemical treatments are water soluble or otherwise impermanent. Water solubility is a drawback, making the material less durable. Chemical treatment can also be costly. Thus, there is a need in the art for a lightweight fire retardant barrier that does not require chemical treatment. Regarding nonwoven technology, fibers are bought from suppliers, usually referenced by a brand name or generic name. The fibers are carded to straighten out the fibers. Layers of carded fibers are cross lapped (one layer running north/south, then another layer running east west) over one another to build a batt. The fiber batt is then densified by either thermal bonding, needle punching, or spray bonding. Thermal bonding may be accomplished by adding low melt fibers that have a lower melting point than the other fibers and by heating the batt such that the low melt fibers melt. These fibers act as an adhesive in a web because their softening point is less than the softening point of the other fibers in the material. Needle punching involves punching a needle plate repeatedly through the batt to physically entangle the fiber layers. Typically, the more the batt is needled, the lower the loft and the higher the strength. The loft of the nonwoven can be set by the amount of needlepunching applied. With thermally bonded material, loft can be controlled by compressing the batt in the oven and blowing air through the batt as the batt is cooled. Spray bonding may be accomplished by spraying a liquid binder (e.g. latex) onto one or both sides of the carded batt and drying and curing the batt in an oven. The nonwovens are then cut and rolled for sale to manufacturers for incorporation into products such as mattresses, furniture, etc. WO 03/023108 describes a nonwoven highloft flame barrier which uses a blend of inherently flame retardant fibers and modacrylic fibers, i.e. fibers extruded from polymers made from halogenated monomers. However, modacrylic fibers are expensive, making it difficult to provide high quality, low cost products to consumers. U.S. Patent Application Publication No 2004/0097516A1 describes a fire retardant nonwoven fabric for use in household goods. However, the nonwoven fabrics disclosed in the publication include more than one type of fire retardant fiber and/or a fire retardant resin used to coat fibers. The disclosed materials also use higher denier fibers and polyethylene terephthalate, which are not advantageous for flame barrier and cost efficiency. Prior fire retardant materials generally have been produced with higher basis weight, e.g. in the 0.75-1.25 osf range for highloft barriers, and generally use relatively high denier fibers. When lower basis weight materials are produced, the material must be densified in order to increase fire resistance or charring, resulting in a product that does not have the soft feel desired for mattresses and other products. Thus, there is a further need in the art for a high loft flame barrier that retains feel characteristics desirable of mattresses, bedspreads, and the like.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention is a non-woven flame retardant barrier containing low denier, charring fibers that is substantially free of polymers made from halogenated monomers. The invention's fire retardant property is due to the use of fibers that exhibit a charring effect when exposed to flame. This ability to char prevents the materials from catching fire and creates a flame barrier. In one embodiment, the fibers include low denier modified viscose fibers. In an exemplary embodiment, the low denier viscose fibers include Visil®. Because the present invention utilizes an inherently flame retardant barrier, there is no need for a coating and the product retains a “soft feel” quality. The present invention improves upon the prior art by eliminating the need for modacrylic fibers, thus increasing efficiency in manufacturing and decreasing cost, and providing a resilient filling material at a potential lighter weight. Further, the invention does not require the use of different types of fire retardant fibers or the addition of fire retardant/fire resistant resins. The flame retardant materials may comprise more than 50% of the formulation. In a further embodiment, less than 10% of the polymers present in the flame retardant barrier are halogenated polymers, not including any binder that may be present. Modified viscose fibers can account for more than 85% of the inherently flame retardant materials, not including any binder that may be present. The nonwoven flame retardant barrier (or nonwoven) may have a basis weight of about 0.2 to about 0.85 osf. In a further embodiment, the nonwoven has a basis weight about 0.5 osf or less. The nonwoven can also include a binder, present in an amount of greater than about 25%, by weight. The nonwoven may include a blend of fibers of about 1.5 denier and about 3 denier. Particular embodiments can have between about 40-50% fibers of 1.5 denier, about 20-40% fibers of 3 denier, and about 15-30% binder. The nonwoven can have about 25-75% fibers of 1.5 denier and about 75-25% of fibers of 3 denier, not including any binder in the formulation. The nonwoven can have a ratio of fibers of 1.5 denier to fibers of 3 denier of about 1:1 to 2.5:1. Additionally, the nonwoven may be comprised of 1.5 denier fibers exclusively, or 3 denier fibers exclusively. Higher denier fibers can also be used in a fiber blend according to the invention. For example, the nonwoven can include a blend of a low denier fiber and a higher denier fiber, or fibers of varying deniers. In one embodiment, the nonwoven can contain a fiber having a denier of about 7 or more, and a fiber having a denier of about 3 or less. The flame retardant barrier may be a highloft nonwoven. The loft can be from about ¼ inch to about 1.5 inches. In a further embodiment, the barrier has a density of about 3 ocf to about 4.5 ocf. In a particularly preferred embodiment, the flame retardant barrier is incorporated into a mattress product that meets the requirements of Cal. AB 603. The present invention also encompasses a method of manufacturing a nonwoven flame retardant barrier comprising carding low denier charring fibers and cross lapping the carded fibers to form a batt. In one embodiment, the method includes adding a binder to the fibers to create a fiber blend, and thermally bonding the fibers. In another embodiment, the fiber blend includes about 5 to about 30% binder. In a further embodiment, the method also includes needle punching the carded and lapped fibers. The invention further includes a highloft batt produced by this method. In addition, the present invention relates to a method of manufacturing an article comprising carding low denier charring fibers, cross lapping the carded fibers to form a batt, and thermally bonding or needle punching the fibers. The invention also includes the method of manufacturing an article by providing the flame retardant barrier as disclosed, placing the barrier as a layer extending along a surface, and covering the surface with a fabric. The article manufactured by these methods may be a mattress, mattress foundation, sofa, chair, partition, insulator, or other furniture or houseware products. The invention is also directed to these articles of manufacture comprising the nonwoven. In an embodiment wherein the manufactured article is a mattress, the method further comprises providing a mattress material, wherein placing the barrier layer comprises placing the barrier on the top and sides of the mattress material. In an embodiment where wherein the article being manufactured is a box spring, the method further comprises providing a box spring, wherein placing the barrier layer comprises placing the barrier material on the top and sides of the box spring. Further objectives and advantages, as well as the structure and function of preferred embodiments will become apparent from a consideration of the description, drawings, and examples. detailed-description description="Detailed Description" end="lead"?
20041102
20080812
20060504
72867.0
D04H100
1
RUDDOCK, ULA CORINNA
LIGHT WEIGHT NONWOVEN FIRE RETARDANT BARRIER
SMALL
0
ACCEPTED
D04H
2,004
10,979,247
ACCEPTED
CONNECTOR CAPABLE OF PREVENTING ABRASION
A slider is incorporated in a connector. A guide is designed to guide movement of the slider along a predetermined plane. An elastic terminal or contact extends to the free tip end from the stationary end. An inclined surface is defined on the slider so as to receive the elastic terminal. The inclined surface extends along an imaginary plane intersecting an imaginary reference plane including the predetermined plane by a predetermined inclination angle. The movement of the slider enables displacement of the contact position between the inclined surface and the elastic terminal in the connector. The inclined surface generates a driving force directed to the elastic terminal in response to the movement of the slider. The elastic terminal is thus caused to deform. This deformation can be utilized to control the contact between the elastic terminal and a connective member to be connected.
1. A connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide upward and downward movement of the slider along a predetermined plane within the housing; a passage defined in the slider, said passage receiving a connective member inserted in the housing in parallel with the predetermined plane; a receiving surface defined on the slider, said receiving surface designed to receive the connective member inserted through the passage so as to cause the downward movement of the slider; an elastic terminal extending to a free tip end from a stationary end fixed to the housing; and an inclined surface is defined on the slider so as to receive the elastic terminal between the passage and the elastic terminal, said inclined surface extending along an imaginary plane intersecting an imaginary reference plane including the predetermined plane by a predetermined inclination angle so as to cause the elastic terminal to get closer to the passage in response to the downward movement of the slider based on elasticity of the elastic terminal. 2. (canceled) 3. A connector comprising: a housing designed to receive insertion of a connective member along a predetermined imaginary reference plane; a slider assembled within the housing, said slider designed to move within the housing in parallel with the imaginary reference plane; a receiving surface formed on the slider, said receiving surface designed to receive the insertion of the connective member so as to cause the movement of the slider based on a driving force applied to the connective member; and an elastic terminal coupled to the housing, said elastic terminal designed to hold the connective member based on elasticity of the elastic terminal itself. 4. The connector according to claim 3, further comprising a driving force generating member connected to the slider, said driving force generating member designed to direct a driving force to the slider in a direction to move the connective member out of the housing. 5. The connector according to claim 3, wherein a converting mechanism is incorporated within the slider, said converting mechanism designed to generate a driving force along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle, based on the movement of the slider. 6. The connector according to claim 3, wherein the elastic terminal extends to a free tip end from a stationary end fixed to the housing, and an inclined surface is formed on the slider so as to receive the elastic terminal, said inclined surface extending along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle. 7. A connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide upward and downward movement of the slider along a predetermined plane within the housing; a passage defined in the slider, said passage receiving a connective member inserted in the housing in parallel with the predetermined plane; a receiving surface defined on the slider, said receiving surface designed to receive the connective member inserted through the passage so as to cause the downward movement of the slider; a pair of elastic terminals each extending to a free tip end from a stationary end fixed to the housing; and a pair of inclined surfaces is defined on the slider, so as to receive the pair of elastic terminals, one of the inclined surfaces being defined between the passage and one of the elastic terminals, another of the inclined surfaces being defined between the passage and another of the elastic terminals, wherein each of the inclined surfaces extend along an imaginary plane intersecting an imaginary reference plane including the predetermined plane by a predetermined inclination angle so as to cause the elastic terminals to get closer to each other in response to the downward movement of the slider based on elasticity of the elastic terminals. 8. (canceled)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connector designed establish connection between at least a pair of electrical conductor. In particular, the present invention relates to a connector designed to receive a printed circuit board such as a co-called card edge printed circuit board. 2. Description of the Prior Art Some connectors are well known to receive a so-called card edge printed circuit board. Pairs of elastic terminals or contacts are fixed within a housing of the connector, for example. The individual contacts extend from the stationary end, fixed to the housing, to the free tip end. When the card edge printed circuit board is inserted into the housing of the connector, the card edge printed circuit board is held between the contacts of the individual pairs. The card edge printed circuit board is thus stationarily coupled to the connector. The individual contacts are strongly urged against the surface of the card edge printed circuit board. Frequent insertion and withdrawal of the card edge printed circuit board induces abrasion of the resin material in the card edge printed circuit board. The abrasion generates dusts. If the dusts enter a space between the contacts and electrically conductive pads on the card edge printed circuit board, electric connection is hindered therebetween. For example, one solution is to avoid contact between the electrically conductive pads and the contacts during the insertion and withdrawal of the card edge printed circuit board, as disclosed in Japanese Patent Application Publication No. 54-98986. A sliding member is fixed to the free end of the contact in the disclosed connector. Sliding movement of the sliding member induces the contacts to get spaced from the electrically conductive pads of the card edge printed circuit board. However, this structure suffers from troublesome operations to couple the sliding member to the contact in the production process of the connector. The productivity thus gets deteriorated. Insertion and withdrawal of the card edge printed circuit board also suffer from troublesome operations. SUMMARY OF THE INVENTION It is accordingly an object of the present invention to provide a connector contributing to a facilitated production and assembling. It is an object of the present invention to provide a connector capable of reducing the urging force of an elastic terminal or contact without inducing troublesome operations. According to a first aspect of the present invention, there is provided a connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide movement of the slider along a predetermined plane within the housing; and an elastic terminal or contact extending to the free tip end from the stationary end fixed to the housing, wherein an inclined surface is defined on the slider so as to receive the elastic terminal, said inclined surface extending along an imaginary plane intersecting an imaginary reference plane including the predetermined plane by a predetermined inclination angle. The movement of the slider enables displacement of the contact position between the inclined surface and the elastic terminal in the connector. The inclined surface generates a driving force directed to the elastic terminal in response to the movement of the slider. The elastic terminal is thus caused to deform. This deformation can be utilized to control the contact between the elastic terminal and a connective member inserted into the housing. The elastic terminal is simply allowed to contact the inclined surface of the slider in the production process of the connector, so that the slider can be assembled into the connector in a facilitated manner. A receiving surface may be defined on the slider so as to receive a connective member inserted into the housing in parallel with the predetermined plane. The movement of the slider is caused in response to the insertion of the connective member in this structure. The simple insertion of the connective member induces the deformation of the elastic terminal. The contact can reliably be controlled between the connective member and the elastic terminal with conventional operations. The urging force of the elastic terminal can be adjusted without accompanying deteriorated operations. According to a second aspect of the present invention, there is provided a connector comprising: a housing designed to receive insertion of a connective member along a predetermined imaginary reference plane; a slider assembled within the housing, said slider designed to move within the housing in parallel with the imaginary reference plane; and a receiving surface formed on the slider, said receiving surface designed to receive the insertion of the connective member. The connector enables the movement of the slider in response to the insertion of the connective member. Conventional operations can be employed to drive the slider. A driving force acting on the slider can be converted into various forces based on the movement of the slider. A driving force generating member may be connected to the slider. The driving force generating member may be designed to direct a driving force to the slider in a direction to move the connective member out of the housing, for example. The driving force is utilized to drive the slider to the position that is established prior to the insertion of the connective member. A converting mechanism may be incorporated within the slider. The converting mechanism may be designed to generate a driving force along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle, based on the movement of the slider along the imaginary reference plane. The converting mechanism allows a change in the direction of the driving force applied to the slider in a facilitated manner. The driving force may function as a driving source on various scenes. The connector may further comprise an elastic terminal extending to the free tip end from the stationary end fixed to the housing. In this case, an inclined surface may be formed on the slider so as to receive the elastic terminal. The inclined surface extends along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle. The movement of the slider enables displacement of the contact position between the inclined surface and the elastic terminal in the connector. The inclined surface generates a driving force directed to the elastic terminal. The elastic terminal is caused to deform. This deformation can be utilized to control the contact between the elastic terminal and the connective member. According to a third aspect of the present invention, there is provided a connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide movement of the slider along a predetermined plane within the housing; and a pair of elastic terminal or contact each extending to the free tip end from the stationary end fixed to the housing, said elastic terminals designed to hold a connective member therebetween, said connective member inserted into the housing in parallel with the predetermined plane, wherein a pair of inclined surfaces is defined on the slider, said inclined surfaces getting closer to each other at a location remoter from the stationary ends of the elastic terminals. The connector allows deformation of the elastic terminal based on the contact between the inclined surface and the elastic terminal in the aforementioned manner. This deformation can be utilized to control the contact between the elastic terminal and the connective member inserted into the housing. A receiving surface may be defined on the slider so as to receive insertion of the connective member in the same manner as described above. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will become apparent from the following description of the preferred embodiment in conjunction with the accompanying drawings, wherein: FIG. 1 is a perspective view schematically illustrating the structure of a printed circuit board unit; FIG. 2 is a vertical sectional view taken along the line 2-2 in FIG. 1; FIG. 3 is a vertical sectional view taken along the line 3-3 in FIG. 1; FIG. 4 is an enlarged partial perspective view schematically illustrating the structure of a card edge printed circuit board; FIG. 5 is a perspective view schematically illustrating the structure of a slider; FIG. 6 is a partial cutoff view schematically illustrating the structure of the slider; and FIG. 7 is a vertical sectional view, corresponding to FIG. 3, schematically illustrating elastic contacts when the slider reaches the uppermost position. DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 schematically illustrates a printed circuit board unit 11. The printed circuit board unit 11 includes a printed circuit board 12. A connector 13 is mounted on the printed circuit board 12. The connector 13 stands upright from the surface of the printed circuit board 12. A small-sized printed circuit board or so-called card edge printed circuit board 14 is inserted into the connector 13. The card edge printed circuit board 14 is kept in an attitude upright to the printed circuit board 12. The card edge printed circuit board 14 corresponds to a graphic board, a memory board, a PCI board, or other types of printed circuit board, for example. The connector 13 serves to establish electric connection between the card edge printed circuit board 14 and the printed circuit board 12 as described later in detail. The connector 13 includes a housing 15. The housing 15 has a plate-shaped base 16 received on the surface of the printed circuit board 12. A housing body 17 is coupled to the base 16. A slider 18 is assembled within the housing body 17. The slider 18 is allowed to move upward and downward in the housing 15 in the vertical direction perpendicular to the surface of the printed circuit board 12. The card edge printed circuit board 14 is received on the slider 18. The card edge printed circuit board 14 serves as a connective member of the present invention. A pair of lever 21, 21 is attached to the housing 15. The individual levers 21 are designed to rotate around a pair of rotation axis extending in parallel with each other. The rotation axes may be set parallel to the surface of the printed circuit board 12, for example. The levers 21 causes the slider 18 to move upward as described later in detail. As shown in FIG. 2, the lever 21 includes a driving piece 21a extending from the rotation axis. The driving pieces 21a contact the bottom surface of the slider 18. An operating piece 21b is connected to the driving piece 21a. The tip end of the operating piece 21b extends outward from the slider 18 in the horizontal direction. When the operating piece 21b is forced to move outward from the slider 18 around the rotation axis, the driving piece 21a rotates around the rotation axis. The driving piece 21a drives the slider 18 upward. The slider 18 thus moves from the lowermost position to the uppermost position. The levers 21 in this manner direct a driving force to the slider 18 in a direction to move the card edge printed circuit board 14 out of the housing 15. To the contrary, when the slider 18 is forced to move downward from the uppermost position to the lowermost position, the driving pieces 21a of the levers 21 move downward around the rotation axes. The levers 21 thus serve as a driving force generating member of the present invention. As shown in FIG. 3, a pair of guide surface 22, 22 is defined on the housing body 17. The guide surfaces 22, 22 are opposed to each other. The guide surface 22 is a flat surface extending in the vertical direction perpendicular to the surface of the printed circuit board 12. The base 16 of the housing 15 serves to define the lower end of the guide surface 22. Restriction pieces 23 protruding from the respective guide surfaces 22 serve to define the upper ends of the guide surfaces 22. The slider 18 is positioned in a space between the guide surfaces 22. A pair of guide piece 24, 24 is formed on the slider 18. The guide pieces 24 are designed to protrude outward. The individual guide pieces 24 contact the corresponding guide surfaces 22, respectively. The guide surfaces 22 thus serve to guide the vertical movement of the slider 18. When the guide pieces 24 are received on the upper surface of the base 16, the slider 18 is positioned at the lowermost position. When the guide pieces 24 contact the restriction pieces 23, the slider 18 is positioned at the uppermost position. The stationary ends of elastic terminals or contacts 25 are fixed to the base 16 of the housing 15. The stationary ends of the elastic contacts 25 penetrate outward through the base 16. When the base 16 is received on the surface of the printed circuit board 12, for example, the stationary ends of the elastic contacts 25 penetrate through the printed circuit board 12. Electrically conductive pads 26 are arranged on the back surface of the printed circuit board 12. The stationary ends of the elastic contacts 25 are soldered to the corresponding electrically conductive pads 26, for example. The elastic contacts 25 may be made from an electrically conductive metallic plate, for example. The elastic contacts 25 are designed to stand upright from the surface of the base 16 within the housing 15. The elastic contact 25 extends from the stationary end to the free tip end. First plate pieces 25a are defined in the elastic contacts 25. The first plate pieces 25a are designed to stand from the surface of the base 16. The first plate pieces 25a of the pair of the opposed elastic contacts 25 get closer to each other at a higher position. Second plate pieces 25b are connected to the tip ends of the first plate pieces 25a. The second plate pieces 25b of the pair of the opposed elastic contacts 25 get remoter from each other at a position closer to the free tip ends. A bent section 25c is defined between the first and second plate pieces 25a, 25b. The elastic contacts 25 of the pair are located closest at the bent sections 25c. The card edge printed circuit board 14 is interposed between the opposed bent sections 25c. The first plate pieces 25a serve to apply a sufficient urging force to the bent sections 25c. The pairs of the elastic contacts 25 in this manner rigidly hold the card edge printed circuit board 14 within the housing 15. The card edge printed circuit board 14 is reliably prevented from slippage. As is apparent from FIG. 4, electrically conductive contact pads 27 are arranged on the front and back surfaces of the card edge printed circuit board 14. Here, the contact pads 27 are arranged in a row along the edge of the card edge printed circuit board 14. The individual contact pads 27 are spaced from the edge of the card edge printed circuit board 14 by a predetermined distance S. Wiring patterns 28 extending on the front and back surfaces may be connected to the contact pads 27 in the card edge printed circuit board 14. Resin material of the card edge printed circuit board 14 is exposed around the contact pads 27 and the wiring patterns 28. In general, the resin material such as a glass epoxy resin is utilized to form the card edge printed circuit board 14. The bent sections 25c of the elastic contacts 25 are allowed to contact the corresponding contact pads 27. Electric connection is in this manner established between the contact pads 27 on the card edge printed circuit board 14 and the electrically conductive pads 26 on the printed circuit board 12. Here, description will be made on the structure of the slider 18. As shown in FIG. 5, the slider 18 includes a pair of base block 31, 31. The base blocks 31 are spaced from each other by a predetermined distance. The guide pieces 24 are formed on the individual base blocks 31. Pairs of driving piece 32, 32, . . . are arranged between the base blocks 31, 31 in the longitudinal direction of the slider 18, for example. A passage of the card edge printed circuit board 14 is defined between the driving pieces 32, 32 of the individual pair. The driving pieces 32, 32, . . . are arranged at equal intervals W in the longitudinal direction. The elastic contact 25 is located in a space between the adjacent driving pieces 32, 32, . . . . The base blocks 31, 31 are coupled to each other with a pair of upper connecting member 33, 33 and a lower connecting member. The lower connecting member will be described later. An insertion opening 34 is defined for the card edge printed circuit board 14 between the upper connecting members 33, 33. This insertion opening 34 is connected to an end of the aforementioned passage of the card edge printed circuit board 14. As is apparent from FIG. 5, a pair of guiding surface 34a, 34a, opposed to each other, may be formed on the insertion opening 34. The guiding surfaces 34a are inclined surfaces designed to get closer to each other at a position closer to the passage of the card edge printed circuit board 14. As is apparent from FIG. 6, the lower connecting member 35 extends through spaces between the driving pieces 32, 32 of the individual pairs. The driving pieces 32, 32, . . . are integral to the lower connecting member 35, for example. When the card edge printed circuit board 14 is inserted into a space between the driving pieces 32, 32 of the pair, the card edge of the card edge printed circuit board 14 is received on the upper surface of the lower connecting member 35. An inclined surface 36 is defined on the individual driving piece 32. The inclined surface 36 is opposed to the inner surface of the housing body 17. The inclined surface 36 is designed to extend along an imaginary plane 38 intersecting an imaginary reference plane 37 including the guide surface 22 by an predetermined inclination angle α. The inclined surface 36 thus gets remoter from the passage of the card edge printed circuit board 14 at a location closer to the lower connecting member 35. The tip end of the elastic contact 25 is received on the inclined surface 36. A pair of enlarged pieces 25d, 25d is formed at the tip end of the elastic contact 25 so as to laterally extend. When the first and second plate pieces 25a, 52b are inserted between the adjacent driving pieces 32, the enlarged pieces 25d, 25d are received on the inclined surfaces 36, respectively. The inclined surfaces 36 serve as a converting mechanism as described later in detail. A vertical surface 39 is connected to the inclined surface 36 in the individual driving piece 32. The vertical surface 39 is connected to the lower end of the inclined surface 36. The lower end corresponds to the end near the lower connecting member 35. The vertical surface may extend along an imaginary plane parallel to the imaginary reference plane 37. The slider 18 may be made of resin material having a higher resistance to abrasion. Molding process may be utilized to form the slider 18 based on the resin material. Assume that the card connector 14 is withdrawn from the connector 13. The operator pushes down the operating pieces 21b of the levers 21 around the rotation axes in directions outward from the slider 18. The driving pieces 21a of the lever 21 lift the slider 18 upward. Since the card edge printed circuit board 14 is supported on the lower connecting member 35 of the slider 18, the card edge printed circuit board 14 is forced to move upward along with the slider 18. The guide surfaces 22, 22 serve to guide the upward movement of the slider 18. The upward movement of the slider 18 induces a relative displacement between the elastic contacts 25 and the slider 18. The enlarged pieces 25d of the elastic contacts 25 thus move upward along the inclined surfaces 36. The displacement of the slider 18 allows the individual inclined surface 36 to exhibit a driving force in a direction perpendicular to the imaginary reference plane 37. The driving force acts on the elastic contact 25. The tip ends of the elastic contacts 25 are allowed to climb up the inclined surfaces 36, so that the elastic contacts 25 of the pair get spaced from each other. The bent sections 25c of the elastic contacts 25 are in this manner distanced from the contact pads 27 on the card edge printed circuit board 14. The elastic contacts 25 are released from the contact to the card edge printed circuit board 14. When the operating pieces 21b of the levers 21 are further pushed down around the rotation axes, the guide pieces 24 of the slider 18 contact the restriction pieces 23, as shown in FIG. 7, for example. The slider 18 reaches the uppermost position. The enlarged pieces 25d of the elastic contacts 25 moves to the vertical surfaces 39 from the inclined surfaces 36. The slider 18 is held between the elastic contacts 25 at the vertical surfaces 39. The elasticity of the elastic contacts 25 serves to hold the slider 18 at the uppermost position. Since the card edge printed circuit board 14 has been released from the contact of the elastic contacts 25, the card edge printed circuit board 14 can easily be withdrawn from the connector 13. Next, assume that the card edge printed circuit board 14 is to be inserted into the connector 13. The slider 18 is positioned at the uppermost position. When the card edge printed circuit board 14 is inserted into the connector 13, the card edge printed circuit board 14 is received into the slider 18. The card edge printed circuit board 14 slips between the driving pieces 32, 32 of the individual pairs. The card edge of the card edge printed circuit board 14 is received on the lower connecting member 35. When the card edge printed circuit board 14 is further pushed into the connector 13, the movement of the card edge printed circuit board 14 serves to generate a driving force acting on the slider 18. The slider 18 is forced to move downward from the uppermost position toward the lowermost position. The guide surfaces 22, 22 serve to guide the downward movement of the slider 18. When the slider 18 moves downward in the aforementioned manner, a relative displacement is induced between the elastic contacts 25 and the slider 18 in the direction opposite to the aforementioned relative displacement. The enlarged pieces 25d of the elastic contacts 25 move downward along the inclined surfaces 36. The inclined surfaces 36 serve to avoid contact between the elastic contacts 25 and the card edge printed circuit 14 in a predetermined period from the start of the downward movement of the slider 18. In other words, contact is prevented between the elastic contacts 25 and the card edge printed circuit board 14 in an extent of the predetermined distance S from the card edge. The bent sections 25c of the elastic contacts 25 are in this manner prevented from contacting the resin material of the card edge printed circuit board 14. Generation of dusts due to abrasion can be prevented. When the card edge printed circuit board 14 is further pushed down, the elastic contacts 25 of the pairs get closer to each other. The card edge printed circuit board 14 is held between the elastic contacts 25. The bent sections 25c of the elastic contacts 25 are urged against the contact pads 27 on the card edge printed circuit board 14. The guide pieces 24 of the slider 18 finally contact the base 16, as shown in FIG. 3, for example. The slider 18 reaches the lowermost position. The connector 13 allows the elastic contacts 25 to deform in a conventional manner at insertion and withdrawal of the card edge printed circuit board 14. No operations are required in addition to conventional operations. The urging force of the elastic contacts 25 toward the card edge printed circuit board 14 can reliably be relieved without inducing troublesome operations. The slider 18 can be placed on the base 16 prior to coupling of the housing body 17 to the base 16 in the production process of the connector 13, for example. The elastic contacts 25 may simply contact the inclined surfaces 36 when the slider 18 is placed on the base 16. The assembling can be achieved in a facilitated manner. In addition, the elasticity of the elastic contacts 25 serves to hold the slider 18 on the base 16. Although the slider 18 is not fixed to the base 16, the housing body 17 can be coupled to the base 16 in a facilitated manner. The assembling of the connector 13 can be facilitated. The productivity cannot be deteriorated. It should be noted that any alternative operations may be employed to assemble the connector 13. An elastic member may be employed to urge the slider 18 toward the uppermost position in the connector 13. The elastic member of the type may be a coil spring, for example. The elastic member may be utilized in place of the levers 21.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a connector designed establish connection between at least a pair of electrical conductor. In particular, the present invention relates to a connector designed to receive a printed circuit board such as a co-called card edge printed circuit board. 2. Description of the Prior Art Some connectors are well known to receive a so-called card edge printed circuit board. Pairs of elastic terminals or contacts are fixed within a housing of the connector, for example. The individual contacts extend from the stationary end, fixed to the housing, to the free tip end. When the card edge printed circuit board is inserted into the housing of the connector, the card edge printed circuit board is held between the contacts of the individual pairs. The card edge printed circuit board is thus stationarily coupled to the connector. The individual contacts are strongly urged against the surface of the card edge printed circuit board. Frequent insertion and withdrawal of the card edge printed circuit board induces abrasion of the resin material in the card edge printed circuit board. The abrasion generates dusts. If the dusts enter a space between the contacts and electrically conductive pads on the card edge printed circuit board, electric connection is hindered therebetween. For example, one solution is to avoid contact between the electrically conductive pads and the contacts during the insertion and withdrawal of the card edge printed circuit board, as disclosed in Japanese Patent Application Publication No. 54-98986. A sliding member is fixed to the free end of the contact in the disclosed connector. Sliding movement of the sliding member induces the contacts to get spaced from the electrically conductive pads of the card edge printed circuit board. However, this structure suffers from troublesome operations to couple the sliding member to the contact in the production process of the connector. The productivity thus gets deteriorated. Insertion and withdrawal of the card edge printed circuit board also suffer from troublesome operations.
<SOH> SUMMARY OF THE INVENTION <EOH>It is accordingly an object of the present invention to provide a connector contributing to a facilitated production and assembling. It is an object of the present invention to provide a connector capable of reducing the urging force of an elastic terminal or contact without inducing troublesome operations. According to a first aspect of the present invention, there is provided a connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide movement of the slider along a predetermined plane within the housing; and an elastic terminal or contact extending to the free tip end from the stationary end fixed to the housing, wherein an inclined surface is defined on the slider so as to receive the elastic terminal, said inclined surface extending along an imaginary plane intersecting an imaginary reference plane including the predetermined plane by a predetermined inclination angle. The movement of the slider enables displacement of the contact position between the inclined surface and the elastic terminal in the connector. The inclined surface generates a driving force directed to the elastic terminal in response to the movement of the slider. The elastic terminal is thus caused to deform. This deformation can be utilized to control the contact between the elastic terminal and a connective member inserted into the housing. The elastic terminal is simply allowed to contact the inclined surface of the slider in the production process of the connector, so that the slider can be assembled into the connector in a facilitated manner. A receiving surface may be defined on the slider so as to receive a connective member inserted into the housing in parallel with the predetermined plane. The movement of the slider is caused in response to the insertion of the connective member in this structure. The simple insertion of the connective member induces the deformation of the elastic terminal. The contact can reliably be controlled between the connective member and the elastic terminal with conventional operations. The urging force of the elastic terminal can be adjusted without accompanying deteriorated operations. According to a second aspect of the present invention, there is provided a connector comprising: a housing designed to receive insertion of a connective member along a predetermined imaginary reference plane; a slider assembled within the housing, said slider designed to move within the housing in parallel with the imaginary reference plane; and a receiving surface formed on the slider, said receiving surface designed to receive the insertion of the connective member. The connector enables the movement of the slider in response to the insertion of the connective member. Conventional operations can be employed to drive the slider. A driving force acting on the slider can be converted into various forces based on the movement of the slider. A driving force generating member may be connected to the slider. The driving force generating member may be designed to direct a driving force to the slider in a direction to move the connective member out of the housing, for example. The driving force is utilized to drive the slider to the position that is established prior to the insertion of the connective member. A converting mechanism may be incorporated within the slider. The converting mechanism may be designed to generate a driving force along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle, based on the movement of the slider along the imaginary reference plane. The converting mechanism allows a change in the direction of the driving force applied to the slider in a facilitated manner. The driving force may function as a driving source on various scenes. The connector may further comprise an elastic terminal extending to the free tip end from the stationary end fixed to the housing. In this case, an inclined surface may be formed on the slider so as to receive the elastic terminal. The inclined surface extends along an imaginary plane intersecting the imaginary reference plane by a predetermined inclination angle. The movement of the slider enables displacement of the contact position between the inclined surface and the elastic terminal in the connector. The inclined surface generates a driving force directed to the elastic terminal. The elastic terminal is caused to deform. This deformation can be utilized to control the contact between the elastic terminal and the connective member. According to a third aspect of the present invention, there is provided a connector comprising: a housing; a slider; a guide formed on the housing, said guide designed to guide movement of the slider along a predetermined plane within the housing; and a pair of elastic terminal or contact each extending to the free tip end from the stationary end fixed to the housing, said elastic terminals designed to hold a connective member therebetween, said connective member inserted into the housing in parallel with the predetermined plane, wherein a pair of inclined surfaces is defined on the slider, said inclined surfaces getting closer to each other at a location remoter from the stationary ends of the elastic terminals. The connector allows deformation of the elastic terminal based on the contact between the inclined surface and the elastic terminal in the aforementioned manner. This deformation can be utilized to control the contact between the elastic terminal and the connective member inserted into the housing. A receiving surface may be defined on the slider so as to receive insertion of the connective member in the same manner as described above.
20041103
20060321
20060112
95583.0
H01R1315
0
TSUKERMAN, LARISA Z
CONNECTOR CAPABLE OF PREVENTING ABRASION
UNDISCOUNTED
0
ACCEPTED
H01R
2,004
10,979,309
ACCEPTED
Fault detection through feedback
A method, apparatus and a system, for provided for performing a dynamic weighting technique for performing fault detection. The method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece. The method further comprises determining a relationship of a parameter relating to the fault detection analysis to a detected fault and adjusting a weighting associated with the parameter based upon the relationship of the parameter to the detected fault.
1. A method, comprising: processing a workpiece; performing a fault detection analysis relating to said processing of said workpiece; determining a relationship of a parameter relating to said fault detection analysis to a detected fault; and adjusting a weighting associated with said parameter based upon said relationship of said parameter to said detected fault. 2. The method of claim 1, wherein performing said processing said workpiece further comprises processing a semiconductor wafer. 3. The method of claim 1, further comprising processing at least one subsequent workpiece. 4. The method of claim 1, further comprising determining a relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining a causation of a parameter relating to said fault detection analysis to a detected fault. 5. The method of claim 1, further comprising determining a relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining an importance of a parameter relating to said fault detection analysis to a detected fault. 6. The method of claim 1, further comprising: determining whether said detected fault is a significant fault; and adjusting said weighting associated with said parameter based upon determining that said detected fault is a significant fault. 7. The method of claim 1, further comprising: acquiring metrology data relating to processing said workpiece; acquiring tool state data relating to processing said workpiece; and correlating said metrology data and said tool state data with said fault data to characterize a fault. 8. The method of claim 7, wherein acquiring said tool state data relating to processing said workpiece further comprises acquiring at least one of a pressure data, a temperature data, humidity data, and a gas flow rate data associated with said processing of said workpiece. 9. The method of claim 1, wherein performing said fault detection analysis further comprises utilizing a fault detection model to perform said fault detection, wherein said parameter is an input parameter to said fault detection model. 10. The method of claim 1, wherein performing said fault detection analysis further comprises performing a principal component analysis (PCA) relating to said processing of said workpiece. 11. The method of claim 10, wherein performing said principal component analysis further comprises utilizing a PCA model to perform said PCA, wherein said parameter is an input parameter to said PCA model. 12. The method of claim 1, wherein determining said relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining whether said parameter is a significant factor associated with said fault. 13. The method of claim 1, wherein adjusting said weighting associated with said parameter based upon said relationship of said parameter to said detected fault further comprises increasing said weighting associated with said parameter based upon said relationship. 14. The method of claim 13, wherein increasing said weighting associated with said parameter based upon said relationship further comprises requiring a smaller fluctuation of said parameter during said fault detection analysis to determine that a fault associated with said processing of said workpiece has occurred. 15. The method of claim 1, wherein adjusting said weighting associated with said parameter based upon said relationship of said parameter to said detected fault further comprises decreasing said weighting associated with said parameter based upon said relationship. 16. The method of claim 15, wherein increasing said weighting associated with said parameter based upon said relationship further comprises requiring a larger fluctuation of said parameter during said fault detection analysis to determine that a fault associated with said processing of said workpiece has occurred. 17. The method of claim 1, wherein determining said relationship of a parameter relating to said fault detection analysis to said detected fault further comprises determining a relationship between at least one of a pressure data, a temperature data, a humidity data, and a gas flow rate data associated with said processing of said workpiece, to said detected fault. 18. A method, comprising: processing a workpiece; performing a fault detection analysis relating to said processing of said workpiece based upon a tool state parameter being input into a fault detection model associated with said fault detection analysis; determining whether said parameter is associated with a detected fault as a result of performing said fault detection analysis; and modifying a weighting of said parameter in said fault detection model based upon a determination that said parameter is associated with said detected fault. 19. The method of claim 18, wherein modifying said weighting of said parameter in said fault detection model further comprises increasing said weighting of said parameter. 20. The method of claim 18, wherein modifying said weighting of said parameter in said fault detection model further comprises decreasing said weighting of said parameter. 21. The method of claim 18, further comprising performing a principal component analysis. 22. The method of claim 18, further comprising processing at least one subsequent workpiece. 23. A method, comprising: processing a workpiece; performing a principal component analysis (PCA) relating to said processing of said workpiece based upon a tool state parameter being input into a PCA model associated with said PCA analysis; determining whether said parameter is associated with a detected fault as a result of performing said PCA; and modifying a weighting of said parameter in said PCA model based upon a determination that said parameter is associated with said detected fault. 24. The method of claim 23, further comprising performing a principal component analysis. 25. An apparatus, comprising: means for processing a workpiece; means for performing a fault detection analysis relating to said processing of said workpiece; means for determining a relationship of a parameter relating to said fault detection analysis to a detected fault; and means for adjusting a weighting associated with said parameter based upon said relationship of said parameter to said detected fault. 26. A system, comprising: a processing tool to perform a process upon a workpiece; a metrology tool to acquire metrology data relating to said process performed on said workpiece to provide metrology data; a tool state data sensor unit to acquire tool state data; a controller operatively coupled to said processing tool, metrology tool and to said tool state data sensor unit, said controller to perform a fault detection analysis relating to said processing of said workpiece to determine a relationship between a parameter relating to said fault detection analysis and a detected fault, said controller to also adjust a weighting associated with said parameter based upon said relationship of said parameter to said detected fault. 27. The system of claim 26, wherein said workpiece is a semiconductor wafer. 28. The system of claim 26, further comprising a fault detection model for performing said fault detection analysis, said parameter being an input into said fault detection model. 29. The system of claim 26, further comprising a principal component analysis (PCA) model for performing principal component analysis, said parameter being an input into said PCA model. 30. The system of claim 29, wherein said controller further comprising a dynamic PCA-weighting module, said dynamic PCA-weighting module comprising: a fault data analysis module for determining whether said parameter was a significant factor in said detected fault; a fault data input interface to receive an external data indicating whether said parameter was a significant factor in said detected fault; and a dynamic PCA weight calculation module to dynamically modify said weighting of said parameter based upon at least one of said determination and said indication whether said parameter was a significant factor in said detected fault. 31. The system of claim 30, wherein said controller to increase a weighting of said parameter in response to at least said indication and said determination that said parameter is a significant factor in said detected fault. 32. The system of claim 30, wherein said controller to decrease a weighting of said parameter in response to at least said indication and said determination that said parameter is a significant factor in said detected fault. 33. The system of claim 26, further comprising a database unit to store at least one of said metrology data, said tool state data, and data relating to said fault detection analysis. 34. An apparatus, comprising: a controller operatively to perform a fault detection analysis relating to a processing of a workpiece to determine a relationship between a parameter relating to said fault detection analysis and a detected fault, said controller to also adjust a weighting associated with said parameter based upon said relationship of said parameter to said detected fault. 35. The apparatus of claim 34, wherein said workpiece is a semiconductor wafer. 36. The apparatus of claim 34, wherein said controller further comprising a fault detection model for performing said fault detection analysis, said parameter being an input into said fault detection model. 37. The apparatus of claim 34, wherein said controller further comprising a principal component analysis (PCA) model for performing principal component analysis, said parameter being an input into said PCA model. 38. The apparatus of claim 34, said controller further comprising a dynamic PCA-weighting unit, said dynamic PCA-weighting unit comprising: a fault data analysis module for determining whether said parameter was a significant factor in said detected fault; a fault data input interface to receive an external data indicating whether said parameter was a significant factor in said detected fault; and a dynamic PCA-weighting calculation module to dynamically modify said weighting of said parameter based upon at least one of said determination and said indication whether said parameter was a significant factor in said detected fault. 39. The apparatus of claim 38, wherein said controller to increase a weighting of said parameter in response to at least said indication and said determination that said parameter is a significant factor in said detected fault. 40. The apparatus of claim 38, wherein said controller to decrease a weighting of said parameter in response to at least said indication and said determination that said parameter is a significant factor in said detected fault. 41. A computer readable program storage device encoded with instructions that, when executed by a computer, performs a method, comprising: processing a workpiece; performing a fault detection analysis relating to said processing of said workpiece; determining a relationship of a parameter relating to said fault detection analysis to a detected fault; and adjusting a weighting associated with said parameter based upon said relationship of said parameter to said detected fault. 42. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, further comprising: acquiring metrology data relating to processing said workpiece; acquiring tool state data relating to processing said workpiece; and correlating said metrology data and said tool state data with said fault data to characterize a fault. 43. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 42, wherein acquiring said tool state data relating to processing said workpiece further comprises acquiring at least one of a pressure data, a temperature data, humidity data, and a gas flow rate data associated with said processing of said workpiece. 44. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein performing said fault detection analysis further comprises utilizing a fault detection model to perform said fault detection, wherein said parameter is an input parameter to said fault detection model. 45. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 42, further comprising determining a relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining a causation of a parameter relating to said fault detection analysis to a detected fault. 46. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 42, further comprising determining a relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining an importance of a parameter relating to said fault detection analysis to a detected fault. 47. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein performing said fault detection analysis further comprises performing a principal component analysis (PCA) relating to said processing of said workpiece. 48. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 47, wherein performing said principal component analysis further comprises utilizing a PCA model to perform said PCA, wherein said parameter is an input parameter to said PCA model. 49. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein determining said relationship of a parameter relating to said fault detection analysis to a detected fault further comprises determining whether said parameter is a significant factor associated with said fault. 50. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein adjusting said weighting associated with said parameter based upon said relationship of said parameter to said detected fault further comprises increasing said weighting associated with said parameter based upon said relationship. 51. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 50, wherein increasing said weighting associated with said parameter based upon said relationship further comprises requiring a smaller fluctuation of said parameter during said fault detection analysis to determine that a fault associated with said processing of said workpiece has occurred. 52. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein adjusting said weighting associated with said parameter based upon said relationship of said parameter to said detected fault further comprises decreasing said weighting associated with said parameter based upon said relationship. 53. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 52, wherein increasing said weighting associated with said parameter based upon said relationship further comprises requiring a larger fluctuation of said parameter during said fault detection analysis to determine that a fault associated with said processing of said workpiece has occurred. 54. The computer readable program storage device encoded with instructions that, when executed by a computer, performs the method of claim 41, wherein determining said relationship of a parameter relating to said fault detection analysis to said detected fault further comprises determining a relationship between at least one of a pressure data, a temperature data, a humidity data, and a gas flow rate data associated with said processing of said workpiece, to said detected fault.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to semiconductor manufacturing, and, more particularly, to a method, system, and apparatus for performing a process to improve fault detection reliability through feedback. 2. Description of the Related Art The technology explosion in the manufacturing industry has resulted in many new and innovative manufacturing processes. Today's manufacturing processes, particularly semiconductor manufacturing processes, call for a large number of important steps. These process steps are usually vital, and therefore, require a number of inputs that are generally fine-tuned to maintain proper manufacturing control. The manufacture of semiconductor devices requires a number of discrete process steps to create a packaged semiconductor device from raw semiconductor material. The various processes, from the initial growth of the semiconductor material, the slicing of the semiconductor crystal into individual wafers, the fabrication stages (etching, doping, ion implanting, or the like), to the packaging and final testing of the completed device, are so different from one another and specialized that the processes may be performed in different manufacturing locations that contain different control schemes. Generally, a set of processing steps is performed across a group of semiconductor wafers, sometimes referred to as a lot. For example, a process layer that may be composed of a variety of different materials may be formed across a semiconductor wafer. Thereafter, a patterned layer of photoresist may be formed across the process layer using known photolithography techniques. Typically, an etch process is then performed across the process layer using the patterned layer of photoresist as a mask. This etching process results in the formation of various features or objects in the process layer. Such features may be used as, for example, a gate electrode structure for transistors. Many times, trench isolation structures are also formed in various regions of the semiconductor wafer to create electrically isolated areas across a semiconductor wafer. One example of an isolation structure that can be used is a shallow trench isolation (STI) structure. The manufacturing tools within a semiconductor manufacturing facility typically communicate with a manufacturing framework or a network of processing modules. Each manufacturing tool is generally connected to an equipment interface. The equipment interface is connected to a machine interface to which a manufacturing network is connected, thereby facilitating communications between the manufacturing tool and the manufacturing framework. The machine interface can generally be part of an advanced process control (APC) system. The APC system initiates a control script, which can be a software program that automatically retrieves the data needed to execute a manufacturing process. FIG. 1 illustrates a typical semiconductor wafer 105. The semiconductor wafer 105 typically includes a plurality of individual semiconductor die 103 arranged in a grid 150. Using known photolithography processes and equipment, a patterned layer of photoresist may be formed across one or more process layers that are to be patterned. As part of the photolithography process, an exposure process is typically performed by a stepper on approximately one to four die 103 locations at a time, depending on the specific photomask employed. The patterned photoresist layer can be used as a mask during etching processes, wet or dry, performed on the underlying layer or layers of material, e.g., a layer of polysilicon, metal, or insulating material, to transfer the desired pattern to the underlying layer. The patterned layer of photoresist is comprised of a plurality of features, e.g., line-type features or opening-type features that are to be replicated in an underlying process layer. When processing semiconductor wafers, various measurements relating to the process results on the semiconductor wafers, as well as conditions of the processing tool in which the wafers are processed, are acquired and analyzed. The analysis is then used to modify subsequent processes. Turning now to FIG. 2, a flow chart depiction of a state-of-the-art process flow is illustrated. A processing system may process various semiconductor wafers 105 in a lot of wafers (block 210). Upon processing of the semiconductor wafers 105, the processing system may acquire metrology data relating to the processing of the semiconductor wafers 105 from selected wafers in the lot (block 220). Additionally, the processing system may acquire tool state sensor data from the processing tool used to process the wafers (block 230). Tool state sensor data may include various tool state parameters such as pressure data, humidity data, temperature data, and the like. Based upon the metrology data and the tool state data, the processing system may perform fault detection to acquire data relating to faults associated with the processing of the semiconductor wafers 105 (block 240). Upon detecting various faults associated with processing of the semiconductor wafers 105, the processing system may perform a principal component analysis (“PCA”) relating to the faults (block 250). Principal component analysis (PCA) is a multivariate technique that models the correlation structure in the data by reducing the dimensionality of the data. The correlation may take on various forms, such as correlation of problems with the processed wafers with problems in the processing tool. The PCA may provide an indication of the types of corrections that may be useful in processing subsequent semiconductor wafers 105. Upon performing the PCA, the processing system may perform subsequent processes upon the semiconductor wafers 105 with various adjustments being based upon the PCA (block 260). The PCA performs an analysis to determine whether there are abnormal conditions that may exist with respect to a tool. Upon detecting any abnormal conditions, various signals may be issued, indicating to the operators that various faults have been detected. One issue associated with state-of-the-art methods includes the fact that a determination of what constitutes an abnormal correlation may be based upon data used to build a fault detection model or a PCA model used to perform the fault detection analysis and the PCA. Generally, the abnormal conditions detected by performing the PCA may be statistically different from the data that may have been used to build the fault detection or the PCA model. The term “statistically different” may mean a variety of statistical differences, such as differences based upon population mean, variance, etc. These abnormal conditions may not be an accurate reflection of the true manner of operation in which the tool is performing. For example, if during the development of the fault detection model or the PCA model, the values for a pressure sensor were held within small constraints, larger variations in the pressure during the actual processing would generally be identified as a significant fault. The problem with this methodology is that if the larger variation of the pressure did not result in any negative impact to the material being processed, then the fault indication may be false. In other words, if the larger variation was still small enough that no significant impact to the process was present, a false-positive fault indication occurs. This false-positive introduces inefficiencies and idle times in a manufacturing setting. More recently, various efforts have been made to incorporate weighting schemes into PCA. The weighting schemes may provide a significant difference in weight attached to various parameters, such as the pressure. However, the problems associated with the state-of-the-art weighting schemes include the fact that prior knowledge is required to assign a predetermined weight to a particular parameter. For example, prior knowledge may indicate that a smaller amount of weight should be assigned to the pressure parameter during the PCA analysis relating to a particular process. This would reduce false indications due to variations in pressure that may have been harmless. However, this methodology can be an inefficient, cumbersome task and, at best, may involve guess work. Furthermore, it may not be readily clear if adjusting the weight to particular parameters would result in improved or worsened PCA relating to a particular process. The present invention is directed to overcoming, or at least reducing, the effects of, one or more of the problems set forth above. SUMMARY OF THE INVENTION In one aspect of the present invention, various methods are disclosed for employing a dynamic weighting technique in connection with fault detection analysis. In an illustrative embodiment, the method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece. The method further comprises determining a relationship of a parameter relating to the fault detection analysis to a detected fault and adjusting a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In another aspect of the present invention, a method is provided for performing a dynamic weighting technique for performing fault detection. The method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece based upon a tool state parameter being input into a fault detection model associated with the fault detection analysis. The method further comprises determining whether said parameter is associated with a detected fault as a result of performing the fault detection analysis and modifying a weighting of the parameter in the fault detection model based upon a determination that the parameter is associated with the detected fault. In yet another aspect of the present invention, a method is provided for performing a dynamic weighting technique for performing fault detection. The method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece based upon a tool state parameter being input into a fault detection model associated with the fault detection analysis. The method further comprises performing a principal component analysis (PCA) in conjunction with the fault detection analysis and determining whether the parameter is associated with a detected fault as a result of performing the fault detection analysis and the PCA. The method further comprises modifying a weighting of the parameter in the fault detection model based upon a determination that the parameter is associated with the detected fault. In another aspect of the present invention, an apparatus is provided for performing a dynamic weighting technique for performing fault detection. The apparatus comprises a controller that performs a fault detection analysis relating to a processing of a workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In another aspect of the present invention, a system is provided for performing a dynamic weighting technique for performing fault detection. The system comprises a processing tool communicatively coupled to a controller, a metrology tool, and a tool state data sensor unit. The processing tool performs a process upon a workpiece. The metrology tool acquires metrology data relating to the process performed on the workpiece to provide metrology data. The tool state data sensor unit acquires tool state data. The controller performs a fault detection analysis relating to the processing of the workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In yet another aspect of the present invention, a computer readable program storage device encoded with instructions is provided for performing a dynamic weighting technique for performing fault detection. The instructions perform a method comprising a processing tool communicatively coupled to a controller, a metrology tool, and a tool state data sensor unit. The processing tool performs a process upon a workpiece. The metrology tool acquires metrology data relating to the process performed on the workpiece to provide metrology data. The tool state data sensor unit acquires tool state data. The controller performs a fault detection analysis relating to the processing of the workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. BRIEF DESCRIPTION OF THE DRAWINGS The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which: FIG. 1 is a simplified diagram of a prior art semiconductor wafer being processed; FIG. 2 illustrates a simplified flowchart depiction of a prior art process flow during manufacturing of semiconductor wafers; FIG. 3 provides a block diagram representation of a system in accordance with one illustrative embodiment of the present invention; FIG. 4 illustrates a principal component analysis matrix table, which depicts a list of tool state variables being correlated with data relating to various processed semiconductor wafers, in accordance with one illustrative embodiment of the present invention; FIG. 5 illustrates a more detailed block diagram representation of a tool state data sensor unit of FIG. 3, in accordance with one illustrative embodiment of the present invention; FIG. 6 illustrates a more detailed block diagram representation of a dynamic PCA weighting unit of FIG. 3, in accordance with one illustrative embodiment of the present invention; FIG. 7 illustrates a flowchart depiction of a method in accordance with one illustrative embodiment of the present invention; and FIG. 8 illustrates a more detailed flowchart depiction of a method of performing a dynamic PCA weighting process, as indicated in FIG. 7, in accordance with one illustrative embodiment of the present invention. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. There are many discrete processes that are involved in semiconductor manufacturing. Many times, workpieces (e.g., semiconductor wafers 105, semiconductor devices, etc.) are stepped through multiple manufacturing process tools. Embodiments of the present invention provide for performing a dynamic adjustment of the weighting of one or more parameters associated with fault detection and/or performing a principal component analysis (PCA). The weighting of various parameters that may be used in a fault detection model and/or a PCA model may be automatically determined and the weighting of the parameters may be adjusted dynamically. For example, after a fault condition is identified by a processing system, an automatic input or a manual input may be provided to the processing system to indicate whether the detected fault was a significant fault or an insignificant fault. Based upon this indication, a weighting fault matrix, which contains data correlating various tool state parameters to particular wafers, may be modified to make the detection of similar faults more likely, or alternatively, less likely. Therefore, in multi-variate fault detection and/or PCA models, one or more parameters that contributed to the fault condition and their relative importance to the fault may be detected and a dynamic adjustment of the weighting of those parameters that contributed the fault may be increased proportionally. Likewise, one or more parameters that did not significantly contribute to the fault condition and their relative non-importance to the fault may be characterized and a dynamic adjustment of the weighting of those parameters may be decreased proportionally. In other words, the weighting of the parameters that were found not to have contributed to a fault may be decreased. Therefore, a stronger signal would be required relating to those parameters to generate a fault indication. Embodiments of the present invention provide for the ability to perform dynamic weighting adjustments without requiring prior knowledge of which particular parameters to adjust before the fault detection and/or the PCA model is executed. Over time, weighting of the model parameters may be modified to increase the sensitivity of parameters that have been found to have contributed significantly to fault conditions, thereby causing the processing system to focus process corrections to those parameters. This may have the effect of reducing the number and/or the magnitude of faults caused by those parameters. Similarly, over time, the weighting of the model parameters may be modified to reduce the frequency of false positive fault indications, thereby reducing unnecessary downtime and inefficiencies during the manufacturing of semiconductor wafers 105. Turning now to FIG. 3, a block diagram depiction of a system 300 in accordance with illustrative embodiments of the present invention is illustrated. A process controller 305 in the system 300 is capable of controlling various operations relating to a processing tool 310. The process controller 305 may comprise a computer system that includes a processor, memory, and various computer-related peripherals. Moreover, although a single process controller 305 is schematically depicted in FIG. 3, in practice, the function performed by the process controller 305 may be performed by one or more computers or workstations spread throughout the manufacturing system. Semiconductor wafers 105 are processed by the processing tool 310 using a plurality of control input signals, or manufacturing parameters, provided via a line or network 315. The control input signals, or manufacturing parameters, on the line 315 are sent to the processing tool 310 from a process controller 305 via machine interfaces that may be located inside or outside the processing tool 310. In one embodiment, semiconductor wafers 105 may be provided to the processing tool 310 manually. In an alternative embodiment, semiconductor wafers 105 may be provided to the processing tool 310 in an automatic fashion (e.g., robotic movement of semiconductor wafers 105). In one embodiment, a plurality of semiconductor wafers 105 is transported in lots (e.g., stacked in cassettes) to the processing tools 310. Examples of the processing tool used in semiconductor manufacturing processes may be photolithography tools, ion implant tools, steppers, etch process tools, deposition tools, chemical-mechanical polishing (CMP) tools, and the like. The system 300 is capable of acquiring manufacturing related data, such as metrology data, related to processed semiconductor wafers 105, tool state data, and the like. The system 300 may also comprise a metrology tool 350 to acquire metrology data related to the processed semiconductor wafers 105. The system 300 may also comprise a tool state data sensor unit 320 for acquiring tool state data. The tool state data may include pressure data, temperature data, humidity data, gas flow data, various electrical data, a level of out-gas data, and other types of data, related to operations of the processing tool 310. Exemplary tool state data for an etch tool may include gas flow, chamber pressure, chamber temperature, voltage, reflected power, backside helium pressure, RF tuning parameters, etc. The tool state data may also include data external to the processing tool 310, such as ambient temperature, humidity, pressure, etc. A more detailed illustration and description of the tool state data sensor unit 320 is provided in FIG. 5 and accompanying description below. The system 300 may also comprise a database unit 340. The database unit 340 is provided for storing a plurality of types of data, such as manufacturing-related data, data related to the operation of the system 300 (e.g., the status of the processing tool 310, the status of semiconductor wafers 105, etc.). The database unit 340 may store parameter data relating to parameters used in fault detection and PCA models, as well as tool state data relating to a plurality of process runs performed by the processing tool 310. The database unit 340 may comprise a database server 342 for storing tool state data and/or other manufacturing data related to processing semiconductor wafers 105, into a database storage unit 345. The system 300 also comprises a fault detection unit 380, which is capable of performing various fault detection associated with the processing tool 310 when processing the semiconductor wafers 105. The fault detection unit 380 may comprise a fault detection model 385 that is capable of performing a modeling function when performing the fault detection. Various parameters may be inputted into the fault detection model 385. For example, various predetermined ranges for pressure, temperature, humidity, and/or gas flow, may be provided to the model such that the model may assert a fault detection condition based upon the fault data received by the fault detection unit 380. The fault detection model 385 may be a multi-variate model that performs fault modeling based upon various parameters. In one embodiment, the fault detection unit 380 is capable of correlating metrology data results with tool state sensor data to characterize a fault. The system 300 may also comprise a PCA controller 360, which operates in conjunction with the fault detection unit 380 to perform a principal component analysis in determining any abnormal conditions or faults relating to the processing of semiconductor wafers 105. The PCA controller 360 may comprise a PCA model 365 that is capable of performing a modeling function when performing the PCA. Various parameters and manufacturing data may be inputted into the PCA model 365. For example, various predetermined ranges for pressure, temperature, humidity, and/or gas flow, may be provided into the model such that the model may assert a fault condition based upon the PCA. Manufacturing data is defined to comprise various types of data including metrology data, fault data, sensor data, and the like. A more detailed description relating to the weighted PCA analysis in accordance with an illustrative embodiment of the present invention is provided below. The system 300 may also comprise a dynamic PCA weighting module 370, which is capable of receiving data automatically and/or manually relating to information indicating whether a particular parameter that was considered abnormal is indeed a significant factor in any detected faults. The dynamic PCA weighting module 370 is capable of adjusting the weighting of various parameters that are analyzed by the PCA controller 360. The weighting may also affect the parameter ranges inputted into the fault detection model 385 and/or the PCA model 365. A more detailed description of the dynamic PCA Weighting module 370 is provided in FIG. 5 and accompanying description below. Various elements of the system 300, such as the process controller 305, the fault detection unit 380, the PCA controller 360, and the dynamic PCA Weighting module 370 may be software, hardware, or firmware unit(s) that are standalone units or may be integrated into a computer system associated with the system 300. Furthermore, the various components represented by the blocks illustrated in FIG. 3 may communicate with one another via a system communications line 315. The system communications line 315 may be one or more computer bus links, one or more dedicated hardware communications links, one or more telephone system communications links, one or more wireless communications links, and/or other communication links that may be implemented by those skilled in the art having benefit of the present disclosure. The Principal component analysis performed by the PCA controller 360 includes a multivariate technique that models the correlation structure in the data by reducing the dimensionality of the data. A data matrix, X, of n samples (rows) and m variables (columns) can be decomposed as follows: X={circumflex over (X)}+{tilde over (X)}. (1) where the columns of X are typically normalized to zero mean and unit variance. The matrices {circumflex over (X)} and {tilde over (X)} are the modeled and un-modeled residual components of the X matrix, respectively. The modeled and residual matrices can be written as: {circumflex over (X)}=TPT and {tilde over (X)}={tilde over (T)}{tilde over (P)}T, (2) where TεRn×1 and PεRm×1 are the score and loading matrices, respectively, and 1 is the number of principal components retained in the model. It follows that {tilde over (T)}εRn×(m−1) and {tilde over (P)}εRm×(m−1) are the residual score and loading matrices, respectively. The loading matrices, P and {tilde over (P)}, are determined from the eigenvectors of the correlation matrix, R, which can be approximated by: R ≈ 1 n - 1 ⁢ X T ⁢ X . ( 3 ) The first eigenvectors of R (corresponding to the largest eigenvalues) are the loadings, P, and the eigenvectors corresponding to the remaining m−1 eigenvalues are the residual loadings, {tilde over (P)}. The number of principal components (PCs) retained in the model is an important factor in fault detection with PCA. If too few PCs are retained, the model will not capture all of the information in the data, and a poor representation of the process will result. On the other hand, if too many PCs are chosen, then the model will be over parameterized and will include noise. The variance of reconstruction error (VRE) criterion for selecting the appropriate number of PCs is based on omitting parameters and using the model to reconstruct the missing data. The number of PCs, which results in the best data reconstruction, is considered the optimal number of PCs to be used in the model. Other, well-established methods for selecting the number of PCs include the average eigenvalues method, cross validation, etc. When performing PCA using weighted parameters, instead of having parameters in the columns of X being normalized to zero mean and unit variance, the parameters in the columns are divided by a number other than the variance of each column. In other words, parameters in the columns are divided by a number that is not the standard deviation. This provides a weighted parameter in the columns of X. For example, if pressure parameter is closely correlated to a fault, the column of X that defines the pressure may be divided by a value that is not the standard deviation, thereby increasing the sensitivity of the fault analysis with respect to the pressure parameter. On the other hand, if pressure parameter is determined to be a factor that is least likely of being associated with a fault, the column of X that defines the pressure may be divided by yet another value that is not the standard deviation, thereby decreasing the sensitivity of the fault analysis with respect to the pressure parameter. One of the calculations that are performed when performing a PCA algorithm is scaling of the data that is fed into the PCA model 365. For example, as illustrated in FIG. 4, a matrix X described above may contain data in a first column relating to pressure data, a second column relating to humidity data, a third column relating to temperature data, a fourth column relating to gas flow rate data, an so on, up to an mth column relating to another parameter. Each row relating to the columns may indicate data relating to the condition of a semiconductor wafer 105 in a lot; in an alternative embodiment, the rows may define various lots of semiconductor wafers 105. The rows may comprise data relating to a first semiconductor wafer 105, a second semiconductor wafer 105, a third semiconductor wafer 105, through an nth semiconductor wafer 105. The PCA model 365 may scale the parameters indicated in FIG. 4 to provide greater or lesser weight attached to any particular parameter in the column of the matrix, X. Different weights may be attached to different parameters based upon a particular type of process being performed by the processing tool 310. For example, the pressure parameter may be assigned a different weighting for PCA analysis for a deposition process as compared to the weighting assigned to the pressure parameter during a photolithograph process. However, during the photolithography process, the temperature data may be assigned a higher or lower weighting as compared to the deposition process. One method of scaling may include scaling each column to a non-unit variance. To accomplish this, instead of dividing by the variance of each column, a division by another number based on the particular weighting assigned to the parameter may be performed. For example, if temperature is considered a more important parameter, the temperature parameter in the temperature data column (i.e., the 3rd column in the matrix, X) may be divided by a number different from the standard deviation for that column. In order to cause the fault detection algorithm to be more sensitive to variability to a given parameter, a column in the matrix X may be divided by a number that is smaller than the variance calculated from that particular column. In order to cause the fault detection algorithm to be less sensitive to variability to a given parameter, a column in the matrix X may be divided by a number that is larger than the variance calculated from that particular column. Throughout the rest of the PCA algorithms, small variations in the temperature may be more likely to be recognized as a fault as compared to the variation of a parameter that was not weighted in the same fashion. In one embodiment, the PCA controller 360 is capable of prompting the dynamic PCA weighting module 370 to adjust the weighting of the parameters in the columns of FIG. 4, in a manual and/or in a dynamic, automated fashion. Turning now to FIG. 5, a more detailed block diagram depiction of the tool state data sensor unit 320 illustrated in FIG. 3 is provided. The tool state data sensor unit 320 may comprise any of a variety of different types of sensors, e.g., a pressure sensor 510, a temperature sensor 520, a humidity sensor 530, a gas flow rate sensor 540, and an electrical sensor 550, etc. In an alternative embodiment, the tool state data sensor unit 320 may comprise in situ sensors that are integrated into the processing tool 310. The pressure sensor 10 is capable of detecting the pressure within the processing tool 310. The temperature sensor 520 is capable of sensing the temperature in various locations of the processing tool 310. The humidity sensor 530 is capable of detecting the relative humidity at various portions in the processing tool 310, or of the surrounding ambient conditions. The gas flow rate sensor 540 may comprise a plurality of flow-rate sensors that are capable of detecting the flow-rate of a plurality of process gases utilized during processing of semiconductor wafers 105. For example, the gas flow rate sensor 540 may comprise sensors that can detect the flow rate of gases such as NH3, SiH4, N2, N2O, and/or other process gases. In one embodiment, the electrical sensor 550 is capable of detecting a plurality of electrical parameters, such as the current provided to a lamp used in a photolithography process. The tool state data sensor unit 320 may also comprise other sensors capable of detecting a variety of manufacturing variables known to those skilled in the art having benefit of the present disclosure. The tool state data sensor unit 320 may also comprise a tool state sensor data interface 560. The tool state sensor data interface 560 may receive sensor data from the various sensors that are contained within, or associated with, the processing tool 310, and/or the tool state data sensor unit 320 and transmit the data to the process controller 305. Turning now to FIG. 6, a more detailed block diagram representation of the dynamic PCA weighting module 370 in accordance with an illustrative embodiment of the present invention is provided. As indicated in FIG. 6, the dynamic PCA weighting module 370 may comprise a fault data analysis module 610, a fault data input interface 620, and a PCA weight calculation module 630. Based upon the faults compared to various algorithms and fault data processed by the fault data analysis module 610, a determination is made as to whether a particular parameter that was considered abnormal by the fault detection unit 380 in conjunction with the PCA controller 360, is substantially associated with the fault or not. Based upon that determination, the PCA weight calculation module 630 may reduce or increase the weight associated with that particular parameter. This information may be sent to the PCA controller 360 and to the fault detection unit 380. Alternatively, an external data input on a line 625 may be provided to the dynamic PCA-weighting module 370 as a manual input to indicate whether a particular parameter that was flagged as abnormal, did indeed contributed considerably to a particular fault. The fault data input interface 620 is capable of receiving the external data input and is capable of providing the data to the PCA weight calculation module 630, which appropriately adjusts the weighting of the particular parameter. Therefore, the dynamic PCA weighting module 370 may determine data and/or receive data that may be used to adjust the weight attached to a particular parameter. This information may be used by the fault detection unit 380 and/or the PCA controller 360 to perform analysis relating to any abnormality (and/or faults) during the processing of semiconductor wafers 105. In other words, after the fault condition is identified, the PCA weight calculation module 630 receives information from the fault data analysis module 610 and/or the fault data input interface 620 as to whether the fault was an actual fault and/or whether any parameters associated with the abnormality or the fault contributed significantly to that fault or abnormality. Based upon this data, the PCA weight calculation module 630 may decrease or increase the weighting of the parameter or, alternatively, leave the weighting of the parameter unchanged. Turning now to FIG. 7, a flow chart representation of the methods associated with embodiments of the present invention is illustrated. The system 300 may process one or more semiconductor wafers 105 (block 710). Based upon processing of the semiconductor wafers 105, the system 300 may acquire metrology data relating to the process performed on the semiconductor wafers 105 (block 720). Additionally, the system 300 may also acquire tool state sensor data relating to the process performed by the processing tool 310 (block 730). Based upon the metrology data and/or the tool state sensor data, the system 300 may perform fault detection relating to the processing of semiconductor wafers 105 (block 740). The system 300 may also execute a PCA algorithm in conjunction with the fault detection to detect any abnormalities or faults associated with the processing of semiconductor wafers 105 (block 750). The system 300 may also perform a dynamic PCA-weighting process to adjust the weighting of any particular parameter(s) that may be used by the fault detection and the PCA models to analyze the operation of the processing tool 310 (block 760). A more detailed illustration and description of the dynamic PCA-weighting process is provided in FIG. 8 and accompanying description below. Based upon the dynamic PCA-weighting process, various adjustments to the weighting of particular parameters may be made to more accurately assess any faults associated with processing of semiconductor wafers 105. Upon dynamically adjusting the weighting of the PCA parameters, the system 300 may perform subsequent processes on the semiconductor wafers 105 based upon the newly adjusted parameter-weighting for more accurately assessing the faults or abnormalities associated with the processing of semiconductor wafers 105 (block 770). Turning now to FIG. 8, a more detailed flow chart illustration of the dynamic PCA-weighting process is provided. The system 300 analyzes the fault data resulting from the fault data analysis and/or the PCA, in order to determine whether any particular parameters associated with any faults or abnormalities detected that are associated with the processing of semiconductor wafers 105 is actually a significant fault (block 810). In other words, the system 300 determines whether the abnormality or fault indication relates to an actual fault. The system 300 also analyzes the fault data to determine whether any parameter that was flagged did indeed provide a significant contribution to the fault or abnormality. In one embodiment, the significant contribution may relate to a determination of the importance of the parameter, as it relates to the fault indication. In another embodiment, the significant contribution may relate to a causation relation between the parameter and the fault indication. An example relating to the significant contribution to a fault or abnormality is provided below. For example, a process model may have a pressure parameter (P), a temperature parameter (T), a RF power parameter (R), and a gas flow rate parameter (G). Initially, the weighting for each of these parameters (i.e., P, T, R, G) may equal to 1, e.g., a parameter matrix may provide that [P, T, R, G]=[1, 1, 1, 1]. After a wafer lot is processed, the fault/abnormality contribution plot signature may change to [P, T, R, G]=[0, 0.2, 3, −2.5]. If the system 300 or a user determines that the fault is an actual fault, the various contributions relating to each parameter may be examined. In the present example, the system 300 may determine that the parameter R and G contributed most to the fault or abnormality, since R and G had the highest magnitude. Accordingly, the system 300 may modify the parameter weighting according to an algorithm for those parameters that impacted or significantly contributed to the fault. Therefore, the system 300 may then provide a new parameter weighting value that may be represented by the matrix [P, T, R, G]=[1, 1, 1.1, 1.1]. The system 300 may then process another wafer lot, and a fault may be detected. A user or the system 300 may then determine that the fault is not an actual fault. Based upon this determination, the system 300 may examine the contribution plot and make a determination that the parameters P and R contributed significantly to the “false” fault. In response, the system 300 may modify the weighting according to an algorithm for those factors. For example, the new weighting factors may be represented by the matrix [P, T, R, G]=[0.9, 1, 1, 1.1]. The algorithm to determine which parameters to adjust based upon contribution plot values and how to adjust the weightings for those parameters may be varied by different implementation (e.g., always add or subtract 0.1, multiply by 1.1 or 0.9, always modify the top two parameters, always modify the weightings for any parameters with a value greater that 1.5, etc.). The above examples were provided for exemplary illustrative purposes, other parameters may be weighted and/or adjusted differently and still remain within the scope and spirit of the present invention. The system 300 alternatively, or in conjunction to the step described in block 810, may receive an external input relating to the causes or non-causes of the faults (block 820). In other words, the system 300 may receive an indication from an external source, which could be an external computer, a controller, or a manual input from an operator, indicating whether the detected fault is an actual fault and/or whether any parameters associated with the fault or abnormality provides significant contribution to the fault or abnormality. Based upon this data, the system 300 then determines whether to increase, decrease, or leave unchanged the weighting relating to the factors or parameters relating to the faults (block 830). If the system 300 determines, or is informed, that a particular parameter did indeed provide a significant contribution to the detected fault, then weighting of that particular parameter (e.g., the pressure data) may be increased to make the system 300 more sensitive to any variations in that parameter. Similarly, if the system 300 indicates that no significant contribution to the fault was provided by a particular parameter, the weighting of that parameter to the fault detection or PCA may be reduced. In other cases, the system 300 may determine that the weighting of a particular parameter remain unchanged. Therefore, the weighting of any parameter associated with the processing of semiconductor wafers 105, including the parameters illustrated in the exemplary matrix provided in FIG. 4, may be modified. Based upon the determination whether to increase, decrease, or leave unchanged the weighting of the factors relating to the faults, the system 300 may dynamically add weight to the factors that caused the fault (block 840), reduce the weight to the factors that caused the fault (block 850), or leave the weighting of the factors unchanged (block 860). Based upon the dynamic adjustment of the weighting, the new weighted factors/parameters are provided for performing additional fault detection and/or PCA (block 870). Therefore, the weighting of the parameters may be dynamically adjusted on a continuous basis based upon various operations and resulting fault detection analysis and/or PCA performed on the data relating to the processing of semiconductor wafers 105. The newly weighted factors may cause a reduction of false fault indications and increase the sensitivity of parameters that may actually cause significant faults or abnormalities. Hence, a more accurate assessment of the condition of the processing tools 310 performing the processes on the semiconductor wafers 105 may be performed, resulting in a more efficient operation of processing tools 310 and reduced down times in the manufacturing areas. Therefore, utilizing embodiments of the present invention, a more effective and accurate process adjustment may be performed to achieve more accurate semiconductor wafer 105 characteristics and improved yields. The principals taught by the present invention can be implemented in an Advanced Process Control (APC) Framework, such as a Catalyst system formerly offered by KLA Tencor, Inc. The Catalyst system uses Semiconductor Equipment and Materials International (SEMI) Computer Integrated Manufacturing (CIM) Framework compliant system technologies, and is based on the Advanced Process Control (APC) Framework. CIM (SEMI E81-0699—Provisional Specification for CIM Framework Domain Architecture) and APC (SEMI E93-0999—Provisional Specification for CIM Framework Advanced Process Control Component) specifications are publicly available from SEMI. The APC framework is a preferred platform from which to implement the control strategy taught by the present invention. In some embodiments, the APC framework can be a factory-wide software system; therefore, the control strategies taught by the present invention can be applied to virtually any of the semiconductor manufacturing tools on the factory floor. The APC framework also allows for remote access and monitoring of the process performance. Furthermore, by utilizing the APC framework, data storage can be more convenient, more flexible, and less expensive than local drives. The APC framework allows for more sophisticated types of control because it provides a significant amount of flexibility in writing the necessary software code. Deployment of the control strategy taught by the present invention onto the APC framework could require a number of software components. In addition to components within the APC framework, a computer script is written for each of the semiconductor manufacturing tools involved in the control system. When a semiconductor manufacturing tool in the control system is started in the semiconductor manufacturing fab, it generally calls upon a script to initiate the action that is required by the process controller, such as the overlay controller. The control methods are generally defined and performed in these scripts. The development of these scripts can comprise a significant portion of the development of a control system. The principals taught by the present invention can be implemented into other types of manufacturing frameworks. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates generally to semiconductor manufacturing, and, more particularly, to a method, system, and apparatus for performing a process to improve fault detection reliability through feedback. 2. Description of the Related Art The technology explosion in the manufacturing industry has resulted in many new and innovative manufacturing processes. Today's manufacturing processes, particularly semiconductor manufacturing processes, call for a large number of important steps. These process steps are usually vital, and therefore, require a number of inputs that are generally fine-tuned to maintain proper manufacturing control. The manufacture of semiconductor devices requires a number of discrete process steps to create a packaged semiconductor device from raw semiconductor material. The various processes, from the initial growth of the semiconductor material, the slicing of the semiconductor crystal into individual wafers, the fabrication stages (etching, doping, ion implanting, or the like), to the packaging and final testing of the completed device, are so different from one another and specialized that the processes may be performed in different manufacturing locations that contain different control schemes. Generally, a set of processing steps is performed across a group of semiconductor wafers, sometimes referred to as a lot. For example, a process layer that may be composed of a variety of different materials may be formed across a semiconductor wafer. Thereafter, a patterned layer of photoresist may be formed across the process layer using known photolithography techniques. Typically, an etch process is then performed across the process layer using the patterned layer of photoresist as a mask. This etching process results in the formation of various features or objects in the process layer. Such features may be used as, for example, a gate electrode structure for transistors. Many times, trench isolation structures are also formed in various regions of the semiconductor wafer to create electrically isolated areas across a semiconductor wafer. One example of an isolation structure that can be used is a shallow trench isolation (STI) structure. The manufacturing tools within a semiconductor manufacturing facility typically communicate with a manufacturing framework or a network of processing modules. Each manufacturing tool is generally connected to an equipment interface. The equipment interface is connected to a machine interface to which a manufacturing network is connected, thereby facilitating communications between the manufacturing tool and the manufacturing framework. The machine interface can generally be part of an advanced process control (APC) system. The APC system initiates a control script, which can be a software program that automatically retrieves the data needed to execute a manufacturing process. FIG. 1 illustrates a typical semiconductor wafer 105 . The semiconductor wafer 105 typically includes a plurality of individual semiconductor die 103 arranged in a grid 150 . Using known photolithography processes and equipment, a patterned layer of photoresist may be formed across one or more process layers that are to be patterned. As part of the photolithography process, an exposure process is typically performed by a stepper on approximately one to four die 103 locations at a time, depending on the specific photomask employed. The patterned photoresist layer can be used as a mask during etching processes, wet or dry, performed on the underlying layer or layers of material, e.g., a layer of polysilicon, metal, or insulating material, to transfer the desired pattern to the underlying layer. The patterned layer of photoresist is comprised of a plurality of features, e.g., line-type features or opening-type features that are to be replicated in an underlying process layer. When processing semiconductor wafers, various measurements relating to the process results on the semiconductor wafers, as well as conditions of the processing tool in which the wafers are processed, are acquired and analyzed. The analysis is then used to modify subsequent processes. Turning now to FIG. 2 , a flow chart depiction of a state-of-the-art process flow is illustrated. A processing system may process various semiconductor wafers 105 in a lot of wafers (block 210 ). Upon processing of the semiconductor wafers 105 , the processing system may acquire metrology data relating to the processing of the semiconductor wafers 105 from selected wafers in the lot (block 220 ). Additionally, the processing system may acquire tool state sensor data from the processing tool used to process the wafers (block 230 ). Tool state sensor data may include various tool state parameters such as pressure data, humidity data, temperature data, and the like. Based upon the metrology data and the tool state data, the processing system may perform fault detection to acquire data relating to faults associated with the processing of the semiconductor wafers 105 (block 240 ). Upon detecting various faults associated with processing of the semiconductor wafers 105 , the processing system may perform a principal component analysis (“PCA”) relating to the faults (block 250 ). Principal component analysis (PCA) is a multivariate technique that models the correlation structure in the data by reducing the dimensionality of the data. The correlation may take on various forms, such as correlation of problems with the processed wafers with problems in the processing tool. The PCA may provide an indication of the types of corrections that may be useful in processing subsequent semiconductor wafers 105 . Upon performing the PCA, the processing system may perform subsequent processes upon the semiconductor wafers 105 with various adjustments being based upon the PCA (block 260 ). The PCA performs an analysis to determine whether there are abnormal conditions that may exist with respect to a tool. Upon detecting any abnormal conditions, various signals may be issued, indicating to the operators that various faults have been detected. One issue associated with state-of-the-art methods includes the fact that a determination of what constitutes an abnormal correlation may be based upon data used to build a fault detection model or a PCA model used to perform the fault detection analysis and the PCA. Generally, the abnormal conditions detected by performing the PCA may be statistically different from the data that may have been used to build the fault detection or the PCA model. The term “statistically different” may mean a variety of statistical differences, such as differences based upon population mean, variance, etc. These abnormal conditions may not be an accurate reflection of the true manner of operation in which the tool is performing. For example, if during the development of the fault detection model or the PCA model, the values for a pressure sensor were held within small constraints, larger variations in the pressure during the actual processing would generally be identified as a significant fault. The problem with this methodology is that if the larger variation of the pressure did not result in any negative impact to the material being processed, then the fault indication may be false. In other words, if the larger variation was still small enough that no significant impact to the process was present, a false-positive fault indication occurs. This false-positive introduces inefficiencies and idle times in a manufacturing setting. More recently, various efforts have been made to incorporate weighting schemes into PCA. The weighting schemes may provide a significant difference in weight attached to various parameters, such as the pressure. However, the problems associated with the state-of-the-art weighting schemes include the fact that prior knowledge is required to assign a predetermined weight to a particular parameter. For example, prior knowledge may indicate that a smaller amount of weight should be assigned to the pressure parameter during the PCA analysis relating to a particular process. This would reduce false indications due to variations in pressure that may have been harmless. However, this methodology can be an inefficient, cumbersome task and, at best, may involve guess work. Furthermore, it may not be readily clear if adjusting the weight to particular parameters would result in improved or worsened PCA relating to a particular process. The present invention is directed to overcoming, or at least reducing, the effects of, one or more of the problems set forth above.
<SOH> SUMMARY OF THE INVENTION <EOH>In one aspect of the present invention, various methods are disclosed for employing a dynamic weighting technique in connection with fault detection analysis. In an illustrative embodiment, the method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece. The method further comprises determining a relationship of a parameter relating to the fault detection analysis to a detected fault and adjusting a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In another aspect of the present invention, a method is provided for performing a dynamic weighting technique for performing fault detection. The method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece based upon a tool state parameter being input into a fault detection model associated with the fault detection analysis. The method further comprises determining whether said parameter is associated with a detected fault as a result of performing the fault detection analysis and modifying a weighting of the parameter in the fault detection model based upon a determination that the parameter is associated with the detected fault. In yet another aspect of the present invention, a method is provided for performing a dynamic weighting technique for performing fault detection. The method comprises processing a workpiece and performing a fault detection analysis relating to the processing of the workpiece based upon a tool state parameter being input into a fault detection model associated with the fault detection analysis. The method further comprises performing a principal component analysis (PCA) in conjunction with the fault detection analysis and determining whether the parameter is associated with a detected fault as a result of performing the fault detection analysis and the PCA. The method further comprises modifying a weighting of the parameter in the fault detection model based upon a determination that the parameter is associated with the detected fault. In another aspect of the present invention, an apparatus is provided for performing a dynamic weighting technique for performing fault detection. The apparatus comprises a controller that performs a fault detection analysis relating to a processing of a workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In another aspect of the present invention, a system is provided for performing a dynamic weighting technique for performing fault detection. The system comprises a processing tool communicatively coupled to a controller, a metrology tool, and a tool state data sensor unit. The processing tool performs a process upon a workpiece. The metrology tool acquires metrology data relating to the process performed on the workpiece to provide metrology data. The tool state data sensor unit acquires tool state data. The controller performs a fault detection analysis relating to the processing of the workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault. In yet another aspect of the present invention, a computer readable program storage device encoded with instructions is provided for performing a dynamic weighting technique for performing fault detection. The instructions perform a method comprising a processing tool communicatively coupled to a controller, a metrology tool, and a tool state data sensor unit. The processing tool performs a process upon a workpiece. The metrology tool acquires metrology data relating to the process performed on the workpiece to provide metrology data. The tool state data sensor unit acquires tool state data. The controller performs a fault detection analysis relating to the processing of the workpiece to determine a relationship between a parameter relating to the fault detection analysis and a detected fault. The controller also adjusts a weighting associated with the parameter based upon the relationship of the parameter to the detected fault.
20041102
20140318
20060504
75345.0
G21C1700
10
COSIMANO, EDWARD R
ADJUSTING WEIGHTING OF A PARAMETER RELATING TO FAULT DETECTION BASED ON A DETECTED FAULT
UNDISCOUNTED
0
ACCEPTED
G21C
2,004
10,979,338
ACCEPTED
Apparatus for storing and dispensing liquids
An apparatus for storing and dispensing liquids which is made up of a rectangular container having a collapsible inner shell and a rigid outer shell, a fill neck mounted on the collapsible inner shell, the fill neck being designed to extend through an opening in the outer shell and being rigidly secured and supported to the outer shell. The fill neck includes a spout which may form a primary quick release connection with the fill neck or a secondary non-releasable connection with the fill neck to allow for single use.
1. A liquid storage device comprising: an outer housing formed from a blank sheet having fold lines for folding said sheet into a rectangular box having opposite sides, top, bottom and opposite end panels; means for securing said end panels to at least one of said side, top and bottom panels to define a rigid structure; a collapsible container enclosed in said housing having a fill neck extending through an opening in one of said end panels; a spout mounted on a passage in said fill neck, said spout including a filler tube and a releasable cap at one end thereof; and fill neck retainer means for securing said fill neck to said one of said end panels. 2. The liquid storage device according to claim 1 wherein said filler tube is formed from a clear plastic material. 3. The liquid storage device according to claim 1 wherein said spout includes at least one external beveled member complementary to at least one internal stepped member to said fill neck. 4. The liquid storage device according to claim 3 wherein said spout forms a primary quick release connection with said fill neck. 5. The liquid storage device according to claim 1 wherein said spout includes at least one external stepped member complementary to at least one internal stepped member of said fill neck. 6. The liquid storage device according to claim 5 wherein said spout forms a secondary non-releasable connection with said fill neck. 7. The liquid storage device according to claim 1 wherein said fill neck includes at least one external stepped member and at least one beveled edge member. 8. The liquid storage device according to claim 7 wherein an external cap has a diameter sized to fit around said fill neck corresponding with said external stepped members and said external beveled edge member. 9. The liquid storage device according to claim 1 wherein said retainer means includes a circular flap member with a hinge and a diametrically opposed circular edge. 10. A container for transporting a flammable liquid, comprising: a rectangular shell having an inclined upper front panel; said shell enclosing a collapsible member having a single opening sealed around a fill neck; a spout mounted on a passage in said fill neck; and a fill neck support member in the form of a circular flap having an inner circular edge and a hinge between said flap and said upper front panel. 11. The container according to claim 10 wherein said fill neck is capable of forming a primary quick release connection with said spout member. 12. The container according to claim 10 wherein said fill neck is capable of forming a secondary non-releasable connection with said spout member. 13. The container according to claim 10 wherein said spout includes an external beveled edge and an axially spaced stepped member engageable with a stepped portion on said fill neck. 14. The container according to claim 10 wherein said spout includes a base and a clear tube, said base including ridge members forming a secure connection between said base and said tube. 15. A rectangular flammable liquid container formed from a blank sheet of material, comprising: a top panel having at least one perforated handle member; opposite sides, a bottom and opposite end panels joined together to define a rectangular enclosure including securing members at said end panels; a collapsible enclosure member in said container having a fill neck extending outwardly from said collapsible enclosure member; and fill neck support means disposed on one of said opposite end panels whereby to secure said fill neck to said container. 16. The liquid container according to claim 15 wherein said fill neck support means includes a flap in one of said end panels being pivotal between a released position extending away from said one end panel and a locking position in the plane of said one end panel. 17. The liquid container according to claim 15 wherein said collapsible member includes non-flammable components.
BACKGROUND AND FIELD OF INVENTION This invention relates to an apparatus for storing liquid; and more particularly relates to a container for storing, transporting and dispensing a liquid, specifically a flammable liquid. Storage containers for liquids are well-known in the prior art. There are numerous variations on the formation of the container as well as placement of the dispensing spout. These variations are shown in U.S. Pat. Nos. 3,233,817, 5,176,313 and 6,290,124. There is an unmet need for a container that is capable of storing, transporting and dispensing liquid that is easily assembled, is of sturdy construction and is also designed for a single use. This is of critical importance when transporting and dispensing flammable liquids. Many States require that portable fuel carriers be single use containers, to discourage users from storing flammable liquids in containers after a first use. In particular, it is proposed to utilize a novel fill neck support as well as a double locking spout to accomplish these results. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide for a novel and improved liquid dispenser which is easily stored and assembled for later use. It is another object of the present invention to provide for a novel and improved liquid dispenser that is designed for a single use and is then disposable. It is another object of the present invention to provide for a novel and improved liquid container that is capable of storing flammable liquid. It is a further object of the present invention to provide for a novel and improved liquid storage container that is easy to transport when filled with a liquid. It is a final object of the present invention to provide for a novel and improved liquid storage container that is of sturdy construction utilizing a lesser amount of plastic than other flammable liquid containers. In accordance with the present invention, a container has been devised for use in storing liquid having an outer housing formed from a blank sheet having fold lines for folding the sheet into a rectangular box with opposite sides, top, bottom and opposite end panels, means for securing the end panels to at least one of the side top and bottom panels to define a rigid structure, a collapsible container enclosed in the housing having a fill neck extending through an opening in one of the end panels, a spout mounted on a passage in the fill neck, the spout including a filler tube and a releasable cap at one end and fill neck retainer means for securing the fill neck to one of the end panels. The spout forms a primary quick release connection with the fill neck and also forms a secondary non-releasable connection with the fill neck. The retainer means is in the form of a circular flap with a hinge and a diametrically opposed circular edge. The above and other objects, advantages and features of the present invention will become more readily appreciated and understood from a consideration of the following detailed description of preferred and modified forms of the present invention when taken together with the accompanying drawings in which: BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the container according to the present invention; FIG. 2 is plan view of a blank used for making the container of the present invention; FIG. 3 is a top plan view of the container of the present invention; FIG. 4 shows a perspective side view of a fill neck and spout according to the present invention; FIG. 5 shows a cross-sectional view of the fill neck and spout through lines 5-5 of FIG. 4; FIG. 6 is a cutaway view of the shell including a collapsible container enclosed within the shell according to the present invention; FIG. 7 is a side view of the present invention; FIG. 8 is a bottom plan view of the present invention; and FIG. 9 is a side perspective view of the present invention without a fill neck. DETAILED DESCRIPTION OF THE INVENTION Referring in more detail to FIGS. 1 to 9, there is illustrated a form of liquid container 11 which is made up of an outer housing 13 formed from a blank sheet 15 as shown in FIG. 2 having primary fold lines 17 for folding the sheet into a rectangular box having opposite sides 18, 19, a top panel 21, a bottom panel 23, front panel 25 and rear panel 27. The side panel 19 is secured to the top panel 21 with a tab 29. The front panel 25 and the rear panel 27 include securing members 31 and 31′ which are connected to corresponding lower tabs 33, 33′ on the bottom panel 23, forming a rectangular box. The front panel 25 includes an upper sloped or gabled member 9. The side panels 18 and 19 also include irregular shaped tabs 34, 34′, 35 and 35′ having secondary fold lines 38 which allow for folding of the irregular tabs 34, 34′, 35 and 35′ for formation of the rectangular-shaped box. The top panel 21 and the front and rear panels 25 and 27 have tertiary fold lines 26 for folding the panels 25 and 27 into the rectangular box. The top panel 21 also contains a handle member 22 including a perforated rectangular-shaped tab 24 with a living hinge 8, shown in FIG. 3, which may be pushed inwardly and will allow for partial passage of a user's fingers in order to grip and transport the liquid container 11. This interior handle 22 provides a means for carrying the liquid container 11 while avoiding the problems associated with external handles, such as, tearing of the handle or the necessity to attach an external handle. The rear panel 27 contains a circular finger insert 28 which also aids in transporting and dispensing of the liquid. Due to the design of the container 11, a user may utilize one hand to grip the handle 22 and the circular finger insert 28. Alternatively, a user may use one hand to insert a finger in the handle 22 and the other hand to grip the circular finger insert 28. This results in a stable and easily transportable configuration which also aids in the accurate dispensing of a liquid to a target, preventing spillage. A collapsible container 39 as shown in FIG. 6 is enclosed within the outer housing 13 and preferably includes a double wall configuration with an inner bag 40 preferably comprising multipolymer laminate and an outer liner 42 secured to the inner bag and made up of nylon laminate. The double wall is shown in FIG. 5. The laminated material inner bag is preferably approximately 4 mm. thick and the outer liner is preferably 2 mm. of laminate. The double bag configuration prevents permeation of flammable liquids or gases into the external atmosphere. Other materials may also be used, such as, a single wall structure made up only of multipolymer laminate. The outer housing 13 is preferably 200 lb. single wall corrugated fiberboard material to give it sufficient strength and rigidity to prevent collapse of the housing 13. A fill neck 41 is shown in FIGS. 4, 5 and 6. The fill neck 41 is circular in shape with an opening 43. The fill neck 41 is attached to the collapsible shell 39 and is designed to extend through an opening 49 in the front panel 25 of the outer housing 13. This is shown in FIGS. 3 and 9. The outer housing 13 includes a fill neck retainer 51 which releasably connects the fill neck 41 to the front panel 25. The fill neck retainer 51 is defined by a generally circular flap which is formed out of the thickness of the front panel 25 by perforations 20 which extend between a living hinge member 30 and a diametrically opposed circular edge 32 which partially surrounds the opening 49. In this way, the flap may be manually pushed inwardly about the hinge 30 to allow for passage of the fill neck 41 through the opening 49 without any resistance from the flap; however, once the fill neck 41 is moved up into an upper portion 48 of the opening 49, the flap is returned to its original position in the plane of the panel 25 so that the flap is flush with the panel 25. The neck retainer 51 as defined by the flap prevents lateral shifting of the fill neck, prevents the fill neck 41 from slipping back inside the outer housing 13 and also avoids the use of additional plastic supports to help retain the fill neck 41 in place. Further, since the flap is integral with the front panel 25, there are fewer components required for assembling the container 11. Another important feature of the invention is the connection between a spout 53 and the fill neck 41. The spout 53 may be mounted on the opening or passage 43 of the fill neck 41 as demonstrated in FIGS. 4 and 5. The fill neck 41 has an internal stepped member 45 and an external beveled edge 46 and external stepped members as shown in FIGS. 5 and 6. The spout 53 has a first external beveled edge 55 and second external stepped member 57 which allow for different degrees of locking of the spout 53 into the fill neck 41. When the spout 53 is placed inside the fill neck 41 at a first position, shown in FIG. 4, the beveled edge 55 is free to slide past the internal stepped member 45 of the fill neck 41; and the beveled edge 55 can also be released from the fill neck 41 by sliding the beveled edge 55 outwardly past the shoulder or stepped member 45 so as to result in a releasable connection between the spout 53 and the fill neck 41. Typically, the releasable connection is used when storing and transporting a non-flammable liquid and the container is to be reused. When downward pressure is placed on the spout 53, the stepped member 57 of the spout 53 comes into contact with and is locked behind the internal fill neck stepped portion 45 resulting in a non-releasable connection between the spout 53 and the fill neck 41. As a result of the non-releasable connection, once the spout 53 is placed in the second position, which is shown in FIG. 5, the spout 53 may not be removed. The liquid container then becomes a single use container which is important when using flammable liquids. The collapsible shell 39 may be filled with a flammable liquid, such as, gasoline, propane or the like and the spout 53 is connected with the fill neck 41 in the second position. This results in a non-releasable attachment between the fill neck 41 and the spout 53. This allows for accurate and safe dispensing of the flammable liquid into a target. Once the flammable liquid is dispensed from the collapsible shell 39, the spout 53 may not be removed and the container 11 must be disposed of. The spout 53 is formed from a low density polyethylene and has a filler tube 59 attached which is preferably made of a clear plastic material. Sic as tygon. This allows for unobstructed viewing of the liquid passing through the tube 59 and provides a means for viewing if a target fuel tank or target dispensing member is full. The tube 59 is attached to the spout 53 with external beveled or ridged members 61, 61′ located on a protrusion 63 from the spout 53. A cap 65 on the end of the tube 59 as shown in FIG. 4 is made of low density polyethylene. The cap 65 is easily removed from the spout 53 to prevent spilling of the liquid from the container 11 during transporting. FIG. 5 demonstrates an alternate form of a spout 71 with a cover 53′ which includes the spout 53 as described previously, having side members 65 and 67 which are secured along their upper portions to a top member 69 of the cover 71. This forms an external spout cover 71 having internal stepped members which correspond to the external beveled edge 46 and the external stepped members 47 of the fill neck 41. The external spout cover 71 is permanently secured to the spout member 53 and allows for rotation of the spout 53 into a releasable connection with the fill neck 41 as previously described as well as the non-releasable connection with the fill neck 41. The invention is capable of forming a releasable and non-releasable connection with the fill neck 41 using the form of invention shown in FIG. 4 as well as forming a releasable and non-releasable connection with the fill neck 41 using the alternate form of invention, the spout cover 71, as shown in FIG. 5. In use, the blank sheet 15 is assembled as previously described forming a rectangular box. The collapsible container 39 is enclosed within the outer housing 13 and the fill neck 41 which is attached to the collapsible container 39 is advanced through the opening 49 in the front panel 25 of the housing 13. This is accomplished by adjusting the position of the flap of the fill neck retainer 51, either inwardly or outwardly, to allow for passage of the fill neck 41. The fill neck 41 is then moved up into the upper portion 48 of the opening 49 and is locked into place by replacing the fill neck retainer 51 into its original position. A user may then transport the container 11 by pushing the tab 24 inwardly which then forms a handle or gripping member 22. There is also the circular finger insert 28 which aids in transporting the carrier 11. The container 11 may then be filled with a liquid, flammable or non-flammable, and the spout 53 may be mounted on the opening 43 of the fill neck 41 and placed in a first position. If a user desires to dispense a flammable liquid from the spout 53, it is recommended that the spout 53 be placed in the second position by applying a downward force to the spout 53 causing the spout to be non-releasably secured within the fill neck 41. Once the liquid is dispensed, the container 11 may be disposed of. Alternatively, the cover 71 may be used which allows a user to apply a slight rotational force on the spout cover 71 to accomplish the releasable and non-releasable connection with the fill neck 41 as previously described. It is therefore to be understood that while preferred forms of invention are herein set forth and described, the above and other modifications may be made therein without departing from the spirit and scope of the invention as defined by the appended claims and reasonable equivalents thereof.
<SOH> BACKGROUND AND FIELD OF INVENTION <EOH>This invention relates to an apparatus for storing liquid; and more particularly relates to a container for storing, transporting and dispensing a liquid, specifically a flammable liquid. Storage containers for liquids are well-known in the prior art. There are numerous variations on the formation of the container as well as placement of the dispensing spout. These variations are shown in U.S. Pat. Nos. 3,233,817, 5,176,313 and 6,290,124. There is an unmet need for a container that is capable of storing, transporting and dispensing liquid that is easily assembled, is of sturdy construction and is also designed for a single use. This is of critical importance when transporting and dispensing flammable liquids. Many States require that portable fuel carriers be single use containers, to discourage users from storing flammable liquids in containers after a first use. In particular, it is proposed to utilize a novel fill neck support as well as a double locking spout to accomplish these results.
<SOH> SUMMARY OF THE INVENTION <EOH>It is therefore an object of the present invention to provide for a novel and improved liquid dispenser which is easily stored and assembled for later use. It is another object of the present invention to provide for a novel and improved liquid dispenser that is designed for a single use and is then disposable. It is another object of the present invention to provide for a novel and improved liquid container that is capable of storing flammable liquid. It is a further object of the present invention to provide for a novel and improved liquid storage container that is easy to transport when filled with a liquid. It is a final object of the present invention to provide for a novel and improved liquid storage container that is of sturdy construction utilizing a lesser amount of plastic than other flammable liquid containers. In accordance with the present invention, a container has been devised for use in storing liquid having an outer housing formed from a blank sheet having fold lines for folding the sheet into a rectangular box with opposite sides, top, bottom and opposite end panels, means for securing the end panels to at least one of the side top and bottom panels to define a rigid structure, a collapsible container enclosed in the housing having a fill neck extending through an opening in one of the end panels, a spout mounted on a passage in the fill neck, the spout including a filler tube and a releasable cap at one end and fill neck retainer means for securing the fill neck to one of the end panels. The spout forms a primary quick release connection with the fill neck and also forms a secondary non-releasable connection with the fill neck. The retainer means is in the form of a circular flap with a hinge and a diametrically opposed circular edge. The above and other objects, advantages and features of the present invention will become more readily appreciated and understood from a consideration of the following detailed description of preferred and modified forms of the present invention when taken together with the accompanying drawings in which:
20041102
20080318
20060504
76536.0
B65D3556
0
DERAKSHANI, PHILIPPE
APPARATUS FOR STORING AND DISPENSING LIQUIDS
SMALL
0
ACCEPTED
B65D
2,004
10,979,650
ACCEPTED
System, method and apparatus using addressable light sensors
In one embodiment, a light measurement is acquired from each of a plurality of illumination zones. Each light measurement is digitized, and values derived from the digitized light measurements are stored, proximate to where the light measurements are acquired. The values derived from the digitized light measurements are then transmitted to a central control system, and light emitted by the illumination zones is regulated based on determinations made by the central control system. In some cases, the light measurements may be acquired and transmitted via a light sensor package having: a light sensor providing an analog output proportional to received light; an analog-to-digital converter to convert the analog output of the light sensor to a digital value; a memory to store a value derived from the digital value; and an addressable communication interface to transmit the stored value to an external control system.
1. A method for regulating light emitted by a plurality of illumination zones, comprising: acquiring a light measurement from each illumination zone; digitizing each light measurement proximate to where the light measurement is acquired; storing values derived from the digitized light measurements, proximate to where the light measurements are acquired; transmitting the values derived from the digitized light measurements to a central control system; and in response to the transmitted values, regulating the light emitted by the illumination zones based on determinations made by the central control system. 2. A light sensor package, comprising: a light sensor providing an analog output proportional to received light; an analog-to-digital converter to convert the analog output of the light sensor to a digital value; a memory to store a value derived from the digital value; and an addressable communication interface to transmit the stored value to an external control system. 3. The light sensor package of claim 2, wherein the stored value is the digital value output from the analog-to-digital converter. 4. The light sensor package of claim 2, further comprising a local control system to manipulate the digital value and derive the value stored in the memory. 5. The light sensor package of claim 2, further comprising a local control system configured to operate the light sensor, analog-to-digital converter, memory, and addressable communication interface. 6. The light sensor package of claim 4, wherein the local control system is a clock circuit. 7. The light sensor package of claim 4, wherein the local control system is configured to i) trigger operation of the analog-to-digital converter, and ii) output the stored value via the addressable communication interface, in response to a single query received at the addressable communication interface. 8. The light sensor package of claim 4, wherein the local control system is configured to i) trigger operation of the analog-to-digital converter in response to a first query received at the addressable communication interface, and ii) output the stored value in response to a second query received at the addressable communication interface. 9. The light sensor package of claim 2, further comprising a filter, positioned over the light sensor to limit the bandwidth of light sensed by the light sensor. 10. The light sensor package of claim 2, further comprising: at least one additional light sensor, each light sensor being filtered to sense a different wavelength of light, and each light sensor providing an analog output proportional to received light; wherein the analog-to-digital converter converts the analog output of each light sensor to a digital value; wherein the memory stores each of the digital values; and wherein the addressable communication interface is configured to send each of the stored values to the external control system. 11. The light sensor package of claim 2, further comprising: at least one additional light sensor, each light sensor being filtered to sense a different wavelength of light, and each light sensor providing an analog output proportional to received light; wherein the analog-to-digital converter converts the analog output of each light sensor to a digital value; a local control system to manipulate the digital values and provide at least one value to store in the memory; and wherein the addressable communication interface is configured to send the at least one stored value to the external control system. 12. The light sensor package of claim 2, wherein the addressable communication interface is configured to i) receive a broadcast command from the external control system, and ii) return the stored value along with its address. 13. The light sensor package of claim 2, wherein the addressable communication interface comprises a wireless interface. 14. The light sensor package of claim 2, wherein the addressable communication interface comprises a wired bus interface. 15. Apparatus, comprising: a plurality of illumination zones, each illumination zone comprising: a light sensor providing an analog output proportional to received light; an analog-to-digital converter to convert the analog output of the light sensor to a digital value; a memory to store a value derived from the digital value; and an addressable communication interface to transmit the stored value; and a central control system to i) address the addressable communication interfaces of each illumination zone and obtain said stored values, and ii) determine how to regulate light emitted by the illumination zones. 16. The apparatus of claim 15, further comprising a plurality of light emitting diodes, distributed amongst the plurality of illumination zones. 17. The apparatus of claim 15, further comprising a wired bus, coupling the central control system to each of the addressable communication interfaces. 18. The apparatus of claim 15, wherein the addressable communication interfaces are wireless interfaces. 19. The apparatus of claim 15, wherein each illumination zone further comprises: at least one additional light sensor, each light sensor being filtered to sense a different wavelength of light, and each light sensor providing an analog output proportional to received light; wherein, in each illumination zone, the analog-to-digital converter converts the analog output of each light sensor to a digital value; the memory stores each of the digital values; and the addressable communication interface is configured to transmit each of the stored values. 20. The apparatus of claim 15, wherein each illumination zone further comprises: at least one additional light sensor, each light sensor being filtered to sense a different wavelength of light, and each light sensor providing an analog output proportional to received light; and a local control system; wherein, in each illumination zone, the analog-to-digital converter converts the analog output of each light sensor to a digital value; the local control system manipulates the digital values and provides at least one value to store in the memory; and the addressable communication interface is configured to send the at least one stored value to the central control system.
BACKGROUND Illumination devices comprised of solid-state devices (e.g., light emitting diodes (LEDs) or laser diodes) can provide a long operating life and a mercury-free lighting means. If comprised of devices emitting different colors of light (e.g., red (R), green (G) and blue (B) LEDs), such displays can also provide a wide color gamut and a selectable color point (e.g., a selectable white point). However, solid-state illumination devices can also present a few difficulties. For example, the optical characteristics of LEDs vary with temperature, drive current and aging. LED optical characteristics can also vary from batch to batch within the same fabrication process. In applications where uniform light intensity and color is desired (e.g., in liquid crystal display (LCD) backlighting), one or more light sensors are typically used to measure the intensity, and sometimes color, of light emitted by a light source. The sensor's measurement(s) are then used to regulate the drive signals of the light source's elements, to thereby regulate the intensity and/or color of light emitted by the light source. SUMMARY OF THE INVENTION In one embodiment, a method for regulating the light emitted by a plurality of illumination zones comprises acquiring a light measurement from each illumination zone. Each light measurement is then digitized, and values derived from the digitized light measurements are stored, proximate to where the light measurements are acquired. The values derived from the digitized light measurements are then transmitted to a central control system. In response to the transmitted values, the light emitted by the illumination zones is regulated based on determinations made by the central control system. In another embodiment, a light sensor package comprises a light sensor, an analog-to-digital converter, a memory, and an addressable communication interface. The light sensor provides an analog output proportional to received light. The analog-to-digital converter converts the analog output of the light sensor to a digital value. The memory is configured to store a value derived from the digital value. The addressable communication interface is configured to transmit the stored value to an external control system. In yet another embodiment, apparatus comprises a plurality of illumination zones and a central control system. Each illumination zone comprises: a light sensor providing an analog output proportional to received light; an analog-to-digital converter to convert the analog output of the light sensor to a digital value; a memory to store a value derived from the digital value; and an addressable communication interface to transmit the stored value. The central control system 1) addresses the addressable communication interfaces of each illumination zone and obtains the values stored by each illumination zone, and 2) determine how to regulate the light emitted by the illumination zones. Other embodiments are also disclosed. BRIEF DESCRIPTION OF THE DRAWINGS Illustrative and presently preferred embodiments of the invention are illustrated in the drawings, in which: FIG. 1 illustrates an exemplary method for regulating light emitted by a plurality of illumination zones; FIG. 2 illustrates a first exemplary light sensor package that could be used by the FIG. 1 method; FIG. 3 illustrates a second exemplary light sensor package that could be used by the FIG. 1 method; and FIG. 4 illustrates an exemplary way to couple an array of the light sensor packages shown in FIGS. 2 or 3 to a central control system. DETAILED DESCRIPTION OF AN EMBODIMENT FIG. 1 illustrates an exemplary method 100 for regulating the light emitted by a plurality of illumination zones (such as illumination zones 402-412 shown in FIG. 4). In accordance with the method 100, a light measurement is acquired 102 from each illumination zone 402-412. Each light measurement is then digitized 104, and values derived from the digitized light measurements are stored 106, proximate to where the light measurements are acquired. Values derived from the digitized light measurements are then transmitted 108 to a central control system 414, and light emitted by the illumination zones 402-412 is regulated 110 based on determinations made by the central control system 414. FIG. 2 illustrates a first exemplary light sensor package 200 that can be used by the method 100. By way of example, the light sensor package 200 can take the form of an integrated circuit (IC) package. The package 200 comprises a light sensor 202 (e.g., a photodiode or phototransistor) that provides an analog output proportional to received light (λ). In some cases, the light sensor 202 may sample a broad spectrum of light (e.g., most or all visible light). In other cases, an optional filter 204 may be positioned over the light sensor 202 to limit the bandwidth of light sensed by the light sensor 202 (e.g., the filter 204 may only allow one or more wavelengths of red light to pass). The filter 204 may be variously implemented by, for example, painting it on the light sensor 202 or attaching it to the package 200. The package 200 further comprises an analog-to-digital converter 206 that receives the output of the sensor 202 and converts it to a digital value 208. In one embodiment, this digital value 208 is then stored in a memory 210, which in some cases may take the form of an addressable register. In an alternate embodiment, the digital value 208 is manipulated by an optional local control system 212, and one or more outputs of the local control system 212 are stored in the memory 210 (denoted by the dashed path in FIG. 2). By way of example, the manipulations of the digital value 208 performed by the control system 212 may include averaging the digital value 208 with other values, trimming an offset (e.g., an ambient light offset) from the digital value 208, or increasing the gain of the digital value 208. In the claims, the values stored in memory 210 under both of these embodiments are referred to as “values derived from the digital value 208”. The package 200 also comprises an addressable communication interface 214 for transmitting the value (or values) stored in memory 210 to an external control system 414. In one embodiment, the addressable communication interface 214 may comprise a wired bus interface that may be physically connected to a bus 416. As defined herein, a “wired bus” includes both 1) a bus comprised of wire strands, and 2) a bus comprised of conductor traces on a printed circuit board (PCB). In another embodiment, the addressable communication may comprise a wireless interface. In addition to (or instead of) manipulating the digital value 208, the local control system 212 may be configured to operate one or more of the light sensor 202, analog-to-digital converter 206, memory 210, or addressable communication interface 214. For example, the control system 212 may provide timing signals to each of these components 202, 206, 210, 214. Alternately, the control system 212 may provide a timing signal to only some of the components (e.g., the analog-to-digital converter 206), and other components may operate in an asynchronous manner (e.g., the light sensor 202 may continuously acquire light measurements), or may be operated by external stimuli received through the addressable communication interface 214. In one embodiment, the control system 212 is a clock circuit. In an alternate embodiment, the control system 212 is a microprocessor. The control system 212 may also perform other functions, such as saturation detection for the light sensor 202. The light sensor package 200 may operate in a variety of different ways, depending on how its components 202-214 are configured. For example, in one embodiment, the local control system 212 may be configured to 1) trigger operation of the analog-to-digital converter 206, and 2) output a stored value via the addressable communication interface 214, in response to a single command received at the addressable communication interface 214. In another embodiment, the control system 212 may be configured to 1) trigger operation of the analog-to-digital converter in response to a first command received at the addressable communication interface 214, and then 2) output a stored value in response to a second command received at the addressable communication interface 214. As its name connotes, the addressable communication interface 214 may be addressed by an external control system 414 that transmits its address. In some cases, an external control system 414 may transmit the package's address, wait for a response, and then transmit a command. In other cases, an external control system 414 may transmit the interface's address along with a command. In still other cases, an external control system 414 may transmit a broadcast command, and the addressable communication interface 214 may then return one or more stored values along with its address (or, the interface 214 may return the stored value(s) in response to a second command that is addressed specifically to it). As previously discussed, the light received by the sensor 202 may be filtered by a filter 204. As an alternative to the filter 204 being static, the filter 204 could be dynamic. That is, the filter 204 could alternately filter different wavelengths of light (e.g., red, then blue, then green). In some embodiments, the filter 204 could take the form of a color wheel or a liquid crystal light valve. The latter is described in the United States patent application of Lim, et al. entitled “Method and Apparatus Using Liquid Crystal Light Valve to Filter Light Received by a Photodector” (Atty. Docket No. 70040328-1, Serial No. unknown, filed Oct. 8, 2004). If the filter 204 is dynamic, then the analog-to-digital converter 206 may convert a series of sensor outputs to digital values, with all of the values being stored in the memory 210. Alternately, the control system 212 could combine the values output from the analog-to-digital converter 206 by, for example, averaging them or converting them to a single value that is indicative of a sensed light's color. FIG. 3 illustrates a second exemplary light sensor package 300 that could be used by the method 100. The package 300 is similar to the package 200, but for the addition of at least one additional light sensor 302, 304. In this manner, instead of detecting the color of received light using a single, dynamically-filtered light sensor, the package 300 utilizes a plurality of light sensors 202, 302, 304, each of which is filtered to sense a different wavelength of light. The analog-to-digital converter 306 then multiplexes its receipt of the different sensor outputs, or comprises multiple parallel conversion blocks, to convert the output of each light sensor 202, 302, 304 to a digital value. These values may then be stored in the memory 210, or they may be manipulated by a control system 212 that provides one or more alternate values to store in the memory 210. FIG. 4 illustrates an exemplary way 400 to couple a plurality of the light sensor packages shown in FIGS. 2 or 3 (e.g., packages 300a-f to a central control system 414. As shown, a light source 418 may be divided into a plurality of illumination zones 402-412, with one of the light sensor packages 300a-f positioned within each zone 402412. Alternately, the components of the light sensor packages 300a-f need not be packaged, but may only be positioned in or proximate to each illumination zone 402-412. The addressable communication interface associated with each illumination zone 402-412 may be coupled to a central control system 414 that 1) addresses the addressable communication interfaces of each illumination zone 402-412 to obtain their stored values, and 2) determines how to regulate the light emitted by the illumination zones 402-412. In one embodiment, the addressable communication interfaces of each zone 402-414 may be coupled to the control system 414 via a wired bus 416. In an alternate embodiment, the addressable communication interfaces and control system 414 may comprise wireless interfaces. The wired or wireless interfaces may implement a variety of different protocols, including Philips Semiconductor's I2C protocol, Motorola's Serial Peripheral Interface (SPI) protocol, or National Semiconductor's Microwire protocol. Upon receipt of a single light intensity measurement from each of the illumination zones 402-412, the control system 414 may regulate the intensity of the light emitted by each illumination zone 402-412. However, if each illumination zone 402-412 comprises different-colored light sources (e.g., red, green and blue light emitting diodes), and if the control system 414 receives a plurality of light intensity measurements from each illumination zone 402-412 (e.g., measurements corresponding to the intensities of different wavelengths of light), then the control system 414 may regulate both the intensity and color of light emitted by each zone 402-412. The control system 414 may also regulate both the intensity and color of light emitted from each illumination zone 402-412 if the control system 414 receives other types of values that are indicative of light color (e.g., due to manipulation or processing of the sensor values obtained by each illumination zone 402-412). The external control system 414 may regulate the light of each illumination zone 402-412 by, for example, generating pulse-width modulated (PWM) drive signals for regulating the light source or sources of each zone 402-412. In an alternate embodiment, the external control system 414 may instruct the control systems 212 of the light sensor packages 300a-f on how to regulate the light emitted from their corresponding illumination zones 402-412, and the control systems 212 may then regulate the light source or sources in their illumination zones 402-412 (e.g., by generating PWM drive signals). By way of example, the light source 418 may take the form of an LED backlight for an LCD.
<SOH> BACKGROUND <EOH>Illumination devices comprised of solid-state devices (e.g., light emitting diodes (LEDs) or laser diodes) can provide a long operating life and a mercury-free lighting means. If comprised of devices emitting different colors of light (e.g., red (R), green (G) and blue (B) LEDs), such displays can also provide a wide color gamut and a selectable color point (e.g., a selectable white point). However, solid-state illumination devices can also present a few difficulties. For example, the optical characteristics of LEDs vary with temperature, drive current and aging. LED optical characteristics can also vary from batch to batch within the same fabrication process. In applications where uniform light intensity and color is desired (e.g., in liquid crystal display (LCD) backlighting), one or more light sensors are typically used to measure the intensity, and sometimes color, of light emitted by a light source. The sensor's measurement(s) are then used to regulate the drive signals of the light source's elements, to thereby regulate the intensity and/or color of light emitted by the light source.
<SOH> SUMMARY OF THE INVENTION <EOH>In one embodiment, a method for regulating the light emitted by a plurality of illumination zones comprises acquiring a light measurement from each illumination zone. Each light measurement is then digitized, and values derived from the digitized light measurements are stored, proximate to where the light measurements are acquired. The values derived from the digitized light measurements are then transmitted to a central control system. In response to the transmitted values, the light emitted by the illumination zones is regulated based on determinations made by the central control system. In another embodiment, a light sensor package comprises a light sensor, an analog-to-digital converter, a memory, and an addressable communication interface. The light sensor provides an analog output proportional to received light. The analog-to-digital converter converts the analog output of the light sensor to a digital value. The memory is configured to store a value derived from the digital value. The addressable communication interface is configured to transmit the stored value to an external control system. In yet another embodiment, apparatus comprises a plurality of illumination zones and a central control system. Each illumination zone comprises: a light sensor providing an analog output proportional to received light; an analog-to-digital converter to convert the analog output of the light sensor to a digital value; a memory to store a value derived from the digital value; and an addressable communication interface to transmit the stored value. The central control system 1) addresses the addressable communication interfaces of each illumination zone and obtains the values stored by each illumination zone, and 2) determine how to regulate the light emitted by the illumination zones. Other embodiments are also disclosed.
20041102
20090526
20060504
92445.0
G08B2100
0
SAID, MANSOUR M
SYSTEM, METHOD AND APPARATUS USING ADDRESSABLE LIGHT SENSORS
UNDISCOUNTED
0
ACCEPTED
G08B
2,004
10,979,778
ACCEPTED
Light-radiating semiconductor component with a luminescence conversion element
The light-radiating semiconductor component has a radiation-emitting semiconductor body and a luminescence conversion element. The semiconductor body emits radiation in the ultraviolet, blue and/or green spectral region and the luminescence conversion element converts a portion of the radiation into radiation of a longer wavelength. This makes it possible to produce light-emitting diodes which radiate polychromatic light, in particular white light, with only a single light-emitting semiconductor body. A particularly preferred luminescence conversion dye is YAG:Ce.
1-33. (canceled) 34. A polychromatic light emitting semiconductor chip for mounting into a housing for light-emitting diodes, comprising: a layer sequence suitable for emitting electromagnetic radiation of a first wavelength range selected from a spectral region consisting of ultraviolet, blue, and green; a luminescence conversion layer deposited on said semiconductor chip with at least one luminescent material, said luminescence conversion material being suitable for converting a radiation originating from the first wavelength range into radiation of a second wavelength range which is at least partially different from the first wavelength range, such that the semiconductor chip is capable of emitting polychromatic radiation comprising radiation of the first wavelength range and radiation of the second wavelength range. 35. The chip according to claim 34, wherein said luminescence conversion layer being produced from a silicone and containing inorganic luminescence material selected from the group consisting of garnets doped with rare earths, alkaline earth metal sulfides doped with rare earths, thiogallates doped with rare earths, aluminates doped with rare earths, and orthosilicates doped with rare earths. 36. The chip according to claim 34, wherein said luminescence conversion layer converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges. 37. The chip according to claim 34, wherein said second wavelength range includes wavelengths at least so me of which are longer than wavelengths of the first wavelength range. 38. The chip according to claim 34, wherein said semiconductor body is adapted to emit ultraviolet radiation during operation of the semiconductor component, and said luminescence conversion element converts at least a portion of the ultraviolet radiation into visible light. 39. The chip according to claim 34, wherein the first wavelength range and the second wavelength range of the polychromatic radiation lie at least partially in mutually complementary-color spectral regions, and a combination of radiation from the first and second wavelength range results in white light. 40. The chip according to claim 34, wherein said luminescence conversion layer converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges, wherein the first wavelength range emitted by said semiconductor body and two second wavelength ranges produce an additive color triad, such that white light is radiated by the semiconductor component during operation thereof. 41. The chip according to claim 34, wherein the radiation emitted by said semiconductor body has a luminescence intensity maximum in a blue spectral region at a wavelength between 420 nm and 460 nm. 42. The chip according to claim 34, wherein said luminescence conversion layer includes organic dye molecules in a plastic matrix. 43. The chip according to claim 34, wherein said luminescence conversion layer includes organic dye molecules in a plastic matrix, and wherein said plastic matrix is formed from a plastic material selected from the group consisting of silicone, thermoplastic material, and thermosetting plastic material. 44. The chip according to claim 34, wherein said luminescence conversion element has at least one inorganic luminescence material selected from the phosphor group. 45. The chip according to claim 34, wherein the inorganic luminescent material is selected from the group of Ce-doped garnets. 46. The chip according to claim 34, wherein the inorganic luminescent material is YAG:Ce. 47. The chip according to claim 34, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in an epoxy resin matrix. 48. The chip according to claim 34, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in a matrix formed of inorganic glass with a relatively low melting point. 49. The chip according to claim 34, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in an epoxy resin matrix, and wherein the inorganic luminescent material has a mean particle size of approximately 10 Tm. 50. The chip according to claim 34, wherein said luminescence conversion element is provided with a plurality of mutually different materials selected from the group consisting of organic and inorganic luminescent materials. 51. The chip according to claim 34, wherein said luminescence conversion layer includes dye molecules selected from the group consisting of organic and inorganic dye molecules partly with and partly without a wavelength conversion effect. 52. The chip according to claim 34, wherein said luminescence conversion element includes light-diffusing particles. 53. The chip according to claim 34, wherein said luminescence conversion layer comprises at least one luminescent 4f-organometallic compound. 54. The chip according to claim 34, wherein said luminescence conversion layer includes a luminescent material that is luminescent in a blue region. 55. The chip according to claim 34, wherein the radiation emitted by said semiconductor body has a luminescence intensity maximum at a wavelength of or below 520 nm. 56. The chip according to claim 34, wherein said luminescence conversion layer comprises a plurality of layers with mutually different wavelength conversion properties. 57. A method for producing a polychromatic light emitting semiconductor component having an LED housing and a light emitting semiconductor chip mounted in said housing, comprising the steps of: providing a light emitting semiconductor layer sequence suitable for emitting electromagnetic radiation of a first wavelength range selected from a spectral region consisting of ultraviolet, blue, and green; depositing a luminescence conversion layer onto said semiconductor layer sequence having at least one luminescent material, said luminescence conversion material being suitable for converting a radiation originating from the first wavelength range into radiation of a second wavelength range which is at least partially different from the wavelength range; and mounting said semiconductor layer sequence with the luminescence conversion layer into said LED housing. 58. The method according to claim 57, wherein said luminescence conversion layer being produced from a silicone and containing inorganic luminescence material selected from the group consisting of garnets doped with rare earths, alkaline earth metal sulfides doped with rare earths, thiogallates doped with rare earths, aluminates doped with rare earths, and orthosilicates doped with rare earths. 59. The method according to claim 57, wherein said luminescence conversion layer converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges. 60. The method according to claim 57, wherein said second wavelength range includes wavelengths at least some of which are longer than wavelengths of the first wavelength range. 61. The method according to claim 57, wherein said semiconductor body is adapted to emit ultraviolet radiation during operation of the semiconductor component, and said luminescence conversion element converts at least a portion of the ultraviolet radiation into visible light. 62. The method according to claim 57, wherein the first wavelength range and the second wavelength range of the polychromatic radiation lie at least partially in mutually complementary-color spectral regions, and a combination of radiation from the first and second wavelength range results in white light. 63. The method according to claim 57, wherein said luminescence conversion layer converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges, wherein the first wavelength range emitted by said semiconductor body and two second wavelength ranges produce an additive color triad, such that white light is radiated by the semiconductor component during operation thereof. 64. The method according to claim 57, wherein the radiation emitted by said semiconductor body has a luminescence intensity maximum in a blue spectral region at a wavelength between 420 nm and 460 nm. 65. The method according to claim 57, wherein said luminescence conversion layer includes organic dye molecules in a plastic matrix. 66. The method according to claim 57, wherein said luminescence conversion layer includes organic dye molecules in a plastic matrix, and wherein said plastic matrix is formed from a plastic material selected from the group consisting of silicone, thermoplastic material, and thermosetting plastic material. 67. The method according to claim 57, wherein said luminescence conversion element has at least one inorganic luminescence material selected from the phosphor group. 68. The method according to claim 57, wherein the inorganic luminescent material is selected from the group of Ce-doped garnets. 69. The method according to claim 57, wherein the inorganic luminescent material is YAG:Ce. 70. The method according to claim 57, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in an epoxy resin matrix. 71. The method according to claim 57, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in a matrix formed of inorganic glass with a relatively low melting point. 72. The method according to claim 57, wherein said luminescence conversion layer has at least one inorganic luminescence material selected from the phosphor group, and wherein the inorganic luminescent material is embedded in an epoxy resin matrix, and wherein the inorganic luminescent material has a mean particle size of approximately 10 Tm. 73. The method according to claim 57, wherein said luminescence conversion element is provided with a plurality of mutually different materials selected from the group consisting of organic and inorganic luminescent materials. 74. The method according to claim 57, wherein said luminescence conversion layer includes dye molecules selected from the group consisting of organic and inorganic dye molecules partly with and partly without a wavelength conversion effect. 75. The method according to claim 57, wherein said luminescence conversion element includes light-diffusing particles. 76. The method according to claim 57, wherein said luminescence conversion layer comprises at least one luminescent 4f-organometallic compound. 77. The method according to claim 57, wherein said luminescence conversion layer includes a luminescent material that is luminescent in a blue region. 78. The method according to claim 57, wherein the radiation emitted by said semiconductor body has a luminescence intensity maximum at a wavelength of or below 520 nm. 79. The method according to claim 57, wherein said luminescence conversion layer comprises a plurality of layers with mutually different wavelength conversion properties.
CROSS-REFERENCE TO RELATED APPLICATION This is a continuation of copending International Application PCT/DE97/01337, filed Jun. 26, 1997, which designated the United States. BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The invention relates to a light-radiating semiconductor component with a semiconductor body that emits electromagnetic radiation during operation of the semiconductor component. The component has at least one first and at least one second electrical terminal, which are electrically connected to the semiconductor body. The component further has a luminescence conversion element with at least one luminescent material. A semiconductor component of that type is disclosed, for example, in German published patent application DE 38 04 293. There, an arrangement having an electroluminescent or laser diode in which the entire emission spectrum radiated by the diode is shifted toward greater wavelengths by means of a plastic element that is treated with a fluorescent, light-converting organic dye. The light radiated by the arrangement consequently has a different color from the light emitted by the light-emitting diode. Depending on the nature of the dye added to the plastic, light-emitting diode arrangements which emit light in different colors can be produced using one and the same type of light-emitting diode. German-published patent application DE 23 47 289 discloses an infrared (IR) solid-state lamp in which luminescent material is applied on the edge of an IR diode and converts the IR radiation that is radiated there into visible light. The aim of this measure is, for supervisory purposes, to convert a smallest possible part of the IR radiation emitted by the diode into visible light in conjunction with the smallest possible reduction of the intensity of the emitted IR radiation. Furthermore, European patent application EP 486 052 discloses a light-emitting diode in which at least one semiconductor photoluminescent layer is arranged between the substrate and an active electroluminescent layer. The semiconductor photoluminescent layer converts the light of a first wavelength range—the light emitted by the active layer in the direction of the substrate—into light of a second wavelength range, with the result that, altogether, the light-emitting diode emits light of different wavelength ranges. In many potential areas of application for light-emitting diodes, such as, for example, in display elements in motor vehicle dashboards, lighting in aircraft and automobiles, and in full-color LED displays, there is increasingly a demand for light-emitting diode arrangements with which polychromatic light, in particular white light, can be produced. Japanese patent application JP-07 176 794-A describes a white-light-emitting, planar light source in which two blue-light-emitting diodes are arranged at an end of a transparent plate. The diodes emit light into the transparent plate. The transparent plate is coated with a fluorescent substance on one of the two mutually opposite main surfaces. The fluorescent substance emits light when it is excited by the blue light of the diodes. The light emitted by the fluorescent substance has a different wavelength from that of the blue light emitted by the diodes. In that prior art component, it is particularly difficult to apply the fluorescent substance in such a manner that the light source radiates homogeneous white light. Furthermore, the question of reproducibility in mass production also poses major problems because even slight fluctuations in the thickness of the fluorescent layer, for example on account of unevenness of the surface of the transparent plate, cause a change in the shade of white of the radiated light. SUMMARY OF THE INVENTION It is accordingly an object of the invention to provide a light-radiating semiconductor component, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which radiates homogeneous polychromatic light and ensures technically simple mass production with component characteristics that are reproducible to the greatest possible extent. With the foregoing and other objects in view there is provided, in accordance with the invention, a light-radiating semiconductor component, comprising: a semiconductor body emitting electromagnetic radiation during an operation of the semiconductor component, the semiconductor body having a semiconductor layer sequence suitable for emitting electromagnetic radiation of a first wavelength range selected from a spectral region consisting of ultraviolet, blue, and green; a first electrical terminal and a second electrical terminal each electrically conductively connected to the semiconductor body; and a luminescence conversion element with at least one luminescent material, the luminescence conversion element converting a radiation originating in the first wavelength range into radiation of a second wavelength range different from the first wavelength range, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the second wavelength range. The invention provides for the radiation-emitting semiconductor body to have a layer sequence, in particular a layer sequence with an active semiconductor layer made of GaxIn1−xN or GaxAl1−xN, which emits an electromagnetic radiation of a first wavelength range from the ultraviolet, blue and/or green spectral region during operation of the semiconductor component. The luminescence conversion element converts part of the radiation originating from the first wavelength range into radiation of a second wavelength range, in such a way that the semiconductor component emits polychromatic radiation, in particular polychromatic light, comprising radiation of the first wavelength range and radiation of the second wavelength range. This means, for example, that the luminescence conversion element spectrally selectively absorbs part of the radiation emitted by the semiconductor body, preferably only over a spectral subregion of the first wavelength range, and emits it in the region of longer wavelength (in the second wavelength range). Preferably, the radiation emitted by the semiconductor body has a relative intensity maximum at a wavelength λ≦520 nm and the wavelength range which is spectrally selectively absorbed by the luminescence conversion element lies outside this intensity maximum. In accordance with an added feature of the invention, the luminescence conversion element converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges. In other words, the invention advantageously makes it possible also to convert a number (one or more) of first spectral subregions originating from the first wavelength range into a plurality of second wavelength ranges. As a result, it is possible to produce diverse color mixtures and color temperatures. The semiconductor component according to the invention has the particular advantage that the wavelength spectrum generated by way of luminescence conversion and hence the color of the radiated light do not depend on the level of the operating current intensity through the semiconductor body. This has great significance particularly when the ambient temperature of the semiconductor component and, consequently, as is known, also the operating current intensity greatly fluctuate. Especially light-emitting diodes having a semiconductor body based on GaN are very sensitive in this respect. In addition, the semiconductor component according to the invention requires only a single driving voltage and, as a result, also only a single driving circuit configuration, whereby the outlay on-devices for the driving circuit of the semiconductor component can be kept very low. In accordance with an additional feature of the invention, the semiconductor component has a defined main radiating direction, and the luminescence conversion element is disposed substantially downstream of the semiconductor body in the main radiating direction of the semiconductor component. In accordance with another feature of the invention, the luminescence conversion element is at least one luminescence conversion layer disposed in a vicinity of the semiconductor body. In this particularly preferred embodiment of the invention, a partially transparent luminescence conversion layer, that is to say one which is partially transparent to the radiation emitted by the radiation-emitting semiconductor body, is provided as the luminescence conversion element above or on the semiconductor body. In order to ensure a uniform color of the radiated light, the luminescence conversion layer is advantageously designed in such a way that has a constant thickness throughout. This has the particular advantage that the path length of the light radiated by the semiconductor body through the luminescence conversion layer is virtually constant for all radiation directions. The effect that can be achieved as a result of this is that the semiconductor component radiates light of the same color in all directions. A further particular advantage of a semiconductor component according to the invention in accordance with this development consists in the fact that a high degree of reproducibility can be obtained in a simple manner, which is of considerable significance for efficient mass production. A resist or resin layer treated with luminescent material may be provided, for example, as the luminescence conversion layer. In accordance with a further feature of the invention, the luminescence conversion element is a luminescence conversion encapsulation enclosing at least a part of the semiconductor body and partial regions of the first and second electrical terminals. The encapsulation is partially transparent and encloses at least part of the semiconductor body (and possibly partial regions of the electrical terminals) and can simultaneously be utilized as component encapsulation (housing). The advantage of a semiconductor component in accordance with this embodiment consists essentially in the fact that conventional production lines used or the production of conventional light-emitting diodes (for example radial light-emitting diodes) can be utilized for its production. The material of the luminescence conversion encapsulation is used for the component encapsulation instead of the transparent plastic which is used for this purpose in conventional light-emitting diodes. In further advantageous embodiments of the semiconductor component according to the invention and of the two preferred embodiments mentioned above, the luminescence conversion layer or the luminescence conversion encapsulation is composed of a transparent material, for example plastic, preferably epoxy resin, which is provided with at least one luminescent material (examples of preferred plastics and luminescent materials will be found further below). In this way, it is possible to produce luminescence conversion elements in a particularly cost-effective manner. Specifically, the requisite process steps can be integrated in conventional production lines for light-emitting diodes with no major outlay. In accordance with again an added feature of the invention, the second wavelength range includes wavelengths at least some of which are longer than wavelengths of the first wavelength range. In accordance with again an additional feature of the invention, the semiconductor body is adapted to emit ultraviolet radiation during operation of the semiconductor component, and the luminescence conversion element converts at least a portion of the ultraviolet radiation into visible light. In accordance with again another feature of the invention, the first wavelength range and the second wavelength range of the polychromatic radiation lie at least partially in mutually complementary-color spectral regions, and a combination of radiation from the first and second wavelength range results in white light. When the second spectral subregion of the first wavelength range and a second wavelength range are complementary to one another, it is possible to produce polychromatic, in particular white, light from a single colored light source, in particular a light-emitting diode having a single blue-light-radiating semiconductor body. In order, for example, to produce white light with a blue-light-emitting semiconductor body, part of the radiation from the blue spectral region emitted by the semiconductor body is converted into the yellow spectral region, which is complementarily colored with respect to blue. The color temperature or color locus of the white light can in this case be varied by a suitable choice of the luminescence conversion element, in particular by a suitable choice of the luminescent material, its particle size and its concentration. Furthermore, these arrangements also advantageously afford the possibility of using luminescent material mixtures, as a result of which, advantageously, the desired hue can be set very accurately. Likewise, it is possible to configure luminescence conversion elements inhomogeneously, for example by means of inhomogeneous Luminescent material distribution. Different path lengths of the light through the luminescence conversion element can advantageously be compensated for as a result of this. In accordance with again a further feature of the invention, the first wavelength range emitted by the semiconductor body and two second wavelength ranges produce an additive color triad, such that white light is radiated by the semiconductor component during operation thereof. In a further preferred embodiment of the semiconductor component according to the invention, the luminescence conversion element or another constituent of a component encapsulation has, for the purpose of color matching, one or more dyes which do not effect wavelength conversion. For this purpose, it is possible to use the dyes which are used for the production of conventional light emitting diodes, such as, for example, azo, anthraquinone or perinone dyes. In order to protect the luminescence conversion element against an excessively high radiation load, in an advantageous development or in the above-mentioned preferred embodiments of the semiconductor component according to the invention, at least part of the surface of the semiconductor body is surrounded by a first, transparent casing composed, for example, of a plastic, on which casing the luminescence conversion layer is applied. This reduces the radiation density in the luminescence conversion element and, consequently, the radiation load thereof, which, depending on the materials used, has a positive effect on the life of the luminescence conversion element. In accordance with yet an added feature of the invention, the radiation emitted by the semiconductor body has a luminescence intensity maximum in a blue spectral region at a wavelength selected from the group consisting of λ=430 nm and λ=450 nm. The preferred radiation-emitting semiconductor body has a radiation spectrum with an intensity maximum at a wavelength of between 420 nm and 460 nm, in particular at 430 nm (for example semiconductor body based on GaxAl1−xN) or 450 nm (for example semiconductor body based on GaxIn1−xN). It is advantageous that virtually all colors and mixed colors of the C.I.E. chromaticity diagram can be produced by such a semiconductor component according to the invention. in this case, as specified above, the radiation-emitting semiconductor body may essentially be composed of electroluminescent semiconductor material, but also of a different electroluminescent material, such as polymer material, for example. In accordance with yet an additional feature of the invention, an opaque base housing is formed with a recess, and wherein the semiconductor body is disposed in the recess of the base housing, and including a covering layer having a luminescence conversion layer on the recess. Alternatively, the recess is at least partially filled with the luminescence conversion element. In accordance with yet another feature of the invention, the luminescence conversion element comprises a plurality of layers with mutually different wavelength conversion properties. In accordance with yet a further feature of the invention, the luminescence conversion element includes organic dye molecules in a plastic matrix, such as in a matrix of silicone, thermoplastic material, or thermosetting plastic material. The luminescence conversion element may also have organic dye molecules in an epoxy resin matrix or a polymethyl methacrylate matrix. In accordance with yet again an added feature of the invention, the luminescence conversion element has at least one inorganic luminescence material selected from the group of phosphors. The inorganic luminescent material is preferably from the group of Ce-doped garnets, such as YAG:Ce. In accordance with yet again an additional feature of the invention, the inorganic luminescent material is embedded in an epoxy resin matrix. It may also be embedded in a matrix formed of inorganic glass with a relatively low melting point. Preferably, the inorganic luminescent material has a mean particle size of approximately 10 μm. In accordance with yet again another feature of the invention, the luminescence conversion element is provided with a plurality of mutually different materials selected from the group consisting of organic and inorganic luminescent materials. The luminescence conversion element may include organic or inorganic dye molecules partly with and partly without a wavelength conversion effect. In accordance with yet again a further feature of the invention, the luminescence conversion element includes light-diffusing particles. The component may also have a transparent encapsulation with light-diffusing particles. In accordance with again an added feature of the invention, the luminescence conversion element comprises at least one luminescent 4f-organometallic compound. A blue output -radiation is obtained if, in accordance with the invention, the luminescence conversion element includes a luminescent material that is luminescent in a blue region. The encapsulation may thereby be transparent with a blue luminescent material. As noted, the luminescence conversion encapsulation or the luminescence conversion layer may be produced from a resist or from a plastic, for example from a silicone, thermoplastic or thermosetting plastic material (epoxy and acrylate resins) used for the encapsulation of optoelectronic components. Furthermore, covering elements fabricated from thermoplastic materials, for example, can be used as the luminescence conversion encapsulation. All the above-mentioned materials can be treated with one or more luminescent materials in a simple manner. A semiconductor component according to the invent-on can be realized in a particularly simple manner when the semiconductor body is arranged in a recess in an optionally prefabricated housing and the recess is provided with a covering element having the luminescence conversion layer. A semiconductor component of this type can be produced in large numbers in conventional production lines. For this purpose, all that is necessary, after the mounting of the semiconductor body in the housing, is to apply the covering element, for example a resist or casting resin layer or a prefabricated covering plate made of thermoplastic material, to the housing. Optionally, the recess in the housing may be filled with a transparent material, for example a transparent plastic, which does not alter in particular the wavelength of the light emitted by the semiconductor body or, however, if desired, may already be designed such that it effects luminescence conversion. In a development of the semiconductor component according to the invention which is particularly preferred on account of the fact that it can be realized in a particularly simple manner, the semiconductor body is arranged in a recess in a housing which is optionally prefabricated and may already be provided with a lead frame and the recess is filled with an at least partially transparent casting resin, to which the luminescent material has already been added prior to the recess being sealed by casting. In this case, the luminescence conversion element is consequently provided by the potting of the semiconductor body that is provided with luminescent material. A particularly preferred material for the production of the luminescence conversion element is epoxy resin, to which one or more. luminescent materials are added. However, it is also possible to use polymethyl methacrylate (PMMA) instead of epoxy resin. PMMA can be treated with organic dye molecules in a simple manner. Perylene-based dye molecules, for example, can be used to produce green-, yellow- and red-light-emitting semiconductor components according to the invention. Semiconductor components which emit light in the UV, visible or infrared region can also be produced by admixture of 4f-organometallic compounds. In particular, red-light-emitting semiconductor components according to the invention can be realized for example by admixture of Eu3+-based organometallic chelates (λ≈620 nm). Infrared-radiating semiconductor components according to the invention, in particular having blue-light-emitting semiconductor bodies, can be produced by admixture of 4f-chelates or of Ti3+-doped sapphire. A white-light-radiating semiconductor component according to the invention can advantageously be produced by choosing the luminescent material such that a blue radiation emitted by the semiconductor body is converted into complementary wavelength ranges, in particular blue and yellow, or to form additive color triads, for example blue, green and red. In this case, the yellow or the green and red light is produced by means of the luminescent materials. The hue (color locus in the CIE chromaticity diagram) of the white light thereby produced can in this case be varied by a suitable choice of the dye/s in respect of mixture and concentration. Suitable organic luminescent materials for a white-light-radiating semiconductor component according to the invention are perylene luminescent materials, such as, for example, BASF Lumogen F 083 for green luminescence, BASF Lumogen F 240 for yellow luminescence and BASF Lumogen F 300 for red luminescence. These dyes can be added to transparent epoxy resin, for example, in a simple manner. A preferred method for producing a green-light-emitting semiconductor component using a blue-light-radiating semiconductor body consists in using UO2++-substituted borosilicate glass for the luminescence conversion element. In a further preferred development of a semiconductor component according to the invention and of the advantageous embodiments specified above, light-diffusing particles, so-called diffusers, are additionally added to the luminescence conversion element or to another radiation-transmissive component of the component encapsulation. The color perception and the radiation characteristics of the semiconductor component can advantageously be optimized by this means. In a particularly advantageous embodiment of the semiconductor component according to the invention, the luminescence conversion element is at least partially composed of a transparent epoxy resin provided with an inorganic luminescent material. Specifically, it is advantageous that inorganic luminescent materials can be bound in epoxy resin in a simple manner. A particularly preferred inorganic luminescent material for the production of white-light-emitting semiconductor components according to the invention is the phosphor YAG:Ce (Y3Al5O12:Ce3+). The latter can be mixed in a particularly simple manner in transparent epoxy resins which are conventionally used in LED technology. Other conceivable luminescent materials are further garnets doped with rare earths, such as, for example, Y3Ga5O12:Ce3+, Y(Al,Ga)5O12:Ce3+and Y(Al,Ga)5O12:Tb3+, as well as alkaline earth metal sulfides doped with rare earths, such as, for example, SrS:Ce3+, Na, SrS:Ce3+, Cl, Srs:CeCl3, CaS:Ce3+ and SrSe:Ce3+. Furthermore, the thiogallates doped with rare earths, such as, for example, CaGa2S4:Ce3+ and SrGa2S4:Ce3+, are particularly suitable for the purpose of producing differently polychromatic light. The use of aluminates doped with rare earths, such as, for example, YAlO3:Ce3+, YGaO3:Ce3+, Y(Al,Ga)O3:Ce3+, and orthosilicates M2SiO5:Ce3+(M:Sc, Y, Sc) doped with rare earths, such as, for example, Y2SiO5:Ce3+, is likewise conceivable for this purpose. In all of the yttrium compounds, the yttrium can, in principle, also be replaced by scandium or lanthanum. In a further possible embodiment of the semiconductor component according to the invention, at least all those components of the encapsulation through which light is radiated, that is to say including the luminescence conversion encapsulation or layer, are composed of purely inorganic materials. Consequently, the luminescence conversion element is composed of an inorganic luminescent material which is embedded in a thermally stable, transparent or partially transparent inorganic material. In particular, the luminescence conversion element is composed of an inorganic phosphor, which is embedded in an inorganic glass advantageously of low melting point (for example silicate glass). A preferred procedure for producing a luminescence conversion layer of this type is the sol gel technique, by means of which the entire luminescence conversion layer, that is to say both the inorganic luminescent material and the embedding material, can be produced in one work operation. In order to improve the thorough mixing of the radiation of the first wavelength range that is emitted by the semiconductor body with the luminescence-converted radiation of the second wavelength range and hence the color homogeneity of the radiated light, in an advantageous refinement of the semiconductor component according to the invention, a dye which emits light in the blue region is additionally added to the luminescence encapsulation or the luminescence conversion layer and/or to another component of the component encapsulation, which dye attenuates a so-called directional characteristic of the radiation radiated by the semiconductor body. Directional characteristic is to be understood to mean that the radiation emitted by the semiconductor body has a preferred radiation direction. In a preferred refinement of the semiconductor component according to the invention, the inorganic luminescent material is used in powder form for the above-mentioned purpose of thorough mixing of the emitted radiation, the luminescent material particles not dissolving in the substance (matrix) encapsulating them. In addition, the inorganic luminescent material and the substance encapsulating it have mutually different refractive indices. This advantageously leads to a portion of the light which is not absorbed by the luminescent material being scattered, in a manner dependent on the particle size of the luminescent material. The directional characteristic of the radiation radiated by the semiconductor body is thereby efficiently attenuated, with the result that the unabsorbed radiation and the luminescence-converted radiation are homogeneously mixed, which leads to a spatially homogeneous color perception. A white-light-radiating semiconductor component according to the invention can particularly preferably be realized by admixing the inorganic luminescent material YAG:Ce (Y3Al5O12:Ce3+) with an epoxy resin used to produce the luminescence conversion encapsulation or layer. Part of a blue radiation emitted by the semiconductor body is shifted by the inorganic luminescent material Y3Al5O12:Ce3+ into the yellow spectral region and, consequently, into a wavelength range which is complementarily colored with respect to the color blue. The hue (color locus in the CIE chromaticity diagram) of the white light can in this case be varied by a suitable choice of the dye mixture and concentration. The inorganic luminescent material YAG:Ce has, inter alia, the particular advantage that insoluble coloring pigments (particle size in the region of 10 mm) having a refractive index of approximately 1.84 are involved in this case. Consequently, not only does the wavelength conversion occur but also a scattering effect which leads to good mixing together of blue diode radiation and yellow converter radiation. In a further preferred development of a semiconductor component according to the invention and of the advantageous embodiments specified above, light-diffusing particles, so-called diffusers, are additionally added to the luminescence conversion element or to another radiation-transmissive component of the component encapsulation. The color perception and the radiation characteristic of the semiconductor component can advantageously be further improved by this means. It is particularly advantageous that the luminous efficiency of white-light-emitting semiconductor components according to the invention and their above-mentioned embodiments having a blue-light-emitting semiconductor body produced essentially on the basis of GaN is comparable with the luminous efficiency of an incandescent bulb. The reason for this is that, on the one hand, the external quantum efficiency of such semiconductor bodies is a few percent and, on the other hand, the luminescence efficiency of organic dye molecules is often established at more than 90%. Furthermore, the semiconductor component according to the invention is distinguished by an extremely long life, greater robustness and a smaller operating voltage in comparison with the incandescent bulb. It is advantageous, moreover, that the luminosity of the semiconductor component according to the invention that is perceptible to the human eye can be distinctly increased by comparison with a semiconductor component which is not equipped with the luminescence conversion element but is otherwise identical, since the sensitivity of the eye increases in the direction of a higher wavelength. Furthermore, the principle according to the invention can advantageously be used also to convert an ultraviolet radiation which is emitted by the semiconductor body in addition to the visible radiation into visible light. The luminosity of the light emitted by the semiconductor body is thereby distinctly increased. The concept, presented here, of luminescence conversion with blue light from a semiconductor body can advantageously be extended to multistage luminescence conversion elements as well, in accordance with the scheme ultraviolet→blue→green→yellow→red. In this case, a plurality of spectrally selectively emitting luminescence conversion elements are arranged one after the other relative to the semiconductor body. Likewise, it is advantageously possible for a plurality of differently spectrally selectively emitting dye molecules to be jointly embedded in a transparent plastic of a luminescence conversion element. A very broad color spectrum can be produced by this means. A particular advantage of white-light-radiating semiconductor components according to the invention in which YAG:Ce, in particular, is used as the luminescence conversion dye consists in the fact that this luminescent material, upon excitation-by blue light, effects a spectral shift of approximately 100 nm between absorption and emission. This leads to a significant reduction in the reabsorption of the light emitted by the luminescent material and hence to a higher luminous efficiency. In addition, YAG:Ce advantageously has high thermal and photochemical (for example UV) stability (significantly higher than organic luminescent materials), with the result that it is even possible to produce white-light-emitting diodes for outdoor use and/or high temperature ranges. YAG:Ce has, to date, proved to be the best-suited luminescent material in respect of reabsorption, luminous efficiency, thermal and photochemical stability and processability. However, the use of other Ce-doped phosphors is also conceivable, in particular of Ce-doped garnets. In a particularly advantageous manner, semiconductor components according to the invention can be used, in particular on account of their low power consumption, in full-color LED displays for the lighting of motor vehicle interiors or of aircraft cabins as well as for the illumination of display devices such as motor vehicle dashboards or liquid crystal displays. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a light-radiating semiconductor component having a luminescence conversion element, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammatic sectional side view of a first exemplary embodiment of a semiconductor component according to the invention; FIG. 2 is a diagrammatic sectional side view of a second exemplary embodiment of the semiconductor component according to the invention; FIG. 3 is a diagrammatic sectional side view of a third exemplary embodiment of the semiconductor component according to the invention; FIG. 4 is a diagrammatic sectional side view of a fourth exemplary embodiment of the semiconductor component according to the invention; FIG. 5 is a diagrammatic sectional side view of a fifth exemplary embodiment of the semiconductor component according to the invention; FIG. 6 is a diagrammatic sectional side view of a sixth exemplary embodiment of the semiconductor component according to the invention; FIG. 7 is a graph of an emission spectrum of a blue-light-radiating semiconductor body with a layer sequence based on GaN; FIG. 8 is a graph of the emission spectra of two semiconductor components according to the invention which radiate white light; FIG. 9 is a diagrammatic sectional view taken through a semiconductor body which emits blue light; FIG. 10 is a diagrammatic sectional side view of a seventh exemplary embodiment of the semiconductor component according to the invention; FIG. 11 is a graph of an emission spectrum of a semiconductor component according to the invention which radiates polychromatic red light; FIG. 12 is a graph of the emission spectra of further semiconductor components according to the invention which radiate white light; FIG. 13 is a diagrammatic sectional side view of an eighth exemplary embodiment of the semiconductor component according to the invention; and FIG. 14 is a diagrammatic sectional side view of a ninth exemplary embodiment of the semiconductor component according to the invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be had to the figures of the drawing in detail, in which identical or functionally identical parts are designated by the same reference symbols throughout, and first, particularly, to FIG. 1 thereof. The light-emitting semiconductor component illustrated in FIG. 1, a semiconductor body 1 has a back-side contact 11, a front-side contact 12 and a layer sequence 7, which is composed of a number of different layers and has at least one active zone which emits a radiation (for example ultraviolet, blue or green) during the operation of the semiconductor component. An example of a suitable layer sequence 7 for this and for all of the exemplary embodiments described below is shown in FIG. 9. There, a layer sequence made of an AlN or GaN layer 19, an n-conducting GaN layer 20, an n-conducting GxAl1−xN or GaxIn1−xN layer 21, a further n-conducting GaN or a GaxIn1−xN layer 22, a p-conducting GaxAl1−xN layer or GaxIn1−xN layer 23 and a p-conducting GaN layer 24 is applied on a substrate 18 composed of SiC, for example. A respective contact metallization layer 27, 28 is applied on a main surface 25 of the p-conducting GaN layer 24 and a main surface 26 of the substrate 18, said contact metallization layer being composed of a material which is conventionally used for electrical contacts in opto-semiconductor technology. However, it is also possible to use any other semiconductor body deemed to be suitable by those skilled in this art for the semiconductor component according to the invention. This likewise applies to all of the exemplary embodiments described below. In the exemplary embodiment of FIG. 1, the semiconductor body 1 is fixed by its back-side contact 11 on a first electrical terminal 2 by means of an electrically conductive bonding agent, for example a metallic solder of an adhesive. The front-side contact 12 is connected to a second electrical terminal 3 by means of a bonding wire 14. The free surfaces of the semiconductor body 1 and partial regions of the electrical terminals 2 and 3 are directly enclosed by a luminescence conversion encapsulation 5. The latter is preferably composed of a transparent plastic (preferably epoxy resin or else polymethyl methacrylate) which can be used for transparent light-emitting diode encapsulations and is treated with luminescent material 6, preferably inorganic luminescent material, for white-light-emitting components, preferably Y3Al5O12:Ce3+(YAG:Ce). The exemplary embodiment of a semiconductor -component according to the invention which is illustrated in FIG. 2 differs from that of FIG. 1 by the fact that the semiconductor body 1 and partial regions of the electrical terminals 2 and 3 are enclosed by a transparent encapsulation 15 instead of by a luminescence conversion encapsulation. This transparent encapsulation 15 does not effect any wavelength change in the radiation emitted by the semiconductor body 1 and is composed, for example, of an epoxy, silicone or acrylate resin which is conventionally used in light-emitting diode technology, or of another suitable radiation-transmissive material, such as inorganic glass, for example. A luminescence conversion layer 4 is applied to the transparent encapsulation 15 and, as illustrated in FIG. 2, covers the entire surface of the encapsulation 15. It is likewise conceivable for the luminescence conversion layer 4 to cover only a partial region of this surface. The luminescence conversion layer 4 is composed, For example, once again of a transparent plastic (for example epoxy resin, resist or polymethyl methacrylate) which is treated with a luminescent material 6. in this case, too, YAG:Ce is preferably suitable as luminescent material for a white-light-emitting semiconductor component. This exemplary embodiment has the particular advantage that the path length through the luminescence conversion element is approximately the same size for all of the radiation emitted by the semiconductor body. This is important particularly when, as is often the case, the exact hue of the light radiated by the semiconductor component depends on this path length. For improved output coupling of the light from the luminescence conversion layer 4 of FIG. 2, a covering 29 (depicted by a broken line) in the form of a lens can be provided on a side surface of the component, which covering reduces total reflection of the radiation within the luminescence conversion layer 4. This covering 29 in the form of a lens may be composed of transparent plastic or glass and be bonded, for example, onto the luminescence conversion layer 4 or be designed directly as the component part of the luminescence conversion layer 4. In the exemplary embodiment illustrated in FIG. 3, the first and second electrical terminals 2, 3 are embedded n an opaque, possibly prefabricated base housing 8 having a recess 9. “Prefabricated” is to be understood to mean that the base housing 8 is already preconstructed on the connections 2, 3, for example by means of injection molding, before the semiconductor body is mounted on to the connection 2. The base housing 8 is composed for example of an opaque plastic and the. recess 9 is designed, in respect of its shape, as a reflector 17 for the radiation emitted by the semiconductor body during operation (if appropriate by suitable coating of the inner walls of the recess 9). Such base housings 8 are used in particular in the case of light-emitting diodes which can be surface-mounted on printed circuit boards. They are applied to a lead frame having the electrical terminals 2, 3, for example by means of injection molding, prior to the mounting of the semiconductor bodies. The recess 9 is covered by a luminescence conversion layer 4, for example a separately produced covering plate 17 made of plastic which is fixed on the base housing 8. Suitable materials for the luminescence conversion layer 4 are once again, as mentioned further above in the general part of the description, the plastics or inorganic glass in conjunction with the luminescent materials mentioned there. The recess 9 may either be filled with a transparent plastic, with an inorganic glass or with gas or else be provided with a vacuum. As in the case of the exemplary embodiment according to FIG. 2, a covering 29 (depicted by a broken line) in the form of a lens can be provided on the luminescence conversion layer 4 in this case as well, for improved output coupling of the light from said luminescence conversion layer, which covering reduces total reflection of the radiation within the luminescence conversion layer 4. This covering 29 may be composed of transparent plastic and be bonded, for example, onto the luminescence conversion layer 4 or be designed integrally together with the luminescence conversion layer 4. In a particularly preferred embodiment, the recess 9 is filled, as shown in FIG. 10, with an epoxy resin provided with luminescent material, that is to say with a luminescence encapsulation 5 which forms the luminescence conversion element. A covering plate 17 and/or a covering 29 in the form of a lens can then be omitted as well. Furthermore, as illustrated in FIG. 13, the first electrical terminal 2 is optionally designed as a reflector well 34 for example by embossing in the region of the semiconductor body 1, which reflector well is filled with a luminescence conversion encapsulation 5. In FIG. 4, a so-called radial diode is illustrated as a further exemplary embodiment. In this case, the semiconductor body 1 is fixed in a part 16, designed as a reflector, of the first electrical terminal 2 by means of soldering or bonding, for example. Such housing designs are known in light-emitting diode technology and, therefore, need not be explained in any further detail. In the exemplary embodiment of FIG. 4, the semiconductor body 1 is surrounded by a transparent encapsulation 15 which, as in the case of the second exemplary embodiment mentioned (FIG. 2), does not effect any wavelength change in the radiation emitted by the semiconductor body 1 and may be composed, for example, of a transparent epoxy resin which is conventionally used in light-emitting diode technology or of organic glass. A luminescence conversion layer 4 is applied on this transparent encapsulation 15. Suitable materials for this are, for example, once again, as referred to in connection with the above-mentioned exemplary embodiments, the plastics or inorganic glass in conjunction with the dyes mentioned there. The entire structure, comprising semiconductor body 1, partial regions of the electrical terminals 2, 3, transparent encapsulation 15 and luminescence conversion layer 4, is directly enclosed by a further transparent encapsulation 10, which does not effect any wavelength change in the radiation which has passed through the luminescence conversion layer 4. It is composed, for example, once again of a transparent epoxy resin which is conventionally used in light-emitting diode technology or of inorganic glass. The exemplary embodiment shown in FIG. 5 differs from that of FIG. 4 essentially by the fact that the free surfaces of the semiconductor body 1 are directly covered by a luminescence conversion encapsulation 5, which is again surrounded by a further transparent encapsulation 10. FIG. 5 illustrates, moreover, by way of example, a semiconductor body 1 in which, instead of the underside contacts, a further contact is provided on the semiconductor layer sequence 7, which further contact is connected to the associated electrical terminal 2 or 3 by means of a second bonding wire 14. It goes without saying that such semiconductor bodies 1 can also be used in all the other exemplary embodiments described herein. Conversely, of course, a semiconductor body 1 in accordance with the above-mentioned exemplary embodiments can also be used in the exemplary embodiment of FIG. 5. For the sake of completeness, let it be noted at this point that an integral luminescence conversion encapsulation 5, which then replaces the combination of luminescence conversion encapsulation 5 and further transparent encapsulation 10, can, of course, also be used in the design according to FIG. 5 in an analogous manner to the exemplary embodiment according to FIG. 1. In the case of the exemplary embodiment of FIG. 6, a luminescence conversion layer 4 (possible materials as specified above) is applied directly to the semiconductor body 1. The latter and partial regions of the electrical terminals 2, 3 are enclosed by a further transparent encapsulation 10, which does not effect any wavelength change in the radiation which has passed through the luminescence conversion layer 4, and is fabricated for example from a transparent epoxy resin which can be used in light-emitting diode technology or from glass. Such semiconductor bodies 1 provided with a luminescence conversion layer 4 and not having an encapsulation can, of course, advantageously be used in all housing designs known from light-emitting diode technology (for example SMD housings, radial housings (cf. FIG. 5)). In the case of the exemplary embodiment of a semiconductor component according to the invention which is illustrated in FIG. 14, a transparent well part 35 is arranged on the semiconductor body 1 and has a well 36 above the semiconductor body 1. The well part 35 is composed for example of transparent epoxy resin or of inorganic glass and is fabricated for example by means of injection-molding encapsulation of the electrical terminals 2, 3 including semiconductor body 1. Arranged in this well 36 is a luminescence conversion layer 4, which, for example, is once again fabricated from epoxy resin or inorganic glass in which are bound particles 37, composed of one of the above-mentioned inorganic luminescent materials. In the case of this design, it is advantageously ensured in a very simple manner that the luminescent material accumulates at unintended locations, for example next to the semiconductor body, during the production of the semiconductor component. Of course, the well part 35 can also be produced separately and be fixed in a different way, for example on a housing part, above the semiconductor body 1. In all of the exemplary embodiments described above, it is possible, in order to optimize the color perception of the radiated light and also in order to adapt the radiation characteristic, for the luminescence conversion element (luminescence conversion encapsulation 5 or luminescence conversion layer 4), if appropriate the transparent encapsulation 15, and/or if appropriate the further transparent encapsulation 10 to have light-diffusing particles, advantageously so-called diffusers. Examples of such diffusers are mineral fillers, in particular CaF2, TiO2, SiO2, CaCO3 or BaSO4 or else organic pigments. These materials can be added in a simple manner to the above-mentioned plastics. FIGS. 7, 8 and 12 respectively show emission spectra of a blue-light-radiating semiconductor body (FIG. 7) (luminescence maximum at λ≈430 nm) and of white-light-emitting semiconductor components according to the invention which are produced by means of such a semiconductor body (FIGS. 8 and 12). The wavelength 1 in nm is plotted in each case on the abscissa and a relative electroluminescence (EL) intensity is in each case plotted on the ordinate. Only part of the radiation emitted by the semiconductor body according to FIG. 7 is converted into a wavelength range of longer wavelength, with the result that white light is produced as mixed color. The dashed line 30 in FIG. 8 represents an emission spectrum of a semiconductor component according to the invention which emits radiation from two complementary wavelength ranges (blue and yellow) and hence white light overall. In this case, the emission spectrum has a respective maximum at wavelengths of between approximately 400 and approximately 430 nm (blue) and of between approximately 550 and approximately 580 nm (yellow) . The solid line 31 represents the emission spectrum of a semiconductor component according to the invention which mixes the color white from three wavelength ranges (additive color triad formed from blue, green and red). In this case, the emission spectrum has a respective maximum for example at the wavelengths of approximately 430 nm (blue), approximately 500 nm (green) and approximately 615 nm (red). Furthermore, FIG. 11 illustrates an emission spectrum of a semiconductor component according to the invention which radiates polychromatic light comprising blue light (maximum at a wavelength of approximately 470 nm) and red light (maximum at a wavelength of approximately 620 nm). The overall color perception of the radiated light for the human eye is magenta. The emission spectrum radiated by the semiconductor body in this case corresponds once again to that of FIG. 7. FIG. 12 shows a white-light-emitting-semiconductor component according to the invention which is provided with a semiconductor body emitting an emission spectrum in accordance with FIG. 7 and in which YAG:Ce is used as the luminescence material. Only part of the radiation emitted by the semiconductor body in accordance with FIG. 7 is converted into a wavelength range of longer wavelength, with the result that white light is produced as the mixed color. The differently dashed lines 30 to 33 of FIG. 12 represent emission spectra of semiconductor components according to the invention in which the luminescence conversion element, in this case a luminescence conversion encapsulation made of epoxy resin, has different YAG:Ce concentrations. Each emission spectrum has a respective intensity maximum between λ=420 nm and λ=430 nm, that is to say in the blue spectral region and between λ=520 nm and λ=545 nm, that is to say in the green spectral region, the emission bands having the longer-wavelength intensity maximum largely lying in the yellow spectral region. The diagram of FIG. 12 makes it clear that in the semiconductor component according to the invention, the CIE color locus of the white light can be altered in a simple manner by alteration of the luminescent material concentration in the epoxy resin. Furthermore, it is possible to apply inorganic luminescent materials based on Ce-doped garnets, thiogallates, alkaline earth metal sulfides and aluminates directly to the semiconductor body, without dispersing them in epoxy resin or glass. A further particular advantage of the above-mentioned inorganic luminescent materials results from the fact that, unlike in the case of organic dyes, the luminescent material concentration e.g. in the epoxy resin is not limited by the solubility. As a result, large thicknesses of luminescence conversion elements are not necessary. The explanation of the semiconductor component according to the invention using the exemplary embodiments described above ought not, of course, to be regarded as a restriction of the invention thereto. For example, a polymer LED emitting a corresponding radiation spectrum may also be understood as semiconductor body, such as, for example, light-emitting diode chips or laser diode chips.
<SOH> BACKGROUND OF THE INVENTION <EOH>
<SOH> SUMMARY OF THE INVENTION <EOH>It is accordingly an object of the invention to provide a light-radiating semiconductor component, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which radiates homogeneous polychromatic light and ensures technically simple mass production with component characteristics that are reproducible to the greatest possible extent. With the foregoing and other objects in view there is provided, in accordance with the invention, a light-radiating semiconductor component, comprising: a semiconductor body emitting electromagnetic radiation during an operation of the semiconductor component, the semiconductor body having a semiconductor layer sequence suitable for emitting electromagnetic radiation of a first wavelength range selected from a spectral region consisting of ultraviolet, blue, and green; a first electrical terminal and a second electrical terminal each electrically conductively connected to the semiconductor body; and a luminescence conversion element with at least one luminescent material, the luminescence conversion element converting a radiation originating in the first wavelength range into radiation of a second wavelength range different from the first wavelength range, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the second wavelength range. The invention provides for the radiation-emitting semiconductor body to have a layer sequence, in particular a layer sequence with an active semiconductor layer made of Ga x In 1−x N or Ga x Al 1−x N, which emits an electromagnetic radiation of a first wavelength range from the ultraviolet, blue and/or green spectral region during operation of the semiconductor component. The luminescence conversion element converts part of the radiation originating from the first wavelength range into radiation of a second wavelength range, in such a way that the semiconductor component emits polychromatic radiation, in particular polychromatic light, comprising radiation of the first wavelength range and radiation of the second wavelength range. This means, for example, that the luminescence conversion element spectrally selectively absorbs part of the radiation emitted by the semiconductor body, preferably only over a spectral subregion of the first wavelength range, and emits it in the region of longer wavelength (in the second wavelength range). Preferably, the radiation emitted by the semiconductor body has a relative intensity maximum at a wavelength λ≦520 nm and the wavelength range which is spectrally selectively absorbed by the luminescence conversion element lies outside this intensity maximum. In accordance with an added feature of the invention, the luminescence conversion element converts radiation of the first wavelength range into radiation of a plurality of second wavelength ranges from mutually different spectral subregions, such that the semiconductor component emits polychromatic radiation comprising radiation of the first wavelength range and radiation of the plurality of second wavelength ranges. In other words, the invention advantageously makes it possible also to convert a number (one or more) of first spectral subregions originating from the first wavelength range into a plurality of second wavelength ranges. As a result, it is possible to produce diverse color mixtures and color temperatures. The semiconductor component according to the invention has the particular advantage that the wavelength spectrum generated by way of luminescence conversion and hence the color of the radiated light do not depend on the level of the operating current intensity through the semiconductor body. This has great significance particularly when the ambient temperature of the semiconductor component and, consequently, as is known, also the operating current intensity greatly fluctuate. Especially light-emitting diodes having a semiconductor body based on GaN are very sensitive in this respect. In addition, the semiconductor component according to the invention requires only a single driving voltage and, as a result, also only a single driving circuit configuration, whereby the outlay on-devices for the driving circuit of the semiconductor component can be kept very low. In accordance with an additional feature of the invention, the semiconductor component has a defined main radiating direction, and the luminescence conversion element is disposed substantially downstream of the semiconductor body in the main radiating direction of the semiconductor component. In accordance with another feature of the invention, the luminescence conversion element is at least one luminescence conversion layer disposed in a vicinity of the semiconductor body. In this particularly preferred embodiment of the invention, a partially transparent luminescence conversion layer, that is to say one which is partially transparent to the radiation emitted by the radiation-emitting semiconductor body, is provided as the luminescence conversion element above or on the semiconductor body. In order to ensure a uniform color of the radiated light, the luminescence conversion layer is advantageously designed in such a way that has a constant thickness throughout. This has the particular advantage that the path length of the light radiated by the semiconductor body through the luminescence conversion layer is virtually constant for all radiation directions. The effect that can be achieved as a result of this is that the semiconductor component radiates light of the same color in all directions. A further particular advantage of a semiconductor component according to the invention in accordance with this development consists in the fact that a high degree of reproducibility can be obtained in a simple manner, which is of considerable significance for efficient mass production. A resist or resin layer treated with luminescent material may be provided, for example, as the luminescence conversion layer. In accordance with a further feature of the invention, the luminescence conversion element is a luminescence conversion encapsulation enclosing at least a part of the semiconductor body and partial regions of the first and second electrical terminals. The encapsulation is partially transparent and encloses at least part of the semiconductor body (and possibly partial regions of the electrical terminals) and can simultaneously be utilized as component encapsulation (housing). The advantage of a semiconductor component in accordance with this embodiment consists essentially in the fact that conventional production lines used or the production of conventional light-emitting diodes (for example radial light-emitting diodes) can be utilized for its production. The material of the luminescence conversion encapsulation is used for the component encapsulation instead of the transparent plastic which is used for this purpose in conventional light-emitting diodes. In further advantageous embodiments of the semiconductor component according to the invention and of the two preferred embodiments mentioned above, the luminescence conversion layer or the luminescence conversion encapsulation is composed of a transparent material, for example plastic, preferably epoxy resin, which is provided with at least one luminescent material (examples of preferred plastics and luminescent materials will be found further below). In this way, it is possible to produce luminescence conversion elements in a particularly cost-effective manner. Specifically, the requisite process steps can be integrated in conventional production lines for light-emitting diodes with no major outlay. In accordance with again an added feature of the invention, the second wavelength range includes wavelengths at least some of which are longer than wavelengths of the first wavelength range. In accordance with again an additional feature of the invention, the semiconductor body is adapted to emit ultraviolet radiation during operation of the semiconductor component, and the luminescence conversion element converts at least a portion of the ultraviolet radiation into visible light. In accordance with again another feature of the invention, the first wavelength range and the second wavelength range of the polychromatic radiation lie at least partially in mutually complementary-color spectral regions, and a combination of radiation from the first and second wavelength range results in white light. When the second spectral subregion of the first wavelength range and a second wavelength range are complementary to one another, it is possible to produce polychromatic, in particular white, light from a single colored light source, in particular a light-emitting diode having a single blue-light-radiating semiconductor body. In order, for example, to produce white light with a blue-light-emitting semiconductor body, part of the radiation from the blue spectral region emitted by the semiconductor body is converted into the yellow spectral region, which is complementarily colored with respect to blue. The color temperature or color locus of the white light can in this case be varied by a suitable choice of the luminescence conversion element, in particular by a suitable choice of the luminescent material, its particle size and its concentration. Furthermore, these arrangements also advantageously afford the possibility of using luminescent material mixtures, as a result of which, advantageously, the desired hue can be set very accurately. Likewise, it is possible to configure luminescence conversion elements inhomogeneously, for example by means of inhomogeneous Luminescent material distribution. Different path lengths of the light through the luminescence conversion element can advantageously be compensated for as a result of this. In accordance with again a further feature of the invention, the first wavelength range emitted by the semiconductor body and two second wavelength ranges produce an additive color triad, such that white light is radiated by the semiconductor component during operation thereof. In a further preferred embodiment of the semiconductor component according to the invention, the luminescence conversion element or another constituent of a component encapsulation has, for the purpose of color matching, one or more dyes which do not effect wavelength conversion. For this purpose, it is possible to use the dyes which are used for the production of conventional light emitting diodes, such as, for example, azo, anthraquinone or perinone dyes. In order to protect the luminescence conversion element against an excessively high radiation load, in an advantageous development or in the above-mentioned preferred embodiments of the semiconductor component according to the invention, at least part of the surface of the semiconductor body is surrounded by a first, transparent casing composed, for example, of a plastic, on which casing the luminescence conversion layer is applied. This reduces the radiation density in the luminescence conversion element and, consequently, the radiation load thereof, which, depending on the materials used, has a positive effect on the life of the luminescence conversion element. In accordance with yet an added feature of the invention, the radiation emitted by the semiconductor body has a luminescence intensity maximum in a blue spectral region at a wavelength selected from the group consisting of λ=430 nm and λ=450 nm. The preferred radiation-emitting semiconductor body has a radiation spectrum with an intensity maximum at a wavelength of between 420 nm and 460 nm, in particular at 430 nm (for example semiconductor body based on Ga x Al 1−x N) or 450 nm (for example semiconductor body based on Ga x In 1−x N). It is advantageous that virtually all colors and mixed colors of the C.I.E. chromaticity diagram can be produced by such a semiconductor component according to the invention. in this case, as specified above, the radiation-emitting semiconductor body may essentially be composed of electroluminescent semiconductor material, but also of a different electroluminescent material, such as polymer material, for example. In accordance with yet an additional feature of the invention, an opaque base housing is formed with a recess, and wherein the semiconductor body is disposed in the recess of the base housing, and including a covering layer having a luminescence conversion layer on the recess. Alternatively, the recess is at least partially filled with the luminescence conversion element. In accordance with yet another feature of the invention, the luminescence conversion element comprises a plurality of layers with mutually different wavelength conversion properties. In accordance with yet a further feature of the invention, the luminescence conversion element includes organic dye molecules in a plastic matrix, such as in a matrix of silicone, thermoplastic material, or thermosetting plastic material. The luminescence conversion element may also have organic dye molecules in an epoxy resin matrix or a polymethyl methacrylate matrix. In accordance with yet again an added feature of the invention, the luminescence conversion element has at least one inorganic luminescence material selected from the group of phosphors. The inorganic luminescent material is preferably from the group of Ce-doped garnets, such as YAG:Ce. In accordance with yet again an additional feature of the invention, the inorganic luminescent material is embedded in an epoxy resin matrix. It may also be embedded in a matrix formed of inorganic glass with a relatively low melting point. Preferably, the inorganic luminescent material has a mean particle size of approximately 10 μm. In accordance with yet again another feature of the invention, the luminescence conversion element is provided with a plurality of mutually different materials selected from the group consisting of organic and inorganic luminescent materials. The luminescence conversion element may include organic or inorganic dye molecules partly with and partly without a wavelength conversion effect. In accordance with yet again a further feature of the invention, the luminescence conversion element includes light-diffusing particles. The component may also have a transparent encapsulation with light-diffusing particles. In accordance with again an added feature of the invention, the luminescence conversion element comprises at least one luminescent 4f-organometallic compound. A blue output -radiation is obtained if, in accordance with the invention, the luminescence conversion element includes a luminescent material that is luminescent in a blue region. The encapsulation may thereby be transparent with a blue luminescent material. As noted, the luminescence conversion encapsulation or the luminescence conversion layer may be produced from a resist or from a plastic, for example from a silicone, thermoplastic or thermosetting plastic material (epoxy and acrylate resins) used for the encapsulation of optoelectronic components. Furthermore, covering elements fabricated from thermoplastic materials, for example, can be used as the luminescence conversion encapsulation. All the above-mentioned materials can be treated with one or more luminescent materials in a simple manner. A semiconductor component according to the invent-on can be realized in a particularly simple manner when the semiconductor body is arranged in a recess in an optionally prefabricated housing and the recess is provided with a covering element having the luminescence conversion layer. A semiconductor component of this type can be produced in large numbers in conventional production lines. For this purpose, all that is necessary, after the mounting of the semiconductor body in the housing, is to apply the covering element, for example a resist or casting resin layer or a prefabricated covering plate made of thermoplastic material, to the housing. Optionally, the recess in the housing may be filled with a transparent material, for example a transparent plastic, which does not alter in particular the wavelength of the light emitted by the semiconductor body or, however, if desired, may already be designed such that it effects luminescence conversion. In a development of the semiconductor component according to the invention which is particularly preferred on account of the fact that it can be realized in a particularly simple manner, the semiconductor body is arranged in a recess in a housing which is optionally prefabricated and may already be provided with a lead frame and the recess is filled with an at least partially transparent casting resin, to which the luminescent material has already been added prior to the recess being sealed by casting. In this case, the luminescence conversion element is consequently provided by the potting of the semiconductor body that is provided with luminescent material. A particularly preferred material for the production of the luminescence conversion element is epoxy resin, to which one or more. luminescent materials are added. However, it is also possible to use polymethyl methacrylate (PMMA) instead of epoxy resin. PMMA can be treated with organic dye molecules in a simple manner. Perylene-based dye molecules, for example, can be used to produce green-, yellow- and red-light-emitting semiconductor components according to the invention. Semiconductor components which emit light in the UV, visible or infrared region can also be produced by admixture of 4f-organometallic compounds. In particular, red-light-emitting semiconductor components according to the invention can be realized for example by admixture of Eu 3+ -based organometallic chelates (λ≈620 nm). Infrared-radiating semiconductor components according to the invention, in particular having blue-light-emitting semiconductor bodies, can be produced by admixture of 4f-chelates or of Ti 3+ -doped sapphire. A white-light-radiating semiconductor component according to the invention can advantageously be produced by choosing the luminescent material such that a blue radiation emitted by the semiconductor body is converted into complementary wavelength ranges, in particular blue and yellow, or to form additive color triads, for example blue, green and red. In this case, the yellow or the green and red light is produced by means of the luminescent materials. The hue (color locus in the CIE chromaticity diagram) of the white light thereby produced can in this case be varied by a suitable choice of the dye/s in respect of mixture and concentration. Suitable organic luminescent materials for a white-light-radiating semiconductor component according to the invention are perylene luminescent materials, such as, for example, BASF Lumogen F 083 for green luminescence, BASF Lumogen F 240 for yellow luminescence and BASF Lumogen F 300 for red luminescence. These dyes can be added to transparent epoxy resin, for example, in a simple manner. A preferred method for producing a green-light-emitting semiconductor component using a blue-light-radiating semiconductor body consists in using UO 2 ++ -substituted borosilicate glass for the luminescence conversion element. In a further preferred development of a semiconductor component according to the invention and of the advantageous embodiments specified above, light-diffusing particles, so-called diffusers, are additionally added to the luminescence conversion element or to another radiation-transmissive component of the component encapsulation. The color perception and the radiation characteristics of the semiconductor component can advantageously be optimized by this means. In a particularly advantageous embodiment of the semiconductor component according to the invention, the luminescence conversion element is at least partially composed of a transparent epoxy resin provided with an inorganic luminescent material. Specifically, it is advantageous that inorganic luminescent materials can be bound in epoxy resin in a simple manner. A particularly preferred inorganic luminescent material for the production of white-light-emitting semiconductor components according to the invention is the phosphor YAG:Ce (Y 3 Al 5 O 12 :Ce 3+ ). The latter can be mixed in a particularly simple manner in transparent epoxy resins which are conventionally used in LED technology. Other conceivable luminescent materials are further garnets doped with rare earths, such as, for example, Y 3 Ga 5 O 12 :Ce 3+ , Y(Al,Ga) 5 O 12 :Ce 3+ and Y(Al,Ga) 5 O 12 :Tb 3+ , as well as alkaline earth metal sulfides doped with rare earths, such as, for example, SrS:Ce 3+ , Na, SrS:Ce 3+ , Cl, Srs:CeCl 3 , CaS:Ce 3+ and SrSe:Ce 3+ . Furthermore, the thiogallates doped with rare earths, such as, for example, CaGa 2 S 4 :Ce 3+ and SrGa 2 S 4 :Ce 3+ , are particularly suitable for the purpose of producing differently polychromatic light. The use of aluminates doped with rare earths, such as, for example, YAlO 3 :Ce 3+ , YGaO 3 :Ce 3+ , Y(Al,Ga)O 3 :Ce 3+ , and orthosilicates M 2 SiO 5 :Ce 3+ (M:Sc, Y, Sc) doped with rare earths, such as, for example, Y 2 SiO 5 :Ce 3+ , is likewise conceivable for this purpose. In all of the yttrium compounds, the yttrium can, in principle, also be replaced by scandium or lanthanum. In a further possible embodiment of the semiconductor component according to the invention, at least all those components of the encapsulation through which light is radiated, that is to say including the luminescence conversion encapsulation or layer, are composed of purely inorganic materials. Consequently, the luminescence conversion element is composed of an inorganic luminescent material which is embedded in a thermally stable, transparent or partially transparent inorganic material. In particular, the luminescence conversion element is composed of an inorganic phosphor, which is embedded in an inorganic glass advantageously of low melting point (for example silicate glass). A preferred procedure for producing a luminescence conversion layer of this type is the sol gel technique, by means of which the entire luminescence conversion layer, that is to say both the inorganic luminescent material and the embedding material, can be produced in one work operation. In order to improve the thorough mixing of the radiation of the first wavelength range that is emitted by the semiconductor body with the luminescence-converted radiation of the second wavelength range and hence the color homogeneity of the radiated light, in an advantageous refinement of the semiconductor component according to the invention, a dye which emits light in the blue region is additionally added to the luminescence encapsulation or the luminescence conversion layer and/or to another component of the component encapsulation, which dye attenuates a so-called directional characteristic of the radiation radiated by the semiconductor body. Directional characteristic is to be understood to mean that the radiation emitted by the semiconductor body has a preferred radiation direction. In a preferred refinement of the semiconductor component according to the invention, the inorganic luminescent material is used in powder form for the above-mentioned purpose of thorough mixing of the emitted radiation, the luminescent material particles not dissolving in the substance (matrix) encapsulating them. In addition, the inorganic luminescent material and the substance encapsulating it have mutually different refractive indices. This advantageously leads to a portion of the light which is not absorbed by the luminescent material being scattered, in a manner dependent on the particle size of the luminescent material. The directional characteristic of the radiation radiated by the semiconductor body is thereby efficiently attenuated, with the result that the unabsorbed radiation and the luminescence-converted radiation are homogeneously mixed, which leads to a spatially homogeneous color perception. A white-light-radiating semiconductor component according to the invention can particularly preferably be realized by admixing the inorganic luminescent material YAG:Ce (Y 3 Al 5 O 12 :Ce 3+ ) with an epoxy resin used to produce the luminescence conversion encapsulation or layer. Part of a blue radiation emitted by the semiconductor body is shifted by the inorganic luminescent material Y 3 Al 5 O 12 :Ce 3+ into the yellow spectral region and, consequently, into a wavelength range which is complementarily colored with respect to the color blue. The hue (color locus in the CIE chromaticity diagram) of the white light can in this case be varied by a suitable choice of the dye mixture and concentration. The inorganic luminescent material YAG:Ce has, inter alia, the particular advantage that insoluble coloring pigments (particle size in the region of 10 mm) having a refractive index of approximately 1.84 are involved in this case. Consequently, not only does the wavelength conversion occur but also a scattering effect which leads to good mixing together of blue diode radiation and yellow converter radiation. In a further preferred development of a semiconductor component according to the invention and of the advantageous embodiments specified above, light-diffusing particles, so-called diffusers, are additionally added to the luminescence conversion element or to another radiation-transmissive component of the component encapsulation. The color perception and the radiation characteristic of the semiconductor component can advantageously be further improved by this means. It is particularly advantageous that the luminous efficiency of white-light-emitting semiconductor components according to the invention and their above-mentioned embodiments having a blue-light-emitting semiconductor body produced essentially on the basis of GaN is comparable with the luminous efficiency of an incandescent bulb. The reason for this is that, on the one hand, the external quantum efficiency of such semiconductor bodies is a few percent and, on the other hand, the luminescence efficiency of organic dye molecules is often established at more than 90%. Furthermore, the semiconductor component according to the invention is distinguished by an extremely long life, greater robustness and a smaller operating voltage in comparison with the incandescent bulb. It is advantageous, moreover, that the luminosity of the semiconductor component according to the invention that is perceptible to the human eye can be distinctly increased by comparison with a semiconductor component which is not equipped with the luminescence conversion element but is otherwise identical, since the sensitivity of the eye increases in the direction of a higher wavelength. Furthermore, the principle according to the invention can advantageously be used also to convert an ultraviolet radiation which is emitted by the semiconductor body in addition to the visible radiation into visible light. The luminosity of the light emitted by the semiconductor body is thereby distinctly increased. The concept, presented here, of luminescence conversion with blue light from a semiconductor body can advantageously be extended to multistage luminescence conversion elements as well, in accordance with the scheme ultraviolet→blue→green→yellow→red. In this case, a plurality of spectrally selectively emitting luminescence conversion elements are arranged one after the other relative to the semiconductor body. Likewise, it is advantageously possible for a plurality of differently spectrally selectively emitting dye molecules to be jointly embedded in a transparent plastic of a luminescence conversion element. A very broad color spectrum can be produced by this means. A particular advantage of white-light-radiating semiconductor components according to the invention in which YAG:Ce, in particular, is used as the luminescence conversion dye consists in the fact that this luminescent material, upon excitation-by blue light, effects a spectral shift of approximately 100 nm between absorption and emission. This leads to a significant reduction in the reabsorption of the light emitted by the luminescent material and hence to a higher luminous efficiency. In addition, YAG:Ce advantageously has high thermal and photochemical (for example UV) stability (significantly higher than organic luminescent materials), with the result that it is even possible to produce white-light-emitting diodes for outdoor use and/or high temperature ranges. YAG:Ce has, to date, proved to be the best-suited luminescent material in respect of reabsorption, luminous efficiency, thermal and photochemical stability and processability. However, the use of other Ce-doped phosphors is also conceivable, in particular of Ce-doped garnets. In a particularly advantageous manner, semiconductor components according to the invention can be used, in particular on account of their low power consumption, in full-color LED displays for the lighting of motor vehicle interiors or of aircraft cabins as well as for the illumination of display devices such as motor vehicle dashboards or liquid crystal displays. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a light-radiating semiconductor component having a luminescence conversion element, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
20041102
20061219
20050616
60481.0
2
JACKSON JR, JEROME
LIGHT-RADIATING SEMICONDUCTOR COMPONENT WITH A LUMINESCENCE CONVERSION ELEMENT
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,979,848
ACCEPTED
Multilayer hydrodynamic sheath flow structure
A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
1. A sheath flow structure for suspending a particle in a sheath fluid, comprising: a primary sheath flow channel for conveying a sheath fluid; a sample inlet for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel; a primary focusing region for focusing the sheath fluid around the particle in at least a first direction; and a secondary focusing region provided downstream of the primary focusing region for focusing the sheath fluid around the particle in at least a second direction different from the first direction. 2. The sheath flow structure of claim 1, wherein the primary focusing region focuses the sheath fluid and particle away from a first side wall, a second side wall and a third side wall of the primary sheath flow channel. 3. The sheath flow structure of claim 2, wherein the secondary focusing region focuses the sheath fluid and particle away from a fourth side wall of the primary sheath flow channel. 4. The sheath flow structure of claim 3, wherein the fourth side is a top wall of the primary sheath flow channel. 5. The sheath flow structure of claim 1, wherein the primary focusing region is formed by tapering the primary sheath flow channel in a direction along which fluid flows therethrough. 6. The sheath flow structure of claim 1, wherein the secondary focusing region injects sheath fluid into the primary sheath flow channel to focus the sheath fluid around the particle. 7. The sheath flow structure of claim 6, wherein the secondary focusing region comprises a first secondary sheath channel for conveying a secondary sheath fluid. 8. The sheath flow structure of claim 7, wherein the secondary focusing region further comprises a second secondary sheath channel for conveying the secondary sheath fluid, the first secondary sheath channel provided on a first side of the primary sheath flow channel and the second secondary sheath channel provided on a second side of the primary sheath flow channel. 9. The sheath flow structure of claim 7, wherein the first secondary sheath channel has an inlet that intersects the primary sheath flow channel to divert a portion of the sheath fluid in the primary sheath flow channel into the first secondary sheath channel. 10. The sheath flow structure of claim 7, wherein the first secondary sheath channel has an inlet that is separate from the primary sheath flow channel. 11. The sheath flow structure of claim 1, wherein the primary sheath flow channel divides into a first subchannel and a second subchannel upstream of the primary focusing region. 12. The sheath flow structure of claim 11, wherein the first subchannel and the second subchannel converge in the primary focusing region to surround a particle injected into the primary focusing region with sheath fluid. 13. The sheath flow structure of claim 1, wherein the primary sheath flow channel is a microchannel. 14. The sheath flow structure of claim 1, wherein the sheath flow structure is a microfluidic device. 15. A sheath flow structure for suspending a particle in a sheath fluid, comprising: a first substrate layer including a primary sheath flow channel for conveying a sheath fluid; a second substrate layer stacked on the first substrate layer including a first sheath inlet for introducing a sheath fluid to the primary sheath flow channel, and a sample inlet downstream of the first sheath inlet for providing the particle to the primary sheath flow channel in a primary focusing region to form a sheath flow including the particle surrounded by the sheath fluid on at least one side; and a first secondary sheath channel formed in one of said first substrate layer and said second substrate layer in communication with the primary sheath flow channel, wherein the first secondary sheath channel diverts a portion of said sheath fluid from the primary sheath flow channel. 16. The sheath flow structure of claim 15, wherein the first secondary sheath channel intersects the primary sheath flow channel in a region between said first sheath inlet and said sample inlet. 17. The sheath flow structure of claim 15, wherein the first secondary sheath channel provides the diverted portion of the sheath fluid to a secondary focusing region downstream of the primary focusing region, where the diverted portion of the sheath fluid reenters the primary sheath flow channel to focus the particle within the sheath flow. 18. The sheath flow structure of claim 15, wherein the first secondary sheath channel is formed in the second substrate layer. 19. The sheath flow structure of claim 15, further comprising a second secondary sheath channel for diverting another portion of said sheath fluid from the primary sheath flow channel, the first secondary sheath channel provided on a first side of the primary sheath flow channel and the second secondary sheath channel provided on a second side of the primary sheath flow channel. 20. The sheath flow structure of claim 15, further comprising a secondary focusing region for focusing the sheath flow around the particle. 21. The sheath flow structure of claim 15, wherein the primary focusing region is formed by tapering the primary sheath flow channel in a direction along which fluid flows therethrough. 22. The sheath flow structure of claim 21, wherein the sample inlet intersects a relatively wide portion of the primary sheath flow channel. 23. The sheath flow structure of claim 15, wherein the primary sheath flow channel divides into a first subchannel and a second subchannel upstream of the primary focusing region. 24. The sheath flow structure of claim 21, wherein the first subchannel and the second subchannel converge in the primary focusing region to surround a particle injected into the primary focusing region with sheath fluid. 25. The sheath flow structure of claim 15, wherein the primary sheath flow channel is a microchannel. 26. The sheath flow structure of claim 15, wherein the sheath flow structure is a microfluidic device. 27. A focusing region for focusing a particle suspended in a sheath fluid in a channel of a sheath flow device, comprising: a primary flow channel for conveying a particle suspended in a sheath fluid; and a first secondary flow channel intersecting the primary flow path for injecting sheath fluid into the primary flow channel from above the particle to focus the particle away from a top wall of the primary flow channel. 28. The focusing region of claim 27, further comprising: a second secondary flow channel intersecting the primary flow path on an opposite side from the first secondary flow channel for injecting sheath fluid to focus the particle within the primary flow channel. 29. The focusing region of claim 27, wherein the first secondary flow channel intersects the primary flow channel in a region upstream from a sample inlet for injecting a sample into the sheath fluid in the primary flow channel to divert a portion of the sheath fluid into the first secondary flow channel. 30. The sheath flow structure of claim 27, wherein the primary flow channel is a microchannel. 31. A method of surrounding a particle on at least two sides by a sheath fluid, comprising the steps of: injecting a sheath fluid into a primary sheath flow channel; diverting a portion of the sheath fluid into a branching sheath channel; injecting the particle into the primary sheath flow channel to suspend the particle in the sheath fluid to form a sheath flow; and injecting the diverted portion of the sheath fluid into the sheath flow to focus the particle within the sheath fluid. 32. A method of surrounding a particle on at least two sides by a sheath fluid, comprising the steps of: conveying a sheath fluid through a primary sheath flow channel; injecting a particle into the sheath fluid conveyed through the primary sheath flow channel; focusing the sheath fluid around the particle in at least a first direction; and focusing the sheath fluid around the particle in at least a second direction different from the first direction. 33. A sheath flow system, comprising: a plurality of a sheath flow structures operating in parallel on a substrate, each sheath flow structure comprising: a primary sheath flow channel for conveying a sheath fluid; a sample channel for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel; a primary focusing region for focusing the sheath fluid around the particle in at least a first direction; and a secondary focusing region provided downstream of the primary focusing region for focusing the sheath fluid around the particle in at least a second direction different from the first direction. 34. The sheath flow system of claim 1, further comprising a sample inlet for providing at least one particle to each sample channel in said plurality of sheath flow structures. 35. The sheath flow system of claim 33, further comprising a sheath inlet, the sheath inlet branching into a plurality of branches for providing sheath fluid to each of the primary sheath flow channels in the system. 36. The sheath flow system of claim 34, further comprising at least one sheath fluid inlet for providing sheath fluid to at least one of the primary sheath fluid channels, the sample inlet being provided upstream of the sheath fluid inlet. 37. The sheath flow system of claim 33, wherein each sheath flow structure further comprises a sheath inlet for providing sheath fluid to the primary sheath flow channel. 38. The sheath flow system of claim 33, wherein the system of formed by stacking two microfluidic chips together. 39. The sheath flow system of claim 33, wherein at least one of the primary sheath flow channels comprises a first subchannel and a second subchannel. 40. The sheath flow system of claim 39, wherein the first subchannel and the second subchannel converge in the primary focusing region to suspend a particle injected in the primary focusing region in sheath fluid. 41. The sheath flow system of claim 33, wherein each of the secondary focusing regions injects a secondary sheath fluid into the primary sheath flow channel to focus the particle. 42. The sheath flow system of claim 41, wherein the secondary sheath fluid is provided by diverting a portion of the sheath fluid in the associated primary sheath flow channel into a secondary sheath channel that intersects the primary sheath flow channel in the secondary focusing region.
RELATED APPLICATIONS The present invention claims priority to U.S. Provisional Application Ser. No. 60/516,033, filed Oct. 30, 2003, the contents of which are expressly incorporated by reference. FIELD OF THE INVENTION The present invention relates to a system and method for producing a sheath flow in a flow channel. More particularly, the present invention relates to a system and method for producing a sheath flow in a microchannel in a microfluidic device. BACKGROUND OF THE INVENTION Sheath flow is a particular type of laminar flow in which one layer of fluid, or a particle, is surrounded by another layer of fluid on more than one side. The process of confining a particle stream in a fluid is referred to as a ‘sheath flow’ configuration. For example, in sheath flow, a sheath fluid may envelop and pinch a sample fluid containing a number of particles. The flow of the sheath fluid containing particles suspended therein may be narrowed almost to the outer diameter of particles in the center of the sheath fluid. The resulting sheath flow flows in a laminar state within an orifice or channel so that the particles are lined and accurately pass through the orifice or channel in a single file row. Sheath flow is used in many applications where it is preferable to protect particles or fluids by a layer of sheath fluid, for example in applications wherein it is necessary to protect particles from air. For example, particle sorting systems, flow cytometers and other systems for analyzing a sample, particles to be sorted or analyzed are usually supplied to a measurement position in a central fluid current, which is surrounded by a particle free liquid sheath. Sheath flow is useful because it can position particles with respect to sensors or other components and prevent particles in the center fluid, which is surrounded by the sheath fluid, from touching the sides of the flow channel and thereby prevents clogging of the channel. Sheath flow allows for faster flow velocities and higher throughput of sample material. Faster flow velocity is possible without shredding cells in the center fluid because the sheath fluid protects the cells from shear forces at the walls of the flow channel. Conventional devices that have been employed to implement sheath flow have relatively complex designs and are relatively difficult to fabricate. SUMMARY OF THE INVENTION The present invention provides a microfabricated sheath flow structure for producing a sheath flow for a particle sorting system or other microfluidic system. The sheath flow structure may comprise a two-layer construction including a sheath inlet for introducing a sheath fluid into a primary sheath flow channel and a sample inlet for introducing a sample to the structure. A sample is introduced to the sheath fluid in the primary sheath flow channel via the sample inlet and suspended therein. The primary sheath flow channel may branch at a location upstream of a sample inlet to create a flow in an upper sheath channel. The primary sheath flow channel forms a primary focusing region for accelerating sheath fluid in the vicinity of a sample channel connected to the sample inlet. The sample channel provides the injected sample to the accelerating region, such that the particles are confined in the sheath fluid. The primary focusing region further focuses the sheath fluid around the sample. The sheath flow then flows to a secondary sheath region downstream of the primary accelerating region connects the upper sheath channel to the primary sheath flow channel to further focus the sample in the sheath fluid. The resulting sheath flow forms a focused core of sample within a channel. The sheath flow structure may be parallelized to provide a plurality of sheath flow structures operating in parallel in a single system. The parallelized system may have a single sample inlet that branches into a plurality of sample channels to inject sample into each primary sheath flow channel of the system. The sample inlet may be provided upstream of the sheath inlet. Alternatively, the parallelized system may have multiple sample inlets. The parallelized sheath flow structure may have a single sheath fluid inlet for providing sheath fluid to all of the primary sheath flow channels and/or secondary sheath channels, or multiple sheath fluid inlets for separately providing sheath fluid to the primary sheath flow channels and or secondary sheath channels. According to a first aspect of the invention, a sheath flow structure for suspending a particle in a sheath fluid is provided. The sheath flow structure comprises a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, a primary focusing region for focusing the sheath fluid around the particle in at least a first direction and a secondary focusing region provided downstream of the primary focusing region. The secondary focusing region focuses the sheath fluid around the particle in at least a second direction different from the first direction. According to another aspect of the invention, a sheath flow structure for suspending a particle in a sheath fluid comprises a first substrate layer including a primary sheath flow channel for conveying a sheath fluid and a second substrate layer stacked on the first substrate layer. The second substrate layer includes a first sheath inlet for introducing a sheath fluid to the primary sheath flow channel, a sample inlet downstream of the first sheath inlet for providing the particle to the primary sheath flow channel in a primary focusing region to form a sheath flow including the particle surrounded by the sheath fluid on at least one side. A first secondary sheath channel is formed in the first or second substrate layer in communication with the primary sheath flow channel. The first secondary sheath channel diverts a portion of said sheath fluid from the primary sheath flow channel. According to still another aspect of the invention, a focusing region for focusing a particle suspended in a sheath fluid in a channel of a sheath flow device is provided. The focusing region comprises a primary flow channel for conveying a particle suspended in a sheath fluid and a first secondary flow channel intersecting the primary flow path for injecting sheath fluid into the primary flow channel from above the particle to focus the particle away from a top wall of the primary flow channel. According to another aspect of the invention, a method of surrounding a particle on at least two sides by a sheath fluid, comprises the steps of injecting a sheath fluid into a primary sheath flow channel diverting a portion of the sheath fluid into a branching sheath channel, injecting the particle into the primary sheath flow channel to suspend the particle in the sheath fluid to form a sheath flow and injecting the diverted portion of the sheath fluid into the sheath flow to focus the particle within the sheath fluid. According to another aspect of the invention, a method of surrounding a particle on at least two sides by a sheath fluid, comprises the steps of conveying a sheath fluid through a primary sheath flow channel, injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, focusing the sheath fluid around the particle in at least a first direction and focusing the sheath fluid around the particle in at least a second direction different from the first direction. According to still another aspect, a sheath flow system is provided which comprises a plurality of a sheath flow structures operating in parallel on a substrate. Each sheath flow structure comprises a primary sheath flow channel for conveying a sheath fluid, a sample channel for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, a primary focusing region for focusing the sheath fluid around the particle in at least a first direction and a secondary focusing region provided downstream of the primary focusing region for focusing the sheath fluid around the particle in at least a second direction different from the first direction. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 illustrates a sheath flow structure according to an illustrative embodiment of the invention. FIGS. 2A-2B illustrate a multilayer sheath flow structure according to an illustrative embodiment of the invention. FIG. 2C illustrates is a cross sectional view through the centerline of the sheath flow structure of FIG. 2A, showing the path of an injected particle through the structure. FIG. 3 illustrates the path of a particle through the multilayer sheath flow structure of FIGS. 2A-2C. FIG. 4A illustrates the flow profile within the primary focusing region and the secondary focusing region during operation of the sheath flow structure of FIGS. 2A-2C. FIGS. 4B-4D are detailed cross-sectional views of the flow profiles within the primary sheath flow channel at different stages during operation of the sheath flow structure of FIGS. 2A-2C. FIGS. 5A-5C illustrates a multilayer sheath flow structure according to an alternate embodiment of the invention, where a sample is injected directly into a focusing region. FIG. 6 is a perspective view of a sheath flow structure according to another embodiment of the invention. FIGS. 7A-7B illustrate a sheath flow structure including a sample inlet provided upstream of a sheath flow inlet according to another embodiment of the invention. FIGS. 8A-8B illustrate a parallelized sheath flow system for producing sheath flow in multiple parallel channels according to another embodiment of the invention. FIG. 9A is a fluorescent microscope image of a primary sheath flow channel downstream from the secondary focusing region in the parallelized sheath flow system of FIGS. 8A and 8B. FIG. 9B is fluorescent microscope image taken of a sample in the primary sheath flow channel of FIG. 9A after focusing of the sample. FIG. 10 is a histogram diagramming the measured amount of fluorescence in the channel observed in FIG. 9B across axis -A-A-. FIG. 11 is a histogram superimposing the fluorescence measurements from all eight primary sheath flow channels in the system of FIGS. 8A-8B. FIG. 12 illustrates the distribution of core sizes for the sheath flows produced in the primary sheath flow channels in the system of FIGS. 8A-8B. DETAILED DESCRIPTION OF THE INVENTION The present invention provides a system and method for producing a sheath flow in a flow channel, such as a microchannel. The present invention will be described below relative to illustrative embodiments. Those skilled in the art will appreciate that the present invention may be implemented in a number of different applications and embodiments and is not specifically limited in its application to the particular embodiments depicted herein. As used herein, the term “microfluidic” refers to a system or device for handling, processing, ejecting and/or analyzing a fluid sample including at least one channel having microscale dimensions. The terms “channel” and “flow channel” as used herein refers to a pathway formed in or through a medium that allows for movement of fluids, such as liquids and gases. A “microchannel” refers to a channel in the microfluidic system preferably have cross-sectional dimensions in the range between about 1.0 μm and about 500 μm, preferably between about 25 μm and about 250 μm and most preferably between about 50 μm and about 150 μm. One of ordinary skill in the art will be able to determine an appropriate volume and length of the flow channel. The ranges are intended to include the above-recited values as upper or lower limits. The flow channel can have any selected shape or arrangement, examples of which include a linear or non-linear configuration and a U-shaped configuration. FIG. 1 illustrates a microfabricated sheath flow structure 10 according to an illustrative embodiment of the invention. The sheath flow structure 10 may be used to suspend particles in a sheath fluid flow stream for use in a particle sorting system or other microfluidic system. The sheath flow structure 10 includes a primary sheath flow channel 12 for conveying sheath fluid through the sheath flow structure 10. A flow may be induced through the primary sheath flow channel 12 through any means known in the art, including one or more pumps. The sheath flow structure 10 further includes a sample inlet 15 for introducing a sample, such as one or more particles, to the sheath fluid flowing through the primary sheath flow channel 12, so that the sample is surrounded by the flowing sheath fluid. The sample inlet 15 may comprise a channel, reservoir or other suitable component in communication with the primary sheath flow channel 12. According to one embodiment, the microfabricated sheath flow structure is formed on a microfluidic chip and the primary sheath flow channel and other flow channels formed therein are microchannels having microscale dimensions. However, one skilled in the art will recognize that the sheath flow structure may alternatively have larger dimensions and be formed using flow channels having cross-sectional dimensions greater than 500 μm. The illustrative sheath flow structure can be fabricated in glass, plastics, metals or any other suitable material using microfabrication, injection molding/stamping, machining or other suitable fabrication technique. After introduction of the sample into the sheath fluid, a primary focusing region 17 accelerates and focuses the sheath fluid around the injected sample. Preferably, the primary focusing region 17 focuses the sheath fluid away from the sides and bottom of the sample. A secondary focusing region 19, disposed downstream of the primary focusing region 17 along the primary sheath flow channel, provides additional focusing of the sheath fluid around the sample after the primary focusing region performs the primary focusing. Preferably, the secondary focusing region 19 focuses the sample in a vertical direction from above the sample. According to an illustrative embodiment, the combination of the primary focusing region 17 and the secondary focusing region 19 provides three-dimensional focusing of the sheath fluid around the sample. The resulting sheath flow is sample-focused hydrodynamically on all sides of the sample away from the walls of the primary sheath flow channel 12, with the sample being suspended as a focused core in the approximate center of the channel. The secondary focusing region 19 passes the resulting sheath flow in the primary sheath flow channel 12 to a particle sorting system or other microfluidic system or component in fluid communication with an outlet 19a of the secondary focusing region 19. The microfluidic system for receiving the sheath flow may be formed on the same chip or substrate as the sheath flow structure or a different substrate in fluid communication with the sheath flow structure 10. According to one embodiment, the sheath flow structure may be formed using a plurality of stacked layers. For example, FIGS. 2A-2C illustrate a two-layer sheath flow structure 100 for producing sheath flow according to one embodiment of the invention. In FIGS. 1 and 2A-2C, similar parts are indicated by equivalent reference numbers. The illustrated sheath flow structure 100 has a two-layer construction including a bottom substrate layer 10b and a top substrate layer 10a stacked on the bottom substrate layer 10b. Those of ordinary skill will recognize that any suitable number of layers can be used. The top substrate layer 10a may have formed therein a sheath inlet 11 for introducing a sheath fluid to the primary sheath flow channel 12 and a sample inlet 15 for introducing a sample to the sheath flow structure. The primary sheath flow channel 12 for conveying the sheath fluid through the structure is formed in the bottom layer 10b of the two-layer sheath flow structure 100. As shown, the sample inlet 15 connects to a sample channel 16, which intersects the primary sheath flow channel 12 downstream of the sheath inlet 11 to inject a sample, such as a stream of particles, into a sheath fluid flowing in the primary sheath flow channel 12. While the illustrative two-layer sheath flow structure 100 injects the sheath flow and sample particles from a top surface of the structure, one skilled in the art will recognize that the sheath inlet 11 and sample inlet 15 can be provided in any suitable location and have any suitable size and configuration. The primary focusing region 17 in the two-layer sheath flow structure 100 of FIGS. 2A-2C may be formed by tapering the primary sheath flow channel 12 from a relatively wide width W to a smaller width W′ downstream of the intersection between the sample channel 16 and the primary sheath flow channel 12, as shown in FIG. 2B. The height of the channel may be substantially constant throughout the length of the channel or may be varied to facilitate focusing of the sample within the sheath fluid. In the embodiment shown in FIG. 2A, the primary focusing region 17 is formed by dividing the primary sheath flow channel 12 into two subchannels 12a, 12b upstream from the sample inlet 15. The diverging subchannels 12a, 12b form a sample injection island 50 therebetween. At the downstream end of the sample injection island 50, the subchannels 12a, 12b merge to form the primary focusing region 17. The sample flow channel 16 projects into the primary focusing region 17 to convey the sample particles provided via the sample inlet 15 to the primary focusing region 17, such that the sample particles are suspended in the sheath fluid. Alternatively, each of the subchannels 12a, 12b may have a separate inlet, and the separated subchannels may converge in the primary focusing region 17. In the primary focusing region 17, the sample particles injected into the sheath flow are focused away from the sides and bottom by the sheath flow. As shown, the outlet of the sample flow channel 16 is in substantially the middle of the primary focusing region 17, between the outlets of the subchannels 12a, 12b, such that the particles are surrounded by sheath fluid flowing from the subchannels on both sides of the injected particles and centralized within the sheath fluid flow. The sheath flow channel 12 in the primary focusing region then tapers from a relatively wide width W at the outlets of the subchannels 12a, 12b to a smaller width W′ to force the sheath fluid around the suspended sample particles. After suspension of the sample particles, the sheath flow then flows from the primary focusing region 17 through the sheath flow channel 12, which forms the secondary focusing region 19 downstream of the primary focusing region 17. According to an illustrative embodiment, the secondary focusing region 19 utilizes sheath fluid to provide secondary focusing of the sheath flow in a vertical direction after the initial focusing provided by the primary focusing region 17. For example, as shown in FIGS. 2A-2C, the secondary focusing region 19 may be formed by secondary sheath channels 13a, 13b that intersect the primary sheath flow channel 12 in the secondary focusing region 19. The secondary sheath channels 13a, 13b flow and inject sheath fluid into the primary sheath flow channel 12 to focus the sample within the sheath fluid. As shown, the inlets to the secondary sheath channels 13a, 13b, respectively, may intersect the primary sheath flow channel 12 in an intermediate upstream region between the sheath inlet 11 and the outlet of the sample channel 16. Branch points 24a, 24b connect each of the secondary sheath channels 13a, 13b to the primary channel 12 to divert a portion of the sheath fluid from the primary sheath flow channel to each of the secondary sheath channels 13a, 13b, respectively. The diverted sheath flow then flows to the secondary focusing region 19, where the outlets of the secondary sheath channels 13a, 13b intersect the primary sheath flow channel 12. Preferably, the outlets of both secondary sheath channels extend above and substantially parallel to the fluid flow in the primary sheath flow channel 12 in the vicinity of the secondary focusing region 19. In this manner, secondary sheath fluid from the secondary sheath channels 13a, 13b enters the primary sheath flow channel 12 from the same side as the sample, compressing the suspended sample away from the upper wall of the channel 12 (i.e., in the other direction from the main sheath of fluid around the particle). In the illustrative embodiment, branch points 24a, 24b extend substantially transverse or perpendicular to the primary sheath flow channel, while sheath channels 13a, 13b connected to the branch points 24a, 24b, respectively, extend substantially parallel to the primary sheath flow channel 12. Connection branches 25a, 25b for connecting the sheath channels 13a, 13b, respectively, to the primary sheath flow channel in the secondary focusing region 19 may be parallel to the branch points 24a, 24b to create a flow path that is substantially reverse to the direction of the flow path through the branch points 24a, 24b, while the outlets inject the secondary sheath fluid along a path that is above and substantially parallel to fluid flow in the primary sheath flow channel 12. In the embodiment of FIGS. 2A-2C, the secondary sheath channels 13a, 13b are formed in the upper substrate layer 10a and placed into communication with the primary sheath flow channel 12 in the lower substrate layer 10b when the upper substrate layer 10a is stacked on the lower substrate layer. However, in another embodiment of the invention, one or both of the secondary sheath channels can be formed in the lower substrate layer to provide focusing from any suitable direction. While the illustrative embodiment includes two branch points 24a, 24b, each connecting to a respective secondary sheath flow channel 13a, 13b extending on opposite sides of the primary sheath flow channel 12, one skilled in the art will recognize that the sheath flow structure of the present invention may include any suitable number of secondary sheath channels having any suitable size, location and configuration. FIG. 2C is a cross-sectional side view of the sheath flow structure 100 comprising a stacked upper substrate layer and a lower substrate layer. As shown, the primary sheath flow channel may be formed as an open channel in a top surface of the lower substrate layer 10b. The sheath inlet 11 and the sample inlet 15 each extend through the upper substrate layer 10a from one surface 102 of the upper substrate layer 10a to the opposite surface 103. When the upper substrate layer 10a is stacked on the lower substrate layer 10b, the sheath inlet 11 and sample inlet 15 are placed in communication with the primary sheath flow channel 12. The bottom surface 103 of the upper substrate layer 10a may further serve to enclose the primary sheath flow channel 12 when the two substrate layers are stacked together. As also shown, the stacking of the upper substrate layer places the inlet and outlet of each of the secondary sheath channels 13a, 13b in communication with the primary sheath flow channel 12. The substrate layers 10a, 10b can be machined, molded or etched to form the channels inlets and focusing regions. Suitable materials for forming the substrates 10a, 10b include, but are not limited to silicon wafer, plastic, glass and other materials known in the art. FIG. 3 is a cross-sectional view of the sheath flow structure 100 illustrating the path of a sample particle injected into the sheath flow structure according to the teachings of the present invention. FIG. 4A is a perspective cross-sectional view of the sheath flow structure 100 illustrating the sheath fluid and suspending particle during the different stages of producing a sheath flow. FIGS. 4B-4D are cross-sectional detailed views of the primary flow channel 12 during the different stages of producing a sheath flow. As shown in FIG. 4B, sample 160 from the sample inlet 15 enters the primary focusing region 17 through the sample channel 16 connected to the sample inlet 15 and is focused on three sides by accelerating sheath fluid 120 flowing from the secondary sheath channels into the sheath channel 12 in the primary focusing region 17. The resulting focused flow 170, having the particles suspended therein, passes to the secondary focusing region 19. Additional sheath fluid 130 enters the primary sheath flow channel 12 through a connector in the secondary focusing region 19 to focus the suspended particles on the fourth side, forming a central core 190, as shown in detail in FIG. 4C. The resulting sheath flow 200 is a laminar flow that is sample focused hydrodynamically from all sides away from the walls at the channel center, as shown in FIG. 4D. The desirable core flow location may or may not be at center of the primary sheath flow channel downstream of the secondary sheath flow structure. In the illustrative embodiment, the flow resistance ratio between the primary sheath flow channel 12 and the branched secondary sheath channels 13a, 13b is calibrated to position the core at specific region in the downstream sheath flow channel. The desirable core flow location may or may not be at center of downstream channel. According to an alternate embodiment of the invention, shown in FIGS. 5A-5C, in which like parts are indicated by like reference numbers, the sample can be injected directly from a sample inlet 15b into a primary focusing region 17′, which is formed by a widening of the sheath channel 12 downstream of the branch points 24a, 24b. The primary sheath flow channel 12 conveys the sheath fluid directly to the primary focusing region 17, and the sample particles are directly injected into the center of the sample flow and confined therein. In this embodiment, the primary sheath flow channel does not branch into subchannels, and the acceleration of the sheath fluid and suspension of injected particles can be accomplished by shaping the primary sheath flow channel in a suitable manner. FIG. 6 illustrates a sheath flow structure 100 according to another embodiment of the invention, including separate sheath inlets for the primary sheath flow and the sheath fluid (secondary sheath fluid) that is added to the sheath flow in the secondary focusing region 19. As shown, the sheath flow structure 100 of FIG. 5 includes a primary sheath inlet 11a for providing a primary sheath flow to suspend the injected sample particles and a secondary sheath inlet 11c for providing secondary sheath flow to focus the particles within the primary sheath fluid in the secondary focusing region. In the embodiment shown in FIG. 5, the primary sheath inlet 11c is formed in an upper substrate layer 10a and the secondary sheath inlet 11c is formed in a second substrate layer 10b, though one skilled in the art will recognize that the invention is not limited to this configuration. According to another embodiment of the invention, shown in FIGS. 7A and 7B, the sample inlet 15 may be provided upstream or behind the sheath inlet. In this embodiment, the upstream portion of the primary sheath flow channel 12 comprises two separate subchannels 12a, 12b, which converge in the primary focusing region 17. Each subchannel 12a, 12b has a separate inlet 11a, 11b for introducing sheath fluid to the respective subchannel. The embodiment of FIGS. 7A and 7B further includes separate sheath inlets 11c, 11d for the secondary sheath channels 13a, 13b. As described above, the secondary sheath channels intersect the primary sheath flow channel 12 in the secondary focusing region to provide focusing of a sample within a flowing sheath fluid in the primary sheath flow channel 12. The design of the illustrative sheath flow structure of FIGS. 7A and 7B is suitable for parallelization of the sheath flow process because multiple sample channels 16 can be fed into an array of sheath fluid injectors on a single microfluidic chip. While the embodiment of FIG. 7 shows separate sheath inlets for each subchannel of the primary flow channel and each secondary sheath flow channel, one skilled in the art will recognize that the primary sheath flow channel can alternatively have a single inlet, as shown in FIGS. 2A-2C, 5A-5C and 6. The primary sheath flow channel can include subchannels that converge to suspend an injected particle, as described with respect to FIGS. 2A-2C and 6. The primary sheath flow channel may alternatively be shaped and configured to widen to surround an injected particle, as described with respect to FIGS. 5A-5C. In addition, while the embodiment of FIG. 7 shows the secondary sheath flow channels to be formed separately from the primary sheath flow channel, one skilled in the art will also recognize that one or more of the secondary sheath flow channels 13a, 13b may be formed by diverted a portion of the sheath fluid in the primary sheath flow channel into one or more of the secondary flow channels, eliminating the need for a separate sheath inlet. FIGS. 8A-8B illustrate an array of sheath flow structures 10a-10h may be formed on a single microfluidic chip 800 according to another embodiment of the invention. The microfluidic chip 800 can comprise an upper substrate layer including selected components of each sheath flow structure and a lower substrate layer including selected components of each sheath flow structures such that when the upper substrate layer is stacked on the lower substrate layer, the array of sheath flow structures is formed. FIG. 8 illustrates an array of eight parallel three-dimensional sheath flow structures 10a-10h implementing the rear sample injection scheme of FIG. 7. As shown, a single sample inlet 15 can be used to inject a sample into each of the primary sheath flow channels 12a-12h. The microfabricated design allows the system to precisely split an input sample provided in the sample inlet among eight separate sample channels 16a-16h, which then inject the sample into the primary sheath flow channels. The use of a sample inlet 15 upstream of the sheath inlet facilitates parallelization of multiple sheath flow structures in a single integrated system. Alternatively, a sample inlet provided upstream of the sheath flow inlets may be separately provided for each primary sheath flow channel. Each of the channel inlets 11a, 11b, 11c or 11d for each sheath flow structure may be aligned, as shown in FIGS. 8A and 8B or staggered. Furthermore, a single inlet may be provided for one or more primary sheath flow channel and/or secondary sheath channel in each sheath flow structure in the parallelized system of FIG. 8, or the channels may share inlets, as described above. In the embodiment shown in FIG. 8B, the primary sheath flow channels 12a-12h converge downstream of the secondary focusing regions, so that the sheath flows produced therein are rejoined and flowed off-chip via a single outlet 812. Alternatively, each primary sheath flow channel can separately flow off-chip. Exemplification of the Invention: The parallelized sheath flow structure 800 of FIG. 8 was formed on a microfluidic chip and used to produce a sheath flow. Eight primary sheath flow channels were formed 800 microns apart, with associated sample channels, secondary sheath flow channels and other components also formed in parallel on the chip. The chip was glued to a fixture by 300LSE adhesive available from 3M Corporation and cured for 72 hours. A 10:1 dilution of 6 micron yellow beads from Spherotech was used as the sample and DakoCytomation sheath buffer was used as sheath fluid. The sheath fluid to sample ratio was 45:1. The flow rate was produced so that the number of beads flowing through a selected primary sheath flow channel was about 750 beads per second. The injected sample was divided among the eight sample channels and the sample portion in each sample channel was injected into the DakoCytomation sheath buffer flowing through the primary sheath flow channel associated with that sample channel. The sheath flow was initially focused from the sides and bottom of the channel in the primary focusing regions around the sample of each primary sheath flow channel. After the primary focusing, the sample flowed to the secondary focusing region where sheath fluid from the secondary sheath channels was injected to focus the sample in a vertical direction and form a core of the sample within each primary sheath flow channel. The resulting sheath flow was then observed using a fluorescent microscope over a period of about eight seconds, and the results are shown in FIGS. 9A-10. FIG. 9A is an image of one of the primary sheath flow channels 12 in the system of FIG. 8, illustrating the side walls 111, 112 of the channel 12. FIG. 9B is a fluorescent microscope image of the same region of the channel as shown in FIG. 9A taken using the fluorescent microscope after the secondary focusing of the sample in the channel. The side walls, while not clearly visible in FIG. 9B are in the approximate same location within the Figure as are the side walls 111, 112 in FIG. 9A. The bright spot illustrates the concentration of the fluorescent beads 160 of the sample in the core ten microns of the two-hundred micron channel 12. FIG. 10 is a histogram of the image of FIG. 9B across axis -A-A- demonstrating the clean core flow produced by the sheath flow structure. The magnitude of the peak in the histograms reflects the amount of fluorescence observed for each location within the respective channel. As clearly shown in these Figures, the sheath flow structure 800 of the illustrative embodiment of the invention produces a sample-focused hydrodynamic sheath flow forming a central, focused core of sample 160 within a channel 12. FIG. 11 is a histogram comparing the cores for each of the resulting sheath flows in all eight samples of in the parallelized sheath flow structure of FIG. 8. As shown, each channel produces a substantially similar central core of the sample within the sheath fluid. The core is produced in substantially the same location within each primary sheath flow channel. The approximate locations of the side walls of the channels are indicated by reference numbers 111, 112. FIG. 12 illustrates the distribution of core sizes from the single eight primary sheath flow channels in the test system of FIG. 8. As shown, the core produced in all of the channels using the sheath flow production method described above falls within 8.8+/−0.7 micron core width. The sheath flow structure of the illustrative embodiment of the invention provides significant advantages not found in sheath flow structures of the prior art. The illustrative sheath flow structure provides three-dimensional hydrodynamic focusing using a single sheath fluid inlet. The illustrative sheath flow structure has a compact structure designed for manufacturability and requires only two structural layers in fabrication. Because the entrance to the sheath flow channels are only required on one side of the structure, the fluidic input/output structures can be simplified. Furthermore, the core flow vertical location is controllable by geometric (lithographic) resistance ratios between adjacent channels. The illustrative sheath flow structure provides accurate results that are largely insensitive to alignment between adjacent layers, as the only alignment required is to maintain the components in adjacent layers along the same centerline. The reentrant flow downstream of sample injection is then symmetric. In addition, the long path length of the branching upper sheath channels 13a, 13b results in negligible resistance ratio (therefore flow rate ratio) shift between two branch arms through misalignment of centerlines. The present invention has been described relative to an illustrative embodiment. Since certain changes may be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are to cover all generic and specific features of the invention described herein, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
<SOH> BACKGROUND OF THE INVENTION <EOH>Sheath flow is a particular type of laminar flow in which one layer of fluid, or a particle, is surrounded by another layer of fluid on more than one side. The process of confining a particle stream in a fluid is referred to as a ‘sheath flow’ configuration. For example, in sheath flow, a sheath fluid may envelop and pinch a sample fluid containing a number of particles. The flow of the sheath fluid containing particles suspended therein may be narrowed almost to the outer diameter of particles in the center of the sheath fluid. The resulting sheath flow flows in a laminar state within an orifice or channel so that the particles are lined and accurately pass through the orifice or channel in a single file row. Sheath flow is used in many applications where it is preferable to protect particles or fluids by a layer of sheath fluid, for example in applications wherein it is necessary to protect particles from air. For example, particle sorting systems, flow cytometers and other systems for analyzing a sample, particles to be sorted or analyzed are usually supplied to a measurement position in a central fluid current, which is surrounded by a particle free liquid sheath. Sheath flow is useful because it can position particles with respect to sensors or other components and prevent particles in the center fluid, which is surrounded by the sheath fluid, from touching the sides of the flow channel and thereby prevents clogging of the channel. Sheath flow allows for faster flow velocities and higher throughput of sample material. Faster flow velocity is possible without shredding cells in the center fluid because the sheath fluid protects the cells from shear forces at the walls of the flow channel. Conventional devices that have been employed to implement sheath flow have relatively complex designs and are relatively difficult to fabricate.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a microfabricated sheath flow structure for producing a sheath flow for a particle sorting system or other microfluidic system. The sheath flow structure may comprise a two-layer construction including a sheath inlet for introducing a sheath fluid into a primary sheath flow channel and a sample inlet for introducing a sample to the structure. A sample is introduced to the sheath fluid in the primary sheath flow channel via the sample inlet and suspended therein. The primary sheath flow channel may branch at a location upstream of a sample inlet to create a flow in an upper sheath channel. The primary sheath flow channel forms a primary focusing region for accelerating sheath fluid in the vicinity of a sample channel connected to the sample inlet. The sample channel provides the injected sample to the accelerating region, such that the particles are confined in the sheath fluid. The primary focusing region further focuses the sheath fluid around the sample. The sheath flow then flows to a secondary sheath region downstream of the primary accelerating region connects the upper sheath channel to the primary sheath flow channel to further focus the sample in the sheath fluid. The resulting sheath flow forms a focused core of sample within a channel. The sheath flow structure may be parallelized to provide a plurality of sheath flow structures operating in parallel in a single system. The parallelized system may have a single sample inlet that branches into a plurality of sample channels to inject sample into each primary sheath flow channel of the system. The sample inlet may be provided upstream of the sheath inlet. Alternatively, the parallelized system may have multiple sample inlets. The parallelized sheath flow structure may have a single sheath fluid inlet for providing sheath fluid to all of the primary sheath flow channels and/or secondary sheath channels, or multiple sheath fluid inlets for separately providing sheath fluid to the primary sheath flow channels and or secondary sheath channels. According to a first aspect of the invention, a sheath flow structure for suspending a particle in a sheath fluid is provided. The sheath flow structure comprises a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, a primary focusing region for focusing the sheath fluid around the particle in at least a first direction and a secondary focusing region provided downstream of the primary focusing region. The secondary focusing region focuses the sheath fluid around the particle in at least a second direction different from the first direction. According to another aspect of the invention, a sheath flow structure for suspending a particle in a sheath fluid comprises a first substrate layer including a primary sheath flow channel for conveying a sheath fluid and a second substrate layer stacked on the first substrate layer. The second substrate layer includes a first sheath inlet for introducing a sheath fluid to the primary sheath flow channel, a sample inlet downstream of the first sheath inlet for providing the particle to the primary sheath flow channel in a primary focusing region to form a sheath flow including the particle surrounded by the sheath fluid on at least one side. A first secondary sheath channel is formed in the first or second substrate layer in communication with the primary sheath flow channel. The first secondary sheath channel diverts a portion of said sheath fluid from the primary sheath flow channel. According to still another aspect of the invention, a focusing region for focusing a particle suspended in a sheath fluid in a channel of a sheath flow device is provided. The focusing region comprises a primary flow channel for conveying a particle suspended in a sheath fluid and a first secondary flow channel intersecting the primary flow path for injecting sheath fluid into the primary flow channel from above the particle to focus the particle away from a top wall of the primary flow channel. According to another aspect of the invention, a method of surrounding a particle on at least two sides by a sheath fluid, comprises the steps of injecting a sheath fluid into a primary sheath flow channel diverting a portion of the sheath fluid into a branching sheath channel, injecting the particle into the primary sheath flow channel to suspend the particle in the sheath fluid to form a sheath flow and injecting the diverted portion of the sheath fluid into the sheath flow to focus the particle within the sheath fluid. According to another aspect of the invention, a method of surrounding a particle on at least two sides by a sheath fluid, comprises the steps of conveying a sheath fluid through a primary sheath flow channel, injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, focusing the sheath fluid around the particle in at least a first direction and focusing the sheath fluid around the particle in at least a second direction different from the first direction. According to still another aspect, a sheath flow system is provided which comprises a plurality of a sheath flow structures operating in parallel on a substrate. Each sheath flow structure comprises a primary sheath flow channel for conveying a sheath fluid, a sample channel for injecting a particle into the sheath fluid conveyed through the primary sheath flow channel, a primary focusing region for focusing the sheath fluid around the particle in at least a first direction and a secondary focusing region provided downstream of the primary focusing region for focusing the sheath fluid around the particle in at least a second direction different from the first direction.
20041101
20071225
20050609
66662.0
1
DILLON JR, JOSEPH A
MULTILAYER HYDRODYNAMIC SHEATH FLOW STRUCTURE
UNDISCOUNTED
0
ACCEPTED
2,004
10,979,926
ACCEPTED
System and method for processing work products for vehicles via the world wide web
A method and system for receiving data relating to an insurance claim for a damaged vehicle and transmitting a valuation report for the damaged vehicle over the world wide web. The system includes a client computer and a web server that are coupled through an electronic communication network such as the internet. The web server contains a web site that contains a plurality of web pages. Each web page allows an operator to enter the insurance claim data. The data can be processed into a valuation report by a separate valuation server. The valuation report can be transmitted to the client computer through the web server. A claims adjuster can access the web server by merely entering a uniform resource locator (“URL”) into a web browser. The adjuster does not have to dial directly into the valuation server.
1. A method for obtaining an automobile insurance claim valuation report, comprising: transmitting a uniform resource locator over an electronic communication network from a client computer; connecting with a web site that corresponds to the uniform resource locator, the web site provides a plurality of web pages that allow an operator to input data relating to an insurance claim for a damaged vehicle; entering data relating to the insurance claim; processing the entered data to generate a valuation report for the damaged vehicle; and, transmitting the valuation report to the client computer over the electronic communication network. 2. The method of claim 1, wherein the data is processed with an original equipment guide database. 3. The method of claim 1, wherein the web pages allow for input of aftermarket equipment. 4. The method of claim 1, wherein the web pages allow for input of a vehicle option. 5. The method of claim 1, wherein the web pages allow for input of a vehicle condition. 6. The method of claim 1, wherein the web pages allow for input of a vehicle identification number that is included in the valuation report. 7. The method of claim 1, wherein the valuation report is transmitted to a plurality of client computers. 8. The method of claim 1, further comprising transmitting the valuation report from a valuation server to a web server before transmitting the valuation report to the client computer. 9. The method of claim 1, wherein the valuation report is transmitted in a TCP/IP format. 10. A system for obtaining an automobile insurance claim valuation report, comprising: an electronic communication network; a web server that is coupled to said electronic communication network, said web server provides access to a web site that has a plurality of web pages which allow for receipt of data relating to an insurance claim for a damaged vehicle and transmission of a valuation report for the damaged vehicle; and, a client computer coupled to said electronic communication network, said client computer can allow for the input of data into said web pages, and receive the valuation report. 11. The system of claim 10, further comprising a valuation server coupled to said web server through said electronic communication network, said processing server processes the data and generates the valuation report. 12. The system of claim 11, wherein said valuation server contains an original equipment guide database that processes the data for the valuation report. 13. The system of claim 10, wherein said valuation server web pages allow for input of aftermarket equipment. 14. The system of claim 10, wherein said valuation server web pages allow for input of a vehicle option. 15. The system of claim 10, wherein said valuation server web pages allow for input of a vehicle condition. 16. The system of claim 10, wherein said valuation server web pages allow for input of a vehicle identification number that is included with the valuation report. 17. The system of claim 10, wherein the valuation report is transmitted in a TCP/IP format. 18. A server for receiving data relating to insurance claims for a damaged vehicle and for causing transmission of a valuation report for the damaged vehicle, comprising: a memory device; a communication port; and, a processor that is coupled to said memory device, and said communication port, said processor operates in accordance with instructions to provide access to a web site that has a plurality of web pages, the web pages allow for receipt of data relating to an insurance claim for a damaged vehicle and transmission of a valuation report for the damaged vehicle. 19. The server of claim 18, wherein said web pages allow for input of aftermarket equipment. 20. The server of claim 18, wherein said web pages allow for input of a vehicle option. 21. The server of claim 18, wherein said web pages allow for input of a vehicle condition. 22. The server of claim 18, wherein said web pages allow for input of a vehicle identification number that is included in the valuation report. 23. The server of claim 18, wherein the valuation report is transmitted in a TCP/IP format. 24. A computer program storage medium that can cause a computer to receive data relating to an insurance claim for a damaged vehicle and transmission of a valuation report for the damaged vehicle, comprising: a computer readable storage medium that contains a computer program which causes a server to provide access to a web site that has a plurality of web pages, the web pages allow for receipt of data relating to an insurance claim for a damaged vehicle and transmission of a valuation report for the damaged vehicle. 25. The storage medium of claim 24, wherein said web pages allow for input of aftermarket equipment. 26. The storage medium of claim 24, wherein said web pages allow for input of a vehicle option. 27. The storage medium of claim 24, wherein said web pages allow for input of a vehicle condition. 28. The storage medium of claim 24, wherein said web pages allow for input of a vehicle identification number that is included in the valuation report. 29. The storage medium of claim 24, wherein the valuation report is transmitted in a TCP/IP format.
BACKGROUND OF THE INVENTION 1. Field of the Invention The subject matter disclosed generally relates to a method and system for entering data relating to an insurance claim for a damaged vehicle. The data is processed into a valuation report that is transmitted through the world wide web. 2. Background Information When a vehicle such as an automobile is damaged the owner may file a claim with an insurance carrier. A claims adjuster typically inspects the vehicle to determine the amount of damage and the costs required to repair the automobile. If the repair costs exceed the value of the automobile, or a percentage of the car value, the adjuster may “total” the vehicle. The owner may then receive a check equal to the value of the automobile. The repair costs and other information may be entered by the adjuster into an estimate report. After inspection the adjuster sends the estimate report to a home office for approval. To improve the efficiency of the claims process there have been developed computer systems and accompanying software that automate the estimate process. By way of example, the assignee of the present invention, Automatic Data Processing, Inc, (“ADP”) provides a software product under the trademark PenPro that allows a claims adjuster to enter estimate data through a personal or laptop computer. The PenPro product maintains a running total of the cost to repair a damaged vehicle. When the running repair total reaches a percentage of an estimated value of the vehicle, the software provides a visual warning that the cost is approaching the vehicle value. This provides the adjuster with feedback that the vehicle may have to be totaled. The vehicle valuation numbers contained by PenPro do not account for specific variations in vehicles such as vehicle condition or aftermarket equipment added to the vehicle. To obtain a more accurate valuation of the vehicle the adjuster can dial-in to a more extensive database. By way of example, ADP provides such a database under the trademark Autosource. Autosource provides the claims adjuster with a valuation report that contains a more accurate valuation of the damaged vehicle. Access to Autosource requires that the computer be specifically configured to dial the appropriate phone number(s) of the Autosource server. The claims adjuster's computer may not have this information. It would be desirable to provide a method and system that would allow a claims adjuster to more readily access a valuation database for damaged vehicles. BRIEF SUMMARY OF THE INVENTION A method and system for entering data relating to an insurance claim for a damaged vehicle and transmitting a valuation report for the damaged vehicle through the world wide web. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic of a network system that can be used to receive data relating to an insurance claim for a damaged vehicle and transmit a valuation report for the damaged vehicle through the world wide web; FIG. 2 is a schematic of a computer of the system; FIG. 3 is a flowchart showing a business transaction conducted through the system; FIGS. 4-11 are illustrations of web pages provided by the system; and, FIG. 12 is an illustration of a valuation report. DETAILED DESCRIPTION Disclosed is a method and system for receiving data relating to an insurance claim for a damaged vehicle and transmitting a valuation report for the damaged vehicle over the world wide web. The system includes a client computer and a web server that are coupled through an electronic communication network such as the internet. The web server contains a web site that can display a plurality of web pages. Each web page allows an operator to enter the insurance claim data. The data can be processed into a valuation report by a separate valuation server. The valuation report can be transmitted to the client computer through the web server. A claims adjuster can access the web server by merely entering a uniform resource locator (“URL”) into a web browser. The adjuster does not have to dial directly into the valuation server. Referring to the drawings more particularly by reference numbers, FIG. 1 shows a system 10 that can be used to generate and transmit a valuation report that relates to an insurance claim of a damaged vehicle. The system 10 includes at least one client computer 12 that is connected to an electronic communication network 14. The electronic communication network 14 may be a wide area network (WAN) such as the internet. Accordingly, communication may be transmitted through the network 14 in TCP/IP format. The system 10 may further include a web server 16 that is connected to the network 14 and an application server 18. The application server 18 may be coupled to a valuation server 20. The valuation server 20 may contain a database used to process and generate a valuation report. The web server 16 may provide a web based portal that interacts with the application server 18 to generate one or more insurance estimate web pages. By way of example, the web server 16 may contain active server page (“ASP”) files that translate request from the client computer into calls to component object model (“COM”) components resident in the application server 18. The COM components may include application programs that provide parts lists, calculate estimate data, etc. The ASP calls may also cause the generation of a valuation report in the valuation server. The valuation report can be transmitted to a client computer 12 through the web server 16. FIG. 2 shows an embodiment of a computer 12 and the servers 16 and 18. The computer 12 includes a processor 40 connected to one or more memory devices 42. The memory device 42 may include both volatile and non-volatile memory such as read only memory (ROM) or random access memory (RAM). The processor 40 is capable of operating software programs in accordance with instructions and data stored within the memory device 42. The processor 40 may be coupled to a communication port 44, a mass storage device 46, a monitor 48 and a keyboard 50 through a system bus 52. The communication port 44 may include an ETHERNET interface that allows data to be transmitted and received in TCP/IP format. The system bus 52 may be a PCI or other conventional computer bus. The mass storage device 46 may include one or more disk drives such as magnetic or optical drives. The mass storage device 46 may also contain software that is operated by the processor 40. Without limiting the scope of the invention the term computer readable medium may include the memory device 42 and/or the mass storage device 46. The computer readable medium will contain software programs in binary form that can be read and interpreted by the computer. In addition to the memory device 42 and/or mass storage device 46, computer readable medium may also include a diskette, a compact disc, an integrated circuit, a cartridge, or even a remote communication of the software program. In general the servers 16 and 18 may contain more memory, additional communication ports and greater processing power than the computer 12. The servers 18 and 20 may each contain a relational database(s) that correlates data with individual data fields and a relational database management system (RDBMS). The database(s) may include an original equipment guide database. By way of example, the database(s) of the processing server 20 may be the same or similar to Autosource provided by ADP of San Ramon, Calif. Server 16 may include a website that can be accessed by the computers 12. The website has a specific uniform resource locator (URL) that can be used to access the site through the network 14. The URL can be entered through a web browser resident in the client computer 12. FIG. 3 shows a flowchart of a method for generating and transmitting a valuation report. In process block 100 an operator at the client computer may enter the URL into a network browser. The URL provides access to the web site at the web server. The web site may initially request a user ID and a password that are entered in block 102. The web site then displays a web page that contains various fields for inputting data relating to an insurance claim and links to other pages in block 104. The operator inputs the data in block 106. The web pages are displayed and the operator enters data until the process detects a request for a report in decision block 108. The data is processed into a valuation report in block 110. By way of example, the data can be processed into a valuation report by a product provided by ADP under the trademark Autosource. Autosource contains a large number of original equipment guides (OEGs). The OEGs provide vehicle values based on the vehicle year, model, make, engine size, geographic location, etc. The valuation report is transmitted to the client computer in block 112. FIGS. 4, 5 and 6 show an embodiment of a number of web pages provided by the server 16. The web pages may each contain data fields 120 that allow an operator to enter data. The data fields 120 may have adjacent pull down boxes 122 that allow the operator to select a predetermined data entry. By way of example, the data fields may request claim numbers, insurance policy numbers, information regarding the agent, the owner, etc. Each web page may also contain links 124 to other web pages. FIG. 7 shows a web page that provides a VIN (vehicle identification code) field 126. Upon entry of the VIN the process determines whether the same VIN has received a previous claim. If so, the valuation report may provide an indication that this vehicle has had a previous claim. This can be used by the operator to detect insurance fraud. FIG. 8 shows a web page that provides an available packages field 128, an available options field 130 and an available aftermarket options field 132. Each field has a scroll down/up bar 134 that allows the operator to view packages, options and aftermarket options that are available for the specific vehicle in the claim. The operator can add or remove the packages and options present in the vehicle through the add 136 and remove 138 buttons. The process may utilize this data to generate the vehicle valuation. FIGS. 9 and 10 show a web page that contains condition fields 140 that allow the operator to indicate the condition of the vehicle. Description fields 142 may be added to allow the operator to embellish the vehicle condition. The process may use the condition data to generate the vehicle valuation. For example, the operator at a client computer can enter their e-mail address in this field 144. The valuation report is then sent to the entered e-mail address. FIG. 11 shows a web page that contains destination fields 144. The destination fields can be filled with information on the recipients of the valuation report. The report can be sent to more than one recipient through this page. FIG. 12 shows a valuation report. The valuation report provides an adjusted market value for the vehicle in a value field 150. The report may have a field for the source of the data 152 and a field 154 that provides a general description of the vehicle. Administrative data such as the claim number may be presented in field 156. The report may also have a VIN field 158. The VIN field 158 contains the VIN entered into the VIN field 126 shown in FIG. 7. The report may also provide sample data and specific examples of similar vehicles and prices (not shown) that provides support for the market value. The market value may be adjusted based on mileage, condition of vehicle and other factors. The report is transmitted to the e-mail address(es) listed in the destination field 144 (see FIG. 11). While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The subject matter disclosed generally relates to a method and system for entering data relating to an insurance claim for a damaged vehicle. The data is processed into a valuation report that is transmitted through the world wide web. 2. Background Information When a vehicle such as an automobile is damaged the owner may file a claim with an insurance carrier. A claims adjuster typically inspects the vehicle to determine the amount of damage and the costs required to repair the automobile. If the repair costs exceed the value of the automobile, or a percentage of the car value, the adjuster may “total” the vehicle. The owner may then receive a check equal to the value of the automobile. The repair costs and other information may be entered by the adjuster into an estimate report. After inspection the adjuster sends the estimate report to a home office for approval. To improve the efficiency of the claims process there have been developed computer systems and accompanying software that automate the estimate process. By way of example, the assignee of the present invention, Automatic Data Processing, Inc, (“ADP”) provides a software product under the trademark PenPro that allows a claims adjuster to enter estimate data through a personal or laptop computer. The PenPro product maintains a running total of the cost to repair a damaged vehicle. When the running repair total reaches a percentage of an estimated value of the vehicle, the software provides a visual warning that the cost is approaching the vehicle value. This provides the adjuster with feedback that the vehicle may have to be totaled. The vehicle valuation numbers contained by PenPro do not account for specific variations in vehicles such as vehicle condition or aftermarket equipment added to the vehicle. To obtain a more accurate valuation of the vehicle the adjuster can dial-in to a more extensive database. By way of example, ADP provides such a database under the trademark Autosource. Autosource provides the claims adjuster with a valuation report that contains a more accurate valuation of the damaged vehicle. Access to Autosource requires that the computer be specifically configured to dial the appropriate phone number(s) of the Autosource server. The claims adjuster's computer may not have this information. It would be desirable to provide a method and system that would allow a claims adjuster to more readily access a valuation database for damaged vehicles.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>A method and system for entering data relating to an insurance claim for a damaged vehicle and transmitting a valuation report for the damaged vehicle through the world wide web.
20041101
20110322
20060504
64830.0
G06Q4000
2
FRENEL, VANEL
SYSTEM AND METHOD FOR PROCESSING WORK PRODUCTS FOR VEHICLES VIA THE WORLD WIDE WEB
UNDISCOUNTED
0
ACCEPTED
G06Q
2,004
10,980,097
ACCEPTED
4-anilino-3-quinolinecarbonitriles for the treatment of chronic myelogenous leukemia (CML)
Compounds of the formula: wherein: n is an integer from 1-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof.
1. A method of preventing or inhibiting CML comprising, providing a therapeutically effective amount of a compound of the formula wherein: n is an integer from 1-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. 2. The method of claim 1 wherein the compound is of the formula: wherein: n is an integer from 2-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. 3. The method of claim 1 wherein the compound is of the formula: X is N, CH n is 3; R2 and R are methyl; and pharmaceutically acceptable salts thereof. 4. The method of claim 1 wherein R2 is methyl. 5. The method of claim 1 wherein X is N. 6. The method of claim 1 wherein X is CH. 7. The method of claim 1 wherein the compound is: 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile. 8. The method of claim 1 wherein the compound is: 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[3-(4-ethyl-1-piperazinyl)propoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[2-(4-ethyl-1-piperazinyl)ethoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[(1 -ethylpiperidin-4-yl)methoxy]-6-methoxyquinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-ethylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]quinoline-3-carbonitrile; or 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-propyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; and pharmaceutically acceptable salts thereof. 9. The method of claim 1 wherein the compound is: 4-[(2,4-dichlorophenyl)amino]-6-methoxy-7-[(1 -methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-4-[(3,4,5-trimethoxyphenyl)amino]quinoline-3-carbonitrile; 4-[(2-chloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2-methylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dimethylphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2,4-dimethylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; and 4-[(2,4-dichloro-5-ethoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile. 10. The method of claim 1 wherein the compound is a Src inhibitor and a Abl Kinase inhibitor. 11. A pharmaceutical composition comprising a CML inhibiting amount of a compound having the structure of formula I: wherein: n is an integer from 0-3; X is N, CH; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe in para, ortho, or meta position; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe; 2,4-diCl, 5-OEt; and R2 is alkyl of 1 to 3 carbon atoms, and pharmaceutically acceptable salts thereof. 12. A pharmaceutical composition comprising a CML inhibiting amount of a compound having the structure of formula I: wherein: n is an integer from 2-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. 13. A pharmaceutical composition comprising a CML inhibiting amount of a compound having the structure of formula I: X is N, CH n is 3; R2 and R are methyl; and pharmaceutically acceptable salts thereof. 14. The pharmaceutical composition of claim 11 wherein R2 is methyl. 15. The pharmaceutical composition of claim 11 wherein X is N. 16. The pharmaceutical composition of claim 11 wherein X is CH. 17. The pharmaceutical composition of claim 11 wherein the compound is 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile. 18. The pharmaceutical composition of claim 10 wherein the compound is: 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[3-(4-ethyl-1-piperazinyl)propoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[2-(4-ethyl-1-piperazinyl)ethoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[(1-ethylpiperidin-4-yl)methoxy]-6-methoxyquinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino] -6-ethoxy-7-[3-(4-ethylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]quinoline-3-carbonitrile; or 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-propyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; and pharmaceutically acceptable salts thereof. 19. The pharmaceutical composition of claim 11 wherein the compound is: 4-[(2,4-dichlorophenyl)amino]-6-methoxy-7-[(1 -methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-4-[(3,4,5-trimethoxyphenyl)amino]quinoline-3-carbonitrile; 4-[(2-chloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2-methylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dimethylphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2,4-dimethylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; and 4-[(2,4-dichloro-5-ethoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile. 20. The pharmaceutical composition of claim 11 wherein the compound is a Src inhibitor and an Abl Kinase inhibitor. 21. The method of claim 1 wherein the compounds are delivered alone or in combination with other compounds used to treat CML. 22. The method of claim 20 wherein the combination compound is GLEEVEC.
BACKGROUND OF THE INVENTION This application claims priority from copending provisional application Ser. No. 60/517,819, filed Nov. 6, 2003, the entire disclosure of which is hereby incorporated by reference. Constitutive tyrosine kinase activity of Bcr-Abl promotes proliferation and survival of chronic myelogenous leukemia (CML) cells. Inhibition of Bcr-Abl tyrosine kinase activity or signaling proteins activated by Bcr-Abl in CML cells blocks proliferation and causes apoptotic cell death. The selective AbI kinase inhibitor, STI-571 (marketed as Gleevec), is toxic to CML cells in culture, causes regression of CML tumors in nude mice, and is currently used to treat CML patients. Expression of Bcr-Abl in hematopoietic stem cells promotes transformation and acts early in leukemogenesis. Inhibition of this kinase with STI-571 effectively controls CML in the chronic phase of the disease but more advanced patients frequently progress on STI-571 therapy. These observations suggest that additional molecular changes that are not affected by STI-571 play a role in advanced disease. In vitro models of STI-571 resistance and clinical specimens from resistant patients demonstrated that overexpression of other kinases or activation of distinct signaling pathways is associated with Bcr-Abl independence. Inhibition of the tyrosine kinase activity of Bcr-Abl is an effective strategy for targeting CML as demonstrated by the clinical efficacy of STI-571. Other molecules, including Src family kinases, play a role in downstream signaling from Bcr-Abl, and as such, are potential therapeutic targets for the treatment of STI-571 -resistant disease. Src family kinases including Lyn and Hck have been implicated in downstream signaling from Bcr-Abl. Although the selective Abl kinase inhibitor STI-571 is efficacious and well tolerated by most patients in chronic-stage CML, patients in accelerated and blast crises stages of the disease tend to be less responsive. Consequently, there is a need for alternative agents that are effective in late-stage disease. BRIEF SUMMARY OF THE INVENTION In accordance with the present invention are provided compounds of the structural formula I: wherein: n is an integer from 1-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. The compounds of this invention may be used for treating, preventing, or inhibiting CML. In a preferred embodiment the compounds are used as part of a pharmaceutical composition. Specific compounds of the invention include: 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[3-(4-ethyl-1-piperazinyl)propoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[2-(4-ethyl-1 -piperazinyl)ethoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[(1-ethylpiperidin-4-yl)methoxy]-6-methoxyquinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-ethylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-propyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; 4-[(2,4-dichlorophenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-4-[(3,4,5-trimethoxyphenyl)amino]quinoline-3-carbonitrile; 4-[(2-chloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2-methylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dimethylphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2,4-dimethylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dichloro-5-ethoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; and pharmaceutically acceptable salts thereof. The following experimental details are set forth to aid in an understanding of the invention, and are not intended, and should not be construed, to limit in any way the invention set forth in the claims that follow thereafter. DETAILED DESCRIPTION OF THE INVENTION In accordance with the present invention are provided compounds of the structural formula I: wherein: n is an integer from 1-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. The compounds of this invention may be used for treating, preventing, or inhibiting CML. In a preferred embodiment the compounds are used as part of a pharmaceutical composition. Pharmaceutically acceptable salts are those derived from such organic and inorganic acids as: acetic, lactic, carboxylic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, glycolic, pyruvic, methanesulfonic, ethanesulfonic, toluenesulfonic, salicylic, benzoic, and similarly known acceptable acids. The term “alkyl” refers to the radical of saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In a preferred embodiment, a straight chain or branched chain alkyl has 3 or fewer carbon atoms in its backbone. The compounds may be provided orally, by intralesional, intraperitoneal, intramuscular or intravenous injection; infusion; liposome-mediated delivery; topical, nasal, anal, vaginal, sublingual, uretheral, transdermal, intrathecal, ocular or otic delivery. In order to obtain consistency in providing the compound of this invention it is preferred that a compound of the invention is in the form of a unit dose. Suitable unit dose forms include tablets, capsules and powders in sachets or vials. Such unit dose forms may contain from 0.1 to 300 mg of a compound of the invention and preferably from 2 to 100 mg. In another embodiment the unit dosage forms contain 50 to 150 mg of a compound of the present invention. The compounds of the present invention can be administered orally. Such compounds may be administered from 1 to 6 times a day, more usually from 1 to 4 times a day. The effective amount will be known to one of skill in the art; it will also be dependent upon the form of the compound. One of skill in the art could routinely perform empirical activity tests to determine the bioactivity of the compound in bioassays and thus determine what dosage to administer. The compounds of the invention may be formulated with conventional excipients, such as a filler, a disintegrating agent, a binder, a lubricant, a flavoring agent, a color additive, or a carrier. The carrier may be for example a diluent, an aerosol, a topical carrier, an aqueous solution, a nonaqueous solution or a solid carrier. The carrier may be a polymer or a toothpaste. A carrier in this invention encompasses any of the standard pharmaceutically accepted carriers, such as phosphate buffered saline solution, acetate buffered saline solution, water, emulsions such as an oil/water emulsion or a triglyceride emulsion, various types of wetting agents, tablets, coated tablets and capsules. When provided orally or topically, such compounds would be provided to a subject by delivery in different carriers. Typically, such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid, talc, vegetable fats or oils, gums, or glycols. The specific carrier would need to be selected based upon the desired method of delivery, for example, phosphate buffered saline (PBS) could be used for intravenous or systemic delivery and vegetable fats, creams, salves, ointments or gels may be used for topical delivery. The compounds of the present invention may be delivered together with suitable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers useful in treatment or prevention of neoplasm. Such compositions are liquids or lyophilized or otherwise dried formulations and include diluents of various buffer content (for example, Tris-HCl, acetate, phosphate), pH and ionic strength, additives such as albumins or gelatin to prevent absorption to surfaces, detergents (for example, TWEEN 20, TWEEN 80, PLURONIC F68, bile acid salts), solubilizing agents (for example, glycerol, polyethylene glycerol), anti-oxidants (for example ascorbic acid, sodium metabisulfate), preservatives (for example, thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (for example, lactose, mannitol), covalent attachment of polymers such as polyethylene glycol, complexation with metal ions, or incorporation of the compound into or onto particulate preparations of hydrogels or liposomes, micro-emulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroblasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance of the compound or composition. The choice of compositions will depend on the physical and chemical properties of the compound capable of treating or preventing a neoplasm. The compound of the present invention may be delivered locally via a capsule that allows a sustained release of the compound over a period of time. Controlled or sustained release compositions include formulation in lipophilic depots (for example, fatty acids, waxes, oils). The present invention further provides a compound of the invention for use as an active therapeutic substance for treating, preventing, or inhibiting CML. The present invention further provides a method of treating CML in humans, which comprises administering to the infected individual an effective amount of a compound or a pharmaceutical composition of the invention. The dose provided to a patient will vary depending upon what is being administered, the purpose of the administration, the manner of administration, and the like. A “therapeutically effective amount” is an amount sufficient to cure or ameliorate symptoms of CML. The compounds of this may be delivered alone or in combination with other compounds used to treat CML. Such compounds include but are not limited to GLEEVEC, hydroxyurea, IFN-α, cytotoxic agents, 17-(Allylamino)-17-demethoxygeldanamycin or derivatives thereof, or wortmannin. The compounds of this invention were prepared from: (a) commercially available starting materials (b) known starting materials which can be prepared as described in literature procedures or (c) new intermediates described in the schemes and experimental procedures herein. Compounds included in this invention can be prepared according to the synthesis routes disclosed in U.S. Pat. Nos. 6,002,008, and 6,780,996, such procedures are hereby incorporated by reference. Reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformation being effected. It is understood by those skilled in the art of organic synthesis that the various functionalities present on the molecule must be consistent with the chemical transformations proposed. When not specified, order of synthetic steps, choice of protecting groups and deprotection conditions will be readily apparent to those skilled in the art. In addition, in some instances, substituents on the starting materials may be incompatible with certain reaction conditions. Restrictions pertinent to given substituents will be apparent to one skilled in the art. Reactions were run under inert atmospheres where appropriate. The preparation of compounds of Formula I have been reported in the literature, [Boschelli, D. H., et. al., J. Med. Chem., 44, 3965 (2001)], Boschelli, D. H., et al., J Med. Chem., 44, 822 (2001), Boschelli, D. H., et al., Bioorg. Med. Chem. Lett., 13, 3797 (2003), Boschelli, D. H., et.al., J. Med. Chem., 47, 1599 (2004), and Ye, F. et. al., 221th National Meeting of the American Chemical Society, San Diego, Calif. (April, 2001)]. This invention will be more fully described in conjunction with the following specific examples which are not to be construed as limiting the scope of this invention. Materials and Methods: Src kinase assay, homogeneous solution-based assay (Lance format) Kinase Buffer: 50 mM Hepes pH 7.5 10 mM MgCl2 20 ug/ml BSA 0.001% Brij-35 (Prepare 2×kinase buffer for convenience: 100 mM Hepes, 20 mM MgCl2, add fresh 40 ug/ml BSA and 0.002% Brij) Quench Buffer (to be added straight, 1:1, to reaction mix) 50 mM Hepes pH 7.5 60 mM EDTA 20 ug/ml BSA Lance Detection Buffer and plate blocker: 50 mM Hepes pH 7.5 20 ug/mI BSA Add EU-antibody PT66 (Perkin-Elmer) (1 nM) and APC-streptavidin (Perkin-Elmer) (4 ug/ml) for 100 ul/well just prior to using (add 100 ul to 50 ul rxn/50 ul quench for 200 ul final). 5×ATP=500 uM in water. 1. Rinse 96 well plate with 200 ul PBS. Preincubate 96 well black plate with 200 ul of 50 mM Hepes pH 7.5 with 20 ug/ml BSA for 10 minutes (lance detection buffer). 2. Kinase reaction takes place in a total volume of 50 ul kinase buffer in the 96 well plate. Use biotinylated substrate peptide at a final concentration of 2 uM, and src from Panvera at 5 ng per 50 ul reaction. The reaction is initiated by addition of 10 ul 5×ATP (final concentration 1X=100 uM) and carried out for 50 min @ 37° C. (per rxn: 25 ul 2×kinase buffer, 10 ul water, 5 ul diluted compound-10%DMSO/10 mM Hepes). 3. To stop kinase reaction add 50 ul of Quench buffer and shake for 30 s. 4. Add 100 ul of Lance detection buffer containing EU antibody and APC-strep. Add EU-antibody PT66 (1 nM) and APC-streptavadin (4 ug/ml) for 100 ul/well just prior to using (add 100 ul to 50 ul rxn/50 ul quench for 200 ul final). Incubate for 1 h @ room temp in the dark. Read Plate using the standard Lance protocol on the Wallac Victor. Src Kinase Assay Inhibitors of Src (partially purified enzyme preparation purchased from Upstate Biotechnologies, Lake Placid, N.Y.) tyrosine kinase activity are analyzed in an ELISA format. The Boehringer Mannheim Tyrosine Kinase Assay Kit (Roche Diagnostics, Basel, Switzerland) with a cdc2 substrate peptide containing Tyr15 is used for the assay. Horseradish Perbxidase (HRP)-conjugated anti-phosphotyrosine is used to detect phosphorylated peptide via a color reaction. Reaction conditions: Five microliter aliquots of each compound prepared fresh at the time of the assay are added as a solution in 10 mM HEPES pH 7.5, 10% DMSO to the reaction well. Thirty-five microliters of reaction mix containing Src, buffer and peptide/bovine serum albumin mix are added to the compound wells and incubated at 30° C. for 10 minutes (reaction buffer: 50 mM TrisHCl pH 7.5, 10 mM MgCl2, 0.1 mM EGTA, 0.5 mM Na3VO4). The reaction is started by addition of 10 microliters of ATP (500 μM), incubated at 30° C. for 1 hour, and stopped by addition of 20 microliters of 0.5M EDTA. The reaction mixture with the phosphorylated peptide is then transferred to a streptavidin-coated microtiter plate and allowed to bind for 20 minutes. Unbound peptide and reaction mixture is decanted and the plate is washed with PBS six times. HRP-conjugated phosphotyrosine antibody supplied in the kit is incubated with the plate for one hour, then decanted. The plate is again washed with PBS six times. Substrate is added and absorbance at 405 nm is measured. Alternatively, the assay performed essentially as described except a Delfia format (Perkin-Elmer) is used and Europium-conjugated phosphotyrosine antibody was used instead of HRP-conjugated phosphotyrosine antibody, Pierce Superblock was used in place of bovine serum albumin and 6 washes were employed after the kinase reaction and antibody binding. Europium fluorescence was used to monitor the extent of reaction. Activity is determined as % inhibition as calculated by the formula: (1−Abs/Abs(max))×100=% inhibition. Where multiple concentrations of the test agent are used, an IC50 (concentration which gives 50% inhibition) can be determined. As shown in Table 2, compounds of the invention inhibit src kinase in vitro. Homogeneous solution-based Abl kinase assay: Abl kinase activity was measured in a homogeneous assay format (Lance) where luminescence of a donor-acceptor complex bound to peptide phosphorylated by the kinase is measured in solution. Biotinylated substrate peptide: Biotin-NH-KEEEAIYAAPFAKKK-COOH (Synpep) Kinase Buffer: 50 mM Hepes pH 7.5; 10 mM MgCL2; 20 ug/ml BSA; 0.001% Brij-35; prepared as a 2×concentrate for convenience: 100 mM Hepes, 20 mM MgCl2, add fresh 40 ug/ml BSA and 0.002% Brij-35 Quench Buffer to be added in equal proportions to the reaction mix: 50 mM Hepes pH 7.5; 60 mM EDTA; 20 μg/ml BSA Lance Detection Buffer and plate blocker: 50 mM Hepes pH 7.5; 20 μg/ml BSA Detection Mix: Antibody-APC reagent in Lance buffer to be added in equal proportions to the rxn mix/quench mix. Add 100 μL/well Lance detection buffer containing Eu-antibody PT66 (Perkin Elmer, AD0068; 1 nM final concentration in Lance detection buffer) and Streptavidin Surelight-APC (Perkin Elmer, CR130-100; 4 μg/mL final concentration in Lance detection buffer). 5×ATP=500 μM in water Method: 1. Rinse 96 well plate with 200 μl PBS. Incubate 96 well black plate (Thermo LabSystems MicroFluor 2 black U-bottom microtiter plate; # 7205) with 200 μL of Lance detection buffer for 10 minutes. 2. Kinase reaction consists of a total volume of 50 μL kinase buffer/reaction in each well of a 96 well plate. Substrate peptide is present at a final concentration of 2 μM, and c-Abl from Panvera (c-Abl P3049) is included at 2.5 ng per 50 μL reaction. (per rxn: 25 μL 2×kinase buffer, 10 μL water, 5 μL diluted compound-10%DMSO/10 mM Hepes, pH 7.5). The reaction is initiated by addition of 10 μL 5×ATP (final concentration 1×=100 μM) and continued for 30 min @ 27° C. 3. Add 50 μL of Quench buffer to stop the kinase reaction. 4. Add 100 μL of Detection Mix. 5. Incubate for 30 min @ room temp in the dark. Measure luminescence at 665 nm on the Wallac Victor. Analysis of Results: % Inhibition=(Cpm(sample)-Bkg)/(Cpm(control)−Bkg))×100 The LSW data analysis plug-in for Excel (Model 63) is used to calculate IC50 values (y=Bmax/(1+(x/IC50)) Hyperbolic inhibition curve, Bmax to 0 (IC50). These transformed Rat2 fibroblasts are used for the measurement of src dependent suspension growth. Ultra-low cluster plates (Corning Costar, Acton, Mass.) are seeded with 10,000 cells per well on day 1. Alternatively, Ultra-low cluster plates (Costar 3474) treated with Sigmacote (Sigma, St. Louis, Mo.), rinsed with 70% ethanol, after drying in the hood, are seeded with 5000 cells. Compound is added in serial two-fold dilutions from 10 micromolar to 0.009 micromolar on day 2 and MTS reagent (Promega, Madison, Wis.) is added on day 5 (100 microliters of MTS/medium mix+100 microliters of medium already on the cells and the absorbance is measured at 490 nm. The results are analyzed as follows to yield an IC50 for proliferation (micromolar units) as follows: % inhibition=(Abs 490 nm sample−blank)/(Abs 490 nm no cmpd control−blank)×100%. Alternatively relative cell numbers were determined by the CellTiter-Glo™ (Promega) method. All procedures were identical except that cell number was reduced to 1000 cells/well and CellTiter-Glo reagent was added instead of MTS reagent, with luminescence as the readout. Anchorage Independent Src-transformed Fibroblast Proliferation Assay Rat2 fibroblasts stably transformed with a plasmid containing a CMV promoter controlled v-Src/HU c-Src fusion gene in which the catalytic domain of human c-Src gene as follows: Cloning and plasmid constructions: the Prague C v-Src gene from pSrcHis (Wendler and Boschelli, Oncogene 4: 231-236; 1989) was excised with Ncol and BamHI, treated with T4 DNA polymerase, and cloned into the RI site of pTRE (Clontech) that had been rendered flush by treatment with T4 DNA polymerase. The PRC v-Src::hu c-Src fusion was created by replacing the Bgl2-Xbal fragment encoding the carboxyl terminal˜250 amino acids of v-Src with the Bgl2-Xbal fragment containing the v-Src::huc-Src fusion fragment (below). A partial clone of human c-Src was amplified from a breast cDNA library (InVitrogen) using the oligonucleotide pair 5′-CGCCTGGCCAACGTCTGCCCCACGTCCAAGCCGCAGACTCAGGGCCTG-3′ (SEQ. ID NO: 1) and 5′-CCAACACACAAGCAGGGAGCAGCTGGGCCTGCAGGTACTCGAAGGTGGGC-3′ (SEQ. ID NO: 2) and cloned into pCRScript (Stratagene). The catalytic domain of human c-Src in this clone was amplified with these oligonucleotides (fuses v-src nucleotide 734 to human c-Src nucleotide 742 and human c-Src nucleotide 1551 to v-src nucleotide 1543 in the v-Src and human c-Src ORFs). Two v-Src sequences were amplified by PCR (198 base pair v-src 5′ fragment: 5′-GTGCCTATTGCCTCTCCGTTTCTGAC-3′ (SEQ. ID NO: 3)(primer 1) to 5′-ACGTGGGGCAGACGTTGGCCAGGCG-3′) (SEQ. ID NO: 4)(252 base pair 3′ v-src fragment, 5′-CAGCTGCTCCCTGCTTGTGTGTTGG-3′ (SEQ. ID NO: 5) (residues 1543-1567 in v-src ORF) to 5′-ATGAATTCTCTAGAGGAAGACGCCATCATATTCCAAGCAG-3′ (SEQ. ID NO: 6) (residues 1769-1794 from v-src ATG with Xbal and EcoRI restriction sites added (primer 4)). Primers 1 and 4 were used to generate a three-fragment PCR amplification and fusion of the v-Src: human c-Src fusion fragment and the 5′ and 3′ fragments amplified from the Prague C v-Src gene and 3′ untranslated region from Rous sarcoma virus. This reaction creates an in-frame v-Src::human c-Src gene fusion (amino acid residue V244 of v-Src to C248 of human c-Src on the amino terminal side and A517 of human c-Src to Q515 of v-Src). This gene fusion fragment encodes the carboxyl terminal one-third of the v-Src SH2 domain and SH2-catalytic domain linker fused to the human c-Src catalytic domain flanked by the v-Src carboxyl-terminal tail. A naturally occurring Bgl2 site near the 5′ end of the fusion fragment and the engineered Xbal site at the 3′ end of the fragment were used to excise fragment for creation of the full-length v-Src::human c-Src fusion gene as described above. The integrity of the constructs was confirmed by DNA sequencing. Similar methods were used to clone this gene into other expression plasmids such as pIRES (Clontech) for use in these studies. Abl Kinase Assay. Bacterially expressed Abl kinase was obtained from New England Biolabs. Kinase assays were performed in a DELFIA solid phase europium-based detection assay format (Perkin-Elmer). The peptide was as described in Dorsey et al. (46). Biotinylated peptide (2 μM) was bound to streptavidin coated microtitration plates (Perkin Elmer CC11-205) for 1.5 hour in 1 micrograms/ml ovalbumin in Phospate Buffered Saline (PBS). The plates were washed for 1 hour with PBS/0.1% Tween 80, followed by a PBS wash. The kinase reaction was incubated for 1 hour at 30° C. Abl kinase (10 units, NEB P6050L) was mixed with 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 80 μM EGTA, 100 μM ATP, 0.5 mM Na3VO4, 1% DMSO, 1 mM HEPES (pH 7) and 200 μg/ml ovalbumin. The reaction was stopped with EDTA at a final concentration of 50 mM. The DELFIA wash protocol suggested by the manufacturer (Perkin Elmer) was modified by extending wash times to reduce background. The reaction was monitored with Eu-labeled phosphotyrosine antibody (Perkin Elmer AD0040) and DELFIA Enhancement solution (Perkin Elmer 1244-105) according to manufacturer specifications. Determination of Anti-Proliferative Activity of Compounds of Abl-Dependent Cells A. Inhibition of v-Abl-dependent proliferation. Rat 2 cells infected with Abl-murine leukemia virus were grown and treated as described for the Src cell assay. All measurements were identical except for the cell type that Cell-Titer Glo (Promega) was used to monitor relative cell number. In this case, the reagent was used as recommended by the manufacturer and luminescence was measured on a Wallac Victor plate reader. B. Inhibition of CML cell proliferation. KU812 and K562 cells were grown in RPMI1640 medium supplemented with 10% fetal calf serum and glutamine with 50 μg/ml gentamicin. Cells were plated at 1000-2000 cells per well on Day 0. On Day 1, compound was added such that the final DMSO concentration was no greater than 0.1%. On Day 4, Cell-Titer Glo was added according to manufacturer specifications and luminescence was determined on a Wallac Victor plate reader. Results of these experiments are presented in Tables 1, 2 and 3 below. EXAMPLE 1 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile mp 116-120° C.; MS (ES) m/z 530.2, 532.2 (M+1); EXAMPLE 2 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[3-(4-ethyl-1-piperazinyl)propoxy]-6-methoxy-3-quinolinecarbonitrile; mp 102-104° C.; MS (ES) m/z 544.3, 546.4 (M+1); EXAMPLE 3 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]-3-quinolinecarbonitrile mp 165-167° C.; MS (ES) m/z 516.0, 518.2 (M+1); EXAMPLE 4 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[2-(4-ethyl-1-piperazinyl)ethoxy]-6-methoxy-3-quinolinecarbonitrile mp 101-105° C.; MS (ES) m/z 530.4, 532.4 (M+1); EXAMPLE 5 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile mp 200-202° C., MS 501.3 (M+H)+, Analysis for C25H26Cl2N4O3-0.8H2O, Calcd: C, 58.21; H, 5.39; N, 10.86, Found: C, 58.19; H, 5.23; N, 10.67; EXAMPLE 6 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]-3-quinolinecarbonitrile mp 190-191° C., MS 515.19 (M+H)+, Analysis for C26H28Cl2N4O3-1.0 H2O, Calcd: C, 58.53; H, 5.67; N, 10.50, Found: C, 58.65; H, 5.57; N, 10.34 EXAMPLE 7 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile MP 144-145° C.; Mass spec. 529.2 (ES+); EXAMPLE 8 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[(1-ethylpiperidin-4-yl)methoxy]-6-methoxyquinoline-3-carbonitrile MP 192-195° C.; Mass spec. 515.2 (ES+); EXAMPLE 9 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-methylpiperazin-1 -yl)propoxy]quinoline-3-carbonitrile mp 137-138° C., MS 542.0 (M−H)−, Analysis for C27H31Cl2N5O3—0.6 H2O, Calcd: C, 58.40; H, 5.84; N, 12.61, Found: C, 58.31; H, 5.71; N, 12.43; EXAMPLE 10 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile mp 182-186° C., MS 513.0 (M−H)−, Analysis for C26H28Cl2N4O3—1.4H2OCalcd: C, 57.76; H, 5.74; N, 10.36, Found: C, 57.65; H, 5.43; N, 10.15; EXAMPLE 11 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-ethylpiperazin-1 -yl)propoxy]quinoline-3-carbonitrile mp 127-130° C., MS 558.3 (M+H)+, Analysis for C28H33Cl2N5O3—1.5 H2O, Calcd: C, 57.44; H, 6.20; N, 11.96, Found: C, 57.44; H, 6.24; N, 11.79; EXAMPLE 12 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile mp 148-151° C. MS 543.2 (M+H)+, Analysis for C28H32Cl2N4O3—1.8 H2O, Calcd: C, 58.39; H, 6.23; N, 9.73, Found: C, 58.40; H, 6.16; N, 9.64; EXAMPLE 13 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]quinoline-3-carbonitrile mp 141-143° C., MS 530.2 (M+H)+, Analysis for C26H29Cl2N5O3, Calcd: C, 58.87; H, 5.51; N, 13.20, Found: C, 58.48; H, 5.45; N, 12.95; EXAMPLE 14 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]quinoline-3-carbonitrile mp 174-176° C., MS 529.1 (M+H)+, Analysis for C27H30Cl2N4O3, Calcd: C, 61.25; H, 5.71; N, 10.58, Found: C, 61.40; H, 5.84; N, 10.35; EXAMPLE 15 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-propyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile mp 97-101° C.; MS (ES) m/z 558.2, 560.2 (M+1); EXAMPLE 16 4-[(2,4-dichlorophenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile mp 224-225° C., MS 469.0 (ES−); EXAMPLE 17 6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-4-[(3,4,5-trimethoxyphenyl)amino]quinoline-3-carbonitrile mp>245° C.; HRMS (M+H)+ calculated 493.24455, found 493.24311; EXAMPLE 18 4-[(2-chloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile mp 106-108° C., MS 467.2 (ES+); EXAMPLE 19 6-methoxy-4-[(5-methoxy-2-methylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile mp>250° C., MS 445.2 (ES−); EXAMPLE 20 4-[(2,4-dimethylphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile mp 190-191° C., MS 429.2 (ES−); EXAMPLE 21 6-methoxy-4-[(5-methoxy-2,4-dimethylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile mp 160-162° C., MS 461.3 (ES+); EXAMPLE 22 4-[(2,4-dichloro-5-ethoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile TABLE 1 c-Abl Enzymea v-Abl cells K562 KU812 ex IC50 nM IC50 nM IC50 nM IC50 nM 1 1.1 (n = 2) 76 (n = 6) 20 (n = 19) 5.0 (n = 12) 3 not tested 440 48 (n = 2) not tested 5 2.9 (n = 2) 617 39 (n = 3) 13.4 (n = 4) 6 2.9 (n = 2) 458 41 14.0 7 0.8 (n = 2) 185 18 (n = 4) 5.8 (n = 2) 16 16.0 17 12.0 18 3.5 19 8.3 20 38.0 21 8.3 TABLE 2 Tested in the Src enzyme assay, Examples 1-15 ELISA format, Examples 20-25 LANCE format EXAMPLE Src enzyme IC50 nM Src cells IC50 nM 1 1.2 100 2 0.77 130 3 4.0 380 4 3.6 600 5 2.0 320 6 1.9 210 7 1.4 100 8 2.1 170 9 1.2 86 10 2.1 176 11 0.85 160 12 1.4 96 13 1.5 146 14 1.9 267 15 1.1 160 16 6.6 1400 17 8.3 1600 18 12 230 19 24 390 20 63 25000 21 13 510 22 230 Compounds of formula I (“the compounds”), originally identified as a Src inhibitor, are shown here to be a potent antiproliferative and proapoptotic agent against CML cells in culture. The apoptotic activity of the compounds against CML cells in culture is mirrored by its activity in vivo against CML xenografts. K562 tumors regress in nude mice when the compounds are administered p.o. once a day. The Abl-inhibitory activity of the compounds is likely a major contributor to the antiproliferative activity of the compounds against CML cells. Tyrosine phosphorylation of Bcr-Abl is eliminated at concentrations of the compounds greater than 100 nm, which alone should be sufficient to inhibit the proliferation and survival of Bcr-Abl-dependent myeloid cells. Nude mice with K562 xenografts were examined on days 11, 22, 36, and 43. Data is presented as a ratio of animals lacking detectable tumors relative to the number of animals per group. K562 tumors imbedded in Matrigel were staged in nude mice until tumors reached 200-300 mm3. The compound of example 1 was administered p.o. in 0.4% methocel/0.5% Tween at 75 mg/kg once a day for 5 days (8 mice/group). TABLE 3 Tumor-free survival of mice with K562 xenografts receiving various oral doses of example 1 for 5 days Day Dose 11 22 36 43 Vehicle 0/6 150 mg/kg 8/8 8/8 8/8 8/8 100 mg/kg 8/8 7/8 7/8 7/8 75 mg/kg 7/8 6/8 6/8 6/8 50 mg/kg 6/8 5/8 4/8 4/8
<SOH> BACKGROUND OF THE INVENTION <EOH>This application claims priority from copending provisional application Ser. No. 60/517,819, filed Nov. 6, 2003, the entire disclosure of which is hereby incorporated by reference. Constitutive tyrosine kinase activity of Bcr-Abl promotes proliferation and survival of chronic myelogenous leukemia (CML) cells. Inhibition of Bcr-Abl tyrosine kinase activity or signaling proteins activated by Bcr-Abl in CML cells blocks proliferation and causes apoptotic cell death. The selective AbI kinase inhibitor, STI-571 (marketed as Gleevec), is toxic to CML cells in culture, causes regression of CML tumors in nude mice, and is currently used to treat CML patients. Expression of Bcr-Abl in hematopoietic stem cells promotes transformation and acts early in leukemogenesis. Inhibition of this kinase with STI-571 effectively controls CML in the chronic phase of the disease but more advanced patients frequently progress on STI-571 therapy. These observations suggest that additional molecular changes that are not affected by STI-571 play a role in advanced disease. In vitro models of STI-571 resistance and clinical specimens from resistant patients demonstrated that overexpression of other kinases or activation of distinct signaling pathways is associated with Bcr-Abl independence. Inhibition of the tyrosine kinase activity of Bcr-Abl is an effective strategy for targeting CML as demonstrated by the clinical efficacy of STI-571. Other molecules, including Src family kinases, play a role in downstream signaling from Bcr-Abl, and as such, are potential therapeutic targets for the treatment of STI-571 -resistant disease. Src family kinases including Lyn and Hck have been implicated in downstream signaling from Bcr-Abl. Although the selective Abl kinase inhibitor STI-571 is efficacious and well tolerated by most patients in chronic-stage CML, patients in accelerated and blast crises stages of the disease tend to be less responsive. Consequently, there is a need for alternative agents that are effective in late-stage disease.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>In accordance with the present invention are provided compounds of the structural formula I: wherein: n is an integer from 1-3; X is N, CH, provided that when X is N, n is 2 or 3; R is alkyl of 1 to 3 carbon atoms; R 1 is 2,4-diCl, 5-OMe; 2,4-diCl; 3,4,5-tri-OMe; 2-Cl, 5-OMe; 2-Me, 5-OMe; 2,4-di-Me; 2,4-diMe-5-OMe, 2,4-diCl, 5-OEt; R 2 is alkyl of 1 to 2 carbon atoms, and pharmaceutically acceptable salts thereof. The compounds of this invention may be used for treating, preventing, or inhibiting CML. In a preferred embodiment the compounds are used as part of a pharmaceutical composition. Specific compounds of the invention include: 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[3-(4-ethyl-1-piperazinyl)propoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[2-(4-ethyl-1 -piperazinyl)ethoxy]-6-methoxy-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]-3-quinolinecarbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-7-[(1-ethylpiperidin-4-yl)methoxy]-6-methoxyquinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(4-ethylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[3-(1-methylpiperidin-4-yl)propoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(4-methyl-1-piperazinyl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-ethoxy-7-[2-(1-methylpiperidin-4-yl)ethoxy]quinoline-3-carbonitrile; 4-[(2,4-Dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-propyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile; 4-[(2,4-dichlorophenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-3-quinolinecarbonitrile; 6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]-4-[(3,4,5-trimethoxyphenyl)amino]quinoline-3-carbonitrile; 4-[(2-chloro-5-methoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2-methylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dimethylphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 6-methoxy-4-[(5-methoxy-2,4-dimethylphenyl)amino]-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; 4-[(2,4-dichloro-5-ethoxyphenyl)amino]-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinoline-3-carbonitrile; and pharmaceutically acceptable salts thereof. The following experimental details are set forth to aid in an understanding of the invention, and are not intended, and should not be construed, to limit in any way the invention set forth in the claims that follow thereafter.
20041103
20080826
20050512
94591.0
2
SEAMAN, D MARGARET M
4-ANILINO-3-QUINOLINECARBONITRILES FOR THE TREATMENT OF CHRONIC MYELOGENOUS LEUKEMIA (CML)
UNDISCOUNTED
0
ACCEPTED
2,004
10,980,272
ACCEPTED
Light therapy device
A light therapy device is taught including a light emitting assembly having light emitting diodes (LEDs) as a light source. The light emitting assembly capable of generating 2,500 lux to 7,500 lux at 12 inches.
1. A light therapy device comprising: an outer housing including an opening; a light emitting assembly in the housing and operable to emit light through the opening in the housing, the light emitting assembly including a plurality of LEDs capable of generating 2,500 lux to 7,500 lux at 12 inches. 2. The light therapy device of claim 1 wherein at least some of the LEDs are capable of emitting white-light. 3. The light therapy device of claim 1 wherein a diffuser screen of light diffusing sheet material is positioned over the LEDs. 4. The light therapy device of claim 1 wherein the housing accommodates a therapy calculator programmed to calculate a treatment regime based on an input of information. 5. The light therapy device of claim 1 wherein the housing includes a first member and a second member, the first member and the second member being releasably locked together and the light emitting assembly being storable in the first member and being mountable on the housing such that the housing acts as a base to support the light emitting assembly. 6. The light therapy device of claim 5 wherein the first and second members are pivotally connected. 7. The light therapy device of claim 6 wherein the light emitting assembly is mounted onto the first member and the second member forms a base for support of the first member. 8. The light therapy device of claim 1 wherein the housing is mounted into a vehicle passenger compartment so as to provide light treatment to vehicle passengers or operators. 9. The light therapy device of claim 8 wherein the vehicle passenger compartment is in a vehicle selected from the group consisting of a plane, an automobile, a transport truck, a bus and a plane. 10. The light therapy device of claim 1 further comprising an adapter mountable on a support and formed to accept the device. 11. The light therapy device of claim 10 wherein the adapter further comprises an adjustable arm. 12. The light therapy device of claim 10 wherein the adapter further comprises electrical contactors for electrical communication to the device and to a power source in the support. 13. The light therapy device of claim 4 wherein the therapy calculator includes a display, a key pad for inputting information and a processor for accepting the information and calculating a treatment regime. 14. The light therapy device of claim 4 wherein the therapy calculator calculates a treatment regime based on an input of (i) a number of time zones crossed, (ii) a direction of travel and (iii) a normal wake-up time of the patient. 15. The light therapy device of claim 4 wherein the therapy calculator is programmed to determine the number of time zones through which travel will occur and a treatment regime based on an input of (i) a departure city, (ii) an arrival city and (iii) a normal wake-up time of the patient. 16. The light therapy device of claim 4 wherein the therapy calculator is programmed to prompt a user for an input of information. 17. The light therapy device of claim 4 wherein the therapy calculator includes a pause feature for recording a time of treatment interruption and capable of outputting from memory the portion of treatment remaining when treatment is resumed. 18. The light therapy device of claim 4 wherein the therapy calculator includes a memory capable of storing and recalling a previous treatment regime. 19. An ocular light therapy device comprising: an outer housing including an opening; a light emitting assembly in the housing and operable to emit light through the opening in the housing, the light emitting assembly including a plurality of LEDs capable of generating 2,500 lux to 7,500 lux at 12 inches. 20. The light therapy device of claim 19 wherein at least some of the LEDs are capable of emitting white-light. 21. The light therapy device of claim 19 further comprising a base formed on the outer housing. 22. The light therapy device of claim 19 further comprising a support leg for supporting the housing in propped position for light therapy. 23. The light therapy device of claim 22 wherein the support leg is pivotally connected to the housing and rotatable between a supporting position and a stored position. 24. The light therapy device of claim 21 further comprising a mounting adapter and wherein the base is selected to fit into and be engaged by the mounting adapter. 25. The light therapy device of claim 21 wherein the housing further comprises an upper member pivotally connected to the base, the light emitting assembly being mounted in the upper member. 26. The light therapy device of claim 19 further comprising a battery for powering the device. 27. The light therapy device of claim 26 wherein the battery is rechargeable. 28. An ocular light therapy device comprising: an outer housing including an opening, the housing including a base for supporting the housing in a treatment position on a support surface; a light emitting assembly in the housing and operable to emit light through the opening in the housing, the light emitting assembly including a plurality of white light emitting LEDs. 29. The light therapy device of claim 28 wherein the plurality of LEDs is capable of generating an output of light suitable for ocular light therapy. 30. The light therapy device of claim 28 wherein the plurality of LEDs is capable of generating 2,500 lux to 7,500 lux at 12 inches. 31. The light therapy device of claim 28 wherein the plurality of LEDs has a total output of light of between 50 and 500 candelas. 32. The light therapy device of claim 28 further comprising a mounting adapter and wherein the base is selected to fit into and be engaged by the mounting adapter. 33. The light therapy device of claim 32 wherein the adapter further comprises an adjustable arm. 34. The light therapy device of claim 32 wherein the adapter further comprises electrical contactors for electrical communication to the device and to a power source in the support. 35. The light therapy device of claim 28 further comprising a support leg for supporting the housing in propped position on the base. 36. The light therapy device of claim 35 wherein the support leg is pivotally connected to the housing and rotatable between a supporting position and a stored position.
FIELD OF THE INVENTION The present invention relates to a light therapy device and in particular to a light therapy device for treatment of light deficient disorders. BACKGROUND OF THE INVENTION There is much support for the use of light therapy to overcome light deficient disorders. It has been proven that treatments involving shining light directly towards a patient's eyes will alleviate or cure light deficient disorders including Seasonal Affective Disorder (SAD), circadian sleep disorders and circadian disruptions associated with jet-lag, shift-work, PMS and bulimia. There are two types of light therapy devices presently available. One type of device is large in size and floor or desk mountable. These devices include light sources of fluorescent bulbs. Although they can be moved from one position to another, they are not generally portable. In addition, the light source is quite fragile. The second kind of light therapy devices is head mountable. These devices are formed as eyeglasses or visors. While they are portable, they are not generally accepted by patients for use in public because of their odd appearance when worn on the head. This combined with safety concerns about eye damage given the proximity of the light source to the eye, has resulted in head mountable treatment devices failing to be generally accepted as a light therapy device. These devices therefore are of limited use for persons requiring a portable and discreet treatment device. A light therapy device is needed for use by, for example, the business traveler that is portable and aesthetically appealing. SUMMARY OF THE INVENTION The present invention provides a portable and lightweight hand-held light therapy device. The device is durable, being resistant to damage by normal transport. The device uses light emitting diodes (LEDs) as a source of light. LEDs offer a light source that is lightweight, small in size, simple, durable as well as energy efficient. The device is useful for travel and for in-flight use while being aesthetically acceptable. In accordance with one aspect of the present invention, there is provided a light treatment comprising: an outer housing including a opening; a light emitting assembly in the housing and operable to emit light through the opening in the housing, the light emitting assembly including a plurality of LEDs capable of generating 2,500 lux to 7,500 lux at 12 inches. The LEDs include at least some capable of emitting white-light. In one embodiment, the LEDs are arranged in a pattern over an area and the light emitting assembly is selected to emit light from the LEDs along a substantially straight line directly toward the user. Preferably, a diffuser screen of light diffusing sheet material is positioned over the LEDs to provide a more uniform emission of light. While LEDs do not emit any significant amount of ultraviolet radiation, the diffuser sheet material can include a UV filter, if desired. The outer housing can include a first member and a second member, the first member and the second member being releasably locked together and the light emitting assembly being storable in the first member and being mountable on the housing such that the housing acts as a base to support the light emitting assembly. In one embodiment, the first and second members are pivotally connected and openable in a manner similar to a book. The first and second members, when closed enclose an inner compartment accessible by opening the first and second members about their pivotal connection. The light emitting assembly is storable in the inner compartment. In this embodiment, the light emitting assembly can be mountable on the first member and the second member can act as a base. To facilitate therapy using the device, the housing can also accommodate a therapy calculator for determining a treatment regime based on an input of information. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front elevation view of a light therapy device according to the present invention. A portion of the device has been cut away to facilitate illustration of internal components. FIG. 2 is a side elevation view of the light therapy device of FIG. 1 with the support leg folded against the housing. FIG. 3 is a sectional view along line A-A of FIG. 1. FIG. 4 is a side elevation view of another light therapy device according to the present invention in a closed configuration. FIG. 5 is a side elevation view of the device of FIG. 4 in an open configuration, ready for use. FIG. 6 is a front elevation of the device and configuration of FIG. 5. FIG. 7 is an elevation of a device for permitting mounting of a light therapy device in a passenger compartment of a vehicle. The device is aligned for insertion into a power port of a vehicle and a light therapy device is aligned for insertion into the docking bay of the device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 to 3, a light therapy device according to one embodiment of the present invention is shown. The device is small in size and resembles a large calculator or hand-held computer. Preferably, the outside dimensions of the device are less than about 7 inches wide, 7 inches high and 1.5 inches deep. The size can be varied as desired and with consideration as to portability, convenience and the components that must be contained therein. The device includes an outer housing 10. The housing is preferably formed of a durable, impact resistant material such as, for example, a polymer (i.e. nylon, thermoplastic or blends thereof). Preferably, all housing parts are of minimal thickness to provide suitable impact resistance and support for internal components while minimizing the weight of the device. The housing can be formed, as shown, in parts secured together by screws 12 or other fastening means. The housing carries a light emitting assembly 20. The light emitting assembly is mounted in the housing such that in operation light emitted therefrom is directed out through an opening 22 in the housing. Light emitting assembly 20 includes a printed circuit (PC) board 26 providing electrical connection for light emitting diodes 28. The LEDs are spaced apart on the board, with consideration as to their light output and wavelength, such that the assembly emits a light of illumination adequate for treatment of light deficient disorders. In particular, the light emitting assembly generates adequate illumination for treatment of light deficient disorders including Seasonal Affective Disorder (SAD), circadian sleep disorders and circadian disruptions associated with jet-lag, shift-work, PMS and bulimia, which is between 2,500 and 7,500 lux, and preferably between about 3,500 and 5,500 lux at 12 inches from the assembly. To generate this level of illumination, the assembly generally includes between about 10 and 150 LEDs together having a total light output of between 50 and 500 candelas and preferably about 250 to 450 candelas. The number of LEDs in the light emitting assembly may be reduced considerably as the efficiency of a LED is increased. Using a light therapy device according to the present invention, treatments of acceptable duration can be administered. As an example, treatments for SAD can be completed in ¼ to 4 hours and in most cases, ½ to 3 hours. For bright-light therapy, preferably white LEDs are used. However, it is sometimes useful to combine light of different wavelengths and in some instances to approximate the spectral properties or distribution of a tropical sunrise. Therefore, LEDs 28 can be entirely of the type emitting white light or, alternatively, LEDs emitting light of various wavelengths (i.e. red or amber) can be used with white light emitting diodes. The light generated by the light emitting assembly is preferably constant, though it may also be pulsed. In one embodiment, a diffuser screen 32 is mounted over the diodes to create a more uniform, less harsh light emission. Preferably, LEDs 28 are mounted a suitable distance from diffuser screen 32 such that the light emitted by each LED overlaps on the screen and avoids the appearance of individual points of light behind the screen. If a diffuser screen is used, it is necessary to ensure that adequate levels of light, as set out above, are passed therethrough to permit treatment. Power is supplied to the LEDs through electrical lines 34. Power can be provided through batteries or preferably, to reduce weight, through a jack 36 for connection to a 120v electrical supply (for use in North America). The device preferably operates using DC power and is supplied with an external AC-DC converter. Since the device is particularly useful during long distance travel in the treatment of jet lag, an adapter can be provided within the device or separately for device compatibility with foreign voltages of AC power or with DC power, as is provided through power ports mounted in aircraft armrests. To facilitate light treatment, a support leg 40 can be provided for supporting the housing in a propped position such that light is emitted in a generally horizontal direction. In one embodiment, support leg 40 is connected by a hinge 42 to the rear of the housing such that the leg can be rotated between a supporting position and a stored position against the rear of the housing. A more complex stand for elevating the light illuminating assembly can be used, as desired. The light treatment device can be mounted in a vehicle passenger compartment including, for example, a passenger or operator seat area. The vehicle can be, for example, an aircraft, a train, a bus, a truck or an automobile. In one embodiment, the light treatment device is mounted in an aircraft seat back or in an aircraft seat armrest for use by air travelers. The device can be mounted in a manner similar to aircraft telephones, individual video monitors, and other such devices, wherein the light treatment device is attached to an adjustable extension arm, thereby enabling the user to remove the light treatment device from an armrest and position it appropriately for treatment. Alternately, the light treatment device may be temporarily removed from its seat back mounting position and positioned on a tray table or other surface for treatment, while remaining secured to the seat back by means of a cable that could also serve as a power source. The device may also be mounted into an airliner flight deck or other such areas of an airliner to provide discreet and convenient light treatments for pilots, flight attendants and other such on-board crew affected by jet lag and fatigue. In another embodiment, the light treatment device can be mounted in the passenger compartments of vehicles, for example, automobiles, transport trucks, buses, trains, and other such vehicles, wherein the device is stored when not in use but readily available to provide a light therapy treatment. In the case of automobiles and trucks, the device may be mounted on the underside of a sun visor, or within the glove compartment, or under the vehicle's dashboard. In the latter two examples, the device can be attached to an adjustable extension arm in order to permit proper positioning for treatment. The device may also be mounted so as to provide a light treatment for the driver or operator of these vehicles, with appropriate precautions being indicated for safe operation of the vehicle, for example, at those times when the vehicle is parked or idle. One such embodiment is described hereinafter with reference to FIG. 7. Housing 10 can also be formed to accommodate other electronics, batteries etc. or to define storage space such as for cords, adapters, glasses or other items. The housing can also include a cover or a case. Referring to FIGS. 4 to 6, a light therapy device according to another embodiment of the present invention is shown. The device has an outer housing including an upper housing member 110 and a lower housing member 112. The housing members are connected by a hinge 114 that permits them to pivot relative to each other between a closed position shown in FIG. 4 and an open position shown in FIGS. 5 and 6. When in the closed position, the housing members can be releasably locked together by a catch 116. The device is small in size and, when closed, resembles a portable compact disc player or a make-up compact. The housing encloses a light emitting assembly 20. In the illustrated embodiment, light-emitting assembly 20 is mounted in the upper housing member. The light emitting assembly is mounted on the inwardly facing portion of the upper housing member so that, when the device is in the closed position, assembly 20 is protected within the housing members. In this way, the light emitting assembly, which is more fragile than the housing, is protected against damage during transport. The device is opened for use to administer a light treatment. In a preferred embodiment, upper housing member 110 unfolds from the closed position by rotating about hinge 114. Lower housing member 112 acts as a base for supporting the light emitting assembly. Preferably, hinge 114 is of the type that permits self-locking in at least a few rotational orientations. The use of such a hinge permits that, for example, upper housing member can be oriented to direct the light downwardly, horizontally or, if preferred, in other directions. This is useful as it may be necessary, depending on the treatment, to have the light directed into the patient's eyes or alternately downwardly toward a workspace. Counterweights (not shown) can be mounted in the lower housing member to prevent the device from tipping. Member 112 can also be formed to accommodate electronics, batteries etc. or to define storage space such as for cords, adapters, glasses or other items. Member 112 can also accommodate a treatment calculator, as will be described hereinbelow. In one embodiment illustrated, for example in FIGS. 1 to 3, housing 10 also accommodates a calculator including a display 82, a key pad 84 and a processor mounted within housing 10. The calculator is programmed to calculate a light treatment regime based on input of information. The calculator processor uses calculation references such as that known as the Jet Lag Calculator™ available from Bio-Brite, Inc., Maryland. In one embodiment, the calculator can be used to calculate light treatment regimes for jet lag based on inputs of information, as follows: Option 1 i. Number of time zones crossed during trip ii. Direction of time zones crossed (East or West) iii. Normal wake-up time of patient (for establishing the patient's “body clock”) Option 2 i. Departure city ii. Arrival city iii. Normal wake-up time of patient Based on the input of the above-noted information, the calculator will then calculate and display a treatment regime including, for example, a period of light exposure and a period of light avoidance. In option 2, the calculator determines the number of time zones through which travel will occur and uses this to calculate treatment regime. The calculator in one embodiment calculates a two-day treatment regime. In one embodiment, the calculator keypad includes keys to be depressed when inputting particular information. As an example, the keypad can include keys such as: “departure city”, “destination city” and “wake up time”. The calculator can be adapted to prompt the patient such as by displaying questions requesting the appropriate information. Preferably, the calculator includes a pause function capable of recording a time of treatment interruption and capable of outputting from memory the portion of the treatment remaining when treatment is resumed. In addition or alternately, the calculator can be programmed for calculation of other treatment regimes such as, for example, for treatments to alleviate fatigue in shift workers. Treatments for shift workers may include inputs such as work shift start time, previous shift time and normal waking time. A speaker 88 is preferably provided for communication to the user. As an example, the speaker can communicate with the calculator processor to audibly prompt a user to input information. In addition, the speaker can function to emit an audible signal, such as an alarm, to alert a user to commence or modify a treatment. In one embodiment, the calculator processor controls a switch for the light emitting assembly such that it is turned on or off in response to a signal from the processor. In a preferred embodiment, the calculator memory is capable of storing previous treatment regimes. These stored treatment regimes can be recalled from processor memory for repeat trips or shift work schedules. If desired, to enhance the usefulness of the device, the calculator can also be programmed with other information including a clock, a standard mathematical calculator or other information such as an address book, etc. As noted hereinbefore, a light therapy device according to the present invention can be mounted in a vehicle for use by passengers. One such embodiment is illustrated in FIG. 7. A vehicle mounting adaptor 50 useful for mounting a light treatment device in a vehicle passenger compartment acts as an interface between the vehicle power port 52 (i.e. an in-dash cigarette lighter) and the light treatment device 54. In particular, at one end the adaptor has a power port contactor 56 for insertion into the power port. A locking collar 57 is threadedly engaged at the outboard end of the contactor 56. Once power port contactor 56 is inserted into power port 52, locking collar 57 can be tightened down about the port by threaded advancement to reinforce the engagement between port 52 and power port contactor 56. At the opposite end, the adapter includes a docking port 58 with a recess 59 having therein electrical contactors 60. The light treatment device is mountable in the recess of docking port 58 in electrical communication with contactors 60. Venting slots 64 are formed through the docking port and positioned to substantially align with the vents 66 on light treatment device 54 to provide ventilation to the light treatment device therethrough. Power cables (cannot be seen) extend between ends 56 and 58 to provide electrical communication therebetween. The power cables are housed within a bendable arm 68 of the type including a corrugated tube and internal supports that can be bent into various orientations and, once positioned, will hold fast in that orientation. Arm 68 is bendable yet rigid enough to hold the weight of the light treatment device 54 and docking port 58 without moving out of the bended configuration into which it has been adjusted. Locking collar 57 also securely holds power port contactor 56 in power port 52 even against the weight of the light treatment device and against the stress of bending arm 68. Adapter 50 can be removed from power port 54 and stored when not required. Numerous modifications, variations and adaptations may be made to the particular embodiments of the invention described above without departing from the scope of the invention as defined in the claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>There is much support for the use of light therapy to overcome light deficient disorders. It has been proven that treatments involving shining light directly towards a patient's eyes will alleviate or cure light deficient disorders including Seasonal Affective Disorder (SAD), circadian sleep disorders and circadian disruptions associated with jet-lag, shift-work, PMS and bulimia. There are two types of light therapy devices presently available. One type of device is large in size and floor or desk mountable. These devices include light sources of fluorescent bulbs. Although they can be moved from one position to another, they are not generally portable. In addition, the light source is quite fragile. The second kind of light therapy devices is head mountable. These devices are formed as eyeglasses or visors. While they are portable, they are not generally accepted by patients for use in public because of their odd appearance when worn on the head. This combined with safety concerns about eye damage given the proximity of the light source to the eye, has resulted in head mountable treatment devices failing to be generally accepted as a light therapy device. These devices therefore are of limited use for persons requiring a portable and discreet treatment device. A light therapy device is needed for use by, for example, the business traveler that is portable and aesthetically appealing.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a portable and lightweight hand-held light therapy device. The device is durable, being resistant to damage by normal transport. The device uses light emitting diodes (LEDs) as a source of light. LEDs offer a light source that is lightweight, small in size, simple, durable as well as energy efficient. The device is useful for travel and for in-flight use while being aesthetically acceptable. In accordance with one aspect of the present invention, there is provided a light treatment comprising: an outer housing including a opening; a light emitting assembly in the housing and operable to emit light through the opening in the housing, the light emitting assembly including a plurality of LEDs capable of generating 2,500 lux to 7,500 lux at 12 inches. The LEDs include at least some capable of emitting white-light. In one embodiment, the LEDs are arranged in a pattern over an area and the light emitting assembly is selected to emit light from the LEDs along a substantially straight line directly toward the user. Preferably, a diffuser screen of light diffusing sheet material is positioned over the LEDs to provide a more uniform emission of light. While LEDs do not emit any significant amount of ultraviolet radiation, the diffuser sheet material can include a UV filter, if desired. The outer housing can include a first member and a second member, the first member and the second member being releasably locked together and the light emitting assembly being storable in the first member and being mountable on the housing such that the housing acts as a base to support the light emitting assembly. In one embodiment, the first and second members are pivotally connected and openable in a manner similar to a book. The first and second members, when closed enclose an inner compartment accessible by opening the first and second members about their pivotal connection. The light emitting assembly is storable in the inner compartment. In this embodiment, the light emitting assembly can be mountable on the first member and the second member can act as a base. To facilitate therapy using the device, the housing can also accommodate a therapy calculator for determining a treatment regime based on an input of information.
20041104
20120131
20050526
73951.0
1
FARAH, AHMED M
DEVICE AND METHOD FOR TREATMENT OF LIGHT DIFFICIENT DISORDERS
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,980,586
ACCEPTED
Angled shank blade
An angled shank blade for a carpet or tile stripping machine with a flat bottomed blade for engaging the surface of a floor. The leading edge of the blade having an angle of about 20 degrees, followed by a tapered top surface portion and a rear portion. An angled blade head attached to the rear portion and angled upward at about 20 degrees. A shank attached to the blade at an angle of about 20 degrees for receiving the weight of the floor stripping machine and keeping the blade parallel to the floor while lifting the flooring material over the leading edge, the tapered portion, the blade head and shank smoothly and efficiently without binding. The blade may have a carbide insert for long lasting skiving of material from the floor.
1 A floor stripping blade comprising: a blade having a flat bottom surface, a leading edge portion angled relative to the floor for skiving flooring material from a floor, a rear portion having a flat top surface aft of the leading edge portion, a blade head attached to the rear portion having a top surface angled approximately at the same angle relative to the floor as the leading edge portion, a shank attached to the blade head for connecting the floor stripping blade to a floor stripping machine at an angle such that the weight of the floor stripping machine rests on the flat bottom surface of the blade resting on the floor in front of the floor stripping machine. 2. A floor stripping blade as in claim 1 wherein: the blade has a tapered portion between the leading edge portion and the rear portion. 3. A floor stripping blade as in claim 1 wherein: the leading edge portion angled approximately 20 degrees upward with respect to the floor surface. 4. A floor stripping blade as in claim 2 wherein: the leading edge portion angled approximately 20 degrees upward with respect to the floor surface. 5. A floor stripping blade as in claim 1 wherein: a carbide insert attached to the front of the leading edge portion of the floor stripping blade. 6. A floor stripping blade as in claim 2 wherein: a carbide insert attached to the front of the leading edge portion of the floor stripping blade. 7. A floor stripping blade as in claim 5 wherein: the carbide insert has a nose portion with an angle of approximately 45 degrees with respect to the surface of the floor for efficiently skiving material from the floor. 8. A floor stripping blade as in claim 6 wherein: the carbide insert has a nose portion with an angle of approximately 45 degrees with respect to the surface of the floor for efficiently skiving material from the floor. 9. A floor stripping blade as in claim 1 wherein: the shank has a top surface angled at approximately the same angle as the blade head. 10. A floor stripping blade as in claim 2 wherein: the shank has a top surface angled at approximately the same angle as the blade head. 11. A floor stripping blade as in claim 1 wherein: a nose portion for skiving flooring material from a floor attached at the front of the leading edge portion. 12. A floor stripping blade as in claim 2 wherein: a nose portion having an angle of about 45 degrees with respect to the floor for skiving flooring material from a floor attached at the front of the leading edge portion.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of Ser. No. 10/305,216 filed Nov. 26, 2002. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to blades for carpet and tile floor stripping machines and more particularly to an angled shank blade. 2. Description of the Related Art There are many types of floor stripping machines. In one type the blades engaging the floor are angled downward and have a large force pushing down on the blade so that it engages the floor at an angle and strips the ceramic tiles, carpet, tile, adhesives and other material from the floor. The blade tips dull quickly and have to be changed frequently. Another type of floor stripping machine has a blade resting on the floor like a plow with a pushing force applied behind the blade parallel to the floor. However it is difficult to keep the blade flat on the floor and the blade will ride up over the material to be stripped. In other blades the blade head would interfere with the material being lifted off the floor and increase the amount of energy needed to propel the floor stripping machine. Prior blades for floor stripping machines would have a large angle of taper after the cutting edge requiring an excessive amount of force to lift the material off the floor. Other blades would have a small taper but would be too thin to keep the blade from vibrating and bending thus the blade tip would bend and engage the floor cutting downward into the flooring or cutting upward into the material rather than skive the material from the floor. Further the bottom surface of the blade would snake up and down wasting energy and presenting the floor with a not smooth blade surface, which increases the energy needed to push the blade along the floor. SUMMARY OF THE INVENTION The angled stripper blade has a shoe portion for riding on the floor and having the weight of the machine on it for engaging the floor. A blade on the front portion of the shoe is held parallel to the floor for skiving the ceramic tiles, carpet, tile, adhesive or other material from the floor surface. The blade angle relative to the floor is optimized for stripping the floor. A tapered portion after the blade tip helps lift the carpet or flooring material up off the floor gradually. The blade head at the rear of the blade and attached at an angle such that the carpet or flooring material is lifted up by the blade head to avoid being caught thereon. An optional carbide tip on the blade is stronger and last longer than a metal blade and can be changed easily when the tip gets dull. OBJECTS OF THE INVENTION It is an object of the invention to quickly and easily strip a floor of ceramic tiles, carpet, tile, adhesives and other materials. It is an object of the invention to provide a blade tip, which lasts longer without becoming dull. It is an object of the invention to provide a stripper blade, which is easy to change. It is an object of the invention to provide an angled blade with weight on the blade to keep the blade parallel to the floor. It is an object of the invention to hold the blade at an optimal angle to strip the floor. It is an object of the invention to have a tapered portion of the blade to lift the carpet or flooring material off the floor gradually providing a longer release time for the material to be lifted from the floor. It is an object of the invention to have an angled head at the rear of the blade to continue to lift the carpet or flooring material at the angle of the leading edge of the blade to avoid the carpet or flooring from getting caught on the angled head. It is an object of the invention to have a shank parallel to the angled head so that the material being lifted from the floor does not get caught on the shank. It is an object of the invention remove flooring with the least power requirement of the floor stripping machine. Other objects, advantages and novel features of the present invention will become apparent from the following description of the preferred embodiments when considered in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the angled blade shank with a longer blade. FIG. 2 is a perspective view of the angled blade shank with a shorter blade. FIG. 3 is a perspective view of the angled blade shank with a longer blade with a carbide insert at the blade tip. FIG. 4 is a perspective view of the angled shank blade having a carbide blade without a tapered portion. DESCRIPTION OF THE PREFERRED EMBODIMENTS The blade 16 is used to skive flooring material such as ceramic tiles, carpeting or other flooring materials from a floor when used in conjunction with a floor stripping machine. The floor stripping machine may push forward on the blade 16 or use a combination of pushing forward along with side to side movements or orbital movements. The leading edge of the blade 13 has an angle of about 20 degrees with respect to the floor. It lifts the material from the floor at the front of the blade 16. The blade then has tapered portion 17 for further lifting the flooring material or carpet from the floor at a small angle to allow the material time to release from the floor as the blade moves forward thus using less energy in lifting the flooring then a blade with a steeper angle of attack. The rear portion 14 of the blade 16 is at a uniform height with a flat top surface 24 and supports the blade head 15. The blade head 15 is preferably angled at about 20 degrees to match the angle of the leading edge 13 so that the flooring material is further lifted at the blade head 15 and the attached shank 18 to avoid the material becoming caught on and binding on the material while it is being lifted and the stripper machine moves forward. The rear portion 14 of blade 15 thick enough and strong enough to support the stripper machine and keep the tapered portion 17 of the blade 16 from bending as it is being pushed forward. The tapered portion 17 allows the leading edge 13 to have a smaller height, which aids in skiving material from the floor. The tapered portion 17 then helps further lift the material from the floor over a longer length reducing the power needed by the stripping machine. The angled interface of the blade head 15 with the blade 16 allows the material being removed from the floor to slide up the head and the attached shank since the angle of the leading edge 13 and the blade head 15 are approximately same, therefore eliminating catching on the material or increasing the angle of attach on the material which would increase the power required of the stripping machine to move forward. A collar 25 on the blade head 15 allows the shank 18 to be connected to the blade head 15. The collar 25 has approximately the same diameter as the shank 18 and the blade head 15 at the leading edge of the collar to reduce the chances snagging on the material being lifted from the floor. The shank 18 has a connecting aperture 20 to secure the shank to the stripping machine. The shank can be easily removed from the stripping machine to change blades 16 should the leading edge 13 become dull or breaks. The shank 18 is preferably at approximately the same angle as the blade head 15 and leading edge 13 but need not be at approximately the same angle as the flooring material being removed from the floor will not likely engage the shank 18 due to being reflected away by the collar 25 which preferably has an angled surface 30. As shown in FIG. 2 the tapered portion 17 of blade 16 can be of varying lengths and have different beginning and ending thicknesses. The variables depend on the materials used for the blade. In some embodiments a 1095 spring steel was used and in another embodiment a 1018 cold roll case hardened steel was used. The object is to provide a blade 16 which will not bend, or snake as it is being pushed forward by the stripping machine to that the tip does not dive into the floor surface or up into the flooring material. The leading edge 13 should remain pointing forward. The blade should preferably be on the order of 6.35 to 12.7 millimeters (0.25 to 0.5 inches) thick at the rear of the blade 14. In FIG. 3 a carbide insert 10 is attached to the leading edge 13 to provide for a stronger leading edge for use on ceramic tiles or other hard surfaces. In the embodiment shown the carbide insert 10 has a 45 degree angle of attack nose 11 followed by the leading edge of the blade 13 having a 20 degree angle of attack which has been found to be effective for removing ceramic tiles from floors. The tapered portion 17 of the blade is aft of the leading edge 13 with the rear of the blade 14 having a flat top surface 24 Blades 16 should be made from material with enough stiffness to prevent snaking of the materials or too much vibration. Snaking tends to let the blade dig into the floor or into the material to be lifted from the floor rather than skive the material from the floor. Snaking and vibration also increases the energy needed to power the floor stripping machine because of the inefficiency of the skiving process and the energy being wasted in creating the vibrations in the blade which increases the noise of the machine and increases wear. The blades 16 can be on the order of about 203.2 millimeters to about 279.4 millimeters (8 to 11 inches) long with a leading edge 13 of about 25.4 millimeters (1 inch) in length, a tapered portion 17 of about 76.2 to about 152.4 millimeters (about 3 to about 6 inches) in length and a rear blade portion 14 of about 101.6 millimeters (4 inches) in length to receive the blade head 15. The leading edge 13 can have a height of from 0 millimeters to about 7.62 millimeters (0 to about 0.30 inches). The tapered portion 17 can then rise from about 7.62 millimeters to about 10.16 millimeters (about 0.30 inches to about 0.43 inches). The flat surfaced rear portion of the blade can have a height of about 10.16 millimeters (0.43 inches.) The blade 16 can be on the order of about 50.8 millimeters (2 inches) to 101.6 millimeters (4 inches) wide. In another embodiment as shown in FIG. 4 the blade 26 can be entirely made of a carbide material for strength. As shown the nose 11 is at a 45 degree angle relative to the floor followed the leading edge 13 having a 20 degree angle relative to the floor and then a rear blade portion 14 having a flat top portion 24 for attaching a blade head 15 having a top surface approximately angled at the same angle as the leading edge 13. The shank 18 is attached to collar 25 on blade head 15 as in the previous embodiments. With the carbide blade 26 the blade length can be shorted than the previously disclosed blades. Since the nose 11 provides a steep angle of attack on the flooring and the leading edge 13 has a much lower angle of attack the taper 17 can be reduced or as shown eliminated entirely. The flooring sliding over the leading edge 13 also slides over blade head 15 which is similarly angled. The applicant's copending patent application Ser. No. 10/305,216 filed Nov. 26, 2002 is attached hereto and incorporated herein by reference. The prior application of which this is a continuation-in-part differs partly in the placement and shape of the blade head, which in the prior application was not angled at the same angle as the leading edge of the blade and partly in that the blade was not tapered after the leading edge. The materials used, the angles of the leading edge, tapered portion and blade head may all vary as well as the lengths and heights of the various parts of the blade so long as the flooring material is smoothly lifted off the floor and lifted over the blade and blade head without interference and binding and creating minimum vibrations and noise. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention This invention relates to blades for carpet and tile floor stripping machines and more particularly to an angled shank blade. 2. Description of the Related Art There are many types of floor stripping machines. In one type the blades engaging the floor are angled downward and have a large force pushing down on the blade so that it engages the floor at an angle and strips the ceramic tiles, carpet, tile, adhesives and other material from the floor. The blade tips dull quickly and have to be changed frequently. Another type of floor stripping machine has a blade resting on the floor like a plow with a pushing force applied behind the blade parallel to the floor. However it is difficult to keep the blade flat on the floor and the blade will ride up over the material to be stripped. In other blades the blade head would interfere with the material being lifted off the floor and increase the amount of energy needed to propel the floor stripping machine. Prior blades for floor stripping machines would have a large angle of taper after the cutting edge requiring an excessive amount of force to lift the material off the floor. Other blades would have a small taper but would be too thin to keep the blade from vibrating and bending thus the blade tip would bend and engage the floor cutting downward into the flooring or cutting upward into the material rather than skive the material from the floor. Further the bottom surface of the blade would snake up and down wasting energy and presenting the floor with a not smooth blade surface, which increases the energy needed to push the blade along the floor.
<SOH> SUMMARY OF THE INVENTION <EOH>The angled stripper blade has a shoe portion for riding on the floor and having the weight of the machine on it for engaging the floor. A blade on the front portion of the shoe is held parallel to the floor for skiving the ceramic tiles, carpet, tile, adhesive or other material from the floor surface. The blade angle relative to the floor is optimized for stripping the floor. A tapered portion after the blade tip helps lift the carpet or flooring material up off the floor gradually. The blade head at the rear of the blade and attached at an angle such that the carpet or flooring material is lifted up by the blade head to avoid being caught thereon. An optional carbide tip on the blade is stronger and last longer than a metal blade and can be changed easily when the tip gets dull.
20041103
20060801
20050324
70277.0
5
PAYER, HWEI-SIU C
ANGLED SHANK BLADE
SMALL
1
CONT-ACCEPTED
2,004
10,980,656
ACCEPTED
Liquid crystal display device
Disclosed is an LCD device for performing bi-directional display. The LCD device includes first and second display units, and a light supplying unit. The first display unit includes an LCD panel and a transflective film that is disposed under the LCD panel and has layers in which first and second layers having different refractivity indexes are alternately stacked. The transflective film partially reflects and transmits light incident onto the film. The light supplying unit is disposed between the first and second display units, and provide the first and second display units with light generated from a lamp by dividing the light, to thereby regulate a contrast ratio of a luminance between the first and second display units. Therefore, the structure of an LCD panel for performing bi-directional image display can be simplified, and the light loss in the transmission mode can be reduced.
1. A liquid crystal display device comprising: a first display unit including: a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer between the first and second substrates, and a transflective film disposed under the first liquid crystal display panel, so that the transflective film partially reflects and partially transmits an incident light incident onto the transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit generating a first light to provide the first display unit with a first part of the first light and the second display unit with a second part of the first light, and the light supplying unit controlling an amount of the first and second parts of the first light to regulate a contrast ratio of a luminance between the first and second display units. 2. The liquid crystal display device of claim 1, wherein the first display unit further includes a first polarizing plate disposed on the first liquid crystal display panel and a second polarizing plate disposed between the first liquid crystal display panel and the transflective film, and the transflective film is integrally formed with the second polarizing plate. 3. The liquid crystal display device of claim 1, wherein the first display unit further includes a first polarizing plate disposed on the first liquid crystal display panel and a second polarizing plate disposed between the first liquid crystal display panel and the transflective film, and the transflective film is formed separate from the second polarizing plate to have a sheet shape. 4. The liquid crystal display device of claim 1, wherein the transflective film has an anisotropy characteristic having transmissivity and reflectivity varying depending on a polarized state and a direction of the incident light. 5. The liquid crystal display device of claim 4, wherein when the transflective film has a film thickness in z-direction and a film plane in x-y plane parallel with a surface of the transflective film, the first layer and the second layer respectively have three main refractive indexes of nx, ny and nz that satisfy the following relationships: n1x=n1z≈n1y; n2x=n2y=n2z; n1x≈n2x; n1y≈n2y; and |n1x−n2x|<|n1y−n2y| in which n1x, n1y and n1z denote main refractive indexes of the first layer in x-direction, y-direction and z-direction, respectively, and n2x, n2y and n2z denote main refractive indexes of the second layer in x-direction, y-direction and z-direction, respectively. 6. The liquid crystal display device of claim 1, wherein the transflective film has isotropic transmission and reflection characteristics independent of a polarized state and a direction of the incident light. 7. The liquid crystal display device of claim 6, wherein when the transflective film has a film thickness in z-direction and a film plane in x-y plane parallel with a surface of the transflective film, the first layer and the second layer respectively have three main refractive indexes of nx, ny and nz that satisfy the following relationships: n1x=n1y=n1z; and n2x=n2y=n2z≈n1z. in which n1x, n1y and n1z denote main refractive indexes of the first layer in x-direction, y-direction and z-direction, respectively, and n2x, n2y and n2z denote main refractive indexes of the second layer in x-direction, y-direction and z-direction, respectively. 8. The liquid crystal display device of claim 1, wherein a reflection path and a transmission path are provided in the first display unit, light traveling through the reflection path being incident onto a front face of the first liquid crystal display panel and reflected by the transflective film toward the first liquid crystal display panel to exit through the front face of the first liquid crystal display panel, and light traveling through the transmission path being incident onto a rear face of the first liquid crystal display panel from the light supplying unit after passing through the transflective film to exit through the first liquid crystal display panel. 9. The liquid crystal display device of claim 1, wherein the transflective film comprises a first transflective layer and a second transflective layer, the first transflective layer having transmissivity and reflectivity varying depending on a polarized state and a direction of the incident light, the second transflective layer having isotropic transmission and reflection characteristics independent of the polarized state and the direction of the incident light. 10. The liquid crystal display device of claim 1, wherein the first display unit further includes a light scattering layer. 11. The liquid crystal display device of claim 1, wherein the transflective film comprises two anisotropic transflective layers each having a transmissivity and a reflectivity that vary according to a polarized state and a direction of the incident light. 12. The liquid crystal display device of claim 10, wherein the first display unit further includes a first polarizing plate disposed on the first liquid crystal display panel and a second polarizing plate disposed between the first liquid crystal display panel and the transflective film, and the light scattering layer is disposed between the first substrate and the second polarizing plate. 13. The liquid crystal display device of claim 10, wherein the first display unit further includes a first polarizing plate disposed on the first liquid crystal display panel and a second polarizing plate disposed between the first liquid crystal display panel and the transflective film, and the light scattering layer is disposed between the second substrate and the first polarizing plate. 14. The liquid crystal display device of claim 10, wherein the first display unit further includes a first polarizing plate disposed on the first liquid crystal display panel and a second polarizing plate disposed between the first liquid crystal display panel and the transflective film, and the light scattering layer is disposed between the second polarizing plate and the transflective film. 15. The liquid crystal display device of claim 1, wherein the second display unit further includes: a third polarizing plate disposed on a first surface of the second liquid crystal display panel; and a fourth polarizing plate disposed on a second surface of the second liquid crystal display panel. 16. The liquid crystal display device of claim 1, wherein the light supplying unit comprises: a light source for generating the first light; a light guiding member for receiving the first light, providing the first display unit with the first part of the first light as a second light, and providing the second display unit with the second part of the first light as a third light; and a luminance controlling member for reflecting a first part of the third light and transmitting a second part of the third light to control the contrast ratio of the luminance between the first and the second display units. 17. The liquid crystal display device of claim 16, wherein the light guiding member comprises: a light incident face for receiving the first light; a light reflective-transmissive face for reflecting the second light toward the first display unit and transmitting the third light toward the second display unit; and a light exiting face, being opposite to the light reflective-transmissive face, for exiting the second light. 18. The liquid crystal display device of claim 17, wherein a light reflection pattern having a plurality of dots is formed on the light reflecive-transmissive face, and sizes of the dots are different such that a dot farther apart from the light incident face is larger than a dot closer to the light incident face in proportion to a distance between a corresponding dot and the light incident face. 19. The liquid crystal display device of claim 16, wherein the luminance controlling member has a sheet shape. 20. The liquid crystal display device of claim 17, further comprising an optical sheet for changing an optical distribution of the second light so as to enhance an optical characteristic of the second light, the optical sheet being disposed between the light guiding member and the transflective film. 21. The liquid crystal display device of claim 1, wherein the luminance measured at the first display unit is higher than the luminance measured at the second display unit. 22. The liquid crystal display device of claim 1, wherein a surface area of the first liquid crystal display panel has a size substantially equal to a surface area of the second liquid crystal display panel. 23. The liquid crystal display device of claim 1, wherein a surface area of the first liquid crystal display panel is larger than a surface area of the second liquid crystal display panel. 24. A liquid crystal display device comprising: a first display unit including: a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer disposed between the first and second substrates, and a first transflective film disposed under the first liquid crystal display panel, the first transflective film having a plurality of layers in which a first layer and a second layer each having a different refractivity index are alternately stacked, so that the first transflective film partially reflects and partially transmits a first incident light incident onto the first transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer disposed between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit dividing a first light, which is a first part of a light generated from an light source, into a third light and a fourth light to provide the first and second display units with the third and fourth light, respectively, and dividing a second light, which is a second part of the light generated from the light source, into a fifth light and a sixth light to provide the second and first display units with the fifth and sixth light, respectively, the light supplying unit controlling an amount of the third, fourth, fifth and sixth light to regulate a contrast ratio of a luminance between the first and second display units. 25. The liquid crystal display device of claim 24, wherein at least one switching device and a transparent pixel electrode electrically connected to the switching device are formed on the first substrate, and a transparent common electrode facing the transparent pixel electrode is formed on the second substrate. 26. The liquid crystal display device of claim 25, wherein the switching device is a thin film transistor. 27. The liquid crystal display device of claim 24, wherein the light supplying unit includes: the light source for generating the light; a first light guiding member for receiving the first light, for providing the first display unit with the third light, and for transmitting the fourth light toward the second display unit; a second light guiding member for receiving the second light, for providing the second display unit with the fifth light, and for transmitting the sixth light toward the first display unit; an luminance controlling member, disposed between the first and second display units, for reflecting a first part of the fourth light toward the first display unit, for transmitting a second part of the fourth light toward the second display unit, for transmitting a first part of the sixth light toward the first display unit, and for reflecting a second part of the sixth light toward the second display unit, to thereby control the contrast ratio of the luminance between the first and second display units. 28. The liquid crystal display device of claim 27, wherein the first light guiding member comprises: a first incident face for receiving the first light; a first light reflective-transmissive face for reflecting the third light toward the first display unit and for transmitting the fourth light toward the second display unit; and a first light exiting face, being opposite to the light reflective-transmissive face, for exiting the third light, and the second light guiding member comprises: a second incident face for receiving the second light; a second light reflective-transmissive face for reflecting the fifth light toward the second display unit and for transmitting the sixth light toward the first display unit; and a second light exiting face, being opposite to the second light reflective-transmissive face, for exiting the fifth light. 29. The liquid crystal display device of claim 28, wherein a first light reflection pattern having a plurality of first dots is formed on the first light reflecive-transmissive face, a second light reflection pattern having a plurality of second dots is formed on the second light reflecive-transmissive face, wherein the first dots have different sizes such that the farther a first dot is apart from the first light incident face, the larger the first dot is in proportion to a distance between the first dot and the first light incident face, and the second dots have different sizes such that the farther a second dot is apart from the second light incident face, the larger the second dot is in proportion to a distance between the second dot and the second light incident face. 30. The liquid crystal display device of claim 29, wherein the first light guiding member has a surface area larger than that of the second light guiding member, the second dots have sizes with a higher ratio of a size change to a unit distance change than those of the first dots. 31. The liquid crystal display device of claim 24, wherein a surface area of the first liquid crystal display panel has a size substantially equal to that of the second liquid crystal display panel. 32. The liquid crystal display device of claim 24, wherein the first liquid crystal display panel has a surface area larger than that of the second liquid crystal display panel. 33. The liquid crystal display device of claim 24, wherein the second display unit further includes a second transflective film disposed between the second liquid crystal display panel and the light supplying unit, and the second transflective film has a plurality of layers in which a third layer and a fourth layer each having a different refractivity index are alternately stacked, so that the second transflective film partially reflects and partially transmits a second incident light incident onto the second transflective film.
CROSS-REFERENCE TO RELATED APPLICATIONS The present application is a continuation of the earlier filed non-provisional application, having U.S. application Ser. No. 10/454,700, filed on Jun. 3, 2003, which is incorporated herein in its entirety. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display (LCD) device, and more particularly to a liquid crystal display device in which a light loss of the liquid crystal display device is reduced in a transmission mode and a bi-directional display is provided. 2. Description of the Related Art In these days, electronic display devices become more important for communicating and processing various information. Also, various types of electronic display devices are widely used in different industrial fields. Generally, an electronic display device visually provides a variety of information to a user. In other words, an electrical information signal output from electronic devices is converted into a visible optical information signal in an electronic display device. Such an electronic display device serves as an interfacing means between a user and the electronic devices. Meanwhile, owing to developments in the semiconductor technology, recent electronic devices are generally driven by lower voltage and lower power, and have a slimmer size and a lighter weight. With such a trend, a flat panel type display device which is slimmer and lighter and requires lower driving voltage and power becomes in more demand and desirable. An LCD device among the various types of flat panel display devices is much slimmer and lighter than any other display devices, and has a lower driving voltage and lower power consumption, and also has the displaying quality similar to that of CRT-type display devices. Therefore, LCD devices are widely used in various electronic equipments. Recently, an LCD device for performing a bi-directional image display has been developed. Specifically, a conventional LCD device for performing the bi-directional image display includes a backlight, a first LCD panel and a second LCD panel. The first LCD panel is disposed above (or below) the backlight, and the second LCD panel is disposed below (or above) the backlight. In the conventional LCD device for performing the bi-directional image display, light radiated from a lamp(s) is divided into two groups of light. A first group of light is provided to the first LCD panel, and a second group of light is provided to the second LCD panel. The conventional LCD device only has the function of dividing the light radiated from the lamp(s), but does not have the function of regulating an amount of each of the two groups. It is thus desired that an LCD device can divide the light radiated from the lamp(s) into two groups and also can regulate the amount of each of the two groups. An LCD panel, which is available for the LCD device capable of performing the bi-directional image display, may have a structure in which the LCD panel can display images in a transmission mode or a reflection mode according to an amount of external light. The LCD panel includes a first substrate, a second substrate, a liquid crystal layer interposed between the first and second substrates, and pixel electrodes. The pixel electrodes are formed on the first substrate, and each of the pixel electrodes has a transparent electrode region and a reflective electrode region. Light is transmitted through the transparent electrode region in the transmission mode, and is reflected by the reflective electrode region in the reflection mode. Accordingly, the LCD panel displays images by means of the transparent electrode region in the transmission mode, and displays images by means of the reflective electrode region in the reflection mode. The conventional LCD device having the above structure has at least the following problems. First, since a display area of the LCD device is divided into a transmission area used in the transmission mode and a reflection area used in the reflection mode, it is not effective in aspect of utilization of the display area. Second, since the conventional LCD device has to employ the wide band ¼ wavelength phase difference plates covering an overall frequency band of the visible ray, as well as a first and a second polarizing plates attached on each of the first and second substrates, a manufacturing cost is elevated compared with a transmission type LCD device that displays images by means of a backlight disposed under the LCD panel. Third, since the polarization characteristic in the transmission mode causes a light loss of 50%, there are drawbacks in that a light transmissivity decreases by 50% and a contrast ratio (C/R) is lowered. Fourth, since Δnd (Δn: a value for representing optical anisotropy or refractive anisotropy; d: cell gap) of a liquid crystal layer is only 0.24 μm which is a half of Δnd (0.48 μm) of the conventional transmission type LCD device, the cell gap of the liquid crystal cell should be decreased to a level of 3 μm, and the Δn of the liquid crystal also should be decreased. Accordingly, there are problems in that the manufacturing process becomes difficult and degeneration in the reliability of the liquid crystal is caused. SUMMARY OF THE INVENTION Accordingly, the present invention is to solve the aforementioned and other problems of the conventional art, and it is an object of the present invention to provide an LCD device capable of simplifying a structure of an LCD panel, decreasing light loss in the transmission mode and performing a bi-directional image display. In one aspect, there is provided a liquid crystal display device comprising: a first display unit including a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer between the first and second substrates, and a transflective film disposed under the first liquid crystal display panel, the transflective film having a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the transflective film partially reflects and partially transmits incident light incident onto the transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit generating a first light to provide the first display unit with a first part of the first light and the second display unit with a second part of the first light, and the light supplying unit controlling an amount of the first and second parts of the first light to regulate a contrast ratio of a luminance between the first and second display units. According to another aspect of the invention, there is provided a liquid crystal display device comprising: a first display unit including a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer disposed between the first and second substrates, and a first transflective film disposed under the first liquid crystal display panel, the first transflective film having a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the first transflective film partially reflects and partially transmits a first incident light incident onto the first transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer disposed between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit dividing a first light, which is a first part of a light generated from an light source, into a third light and a fourth light to provide the first and second display units with the third and fourth light, respectively, and dividing a second light, which is a second part of the light generated from the light source, into a fifth light and a sixth light to provide the first and second display units with the fifth and sixth light, respectively, the light supplying unit controlling an amount of the third, fourth, fifth and sixth light to regulate a contrast ratio of a luminance between the first and second display units. In an exemplary embodiment, the LCD device includes a first transflective film disposed at one of the first and second display units. The first transflective film has a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the first transflective film partially reflects and partially transmits a first incident light incident on the first transflective film. The LCD device includes a light supplying unit disposed between the first and second display units. The light supplying unit controls an amount of the light that is provided to the first and second display units, to thereby regulate a contrast ratio of a luminance between the first and second display units. Therefore, the structure of an LCD panel for performing a bi-directional image display can be simplified, and the light loss in the transmission mode can be reduced. In another exemplary embodiment, the LCD device includes an anisotropy transflective film or an isotropy transflective film disposed at one of the first and second display units. The anisotropy transflective film has an optical characteristic in which light components in a specific direction are strongly reflected and polarization components in a direction perpendicular to the specific direction are partially transmitted and reflected depending on polarized state and direction of the incident light incident thereto. The isotropy transflective film has an optical characteristic in which light components are partially transmitted and reflected independent of polarized state and direction of the incident light. As a result, by a light restoring process occurring between the transflective film and the backlight, the restored light is transmitted through the transflective film repeatedly, so that transmissivity and light efficiency can be enhanced. Further, the LCD device has no reflection electrode within liquid crystal (LC) cell and has no ¼-wavelength phase difference plate on each of the first substrate and the second substrate. Accordingly, compared with a conventional LCD device, the LCD device of the present invention can be made in more simple structure, and degeneration in the reliability of the liquid crystal can be prevented. Furthermore, since the light supplying unit disposed between the first and second display units regulates the luminance of the light generated from the lamp to provide the first and second display units with the light of which luminance is regulated, the LCD device of the present invention satisfies the demand from users. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which: FIG. 1 is a sectional view showing a liquid crystal display device according to an exemplary embodiment of the present invention; FIG. 2 is a sectional view showing a first display unit of FIG. 1; FIG. 3 is a schematic view showing a structure of a transflective film of FIG. 1; FIGS. 4A and 4C are sectional views for illustrating a position of a light scattering layer that is available for the liquid crystal display device of FIG. 1; FIGS. 5A and 5B are schematic views for illustrating an operation mechanism of the liquid crystal display device of FIG. 1 for which an integrally formed transflective film is available in the reflection mode; FIGS. 6A and 6B are schematic views for illustrating an operation mechanism of the liquid crystal display device of FIG. 1 for which an integrally formed transflective film is available in the transmission mode; FIGS. 7A and 7B are schematic views for illustrating an operation mechanism of the liquid crystal display device of FIG. 1 for which a separation type transflective film is available in the reflection mode; FIGS. 8A and 8B are schematic views for illustrating an operation mechanism of the liquid crystal display device of FIG. 1 for which a separation type transflective film is available in the transmission mode; FIG. 9 is a schematic view showing a structure of a liquid crystal display device of FIG. 1 further including a light reflection pattern and optical sheets; FIG. 10 is a plane view showing the light reflection pattern formed on a light guiding member of FIG. 9; FIG. 11 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention; FIG. 12 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention; FIG. 13 is a view showing a first display unit of FIG. 12; FIG. 14 is a schematic view showing a structure of the liquid crystal display device of FIG. 12 further including light reflection patterns and optical sheets; FIG. 15 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention; and FIG. 16 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION Now, exemplary embodiments of the present invention will be described in detail with reference to the annexed drawings. FIG. 1 is a sectional view showing a liquid crystal display device according to an exemplary embodiment of the present invention, and FIG. 2 is a sectional view showing a first display unit of FIG. 1. Referring to FIG. 1, an LCD device includes a first display unit 100 for displaying first images, a second display unit 200 for displaying second images, and a light supplying unit (Hereinafter, refer to a backlight) 300 disposed between the first and the second display units 100, 200. The first display unit 100 includes a first LCD panel 150, a first polarizing plate 160, a second polarizing plate 170 and a transflective film 180. The first LCD panel 150 includes a first substrate 110, a second substrate 120 of which an lower surface is arranged facing the first substrate 110, and a first liquid crystal layer 130 disposed between the first substrate 110 and the second substrate 120. As shown in FIG. 2, on a first insulating substrate 111 is formed a first transparent electrode 112 made of, for example, conductive oxide film such as indium tin oxide (ITO), to thereby constitute the first substrate 110. On a second insulating substrate 121 is formed a second transparent electrode 122 made of, for example, conductive oxide film such as ITO, to thereby constitute the second substrate 120. The first transparent electrode 112 of the first substrate 110 is arranged facing the second transparent electrode 122 of the second substrate 120. The first liquid crystal layer 130 is made of, for example, 90° twisted TN (Twisted Nematic) liquid crystal composition. According to the present embodiment, the first liquid crystal layer 130 has “Δnd” of about 0.2-0.6 μm, that is a product of a refractive anisotropy (An) and a thickness (d) of the first liquid crystal layer 130, preferably about 0.48 μm. In the LCD device of the present embodiment, the liquid crystal optical conditions of a conventional transmission-type LCD device may be adopted without a variation, thereby preventing the reliability of the liquid crystal from being affected. On an upper surface of the first LCD panel 150 is disposed a first polarizing plate 160, and a second polarizing plate 170 is formed on a lower surface of the first LCD panel 150. The first and second polarizing plates 160 and 170 absorb a predetermined polarization component and transmit other polarization components, thereby allowing incident light to be transmitted in a specific direction. The first and second polarizing plates 160 and 170 are linear polarizers of which polarizing axes are arranged to be perpendicular to each other. Under the second polarizing plate 170 is disposed a transflective film 180 including at least two transparent layers having different refractivity index values from each other, i.e., a first layer 181 and a second layer 182 alternately stacked as shown in FIG. 3. The transflective film 180 partially reflects and partially transmits the incident light incident thereto. Accordingly, the LCD device in accordance with the present embodiment has a reflection light path (R) and a transmission light path (T). In the reflection light path (R), the incident light is incident toward the second substrate 120, transmits through the first substrate 110, is reflected by the transflective film 180, and exits through the second substrate 120. In the transmission light path (T), the incident light is incident from the backlight 300 onto the first substrate 110, is transmitted through the transflective film 180, and exits through the second substrate 120. Referring again to FIG. 1, the second display unit 200 includes a second LCD panel 250, a third polarizing plate 260, a fourth polarizing plate 270. The second LCD panel 250 includes a third substrate 210, a fourth substrate 220 of which an lower surface is arranged facing the third substrate 210, and a second liquid crystal layer 230 disposed between the third substrate 210 and the fourth substrate 220. On an upper surface of the second LCD panel 250 is disposed a third polarizing plate 260, and a fourth polarizing plate 270 is formed on a lower surface of the second LCD panel 250. The third and fourth polarizing plates 260 and 270 absorb a predetermined polarization component and transmit other polarization components, thereby allowing incident light to be transmitted in a specific direction. The third and fourth polarizing plates 260 and 270 are linear polarizers of which polarizing axes are arranged to be perpendicular to each other. The backlight 300 is installed between the first and the second display units 100, 200. The backlight 300 generates light and provides the first and second display units 100, 200 with a part of the generated light. As shown in FIG. 1, the backlight 300 includes a light guiding member 320 and a luminance controlling member 330. The light guiding member 320 guides the light generated form a lump unit 310, and the luminance controlling member 330 controls the luminance of the light that is supplied to the first and second display units 100, 200. The light guiding member 320 has a shape of a rectangular parallelepiped plate, and includes four side faces including an incident face 321, a light reflective-transmissive face 322 and a light exiting face 323. The light exiting face 323 faces the light reflective-transmissive face 322. The light incident face 321 receives first light L1 generated from the lamp unit 310. The lamp unit 310 includes a lamp 311, a lamp reflector 312 covering the lamp 311 to reflect the first light L1. The lamp 311, preferably, employs a linear light source such as a cold cathode fluorescent lamp (CCFL), but is not limited to the linear light source. The lamp 311 may be a point light source such as a light emitting diode (LED). The first light L1 generated from the lamp 311 is incident into the light guiding member 320 through the light incident face 321. The light guiding member 320 divides the first light L1 to exit second and third lights L2, L3. The light guiding member 320 exits the second light L2 or a part of the first light L1 toward the first display unit 100, and exits the third light L3 or the other part of the first light L1 toward the second display unit 200. Specifically, the second light L2 includes the light exiting directly from the light exiting face 323 and the light being reflected by the light reflective-transmissive face 322. The third light L3 is the light that passes through the light reflective-transmissive face 322 to proceed toward the second display unit 200. The light guiding member 320 is able to provide both the first and second display units 100, 200 with light. However, it is difficult for the light guiding member 320 to control the luminance of the light supplied to the first and second display units 100, 200. Accordingly, the backlight 300 further includes a luminance controlling member 330 to as to regulate the luminance between the first display unit 100 and the second display unit 200. The luminance controlling member 330 reflects a part of the third light L3 to provide the first display unit 100 with the reflected part of the third light L3 through the light guiding member 320, and transmits the other part of the third light L3 to provide the second display unit 200 with the other part of the third light L3. The luminance controlling member 330 may have a sheet shape or a plate shape thicker than the sheet shape, and is made of, for example, polyethylene terephthalate (PET) treated by foaming agent. The luminance controlling member 330 reflects about 80% of the third light L3 and transmits about 20% of the third light L3 according to one embodiment of the present invention. In addition, the luminance controlling member 330 reflects about 20% of the third light L3 and transmits about 80% of the third light L3 according to another embodiment of the present invention. The material of the luminance controlling member 330 is not limited to polyethylene terephthalate (PET) treated by foaming agent. The luminance controlling member 330 may be made of any material that can partially reflect and partially transmit light. FIG. 3 is a schematic view showing a structure of the transflective film of FIG. 1. Referring to FIG. 3, when it is assumed that the transflective film 180 has a film thickness in direction z and a film plane in x-y plane, the transflective film 180 according to one aspect of the invention is characterized such that the first layer 181 thereof has a refractive anisotropy in its film plane, i.e., x-y plane, and the second layer 182 does not have a refractive anisotropy in its film plane. The film plane is parallel to a surface of the transflective film. The transflective film 180 has various transmissivity and reflectivity characteristics depending on a polarized state and a direction of the incident light. For instance, when it is assumed that a direction parallel to an elongated direction of the transflective film 180 is x-direction and a direction perpendicular to the elongated direction is y-direction, the first layer 181 having a high refractivity and refractive anisotropy within the film plane and the second layer 182 not having refractive anisotropy each have three main refractive indexes, nx, ny and nz, that satisfy the following relationships (1): n1x=n1z≈n1y; n2x=n2y=n2z; n1x≈n2x; n1y≈n2y; and |n1x−n2x|<|n1y−n2y| (1) (n1x, n1y, n1z denote main refractive indexes of the first layer in the x-axis, y-axis, z-axis, respectively, and n2x, n2y, n2z denote main refractive indexes of the second layer in an x-axis, y-axis, z-axis, respectively) Thus, if a refractivity difference in the x-direction between the first layer 181 and the second layer 182 is less than a refractivity difference in the y-direction between the first layer 181 and the second layer 182, when a non-polarized light is incident in the direction perpendicular to the film plane, i.e., z-direction, a polarization component polarized parallel to the y-direction is mostly reflected due to a high difference in the refractivity based on Fresnel's equation, but a polarization component polarized parallel to the x-direction partially is transmitted and reflected due to a low difference in the refractivity. There are disclosed methods for enhancing the display brightness by using a reflection type polarizing plate made of dielectric multilayered film having birefringence in Japanese Patent Laid Open Publication No. 9-506985 and International Patent Publication No. WO 97/01788. The dielectric multilayered film having birefringence has a structure in which two kinds of polymer layers are alternately stacked. One of the two kinds of polymer layers is selected from a polymer group having a high refractivity and the other is selected from a polymer group having a low refractivity. Hereinafter, the structure of the dielectric multilayered film is reviewed in an aspect of optical property. For instance, when it is assumed that there is the following relationship between a first layer in which a material having a high refractivity is elongated, and a second layer in which a material having a low refractivity is elongated: n1x=n1z=1.57, n1y=1.86; and n2x=n2y=n2z=1.57. Thus, in case that refractivity values of the first and second layers in the x-direction and the z-direction are identical to each other and refractivity values of the first and second layers in the y-direction are different from each other, when a non-polarized light is incident in the direction perpendicular to the film plane, i.e., z-direction, polarization components in the x-direction are all transmitted, polarization components in the y-direction are all reflected based on Fresnel's equation. A representative example of birefringence dielectric multilayered films having the above characteristics is DBEF (Dual brightness enhancement film) made by 3M company. The DBEF has a multilayered structure in which two kinds of films made of different material are alternately stacked to form a few hundred layers. In other words, polyethylene naphtalate layer having a high birefringence and polymethyl methacrylate (PMMA) layer are alternately stacked to form the DBEF layer. Since naphthalene radical has a flat plane structure, when these radicals are adjacently placed to each other, it is easy to stack the polyethylene naphtalate layer and the DBEF layer, so that the refractivity in the stacking direction becomes considerably different from those in other directions. On the contrary, since the PMMA is an amorphous polymer and is isotropically aligned, the PMMA has an identical refractivity in all directions. The DBEF made by 3M company transmits all x-directional polarization components and reflects all y-directional polarization components, while the transflective film 180 according to one aspect of the invention mostly reflects a specific-directional (for instance, y-directional) polarization component, but partially reflects and transmits polarization component, which is polarized in a direction (for instance, x-direction) perpendicular to the specific direction. The transflective film 180 may be made by vertically attaching two anisotropic transflective films each having transmissivity and reflectivity varying depending on polarized state and direction of light incident on the transflective film 180. Also, the transflective film 180 may be made by attaching an anisotropic transflective film having various transmissivity and reflectivity depending on polarized state and direction of the incident light and a transflective film having isotropic reflection and transmission characteristics independent of polarized state and direction of incident light. The two transflective films can be made in an integrally formed structure, or made in a separately formed film structure. Also, according to another aspect of the invention, the transflective film 180 has isotropic reflection and transmission characteristics independent of a polarized state and a direction of the incident light. For instance, if it is assumed that a direction parallel to an elongated direction of the film is x-direction and a direction perpendicular to the elongated direction of the film is y-direction, the first layer 181 having a high refractivity and the second layer 182 having a low refractivity both have a refractive isotropy in x-y plane of the film, and the first and second layers 181 and 182 each have three main refractive indexes, nx, ny and nz, that satisfy the following relationships: n1x=n1y=n1z; and n2x=n2y=n2z≈n1z (2). Thus, in case that the first and second layers 181 and 182 have different refractivity index values in the z-direction, when non-polarized light is incident in the direction (i.e., z-direction) perpendicular to the film, polarization components in the x-direction are partially transmitted and reflected, and polarization components in the y-direction are partially transmitted and reflected according to Fresnels's equation. At this time, the reflectivity of the reflected light can be adjusted to match with characteristics of the LCD device by controlling the thickness or the refractivity of the first layer 181 or the second layer 182. In other words, a reflection-characteristic-enhanced LCD device, enhances the reflectivity, whereas an LCD device, in which transmission characteristic is considered to be an important factor, lowers the reflectivity to thereby enhance the transmissvity. As described above, the transflective film 180 of the invention can be formed to have an anisotropy characteristic in which transmissivity and reflectivity of the film 180 varies with a polarized state and a direction of the incident light, or can be formed to have an isotropy characteristic in which transmissivity and reflectivity of the film 180 do not depend on a polarized state and a direction of the incident light. In any case, it is desirable that the transflective film 180 has a reflectivity of more than or equal to about 4% with respect to polarization component in all directions when light is incident in a direction perpendicular to the film plane. The transflective film 180 of the invention can be made in an integrally formed structure together with the second polarizing plate 170, or made in a separately formed sheet structure separated from the second polarizing plate 170. In case that the transflective film 180 is made in an integrally formed structure together with the second polarizing plate 170, it is possible to decrease the thickness of a liquid crystal (LC) cell, and the LCD device has an advantage in an aspect of manufacturing cost. In the above, there is explained a method of forming the transflective film 180 by depositing or coating the polymer multilayered film on a surface of the second polarizing plate 170, which may be contrasted with the anti-reflection treatment in a polarizing plate. In other words, in the anti-reflection treatment, two kinds of transparent films having different refractivity are repeatedly deposited or coated in a constant thickness such that destructive interference occurs by multi-reflection within the polymer multilayered film. However, in order to form a transflective film capable of partially transmitting and partially reflecting an incident light, the film thickness should be adjusted such that constructive interference occurs. FIGS. 4A and 4B are sectional views for illustrating a position of a light scattering layer that is available for the liquid crystal display device of FIG. 1. As shown in FIGS. 4A and 4B, the LCD device in accordance with the current embodiment may further include a light scattering layer 175 formed on the first substrate 110 or the second substrate 120 in order to prevent specular reflection and to properly diffuse the reflected light in various angles. For instance, as shown in FIGS. 4A and 4B, it is possible to form the light scattering layer 175 between the first substrate 110 and the second polarizing plate 170, or between the second substrate 120 and the first polarizing plate 160. It is also possible to form the light scattering layer 175 between the second polarizing plate 170 and the transflective film 180. The light scattering layer 175 may be made in an integrally formed structure together with the second polarizing plate 170 or the first polarizing plate 160, or made in a separate sheet structure separated from the polarizing plates 160, 170. Further, the light scattering layer 175 can be made in the form of a plastic film in which transparent beads are dispersed. Moreover, the light scattering layer 175 can be made in a state in which beads are added to adhesive, which makes it possible to directly attach the first substrate 110 to the second polarizing plate 170. Furthermore, in order to optimize light efficiency in the LCD device in accordance with the current embodiment of the invention, it is possible to form a phase difference plate (not shown) on the first substrate 110 or the second substrate 120. For instance, the phase difference plate is formed in an integrally formed structure together with polarizing plates 160, 170 or a separate film structure separated from the polarizing plates 160, 170 between the first substrate 110 and the second polarizing plate 170, or between the second substrate 120 and the first polarizing plate 160. Hereinafter, there is described in detail an operation mechanism of the LCD device having the above structure. FIG. 5A through FIG. 6B are schematic views for illustrating operation mechanisms of reflection mode and transmission mode in the LCD device in which the transflective film 180 is made an integrally formed structure together with the second polarizing plate 170. Here, polarization directions of the light are represented on the basis of a polarizing axis of the first polarizing plate 160, and partially reflected light and partially transmitted light are represented by a dotted line. First, when a pixel voltage is not applied (OFF) in the reflection mode, as shown in FIG. 5A, light that is incident from an external source is transmitted through the first polarizing plate 160, so that the light is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. The linearly polarized light is transmitted through the liquid crystal layer 130 and the first transparent electrode 112, so that the linearly polarized light is linearly polarized in a direction perpendicular to the polarizing axis of the first polarizing plate 160 and is then incident into the transflective film 180 made in an integrally formed structure together with the second polarizing plate 170. At this time, since the polarizing axis of the second polarizing plate 170 is perpendicular to that of the first polarizing plate 160, the light that is incident into the second polarizing plate 170 comes to have the direction parallel to the polarizing axis of the second polarizing plate 170. Accordingly, the light linearly polarized in the direction parallel to the polarizing axis of the second polarizing plate 170 is partially transmitted through the transflective film 180 and is partially reflected by the transflective film 180. In other words, in case that the transflective film 180 has the refractivity characteristic of the relationship (1), a polarization component, which is polarized in the x-direction parallel to the elongated direction of the transflective film 180, of the light incident into the transflective film 180 is partially transmitted and reflected, whereas a polarization component which is polarized in the direction perpendicular to the elongated direction is mostly reflected. Further, in case that the transflective film 180 has the refractive characteristic of the relationship (2), of the light incident into the transflective film 180, the polarization components which are polarized in the x- and y-directions are partially transmitted and partially reflected. Thus, the linearly polarized light reflected by the transflective film 180 is transmitted through the first transparent electrode 112 and the liquid crystal layer 130, so that it is linearly polarized in the direction parallel to the polarizing axis of the first polarizing plate 160. Afterwards, the light is transmitted through the first polarizing plate 160, so that a white image is displayed. Also, the light transmitted through the transflective film 180 is restored between the transflective film 180 and the backlight 300, and the restored light is repeatedly subject to the procedure of partial reflection and partial transmission. As a consequence, light loss is eliminated and reflectivity and light efficiency are enhanced. When a maximum pixel voltage is applied (ON) in the reflection mode, as shown in FIG. 5B, light incident from an external source is transmitted through the first polarizing plate 160, so that the light is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. Afterwards, the linearly polarized light is transmitted through the liquid crystal layer 130 without a variation in the polarized state, and is then incident into the transflective film 180 integrally formed with the second polarizing plate 170. At this time, since the linearly polarized light is perpendicular to the polarizing axis of the second polarizing plate 170, the light is all absorbed in the second polarizing plate 170. Thus, the linearly polarized light is not reflected by the transflective film 180, so that a black image is displayed. When a pixel voltage is not applied (OFF) in the transmission mode, as shown in FIG. 6A, light irradiated from the backlight 300 is incident into the transflective film 180 integrally formed with the second polarizing plate 170. In case that the transflective film 180 has the refractive characteristic of the relationship (1), a polarization component, which is polarized parallel to the x-direction, of the light parallel to the polarizing axis of the second polarizing plate 170 is partially transmitted and reflected, whereas a polarization component which is polarized parallel to the y-direction is mostly reflected. Also, in case that the transflective film 180 has the refractive characteristic of the relationship (2), the light, which is parallel to the polarizing axis of the second polarizing plate 170, is partially transmitted and partially reflected because all polarization components which are polarized in the x-direction and y-direction are partially transmitted and reflected. Thus, the light that has been transmitted through the transflective film 180 and the second polarizing plate 170 becomes a linearly polarized light having a vibrating direction parallel to the polarizing axis of the second polarizing plate 170. The linearly polarized light is transmitted through the first transparent electrode 112 and the liquid crystal 130, so that it is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. Accordingly, the light linearly polarized in the direction parallel to the polarizing axis of the first polarizing plate 160 is transmitted through the first polarizing plate 160, so that a white image is displayed. Also, light reflected by the transflective film 180 is restored between the backlight 300 and the transflective film 180, and then is repeatedly subject to the above steps. Thus, polarization components parallel to the x-direction or polarization components parallel to the x- and y-directions are successively transmitted through the transflective film 180 to be used, so that light loss is reduced and transmissivity and light efficiency are enhanced. When a maximum pixel voltage is applied (ON) in the transmission mode, as shown in FIG. 6B, light irradiated from the backlight 300 is incident into the transflective film 180 integrally formed with the second polarizing plate 170, so that the light parallel to the polarizing axis of the second polarizing plate 170 is partially transmitted and reflected. The light that has been transmitted through the transflective film 180 and the second polarizing plate 170 is converted into light lineally polarized in the direction parallel to the polarizing axis of the second polarizing plate 170, i.e., in the direction perpendicular to the polarizing axis of the first polarizing plate 160. The linearly polarized light is transmitted through the first transparent electrode 112 and the liquid crystal layer 130 without a variation in the polarized state. Accordingly, the light linearly polarized in the direction perpendicular to the polarizing axis of the first polarizing plate 160 is not transmitted through the first polarizing plate 160, so that a black image is displayed. FIG. 7A through FIG. 8B are schematic views for illustrating an operation mechanism in the transmission mode and the reflection mode of an LCD device in which the transflective film 180 is separated from the second polarizing plate 170 and is made in a sheet structure. Here, polarization directions of the light are represented on the basis of a polarizing axis of the first polarizing plate 160, and partially reflected light and partially transmitted light by a dotted line. First, when a pixel voltage is not applied (OFF) in the reflection mode, as shown in FIG. 7A, light incident from an external source is transmitted through the first polarizing plate 160, so that the light is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. The linearly polarized light is transmitted through the liquid crystal layer 130 and the first transparent electrode 112, so that the linearly polarized light is linearly polarized in a direction perpendicular to the polarizing axis of the first polarizing plate 160 and is then incident into the second polarizing plate 170. At this time, since the polarizing axis of the second polarizing plate 170 is perpendicular to that of the first polarizing plate 160, the light that has been linearly polarized in a direction perpendicular to the polarizing axis of the first polarizing plate 160 is transmitted through the second polarizing plate 170 and is then incident into the transflective film 180. In case that the transflective film 180 has the refractivity characteristic of the relationship (1), a polarization component, which is polarized in the x-direction parallel to the elongated direction of the transflective film 180, of the light incident into the transflective film 180 is partially transmitted and reflected, whereas a polarization component, which is polarized in the y-direction perpendicular to the elongated direction, is mostly reflected. Further, in case that the transflective film 180 has the refractive characteristic of the relationship (2), of the light incident into the transflective film 180, the polarization components polarized in the x- and y-directions are partially transmitted and partially reflected. Thus, since the linearly polarized light reflected by the transflective film 180 is parallel to the polarizing axis of the second polarizing plate 170, it is transmitted through the second polarizing plate 170, and is incident into the liquid crystal layer 130 via the first transparent electrode 112. The linearly polarized light is transmitted through the liquid crystal layer 130, whereby it is linearly polarized in the direction parallel to the polarizing axis of the first polarizing plate 160. Afterwards, the light is transmitted through the first polarizing plate 160, so that a white image is displayed. Also, the lights that have been transmitted through the transflective film 180 are restored between the transflective film 180 and the backlight 300, and the restored light is repeatedly subject to the procedure of a partial reflection and a partial transmission. As a consequence, light loss is reduced and reflectivity and light efficiency are enhanced. When a maximum pixel voltage is applied (ON) in the reflection mode as shown in FIG. 7B, light incident from an external source is transmitted through the first polarizing plate 160, so that the light is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. Afterwards, the linearly polarized light is transmitted through the liquid crystal layer 130 without a variation in the polarized state, and is then incident into the second polarizing plate 170. At this time, since the linearly polarized light is perpendicular to the polarizing axis of the second polarizing plate 170, the light is all absorbed in the second polarizing plate 170. Thus, since the linearly polarized light is not reflected by the transflective film 180, a black image is displayed. When a pixel voltage is not applied (OFF) in the transmission mode, as shown in FIG. 8A, light irradiated from the backlight 300 is incident into the transflective film 180, so that the light is partially transmitted and reflected. In case that the transflective film 180 has the refractive characteristic of the relationship (1), polarization component, which is polarized in the x-direction parallel to the elongated direction of the transflective film 180, of the light that have been incident into the transflective film 180 is partially transmitted and reflected, whereas polarization components, which are polarized in the y-direction perpendicular to the elongated direction, are mostly reflected. Also, in case that the transflective film 180 has the refractive characteristic of the relationship (2), polarization components, which is polarized in the x- and y-directions, of the light incident into the transflective film 180 is partially transmitted and reflected. Thus, the light that has been transmitted through the transflective film 180 and the second polarizing plate 170 is linearly polarized in a direction parallel to the polarizing axis of the second polarizing plate 170. Afterwards, the linearly polarized light is transmitted through the first transparent electrode 112 and the liquid crystal 130, so that it is linearly polarized in a direction parallel to the polarizing axis of the first polarizing plate 160. Accordingly, the light linearly polarized in the direction parallel to the polarizing axis of the first polarizing plate 160 is transmitted through the first polarizing plate 160, so that a white image is displayed. Also, light reflected by the transflective film 180 is restored between the backlight 300 and the transflective film 180, and then is repeatedly subject to the above steps. Thus, polarization components polarized parallel to the x-direction or polarization components polarized parallel to the x- and y-directions successively are transmitted through the transflective film 180 and are used, so that light loss is reduced and transmissivity and light efficiency are enhanced. When a maximum pixel voltage is applied (ON) in the transmission mode, as shown in FIG. 8B, light irradiated from the backlight 300 is incident into the transflective film 180, so that the incident light is partially transmitted through the transflective film 180 and is partially reflected by the transflective film 180. The light that has been transmitted through the transflective film 180 is transmitted through the second polarizing plate 170, so that it is converted into light lineally polarized parallel to the polarizing axis of the second polarizing plate 170, i.e., a direction perpendicular to the polarizing axis of the first polarizing plate 160. Afterwards, the linearly polarized light is transmitted through the first transparent electrode 112 and the liquid crystal layer 130 without a variation in the polarized state. Accordingly, the light linearly polarized in the direction perpendicular to the polarizing axis of the first polarizing plate 160 cannot be transmitted through the first polarizing plate 160, so that a black image is displayed. FIG. 9 is a schematic view showing a structure of a liquid crystal display device further including a light reflection pattern and optical sheets, and FIG. 10 is a plane view showing the light reflection pattern formed on a light guiding member of FIG. 9. Referring to FIG. 9, a light reflection pattern 322a is formed on the reflective-transmissive face 322 of the light guiding member 320 so as to face the luminance controlling member 330. The light reflection pattern 322a partially reflects the light that is incident onto the light reflective-transmissive face 322, and changes the light path of the light incident onto the light reflective-transmissive face 322 so that a part of the light incident onto the light reflective-transmissive face 322 may proceed toward a light exiting face 323. The light reflection pattern 322a is formed on the light reflective-transmissive face 322. For example, the light reflection pattern 322a includes a plurality of dots arranged in a matrix shape on the light reflective-transmissive face 322. Paste mixed with material having a high light reflectivity is printed on the light reflective-transmissive face 322 by a silk screen printing method, so that light reflection pattern 322a is formed on the light reflective-transmissive face 322. The light reflection pattern 322a formed on the light reflective-transmissive face 322 may have various patterns with certain regularity. For example, the dots of the light reflection pattern 322a are arranged in a matrix shape on the light reflective-transmissive face 322, and the size of the respective dots increases in proportion to the distance between each dot and the light incident face 321. In other words, the dots of the light reflection pattern 322a have different sizes such that a dot has a smaller size as it is closer to the light incident face 321. The size of a dot of the light reflection pattern 322a is determined according to the distance between the dot and the light incident face 321, so that the light reflectivity by the light reflection pattern 322a is maintained substantially uniform over the entire surface of the light reflective-transmissive face 322. Referring again to FIG. 9, in the light guiding member 320 of this embodiment, a vertical distance between the light reflective-transmissive face 322 and the light exiting face 323 is substantially uniform. In other words, the light reflective-transmissive face 322 is substantially parallel with the light exiting face 323. In another embodiment, however, the light reflective-transmissive face 322 may not be parallel with the light exiting face 323. Specifically, the vertical distance between the light reflective-transmissive face 322 and the light exiting face 323 decreases in proportion to the distance between a point on the light exiting face 323 (or the light reflective-transmissive face 322) and the light incident face 321. Preferably, the vertical distance between the light reflective-transmissive face 322 and the light exiting face 323 decreases gradually. For example, the light exiting face 323 is parallel with the LCD panel, and the light reflective-transmissive face 322 is tilted by a predetermined angle with respect to the light exiting face 323. On the other hand, as shown in FIG. 9, a first optical sheet 340 is installed on the light exiting face 323 of the light guiding member 320 so as to enhance optical characteristic of the light exiting from the light guiding member 320 by changing optical distribution of the light exiting from the light guiding member 320. The first optical sheet 340 further includes a first diffusion sheet 342 and a first prism sheet 344. Specifically, the first diffusion sheet 342 disperses the second light L2 and a part of the third light L3 reflected by the luminance controlling member 330, to thereby provide a uniform luminance distribution. According to one exemplary embodiment of the present invention, at least one first prism sheet 344 is installed on the first diffusion sheet 342, to thereby enhance a viewing angle of the light exited from the first diffusion sheet 342 by correcting a direction of the light exited from the first diffusion sheet 342. In addition, a second optical sheet 350 may be installed between the luminance controlling member 330 and the second LCD panel 200 so as to enhance optical characteristic of the other part of the third light L3 transmitting the luminance controlling member 330 and then proceeding toward the second LCD panel by changing optical distribution of the other part of the third light L3. The second optical sheet 350 may further include a second diffusion sheet 352 and a second prism sheet 354. Specifically, the second diffusion sheet 352 disperses the other part of the third light L3, to thereby provide a uniform luminance distribution. The second prism sheet 354 corrects a direction of the light exited from the second diffusion sheet 352, to thereby enhance a viewing angle of the light exited from the second diffusion sheet 352. Although the first display unit 100 has the same size as the second display unit 200 in the embodiments in FIGS. 1 to 9, the first display unit 100 may have a different size from the second display unit 200. FIG. 11 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention. Referring to FIG. 11, an LCD device 600 includes a first display unit 100, a second display unit 500 having a different size from the first display unit 100, and a backlight 300 disposed between the first and second display units 100, 500. A first display area of the first display unit 100 is different from a second display area of the second display unit 500, and in this embodiment, the first display area of the first display unit 100 is larger than the second display area of the second display unit 500. When the first display area of the first display unit 100 is larger than the second display area of the second display unit 500, optical characteristic of the second display unit 500 varies according to a position of the second display unit 500. As shown in FIG. 11, one end of the second display unit 500 is aligned to the light incident face 321 of the light guiding member 320. When one end of the second display unit 500 is aligned to the light incident face 321 of the light guiding member 320, a larger amount of light can be collected at the second display unit 500 compared with when one end of the second display unit 500 is located at other positions. Although not shown in FIG. 11, one end of the second display unit 500 can be installed apart from the light incident face 321 by a predetermined distance. For example, the second display unit 500 is disposed at the center portion of the light reflective-transmissive face 322 of the light guiding member 320. In this case, there is a disadvantage that restriction on luminance exists, but there is an advantage that restriction on installation is reduced. In addition, the other end of the second display unit 500 opposite to the one end of the second display unit 500 may be aligned to a side face, opposite to the light incident face 321, of the light guiding member 320. FIG. 12 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention, and FIG. 13 is a view showing a first display unit of FIG. 12. Referring to FIG. 12, an LCD device 900 includes a first display unit 700 for displaying first images, a second display unit 200 for displaying second images, and a backlight 800 disposed between the first and second display units 700, 200. The first display unit 700 includes a first LCD panel 750, a first polarizing plate 760, a second polarizing plate 770 and a transflective film 780. Referring to FIG. 13, the first LCD panel 750 includes a first substrate 710, a second substrate 720 arranged facing the first substrate 710, a liquid crystal layer 730 disposed between the first substrate 710 and the second substrate 720. Specifically, the first substrate 710 includes a first insulating substrate 711. On the first insulating substrate 711 is formed a plurality of switching devices, or thin film transistors (TFTs) 712 and a first transparent electrode (or pixel electrode) 714 electrically connected to the TFTs 712. The TFTs 712 are arranged in a matrix configuration on the first insulating substrate 711. A gate electrode 712a of the TFT 712 is connected a gate line (not shown) extended in a row direction on the first insulating substrate 711, and a source electrode 712b of the TFT 712 is connected a data line (not shown) extended in a column direction on the first insulating substrate 711. A drain electrode 712c of the TFT 712 is electrically connected the first transparent electrode 714 made of a conductive oxidation film such as indium tin oxide (ITO). An organic insulating layer 713 is formed between the TFT 712 and the first transparent electrode 714. The organic insulating layer 713 includes a contact hole 713a that exposes the drain electrode 712c. The organic insulating layer 713 insulates the TFT 712 and the first transparent electrode 714, and simultaneously allows the first transparent electrode 714 to contact only the drain electrode 712c. The second substrate 720 includes a second insulating substrate 721. An RGB color filter 722, a black matrix (BM) layer 723 and a second transparent electrode 724 are formed on the second insulating substrate 721. On the second insulating substrate 721, the RGB color filter 722 is arranged in a matrix configuration corresponding to the pixel electrode 714 formed on the first insulating substrate 711. The black matrix layer 723 is formed between the RGB color filter 722 on the second insulating substrate 721 so as to enhance contrast ratio (C/R). In addition, a second transparent electrode 724 is formed on the entire surface of the second insulating substrate on which the RGB color filter 722 is formed. The first transparent electrode 714 of the first substrate 710 is arranged facing the second transparent electrode 724 of the second substrate 720. A liquid crystal layer 730 is made of 90° twisted TN (Twisted Nematic) liquid crystal composition, and the liquid crystal 730 is disposed between the first substrate 710 and the second substrate 720. On an upper surface of the first LCD panel 750 is disposed a first polarizing plate 760, and a second polarizing plate 770 is disposed on a lower surface of the first LCD panel 750. Under the second polarizing plate 770 is disposed a transfiective film 780 including at least two transparent layers, which have different refractivity index values from each other and are alternately stacked on the second polarizing plate 770. The transflective film 780 partially reflects and partially transmits light incident thereto. Accordingly, the LCD device can display images through a reflection light path (R) and a transmission light path (T). Referring again to FIG. 12, the second display unit 200 includes a second LCD panel 250, a third polarizing plate 260 and a fourth polarizing plate 270. The second LCD panel includes a third substrate 210, a fourth substrate 220 arranged facing the third substrate 210, and a second liquid crystal layer 230 disposed between the third substrate 210 and the fourth substrate 220. On an upper surface of the second LCD panel 250 is disposed a third polarizing plate 260, and a fourth polarizing plate 270 is disposed on a lower surface of the second LCD panel 250. Although not shown in FIG. 12, the second LCD panel 250 can be embodied same as the first LCD panel 750 of FIG. 13. A backlight 800 is disposed between the first and second display units 700, 200. The backlight 800 generates light and provides the first and second display units 700, 200 with the generated light. The backlight 800 includes a lamp unit 820, a first light guiding member 820, a second light guiding member 830, and a luminance controlling member 840 disposed between the first and second light guiding members 820, 830. The lamp unit 810 includes a lamp 811 for generating light, and a lamp reflector 812 for reflecting the light generated from the lamp 811 to provide the first and second light guiding members 820, 830 with the light generated from the lamp 811. A part of the light generated from the lamp 811, or the first light L1, is incident onto the first light guiding member 820, and the other part of the light generated from the lamp 811, or the second light L2, is incident onto the second light guiding member 830. The first light guiding member 820 includes four first side faces including a first light incident face 821, a first light reflective-transmissive face 822 and a first light exiting face 823. The first light exiting face 823 faces the first light reflective-transmissive face 822. The first light L1 incident into the first light guiding member 820 through the first light incident face 821 is divided to proceed toward the first and the second display units 700, 200 by the following path. The first light guiding member 820 divides the first light L1 to exit third and fourth lights L3, L4. The first light guiding member 820 exits the third light L3 or a part of the first light L1 toward the first display unit 700, and exits the fourth light L4 or the other part of the first light L1 toward the second display unit 200. Specifically, the third light L3 includes light exiting directly from the first light exiting face 823 and light being reflected by the first light reflective-transmissive face 822 to exit through the first light exiting face 823. The fourth light L4 passes through the first light reflective-transmissive face 822 to proceed toward the second display unit 200. The second light guiding member 830 is disposed between the first and second display units 700, 200, and more specifically is disposed in the vicinity of the first reflective-transmissive face 822. The second light guiding member 830 includes four second side faces including a second light incident face 831 onto which the second light L2 is incident, a second light reflective-transmissive face 832 and a second light exiting face 833. The second light exiting face 833 faces the second light reflective-transmissive face 832. The second light L2 incident into the second light guiding member 830 through the second light incident face 831 is divided to proceed toward the first and second display units 700, 200 by the following path. The second light guiding member 830 divides the second light L2 to exit fifth and sixth lights L5, L6. The second light guiding member 830 exits the sixth light L6 or a part of the second light L2 toward the first display unit 700, and exits the fifth light L5 or the other part of the second light L2 toward the second display unit 200. Specifically, the fifth light L5 includes light exiting directly from the second light exiting face 833 and light being reflected by the second light reflective-transmissive face 832 to exit through the second light exiting face 833. The sixth light L6 passes through the second light reflective-transmissive face 832 to proceed toward the first display unit 700. A luminance controlling member 840 is installed between the first light guiding member 820 and the second light guiding member 830. The luminance controlling member 840 may have a sheet shape or a plate shape thicker than the sheet shape, and is made of, for example, polyethylene terephthalate (PET) treated by foaming agent. The fourth light L4, which passes through the first light reflective-transmissive face 822 of the first light guiding member 820, and the sixth light L6, which passes through the second light reflective-transmissive face 832 of the second light guiding member 830, reach the luminance controlling member 840. The luminance controlling member 840 reflects a part of the fourth light L4 to provide the first display unit 700 with the reflected part of the fourth light L4 through the first light guiding member 820, and transmits the other part of the fourth light L4 to provide the second display unit 200 with the other part of the fourth light L4. In addition, the luminance controlling member 840 reflects a part of the sixth light L6 to provide the second display unit 200 with the reflected part of the sixth light L6 through the second light guiding member 830, and transmits the other part of the sixth light L6 to provide the first display unit 700 with the other part of the sixth light L6. A first luminance at the first display unit 700 and a second luminance at the second display unit 200 are precisely controlled by controlling the light reflectivity and the light transmissivity of the luminance controlling member 840. Thus, a ratio of the first luminance to the second luminance can be precisely controlled by controlling the light reflectivity and the light transmissivity of the luminance controlling member 840. In this embodiment, the first light guiding member 820 is a flat type light guiding plate, in which a vertical distance between the first light reflective-transmissive face 822 and the first light exiting face 823 is substantially uniform. The second light guiding member 830 is also a flat type light guiding plate. However, the first and second light guiding members may have a wedge shape, in which the vertical distance between the light reflective-transmissive face and the light exiting face varies gradually. FIG. 14 is a schematic view showing a structure of the liquid crystal display device of FIG. 12 further including light reflection patterns and optical sheets. Referring to FIG. 14, a first light reflection pattern 822a is formed on the first reflective-transmissive face 822 of the first light guiding member 820, and a second light reflection pattern 832a is formed on the second reflective-transmissive face 832 of the second light guiding member 830. For example, the first and second light reflection patterns 822a, 832a include a plurality of dots arranged in a matrix shape. The size of the respective dots of the first light, reflection pattern 822a successively increases in proportion to the distance between a dot of the first light reflection pattern 822a and the first light incident face 821. The size of the respective dots of the second light reflection pattern 832a successively increases in proportion to the distance between a dot of the second light reflection pattern 832a and the second light incident face 831. On the other hand, as shown in FIG. 14, the backlight 800 further includes a first optical sheet 850 and a second optical sheet 860. Specifically, the first optical sheet 850 is installed between the first display unit 700 and the first light exiting face 823, and the second optical sheet 860 is installed between the second display unit 200 and the second light exiting face 833. The first optical sheet 850 enhances a viewing angle of a part of the third light L3 and a part of the fourth light L4, and diffuses the part of the third light L3 and the part of the fourth light L4 so as to provide a uniform luminance distribution. The second optical sheet 860 enhances a viewing angle of a part of the fifth light L5 and a part of the sixth light L6, and diffuses the part of the fifth light L5 and the part of the sixth light L6 so as to provide a uniform luminance distribution. FIG. 15 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention. Referring to FIG. 15, an LCD device 1200 includes a first display unit 700, a second display unit 1000 having a different size from the first display unit 700, and a backlight 1100 disposed between the first and second display units 700, 1000. In this embodiment, a first display area of the first display unit 700 is larger than a second display area of the second display unit 1000, and the first and second light guiding members 1120, 1130 each have a size fit to the first and the second display areas, respectively. The surface area of the first light guiding member 1120 is larger than that of the second light guiding member 1130. In another embodiment, however, the first display area of the first display unit may be smaller than the second display area of the second display unit. A luminance controlling member 1140 is disposed between the first and second light guiding members 1120, 1130. The surface area of the luminance controlling member 1140 corresponds in its size to that of the first light guiding member 1120, or corresponds to the largest one of the surface areas of the first and second light guiding members 1120, 1130. As shown in FIG. 15, a first light reflection pattern 1122a is formed on a first reflective-transmissive face 1122 of the first light guiding member 1120, and a second light reflection pattern 1132a is formed on the second reflective-transmissive face 1132 of the second light guiding member 1130. In this embodiment, the first and second light reflection patterns 1122a, 1132a each include a plurality of dots arranged in a matrix shape. Since the surface area of the first light guiding member 1120 is larger than that of the second light guiding member 1130, a configuration of the first light reflection pattern 1122a formed on the first reflective-transmissive face 1122 differs from the configuration of the second light reflection pattern 1132a formed on the second reflective-transmissive face 1132. For example, the size of the respective dots of the first (or second) light reflection pattern 1122a (1132a) successively increases in proportion to the distance between a dot of the first (or second) light reflection pattern 1122a (1132a) and a first (or second) light incident face 1121 (1131), but the size of the respective dots of the first light reflection pattern 1122a differs from the size of the respective dots of the second light reflection pattern 1132a. In other words, the dots of the second reflection pattern 1132a have sizes with a higher ratio of a size change to a unit distance change than those of the dots of the first reflection pattern 1122a. Although not shown in FIG. 15, the backlight 1100 may further include a first optical sheet and a second optical sheet. The first optical sheet may be installed between the first display unit 700 and the first light exiting face 1123, and the second optical sheet may be installed between the second display unit 1000 and the second light exiting face 1133. Preferably, the surface areas of the first and second optical sheets are in their size to those of the first and second light guiding members 1120, 1130, respectively. FIG. 16 is a sectional view showing a liquid crystal display device according to another exemplary embodiment of the present invention. Referring to FIG. 16, an LCD device includes a first display unit 700, a second display unit 1300, and a backlight 800 disposed between the first and second display units 700, 1300. The first display unit 700 includes a first LCD panel 750, a first polarizing plate 760, a second polarizing plate 770 and a first transflective film 780. The second display unit 1300 includes a second LCD panel 1350, a third polarizing plate 1360, a fourth polarizing plate 1370 and a second transflective film 1380. Under the second polarizing plate 770, or between the second polarizing plate 770 and the backlight 800, is disposed a first transflective film 780 including at least two transparent layers having different refractivity index values from each other, i.e., a first layer and a second layer alternately stacked to form more than or equal to two layers. The first transflective film 780 partially reflects and partially transmits light incident thereto. Accordingly, the first display unit 700 displays images using the reflected light and the transmitted light. Between the third polarizing plate 1360 and the backlight 800, is disposed a second transflective film 1380 including at least two transparent layers having different refractivity index values from each other, i.e., a first layer and a second layer alternately stacked to form more than or equal to two layers. The second transflective film 1380 partially reflects and partially transmits light incident thereto. Accordingly, the second display unit 1300 displays images using the reflected light and the transmitted light. While the present invention has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to a liquid crystal display (LCD) device, and more particularly to a liquid crystal display device in which a light loss of the liquid crystal display device is reduced in a transmission mode and a bi-directional display is provided. 2. Description of the Related Art In these days, electronic display devices become more important for communicating and processing various information. Also, various types of electronic display devices are widely used in different industrial fields. Generally, an electronic display device visually provides a variety of information to a user. In other words, an electrical information signal output from electronic devices is converted into a visible optical information signal in an electronic display device. Such an electronic display device serves as an interfacing means between a user and the electronic devices. Meanwhile, owing to developments in the semiconductor technology, recent electronic devices are generally driven by lower voltage and lower power, and have a slimmer size and a lighter weight. With such a trend, a flat panel type display device which is slimmer and lighter and requires lower driving voltage and power becomes in more demand and desirable. An LCD device among the various types of flat panel display devices is much slimmer and lighter than any other display devices, and has a lower driving voltage and lower power consumption, and also has the displaying quality similar to that of CRT-type display devices. Therefore, LCD devices are widely used in various electronic equipments. Recently, an LCD device for performing a bi-directional image display has been developed. Specifically, a conventional LCD device for performing the bi-directional image display includes a backlight, a first LCD panel and a second LCD panel. The first LCD panel is disposed above (or below) the backlight, and the second LCD panel is disposed below (or above) the backlight. In the conventional LCD device for performing the bi-directional image display, light radiated from a lamp(s) is divided into two groups of light. A first group of light is provided to the first LCD panel, and a second group of light is provided to the second LCD panel. The conventional LCD device only has the function of dividing the light radiated from the lamp(s), but does not have the function of regulating an amount of each of the two groups. It is thus desired that an LCD device can divide the light radiated from the lamp(s) into two groups and also can regulate the amount of each of the two groups. An LCD panel, which is available for the LCD device capable of performing the bi-directional image display, may have a structure in which the LCD panel can display images in a transmission mode or a reflection mode according to an amount of external light. The LCD panel includes a first substrate, a second substrate, a liquid crystal layer interposed between the first and second substrates, and pixel electrodes. The pixel electrodes are formed on the first substrate, and each of the pixel electrodes has a transparent electrode region and a reflective electrode region. Light is transmitted through the transparent electrode region in the transmission mode, and is reflected by the reflective electrode region in the reflection mode. Accordingly, the LCD panel displays images by means of the transparent electrode region in the transmission mode, and displays images by means of the reflective electrode region in the reflection mode. The conventional LCD device having the above structure has at least the following problems. First, since a display area of the LCD device is divided into a transmission area used in the transmission mode and a reflection area used in the reflection mode, it is not effective in aspect of utilization of the display area. Second, since the conventional LCD device has to employ the wide band ¼ wavelength phase difference plates covering an overall frequency band of the visible ray, as well as a first and a second polarizing plates attached on each of the first and second substrates, a manufacturing cost is elevated compared with a transmission type LCD device that displays images by means of a backlight disposed under the LCD panel. Third, since the polarization characteristic in the transmission mode causes a light loss of 50%, there are drawbacks in that a light transmissivity decreases by 50% and a contrast ratio (C/R) is lowered. Fourth, since Δnd (Δn: a value for representing optical anisotropy or refractive anisotropy; d: cell gap) of a liquid crystal layer is only 0.24 μm which is a half of Δnd (0.48 μm) of the conventional transmission type LCD device, the cell gap of the liquid crystal cell should be decreased to a level of 3 μm, and the Δn of the liquid crystal also should be decreased. Accordingly, there are problems in that the manufacturing process becomes difficult and degeneration in the reliability of the liquid crystal is caused.
<SOH> SUMMARY OF THE INVENTION <EOH>Accordingly, the present invention is to solve the aforementioned and other problems of the conventional art, and it is an object of the present invention to provide an LCD device capable of simplifying a structure of an LCD panel, decreasing light loss in the transmission mode and performing a bi-directional image display. In one aspect, there is provided a liquid crystal display device comprising: a first display unit including a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer between the first and second substrates, and a transflective film disposed under the first liquid crystal display panel, the transflective film having a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the transflective film partially reflects and partially transmits incident light incident onto the transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit generating a first light to provide the first display unit with a first part of the first light and the second display unit with a second part of the first light, and the light supplying unit controlling an amount of the first and second parts of the first light to regulate a contrast ratio of a luminance between the first and second display units. According to another aspect of the invention, there is provided a liquid crystal display device comprising: a first display unit including a first liquid crystal display panel having a first substrate, a second substrate and a first liquid crystal layer disposed between the first and second substrates, and a first transflective film disposed under the first liquid crystal display panel, the first transflective film having a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the first transflective film partially reflects and partially transmits a first incident light incident onto the first transflective film; a second display unit including a second liquid crystal display panel having a third substrate, a fourth substrate and a second liquid crystal layer disposed between the third and fourth substrates; and a light supplying unit disposed between the first and second display units, the light supplying unit dividing a first light, which is a first part of a light generated from an light source, into a third light and a fourth light to provide the first and second display units with the third and fourth light, respectively, and dividing a second light, which is a second part of the light generated from the light source, into a fifth light and a sixth light to provide the first and second display units with the fifth and sixth light, respectively, the light supplying unit controlling an amount of the third, fourth, fifth and sixth light to regulate a contrast ratio of a luminance between the first and second display units. In an exemplary embodiment, the LCD device includes a first transflective film disposed at one of the first and second display units. The first transflective film has a plurality of layers in which a first layer and a second layer having different refractivity indexes from each other are alternately stacked, so that the first transflective film partially reflects and partially transmits a first incident light incident on the first transflective film. The LCD device includes a light supplying unit disposed between the first and second display units. The light supplying unit controls an amount of the light that is provided to the first and second display units, to thereby regulate a contrast ratio of a luminance between the first and second display units. Therefore, the structure of an LCD panel for performing a bi-directional image display can be simplified, and the light loss in the transmission mode can be reduced. In another exemplary embodiment, the LCD device includes an anisotropy transflective film or an isotropy transflective film disposed at one of the first and second display units. The anisotropy transflective film has an optical characteristic in which light components in a specific direction are strongly reflected and polarization components in a direction perpendicular to the specific direction are partially transmitted and reflected depending on polarized state and direction of the incident light incident thereto. The isotropy transflective film has an optical characteristic in which light components are partially transmitted and reflected independent of polarized state and direction of the incident light. As a result, by a light restoring process occurring between the transflective film and the backlight, the restored light is transmitted through the transflective film repeatedly, so that transmissivity and light efficiency can be enhanced. Further, the LCD device has no reflection electrode within liquid crystal (LC) cell and has no ¼-wavelength phase difference plate on each of the first substrate and the second substrate. Accordingly, compared with a conventional LCD device, the LCD device of the present invention can be made in more simple structure, and degeneration in the reliability of the liquid crystal can be prevented. Furthermore, since the light supplying unit disposed between the first and second display units regulates the luminance of the light generated from the lamp to provide the first and second display units with the light of which luminance is regulated, the LCD device of the present invention satisfies the demand from users.
20041103
20070320
20050324
84243.0
1
KIM, RICHARD H
DUAL LIQUID CRYSTAL DISPLAY DEVICE
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,980,736
ACCEPTED
Methods and apparatuses for decoupling a request from one or more solicited responses
Embodiments of apparatuses, systems, and methods are described for communicating information between functional blocks of a system across a communication fabric. Translation logic couples to the communication fabric. The translation logic implements a higher level protocol layered on top of an underlining protocol and the communication fabric. The translation logic converts one initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric. The translation logic converts the initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric so that the communication fabric does not block or poll for responses, and that data may be transferred in a direction opposite from the initiator transaction request.
1. An apparatus, comprising: a communication fabric to facilitate communications between functional blocks of a system, wherein the communication fabric implements either 1) a protocol that blocks the communications fabric during a time between transmission of a request and a transmission of an associated response, 2) a protocol that polls a responding block to solicit a response to an issued request, or 3) a protocol that only transfers data in the same direction as requests across the communication fabric; and translation logic to implement a higher level protocol layered on top of an underlining protocol and the communication fabric, wherein the translation logic converts one initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric. 2. The apparatus of claim 1, wherein a first write transaction includes a write request with annotations in a control field and a data field of the write request to indicate how many read requests were combined into the write request and an address sequence associated with a burst transaction. 3. The apparatus of claim 1, wherein the translation logic relinquishes control of the communication fabric to allow other functional blocks to issue their transactions after a first write transaction from the two or more write transactions is transmitted over the communication fabric to prevent the blocking or the polling on the communication fabric. 4. The apparatus of claim 1, wherein the communication fabric is located in a System On a Chip 5. A computer readable medium containing instructions to cause a machine to generate the apparatus of claim 1. 6. An apparatus, comprising: a communication fabric to facilitate communications between functional blocks of a system; and translation logic to implement a higher level protocol layered on top of an underlining protocol and the communication fabric, wherein the translation logic combines multiple initiator read requests into a single request that carries the number of requests that were combined into the single request and an address sequence associated with the requests. 7. The apparatus of claim 6, wherein the single request is transmitted using the underlining protocol of the communication fabric. 8. The apparatus of claim 6, wherein the communication fabric is an interconnect located in a System On a Chip and the functional blocks are Intellectual Property cores. 9. A computer readable medium containing instructions to cause a machine to generate the apparatus of claim 6. 10. A method, comprising: converting two or more read requests from an initiator into a single request that carries the number of the multiple requests that are combined and an address sequence associated with the multiple requests; and transmitting the single request across a communication fabric. 11. The method of claim 10, wherein the single request has annotations in a field of the request to indicate how many read requests were combined and address sequence associated with the multiple requests. 12. The method of claim 10, wherein a higher level protocol layered on top of an underlining protocol combines the multiple read requests into the single request and uses an underlining protocol to transmit the single request across the communication fabric. 13. A computer readable medium containing instructions to cause a machine to generate apparatuses that perform the operations in claim 6. 14. The method of claim 10, further comprising: detecting a width of a data bus of a requesting device in the single request; and performing a data width conversion between the width of the data bus of the requesting device and a width of a data bus of a target based on the data unit size indicated in the request. 15. A method, comprising: separating a transfer of an issued request by an initiator functional block from an associated number of responses with a higher level protocol layered on top of a communication fabric that implements an underlining protocol that either 1) solicits responses to the issued request over the communication fabric, or 2) blocks the communication fabric waiting for the number of responses to become available for consumption by the initiator functional block; and communicating the number of responses to the initiator functional block as the number of responses become available without the initiator functional block having to poll for the communicated responses. 16. The method of claim 15, further comprising: relinquishing control of the communication fabric to allow other functional blocks to issue their transactions after the request is transmitted over the communication fabric to prevent blocking the communication fabric waiting for one or more responses to become available for consumption by an initiator functional block. 17. The method of claim 15, further comprising: issuing a second request from the same initiator functional block prior to receiving the communicated responses. 18. A computer readable medium containing instructions to cause a machine to generate apparatuses that perform the operations in claim 15. 19. A system, comprising: a communication fabric to facilitate communications between functional blocks of a system; translation logic to implement a higher level protocol layered on top of the communication fabric that implements either 1) a polling based protocol that solicits responses to an issued request over the communication fabric, or 2) a blocking based protocol that blocks the communication fabric waiting for the one or more responses to become available for consumption by an initiator functional block; and wherein the translation logic separates the transaction of the issued request from the responses by communicating the responses to the initiator when the responses become available without the initiator having to poll for the communicated responses. 20. The system of claim 19, wherein the translation logic to convert a number of read requests from an initiator functional block into a single request that carries the number of the multiple requests that are combined and an address sequence associated with the multiple requests. 21. The system of claim 19, wherein a first instance of the translation logic converts one or more read requests to a single request based upon an address of the single target indicates that it is capable of decoding the single request. 22. The system of claim 19, wherein the communication fabric is an interconnect in a System On a Chip. 23. The system of claim 19, further comprising: a second instance of translation logic to convert the single request into an original number of read requests, where each read request has its original target address. 24. The system of claim 19, further comprising: a second instance of translation logic to decode annotations in the single request, and to store both the initiator's identification tag and the number of read request that were combined into the single request. 25. The system of claim 24, further comprising: a second instance of translation logic to transmit the responses back across the communication fabric based on the stored transaction attributes. 26. A computer readable medium containing instructions to cause a machine to generate the apparatuses in the system of claim 19. 27. An apparatus, comprising: a communication structure to facilitate communications between functional blocks of a system; and translation logic to convert multiple read requests from an initiator functional block into a single request that carries the number of the multiple requests that are combined and an address sequence associated with the multiple requests. 28. A computer readable medium containing instructions to cause a machine to generate the apparatus of claim 27. 29. The apparatus of claim 26, wherein the single request also carries a width of a data bus of an initiator functional block to represent a data unit size of the initiator functional block.
TECHNICAL FIELD Embodiments of the present invention pertain to the field of communication fabrics, and, more particularly, to a shared interconnect in a System On a Chip. BACKGROUND In classical bus-based architectures, communications between on-chip cores use a blocking protocol. Specifically, while a transfer is underway between an initiator and a target, the bus resources are not available for any other transfers to occur. Some on-chip interconnect architectures incorporate the use of pipelined polling protocol that alleviates the main inadequacy of a blocking protocol, yet still losing efficiency when communicating with targets with high and unpredictable latency. For example, when an Intellectual Property (IP) core issues a read request to an on-chip SRAM device with predictable short latency, the response may be guaranteed to become available on the bus during the first attempt by the initiator to accept it. When an IP core issues a read request to an off-chip DRAM device with unpredictable and often high latency, multiple accesses to the bus may be required before the response becomes available to be accepted by the requesting entity. Each such access to the bus results in wasted cycles that ultimately degrade the overall bandwidth and efficiency of the system. SUMMARY Embodiments of apparatuses, systems, and methods are described for communicating information between functional blocks of a system across a communication fabric. The communication fabric implements either 1) a protocol that blocks the communications fabric during a time between transmission of a request and a transmission of an associated response, 2) a protocol that polls a responding block to solicit a response to an issued request, or 3) a protocol that only transfers data in the same direction as requests across the communication fabric. Translation logic couples to the communication fabric. The translation logic implements a higher level protocol layered on top of an underlining protocol and the communication fabric. The translation logic converts one initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric. The translation logic converts the initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric so that the communication fabric does not block or poll for responses, and that data may be transferred in a direction opposite from the initiator transaction request. Other features and advantages of the present invention will be apparent from the accompanying drawings and the detailed description that follows. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention are illustrated by way of example and are not intended to be limited by the figures of the accompanying drawings, in which: FIG. 1a illustrates a block diagram of an embodiment of a communication fabric with translation intelligence coupled to the communication fabric. FIG. 1b illustrates a block diagram of an embodiment of a shared interconnect with intelligent network adapters coupled to the shared interconnect. FIG. 2 illustrates an embodiment of an example pipe-lined arbitration process without blocking or polling for solicited responses. FIGS. 3a through 3d illustrate a flow diagram of an embodiment of a request packet and response packet transaction over a shared resource. FIG. 4a illustrates an example block transaction request packet for a two-dimensional data object. FIG. 4b illustrates an example frame buffer to store multimedia data for display on a display device. FIG. 5 illustrates an example conversion of multiple read requests into a single request packet and the associated responses. FIG. 6 illustrates an example conversion of a burst transaction for two-dimensional data converted into a single request packet and the associated responses. DETAILED DESCRIPTION In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that certain embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as to not obscure the presented embodiments of the invention. The following detailed description includes several network adapters, which will be described below. These network adapters may be implemented by hardware components, such as logic, or by a combination of hardware and software. The term data response and response packets should both be construed to be responses. The term request and request packets should both be construed to be requests. A transaction may be a complete unit of data communication that is composed of one or more requests and one or more associated responses. In a write transaction, the direction of data transmission is the same as the associated requests. In a read transaction, the direction of data transmission is the same as the associated responses. The purpose of a transaction may be to move data between functional blocks. The association between the one or more requests that form a transaction may be based on transferring one or more data words between the same initiator and target wherein the one or more data words have a defined address relationship. A single request may be associated with the transfer of one or more data words. Similarly, a single response may be associated with the transfer of one or more data words. A write transaction may move data from an initiator to a target, in the same direction as the request. A read transaction may move data from a target to an initiator, in the same direction as the response. The number of requests and the number of responses that form a transaction may be the same, or there may be more requests than responses, or there may be more responses than requests. A request may be transferred as part of a transaction. The communication fabric may use coupled resources for transmitting requests and responses. Alternately, the communication fabric may use separate resources for transmitting requests and responses. An on-chip interconnect may be a collection of mechanisms that may be adapters and/or other logical modules along with interconnecting wires that facilitate address-mapped and arbitrated communication between multiple functional blocks on an SOC (System-on-Chip). A burst may be a set of transfers that are linked together into a transaction having a defined address sequence and number of transfers. A single (non-burst) request on an interface with burst support may be encoded as a request with any legal burst address sequence and a burst length of 1. Apparatuses, systems, and methods are described for communicating information between functional blocks across a communication fabric. Translation intelligence connects to a communication fabric. The translation intelligence may include detection and conversion logic. The detection logic detects for a read request containing burst information that communicates one or more read requests in a burst from an initiator Intellectual Property (IP) core that are going to related addresses in a single target IP core. The conversion logic converts the one or more read requests to a single request with annotations in a field of the request to indicate how many read requests were combined and the addresses associated with each read request based upon the addresses in the target IP core being related. The series of burst transactions, such as a non-incrementing address pattern burst transaction may be indicated as a block transaction. A request generated for the block transaction includes annotations indicating a length of a raster line occupied by a target data, a number of rows of raster lines occupied by the target data, and address spacing between two consecutive raster lines occupied by the target data. The conversion logic converts the one or more read requests to a single request with annotations in a field of the request to indicate how many read requests were combined and the addresses associated with each read request based upon the addresses in the target IP core being related. If the block transaction is for two-dimensional data then the single request packet also includes 1) a width of the two-dimensional object, 2) a height of the two-dimensional object measured in the number of rows that the two-dimensional object will occupy, and 3) a stride of the two-dimensional object is measured in the address spacing between the addresses of two consecutive raster lines. FIG. 1a illustrates a block diagram of an embodiment of a communication fabric with translation intelligence coupled to the communication fabric. The system may include a plurality of initiators 2-8, a plurality of targets 10-12, and a communication fabric 14. Information between the functional blocks 2-12 is communicated across the communication fabric 14, such as an interconnect, a bus, a network on a chip, or similar communication structure in a system. Translation intelligence 16-26 connects to the communication fabric 14. A request from an initiator, such as the first initiator 2, may be communicated to a target, such as the first target 12, over the communication fabric 14 to solicit one or more responses from the target. The request and the one or more responses form a transaction. The transfer of the request and the one or more responses may be split by communicating the one or more responses to the initiator when the one or more responses become available without the initiator having to poll for the communicated responses or block the communication fabric 14 waiting for a transmission of the one or more responses. The initiator is decoupled from the waiting on the one or more responses to the issued request because the initiator may issue additional requests prior to receiving the one or more responses. The initiator is decoupled from the waiting on the one or more responses to the issued request because the initiator may relinquish control of the communication fabric 14 prior to receiving the response. The translation intelligence 16-26 may include detection logic and conversion logic. The detection logic detects for a read request containing burst information that communicates one or more read requests in a burst transaction from an initiator, such as an Intellectual Property (IP) core, that are going to related addresses in the single target. Thus, the translation logic may detect for a burst transaction communicating either an incrementing address burst transaction or a non-incrementing address pattern burst transaction. The conversion logic converts the one or more read requests in the burst transaction to a single request with annotations in a field of the request to indicate how many read requests were combined and the address sequence associated with the transaction. The detection logic communicates to the conversion logic that the burst information is detected. Alternatively, the detection logic converts the one or more read requests to the single request with annotations if an address of the target indicates that it is capable of decoding the annotations in the single request. The translation intelligence on the target side includes conversion logic to convert the single request with annotations into an original number of read requests, where each read request has its original target address. A high level protocol implemented by the translation intelligence 16-26 may provide significant performance enhancements, such as the decoupling of the request from an initiator from the one or more solicited responses from a target, converting one or more read requests in a burst transaction to a single request with annotations, as well as feature-set enrichment, specifically in regards to non-incrementing (2-dimensioinal block, wrap, XOR) burst sequences. The high level protocol may be implemented on top of an underlining transaction level protocol implemented by an existing communication fabric. In an embodiment, the translation intelligence implements a higher level protocol layered on top of an underlining protocol and the communication fabric. The underlining protocol and communication fabric may implement either 1) a protocol that blocks the communications fabric during a time between transmission of a request and a transmission of an associated response, 2) a protocol that polls a responding block to solicit a response to an issued request, or 3) a protocol that only transfers data in the same direction as requests across the communication fabric. Thus, the existing communication fabric may be a polling, a blocking and/or write only type communication fabric. However, the high level protocol cooperates with the existing polling and/or blocking transaction level layered protocol to provide the above significant performance enhancements as well as feature-set enrichment. Thus, the translation intelligence adds a capability to do something the underlining protocol was not capable of when the underlining protocol and communication fabric was originally designed. In an embodiment, the translation intelligence 16-22 coupled to the initiators may convert one or more burst read requests from an initiator to a single request packet write. The translation intelligence 24-26 coupled to the target may convert the single request packet write back to one or more burst read requests. The translation intelligence 24-26 coupled to the target may convert the burst read responses to response packet writes. The translation intelligence 16-22 coupled to the initiator may convert the response packet writes back to burst read responses solicited by the original burst read requests. The translation logic converts one initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric so that the communication fabric does not block or poll for responses, and that data may be transferred in a direction opposite from the initiator transaction request. Note, generally protocols that only transfer data in the same direction as requests across the communication fabric are, for example, a write only network, a packet based network, and other similar networks. A write only network has two separate ports. The first port only issues write type transactions. The second port only receives write type transactions. The interface does not receive read requests or responses. Some communication systems have one input/output port that issues and receives both Read and Write transactions. The first initiator may then communicate a single request fully describing attributes of a two-dimensional data block across the communication fabric to a target to decode the single request. The single request may contain annotations indicating a length of a row occupied by a target data, a number of rows occupied by the target data, and an address spacing between two consecutive rows occupied by the target data. Address spacing between two consecutive rows can be 1) a length difference between the starting addresses of two consecutive row occupied by the target data, 2) a difference between an end of a previous rows to the beginning of next row or 3) similar spacing. Transmitting all of this information in a single two-dimensional block request provides additional efficiency of temporal proximity important to efficient accesses to off-chip DRAM-type memory devices that may be SDRAM, DDR SDRAM, DDR2-SDRAM, etc. Annotating the initial target address of the transaction to the early request phase of the transaction provides additional efficiency by communicating the locality information to the memory subsystem before the remaining attributes arrive during the later data phase of the transaction. FIG. 1b illustrates a block diagram of an embodiment of a shared interconnect with intelligent network adapters coupled to the shared interconnect. A plurality of initiator Intellectual Property (IP) cores 102-118 may couple to a corresponding network adapter via a signal interface. An IP core may be a discrete wholly integrated functional block of logic that performs a particular function, such as a memory component, a wireless transmitter component, a Central Processing Unit (CPU) 102, Digital Signal Processors 116, hardware accelerators such as Moving Pictures Experts Group video compression components 104 and 106, Direct Memory Access components 118, etc. for a System On a Chip (SOC). Initiator Intellectual Property (IP) cores on the SOC may be CPUs 102, multimedia chip sets 108, etc. Some of the network adapters will be initiator network adapters, such as the first network adapter 120. Some of the network adapters will be target network adapters, such as the second network adapter 122. Target IP cores may be Memory Schedulers 118, PCI bus controllers 120, etc. Translation intelligence may be wrapped around a typical distributed network adapter connected to the shared interconnect such as the translation intelligence 124 wrapped around the first network adapter 120. The translation intelligence 124 may be added as an initiator bridge module with translation intelligence and/or a target bridge module with translation intelligence. Note the described communication mechanism and network adapters may be used for any communication fabric but a shared interconnect 144 will be used as an example shared resource. The two or more network adapters 120-142, such as bridge modules with translation intelligence, connect to the communication fabric to form a distributed arbitration mechanism for access to the shared resource. The underlining protocol and communication fabric may implement either 1) a polling based protocol that solicits responses to an issued request over the communication fabric, 2) a blocking based protocol that blocks the communication fabric waiting for the one or more responses to become available for consumption by an initiator functional block, or 3) a write-only type network. The translation intelligence wrapped around the network adapters adds a capability to do something the underlining protocol was not capable of when the underlining protocol and communication fabric was originally designed. The translation intelligence implements a higher level protocol layered on top of the underlining protocol and the communication fabric. The translation intelligence separates the transaction of the issued request from the responses by communicating the responses to the initiator when the responses become available without the initiator having to poll for the communicated responses. The translation intelligence may also combine multiple initiator read requests into a single write type request that carries the number of the multiple requests that are combined and an address sequence associated with the multiple requests. In operation, a first initiator IP core 102 may generate a read request with additional pieces of information including a burst length and a burst sequence. A burst length communicates that multiple read requests in this burst are coming from this same initiator IP core and are going to related addresses in a single target IP core. A burst type communicates the address sequence within the target IP core. The burst type may indicate that the request is for a series of incrementing addresses or non-incrementing addresses but a related pattern of addresses such as a block transaction. The burst sequence may be for non-trivial 2-dimensional block, wrap, xor or similar burst sequences. If the block transaction is for two-dimensional data then the request also includes 1) a width of the two-dimensional object measured in the length of the row (such as a width of a raster line), 2) a height of the two-dimensional object measured in the number of rows the two-dimensional object will occupy, and 3) a stride of the two-dimensional object that is measured in the address spacing between two consecutive rows. The first initiator IP core 102 communicates multiple read requests across a first signal interface 146 to the first initiator network adapter 120 connected to the shared interconnect. The Initiator IP cores communicate to the shared interconnect 144 with intelligent network adapters 120-142 through signal interfaces, such as the first signal interface 146. In an embodiment, the standardized core-signaling interface (also known as a “core socket”) may be provided by the Open Core Protocol. Target IP cores also communicate to the shared interconnect 144 with intelligent network adapters 120-142 through these signal interfaces. The translation intelligence 124 in the initiator network adapter may detect for the presence of the additional pieces of information in the read request. If detected, the initiator network adapter and the target network adapter communicate requests and responses to each other through special write-type request packets and response packets with annotations added to these special request packets and response packets. If the burst information is detected, the translation intelligence 124 in the initiator network adapter 120 converts the multiple read requests to a single write request with annotations in the data field of the write-type request packet to indicate how many read requests were combined, such as a burst length annotation, and the addresses associated with each read request, such as a burst address sequence annotation. Note, in an embodiment, control fields, such as a Reqinfo can be sub fields embedded within the data field of the write-type request packet. The Reqinfo field can be used as a location to communicate additional annotations. The additional pieces of information detected for by the translation intelligence 124 in the initiator network adapter 120 may also be the target address of an incoming burst request. The initiator translation intelligence 124 may perform an address look up on the target address to determine if the target is capable of decoding the annotations. The initiator translation intelligence 124 converts the one or more read requests to the single write-type request packet with annotations based upon an address of the single target indicating that it is capable of decoding the annotations in the single request packet. The initiator network adapter 120 may bypass the translation intelligence 124 and the single request packet conversion process if the address of the target is not listed as capable of decoding the annotations of the single request packet. In an embodiment, the address decoding logic in each initiator bridge module 124 labels certain regions as packet-capable targets (e.g. those targets serviced by a network adapter with translation intelligence). All transactions not addressed to these regions will be sequenced as direct transactions. A direct transaction occurs as a typical request or response transaction across the communication fabric and doesn't undergo the single request packet conversion process when communicated over the shared resource. The direct transactions essentially bypasses the translation intelligence causing a request to be forwarded directly to a standard initiator network adapter module, and a response to be forwarded directly back to the initiating IP core. Thus, the detection logic in the translation intelligence 124 detects for additional information in a read request containing burst information that communicates one or more read requests in a burst from an initiator Intellectual Property (IP) core that are going to related addresses in a single target IP core. The detection logic may also perform an address lookup of the target address to determine whether the target is capable of decoding the annotations of the special single write-type request packet. If not capable, then the network adapter performs a standard direct transaction. The detection logic may communicate to conversion logic in the translation intelligence 124 that the burst information is detected. The single request as well as the direct requests may be transmitted using the underlining protocol of the communication fabric. The transfer of the request is decoupled from the one or more responses by communicating the one or more responses to the initiator when the one or more responses become available without the initiator having to poll for the responses or block the communication fabric waiting for the responses. The request and the one or more responses form a fully decoupled Single Request multiple Data (SRMD) transaction. The implementation allows for simultaneous utilization of the decoupled SRMD protocol for access to high latency targets and the native polling protocol of the underlining fabric for access to low latency targets. The initiator network adapter 120 gains access to the shared interconnect 144 by winning a round of arbitration. The initiator network adapter 120 transmits this single write-type request packet with additional annotations over the shared resource. The transmission logic in the initiator network adapter 120 transmits this single write-type request packet with annotations. The initiator network adapter 120 relinquishes control of the interconnect 144 to allow other network adapters 122-142 to issue their transactions after the single request packet with annotations is transmitted. The initiator network adapter 120 may also issue additional requests prior to receiving the solicited responses. The second network adapter 122, a target network adapter, contains receiving logic to receive the single request packet with annotations and detection logic to detect the annotations. The second network adapter 122 also contains conversion logic to convert the single request packet with annotations into the original number of read requests, where each read request has its original target address. The translation intelligence 148 in the target network adapter decodes annotations of the single write-type request packet, such as burst length and burst address sequence, to perform the conversion. The translation intelligence 148 also stores both the initiator's address, such as an initiator's identification tag, and the number of read request in this burst series that were combined into this single write-type request packet. The target network adapter 122 transmits the converted number of read requests across a second signal interface 150 to the target IP core. The target IP core, such as a Memory Scheduler 118, generates responses to the multiple read request. Each response carries data in bit words. The initiator network adapter 120 does not need to check on the status of the target IP core's generation of responses to the multiple read request. The initiator network adapter does not need to poll. The target IP core 118 communicates the multiple responses to the read requests across the second ssignal interface 152 to the target network adapter connected to the shared interconnect 144 as the one or more responses become available without the initiator having to poll for the communicated responses. The translation intelligence 148 in the target network adapter 120 receives the two or more responses to the two or more number of read requests, each response carrying data in bit words. Note, “N” number may indicate a numerical number such as 2, 5, 8, etc. The translation intelligence 148 in the target network adapter 122 converts each data response into a special write-type response packet with the address of the initiator in the address field of the write-type response packet. The target network adapter 122 generates the address in the address field of the write-type response packet by using the stored address of the original initiator's address, such as a con ID, identification tag, etc., in the translation intelligence 148. The translation intelligence 148 in the target network adapter 122 notes the number of response packets in this series sent back to the initiator network adapter 120. The target network adapter 122 annotates the last response packet in this series as the last/final packet in a control field such as the ReqInfo field. The target network adapter 122 gains access to the communication fabric by winning a round of arbitration. The target network adapter 122 transmits the multiple write-type data response packets with annotations over the shared interconnect 144. The translation intelligence 124 in the initiator network adapter 120 receives the write-type data response packets and detects for the presence of the annotations. If detected, the translation intelligence 124 in the initiator network adapter 120 converts each write-type data response packet into a standard data response to the read request. Upon transmitting the last write-type data response packet in this series, the translation intelligence 148 in the target network adapter 122 clears its stored information regarding this request and response transaction. The target network adapter 122 relinquishes control of the communication fabric to allow other network adapters 120, and 126-142 to issue their transactions after each response packets is transmitted. The translation intelligence 124 in the initiator network adapter 120 checks for the last/final packet annotation in the response packets. Upon converting the last write-type data responses in this series, the translation intelligence 124 in the initiator network adapter 120 clears its stored information regarding this transaction. The initiator network adapter 120 communicates the multiple data responses to the initial read requests across the first signal interface 146 to the initiating IP core 102. Thus, the shared interconnect 144 with intelligent network adapters 102-142 may use a set of extensions with the write-type request and response packets to facilitate accelerated burst performance for multimedia and computing initiator cores. In an embodiment, the communication fabric with intelligent network adapters 102-142 implements the higher level protocol that has the ability to enhance the burst read capabilities for target cores with long and/or variable latencies. The communication fabric with intelligent network adapters 102-142 accomplishes this task by converting most read transactions from initiator IP cores from multiple transactions into a single write-type transaction. The write-type transaction carries the read request information from the initiator IP core to the target IP core. Also, one or more write transactions carry read response packets and data from the target IP core back to the initiator core. Thus, the communication fabric with intelligent network adapters 102-142 may convert a Read access into an implicit Write back to the source to improve efficiency of access to targets with long or variable latency such as Dynamic RAM-based memory subsystems. The communication fabric with intelligent network adapters 102-142 may be a configurable, scalable System On a Chip inter-block communication system. The interconnect 144 with intelligent network adapters 102-142 decouples IP cores from each other in the system. This enables IP cores to be independently designed and reused without redesign. The network adapters 102-142 are mated to an IP core to provide a decoupling of core functionality from inter-core communications. The single request may also have annotations indicating the width of the data bus of the initiator, which corresponds to represent the unit size of the requests. The translation logic being configured to detect and decode a width of the data bus communicated in a request allows IP cores that vary in width to connect to same communication fabric with annotations that show the data bus width of the requesting device. For example, an on chip processor may have a port with data width of 64 bits wide. The on-chip processor may send a burst request for multiple responses to a memory that has a port with data width of 128 bits wide. The 128 bits wide memory may send half the number of requests from what the initiator thinks it needs at twice data bandwidth. The translation logic knows data width of the target and detects the data bandwidth of the requesting device from the annotation in the request. The translation logic performs a data width conversion to communicate the unit size of the request. The unit size of a burst length from an initiator may be in bytes or words of predefined width. The high-level hardware protocol converts the series of one or more requests from an initiator to a single read or write request carrying in-band information fully describing the burst and the response routing. The single request may carry in-band information fully describing the burst and the response routing. If the address sequence represented by the burst type is determined to be non-incrementing, additional attributes of the specific burst type may be annotated to the request. FIG. 2 illustrates an embodiment of an example pipe-lined arbitration process without blocking or polling for solicited responses. The interconnect with intelligent network adapters may be non-blocking. A first initiator network adapter may win access to the shared resource, such as the interconnect, on a first clock cycle of the communication fabric 260. The first initiator network adapter may send a request with command and address annotations across that communication fabric on a second clock cycle of the communication fabric 262. The second initiator network adapter may also win access to the communication fabric on the second clock cycle of the communication fabric 262. The second initiator network adapter may send a request with command and address annotations across that communication fabric on a third clock cycle of the communication fabric 264. The first initiator network adapter may again win access to the communication fabric on a third clock cycle of the communication fabric 264. The first initiator network adapter may send another request with command and address annotations across that communication fabric 264 on a fourth clock cycle of the communication fabric 266. On a fifth clock cycle 268, a response to the second request has been generated. The response has become available. The second target network adapter may win access to the shared resource. On a sixth clock cycle 270, a response to the second request may be transmitted across that shared resource. Also on a sixth clock cycle 270, a response to the first request has been generated and a first target network adapter may win access to the shared resource. On a seventh clock cycle 272, a response to the first request may be transmitted across that shared resource. Thus, an initiating core may issue two or more requests prior to receiving a response to the first request because the request is processed in a non-blocking pipeline process. The first network adapter issued requests on the second clock cycle 262 and the fourth clock cycle 264. The second communication fabric clock cycle 262 started a delay period in communication fabric clock cycles to when the data responses to the read request would be generated. The target then arbitrates for use of the communication fabric when the responses are available. The initiator does not poll, i.e. generate status checks transmitted across the communication fabric, to check on the status of the availability of the response. Thus, the initiating core may issue two or more requests prior to receiving a response to the first request and does not need to block the communication fabric waiting for a transmission of the one or more responses. As discussed, the interconnect with intelligent network adapters may be a non-blocking interconnect architecture using a higher level split-transaction protocol to communicate between subsystems on the chip. The arbitration process to deliver the data response is separated from the arbitration process to send the read request. A read transaction is initiated by transmitting the annotated read request to all other network adapters connected to the interconnect. The issuing network adapter then relinquishes control of the interconnect, allowing other network adapters to issue their transactions. When the data is available, the target network adapter supplying the data, typically memory, arbitrates for the interconnect, and then transmits the data along with the initiators address and transaction ID so that the original issuer can match the data with the particular request. The interconnect is non-blocking because the issuing network adapter relinquishes control of the interconnect to allow other network adapters to issue their transactions. The non-blocking transaction protocol enables multiple individual initiator-target transactions to occur concurrently across the interconnect structure. The protocol allows each network adapter to have up to multiple transactions in progress at one time. Referring to FIG. 1, in an embodiment, all of the request packet transfers over the interconnect 144 with intelligent network adapters 102-142 can be memory-mapped. Unique address spaces may be assigned to all target network adapters. Up to four non-overlapping address spaces can be assigned to each target network adapter. A System Address Map configured by a user in the Address Map pane of Intellectual Property generator tool can be implemented as a distributed collection of address match registers located inside the corresponding target network adapters. Each address match register corresponds to a target address space. This helps initiating network adapters determine whether a transaction addresses a target region defined in the target network adapter and is capable of receiving and processing request packet transactions. In an embodiment, the internal packet format between network adapters may be as follows. Each request packet has a packet header. This header contains information carried as in-band request qualifiers. Each response packet has its header carried as in-band request qualifiers; all data fields associated with response packets contain the actually requested read data for the overall transaction, except in the case of errors. All packet headers in the protocol may be constructed having defined fields in the header part of the packet. The packet header may contain various field entries such as Command type, (i.e. read transaction, write transaction or WriteNonPost transaction), Burst incrementing code, Address sequence, and a ReqInfo sub-control field for additional annotations. Further, block transactions can be supported and may be treated as a series of incrementing bursts. When an initiating network adapter decodes a Write, WriteNonPost, or Read transaction with a valid incrementing burst code that addresses a target network adapter, the initiating network adapter generates the write-type request packet transaction. All request packet transactions can be issued as incrementing posted-write bursts. The incrementing burst packet header has its ReqInfo sub-fields encoded BurstLength and the initiating network adapter's address information. The protocol works together with the intelligent network adapter to define explicit uses of the ReqInfo field to support enhanced transaction options. In addition to the capabilities of the legacy initiator network adapter, the initiator bridge module with translation intelligence 124 accelerates precise incrementing bursts of types RD, WR, and WNP with an arbitrary length between 1 and 63 OCP words, as well as block burst (2-D) transactions, which are characterized by length (width), size (height), and stride. The initiator bridge module with translation intelligence 124 also supports up to 8 bits of user-defined ReqInfo request information. Request and response packets may have some differences in their formats. The packet may have a CMD field, a burst field, an Address filed, a control field, and a data field. The request packet format assists to achieve burst acceleration and payload throughput in the interconnect 144 with intelligent network adapters 102-142 by implementation of a Single-Request/Multiple-Data (SRMD) internal transfer protocol. Request packets may be formed using a simple (posted) Write burst of one or more transfers. The address field of the first transfer in the packet specifies initiator word-aligned starting address for the transaction specified by the request packet. The lowest address bits may be determined from the ByteEn field. The packet header carries the first address and ReqInfo field. For read packets, the initiating network adapter issues a single transfer carrying the packet header. This transfer uses a LAST annotation as its burst code. For write request packets, the translation intelligence 124 propagates burst codes along with the addresses received from the initiator IP core to the target network adapter. The target network adapter may ignore these later addresses, and simply use a local address sequencer to generate the appropriate target protocol addresses. The initiator bridge module with translation intelligence 124 annotates most of the request packet header via its ReqInfo output to the initiating network adapter. The user ReqInfo field may be located after the header fields and/or in the data field. The width of the ReqInfo field can be user-programmable. If a new transaction request of an initiating network adapter is addressing a target network adapter, it can be remapped to a pseudo-SRMD transaction with the request format described above. The response packet format may differ from the request packet. The Response Packet Format may have a CMD field, an address field, a burst field that also indicates the Last response in this series, a control Reqinfo field, and a data field. The response packet format uses a few bits of the ReqInfo field to transmit its header. The MData field may be annotated as a “don't care” on all non-posted write responses as well as on read error responses, and should be set to 0. For successful reads, the MData field carries the read data. The address field can be composed of a fixed field which identifies the response packet address region where initiating the network adapter is located in the address space, a response target ID, such as an initiating network adapter SBConnID, and a number of reserved bits. The ReqInfo field can also be used to transfer the value of number of responses returned from the target, and a bit indicating whether the current transfer is the LAST in a sequence of response packets to the burst read request packet. Request packets may use two low-order bits of the ReqInfo field to distinguish between direct transactions (identified as all 0's) and response packet (identified as not all 0's) transfers. For direct transactions (except where the address matches a packet response region), the operation can be essentially a bypass of the bridge logic, i.e., the request is forwarded directly to standard initiator network adapter module, and the response is forwarded directly back to the initiating OCP. For packet transactions, the initiator bridge module with translation intelligence 124 uses the result of the address decode, together with the other request fields, to construct the packet header, and to issue a request packet. The typical network adapter logic can be used to provide any required responses for posted writes, and to all but the last response to non-posted write packets. The initiator bridge module with translation intelligence 124 then waits for the response packets, if the associated request expects an explicit response. When a response packet arrives, the initiator bridge module with translation intelligence 124 extracts response information from the ReqInfo fields of the packet, and provides the response to the initiating core together with any requested read data. The target network adapter can receive both direct and packet requests. A request packet may be indicated by annotations in the command field in the ReqInfo header arriving with the request packet. The target bridge module with translation intelligence 148 interprets this packet header, and then issues the appropriate protocol request via the target core interface. Each target bridge module with translation intelligence 148 is capable of propagating/generating all types of legal bursts, regardless of the capabilities of the attached target, to ensure maximum interoperability. The target bridge module with translation intelligence 148 passes responses to direct requests through to the normal response path and generates response packets in response to a request packet. The header for such responses indicates the response code, and whether the response is last in a burst. The target bridge module with translation intelligence 148 routes the response packet back to the initiator bridge module with translation intelligence 124 wrapped around the requesting initiator network adapter 120. The target bridge module with translation intelligence 148 tracks the response pipeline, discarding any posted write responses, and all but the last non-posted write responses. The target bridge module with translation intelligence 148 generates response packets for the read responses and the last non-posted write response. The header for such responses indicates the response code, and whether the response is last in a burst. The target bridge module with translation intelligence 148 creates the response address by concatenating some user-defined upper address bits (that map the transfer into reserved spaces in the direct address map) together with the SBConnID of the request. This routes the response packet back to the initiating network adapter. Any read data associated with the response is transported as write data via the Mdata field. The translation intelligence 124 may have additional logic to detect for a series of incrementing burst transactions indicated as a block transaction. The request generated for the block transaction includes annotations indicating that multiple read requests in this burst are coming from this same initiator and are going to related addresses in a single target. The annotations also include 1) a length of the row, occupied by a target data, 2) a number of rows occupied by the target data, and 3) an address spacing between two consecutive rows occupied by the target data. FIG. 4a illustrates an example block transaction request packet for a two-dimensional data object. The block transaction request packet 472 may have many sub fields in the header portion of the packet. The block transaction request packet may contain a command field 474, an address field 476, a block burst indicating field 478, a burst sequence field 480, a burst block length field 482, a burst block size field 484, a burst block stride field 486, as well as other similar fields. The Reqinfo field may contain the burst block field 478 through burst length field 482. The burst block size 484 and burst block size 486 may be located in the data field/payload area. The two-dimensional data may be multimedia data, imaging data, or similar data. FIG. 4b illustrates an example frame buffer to store multimedia data for display on a display device. The rows of memory cells 488 of the frame buffer may correspond to the width of the raster lines for that display device. The two-dimensional multimedia data object may occupy neighboring rows of the frame buffer corresponding to raster lines on the display device. A single request packet may be generated and communicated over the communication fabric for the block transaction for the two-dimensional data object. Referring to FIGS. 4a and 4b, the block transaction may be a request for two-dimensional data. The width 490 of the two-dimensional object can be measured in the length of the raster line. The burst block length field 482 may contain the width 490 of the two-dimensional object. The height 492 of the two-dimensional object can be measured in the number of rows of raster lines the two-dimensional object will occupy. The burst block size field 484 may contain the number of rows of raster lines 492 that the two-dimensional object will occupy. The stride 494 of the two-dimensional object can be measured in the length difference between the starting addresses of two consecutive raster lines. The burst block stride field 486 may contain the stride 494 of the two-dimensional object. The translation intelligence has logic to convert, if a block transaction annotation is detected, the block transaction to the single read or write request packet with annotations in a Reqinfo field of the request to indicate 1) how many read requests were combined, 2) the addresses associated with each read request, 3) the length of the raster line occupied by a target data, 4) the number of rows of raster lines occupied by the target data, and 5) the length difference between the starting addresses of two consecutive raster lines occupied by the target data. In an embodiment, the fields of the Request Packet Header may have parameters such as a Burst Length 482 with a range of Range: 1-63, BurstBlock Size 484 of the block burst indicating the number of rows, BurstBlock Stride 486 indicating the start-to-start spacing of block bursts, and the Initiator information. Thus, the translation intelligence in the initiator network adapter converts the N number of read requests in the incrementing burst transaction to a single write-type request packet with annotations in a control field of the request packet to indicate how many read requests were combined, such as a burst block, the addresses associated with each read request, such as a burst sequence, the length of a raster line the 2D object occupies, the number of raster lines the 2D object will occupy, such as a raster height dimension, and the length difference between raster lines, such as a stride. In an embodiment, the two-dimensional block transaction can be defined as an aggregate transaction of BurstBlockSize incrementing Read or Write burst transactions of equal length (MBurstLength), with a constant stride (BurstBlockStride) between the starting addresses of consecutive member burst transactions. BurstBlockSize represents the number of member burst transactions (rows). BurstBlockStride is measured in ip.data_wdth words. Referring to FIG. 1, in an embodiment, the interconnect 144 with intelligent network adapters 102-142 manages to more effectively move the high frame rate video, 3D graphics, and 2D still image data streams found in multimedia applications. The performance of multimedia SOCs can depend on efficiently streaming large amounts of variable data through the device and to and from its single external DRAM memory. The interconnect 144 with intelligent network adapters 102-142 may concurrently handle multiple asymmetrical and variable length data flows at the maximum throughput of the memory channel with an aggregate bandwidth of, for example, up to 4 Gigabyte/second. Configurable levels of QoS (quality of service) enable tailoring of data channel characteristics to meet application-specific performance requirements. The 2D block transaction feature accelerates memory access to fundamental data structures used in video and graphics applications. As a result of these new features the interconnect 144 with intelligent network adapters 102-142 may deliver a sustained level, for example, of 90 percent interconnect utilization in the extremely demanding traffic conditions created by multiple image-based data flows between the multimedia SOC and its memory subsystem. Media and consumer-video SOC chips, for example, have to move multiple streams of data from place to place at high speed. The interconnect 144 with intelligent network adapters 102-142 may be well suited to maintain all that bandwidth, with MPEG video going here, DSP streams going there, and so on. Consumer Digital Multimedia Convergence (CDMC) applications have a large reliance upon the ability to efficiently move two-dimensional graphics, image, and/or video data between processing engines and memory (principally some form of DRAM). The protocol has defined user extension capabilities that can be used to capture 2D-related transaction information in the optional control field known as ReqInfo. The interconnect 144 with intelligent network adapters 102-142 will have an option to be configured to support a defined use of these extension fields to explicitly capture 2D transactions, and will thereby support efficient bridging between 2D-capable initiators and non-2D targets. As discussed, a block transaction may be simply a chained set of incrementing bursts. The BurstBlockSize (Y-count) parameter determines the number of such bursts (rows) in the set. The BurstBlockStride parameter specifies the distance (spacing) between the starting addresses of two consecutive rows in the physical memory. The main implications of block transaction's are related to the fact that this operation requires a set of “holding” registers saving the member burst (row) length (X-count), the starting address of the previous row, and another counter (Y-counter) that counts the number of rows. At the beginning of a block transaction the X-count Holding Register is loaded with the RBurstLength value, and the Address Holding Register is loaded with the value of RAddr. Upon arrival of the Data phase of the Packet Header transfer the RBurstBlockSize (Y-count) and the RBurstBlockStride registers are initialized. When the X-counter reaches one, it is reloaded with it's original value from it's holding register, while the starting address of the next burst is loaded with the sum of the previous starting address held in it's holding register and the RBurstBlockStride register. A block transaction is considered completed when both the X and the Y counters are done. At the IP OCP, a block transaction can be composed of BurstBlockSize legal OCP 2.4 bursts. This implies that the Burst field has to contain valid incrementing OCP burst codes with a LAST in the Burst field of the last transfer of every member transaction (row). It is then legal for the initiator to issue both read and write block transactions. FIGS. 3a through 3d illustrate a flow diagram of an embodiment of a request packet and response packet transaction over a shared resource. In block 302, the initiator Intellectual Property (IP) core generates a read request containing a piece of information that communicates that N number read requests in this burst that are coming from this same initiator and are going to related addresses in a single target IP core. The pieces of information may also communicate that the multiple read requests are for a block transaction such as two-dimensional multimedia data request. The Initiator IP core may also generate the multiple read request with several more pieces of information including a command type, an address, a burst length, a length, a height of the read request, and a stride of the read request. In block 304, the initiator IP core communicates the multiple read requests across a signal interface to an initiator network adapter connected to a shared resource, such as an interconnect. Two or more network adapters connected to the communication fabric may form a distributed arbitration mechanism for access to the shared resource. In block 306, the translation intelligence in the initiator network adapter detects for the presence of the additional pieces of information in the read request. If detected, the initiator network adapter and the target network adapter communicate requests and responses to each other through special write type request packets and response packets with annotations added to these packets. If not detected, responses and requests are processed as a direct transaction through the normal request and response protocol path. Also, if the address of the target is not indicated as capable of decoding a single request packet, then processing the responses and requests as a direct transaction through the normal request and response protocol path. The translation intelligence/logic may implement a higher level protocol layered on top of an underlining protocol and the communication fabric. In block 308, the translation intelligence in the initiator network adapter converts the multiple read requests to a single write-type request packet with annotations in the data field of the write request to indicate how many read requests were combined, such as a burst length, and the addresses associated with each read request, such as a burst address sequence. If the multiple read request indicated a non-incrementing address burst block transaction, the single request packet may also include a length of a row occupied by a target data, a number of rows occupied by the target data, and a length difference between starting addresses of two consecutive rows occupied by the target data. If the block transaction is for two-dimensional data then the single request packet also includes 1) a width of the two-dimensional object measured in the length of the row, 2) a height of the two-dimensional object measured in the number of rows the two-dimensional object will occupy, and 3) a stride of the two-dimensional object is measured in the length difference between the starting addresses of two consecutive rows. In block 310, the initiator network adapter gains access to the communication fabric by winning a round of arbitration. In block 312, the initiator network adapter transmits this single write-type request packet with annotations over the communication fabric. The underlining protocol of the initiator network adapter transmits this single request packet with annotations. The initiator network adapter may transmit the request packet in a non-blocking manner and issue additional requests prior to receiving the responses to the initial request. In block 314, the initiator network adapter relinquishes control of the communication fabric to allow other network adapters to issue their transactions. In block 316, the translation intelligence in the target network adapter receives the single request packet with annotations and detects for the annotations. In block 318, the translation intelligence in the target network adapter converts the single request packet into the original multiple read requests, each read request with its original start address. The translation intelligence in the target network adapter decodes the single write request and stores both the initiator's address, such as a con ID, and the number of read requests in this series that were combined into this single write request. In block 320, the target network adapter transmits the converted multiple read requests across a signal interface to the target IP core. In block 322, the target IP core generates responses to the original number of read requests, each response carrying data in bit words. In block 324, the initiator network adapter does not need to check on the status of the target IP core generation of responses to the number of read requests. When the responses are available, they will be communicated from the target IP core. In block 326, the target IP core communicates the multiple responses to the read request across a signal interface to the target network adapter connected to the shared resource. In block 328, the translation intelligence in the target network adapter receives the data responses and determines if these are responses to the single request packet. In block 330, if these are responses to the single request packet, the translation intelligence in the target network adapter converts each response to the read request into the special write type response packets. The target network adapter generates the address in the address field of the response packet by using the stored address of the original initiator's address, such as a con ID, in the translation intelligence. The translation intelligence in the target network adapter notes the number of response packets in this series sent back to the initiator network adapter. The target network adapter annotates the last response packet in this series as the last/final packet in a control field such as the Reqinfo field. If these are not responses associated with the single request packet, then process the response as a direct transaction through the normal response path. In block 332, the target network adapter gains access to the communication fabric by winning a round of arbitration. In block 334, the target network adapter transmits the multiple write type data response packets with annotations over the shared resource. In block 336, the translation intelligence in the initiator network adapter receives the response packets and detects for the presence of the annotations indicating that these are response packets that correspond to the single request packet. In block 338, the translation intelligence in the initiator network adapter converts each write-type data response packet into a standard data response corresponding to the original read requests with the initiator's address as the destination address. In block 340, upon transmitting the last write type data responses in this series, the translation intelligence in the target network adapter clears its stored information regarding this transaction. The target network adapter also relinquishes control of the communication fabric to allow other network adapters to issue their transactions. In block 342, the translation intelligence in the initiator network adapter checks for the last/final packet annotation in the response packets. Upon converting the last write-type response packet in this series, the translation intelligence in the initiator network adapter clears its stored information regarding this transaction. In block 344, the initiator network adapter communicates the multiple data responses to the original burst read requests across the signal interface to the initiating IP core. FIG. 5 illustrates an example conversion of multiple read requests into a single request packet and the associated responses. In block 502, the initiator sends multiple read requests indicating that this is a burst transaction. In block 504, the first instance of the translation logic converts the multiple request to a single write request with annotations in a control field and a data field of the write request to indicate how many read requests were combined into the write request and an address sequence associated with a burst transaction. In block 506, the underlining protocol transmits the single write request over the communication fabric. In block 508, the second instance of translation logic converts the single write request into an original number of read requests, where each read request has its original target address. The second instance of translation logic also performs a data width conversion of the number of original requests from the initiator to match the data width capability of the target. In block 510, the target generates the responses. The target communicates the number of responses to the second instance of translation logic as the number of responses become available. In block 508, the second instance of translation logic makes some annotations to the write responses and transmits them over the communication fabric. In block 504, the first instance of translation logic converts the write responses into data responses and communicates the multiple responses to the initiator. FIG. 6 illustrates an example conversion of a burst transaction for two-dimensional data converted into a single request packet and the associated responses. FIG. 6 operates similar to the process described in FIG. 5. The read request in FIG. 6 contain additional information such as a number of rows occupied by the target data, and a length difference between starting addresses of two consecutive rows occupied by the target data. In an embodiment, an example communication fabric with translation intelligence may be implemented in the following environment. In the Consumer Digital Multimedia Convergence market a number of portable digital multimedia devices are appearing in the consumer market that have technical requirements that in most ways mirror those for the wireless market. Some others (digital video camcorders, portable DVD players, etc . . . ) have technical requirements that are still closer to the main-stream multimedia devices, yet with much higher emphasis on power and size. Some other sub-markets in CONSUMER DIGITAL MULTIMEDIA include High-Definition digital set top boxes, which increasingly are morphing into generalized Residential Gateways and Home Servers, as well as High-Definition digital television devices, which, in turn, increasingly raise their feature and performance requirements closer to the ones normally associated with the DSTB. Real time processing of video frames may consume most of the processing capability in a SOC. Video frames are generally too large to be kept memory resident inside an SOC. Thus they are stored externally in the densest form of memory. The processing of video frames requires multiple steps, several of which are most often performed by dedicated hardware processing units. As a result, the multimedia SOC architecture can be controlled by the need to transport massive amounts of data in either small or large chunks (depending on a particular implementation) between multiple internal processing elements and external DRAM, and by the need to keep those processing elements busy working in parallel most of the time. This application requirement affects communication fabrics in several ways. First, bandwidth guarantees become valuable. Second, effective interface and sharing of external memory is valuable. The external memory may dictate the clock and data rates that must be supported. The communication fabric should be efficient at handling the external memory's asymmetric latency characteristics. The protocol implemented by the communication fabric can aid in efficient management of the external memory. Some data block sizes are larger than for computing applications, while some implementation of MPEG-2 decoders and encoders require efficient support of extremely small data blocks. The increasing utilization of Media Processors for Graphics, Audio, and other multimedia applications result in some degree of morphing between multimedia and computing requirements with a detrimental affect on the more traditional multimedia traffic patterns. As SOC designs evolve into Residential Gateway and Home Server functions they take on even more of the attributes of compute type applications. The communication fabric should have techniques for exploitation of long bursts and 2D characteristics of some multimedia flows. Some multimedia applications may have 10 to 20 initiators, and very few targets (often one or two DRAM subsystems and a peripheral interconnect). It may be assumed that one of the targets is the head of a low performance peripheral interconnect (Synapse 3220) for access to control ports on the initiators and low-bandwidth peripheral devices. All but one or two of the initiators could be bandwidth sensitive. Often these initiators may have multiple concurrent internal activities, so multi-threaded (4 to 8) interfaces can be more common in this space than in most others. The ultimate sources and destinations of the audio and video data may be external interfaces. Very often these interfaces have clock rates that are dictated by interface standards. The set of them that must be supported typically has a lot of asynchronicity. This application requirement directly impacts the interconnect requirements by putting a premium on effective clock decoupling. In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense. For example, the information representing the apparatuses and/or methods may be contained in an Instance, soft instructions in an IP generator, or similar machine-readable medium storing this information. A machine-readable medium includes any mechanism that provides (e.g., stores and/or transmits) information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; DVD's, electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, Electrically Programmable ROMs, Electrically Erasable PROMs, FLASH memory, magnetic or optical cards, or any type of media suitable for storing electronic instructions. The information representing the apparatuses and/or methods stored on the machine-readable medium may be used in the process of creating the apparatuses and/or methods described herein. The IP generator may be used for making highly configurable, scalable System On a Chip inter-block communication system that integrally manages data, control, debug and test flows, as well as other applications. In an embodiment, an example intellectual property generator may comprise the following: a graphic user interface; a common set of processing elements; and a library of files containing design elements such as circuits, control logic, and cell arrays that define the intellectual property generator. The instructions and operations also may be practiced in distributed computing environments where the machine-readable media is stored on and/or executed by more than one computer system. In addition, the information transferred between computer systems may either be pulled or pushed across the communication media connecting the computer systems. While some specific embodiments of the invention have been shown, the invention is not to be limited to these embodiments. For example, the higher layer protocol may communicate a single write request or a single read request over the communication fabric to solicit either multiple data responses or multiple data writes from a target. The invention is to be understood as not limited by the specific embodiments described herein, but only by scope of the appended claims.
<SOH> BACKGROUND <EOH>In classical bus-based architectures, communications between on-chip cores use a blocking protocol. Specifically, while a transfer is underway between an initiator and a target, the bus resources are not available for any other transfers to occur. Some on-chip interconnect architectures incorporate the use of pipelined polling protocol that alleviates the main inadequacy of a blocking protocol, yet still losing efficiency when communicating with targets with high and unpredictable latency. For example, when an Intellectual Property (IP) core issues a read request to an on-chip SRAM device with predictable short latency, the response may be guaranteed to become available on the bus during the first attempt by the initiator to accept it. When an IP core issues a read request to an off-chip DRAM device with unpredictable and often high latency, multiple accesses to the bus may be required before the response becomes available to be accepted by the requesting entity. Each such access to the bus results in wasted cycles that ultimately degrade the overall bandwidth and efficiency of the system.
<SOH> SUMMARY <EOH>Embodiments of apparatuses, systems, and methods are described for communicating information between functional blocks of a system across a communication fabric. The communication fabric implements either 1) a protocol that blocks the communications fabric during a time between transmission of a request and a transmission of an associated response, 2) a protocol that polls a responding block to solicit a response to an issued request, or 3) a protocol that only transfers data in the same direction as requests across the communication fabric. Translation logic couples to the communication fabric. The translation logic implements a higher level protocol layered on top of an underlining protocol and the communication fabric. The translation logic converts one initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric. The translation logic converts the initiator transaction into two or more write transactions and then transmits the write transactions using the underlining protocol of the communication fabric so that the communication fabric does not block or poll for responses, and that data may be transferred in a direction opposite from the initiator transaction request. Other features and advantages of the present invention will be apparent from the accompanying drawings and the detailed description that follows.
20041102
20071002
20060504
67999.0
G06F1336
3
CERULLO, JEREMY S
METHODS AND APPARATUSES FOR DECOUPLING A REQUEST FROM ONE OR MORE SOLICITED RESPONSES
UNDISCOUNTED
0
ACCEPTED
G06F
2,004
10,980,818
ACCEPTED
Once daily dosage forms of trospium
A pharmaceutical composition of a pharmaceutically acceptable trospium salt, with upon administration to a human patient generates an average steady state blood levels of trospium with a minimum (Cmin) and maximum (Cmax) blood levels of about 0.5-2.5 ng/ml and about 2.0-6.0 ng/ml, respectively.
1. An oral pharmaceutical composition containing trospium, which at a once-daily dosage will give steady state blood levels of trospium of a minimum of about 0.5 ng/ml and a maximum of about 6.0 ng/ml. 2. The composition of claim 1, which at a once-daily dosage will at steady state give minimum blood levels (Cmin) of trospium of between about 0.5 and about 1.5 ng/ml, and maximum blood levels (Cmax) of between about 2.0 and about 6.0 ng/ml. 3. The composition of claim 2, wherein the steady state blood levels are between about 1.0 ng/ml and about 5.0 ng/ml. 4. The composition of claim 1, wherein between 25 mg and 80 mg trospium chloride is present. 5. The composition of claim 1, which comprises an immediate release component containing no more than about 20 mg trospium chloride. 6. The composition of claim 1, which comprises an extended release component containing between about 25 and about 60 mg trospium chloride. 7. The composition of claim 1, which comprises a delayed release component containing between about 25 and about 80 mg trospium chloride. 8. The composition of claim 1, which is a combination of an IR trospium chloride component and a DR trospium chloride component. 9. The composition of claim 8, wherein the IR component contains no more than about 20 mg trospium chloride and wherein the total dose of trospium chloride is less than about 80 mg. 10. The composition of claim 1, which is a combination of an XR trospium chloride component and a DR trospium chloride component. 11. The composition of claim 10, wherein the XR component contains between about 10 to about 40 mg trospium chloride and the DR component contains between about 10 mg and about 40 mg trospium chloride. 12. The composition of claim 11, wherein the XR component contains about 30 mg trospium chloride and the DR component contains about 30 mg trospium chloride. 13. The composition of claim 1, which is a combination of an IR trospium chloride component and an XR trospium chloride component. 14. The composition of claim 13, wherein the IR component contains no more than about 20 mg and the XR component contains about 20 mg to about 60 mg trospium chloride. 15. The composition of claim 14, wherein the XR component contains about 20 mg to about 40 mg trospium chloride. 16. The composition of claim 1, which is a combination of an IR trospium chloride component, an XR trospium chloride component, and a DR trospium component. 17. The composition of claim 16, wherein the IR component contains no more than about 20 mg trospium chloride, and the XR and DR components combined contain between about 10 mg and 60 mg trospium chloride and are in a ratio of XR:DR of 1:10 to 10:1. 18. The composition of claim 1, which is in the form of a granule, tablet, pellet, powder, sachet, capsule, gel, dispersion, solution or suspension. 19. The composition of claim 1, which is in the form of pellets contained within a capsule. 20. The composition of claim 1, which is in the form of pellets that are compressed into a tablet. 21. The composition of any of claims 8, 10, 13, or 16, which is a layered tablet, wherein each layer contains one of the components. 22. The composition of any of claims 8, 10, 13, or 16, which is a layered pellet, wherein the DR and/or XR portion comprises the core of the pellet, and the IR portion surrounds the core. 23. A method for treating a urinary incontinence disease or condition in a mammal, comprising administering a daily dose of a trospium composition according to claim 1 to the mammal, for at least a time sufficient to ameliorate the disease or condition. 24-29. (canceled) 30. The method of claim 23, which composition is a combination of an IR trospium chloride component and a DR trospium chloride component. 31. (canceled) 32. The method of claim 23, which composition is a combination of an XR trospium chloride component and a DR trospium chloride component. 33-34. (canceled) 35. The method of claim 23, which composition is a combination of an IR trospium chloride component and an XR trospium chloride component. 36-37. (canceled) 38. The method of claim 23, which composition is a combination of an IR trospium chloride component, an XR trospium chloride component, and a DR trospium component. 39. (canceled) 40. A process for preparing an immediate release pharmaceutical composition containing trospium, comprising spraying onto an inert core a drug solution containing trospium chloride to thereby form a layer of drug on the core. 41. The process of claim 40, wherein a binder and anti-tacking agents are also in the drug solution. 42. The process of claim 40, which further comprises applying a protective coat of a polymeric composition to the drug-layered core. 43. A process for preparing an extended release composition of trospium chloride, comprising obtaining a drug layered core or drug loaded granule, and applying a coat on said core or granule of a release controlling polymer. 44. A process for the preparation of a delayed release trospium chloride composition, comprising obtaining a drug layered core or drug loaded granule, and applying a coat on said core or granule of an enteric material. 45. A process for preparing a once daily dosage unit of trospium chloride, which will give steady state blood levels of trospium of a minimum of about 0.5 ng/ml and a maximum of about 6.0 ng/ml, comprising combining immediate release pellets containing no more than about 20 mg trospium chloride with XR pellets containing about 20 mg to about 60 mg trospium chloride into a capsule. 46. The process of claim 45, wherein the XR pellets contain between about 20 mg and about 40 mg trospium chloride. 47. A process for preparing a once daily dosage unit of trospium chloride according to claim 1, comprising combining immediate release pellets containing no more than about 20 mg trospium chloride with DR pellets, such that the total dose of the combination is less than about 80 mg., into a capsule. 48. A process for preparing a once daily dosage unit of trospium chloride according to claim 1, comprising combining extended release pellets containing betweeen about 10 and 40 mg trospium chloride with DR pellets containing between about 10 and 40 mg into a capsule. 49-50. (canceled) 51. The composition of claim 7, wherein about 35 mg of trospium are present, and the DR component is coated with a polymeric substance that will dissolve at pH 5.5-6.0. 52. The composition of 15, wherein the release controlling coating gives a 3.5 hour in vivo release profile. 53. The composition of claim 14, wherein the XR component contains about 50 mg trospium chloride, and the release controlling coating gives a 4.5 hour in vivo release profile. 54. A pharmaceutical composition suitable for a once-a-day administration of trospium chloride comprising a plurality of solid, trospium chloride-bearing particulates, said plurality being of an extended release, a delayed release, or a combination thereof or a combination of either with immediate release particulates, such that once-a-day administration of said pharmaceutical composition provides steady state blood levels of trospium that are substantially equivalent to steady state blood levels of trospium achieved with twice daily administration of 20 mg immediate release trospium chloride tablets. 55. The composition of claim 54, in which once-a-day administration of said controlled release pharmaceutical composition provides steady state blood levels of trospium falling in the range of about 0.5 ng/ml to about 6.0 ng/ml. 56. (canceled) 57. The composition of claim 55, in which once-a-day administration of said controlled release pharmaceutical composition provides steady state blood Cmax levels of trospium falling in the range of about 2.5 ng/ml to about 4.5 ng/ml and Cmin levels of trospium falling in the range of about 0.5 ng/ml to about 1.5 ng/ml. 58. The composition of claim 55, in which once-a-day administration of said controlled release pharmaceutical composition provides steady state areas under the curve (AUCs) falling in the range of about 30 to about 60 ng/ml*hr. 59. The composition of claim 58, in which once-a-day administration of said controlled release pharmaceutical composition provides steady state areas under the curve falling in the range of about 35 to about 45 ng/ml*hr. 60. The composition of claim 54, in which once-a-day administration of said controlled release pharmaceutical composition provides single dose % F values falling in the range of about 80 to about 120. 61. The composition of claim 60 in which once-a-day administration of said controlled release pharmaceutical composition provides single dose % F values falling in the range of about 90 to about 110. 62. The composition of claim 54, in which said plurality of particulates are selected from delayed release or extended release, each alone or in combination, or each alone or in combination with an immediate release particulate. 63. The composition of claim 62, in which the particulates are all of a delayed release formulation. 64. The composition of claim 62, in which the particulates are all of an extended release formulation that allows release of about 80% trospium chloride at 3.5 hours post ingestion. 65. The composition of claim 62, in which the particulates are all of an extended release formulation that allows release of about 80% trospium chloride at 4.5 hours post ingestion. 66. The composition of claim 62, which comprises particulates of an extended release formulation that allows release of about 80% trospium chloride at 3.5 hours post ingestion, and delayed release particulates. 67. The composition of claim 66, wherein the delayed release particulates are ones that release trospium chloride when they reach the area of the GI tract where the pH is about 7. 68. A method of treating a mammal suffering from a condition that would benefit from a once daily administration of an effective amount of trospium chloride, comprising administering to a mammal in need thereof a once-a-day formulation comprising an effective amount of trospium chloride which provides steady state blood levels of trospium substantially equivalent to steady state blood levels of trospium achieved with twice daily administration of 20 mg immediate release trospium chloride tablets and with a lessening of side effects. 69. A once-daily dosage form of trospium chloride, which results in a single dose profile that is equivalent to the corresponding twice-daily regimen. 70. The dosage form of claim 69, wherein the corresponding twice-daily regimen amounts to 40 mg per day. 71. The dosage form of claim 70, wherein the corresponding twice-daily regimen amounts to 20 mg per day. 72. The dosage form of claim 71, wherein the corresponding twice-daily regimen amounts to 80 mg per day. 73. A method of enteral administration of a pharmaceutical composition comprising an effective amount of trospium chloride, the improvement comprising including a delayed release formulation of trospium chloride, which releases trospium chloride at a pH of about 7.0. 74. A method of enteral administration of a pharmaceutical composition comprising an effective amount of trospium chloride, the improvement comprising including a delayed release formulation of trospium chloride, which releases trospium chloride in the lower intestine. 75. A method of enteral administration of a pharmaceutical composition comprising an effective amount of trospium chloride, the improvement comprising including a delayed release formulation of trospium chloride, which releases trospium chloride in the colon. 76. A pharmaceutical composition comprising trospium chloride as at least one active pharmaceutical ingredient in which at least a portion of said trospium chloride is contained in a delayed release formulation, which releases trospium chloride at a pH of about 7.0. 77. A pharmaceutical composition comprising trospium chloride as at least one active pharmaceutical ingredient in which at least a portion of said trospium chloride is contained in a delayed release formulation, which releases trospium chloride in the lower intestine, colon, or both.
FIELD OF THE INVENTION The present invention is directed to pharmaceutical compositions that allow for once daily dosage forms of trospium. Trospium is indicated in the treatment of urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and detrusor hyperreflexia. These compositions are useful in treating the afore-mentioned conditions with once-a-day administration. BACKGROUND OF THE INVENTION Trospium is a quaternary ammonium derivative of tropine, and has anticholinergic properties. The hydrophilicity of the molecule, due to its permanent positive charge, limits its lipid solubility. Trospium chloride has been shown to antagonize acetylcholine on excised strips of human bladder muscle. Antispasmodic activity has been shown in the bladder, the small intestine, and on contractility of the gall bladder. Trospium chloride exhibits parasympatholytic action by reducing smooth muscle tone, such as is found in the urogenital and gastrointestinal tracts. This mechanism enables the detrusor to relax, thus inhibiting the evacuation of the bladder. Lowering the maximum detrusor pressure results in improved adaptation of the detrusor to the contents of the bladder, which in turn leads to enhanced bladder compliance with increased bladder capacity. Trospium chloride was introduced into the market as a spasmolytic agent in 1967 (German patent 1 194 422). Trospium chloride has been available in an orally administrable, solid administration form (tablets and dragees), for intravenous or intramuscular injection as a solution, and for rectal administration as suppositories, and is primarily used for the treatment of bladder dysfunctions (urge incontinence, detrusor hyperreflexia). The product has been on the market in Germany and several other European countries for a number of years for specific therapeutic indications including urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and detrusor hyperreflexia. Currently, in the European market there is an immediate release trospium chloride tablet (Spasmo-lyt®), which is indicated for the treatment of urge incontinence and detrusor hyperreflexia and is used as a 20 mg tablet taken twice daily or bid (a total dose of 40 mg per day). In common with other quaternary ammonium compounds, orally administered trospium chloride is slowly absorbed, with the maximum blood level achieved after 5-6 hrs. The oral bioavailability is approximately 10%, and is significantly reduced with the intake of high-fat food. There are side effects associated with the use of the twice-daily trospium chloride regimen, such as dry mouth, headache, constipation, dyspepsia, and abdominal pain. These side effects are associated with a high blood concentration of trospium chloride. Moreover, studies in which a 40 mg immediate release dose was given once daily resulted in higher overall incidence of adverse events as compared to 20 mg given twice daily. A once-a-day administration of trospium is advantageous over the twice-a-day administration in terms of both patient compliance and reduced adverse events, thus providing better treatment of the conditions for which trospium chloride is indicated. In order to provide for an effective once-a-day form of trospium, there is a need for unique formulation approaches that provide the desired therapeutic effects while minimizing, if not eliminating, the undesired side effects mentioned above. This means that the minimum blood trospium concentration (Cmin) at steady state should be above the minimum therapeutically effective blood concentration and the maximum blood trospium concentration (Cmax) also at steady state should be below the maximum toxic blood concentration over the treatment period. Trospium chloride and other quaternary ammonium compounds exhibit a limited window of absorption in the human gastrointestinal tract, presenting a significant challenge to formulating a once-a-day composition. SUMMARY OF THE INVENTION It is an object of the present invention to provide a pharmaceutical composition of any pharmaceutically acceptable trospium salt, typically trospium chloride, which can be given once a day yet meet the steady state blood levels required for the treatment or prevention of diseases or conditions that would benefit from its spasmolytic activity. Such a disease or condition includes, and the present invention is primarily directed to, such bladder dysfunctions as urge incontinence or detrusor hyperreflexia, nocturia, and urinary frequency. Such once-daily compositions of a trospium salt are targeted to result in average steady state blood levels of trospium with a minimum (Cmin) and maximum (Cmax) blood levels of about 0.5-2.5 ng/ml and about 2.0-6.0 ng/ml, respectively, which blood levels have been shown to be safe and effective. Steady state blood levels preferably average between a Cmin of about 0.75 ng/ml and a Cmax of about 5.0 ng/ml, for dosage forms of the present invention that correspond to a 20 mg bid regimen. In one aspect of the invention an extended release (XR) pharmaceutical composition is provided, which contains between about 25 mg and about 60 mg trospium chloride for once-a-day or qd administration, and which is characterized by having the following in vitro release profile in phosphate buffer (pH 7.5) dissolution medium: about 0-40% released in about 1 hour, about 20-85% released in about 4 hours and greater than 70% released in about 12 hours. In yet another aspect of this invention a delayed release (DR) pharmaceutical composition is provided, which contains between about 25 mg and about 80 mg trospium chloride for once-a-day or qd administration, depending on the length of the lag phase. The in vivo delay in the release can be tailored to a particular application, but generally is from about 0.5 hour to about 6 hours, more preferably from about 2.5 hours to about 5 hours, during which time there should minimal, if any, detectable trospium in the blood. The in vitro release profile of such a formulation is generally characterized by having less than about 10% released in acidic media within 2 hours and more than about 80% released in buffer media of pH 6.8 and higher within 1 hour. In still another aspect of the present invention an immediate release (IR) composition is provided, which contains no more than about 20 mg active drug, combined with a delayed release composition that is designed to dissolve at a pH of about 7.0 (i.e., in the lower part of the GI tract), such as the DR2 composition of the examples, to form a single once-a-day trospium chloride formulation containing in total about 80 mg drug Another aspect of the present invention is to provide a method for treating urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and detrusor hyperreflexia with once-a-day administration of trospium chloride. Yet another aspect of the invention provides a single dosage form that allows for an additional release, or pulse, of a drug with a short half-life at about the half-life (t1/2) thereof. Such dosage forms are a significant challenge to develop when the drug is one, such as tropsium, that has a defined region of absorption in the upper GI tract, and is more poorly absorbed in the lower GI tract (i.e. the ileum area and colon). The invention is also directed to a method of enteral administration of a pharmaceutical composition comprising an effective amount of a salt of trospium (e.g., trospium chloride), in which an improvement comprises including a delayed release formulation of said salt of trospium, which releases trospium at a pH of about 7.0. In another embodiment of the invention, a method is provided for an enteral administration of a pharmaceutical composition comprising an effective amount of a trospium salt (e.g., trospium chloride), in which an improvement comprises including a delayed release formulation of said trospium salt, which releases trospium in the lower intestine, preferably in the colon. Accordingly, the invention is further directed to a pharmaceutical composition comprising a trospium salt (preferably, trospium chloride) as at least one active pharmaceutical ingredient in which at least a portion of said trospium salt is contained in a delayed release formulation, which releases trospium at a pH of about 7.0. In an alternative embodiment, the invention is still further directed to a pharmaceutical composition comprising a trospium salt (preferably, trospium chloride) as at least one active pharmaceutical ingredient in which at least a portion of said trospium salt is contained in a delayed release formulation, which releases trospium in the lower intestine, colon, or both. Finally, another aspect of the invention is to provide processes for preparing the once daily compositions of the present invention, and methods of treatment using them. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the dissolution profiles for the immediate release trospium chloride pellets in 0.1N HCl, pH 1.1. The profiles show a release that reaches completion in about 15 minutes. FIG. 2 shows the dissolution profiles for ethylcellulose coated (extended release or “XR”) trospium pellets. FIG. 3 shows the dissolution profiles for trospium chloride delayed release (“DR”) pellets. FIG. 4 shows the mean dissolution profile for 50 mg trospium chloride XR1-2 pellets. FIG. 5 shows the mean dissolution profile for 40 mg trospium chloride XR1-1 pellets. FIG. 6 shows the mean dissolution profile for 35 mg trospium chloride DR1 pellets. FIG. 7 shows the mean dissolution profile for 40 mg trospium chloride DR2 pellets. FIG. 8 shows the mean dissolution profile for 60 mg trospium chloride XR1/DR2 pellets. FIG. 9 shows the pharmacokinetic profiles of four exemplary controlled release compositions versus two immediate release products. FIG. 10 shows the same data illustrated in FIG. 4 with Formulation D removed for ease of comparison. FIG. 11 shows the steady state pharmacokinetic profiles of four trospium chloride controlled release formulations DETAILED DESCRIPTION OF THE INVENTION The present invention is primarily directed to once-daily, orally administrable forms of trospium, which due to its charged nature is usually found in the form of a salt, typically trospium chloride. Such formulations have not been previously known, most likely because trospium chloride presents challenges due to its high solubility and limited absorption window. Moreover, previous researchers have noted that due to the limited region of absorption, conventional modified release dosage forms were not thought practical. See, e.g., Schröder, S. et al. (Institute for Pharmacology, Clinical Pharmacology, University of K {overscore (I)}n and Madaus A G, Köln, Germany). However, the present inventors have discovered oral dosage forms, which can be given once a day yet meet the steady state blood levels required for the treatment or prevention of diseases or conditions that would benefit from its spasmolytic activity. The present invention is accomplished by providing an orally administered composition of trospium designed to provide certain steady state blood levels of the drug comparable to a twice-a-day regimen, preferably with some refinements, yet in formulation that requires that the mammal, preferably human, take only one dosage a day. The preferred blood level of trospium is between about 0.5 and about 6.0 ng/ml at the steady state. Preferably, the blood levels stay within the preferred blood level, with once daily dosing, for the course of treatment. More preferably, the blood levels are between about 0.5 ng/ml and 5.0 ng/ml at the steady state. In addition, more preferably, a suitable once-a-day formulation exhibits a Cmax within 80 to 120% of the average Cmax of a corresponding twice-a-day formulation (typically one 20 mg IR twice a day, but could be titrated up or down) and a Cmin between 80 and 120% of the average Cmin of said twice daily regimen. The concepts of the present invention may likewise be used to formulate controlled release compositions containing therapeutically active agents that exhibit similar solubility, limited absorption window and bioavailability characteristics as trospium. Examples of such compounds include, for instance, propantheline, emepronium, clidinium, and glycopyrrolate, which all are quaternary ammonium compounds. As used herein, “about” means within the pharmaceutically acceptable limits found in the United States Pharmacopia (USP-NF 21), 2003 Annual Edition, or available at www.usp.org, for amount of active pharmaceutical ingredients. With respect to blood levels, “about” means within FDA acceptable guidelines. The compositions of the present invention may be in the form of, among others, a granule, tablet (including matrix or osmotic), pellet, powder, sachet, capsule, gel, dispersion, solution or suspension. The only requirement is that the dosage forms be composed in such a manner as to achieve the profiles set forth herein. In vivo profiles for trospium chloride that provide the appropriate blood (or, more particularly, plasma) concentration levels over time in order to meet the therapeutic requirements for once daily administration were determined in the present invention. The method used herein for the plasma concentration determination was the liquid chromatography/mass spectrometry/mass spectrometry or LC/MS/MS method. With this technique, trospium is extracted from an aliquot of plasma using a solid phase extraction procedure. This extract is then analyzed using HPLC equipped with a mass spectrometer as a detector. These profiles are such that the mean blood trospium chloride levels provide an effective amount of the drug for the treatment of such conditions as urinary frequency, urgency, nocturia, and urge-incontinence due to detrusor instability, urge syndrome, and detrusor hyperreflexia, yet within such upper limits as to minimize the occurrence of adverse side effects typically associated with spikes in the plasma concentration that follow the multiple administration of immediate release formulations. The blood trospium chloride concentrations versus time profiles are characterized by a steady state Cmin of from about 0.5 to about 1.5 ng/ml, and a steady state Cmax of from about 2.0 to about 6.0 ng/ml. With the present invention, it was surprisingly found that once daily dosing of trospium chloride in a delayed release formulation provides the required blood profile. Moreover, it was surprisingly found that once daily dosing with a dosage unit containing a combination of immediate release and delayed components provides a desired therapeutic blood profile. Still further, it was discovered that once daily dosing of trospium chloride in an extended release preparation also provides a desired therapeutically effective blood profile. Thus, with the present invention it was found that an effective blood trospium chloride concentration at steady state could be achieved by formulating trospium chloride in several inventive ways. These dosage units are in the form of an extended release, a delayed release, or various combinations of immediate, extended and delayed release forms. Immediate Release Composition By “immediate release composition” is meant a dosage form that is formulated to release substantially all the active ingredient on administration with no enhanced, delayed or extended release effect. Such a composition for purposes of the present invention is, at least initially, in the form of a pellet (a term used interchangeably with “bead” or “beadlet” herein). The immediate release pellet can be one component of a plurality of components of a dosage form. The immediate release pellet can also serve as a precursor to an extended or delayed release pellet. The non-active ingredients and processes for preparing such immediate release pellets are well known in the art, and the present invention is not limited in these respects. See, for example, Remington's Pharmaceutical Sciences, 18th Edition, A. Gennaro, Ed., Mack Pub. Co. (Easton, Pa. 1990), Chapters 88-91, the entireties of which are hereby incorporated by reference. For instance, an immediate release pellet can be prepared by mixing the trospium salt (e.g., trospium chloride) with a bulking agent. Additionally, one can add disintegrating agents, antiadherants and glidants to the formulation. Bulking agents employable in these compositions may be chosen from, among others: microcrystalline cellulose, for example, AVICEL® (FMC Corp.) or EMCOCEL® (Mendell Inc.), which also has binder properties; dicalcium phosphate, or example, EMCOMPRESS® (Mendell Inc.); calcium sulfate, for example, COMPACTROL® (Mendell Inc.); and starches, for example, Starch 1500; and polyethylene glycols (CARBOWAX®). Such bulking agents are typically present in the range of about 5% to about 75% (w/w), with a preferred range of about 25% to about 50% (w/w). Suitable disintegrants include, but are not limited to: crosslinked sodium carboxymethyl cellulose (AC-DI-SOL®), sodium starch glycolate (EXPLOTAB® PRIMOJEL®)and crosslinked polyvinylpolypyrrolidone (Plasone-XL®). Disintegrants are used to facilitate disintegration of the pellet upon administration and are typically present in an amount of about 3% to about 15% (w/w), with a preferred range of about 5% to about 10% (w/w). Antiadherants and glidants employable in such formulations can include talc, cornstarch, silicon dioxide, sodium lauryl sulfate, colloidal silica dioxide, and metallic stearates, among others. In addition, the immediate release composition may contain one or more binders to give the pellets cohesiveness. Such binders are well known in the art, and include such substances as microcrystalline cellulose, polyvinyl pyrrolidone, starch, Maltrin, methylcellulose, hydroxypropyl methylcellulose, carboxymethyl cellulose, sucrose solution, dextrose solution, acacia, tragacanth and locust bean gum, which may be applied wet. The binding agent may be present in the composition in an amount of from about 0.2 wt % to about 20 wt %, preferably from about 5 wt % to about 15 wt %. The pellets can be made by, for example, simple granulation such as wet granulation or dry granulation, followed by sieving; extrusion and marumerization (spheronization); rotogranulation; or any agglomeration process that results in a pellet of reasonable size and robustness. For extrusion and marumerization, the drug and other additives are granulated by addition of a binder solution. The wet mass is passed through an extruder equipped with a certain size screen, and the extrudates are spheronized in a marumerizer. The resulting pellets are dried and sieved for further applications. One may also use high-shear granulation, wherein the drug and other additives are dry-mixed and then the mixture is wetted by addition of a binder solution in a high shear-granulator/mixer. The granules are kneaded after wetting by the combined actions of mixing and milling. The resulting granules or pellets are dried and sieved for further applications. Alternatively, and preferably, the immediate release beadlets or pellets are prepared by solution or suspension layering, whereby a drug solution or dispersion, with or without a binder and optionally an anti-tacking agent such as talc, is sprayed onto a core or starting seed (either prepared or a commercially available product) in a fluid bed processor or other suitable equipment. The cores or starting seeds can be, for example, sugar spheres or spheres made from microcrystalline cellulose. The binder in the formula can be present in amounts ranging from about 0% to about 5% by weight, and preferably about 0.5% to about 2% by weight. The amount of anti-tacking agent used can be from about 0% to about 5%, preferably about 0.5% to about 2% by weight. The drug thus is coated on the surface of the starting seeds. The drug may also be layered onto the drug-containing pellets described above, if desired. Following drug layering, the resulting drug-loaded.pellets are dried for further applications. A protective layer, or overcoating, may be desired to ensure that the drug-loaded pellets do not aggregate during processing or upon storage. The protective coating layer may be applied immediately outside the core, either a drug-containing core or a drug-layered core, by conventional coating techniques such as pan coating or fluid bed coating using solutions of polymers in water or suitable organic solvents or by using aqueous polymer dispersions. OPADRY®, OPADRY II® (Colorcon) and corresponding color and colorless grades from Colorcon can be used to protect the pellets from being tacky and provide colors to the product. The suggested levels of protective or color coating are from about 1% to about 6%, preferably about 2% to about 3% (w/w). Many ingredients can be incorporated into the overcoating formula, for example to provide a quicker immediate release, such as plasticizers: acetyltriethyl citrate, triethyl citrate, acetyltributyl citrate; dibutylsebacate, triacetin, polyethylene glycols, propylene glycol and the others; lubricants: talc, colloidal silica dioxide, magnesium stearate, calcium stearate, titanium dioxide, magnesium silicate, and the like. The immediate release pellets are contemplated as being used in combination with extended release pellets and/or delayed release pellets in a single dosage form. Extended Release Composition (XR) Trospium chloride extended release pellets can be prepared, for example, by coating drug layered inert pellets with release controlling polymers. First, the inert pellet is coated with the drug layer or a drug loaded granule is prepared, as described above. Then the active (drug loaded) pellet is coated with a release controlling polymeric membrane. The release controlling coating layer may be applied immediately outside the core (such as a drug-containing core or a drug-layered core), by conventional coating techniques, such as pan coating or fluid bed coating, using solutions of polymers in water or suitable organic solvents or by using aqueous polymer dispersions. As an alternative embodiment, the release controlling membrane can separate additional drug layers on the core; for instance, after coating with the release controlling substance, another drug layer can be applied, which is followed by another release controlling layer, etc. Suitable materials for the release controlling layer include EUDRAGIT® RL, EUDRAGIT® RS, cellulose derivatives such as ethylcellulose aqueous dispersions (AQUACOAT®, SURELEASE®), hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, polyvinylpyrrolidone/vinyl acetate copolymer, OPADRY®), and the like. The thickness of the coating affects the release profile, and so this parameter can be used to customize the profile. The suggested coating levels are from about 1% to about 40%, preferably about 5% to about 30% (w/w), and about 20% or about 25% as most preferred embodiments. A 20% w/w coating should release about 80% of the trospium chloride in 3.5 hours post ingestion, and a 25% w/w coating should result in the release of about 80% of the trospium chloride in 4.5 hours post-ingestion. The extended release pellets contain between about 25 and about 60 mg trospium chloride, and may be used alone, or in combination with immediate release or delayed release pellets to constitute a single daily dosage form. Delayed Release Composition (DR) The delayed-release component has a coat applied to the surface of the active pellet that delays the release of the drug from the pellet after administration for a certain period of time. This delayed release is accomplished by applying a coating of enteric materials. “Enteric materials” are polymers that are substantially insoluble in the acidic environment of the stomach, but are predominantly soluble in intestinal fluids at various specific pHs. The enteric materials are non-toxic, pharmaceutically acceptable polymers, and include, for example, cellulose acetate phthalate (CAP), hydroxypropyl methylcellulose phthalate (HPMCP), polyvinyl acetate phthalate (PVAP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), cellulose acetate trimellitate, hydroxypropyl methylcellulose succinate, cellulose acetate succinate, cellulose acetate hexahydrophthalate, cellulose propionate phthalate, copolymer of methylmethacrylic acid and methyl methacrylate, copolymer of methyl acrylate, methylmethacrylate and methacrylic acid, copolymer of methylvinyl ether and maleic anhydride (Gantrez ES series), ethyl methyacrylate-methylmethacrylate-chlorotrimethylammonium ethyl acrylate copolymer, natural resins such as zein, shellac and copal collophorium, carboxymethyl ethylcellulose, co-polymerized methacrylic acid/methacrylic acid methyl esters such as, for instance, materials known under the trade name EUDRAGIT®L12.5, L100, or EUDRAGIT®S12.5, S100, and several commercially available enteric dispersion systems (e.g., EUDRAGIT® L30D55, EUDRAGIT® FS30D, EUDRAGIT® L100-55, EUDRAGIT® S100 (Rohm Pharma), KOLLICOAT® MAE30D and 30DP (BASF), ESTACRYL® 30D (Eastman Chemical), AQUATERIC® and AQUACOAT® CPD30 (FMC)). The foregoing is a list of possible materials, but one of skill in the art would appreciate that there are other such materials that would meet the objectives of the present invention of providing for a delayed release profile including tailoring release based on the ambient pH environment, temporal considerations and other factors. These coating materials can be employed in coating the surfaces in a range of from about 1.0% (w/w) to about 50% (w/w) of the pellet composition. Preferably, these coating materials are in the range of from about 20 percent to about 40 percent (w/w). The pellets may be coated in a fluidized bed apparatus or pan coating, for example, in a conventional manner. With the enteric-coated pellets, there is no substantial release of trospium in the acidic stomach environment of below about pH 4.5. The trospium becomes available when the pH-sensitive enteric layer dissolves at a higher pH in the GI tract, after a certain delayed time, or after the unit passes through the stomach. The preferred delay time is in the range of about 0.5 to about 6 hours, but more preferable is about 0.5 to about 4 hours. More particularly, preferred DR pellets are those that are coated with Eudragit® L30D-55 (which dissolves at about pH 5.5-6.0, i.e., in the upper intestines), and others that are coated with Eudragit FS30D (which dissolves at about pH 7.0, i.e. in the lower intestine and colon). As a variation of this embodiment, the DR pellet contains layers of the trospium, separated by protective (XR) or release-controlling (DR) layers, optionally surrounded by an IR layer, which will result in a pulsed dose delivery; in other words, a combination of an IR or XR with a DR in the same pellet. Such a dosage form is made as an alternative way to meet the blood level requirements of the release profile of the present invention, which may be comparable to separate IR/XR and IR/DR pellets in the same capsule. Preferably, the DR pellets are used in combination with XR pellets, but may also be used with IR pellets or a combination of all three. Immediate Release (IR)/Delayed Release(DR) Dosage Units Pulsatile drug release can be achieved through a combination of immediate release and delayed release components in a single dosage form. For instance, a combination of the immediate release (IR) pellets and delayed release (DR) pellets described herein can be employed. With this approach, pellets coated with enteric polymer (DR pellets) are combined with drug-coated pellets (IR pellets) to provide an immediate release followed by a pulsed release of trospium. Whereas the IR portion provides a fast rise in the plasma-time profile, the DR portion helps ensure that an effective plasma level is maintained over a longer period of time, preferably a 24 hour period. The ratio between the immediate-release component and the delayed-release component can be used to adjust the in vitro drug release profile and in vivo blood concentration profile. Moreover, the profile can be manipulated by the properties of the delayed-release coating. By providing the desired drug release profiles according to the present invention, the compositions eliminate the need for a second dose for the day. Additionally, the total dose of trospium is preferably at or below 80 mg to avoid undesirable side effects but more than 30 mg to achieve the desired antispasmodic effect. Immediate Release (IR)/Extended Release (XR) Dosage Units As an alternative embodiment, the once-daily dosage unit may contain a combination of IR and XR pellets, in ratios designed to be substantially equivalent to a twice a day regimen, or otherwise provide a once-daily dosage form that will be safe and effective with minimized side effects. The immediate release portion is designed to provide an effective plasma level at early time points. The extended release portion of the dosage form is designed to maintain the effective blood level throughout a 24-hour period, thus providing coverage for 24 hr. The IR portion provides about 20 mg or less of trospium to provide effective blood levels and yet avoid the side effects associated with spikes in the plasma profile. The extended release portion provides about 20 mg to about 60 mg of trospium chloride, more preferably from about 20 to about 40 mg in the extended release form. Immediate Release (IR)/Delayed Release (DR)/Extended Release (XR) Dosage Units Yet another embodiment of the present invention is a multiparticulate dosage form, which combines the three types of pellets. This type of dosage unit will provide multiple pulses of drug release, with the effect being a more or less sustained blood level of trospium within the acceptable range. With this combination, the IR portion is designed to provide an effective blood level soon after ingestion, which is maintained by the DR and XR combinations. The DR portion provides an immediate release after a delay. The XR portion provides an extended release profile that maintains the effective blood level of trospium throughout the course of the day. The total dose of trospium in this composition is no greater than 80 mg, preferably 60 mg with the IR portion accounting for a maximum of about 20 mg of the total. The DR and XR portions account for 10 mg to 60 mg combined with ratios of XR to DR ranging form about 1:10 to about 10:1. Delayed Release (DR)/Extended Release (XR) Dosage Units Yet another embodiment of the present invention is a multiparticulate dosage form, which combines the extended release pellets with delayed release pellets. While the XR portion provides a sustained blood profile, the DR portion prevents the blood level form falling below the effective level at later time points. The XR is designed to provide between 10 mg to 40 mg, preferably between 20 mg to 40 mg, and more preferably 30 mg trospium chloride. The DR portion is preferably a longer delayed release with a delay of about 2-4. hrs and provides between 10 mg and 40 mg, preferably between 20 mg and 40 mg, and more preferably 30 mg trospium chloride. Dosage Forms As noted previously herein, the compositions of the present invention can be in a number of different forms, such as tablets, powders, suspensions, solutions, etc. The composition is preferably in pelletibeadlet form, which can be incorporated into hard gelatin or other kinds of capsules, either with additional excipients, or alone. Typical excipients to be added to a capsule formulation include, but are not limited to: fillers such as microcrystalline cellulose, soy polysaccharides, calcium phosphate dihydrate, calcium sulfate, lactose, sucrose, sorbitol, or any other inert filler. In addition, there can be flow aids such as fumed silicon dioxide, silica gel, magnesium stearate, calcium stearate or any other materials that impart good flow properties. A lubricant can also be added if desired, such as polyethylene glycol, leucine, glyceryl behenate, magnesium stearate or calcium stearate. The multiparticulate capsules are preferred because they provide an increased surface area as opposed to a tablet, which allows for better release profiles and thus bioavailability. However, the pellets described above can be incorporated into a tablet, in particular by incorporation into a tablet matrix, which rapidly disperses the particles after ingestion. In order to incorporate these particles into such a tablet, a filler/binder must be used in the tableting process that will not allow the destruction of the pellets during the tableting process. Materials that are suitable for this purpose include, but are not limited to, microcrystalline cellulose (AVICEL®), soy polysaccharide (EMCOSOY®), pre-gelatinized starches (STARCH® 1500, NATIONAL® 1551), and polyethylene glycols (CARBOWAX®). These materials should be present in the range of about 5%-75% (w/w), and preferably between about 25%-50% (w/w). In addition, disintegrants are added to the tablets in order to disperse the beads once the tablet is ingested. Suitable disintegrants include, but are not limited to: crosslinked sodium carboxymethyl cellulose (AC-DI-SOL®), sodium starch glycolate (EXPLOTAB®, PRIMOJEL®), and crosslinked polyvinylpolypyrrolidone (Plasone-XL). These materials should be present in the range of about 3%-15% (w/w), with a preferred range of about 5%-10% (w/w). Lubricants are also added to assure proper tableting, and these can include, but are not limited to: magnesium stearate, calcium stearate, stearic acid, polyethylene glycol, leucine, glyceryl behenate, and hydrogenated vegetable oil. These lubricants should be present in amounts from about 0.1%-10% (w/w), with a preferred range of about 0.3%-3.0% (w/w). Tablets are formed, for example, as follows. The pellets are introduced into a blender along with AVICEL®, disintegrants and lubricant, mixed for a set number of minutes to provide a homogeneous blend which is then put in the hopper of a tablet press with which tablets are compressed. The compression force used is adequate to form a tablet; however, it is not sufficient to fracture the beadlets or coatings. A pharmaceutical formulation for the delivery of trospium chloride for the effective treatment of urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and/or detrusor hyperreflexia in a human patient comprising an extended release composition that provides an extended release upon oral administration to said patient; and a pharmaceutical acceptable carrier; wherein the pharmaceutical formulation is sufficient to maintain an effective level of trospium chloride in the patient over the course of at least 12 hours without further administration of trospium chloride. The total dosage of trospium chloride may be about 30 mg to 70 mg producing in a human patient a plasma concentration versus time curve having an area under the curve of about 30,000 pg-Hr/ml to about 80,000 pg-Hr/ml. The plasma concentration may have a maximum concentration of about 1.5 ng/ml to about 6.0 ng/ml. The plasma concentration may have a minimum concentration of about 0.5 ng/ml to about 1.5 ng/ml. The maximum concentration of value of the said plasma concentration curve may be reached in about 3 to about 24 hours after oral administration. A pharmaceutical formulation for the delivery of trospium chloride for the effective treatment of urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and/or detrusor hyperreflexia in a human patient comprising an extended release composition that provides a delayed release upon oral administration to said patient; and a pharmaceutical acceptable carrier; wherein the pharmaceutical formulation is sufficient to maintain an effective level of trospium chloride in the patient over the course of at least 12 hours without further administration of trospium chloride. The total dosage of trospium chloride may be about 30 to 70 mg producing in a human patient a plasma concentration versus time curve having an area under the curve of about 30,000 pg/ml*hr I to about 80,000 pg/ml*hr. The plasma concentration may have a maximum concentration of about 1.5 ng/ml to about 6.0 ng/ml. The plasma concentration may have a minimum concentration of about 0.5 ng/ml to about 1.5 ng/ml. The maximum concentration of value of the said plasma concentration curve may be reached in about 3 to about 24 hours after oral administration. A pharmaceutical formulation for the delivery of trospium chloride for the effective treatment of urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and/or detrusor hyperreflexia in a human patient comprising an immediate release and/or an extended release composition that provides an immediate release and/or an extended release upon oral administration to said patient; a delayed release composition that provides delayed release upon oral administration to said patient; and a pharmaceutical acceptable carrier; wherein the pharmaceutical formulation is sufficient to maintain an effective level of trospium chloride in the patient over the course of at least 12 hours without further administration of trospium chloride, and a peak plasma concentration of the trospium chloride reached after release of said delayed release composition exceeds the peak plasma concentration previously reached after release of said immediate release composition or extended release composition. The total dosage of trospium chloride may be about 30 to 70 mg producing in a human patient a plasma concentration versus time curve having an area under the curve of about 30,000 pg/ml*hr to about to about 80,000 pg/ml*hr. The plasma concentration may have a maximum concentration of about 1.5 ng/ml to about 6.0 ng/ml. The plasma concentration may have a minimum concentration of about 0.5 ng/ml to about 1.5 ng/ml. The maximum concentration of value of the said plasma concentration curve may be reached in about 3 to about 24 hours after oral administration. A once a day pharmaceutical formulation of trospium chloride comprising an immediate release or an extended release composition combined with a delayed release composition wherein the formulation composition contains sufficient trospium chloride to obtain a mean blood plasma trospium concentration in a human patient is about 500 pg/mL to about 800 pg/mL within about 1-3 hour of oral administration; A plasma concentration versus time of the said once a day formulation has an area under the curve of about 30,000 pg/ml*hr I to about 80,000 pg/ml*hr. The maximum concentration pf said plasma concentration curve is about 1.5 ng/mL to about 6.0 ng/mL. The Tmax is about 5 and about 6 hours. The total trospium chloride dose is about 30 mg to 80 mg per dose. The immediate release or the extended release composition has a release of trospium chloride equal to about 5% to about 20% of the total dose content within 2 hours as measured in an in vitro dissolution test using an USP Apparatus II at 50 RPM in 950 ml 50 mM phosphate buffer at a pH between 6.8 and 7.5 at 37° C. Said immediate release or an extended release composition combined with a delayed release composition may be in a single unit or in separate units. Said unit or units may be erodible matrix systems, coated systems, osmotic systems or combinations thereof. The invention contemplates a pharmaceutical composition suitable for a once-a-day administration of trospium chloride comprising an amount of solid, trospium chloride-bearing particulates, each particulate including one or more trospium chloride-release-controlling substances, such that once-a-day administration of said pharmaceutical composition provides steady state (i.e., not single dose but after at least a few daily doses, or starting approximately between about 72 hours to about 120 hours of continuous once daily dosing) blood levels of trospium, which are substantially equivalent to steady state blood levels of trospium achieved with twice daily administration of the available 20 mg immediate release trospium chloride tablets, provided that said solid, trospium chloride-bearing particulates cannot comprise trospium chloride-release-controlling substances selected exclusively from immediate release substances. In a preferred embodiment of the invention the once-a-day administration of the controlled release pharmaceutical composition provides steady state blood levels of trospium falling in the range of about 0.5 ng/ml to about 6.0 ng/ml, and preferably, for the dosage level corresponding to the 20 mg bid regimen of trospium chloride, falling in the range of about 0.75 ng/ml to about 3.0 ng/ml. It will be understood by clinicians and others skilled in the art that patients may be titrated up or down from the conventional 20 mg bid trospium chloride dosage, in which case the dosage units of the present invention would be correspondingly adjusted. The range of drug concentration in the formulations of the present invention accounts for such adjustments, it being understood that the preferred drug ranges roughly correspond to the typical 20 mg bid dosage regimen. The invention is also contemplated to provide a pharmaceutical composition in which once-a-day administration provides steady state blood Cmax levels of trospium falling in the range of about 2.5 ng/ml to about 4.5 ng/ml and Cmin levels of trospium falling in the range of about 0.5 ng/ml to about 1.5 ng/ml. Moreover, the invention provides pharmaceutical compositions in which once-a-day administration provides steady state areas under the curve falling in the range of about 30 to about 60 ng/ml*hr, preferably, falling in the range of about 35 to about 45 ng/ml*hr. In a particular embodiment of the invention, pharmaceutical compositions are provided in which once-a-day administration provides steady state % F (i.e., relative bioavailability) values falling in the range of about 80 to about 120, preferably, falling in the range of about 90 to about 110. Hence, the invention contemplates that a wide selection of one or more trospium chloride-release-controlling substances is selected for inclusion in the solid, trospium chloride-bearing particulates, including, for example, one or more trospium chloride-release-controlling substances selected from substances that provide for immediate release, delayed release, extended release, or pH-sensitive release of trospium chloride, provided that if an immediate release substance is selected, then the pharmaceutical composition also includes one or more delayed release, extended release, pH-sensitive release substances or combinations thereof. Specific embodiments, described in further detail in the examples, include but are not limited to formulations that are designated DR1, DR2, XR, XR1-1, XR1-2, XR1+DR2 and IR/DR2, to name a few. The invention also contemplates a method of treating a mammal suffering from a condition that would benefit from a once daily administration of an effective amount of trospium chloride, comprising administering to a mammal in need thereof a once-a-day formulation comprising an effective amount of trospium chloride which provides steady state blood levels of trospium, which are substantially equivalent to steady state blood levels of trospium achieved with twice daily administration of 20 mg bid immediate release trospium chloride tablets (or a corresponding titrated dose) and which will lessen side effects. The invention now will be described in particularity with the following illustrative examples; however, the scope of the present invention is not intended to be, and shall not be, limited to the exemplified embodiments below. This invention provides profiles that would make an acceptable once-a-day dosing regimen for trospium chloride. Trospium chloride is a highly water-soluble compound with a saturation solubility of 500 mg/ml. This invention overcomes the challenge imposed by highly water-soluble drugs as the active pharmaceutical ingredient in extended release preparations. Once-a-day dosing has a decided advantage over multiple dosing, increasing, for example, the rates of patient compliance. Also, once-a-day dosing with controlled release formulations reduces he side effects associated with spikes in the plasma concentration, which follow the multiple dose administration of immediate release formulations. Thus, the present invention is also directed to methods of treating a mammal, preferably human, by administering once a day a composition according to the present invention, which will give average steady state blood levels of trospium of a minimum of about 0.5 ng/ml and a maximum of about 6.0 ng/ml, and preferably between about 0.75 and about 5.0 ng/ml. Any of the various compositions described in this application can accomplish those blood levels, an achievement not previously thought possible. Schröder, S. et al., vide supra. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. EXAMPLES Example 1 Trospium Chloride Immediate Release Pellets Trospium chloride immediate release (IR) pellets were manufactured by coating 30/35-mesh sugar spheres with trospium chloride from a coating dispersion consisting of trospium chloride, hydroxypropylmethylcellulose (HPMC E5, a binder), talc (an anti-tacking agent), and water in a Glatt's® GPCG-1 fluid bed coater. Table 1 provides the formula composition of trospium chloride IR capsules, as well as modified release compositions, and Table 2 sets forth the composition of the pellets. The drug layering dispersion is prepared by dissolving the HPMC E5 in water, dissolving the trospium chloride therein, then dispersing the talc, and stirring for 20 minutes. The resulting dispersion was stirred throughout the coating process to prevent settling of coating components. Coating parameters for Glatt's® GPCG-1 are given in Table 3. The pellets generated contained about 20% w/w of trospium chloride. The procedure followed to determine the dissolution profiles was: FIG. 1: USP Apparatus II, 50 RPM. Media: 950 ml 0.1N HCl, pH 1.1 FIG. 2: USP Apparatus II, 50 RPM. Media: 950 ml 50 mM phosphate buffer, pH 7.5 FIG. 3: USP Apparatus II, 50 RPM. Media: 750 ml 0.1N HCl pH 1.1 for the first 2 Hrs and then media adjusted to pH 6.8 at 2 Hrs using phosphate buffer (total media volume=950 ml) FIG. 4: USP Apparatus II, 50 RPM. Media: 950 ml 50 mM phosphate buffer, pH 7.5 FIG. 5: USP Apparatus II, 50 RPM. Media: 950 ml 50 mM phosphate buffer, pH 7.5 FIG. 6: USP Apparatus II, 50 RPM. Media: 750 ml 0.1 N HCl pH 1.1 for the first 2 Hrs and then media adjusted to pH 6.8 at 2 Hrs using phosphate buffer (total media volume=950 ml) FIG. 7 USP Apparatus II, 50 RPM. Media: 750 ml 0.1N HCl pH 1.1 for the first 2 Hrs and then media adjusted to pH 7.5 at 2 Hrs using phosphate buffer (total media volume=950 ml) FIG. 8: USP Apparatus II, 50 RPM. Media: 750 ml 0.1N HCl pH 1.1 for the first 2 Hrs and then media adjusted to pH 7.5 at 2 Hrs using phosphate buffer (total media volume=950 ml) FIG. 1 shows the dissolution profiles for the immediate release trospium chloride pellets in 0.1 N HCl, pH 1.1. The profiles show a release greater than about 90% in about 15 minutes. FIG. 2 shows the dissolution profiles for the extended release trospium chloride pellets in phosphate buffer, pH 6.8. The profiles show a release between about 25% and about 80% in about 4 hours, between about 50% and about 95% in about 8 hours, between about 70% and about 98% in about 12 hours and between about 90% and about 100% in 24 hours. FIG. 3 shows the dissolution profiles for the delayed release trospium chloride pellets in 0.1 N HCl and phosphate buffer, pH 6.8. The profiles show a release below 1% in acidic media and a release greater than about 90% in about 15 minutes after changing the pH FIG. 4 shows the mean dissolution profiles for the extended release 50 mg trospium chloride pellets in phosphate buffer, pH 6.8. The profiles show a release of less tha 10% in about 2 hour ,between about 20% and about 30% in about 4 hours, between about 50% and about 60% in about 8 hours, between about 70% and about 80% in about 12 hours and between about 90% and about 100% in 24 hours. FIG. 5 shows the mean dissolution profiles for the extended release 40 mg trospium chloride pellets in phosphate buffer, pH 6.8. The profiles show a release of less tha 10% in about 2 hours, between about 20% and about 30% in about 2 hours, between about 40% and about 60% in about 4 hours, between about 80% and about 90% in about 8 hours and between about 90% and about 100% in 12 hours. FIG. 6 shows the mean dissolution profile for delayed release 35 mg trospium chloride pellets in 0.1N HCl and phosphate buffer, pH 6.8. The profiles show a release below 1% in acidic media and a release greater than about 40% in about 15 minutes after changing the pH, greater than 80% in 30 minute after changing the pH and greater than 90% within an hour after changing the pH. FIG. 7 shows the mean dissolution profile for delayed release 35 mg trospium chloride pellets in 0.1N HCl and phosphate buffer, pH 6.8. The profiles show a release below 1% in acidic media and a release greater than about 30% in about 30 minutes after changing the pH, greater than 60% release in about 60 minutes after changing the pH and greater than 80% release within an hour after changing the pH and greater than 90% release within about 4 hour after changing the pH. FIG. 8 shows the mean dissolution profile for extended release/delayed release 60 mg trospium chloride pellets in 0.1N HCl and phosphate buffer, pH 6.8. The profiles show a release between about 10% and about 20% during the first two hours in acidic media, and a release between 30% and 40% in about 30 minutes after changing the pH, between 60% and 70% release in about 1 hour after changing the pH, between 60% and 80% release in about 2 hours after changing the pH, between 70% and 80% release in about 4 hours after changing the pH, between 80% and 90% release in about 6 hours after changing the pH and greater than 90% release after a period of about 8 hours after changing the pH. All the dissolution profiles are generated at 37° C. TABLE 1a Percent weight composition of trospium chloride dosage forms IR DR1 DR2 XR1 Quantity Quantity Quantity Quantity per unit per unit per unit per unit Components (mg) % (mg) % (mg) % (mg) % Trospium Chloride 40 13.64 40 9.13 40 9.23 40 11.97 Sugar Spheres, NF 152 51.84 152.1 34.71 152 35.07 152 45.48 Hydroxypropyl 2 0.68 2 0.46 2 0.46 2 0.6 methylcellulose, USP (Methocel ® E5 Premium LV) Eudragit ® L30D-55 N/A N/A 110.4 25.19 N/A N/A N/A N/A Eudragit ® FS30D N/A N/A N/A N/A 100 23.07 N/A N/A Triethyl Citrate, NF N/A N/A 16.6 3.79 5.6 1.29 N/A N/A Opadry ® White, YS-1- 4 1.36 10.9 2.49 10.8 2.49 8.8 2.63 7003 Talc, USP 2 0.68 13 2.97 29.8 6.88 2 0.6 Ethyl Cellulose-based N/A N/A N/A N/A N/A N/A 36.2 10.83 Coating Dispersion (Surelease ® Clear) Hard Gelatin 93.2 31.79 93.2 21.27 93.2 21.50 93.2 27.89 Capsules #0, White Opaque Total 293.2 100 438.2 100 433.4 100 334.2 100 TABLE 1b Percent weight composition of trospium chloride dosage forms 60 mg 35 mg DR1 40 mg XR1-1 50 mg XR1-2 XR1:DR2 Capsules Capsules Capsules Capsules Quantity Quantity Quantity Quantity per unit per unit per unit per unit Component (mg) % (mg) % (mg) % (mg) % Trospium Chloride 35 9.13 40 11.07 50 11.17 60 11.09 Sugar Spheres, NF 133 34.71 152 42.06 190 42.46 228 42.16 Hydroxypropyl 1.8 0.46 2 0.55 2.5 0.56 3 0.55 methylcellulose, USP (Methocel ® E5 Premium LV) Eudragit ® L30D-55 96.5 25.19 N/A N/A N/A N/A N/A N/A Eudragit ® FS30D N/A N/A N/A N/A 75 13.87 Triethyl Citrate, NF 14.5 3.79 N/A N/A N/A N/A 4.2 0.78 Opadry ® White, YS- 9.5 2.49 9.1 2.52 11.9 2.66 14.7 2.72 1-7003 Talc, USP 11.4 2.97 2 0.55 2.5 0.56 23.8 4.4 Ethyl Cellulose- N/A N/A 51.3 14.19 85.6 19.13 27.1 5.01 based Coating Dispersion (Surelease ® Clear) Hard Gelatin 105 21.27 105 29.05 105 23.46 105 19.42 Capsules #0el, White Opaque Total 406.7 100 361.4 100 433.4 100 540.8 100 TABLE 2 Percent weight composition of trospium chloride pellets IR DR1 DR2 XR1 Components % % % % Trospium Chloride 20 11.59 11.76 16.6 Sugar Spheres, NF 76 44.09 44.68 63.08 Hydroxypropyl 1 0.58 0.59 0.83 methylcellulose, USP (Methocel ® E5 Premium LV) Eudragit ® L30D-55 N/A 32 N/A N/A Eudragit ® FS30D N/A N/A 29.39 N/A Triethyl Citrate, NF N/A 4.81 1.65 N/A Opadry ® White, YS-1- 2 3.16 3.17 3.66 7003 Talc, USP 1 3.77 8.76 0.83 Ethyl Cellulose-based N/A N/A N/A 15 Coating Dispersion (Surelease Clear) +UZ,18/21 +UZ,23/26 +UZ,28/31 Total 100 100 100 100 TABLE 3 Coating process parameters Parameter GPCG-1 Inlet air temperature (° C.) 50-55 Product temperature (° C.) 40-42 Atomization air (bar) 1.5 Spray rate (g/min) 8-12 Example 2 Trospium Chloride Extended Release Pellets The composition of trospium chloride XR pellet filled capsules is provided in Table 1. Trospium chloride XR pellets were manufactured by coating trospium chloride immediate release pellets with a Surelease® Clear coating dispersion using a Glatt® fluid bed coater. Surelease® Clear is a 25% w/w aqueous dispersion supplied by Colorcon (West Point, Pa.). The Surelease® Clear coating dispersion was prepared by adding water to Surelease® Clear and mixing for 20 minutes to achieve a 20% w/w dispersion of Surelease® Clear. This 20% w/w Surelease® Clear dispersion was used for coating. The resulting dispersion was stirred throughout the coating process to prevent settling of coating components. Various coating levels of Surelease® Clear were examined with the objective of achieving extended release pellets with different extents of delay in coating dissolution, which are shown in Table 4. FIG. 2 shows the dissolution profiles for ethylcellulose coated trospium pellets. TABLE 4 Composition of trospium chloride extended release pellets 15% w/w 20% w/w 22.5% w/w 25% w/w 27.5% w/w 30% w/w Material Surelease Surelease Surelease Surelease Surelease Surelease Trospium chloride 16.6 16.0 15.5 15.0 14.5 14.0 Methocel E5 0.83 0.8 0.78 0.75 0.73 0.7 (HPMC) Sugar Spheres NF 63.08 60.8 58.9 57.0 55.1 53.2 30/35 mesh Altaic 300V (Talc 0.83 0.8 0.78 0.75 0.73 0.7 USP) Surelease Clear 15 20.0 22.5 25.0 27.5 30 E-7-19010 Opadry White YS- 3.66 1.6 1.55 1.5 1.45 1.4 1-7003 Example 3 Trospium Chloride Delayed Release Pellets The composition of trospium chloride DR pellet filled capsules is provided in Table 1. Table 2 provides the composition of delayed release pellets. Trospium chloride immediate release pellets were coated with Eudragit® L30D55 from a coating dispersion consisting of Eudragit® L30D55, triethylcitrate (a plasticizer), talc (an anti-tacking agent), and water using a Glatt® fluid bed coater. Eudragit® L30D55 is a 30% w/w aqueous dispersion supplied by Rohm America (Piscataway, N.J.). The Eudragit® L30D55 coating dispersion was prepared by dispersing talc in water and mixing for at least 20 minutes. Eudragit®L30D55 dispersion was sieved through an 80-mesh sieve. Triethylcitrate was added to the Eudragit®L30D55 dispersion and mixed for at least 30 minutes. The talc dispersion was then slowly poured into the Eudragit® L30D55/TEC dispersion and mixed for at least 30 minutes. The resulting dispersion (an 11.7% w/w Eudragit® L30D55 aqueous dispersion) was filtered through an 80-mesh sieve and stirred throughout the coating process to prevent settling of coating components. Various coating levels of Eudragit®L30D55 were examined with the objective of achieving an acid resistant coating. FIG. 3 shows the dissolution profiles for trospium chloride delayed release pellets. Example 4 Combination XR/DR Extended release pellets were prepared as in Example 2, with a 15% w/w coating of SURELEASE®. Delayed release pellets were manufactured by coating immediate release pellets with Eudragit FS30D, in a manner similar to Example 3. Eudragit®FS30D is a 30% aqueous dispersion supplied by Rohm America (Piscataway, N.J.). The Eudragit®FS30D coating dispersion is 18% w/w Eudragit®FS30D. The enteric coated pellets are combined with extended release pellets in the XR pellets to DR pellets ratio of 1:1, to achieve a total trospium chloride dose of 60 mg. Example 5 Trospium Chloride Delayed Release at 35 mg Strength Delayed release pellets manufactured by coating immediate release pellets with Eudragit® L30D55 as described in Example 3 were filled into capsules at a fill weight that provides 35 mg trospium chloride in the capsule dosage unit. Example 6 Single Dose Human Pharmacokinetic Studies A human trial of four controlled release formulations was conducted. The study compared four controlled release dosage units described in the previous examples (DR1 40 mg, DR2 40 mg, XR 40 mg and a mixture of 20 mg IR:120 mg DR2) with a 40 mg IR capsule given as once daily single dose and the 20 mg IR tablet (Spasmo-Lyt®, Madaus), which was given twice a day at 12 hour intervals. FIG. 4 shows the pharmacokinetic profiles of the four once-a-day controlled release compositions versus the two immediate release products. FIG. 5 shows the same data with Formulation D removed for ease of comparisons. These data demonstrate that the DR1, XR1 and the combination of IR/DR2 produced pharmacokinetic profiles and parameters that are similar to the commercial IR twice a day product (FIGS. 4 and 5). Table 5 presents single dose data on areas under the curve (AUC) over given time periods (0-24 hrs and 0-72 hrs) for immediate release product (20 mg bid) and controlled release products (40 mg DR1, 40 mg XR1 and 20 mg/120 mg IR/DR2 combination), including % F, which is a measure of bioequivalence. One can appreciate that at least the DR1 and XR controlled release products provide AUC data, which are comparable to those obtained with twice daily administered 20 mg immediate release trospium chloride. TABLE 5 Single Dose Data for Various Trospium Chloride Formulations Single Dose AUC 0-24 AUC 0-72 Formulation (pg · hr/ml) (pg · hr/ml) % F 20 mg bid 23820 39831 100 40 mg DR1 23782 35589 89 40 mg XR 24271 36098 91 20/120 mg IR/DR2 33244 52905 38 Example 7 Steady State Human Pharmacokinetic Studies A second human trial was conducted comparing four controlled release formulations described in Table 1b with 20 mg IR tablet (Spasmo-Lyt®, Madaus), which was given twice a day at 12 hour intervals. Table 6 presents steady state data on AUC (over a 72 hour time period), Cmax, Cmin, and % F obtained from the administration of the various trospium chloride formulations discussed in the preceding paragraph. TABLE 6 Steady State Data for Various Trospium Chloride Formulations B D E Conc A 40 mg XR1- C 30 mg XR1: 20 mg IR Time 35 mg DR1 1 50 mg XR1-2 30 mg DR2 BID Tmax (Hr) 5.39 5.38 5.38 5.95 5.3 Cmax (pg/mL) 3164.9 2819.8 1908.7 2398.2 2978.9 AUClast (Hr*pg/mL) 55025.5 44972.1 42419.8 52060 67068.7 AUCINF_obs 64076.8 53637.4 62784.5 63931.2 74294.4 (Hr*pg/mL) Relative BA 94% 67% 51% 52% 100% (normalized) Example 8 Enteral Administration of a Trospium Chloride Pharmaceutical Composition A delayed release formulation, according to the method of the invention, is prepared using a trospium salt, such as a fluoride, chloride, bromide or iodide, using a delayed release coating, which releases trospium at a pH of about 7.0. For example, an appropriate EUDRAGIT release controlling layer is selected so that the active ingredient is released at approximately neutral pH, which coincides substantially with the pH of the lower GI tract (e.g., lower intestine, colon, or both). Other release controlling layers may also be selected with the objective of providing a pharmaceutical composition comprising trospium as at least one active ingredient, which releases trospium in sections of the GI tract previously thought not to play a role in the delivery/absorption of significant amounts of trospium. See, e.g., Schroder, S. et al., in International Journal of Clinical Pharmacology and Therapeutics, Vol. 42-No. 10/2004 (543-549).
<SOH> BACKGROUND OF THE INVENTION <EOH>Trospium is a quaternary ammonium derivative of tropine, and has anticholinergic properties. The hydrophilicity of the molecule, due to its permanent positive charge, limits its lipid solubility. Trospium chloride has been shown to antagonize acetylcholine on excised strips of human bladder muscle. Antispasmodic activity has been shown in the bladder, the small intestine, and on contractility of the gall bladder. Trospium chloride exhibits parasympatholytic action by reducing smooth muscle tone, such as is found in the urogenital and gastrointestinal tracts. This mechanism enables the detrusor to relax, thus inhibiting the evacuation of the bladder. Lowering the maximum detrusor pressure results in improved adaptation of the detrusor to the contents of the bladder, which in turn leads to enhanced bladder compliance with increased bladder capacity. Trospium chloride was introduced into the market as a spasmolytic agent in 1967 (German patent 1 194 422). Trospium chloride has been available in an orally administrable, solid administration form (tablets and dragees), for intravenous or intramuscular injection as a solution, and for rectal administration as suppositories, and is primarily used for the treatment of bladder dysfunctions (urge incontinence, detrusor hyperreflexia). The product has been on the market in Germany and several other European countries for a number of years for specific therapeutic indications including urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and detrusor hyperreflexia. Currently, in the European market there is an immediate release trospium chloride tablet (Spasmo-lyt®), which is indicated for the treatment of urge incontinence and detrusor hyperreflexia and is used as a 20 mg tablet taken twice daily or bid (a total dose of 40 mg per day). In common with other quaternary ammonium compounds, orally administered trospium chloride is slowly absorbed, with the maximum blood level achieved after 5-6 hrs. The oral bioavailability is approximately 10%, and is significantly reduced with the intake of high-fat food. There are side effects associated with the use of the twice-daily trospium chloride regimen, such as dry mouth, headache, constipation, dyspepsia, and abdominal pain. These side effects are associated with a high blood concentration of trospium chloride. Moreover, studies in which a 40 mg immediate release dose was given once daily resulted in higher overall incidence of adverse events as compared to 20 mg given twice daily. A once-a-day administration of trospium is advantageous over the twice-a-day administration in terms of both patient compliance and reduced adverse events, thus providing better treatment of the conditions for which trospium chloride is indicated. In order to provide for an effective once-a-day form of trospium, there is a need for unique formulation approaches that provide the desired therapeutic effects while minimizing, if not eliminating, the undesired side effects mentioned above. This means that the minimum blood trospium concentration (C min ) at steady state should be above the minimum therapeutically effective blood concentration and the maximum blood trospium concentration (C max ) also at steady state should be below the maximum toxic blood concentration over the treatment period. Trospium chloride and other quaternary ammonium compounds exhibit a limited window of absorption in the human gastrointestinal tract, presenting a significant challenge to formulating a once-a-day composition.
<SOH> SUMMARY OF THE INVENTION <EOH>It is an object of the present invention to provide a pharmaceutical composition of any pharmaceutically acceptable trospium salt, typically trospium chloride, which can be given once a day yet meet the steady state blood levels required for the treatment or prevention of diseases or conditions that would benefit from its spasmolytic activity. Such a disease or condition includes, and the present invention is primarily directed to, such bladder dysfunctions as urge incontinence or detrusor hyperreflexia, nocturia, and urinary frequency. Such once-daily compositions of a trospium salt are targeted to result in average steady state blood levels of trospium with a minimum (C min ) and maximum (C max ) blood levels of about 0.5-2.5 ng/ml and about 2.0-6.0 ng/ml, respectively, which blood levels have been shown to be safe and effective. Steady state blood levels preferably average between a C min of about 0.75 ng/ml and a C max of about 5.0 ng/ml, for dosage forms of the present invention that correspond to a 20 mg bid regimen. In one aspect of the invention an extended release (XR) pharmaceutical composition is provided, which contains between about 25 mg and about 60 mg trospium chloride for once-a-day or qd administration, and which is characterized by having the following in vitro release profile in phosphate buffer (pH 7.5) dissolution medium: about 0-40% released in about 1 hour, about 20-85% released in about 4 hours and greater than 70% released in about 12 hours. In yet another aspect of this invention a delayed release (DR) pharmaceutical composition is provided, which contains between about 25 mg and about 80 mg trospium chloride for once-a-day or qd administration, depending on the length of the lag phase. The in vivo delay in the release can be tailored to a particular application, but generally is from about 0.5 hour to about 6 hours, more preferably from about 2.5 hours to about 5 hours, during which time there should minimal, if any, detectable trospium in the blood. The in vitro release profile of such a formulation is generally characterized by having less than about 10% released in acidic media within 2 hours and more than about 80% released in buffer media of pH 6.8 and higher within 1 hour. In still another aspect of the present invention an immediate release (IR) composition is provided, which contains no more than about 20 mg active drug, combined with a delayed release composition that is designed to dissolve at a pH of about 7.0 (i.e., in the lower part of the GI tract), such as the DR2 composition of the examples, to form a single once-a-day trospium chloride formulation containing in total about 80 mg drug Another aspect of the present invention is to provide a method for treating urinary frequency, urgency, nocturia, and urge-incontinence associated with detrusor instability, urge syndrome, and detrusor hyperreflexia with once-a-day administration of trospium chloride. Yet another aspect of the invention provides a single dosage form that allows for an additional release, or pulse, of a drug with a short half-life at about the half-life (t 1/2 ) thereof. Such dosage forms are a significant challenge to develop when the drug is one, such as tropsium, that has a defined region of absorption in the upper GI tract, and is more poorly absorbed in the lower GI tract (i.e. the ileum area and colon). The invention is also directed to a method of enteral administration of a pharmaceutical composition comprising an effective amount of a salt of trospium (e.g., trospium chloride), in which an improvement comprises including a delayed release formulation of said salt of trospium, which releases trospium at a pH of about 7.0. In another embodiment of the invention, a method is provided for an enteral administration of a pharmaceutical composition comprising an effective amount of a trospium salt (e.g., trospium chloride), in which an improvement comprises including a delayed release formulation of said trospium salt, which releases trospium in the lower intestine, preferably in the colon. Accordingly, the invention is further directed to a pharmaceutical composition comprising a trospium salt (preferably, trospium chloride) as at least one active pharmaceutical ingredient in which at least a portion of said trospium salt is contained in a delayed release formulation, which releases trospium at a pH of about 7.0. In an alternative embodiment, the invention is still further directed to a pharmaceutical composition comprising a trospium salt (preferably, trospium chloride) as at least one active pharmaceutical ingredient in which at least a portion of said trospium salt is contained in a delayed release formulation, which releases trospium in the lower intestine, colon, or both. Finally, another aspect of the invention is to provide processes for preparing the once daily compositions of the present invention, and methods of treatment using them.
20041104
20080812
20050901
67086.0
6
SCHLIENTZ, NATHAN W
ONCE DAILY DOSAGE FORMS OF TROSPIUM
UNDISCOUNTED
0
ACCEPTED
2,004
10,981,206
ACCEPTED
Electrically conductive confined space ventilator conduit formed of conductive polymer, electrical grounding circuit for ventilation system using same, and methods of using and forming same
An electrically conductive confined space ventilation conduit formed of a substantially rigid non-metallic conductive material, such as plastic, and a related process for ventilating an enclosure accessed by a manhole or other port. In one embodiment, the conduit has a pair of outer cylindrical sections and a central section having a cross-sectional shape of a crescent or a segment of a circle where it passes through a port to provide a minimum of obstruction for men and equipment passing through the port. Intermediate sections of varying cross-section connect the central section to the cylindrical outer sections so that the outer sections are offset from the axis of the manhole. The central section is preferably configured to obstruct no more than about 10 percent of a standard manhole opening, while causing either no air flow rate reduction, or a reduction of no more than about 10 percent as compared to the flow rate through a cylindrical conduit similar to said outer sections. The conduit is preferably formed of a conductive or electrically dissipative polyethylene polymer material to allow static electricity to be conducted from the conduit to ground. In a preferred embodiment, a connecting device for connecting the conduit to electrical ground is connected to the conduit. A grounding circuit kit and method of grounding the conduit is also disclosed.
1. An electrically conductive confined space ventilator conduit, comprising: a hollow first section having other than a full circle shape in cross section, said first section being formed of a conductive plastic material, wherein said confined space conduit can be used to ventilate an enclosure via mounting in a port to the enclosure with less obstruction of the port than if said first section had a hollow full circle cross section of equal area. 2. The confined space conduit of claim 1, wherein said conductive polymer comprises a conductive polyethylene composition. 3. The confined space conduit of claim 2, further comprising a connecting device for connecting said port to an electrical ground. 4. The confined space conduit of claim 3, wherein said confined space conduit has a first end and a second end, and at least one said connecting device is located proximate of said first or second end. 5. The confined space conduit of claim 3, wherein said connecting device comprises a lug, said lug being formed of a conductive material and being either molded into said confined space conduit or bolted thereto. 6. A method of electrically grounding an electrically conductive confined space ventilation conduit, comprising: connecting a grounding wire to a rigid walled conduit, said conduit comprising a hollow first section forming a portion of a circle in cross section, said first section being formed of a non-metallic conductive material, wherein said conduit can be used to ventilate a confined space with less obstruction of the port to said confined space than if said first section had a hollow circular cross section of equal area. 7. The method of claim 6, wherein the grounding wire is operatively connected to a second component, and said second component is operatively connected to ground. 8. The method of claim 6, wherein said connecting step comprises connecting a ground wire to at least one electrically conductive connecting point on the conduit. 9. A kit for grounding for an electrically conductive confined space ventilator conduit, comprising: at least one electrically conductive connector for connecting an electrically conductive confined space ventilator conduit to ground or to a grounded device, and an electrically conductive confined space ventilator conduit, wherein said electrically conductive confined space ventilator conduit comprises a rigid hollow first section having other than a full circle shape in cross section, said first section being formed of a non-metallic conductive material, wherein said conduit can be used to ventilate an enclosure via mounting in a port to the enclosure with less obstruction of the port than if said first section had a hollow full circle cross section of equal area. 10. The kit of claim 9, wherein said electrically conductive connector comprises a conductive housing, said housing comprising a receiving member for receiving and gripping an electrically conductive wire to create an electrical contact between said conductive housing and an electrically conductive wire. 11. The kit of claim 10, wherein said conductive housing may be bolted or formed into said confined space conduit for creating an electrically conductive connection thereto. 12. The kit of claim 11, wherein said kit comprises at least two of said electrically conductive connector, wherein at least one of said at least two electrically conductive connectors is not directly connected to said electrically conductive confined space ventilator conduit. 13. The kit of claim 12, wherein said connector comprises at least one of the group consisting of aluminum and brass. 14. A method of ventilating an enclosure with a manhole entrance with minimum obstruction at the manhole, comprising the steps of: (a) providing a conduit having outer open-ended sections which are substantially circular in cross-section, and an intermediate section which is non-circular in cross-section and which obstructs the cross-sectional area of the manhole by not more than about 10 percent, wherein said conduit is electrically conductive and non-metallic; and (b) locating the conduit within the manhole entrance such that the intermediate portion extends from inside the enclosure to outside the enclosure. 15. A method according to claim 14, further comprising the step of connecting one outer end of said conduit to an air blower, and supplying air under pressure to the enclosure. 16. A method according to claim 15, wherein said air blower is rated at about 1000 CFM to about 1500 CFM and supplies air to the enclosure in a range of about 700-800 CFM. 17. An electrically conductive, non-metallic conduit for a ventilation system, comprising a rigid conduit, said conduit formed of a material that is at least electrically dissipative. 18. The conduit of claim 17, comprising an ethylene-butene copolymer polyethylene resin with a conductive additive. 19. The conduit of claim 18, comprising a hollow first section having other than a full circle shape in cross section. 20. The conduit of claim 18, comprising a cylindrical section bent at an approximately ninety degree angle. 21. The conduit of claim 17, wherein the surface resistivity of said conduit is less than about 1.0×1011 ohms per square. 22. The conduit of claim 19, wherein the surface resistivity of said conduit is less than about 1.0×1011 ohms per square. 23. The conduit of claim 17, wherein the surface resistivity of said conduit is less than about 1.0×108 ohms per square. 24. The conduit of claim 19, wherein the surface resistivity of said conduit is less than about 1.0×108 ohms per square. 25. The conduit of claim 17, wherein the electrical resistance of said conduit is less than about 4×103 Ω. 26. The conduit of claim 19, wherein the electrical resistance of said conduit is less than about 4×103 Ω.
PRIORITY This application is a divisional application of co-pending U.S. patent application Ser. No. 10/607,078, filed Jun. 25, 2003. BACKGROUND AND SUMMARY OF THE INVENTION Tanks, sewers, and other enclosures that must be entered periodically require some type of air ventilation system for the men working in the enclosure. Without some type of air ventilation the workers would be required to wear respirators. Previously, the ventilation apparatus used normally included an air pump outside the enclosure and an 8-inch flexible hose leading into the enclosure. However, the normal 24 inch (or smaller) manhole is barely large enough to allow a worker to enter the enclosure with tools and/or materials. When an 8-inch ventilating hose is also located within the manhole, it may prevent the worker from entering the enclosure, and provides an obstruction that tends to catch tools on the worker's belt, with the possibility of damaging the hose or dropping tools on another worker already in the enclosure. A solution to this problem was provided by novel apparatuses and methods described in U.S. Pat. No. 4,794,956 and U.S. Pat. No. 4,982,653, both to Gordon et al, which are specifically incorporated by reference as if reproduced in their entirety herein. The aforementioned patents are assigned to AIR SYSTEMS INTERNATIONAL® of Chesapeake, Va., USA. In one exemplary embodiment, a rigid-walled confined space ventilation conduit comprises a central section having a cross section in the shape of a crescent or a segment of a circle, two intermediate sections attached respectively to each end of the central section, and each having a cross-sectional shape varying from the shape of the central section at the juncture with said central section, and tapering to a circular shape at the outer end of the associated intermediate section. The conduit also includes two outer cylindrical sections, respectively attached to the outer end of each of the intermediate sections, the outer sections being externally aligned on a common axis offset from the center of the central section. As a result of this construction, it is possible to reduce the cross-sectional obstruction of a relatively small manhole, i.e., with about a 20 inch diameter, to about 10 percent of the cross-sectional area of the manhole, as compared to about 35 percent obstruction for a standard 8 inch diameter hose. For larger manholes, the percent obstruction using the conduit of this invention may be substantially less than 10 percent. In an exemplary embodiment, an outer surface of the central section is cylindrical and has substantially the same diameter as the diameter of the manhole in which the conduit is used. In the interest of economy, however, it is practical to utilize a standard size conduit which will fit virtually all conventional manholes. For example, a central section having a radius of curvature conforming to the perimeter of a manhole of smaller radius may be effectively utilized in all larger manholes as well. In a preferred embodiment of the aforementioned invention, the cross-sectional area of the central section may be reduced in comparison to the outer cylindrical sections, but only to the extent of causing a reduction of not more than about 10 percent in air flow rate. The aforementioned invention also included mounting means at the outer surface of the central section of the conduit so that the conduit may be hung or otherwise attached at a manhole opening. A related process for using the aforementioned invention in ventilating a confined space via a port includes the steps of providing a rigid-walled confined space ventilation conduit as described above, locating the duct so that one outer end and an associated intermediate section lie outside the enclosure, the other outer end and its associated intermediate section lie inside the enclosure, and the central section extends through the port (e.g., manhole); and operatively connecting the conduit to an external source of air, such as a pump or blower via flexible hosing. A high quality commercial embodiment of the confined space ventilation conduit described in the aforementioned patents is sold as the SADDLE VENT® confined space ventilator conduit by AIR SYSTEMS INTERNATIONAL®, 821 Juniper Crescent, Chesapeake, Va., 23320, U.S.A. (telephone 800-866-8100). A typical SADDLE VENT® confined space ventilator conduit produced in the past has been formed of polyethylene. Since polyethylene has very low electrical conductivity—it may be considered an electrical insulator—it allows static electricity to build up on the surface of the device; a static electric charge may also build up on other non-conductive ventilation ducting. Under dry and dusty work conditions the build-up of static electricity can discharge to metal surfaces or other grounded surfaces causing a spark in a work area. Ventilation conduits are often used in petroleum and chemical storage tanks and in municipal sewers that can all contain explosive chemical vapors. Under certain conditions the static build-up on a ventilation duct could lead to an explosion or fire. It is therefore desirable to have a confined space ventilation conduit that is electrically conductive and that is readily able to form an electrical circuit with a grounded source in order to dissipate static electricity and other electric charges. A confined space ventilator conduit is defined herein as a rigidly-walled fluid conduit that has at least a hollow first section having other than a full circle shape in cross section, wherein the conduit can be used to ventilate an enclosure accessed via a port (e.g., a manhole) with less obstruction of the port than if the first section had a hollow full circle cross section of equal area. Exemplary confined space ventilator conduits are described in the aforementioned patents. Forming confined space ventilator and other ventilation system ducting of metal is not satisfactory for many purposes, as the metal generally does not rebound from dents or crushing forces, and/or can spark when engaging certain surfaces. Further, the raw materials for metal construction can be more expensive than plastic and metal conduits can be much harder to fabricate, particularly a confined space ventilator conduit that has a non-circular cross-section or a rigid-walled elbow joint for a ventilator system. Thus, plastic has been preferred over metal for forming confined space ventilator conduits, such as the SADDLE VENT® confined space ventilator conduit from AIR SYSTEMS INTERNATIONAL®. Although the plastics used are not conductive, they have high mechanical strength, are readily moldable to form a unitary seamless device, and have great durability. The prior art did not recognize and provide a solution for the potential for static electricity buildup on non-conductive confined space ventilator conduits and other respiratory conduits. Creation of non-metallic electrically conductive respiratory system conduits and in particular a confined space ventilator conduit faced many challenges. Conductive polymers are rare, expensive, and difficult to fabricate, can result in devices with unacceptable mechanical strength, and/or are otherwise impracticable to use. Blending of conductive materials with a suitable polymer faced similar consequences, and/or would result in unacceptable tradeoffs between mechanical strength and durability in order to get a sufficiently conductive product. The prior art does not provide a confined space ventilation system with a continuous electrical connection from the distal end of a flexible hose or conduit inside a confined space, through a confined space ventilator conduit, and to a blower via non-metallic components. While a grounding wire may carry charge past a non-conductive system component, electric charge may still build up on non-conductive components sufficient to create a hazardous condition. Therefore, objects of this invention are to provide durable and electrically conductive ventilator conduits and an electrically conductive confined space ventilator conduit formed of a polymeric material, and to create processes for using same to ventilate an enclosure via a port into an enclosure and for grounding these components. A further object is to provide a ventilator system incorporating conductive conduits throughout to provide for a continuous electric connection via the length of a confined space ventilator system from a blower and into a confined space. It is another object of this invention to provide a non-metallic electrically conductive confined space ventilator conduit that will not obstruct more than about ten percent of the cross-sectional area of a confined space port (e.g., manhole), without any significant reduction in air flow (e.g., less than about 10% reduction) through all sections of the confined space ventilation conduit and connecting hosing and rigid conduits. Still other objects will become apparent in the more detailed description which follows. These and other objects of the invention are accomplished by a confined space ventilation conduit (conduit and duct may be used interchangeably herein) formed of an electrically conductive polymer, and having the general confined space ventilator conduit geometry described above. The non-metallic electrically conductive confined space ventilation conduit of the present invention, also referred to herein as a conductive SADDLE VENT® conduit, preferably includes at least one grounding lug for connecting an electrically conductive grounding wire to the conduit, so that an electric charge can be conducted from the conduit to electric ground. In an embodiment, two grounding lugs are provided at opposite ends of the conductive confined space ventilator conduit of the present invention for series connection of the duct into a corresponding grounding circuit. Another embodiment of the present invention is directed to an electrically conductive rigid walled conduit, formed of a non-metallic material, for use in constructing an electrically conductive ventilation system, with a preferred embodiment including a rigid walled electrically conductive ventilation conduit elbow. Preferably, the elbow includes at least one grounding lug. The conductive confined space ventilation conduit of the present invention is preferably designed for serial connection into a ventilation system, and is preferably grounded to a blower forming part of a ventilation system, wherein the blower is electrically grounded. A preferred ventilation system includes the electrically conductive confined space ventilation duct of the present invention connected to hosing of conventional cylindrical cross-section, with rigid elbows where needed. The other conduits and elbows are preferably formed of an electrically conductive polymer or other electrically conductive material. Grounding lugs may also be formed into or firmly connected to the other electrically conductive ventilation system conduits. In an embodiment, at least one grounding wire is connected serially to the grounding lugs and to electrically conductive components to maintain a complete circuit to ground. Hence, non-conductive ventilation system components can be bypassed to complete the ground circuit, although it is preferred that all hollow components forming the ducting of a ventilation system of the present invention be electrically conductive. In an embodiment, a conductive coating is applied to non-metallic ventilation system ducting components to provide conductivity. In another embodiment, the present invention includes an electrically conductive, non-metallic conduit for a ventilation system that comprises a rigid conduit formed of a material that is at least electrically dissipative. A preferred material is an ethylene-butene copolymer polyethylene resin with a conductive additive. In one embodiment, the conduit comprises a hollow first section having other than a full circle shape in cross section. In another embodiment, a conductive conduit of the present invention comprises a cylindrical section bent at an approximately ninety degree angle. BRIEF DESCRIPTION OF THE DRAWINGS Novel features which are believed to be characteristic of this invention are set forth with particularity in the appended claims. The invention itself, however, both its organization and method of operation, together with further objects and advantages thereof, may be understood better by reference to the following further detailed description taken in connection with the accompanying drawings in which: FIG. 1 is a perspective view of an embodiment of a rigid-walled, electrically conductive confined space ventilation conduit of the present invention; FIG. 2 is a top plan or “outer side” view of the conduit of FIG. 1, wherein the outer side refers to the side of the conduit that points towards the outside of the confined space or enclosure access port into which the conduit is placed in use; FIG. 3 is bottom plan or “inner side” view of the conduit of FIG. 1, wherein inner side refers to the side of the conduit that points towards the interior of the access port into which the conduit is placed in use; FIG. 4 is a side elevation view of the conduit of FIG. 1, wherein the outer side is facing upwards. FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4; FIG. 6 is a cross-sectional view taken along line 5-5 of FIG. 4 but viewed in the opposite direction from the view of FIG. 5; FIG. 7 is a perspective exploded view of a portion of an electrically grounded ventilation system of the present invention incorporating the conduit of FIG. 1, showing corresponding portions of a grounding circuit, as well as a mounting plate in operative connection with the mounting tab on the conduit. FIG. 8 is a perspective exploded view of the conduit of FIG. 1 incorporated into a ventilation system with a blower, and showing a corresponding grounding circuit complete from its distal end to the blower; FIG. 9 is a perspective view of an exemplary grounding lug of the present invention engaging a grounding wire to illustrate its operation. ADDITIONAL DETAILS OF THE PRESENT INVENTION Structural details of a rigid-walled electrically conductive confined space ventilation conduit of the present invention may be better understood by reference to the attached drawings. Referring to FIGS. 1-6, an exemplary conduit is comprised of five sections connected end to end. There is a central section 20 connected at each end to an intermediate section 21, which in turn are connected to two outer or end sections 22. The conduit is made of thin, light weight conductive polymeric material, preferably a conductive moldable polymer comprising polyethylene. Engineering plastics, such as polyethylene, tend to be very good insulators, and have surface resistance values typically in the range 1×1014 to 1×1018 ohms. Decreased electric resistance (increased conductivity) can be imparted to plastics by additives, such as conductive carbon fibers or by surface treatment of finished products. However, surface treatments can wear off, so additives are preferred where permanence is a concern. Nevertheless, whether conductive additives or surface treatments are used, obtaining sufficient conductivity in the final product can be impracticable and/or unpredictable taking into account final product durability and mechanical strength requirements. It has been surprisingly discovered that a suitably conductive material for use in the present invention does not have to be fully electrically conductive, as that term is conventionally understood, so long as it is sufficiently conductive to dissipate electric charges typically encountered in use so that the electric charge can be directed to ground via a suitable circuit. A preferred material for forming an electrically conductive confined space ventilator conduit has a surface resistivity and volume resistivity that are at least dissipative, if not conductive. Surface resistivity describes the electrical resistance of the surface of the material in ohms, Ω. A formula that relates resistance and resistivity is: R=p(L/W); where R=Resistance, p=Surface Resistivity, L=Length, and W=Width. Hence, with a square surface, i.e., L=W, R=p. Surface resistivity is defined for a square surface and thus has units of ohms per square, and is independent of the size of the square. Generally, a material deemed “conductive” has a surface resistivity less than 1.0×105 ohms per square, whereas a material deemed “dissipative” has a surface resistivity greater than 1.0×105 but less than 1.0×1011 ohms per square. However, herein, materials that have a surface resistivity less than about 1.0×1011 ohms per square are preferred for the present invention, and most preferably materials having a surface resistivity less than about 1.0×108; such materials will be referred to as conductive for the purposes of the present invention, so long as the conductance of a confined space ventilation duct made thereof will not permit static electricity buildup, when properly grounded, in a typical petroleum storage tank sufficient to spark an explosion. In a particularly preferred embodiment, the polymeric material has a surface resistivity of preferably less than about 4×105 Ω per square and most preferably about 3×105 Ω per square or less. The volume resistivity (resistance through the three dimensional volume of the material) for a conductive non-metallic composition for use in the present invention is preferably in the range of a semiconductor to a traditional conductor. For example, a preferred material has volume resistivity of less than about 1000 ohms per meter. Another preferred material has a volume resistivity of about 3 ohms per meter, or less. In Table 1 below, non-limiting exemplary properties for conductive polymers for use with the present invention are provided. It is to be understood that the term conductive polymers includes blends of non-conductive polymers with other materials that makes the final product conductive or sufficiently dissipative for the purposes of the present invention. Further, non-metallic composition refers to compositions of polymers that may contain up to 10% by weight of metallic ingredients. Further, where a conductive coating surface has been applied, the overall conduit will be considered to be of non-metallic composition, so long as no more than about 10% of the weight of the conduit is metallic, inclusive of the weight of the coating, and excluding any metal clamps or lugs. For example, if a metallic coating were to be applied to a prior art SADDLE VENT® conduit from AIR SYSTEMS INTERNATIONAL®, no more than about 10% of the weight of the conduit would be due to metallic components (this excludes any fittings or lugs). TABLE 1 EXEMPLARY CONDUCTIVE POLYMER PROPERTIES Property Value Test Method Melt Index (190° C., 2.16 kg) 6.0 g/10 min ISO 1133 Density 0.934 g/cm3 ISO 1183 Tensile Strength (Yield) 16 MPa ISO R 527 Flexural Modulus 550 MPa ASTM D 790 Hardness 55 Shore D ISO R 868 Surface Resistivity (50% RH) >3 × 105 kΩ per square BS 2050 Volume Resistivity 3 Ω metres BS 2050 In an embodiment, a preferred polymeric material for forming a rigid walled electrically conductive conduit of the present invention is ICORENE® C517, an ethylene-butene copolymer polyethylene resin containing semiconductive additives, which produces a product having substantially enhanced electrical conductivity in comparison to polyethylene. ICORENE® C517 is available from Wedco/ICO Polymers, 11490 Westheimer, Suite 1000, Houston, Tex. 77077. Referring back to FIGS. 1-6, central section 20 has a non-cylindrical shape, i.e., a non-circular cross-section, such as a crescent or a segment of a circle. An inner surface 30 of the inner side of the central section 20 is cylindrical when the cross-section is crescent shaped, and in the form of a flat plane when the cross-section is a segment of a circle. FIGS. 1-6 show a cross-section which has the shape of a segment of a circle. Outer surface 31 on the outer side may be cylindrical or be formed of two or more intersecting planes, an irregular curved surface, or the like. In one exemplary embodiment, outer surface 31 fits snugly into a manhole opening by conforming essentially to the shape of the manhole entrance. In other words, the radius of curvature of outer surface 31 is substantially the same as the radius of the manhole opening. This, of course, requires the production of different conduits for different diameter manholes. It is more economical to produce a single conduit configuration for virtually all manholes, and the fact that the outer surface of the center conduit section does not fit flush with the peripheral surface of the manhole is not significant. Thus, a central section having a radius of curvature corresponding to the smallest of the commonly used manhole structures may also be utilized with all larger manhole openings. Throughout the length of central section 20, the shape of the cross-section preferably remains the same, although this shape may be variable. Transition or intermediate sections 21 join central section 20 at juncture lines 23 at one end and join outer sections 22 at juncture lines 24 at the other end. At juncture line 23 the cross-section of intermediate section 21 is the same shape as that of central section 20, and at juncture line 24 the cross-section is in the shape of a circle. In between juncture lines 23 and 24 the cross-sectional shape of the intermediate sections changes at every position tapering along the longitudinal axis of each intermediate section from a crescent or segment of a circle shape to a circle shape. Outer sections 22 are cylindrical, preferably about 8 inches in diameter so as to fit already existing ventilating equipment. An annular rib 25 can be provided to facilitate better retention and sealing to matching conduit ends. Other diameters are, of course, within the scope of this invention. Both outer sections 22 are preferably aligned on a common longitudinal axis parallel to but offset from the axis of central section 20, although this is not a critical feature. Outer sections 22 need not be aligned on a common axis, and if aligned, their axes need not be parallel to the axis of the central section. The term “rigid” refers to the rigidity of plastic walled conduits that have greater wall rigidity than flexible walled hoses generally used in ventilation systems, such as portable systems for ventilating manholes. Generally, the rigidity of a prior art SADDLE VENT® device is sufficient for the present invention, although particular uses or users may prefer greater or lesser rigidity. If rigidity is inadequate, the conduits could collapse too easily or not provide a good base for attachment to flexible ventilation hoses. Referring to FIGS. 7-9, a preferred embodiment of the present invention includes at least one grounding lug 200, or other connecting device, for facilitating connecting the electrically conductive rigid walled conduits and other ventilation system components to an electrical ground. The lug housing can be formed of a rigid conductive material and be molded into the conduit or bolted to the surface of the duct by a bolt, such as bolt 202 through flange 204. A nut may be used to tighten the bolt to the conduit. A passageway 206 in the lug housing is sufficiently large to easily receive a conductive wire, such as 208, therein. A screw 210 seated in matching threads permits for firmly tightening wire 208 into lug 200. In a preferred embodiment, a grounding kit comprises at least one grounding lug and at least one conductive wire for connecting a conductive ventilator conduit to ground. Another preferred grounding kit comprises at least one grounding lug and a conductive non-metallic ventilator conduit. The latter kit also may include conductive wire, and/or an electrically conductive conduit and/or an electrically conductive confined space ventilator conduit, and/or a blower. It should be kept in mind that electrically conductive conduits in accordance with the present invention are non-metallic as that term is defined herein. In a preferred embodiment, the latter kit comprises at least two lugs, at least one of which is not directly connected to an electrically conductive confined space ventilator duct. In a preferred embodiment, the lug is made of aluminum, brass or other conductive metal. A preferred aluminum lug is Model 3LN44 from W. W. Grainger, Inc., 100 Grainger Parkway, Lake Forest, Ill. 60045-5201. Referring to FIG. 7, elbow 220 is preferably formed of the same conductive plastic as the electrically conductive confined space ventilator conduit of the present invention. A grounding lug 200 can be molded into or bolted thereto. Thus, conventional ventilation system components can be formed of conductive polymeric materials in accordance with the present invention, and integrated into grounded ventilation systems. Hence, for the first time, a confined space ventilator system that includes polymeric components can be continuously connected to ground via all of the system components. Preferably, a grounding lug is provided on blower 100. Since an electric blower will generally include an electrical ground wire, the blower would act as ground for the system. The blower can be further connected to a ground, particularly where it is a pneumatic blower or other blower type used in explosive environments. A mounting plate 240 is also shown in FIG. 7. The mounting plate can be formed of metal or plastic, and includes a hook 242, the latter shown projecting into the hole 28 in tab 27. In a preferred embodiment, the plate 240 is formed of cold-rolled steel, for example ½ thick steel or 11 gauge steel, and is of a sufficient size to firmly anchor a confined space ventilator conduit mounted thereon. For example, the plate may have a base 244 with dimensions of 16 inches by 6 inches by ½ inch, connected to an end flange 246 that is two inches by 6 inches by {fraction (1/2)} inch. Hook 242 can be of {fraction (1/2)} inch diameter and project outward from base 244 about 1¾ inches. In a preferred embodiment, the duct of the present invention is formed via a rotational molding process. Rotational molding permits seamless hollow molds to be formed by bi-axial rotation of a heated mold containing a moldable material. In a preferred process, a powder of conductive polyethylene polymer, such as ICORENE® C517, is inserted into a mold, and the mold heated and rotated until the polymer is melted and distributed about the interior of the mold. The mold is then cooled and the device further processed to remove excess material. The preferred polymer feed stock is a 500 micron powder, which has good flow and melting characteristics. A preferred process to create a final product weighing approximately 6 pounds starts with about 7.5 pounds of conductive polymer powder being loaded into a cast aluminum mold. The mold is formed using conventional techniques known to those of skill in the art. The mold is rotated while heated to between about 550 and about 650 degrees Fahrenheit (° F.). Generally, about 15 minutes of the heated rotation step is sufficient to distribute the molten polymer inside the mold, and this step is followed by a cooling rotation step which preferably takes approximately the same time as the heated rotation step. Cooling is facilitated by spraying water onto the mold while continuing to rotate the mold. Ambient temperatures, the desired thickness of the molded product, and the particular polymer powder used will affect the time and temperatures for these molding steps as is known to those of skill in the art. Following release of the mold, a computer numerical controlled router (“CNC router”) can be used to remove excess plastic from the product, particularly from the openings at either end of the confined space ventilator conduit at the cylindrical end portions. Suitable rotational molding and post-molding processing equipment can be obtained from Ferry Industries, Inc., 4445 Allen Road, Stow, Ohio 44224-1093 USA. Referring to FIG. 8, each outer section 22 is attachable to flexible hosing or other conduits leading to a blower 100 at one end, and to any position in an enclosure at the other end as desired by the person(s) working therein. Typically, blowers utilized for ventilating manholes comprise air blowers rated at about 1000 to about 1500 cubic feet per minute (CFM), and typically generate a flow rate of about 700-800 CFM. A grounded conductive ventilation system of the present invention may comprise an electrically conductive rigid walled confined space ventilator conduit of the present invention, an electrically conductive rigid walled elbow conduit formed of the same material as the forgoing conduit, other conductive flexible hosing, a blower, and conductive wire for connecting the conduits to the blower and/or another ground source. For conductive hosing not formed of a substantially rigid conductive polymer or other suitable non-metallic material in accordance with the present invention, it is preferred to use hosing supplied with a continuous metal helix and a static ground wire connected to the helix. A preferred grounding wire is formed of steel. A {fraction (1/16)}″ galvanized steel wire has been found adequate for grounding common ventilation system setups in accordance with the present invention, for example, when ventilating a manhole with a 1000 to 1500 CFM blower. A suitable grounding wire is available from Carol Cable Co., Highland Heights, Ky., U.S.A. It is recommended that conductivity of a grounded conductive ventilation system of the present invention be tested before use to ensure that all grounding wires and components are firmed connected. It is preferred that the blower be at least five feet from the access port to the confined space. If the confined space is accessed by a manhole, the manhole cover can be rested upon the mount 240, preferably with the end flange 246 facing upwards, so that the base 244 lies flat on the ground. In this way, the manhole lid can be propped up to facilitate maneuvering. It is preferred that interior walls be smooth and continuous, and that the cross-sectional shapes of the center section of the rigid walled confined space conduit from one end to the other are such that the cross-sectional areas may be substantially constant, so that the air being pumped through the conduit has minimal obstruction or drag. Further, it is desired to maintain the cross-sectional area of the conduit thoughout. Thus the area of the central section in cross-section is preferably substantially the same as the cross-sectional area of the outer sections 22. It has been discovered that the cross-sectional area of the center section of the confined space conduit may be less than the cross-sectional areas of the respective outer cylindrical sections without significant reduction in air flow rate. As will be explained further below, a reduction in cross-sectional area of the central section that results in no more than about a 10 percent reduction in flow rate within a given flow rate range is acceptable. The central axis of each outer section 22 may be considerably offset from the center axis of central section 20 when the confined space conduit is placed in a manhole. Under these conditions, the offsetting of outer sections 22 places them as far outside of the perimeter of the manhole as can practically be permitted. The purpose of this arrangement is to remove as much as possible of the conduit from the manhole area so as to provide a minimum obstruction to a person or equipment entering or leaving through the manhole. The cross-sectional shape of central section 20 is made as thin as possible; i.e., the average distance between the inside surface 30 and the outside surface 31 is as small as possible, so as to provide a minimum obstruction for a person entering or leaving the manhole. Preferably, when the confined space conduit is mounted within a port with the central section of the conduit lying adjacent a peripheral edge of the port, the central section extends toward a radial center of the port less than half that which would occur if the outer section having the cylindrical shape were located within the port and adjacent the same peripheral edge. A tab 27 with an opening 28 passing therethrough is shown projecting laterally outwardly from the outside surface 31 of central section 20. This is provided to cooperate with a pin placed on some manholes for the purpose of suspending equipment therefrom. The conduit can hang vertically on such a pin when the axis of the manhole is vertical. If such a pin is not found on the manhole in the areas of use of this conduit, other means may be provided to make the conduit attachable to the manhole. For example, a tab without an opening could be attached to the manhole rim by a clamp. A pin on the conduit could be attachable to a hole or recess in the vicinity of the manhole rim. Other similar attaching means are also operable. In some instances, e.g., on ships, the manhole may be oval in shape. In this instance, the conduit of this invention will fit into either end of the oval and employ whatever type of hanger means is available, normally, a tab to hang on a pin around the manhole. The length of the central section is of any normal length adapted to span the neck or throat of a manhole or other port as would be understood by those having skill in the art. In a preferred embodiment, the overall length of an electrically conductive confined space ventilation duct of the present invention is 44 inches. The central section is 23.25 inches long, and the maximum distance between the inner surface 30 and outer surface 31 forming the central section is about 3.5 inches. The maximum width in cross section of a cord drawn from the edges of inner surface 30 and outer surface 31 is about 14.5 inches. The intermediate sections have a length of 7.5 inches, leading to end cylindrical sections 2.875 inches in length and having diameters of 8.250 inches. The cylindrical sections are aligned about an axis offset from the center axis of the central section. The connecting edges of the walls forming the inner surface 31 and outer surface 30 of the central section lie in a plane that is one inch from the closest point on the surface of the end cylindrical sections, thus further reducing obstruction of a port into which the duct is placed. The general wall thicknesses are between about 0.1 to about 0.25 inches, although the mounting tab (e.g., tab 27) has a thickness of at least 0.75 inches for extra rigidity. In a preferred embodiment, wall thickness is about 0.15 inches. The mounting tab has a width of about 5.3 inches at its connection to the outer surface 31 tapering to about 3 inches at its outer edge. The hole 28 in tab 27 has a length of about 1.5 inches and a width of about 0.6 inches, and generally centered in the mounting tab. An annular rib (e.g., rib 25) of about 0.15 inches in height and about 0.25 inches wide is provided about 0.6 inches in from the outer edge of each cylindrical portion. In a related aspect of the invention, a process is provided for ventilating enclosures accessed by ports with an electrically conductive ventilation system, which, in its broader aspects, comprises the following steps: providing an electrically conductive confined space ventilation conduit having at least a pair of end sections 22 and a central section 20, the central section having a different cross-sectional shape than the end sections, and wherein the cross-sectional shape of the central section 20 includes an outer curved surface 31 having a second radius substantially the same as or smaller than the radius of the port into which the duct is placed; mounting the conduit within the port so that one end section 22 is located within the enclosure, the central section 20 is located within the opening such that the outer curved surface 30 of the conduit central section lies adjacent the port opening, and the other end section 22 is located outside the enclosure; connecting the other end section 22 to a source of air; and supplying air from the source to the enclosure through the conduit. It will therefore be seen that the present invention provides an electrically conductive confined space ventilation conduit and/or other rigid walled electrically conductive and non-metallic ventilation system conduits, a ventilating system incorporating same and related processes for forming and using same which have numerous advantages and which significantly enhance the ability of workers, etc. to safely enter and exit confined spaces and enclosures accessed by manholes or other ports. EXAMPLE 1 A comparison was made of the ability of a prior SADDLE VENT® confined space ventilation conduit from AIR SYSTEMS INTERNATIONAL® to dissipate electric charge versus a new conductive SADDLE VENT® confined space ventilation conduit of the present invention. Conductivity readings were taken using an ohmmeter set to record resistance in megaohms (i.e., 1×107 Ω) and/or k-ohms (i.e., 1×1030 Ω). Readings in excess of 1×108 Ω were shown as infinite resistance. Electrically conductive confined space ventilator conduits and elbows of the present invention were formed of ICORENE® C517 as set forth above. Lugs were mounted with bolts 37 inches apart and evenly spaced from the ends of the conduit. Contacting the ohmmeter electrodes to the lugs yielded readings of about 10 to 20 k-ohms (i.e., about 10×103 Ω to 20×103 Ω). When the ohmmeter electrodes were contacted with the opposite ends of the conduit, readings of about 140 k-ohms were obtained. A conductive rigid elbow conduit of the present invention was installed at one end of a conductive SADDLE VENT® confined space ventilation conduit of the present invention, and one ohmmeter electrode was contacted with the open end of the conduit and the other electrode contacted with the open end of the elbow; this yielded a reading of about 154 k-ohms. The elbow included a grounding lug, which was located about 42 inches from the distal grounding lug on the conductive SADDLE VENT® confined space ventilation conduit; the resistance measured between these grounding lugs was about 14.5 k-ohms. All comparative readings on the prior art SADDLE VENT® confined space ventilator conduits formed of polyethylene indicated resistance beyond the capabilities of the ohmmeter used. While the inventions have been described with respect to certain specific embodiments, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the inventions. It is intended, therefore, by the appended claims to cover all such modifications and changes as fall within the true spirit and scope of the invention.
<SOH> BACKGROUND AND SUMMARY OF THE INVENTION <EOH>Tanks, sewers, and other enclosures that must be entered periodically require some type of air ventilation system for the men working in the enclosure. Without some type of air ventilation the workers would be required to wear respirators. Previously, the ventilation apparatus used normally included an air pump outside the enclosure and an 8-inch flexible hose leading into the enclosure. However, the normal 24 inch (or smaller) manhole is barely large enough to allow a worker to enter the enclosure with tools and/or materials. When an 8-inch ventilating hose is also located within the manhole, it may prevent the worker from entering the enclosure, and provides an obstruction that tends to catch tools on the worker's belt, with the possibility of damaging the hose or dropping tools on another worker already in the enclosure. A solution to this problem was provided by novel apparatuses and methods described in U.S. Pat. No. 4,794,956 and U.S. Pat. No. 4,982,653, both to Gordon et al, which are specifically incorporated by reference as if reproduced in their entirety herein. The aforementioned patents are assigned to AIR SYSTEMS INTERNATIONAL® of Chesapeake, Va., USA. In one exemplary embodiment, a rigid-walled confined space ventilation conduit comprises a central section having a cross section in the shape of a crescent or a segment of a circle, two intermediate sections attached respectively to each end of the central section, and each having a cross-sectional shape varying from the shape of the central section at the juncture with said central section, and tapering to a circular shape at the outer end of the associated intermediate section. The conduit also includes two outer cylindrical sections, respectively attached to the outer end of each of the intermediate sections, the outer sections being externally aligned on a common axis offset from the center of the central section. As a result of this construction, it is possible to reduce the cross-sectional obstruction of a relatively small manhole, i.e., with about a 20 inch diameter, to about 10 percent of the cross-sectional area of the manhole, as compared to about 35 percent obstruction for a standard 8 inch diameter hose. For larger manholes, the percent obstruction using the conduit of this invention may be substantially less than 10 percent. In an exemplary embodiment, an outer surface of the central section is cylindrical and has substantially the same diameter as the diameter of the manhole in which the conduit is used. In the interest of economy, however, it is practical to utilize a standard size conduit which will fit virtually all conventional manholes. For example, a central section having a radius of curvature conforming to the perimeter of a manhole of smaller radius may be effectively utilized in all larger manholes as well. In a preferred embodiment of the aforementioned invention, the cross-sectional area of the central section may be reduced in comparison to the outer cylindrical sections, but only to the extent of causing a reduction of not more than about 10 percent in air flow rate. The aforementioned invention also included mounting means at the outer surface of the central section of the conduit so that the conduit may be hung or otherwise attached at a manhole opening. A related process for using the aforementioned invention in ventilating a confined space via a port includes the steps of providing a rigid-walled confined space ventilation conduit as described above, locating the duct so that one outer end and an associated intermediate section lie outside the enclosure, the other outer end and its associated intermediate section lie inside the enclosure, and the central section extends through the port (e.g., manhole); and operatively connecting the conduit to an external source of air, such as a pump or blower via flexible hosing. A high quality commercial embodiment of the confined space ventilation conduit described in the aforementioned patents is sold as the SADDLE VENT® confined space ventilator conduit by AIR SYSTEMS INTERNATIONAL®, 821 Juniper Crescent, Chesapeake, Va., 23320, U.S.A. (telephone 800-866-8100). A typical SADDLE VENT® confined space ventilator conduit produced in the past has been formed of polyethylene. Since polyethylene has very low electrical conductivity—it may be considered an electrical insulator—it allows static electricity to build up on the surface of the device; a static electric charge may also build up on other non-conductive ventilation ducting. Under dry and dusty work conditions the build-up of static electricity can discharge to metal surfaces or other grounded surfaces causing a spark in a work area. Ventilation conduits are often used in petroleum and chemical storage tanks and in municipal sewers that can all contain explosive chemical vapors. Under certain conditions the static build-up on a ventilation duct could lead to an explosion or fire. It is therefore desirable to have a confined space ventilation conduit that is electrically conductive and that is readily able to form an electrical circuit with a grounded source in order to dissipate static electricity and other electric charges. A confined space ventilator conduit is defined herein as a rigidly-walled fluid conduit that has at least a hollow first section having other than a full circle shape in cross section, wherein the conduit can be used to ventilate an enclosure accessed via a port (e.g., a manhole) with less obstruction of the port than if the first section had a hollow full circle cross section of equal area. Exemplary confined space ventilator conduits are described in the aforementioned patents. Forming confined space ventilator and other ventilation system ducting of metal is not satisfactory for many purposes, as the metal generally does not rebound from dents or crushing forces, and/or can spark when engaging certain surfaces. Further, the raw materials for metal construction can be more expensive than plastic and metal conduits can be much harder to fabricate, particularly a confined space ventilator conduit that has a non-circular cross-section or a rigid-walled elbow joint for a ventilator system. Thus, plastic has been preferred over metal for forming confined space ventilator conduits, such as the SADDLE VENT® confined space ventilator conduit from AIR SYSTEMS INTERNATIONAL®. Although the plastics used are not conductive, they have high mechanical strength, are readily moldable to form a unitary seamless device, and have great durability. The prior art did not recognize and provide a solution for the potential for static electricity buildup on non-conductive confined space ventilator conduits and other respiratory conduits. Creation of non-metallic electrically conductive respiratory system conduits and in particular a confined space ventilator conduit faced many challenges. Conductive polymers are rare, expensive, and difficult to fabricate, can result in devices with unacceptable mechanical strength, and/or are otherwise impracticable to use. Blending of conductive materials with a suitable polymer faced similar consequences, and/or would result in unacceptable tradeoffs between mechanical strength and durability in order to get a sufficiently conductive product. The prior art does not provide a confined space ventilation system with a continuous electrical connection from the distal end of a flexible hose or conduit inside a confined space, through a confined space ventilator conduit, and to a blower via non-metallic components. While a grounding wire may carry charge past a non-conductive system component, electric charge may still build up on non-conductive components sufficient to create a hazardous condition. Therefore, objects of this invention are to provide durable and electrically conductive ventilator conduits and an electrically conductive confined space ventilator conduit formed of a polymeric material, and to create processes for using same to ventilate an enclosure via a port into an enclosure and for grounding these components. A further object is to provide a ventilator system incorporating conductive conduits throughout to provide for a continuous electric connection via the length of a confined space ventilator system from a blower and into a confined space. It is another object of this invention to provide a non-metallic electrically conductive confined space ventilator conduit that will not obstruct more than about ten percent of the cross-sectional area of a confined space port (e.g., manhole), without any significant reduction in air flow (e.g., less than about 10% reduction) through all sections of the confined space ventilation conduit and connecting hosing and rigid conduits. Still other objects will become apparent in the more detailed description which follows. These and other objects of the invention are accomplished by a confined space ventilation conduit (conduit and duct may be used interchangeably herein) formed of an electrically conductive polymer, and having the general confined space ventilator conduit geometry described above. The non-metallic electrically conductive confined space ventilation conduit of the present invention, also referred to herein as a conductive SADDLE VENT® conduit, preferably includes at least one grounding lug for connecting an electrically conductive grounding wire to the conduit, so that an electric charge can be conducted from the conduit to electric ground. In an embodiment, two grounding lugs are provided at opposite ends of the conductive confined space ventilator conduit of the present invention for series connection of the duct into a corresponding grounding circuit. Another embodiment of the present invention is directed to an electrically conductive rigid walled conduit, formed of a non-metallic material, for use in constructing an electrically conductive ventilation system, with a preferred embodiment including a rigid walled electrically conductive ventilation conduit elbow. Preferably, the elbow includes at least one grounding lug. The conductive confined space ventilation conduit of the present invention is preferably designed for serial connection into a ventilation system, and is preferably grounded to a blower forming part of a ventilation system, wherein the blower is electrically grounded. A preferred ventilation system includes the electrically conductive confined space ventilation duct of the present invention connected to hosing of conventional cylindrical cross-section, with rigid elbows where needed. The other conduits and elbows are preferably formed of an electrically conductive polymer or other electrically conductive material. Grounding lugs may also be formed into or firmly connected to the other electrically conductive ventilation system conduits. In an embodiment, at least one grounding wire is connected serially to the grounding lugs and to electrically conductive components to maintain a complete circuit to ground. Hence, non-conductive ventilation system components can be bypassed to complete the ground circuit, although it is preferred that all hollow components forming the ducting of a ventilation system of the present invention be electrically conductive. In an embodiment, a conductive coating is applied to non-metallic ventilation system ducting components to provide conductivity. In another embodiment, the present invention includes an electrically conductive, non-metallic conduit for a ventilation system that comprises a rigid conduit formed of a material that is at least electrically dissipative. A preferred material is an ethylene-butene copolymer polyethylene resin with a conductive additive. In one embodiment, the conduit comprises a hollow first section having other than a full circle shape in cross section. In another embodiment, a conductive conduit of the present invention comprises a cylindrical section bent at an approximately ninety degree angle.
<SOH> BACKGROUND AND SUMMARY OF THE INVENTION <EOH>Tanks, sewers, and other enclosures that must be entered periodically require some type of air ventilation system for the men working in the enclosure. Without some type of air ventilation the workers would be required to wear respirators. Previously, the ventilation apparatus used normally included an air pump outside the enclosure and an 8-inch flexible hose leading into the enclosure. However, the normal 24 inch (or smaller) manhole is barely large enough to allow a worker to enter the enclosure with tools and/or materials. When an 8-inch ventilating hose is also located within the manhole, it may prevent the worker from entering the enclosure, and provides an obstruction that tends to catch tools on the worker's belt, with the possibility of damaging the hose or dropping tools on another worker already in the enclosure. A solution to this problem was provided by novel apparatuses and methods described in U.S. Pat. No. 4,794,956 and U.S. Pat. No. 4,982,653, both to Gordon et al, which are specifically incorporated by reference as if reproduced in their entirety herein. The aforementioned patents are assigned to AIR SYSTEMS INTERNATIONAL® of Chesapeake, Va., USA. In one exemplary embodiment, a rigid-walled confined space ventilation conduit comprises a central section having a cross section in the shape of a crescent or a segment of a circle, two intermediate sections attached respectively to each end of the central section, and each having a cross-sectional shape varying from the shape of the central section at the juncture with said central section, and tapering to a circular shape at the outer end of the associated intermediate section. The conduit also includes two outer cylindrical sections, respectively attached to the outer end of each of the intermediate sections, the outer sections being externally aligned on a common axis offset from the center of the central section. As a result of this construction, it is possible to reduce the cross-sectional obstruction of a relatively small manhole, i.e., with about a 20 inch diameter, to about 10 percent of the cross-sectional area of the manhole, as compared to about 35 percent obstruction for a standard 8 inch diameter hose. For larger manholes, the percent obstruction using the conduit of this invention may be substantially less than 10 percent. In an exemplary embodiment, an outer surface of the central section is cylindrical and has substantially the same diameter as the diameter of the manhole in which the conduit is used. In the interest of economy, however, it is practical to utilize a standard size conduit which will fit virtually all conventional manholes. For example, a central section having a radius of curvature conforming to the perimeter of a manhole of smaller radius may be effectively utilized in all larger manholes as well. In a preferred embodiment of the aforementioned invention, the cross-sectional area of the central section may be reduced in comparison to the outer cylindrical sections, but only to the extent of causing a reduction of not more than about 10 percent in air flow rate. The aforementioned invention also included mounting means at the outer surface of the central section of the conduit so that the conduit may be hung or otherwise attached at a manhole opening. A related process for using the aforementioned invention in ventilating a confined space via a port includes the steps of providing a rigid-walled confined space ventilation conduit as described above, locating the duct so that one outer end and an associated intermediate section lie outside the enclosure, the other outer end and its associated intermediate section lie inside the enclosure, and the central section extends through the port (e.g., manhole); and operatively connecting the conduit to an external source of air, such as a pump or blower via flexible hosing. A high quality commercial embodiment of the confined space ventilation conduit described in the aforementioned patents is sold as the SADDLE VENT® confined space ventilator conduit by AIR SYSTEMS INTERNATIONAL®, 821 Juniper Crescent, Chesapeake, Va., 23320, U.S.A. (telephone 800-866-8100). A typical SADDLE VENT® confined space ventilator conduit produced in the past has been formed of polyethylene. Since polyethylene has very low electrical conductivity—it may be considered an electrical insulator—it allows static electricity to build up on the surface of the device; a static electric charge may also build up on other non-conductive ventilation ducting. Under dry and dusty work conditions the build-up of static electricity can discharge to metal surfaces or other grounded surfaces causing a spark in a work area. Ventilation conduits are often used in petroleum and chemical storage tanks and in municipal sewers that can all contain explosive chemical vapors. Under certain conditions the static build-up on a ventilation duct could lead to an explosion or fire. It is therefore desirable to have a confined space ventilation conduit that is electrically conductive and that is readily able to form an electrical circuit with a grounded source in order to dissipate static electricity and other electric charges. A confined space ventilator conduit is defined herein as a rigidly-walled fluid conduit that has at least a hollow first section having other than a full circle shape in cross section, wherein the conduit can be used to ventilate an enclosure accessed via a port (e.g., a manhole) with less obstruction of the port than if the first section had a hollow full circle cross section of equal area. Exemplary confined space ventilator conduits are described in the aforementioned patents. Forming confined space ventilator and other ventilation system ducting of metal is not satisfactory for many purposes, as the metal generally does not rebound from dents or crushing forces, and/or can spark when engaging certain surfaces. Further, the raw materials for metal construction can be more expensive than plastic and metal conduits can be much harder to fabricate, particularly a confined space ventilator conduit that has a non-circular cross-section or a rigid-walled elbow joint for a ventilator system. Thus, plastic has been preferred over metal for forming confined space ventilator conduits, such as the SADDLE VENT® confined space ventilator conduit from AIR SYSTEMS INTERNATIONAL®. Although the plastics used are not conductive, they have high mechanical strength, are readily moldable to form a unitary seamless device, and have great durability. The prior art did not recognize and provide a solution for the potential for static electricity buildup on non-conductive confined space ventilator conduits and other respiratory conduits. Creation of non-metallic electrically conductive respiratory system conduits and in particular a confined space ventilator conduit faced many challenges. Conductive polymers are rare, expensive, and difficult to fabricate, can result in devices with unacceptable mechanical strength, and/or are otherwise impracticable to use. Blending of conductive materials with a suitable polymer faced similar consequences, and/or would result in unacceptable tradeoffs between mechanical strength and durability in order to get a sufficiently conductive product. The prior art does not provide a confined space ventilation system with a continuous electrical connection from the distal end of a flexible hose or conduit inside a confined space, through a confined space ventilator conduit, and to a blower via non-metallic components. While a grounding wire may carry charge past a non-conductive system component, electric charge may still build up on non-conductive components sufficient to create a hazardous condition. Therefore, objects of this invention are to provide durable and electrically conductive ventilator conduits and an electrically conductive confined space ventilator conduit formed of a polymeric material, and to create processes for using same to ventilate an enclosure via a port into an enclosure and for grounding these components. A further object is to provide a ventilator system incorporating conductive conduits throughout to provide for a continuous electric connection via the length of a confined space ventilator system from a blower and into a confined space. It is another object of this invention to provide a non-metallic electrically conductive confined space ventilator conduit that will not obstruct more than about ten percent of the cross-sectional area of a confined space port (e.g., manhole), without any significant reduction in air flow (e.g., less than about 10% reduction) through all sections of the confined space ventilation conduit and connecting hosing and rigid conduits. Still other objects will become apparent in the more detailed description which follows. These and other objects of the invention are accomplished by a confined space ventilation conduit (conduit and duct may be used interchangeably herein) formed of an electrically conductive polymer, and having the general confined space ventilator conduit geometry described above. The non-metallic electrically conductive confined space ventilation conduit of the present invention, also referred to herein as a conductive SADDLE VENT® conduit, preferably includes at least one grounding lug for connecting an electrically conductive grounding wire to the conduit, so that an electric charge can be conducted from the conduit to electric ground. In an embodiment, two grounding lugs are provided at opposite ends of the conductive confined space ventilator conduit of the present invention for series connection of the duct into a corresponding grounding circuit. Another embodiment of the present invention is directed to an electrically conductive rigid walled conduit, formed of a non-metallic material, for use in constructing an electrically conductive ventilation system, with a preferred embodiment including a rigid walled electrically conductive ventilation conduit elbow. Preferably, the elbow includes at least one grounding lug. The conductive confined space ventilation conduit of the present invention is preferably designed for serial connection into a ventilation system, and is preferably grounded to a blower forming part of a ventilation system, wherein the blower is electrically grounded. A preferred ventilation system includes the electrically conductive confined space ventilation duct of the present invention connected to hosing of conventional cylindrical cross-section, with rigid elbows where needed. The other conduits and elbows are preferably formed of an electrically conductive polymer or other electrically conductive material. Grounding lugs may also be formed into or firmly connected to the other electrically conductive ventilation system conduits. In an embodiment, at least one grounding wire is connected serially to the grounding lugs and to electrically conductive components to maintain a complete circuit to ground. Hence, non-conductive ventilation system components can be bypassed to complete the ground circuit, although it is preferred that all hollow components forming the ducting of a ventilation system of the present invention be electrically conductive. In an embodiment, a conductive coating is applied to non-metallic ventilation system ducting components to provide conductivity. In another embodiment, the present invention includes an electrically conductive, non-metallic conduit for a ventilation system that comprises a rigid conduit formed of a material that is at least electrically dissipative. A preferred material is an ethylene-butene copolymer polyethylene resin with a conductive additive. In one embodiment, the conduit comprises a hollow first section having other than a full circle shape in cross section. In another embodiment, a conductive conduit of the present invention comprises a cylindrical section bent at an approximately ninety degree angle.
20041103
20081223
20050324
63900.0
1
BRINSON, PATRICK F
ELECTRICALLY CONDUCTIVE CONFINED SPACE VENTILATOR CONDUIT FORMED OF CONDUCTIVE POLYMER, ELECTRICAL GROUNDING CIRCUIT FOR VENTILATION SYSTEM USING SAME, AND METHODS OF USING AND FORMING SAME
SMALL
1
CONT-ACCEPTED
2,004
10,981,591
ACCEPTED
Method and system for network wide fault isolation in an optical network
A method and system for network wide fault isolation in an optical network are described. A single fault in a network can produce a large number of alarms at different points in an optical network. The described method and system identify the root cause alarm while masking all correlated alarms. In the embodiment of the invention, the method and system are based on a wavelength tracker technology allowing identification and tracking of individual channels in the optical network.
1. A method for network wide fault isolation in an optical network having Optical Channel (OCh) paths, each OCh path comprising a sequence of ports, the method comprising the steps of: identifying root cause alarms in the optical network; and displaying said root cause alarms. 2. A method as claimed in claim 1, wherein the step of identifying the root cause alarms in the optical network comprises the steps of: constructing a list of all affected OCh paths in the optical network; and analyzing the OCh paths in said list. 3. A method as claimed in claim 2, wherein the step of analyzing the OCh paths in said list, comprises the steps of: masking alarms in the OCh paths in transmit direction; and masking alarms in the OCh paths in receive direction. 4. A method as claimed in claim 3, wherein the step of masking alarms in the OCh path in the transmit direction comprises the step of analyzing alarms at the ports on the OCh path in the transmit direction. 5. A method as claimed in claim 4, wherein the step of analyzing alarms comprises the steps of: preparing a list of the alarms present at each port on the OCh path in the transmit direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. 6. A method as claimed in claim 5, wherein for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. 7. A method as claimed in claim 3, wherein the step of masking alarms in the OCh path in the receive direction comprises the step of analyzing alarms at the ports on the OCh path in the receive direction. 8. A method as claimed in claim 7, wherein the step of analyzing alarms comprises the steps of: preparing a list of the alarms present at each port on the OCh path in the receive direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. 9. A method as claimed in claim 8, wherein for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. 10. A method as claimed in claim 1, wherein the step of displaying said root cause alarms comprises the step of displaying remaining unmasked alarms. 11. A method for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey, generated by Wavelength Tracker, the method comprising the steps of: identifying root cause alarms in the optical network; and displaying said root cause alarms. 12. A method as claimed in claim 11, wherein the step of identifying the root cause alarms in the optical network with EMS comprises the step of masking non-root cause alarms in the OCh paths in the optical network. 13. A system for network wide fault isolation in an optical network, wherein the optical network contains OCh paths, each OCh path comprising a sequence of ports, the system comprising: means for identifying root cause alarms in the optical network; and a display unit for displaying said root cause alarms. 14. A system as claimed in claim 13, wherein the means for identifying the root cause alarms in the optical network comprises: means for constructing a list of all affected OCh paths in the optical network; and means for analyzing the OCh paths in said list. 15. A system as claimed in claim 14, wherein the means for analyzing the OCh paths in said list comprises: means for masking alarms in the OCh path in transmit direction; and means for masking alarms in the OCh path in receive direction. 16. A system as claimed in claim 15, wherein the means for masking alarms in the OCh path in the transmit direction comprises means for analyzing alarms at the ports on the OCh path in the transmit direction. 17. A system as claimed in claim 16, wherein the means for analyzing alarms in the transmit direction comprises: means for preparing a list of the alarms present at each port on the OCh path in the transmit direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. 18. A system as claimed in claim 17, wherein for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. 19. A system as claimed in claim 15, wherein the means for masking alarms in the OCh path in the receive direction comprises means for analyzing alarms in each port on the OCh path in the receive direction. 20. A system as claimed in claim 19, wherein the means for analyzing alarms comprises: means for preparing a list of the alarms present at each port on the OCh path in the receive direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. 21. A system as claimed in claim 20, wherein for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. 22. A system as claimed in claim 13, wherein the display unit for displaying said root cause alarms comprises means for displaying remaining unmasked alarms. 23. A system for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, and the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey generated by Wavelength Tracker, the system comprising: means for identifying root cause alarms in the optical network with EMS; and a display unit for displaying said root cause alarms. 24. A system as claimed in claim 23, wherein the means for identifying root cause alarms in the optical network with EMS comprises means for masking non-root cause alarms in the OCh paths in the optical network.
FIELD OF INVENTION The invention relates to optical communication systems, and in particular to a method and system for network wide fault isolation in an optical network. BACKGROUND OF INVENTION An optical network is subject to intermittent faults that may raise alarms in the system. A single fault in the system can however give rise to multiple alarms detected at multiple points in the network. Finding the root cause alarm corresponding to the fault that has triggered these alarms is important for fault isolation and repair. In the absence of an automatic fault isolation system, the network operator has to manually go through the list of alarms and identify the root cause alarm triggered by a fault that needs to be alleviated. This can be a long and arduous task in large networks. It cannot only overwhelm even an experienced network operator but can also increase the time for the detection of the failure. This in turn can significantly increase the time required for returning service to the network. Alarm correlation has been addressed by prior art. U.S. Pat. No. 6,707,795 B1 to Noorhooseini et al. issued Mar. 16, 2004, which describes an alarm correlation method for use in a network management device. Using a hierarchical network model, the method performs a correlation between the root cause alarm and other alarms raised by network elements that satisfy particular relationships with the network element that produced the root cause alarm. Another method and apparatus for incremental alarm correlation is described in the U.S. Pat. No. 6,604,208 B1 to Gosselin et al. issued Aug. 5, 2003. The method partitions the alarms into correlation sets in such a way that the alarms within a set have a high probability of being caused by the same network fault. Partitioning of alarms is also performed by an invention described in the U.S. Pat. No. 6,253,339 B1 to Tse et al. issued Jun. 26, 2001. This patent provides a method and system for correlating alarms for a number of network elements. The system uses an alarm correlator that partitions the alarms into correlated alarm clusters. The clusters are constructed in such a way that the alarms in a given cluster have a high probability of being caused by the same network fault. A method for processing data such as alarms concerns U.S. Pat. No. 6,356,885 B2 to Ross et al. issued Mar. 12, 2002. The method performs alarm correlation for a set of managed units. When one of the managed units is notified of an event such as an alarm, the cause of an alarm is determined by using a virtual model. The model comprises the managed units corresponding to the network entities. Each unit contains information about the services offered and received by its entity to and from other entities. A unit uses its knowledge-based reasoning capacity for adapting the model by using this information. Yet another method and apparatus for fault correlation in a networking system is described in U.S. Pat. No. 6,006,016 to Faigon et al. issued Dec. 21, 1999. In this patent, occurrences of faults are detected and correlated by using a set of rules that are based on the number of times a specific fault event is generated during a time threshold. A number of algorithms for alarm correlation and the determination of the possible location of faults in a large communication network is presented in U.S. Pat. No. 5,309,448 to Bouloutas et al. issued May 3, 1994. The techniques described in this patent differ in the degree of accuracy in fault location and in their algorithmic complexity. Fault correlation in packet switched networks is considered in U.S. Pat. No. 5,949,759 to Cretegny et al. issued Sep. 7, 1999. It describes a method that registers a failure in a high-speed packet switched network such that the failure information can be retrieved by the network management system. Notification of faults and load balancing of the data traffic among multiple paths in an overlay mesh network is described in U.S. Pat. No. 6,725,401 B1 to Lindhorst-Ko issued Apr. 20, 2004. The above cited prior art indicates that there have been multiple attempts to solve the problem of identifying faults but there is still a need in the industry for further developments of an efficient method and system for identifying and isolating faults in the network. SUMMARY OF THE INVENTION Therefore there is an objective of the invention to provide a system and method for determining a root cause alarm in an optical communication system while suppressing other correlated alarms. A method for network wide fault isolation in an optical network having Optical Channel (OCh) paths, (each OCh path comprising a sequence of ports), the method comprising the steps of identifying root cause alarms in the optical network; and displaying said root cause alarms. The step of identifying the root cause alarms in the optical network comprises the steps of constructing a list of all affected OCh paths in the optical network and analyzing the OCh paths in said list. The step of analyzing the OCh paths in said list, comprises the steps of masking alarms in the OCh paths in the transmit direction and masking alarms in the OCh paths in the receive direction. The step of masking alarms in the OCh path in the transmit direction comprises the step of analyzing alarms at the ports on the OCh path in the transmit direction. The step of analyzing alarms in the transmit direction comprises the steps of preparing a list of the alarms present at each port on the OCh path in the transmit direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. For a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. The step of masking alarms in the OCh path in the receive direction comprises the step of analyzing alarms at the ports on the OCh path in the receive direction. The step of analyzing alarms comprises the steps of preparing a list of the alarms present at each port on the OCh path in the receive direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. The step of displaying said root cause alarms comprises the step of displaying remaining unmasked alarms. A method for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey, generated by Wavelength Tracker, the method comprising the steps of identifying root cause alarms in the optical network and displaying said root cause alarms. The step of identifying the root cause alarms in the optical network with EMS comprises the step of masking non-root cause alarms in the OCh paths in the optical network. A system for network wide fault isolation in an optical network, wherein the optical network contains OCh paths, (each OCh path comprising a sequence of ports), the system comprising means for identifying root cause alarms in the optical network and a display unit for displaying said root cause alarms. The means for identifying the root cause alarms in the optical network comprises: means for constructing a list of all affected OCh paths in the optical network and means for analyzing the OCh paths in said list. The means for analyzing the OCh paths in said list comprises means for masking alarms in the OCh path in the transmit direction and means for masking alarms in the OCh path in the receive direction. The means for masking alarms in the OCh path in the transmit direction comprises means for analyzing alarms at the ports on the OCh path in the transmit direction. The means for analyzing alarms in the transmit direction comprises: means for preparing a list of the alarms present at each port on the OCh path in the transmit direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. In the system, for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. The means for masking alarms in the OCh path in the receive direction comprises means for analyzing alarms in each port on the OCh path in the receive direction. The means for analyzing alarms comprises: means for preparing a list of the alarms present at each port on the OCh path in the receive direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. The display unit for displaying said root cause alarms comprises means for displaying remaining unmasked alarms. A system for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, and the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey generated by Wavelength Tracker, the system comprising: means for identifying root cause alarms in the optical network with EMS; and a display unit for displaying said root cause alarms. The means for identifying root cause alarms in the optical network with EMS comprises means for masking non-root cause alarms in the OCh paths in the optical network. BRIEF DESCRIPTION OF THE DRAWINGS Further features and advantages of the invention will be apparent from the following description of the embodiment, which is described by way of example only and with reference to the accompanying drawings in which: FIG. 1 presents the Entity-Relationship Diagram used in fault correlation; FIG. 2 shows a flowchart that illustrates the steps of the method for network wide fault isolation in an optical network; FIG. 3 shows a flowchart that illustrates the step Analyze (212) of the method of FIG. 2 in more detail; and FIG. 4 shows a flowchart that illustrates the steps of Mask_Alarm used in the steps 304 and 308 of FIG. 3 in more detail. DETAILED DESCRIPTION OF THE EMBODIMENT OF THE INVENTION To provide network wide fault isolation, it is necessary to identify a single point of failure in the network, e.g. based on a number of active alarms, while masking the non-root cause alarms from the operator's view at the Element Management System (EMS). The EMS is the management system for network elements (NEs). The fault isolation system and method according to the embodiment of this invention are focused on the alarms raised at the optical channel (OCh) layer. Monitoring of faults that give rise to alarms in the OCh layer is achieved by using Tropic Network's Wavelength Tracker Technology. A light path to be monitored on an optical network can be identified by using Wavelength Tracker. The Wavelength Tracker technology applies a unique optical signature to each wavelength (channel) at the Dense Wavelength Division Multiplexing (DWDM) layer. The unique optical signature includes a low frequency modulation of one or more dither tones onto the optical channel, which uniquely identify the optical channel. This optical signature (also called a Wavekey) is applied to the optical channel at the source node of the light path. The optical signature is detectable at intermediate nodes on the light path via inexpensive decoders present on line cards. Detection of the optical signature is accomplished without an Optical-Electrical-Optical (OEO) conversion at intermediate nodes, thus resulting in a cost-effective solution. Wavelength Tracker technology is used for a variety of applications including optical power monitoring and loss of light avoidance. The technology for generating and detecting Wavekeys has been described in U.S. patent application Ser. No. 09/963,501 by Obeda, P. D., et al, entitled “Topology Discovery in Optical WDM Networks”, filed on 27 Sep. 2001. The fault isolation system and method according to the embodiment of this invention are concerned with both light path and protocol related alarms. There are three levels of alarms in the system: OCh, port and card. The light path related category consists of all the three levels of alarms whereas the protocol related alarms are port level alarms. Masking of non-root cause alarms is based on alarm correlation. The alarm correlation service implemented in the embodiment of this invention concentrates on alarms that includes the alarms associated with: Loss of light and/or optical Loss-Of-Service (LOS) Missing, unexpected, and insertion of Wavekeys Power alarms based on Wavekeys SONET alarms: Loss-Of-Service (LOS) Loss-Of-Clock (LOC) Loss-Of-Frame (LOF) Due to their nature, unexpected Wavekey alarms will only correlate to themselves along a light path. A Wavekey alarm is an alarm generated using the Wavekey technology. Examples of Wavekey alarms include: Missing Wavekey—the Wavekey was expected at this detection point but is missing. The presence of this alarm implies that an OCh channel is missing or mis-provisioned. Unexpected Wavekey—a Wavekey that was not expected has been detected. Power Out of Range—the power level of an OCh is out of the expected range Duplicate Wavekey—multiple OChs are using the same Wavekey signature As correlated alarms (raise/clear) are received by the EMS, the fault system notifies an alarm correlation service of the affected OChs. Periodically, on predetermined intervals, the alarm correlation service will look at any newly affected OCh path and perform an alarm correlation action along the path. As alarms are correlated, the root cause alarm will be given the severity of the highest alarm that it is correlated with. Before describing the method of the embodiment of the invention that concerns this alarm correlation and the displaying of the root cause alarms, masking of correlated alarms is explained. In general, OCh alarms can mask OCh alarms, port level alarms can mask port level as well as OCh alarms and card level alarms can also mask port level and OCh alarms. There are special cases that are handled by a set of rules. For example, PowerOutOfRange (OCh alarm) may mask a port level alarm if a single light path is present. Another example concerns the LOS alarm. If an LOS alarm is raised, the corresponding light path is walked and LOS alarms are masked on the way until the light path crosses a card. If the card does not add light then the LOS alarms are masked as the walk continues. If the card does add light then LOS alarm is not masked. A specific alarm (OCh or port level or card level) can mask one or more alarms. The information regarding which alarms are masked by a given alarm is captured in an alarm masking hierarchy presented in the Entity-Relationship diagram of FIG. 1. The FIG. 1 displays the alarm masking hierarchy used in alarm correlation. Each box is labeled with a specific alarm, and the arrows indicate a “masks” relationship. The entity at the head of the arrow is masked by the entity at the tail of the arrow. For example, the Loss-Of-Light (LOL) alarm on an OCh path masks any Missing Wavekey alarm. The masks relationship is transitive. Thus if a masks b and b masks c then a will mask c. For example a LOL will mask a PowerOutOfRange. It is to be noted that an alarm can mask another alarm of the same class. For example, an alarm in the MissingWavekey or the PowerOutOfRange class will mask other alarms in the MissingWavekey or PowerOutOfRangle class respectively. This is captured by using the same entity at the head and tail of an arrow. Note that an alarm b can be masking alarm c while it can be masked by another higher-level alarm a in the hierarchy presented in the Entity-Relationship diagram. The unique optical monitoring capabilities of Wavelength Tracker allows for fault/power monitoring in multiple detection points along a path spanning multiple network elements (NEs) such as switch nodes, service nodes, cross connects or the like. A failure at the fiber, card, port or wavelength level (for example, cut, dirty, bend, misfibering) can cause multiple downstream alarms to appear at multiple NEs. Thus at the EMS, a number of NEs may appear to have active alarms. The EMS in an optical network has a unique view of the network topology and Wavelength Tracker data that allows to explicitly relating alarms to a specific wavelength on a specific fiber. The wavelength identification allows for deterministic and accurate fault isolation. The EMS view makes it possible to make a connection between OCh channels and the fibers, card, and ports they pass through. The channel view allows the propagation of fault analysis from the Synchronous Optical Network (SONET) layer to the OCh layer and then up to the equipment layer. Since the EMS has access to topology information (and is aware of the changes in topology), fault isolation of the embodiment of the invention is triggered based on topology changes and not just the raising and clearing of faults. In addition, the fault isolation is not necessarily service based. That is, a higher-level circuit (i.e. SONET Trail) does not have to be defined to allow the fault isolation mechanism to traverse the OCh topology. The embodiment of the invention identifies the root cause alarms and subsequent correlated alarms that are masked from the normal fault view. The method for network wide fault isolation in an optical network that identifies root cause alarms and the masking of other correlated alarms are explained with the help of the flowchart presented in FIG. 2. Upon start (box 201) the method generates a list L containing all the affected OCh paths (box 204). Current Path is set to be the path at the head of the list L (box 208). The alarms in this path are processed by calling a procedure called Analyze on Current Path (box 212). After the procedure Analyze 212 returns, the value of Current Path is checked (box 216). If Current Path is the path at the tail of list L, it means that the entire list has been searched and the procedure exits YES from box 216. All the alarms that remain unmasked at this stage are the root cause alarms and are displayed (box 224). The procedure terminates at box 228. If Current Path is not the path at the tail of list L (box 216), the procedure exits NO from box 216. Current Path is set equal to the next path in L (box 220), and the procedure loops back to the entry of step 212 to analyze the alarms in this path. Procedure Analyze 212 is explained in more detail with the help of the flowchart presented in FIG. 3. An OCh path is associated with a path in the transmit direction and a separate path in the receive direction. Upon start (box 300) the procedure Analyze calls the procedure Mask_Alarm in the transmit direction first (box 304), and in the receive direction next (box 308). When the last call to Analyze is complete, the procedure terminates (box 312). Mask_Alarm (box 304 or 308) masks all correlated non-root cause alarms in a given path and is explained in more detail in the next paragraph and with reference to FIG. 4. The flowchart presented in FIG. 4 expands the steps underlying the procedure Mask_Alarm used in the steps 304 or 308 of FIG. 3 above. By a way of example, we will refer to the Mask_Alarm in the Transmit direction (box 304), although it is understood that same steps to be performed in the Mask_Alarm in the Receive direction (box 308). Path, the parameter for the procedure is characterized by a sequence of ports that are processed in sequence. Upon start (box 400) the procedure called Mask_Alarm sets P equal to the first port on the path (box 404). A list of relevant alarms is then gathered at P (box 408) and checked (box 412). If no OCh alarm is found, the procedure exits NO from box 412 and checks for the existence of a port level alarm (box 416). If an OCh alarm is found, the procedure exits YES from box 412. If no port level alarm is found in box 416, the procedure exits NO from box 416 and checks if there is any card level alarm (box 420). If a port level alarm is found, the procedure exits YES from box 416. If no card level alarm is present, the procedure exits NO from box 420. If the procedure exits YES from box 412 or box 416 or box 420, the type of the alarm is looked up in the Entity-Relationship diagram (see FIG. 1). If there are other downstream alarms on the path in the given direction that is correlated with this alarm, the downstream alarms are masked (box 424). The procedure then enters box 428. If the procedure had exited NO from box 420, it enters box 428 as well. The procedure then checks if P is the last port in the path (box 428). If P is not the last port on the path, the procedure exits NO from box 428. P is set to the next port on the path (box 432), and the procedure loops back to the entry of box 408, and the alarms on this next port on the path are gathered for processing. If P is the last port on the path, the procedure exits YES from box 428. Processing is now complete and the procedure terminates (box 436). The system used in the embodiment of this invention includes a general-purpose computer and hardware interfaces for inputting data related to faults and alarms. The computer has a memory for storing the program that performs the steps of the method for network wide fault isolation. Alternatively, the system may be implemented as a specialized computer programmed to execute the method of the embodiment of the invention, or as a firmware or hardware, which is designed, to perform the steps of the method described above. Numerous modifications and variations of the present invention are possible in light of the above teachings. For example, various other types of faults with different “masks” relationships can be handled by using an Entity-Relationship diagram that appropriately characterizes the inter-relationship of these faults. Although the embodiment of the invention described applies to optical networks and Wavelength tracker, we believe that the general methodology for fault isolation described can be extended to wireline and wireless networks as well. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
<SOH> BACKGROUND OF INVENTION <EOH>An optical network is subject to intermittent faults that may raise alarms in the system. A single fault in the system can however give rise to multiple alarms detected at multiple points in the network. Finding the root cause alarm corresponding to the fault that has triggered these alarms is important for fault isolation and repair. In the absence of an automatic fault isolation system, the network operator has to manually go through the list of alarms and identify the root cause alarm triggered by a fault that needs to be alleviated. This can be a long and arduous task in large networks. It cannot only overwhelm even an experienced network operator but can also increase the time for the detection of the failure. This in turn can significantly increase the time required for returning service to the network. Alarm correlation has been addressed by prior art. U.S. Pat. No. 6,707,795 B1 to Noorhooseini et al. issued Mar. 16, 2004, which describes an alarm correlation method for use in a network management device. Using a hierarchical network model, the method performs a correlation between the root cause alarm and other alarms raised by network elements that satisfy particular relationships with the network element that produced the root cause alarm. Another method and apparatus for incremental alarm correlation is described in the U.S. Pat. No. 6,604,208 B1 to Gosselin et al. issued Aug. 5, 2003. The method partitions the alarms into correlation sets in such a way that the alarms within a set have a high probability of being caused by the same network fault. Partitioning of alarms is also performed by an invention described in the U.S. Pat. No. 6,253,339 B1 to Tse et al. issued Jun. 26, 2001. This patent provides a method and system for correlating alarms for a number of network elements. The system uses an alarm correlator that partitions the alarms into correlated alarm clusters. The clusters are constructed in such a way that the alarms in a given cluster have a high probability of being caused by the same network fault. A method for processing data such as alarms concerns U.S. Pat. No. 6,356,885 B2 to Ross et al. issued Mar. 12, 2002. The method performs alarm correlation for a set of managed units. When one of the managed units is notified of an event such as an alarm, the cause of an alarm is determined by using a virtual model. The model comprises the managed units corresponding to the network entities. Each unit contains information about the services offered and received by its entity to and from other entities. A unit uses its knowledge-based reasoning capacity for adapting the model by using this information. Yet another method and apparatus for fault correlation in a networking system is described in U.S. Pat. No. 6,006,016 to Faigon et al. issued Dec. 21, 1999. In this patent, occurrences of faults are detected and correlated by using a set of rules that are based on the number of times a specific fault event is generated during a time threshold. A number of algorithms for alarm correlation and the determination of the possible location of faults in a large communication network is presented in U.S. Pat. No. 5,309,448 to Bouloutas et al. issued May 3, 1994. The techniques described in this patent differ in the degree of accuracy in fault location and in their algorithmic complexity. Fault correlation in packet switched networks is considered in U.S. Pat. No. 5,949,759 to Cretegny et al. issued Sep. 7, 1999. It describes a method that registers a failure in a high-speed packet switched network such that the failure information can be retrieved by the network management system. Notification of faults and load balancing of the data traffic among multiple paths in an overlay mesh network is described in U.S. Pat. No. 6,725,401 B1 to Lindhorst-Ko issued Apr. 20, 2004. The above cited prior art indicates that there have been multiple attempts to solve the problem of identifying faults but there is still a need in the industry for further developments of an efficient method and system for identifying and isolating faults in the network.
<SOH> SUMMARY OF THE INVENTION <EOH>Therefore there is an objective of the invention to provide a system and method for determining a root cause alarm in an optical communication system while suppressing other correlated alarms. A method for network wide fault isolation in an optical network having Optical Channel (OCh) paths, (each OCh path comprising a sequence of ports), the method comprising the steps of identifying root cause alarms in the optical network; and displaying said root cause alarms. The step of identifying the root cause alarms in the optical network comprises the steps of constructing a list of all affected OCh paths in the optical network and analyzing the OCh paths in said list. The step of analyzing the OCh paths in said list, comprises the steps of masking alarms in the OCh paths in the transmit direction and masking alarms in the OCh paths in the receive direction. The step of masking alarms in the OCh path in the transmit direction comprises the step of analyzing alarms at the ports on the OCh path in the transmit direction. The step of analyzing alarms in the transmit direction comprises the steps of preparing a list of the alarms present at each port on the OCh path in the transmit direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. For a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. The step of masking alarms in the OCh path in the receive direction comprises the step of analyzing alarms at the ports on the OCh path in the receive direction. The step of analyzing alarms comprises the steps of preparing a list of the alarms present at each port on the OCh path in the receive direction; determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. The step of displaying said root cause alarms comprises the step of displaying remaining unmasked alarms. A method for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey, generated by Wavelength Tracker, the method comprising the steps of identifying root cause alarms in the optical network and displaying said root cause alarms. The step of identifying the root cause alarms in the optical network with EMS comprises the step of masking non-root cause alarms in the OCh paths in the optical network. A system for network wide fault isolation in an optical network, wherein the optical network contains OCh paths, (each OCh path comprising a sequence of ports), the system comprising means for identifying root cause alarms in the optical network and a display unit for displaying said root cause alarms. The means for identifying the root cause alarms in the optical network comprises: means for constructing a list of all affected OCh paths in the optical network and means for analyzing the OCh paths in said list. The means for analyzing the OCh paths in said list comprises means for masking alarms in the OCh path in the transmit direction and means for masking alarms in the OCh path in the receive direction. The means for masking alarms in the OCh path in the transmit direction comprises means for analyzing alarms at the ports on the OCh path in the transmit direction. The means for analyzing alarms in the transmit direction comprises: means for preparing a list of the alarms present at each port on the OCh path in the transmit direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the transmit direction that are correlated with each alarm in the list. In the system, for a specific OCh path, OCh alarms can mask OCh alarms, port level alarms can mask port level alarms and OCh alarms and card level alarms can mask port level alarms and OCh alarms. The means for masking alarms in the OCh path in the receive direction comprises means for analyzing alarms in each port on the OCh path in the receive direction. The means for analyzing alarms comprises: means for preparing a list of the alarms present at each port on the OCh path in the receive direction; means for determining if each alarm in the list is an OCh alarm or a port level alarm or a card level alarm; and means for masking alarms in the downstream OCh path in the receive direction that are correlated with each alarm in the list. The display unit for displaying said root cause alarms comprises means for displaying remaining unmasked alarms. A system for network wide fault isolation in an optical network with an Element Management System (EMS), wherein the EMS has a view of a network topology and Wavelength Tracker data obtained by using Wavelength Tracker technology, and the optical network contains Optical Channel (OCh) paths, each having a unique signature in a form of a low frequency dither tone modulation called Wavekey generated by Wavelength Tracker, the system comprising: means for identifying root cause alarms in the optical network with EMS; and a display unit for displaying said root cause alarms. The means for identifying root cause alarms in the optical network with EMS comprises means for masking non-root cause alarms in the OCh paths in the optical network.
20041105
20080729
20050512
99268.0
1
SEDIGHIAN, MOHAMMAD REZA
METHOD AND SYSTEM FOR NETWORK WIDE FAULT ISOLATION IN AN OPTICAL NETWORK
UNDISCOUNTED
0
ACCEPTED
2,004
10,981,855
ACCEPTED
Systems and methods for substituting virtual dental appliances
Systems and methods are disclosed for performing virtual treatment using one or more dental appliances by receiving a digital model of a dental appliance; selecting a standard position and orientation; and mapping the digital model of the dental appliance to the standard position and orientation.
1. A method for performing virtual treatment using one or more dental appliances, comprising: receiving a digital model of a dental appliance; selecting a standard position and orientation; and mapping the digital model of the dental appliance to the standard position and orientation. 2. The method of claim 1, wherein the mapping comprises setting a plurality of digital models to the standard spatial position and orientation. 3. The method of claim 1, comprising placing a digital model of a first dental appliance on a tooth model. 4. The method of claim 3, comprising interchanging the first dental appliance with a second dental appliance. 5. The method of claim 4, comprising automatically placing the second dental appliance at the same position as the first dental appliance. 6. The method of claim 1, comprising scanning a dental appliance to create the digital model. 7. The method of claim 1, comprising selecting a base object to determine the standard orientation and position. 8. The method of claim 7, wherein the base object is one of the dental appliances. 9. The method of claim 7, wherein the base object is a separate object. 10. The method of claim 1, comprising selecting a coordinate system as the basis for the standard orientation and position. 11. The method of claim 1, wherein the standard position and orientation is determined using predetermined dimensions and features on the dental appliances. 12. The method of claim 11, wherein one feature is an appliance slot. 13. The method of claim 12, wherein the slot comprises an 0.018″ (0.46 mm) or 0.022″ (0.56 mm) width channel running in a mesiodistal direction. 14. The method of claim 12, wherein one dimension comprises a slot length. 15. The method of claim 12, wherein one dimension comprises a slot point. 16. The method of claim 12, wherein one dimension comprises a base point. 17. The method of claim 1, comprising associating the digital model of the dental appliance with reference to the standard position and orientation. 18. The method of claim 1, wherein the dental appliance is a bracket. 19. The method of claim 18, wherein the bracket is a contralateral bracket, comprising mirroring the bracket relative to a reference plane or surface to create a contralateral model. 20. The method of claim 1, comprising interchanging the dental appliances in accordance with specified criteria. 21. The method of claim 20, wherein one criteria includes one of: a best fit on the tooth, a material fit, an obtrusiveness measure, and a cost. 22. The method of claim 1, comprising mapping an axis direction for the digital model. 23. The method of claim 1, comprising generating a template to place the dental appliance on a tooth. 24. The method of claim 23, wherein the appliance is a bracket, comprising fabricating a wire based on the bracket's position and orientation.
BACKGROUND The invention relates generally to computer-automated development of an orthodontic treatment and appliance. Orthodontics is the branch of dentistry that deals with the straightening of crooked teeth. Although there are many types of appliances that can be used by an orthodontist to straighten the teeth, the most common appliance is braces. Braces include a variety of appliances such as brackets, archwires, ligatures, and O-rings, and attaching braces to a patient's teeth is a tedious and time consuming enterprise requiring many meetings with the treating orthodontist. Consequently, conventional orthodontic treatment limits an orthodontist's patient capacity and makes orthodontic treatment quite expensive. Before fastening braces to a patient's teeth, at least one appointment is typically scheduled with the orthodontist, dentist, and/or X-ray laboratory so that X-rays and photographs of the patient's teeth and jaw structure can be taken. Also during this preliminary meeting, or possibly at a later meeting, an alginate mold of the patient's teeth is typically made. This mold provides a model of the patient's teeth that the orthodontist uses in conjunction with the X-rays and photographs to formulate a treatment strategy. The orthodontist then typically schedules one or more appointments during which braces will be attached to the patient's teeth. Historically, the practice of orthodontics has been a manual process that relied on the doctor's skills and judgment. A number of parties are creating and providing products and services that can be grouped together under the appellation ‘virtual orthodontics’. The principle elements of virtual orthodontics are representations of the teeth and of orthodontic components such as brackets and wire. One of the values of virtual orthodontics is that the user can make choices among available components before actually implementing the treatment approach. For instance, an orthodontist can evaluate options by choosing different bracket prescriptions and features such as hooks or ligation methods before the brackets are applied to a patient's teeth. SUMMARY Systems and methods are disclosed for performing virtual treatment using one or more dental appliances by receiving a digital model of a dental appliance; selecting a standard position and orientation; and mapping the digital model of the dental appliance to the standard position and orientation. Advantages may include one or more of the following. The system allows the doctors to easily change or substitute different brackets during treatment planning. Thus, the doctor can simply select a different bracket and the system automatically places the new bracket in the proper position and orientation relative to its underlying tooth. This is achieved by having all brackets in the same spatial coordinate system or making use of a transform function to relate the coordinate systems of the brackets. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A illustrates an exemplary process to perform virtual treatment using one or more dental appliances. FIG. 1B shows an exemplary process for substituting dental appliances. FIG. 2 shows two different appliances, in this case brackets, in their own virtual spaces. FIG. 3 shows the brackets of FIG. 2, isometrically displayed in the same virtual space. FIG. 4 shows the substitution based on an alignment of the brackets' dimensions or features. DESCRIPTION FIG. 1A illustrates an exemplary process to perform virtual treatment using one or more dental appliances. The process includes receiving a digital model of a dental appliance (110); selecting a standard position and orientation (120); and mapping the digital model of the dental appliance to the standard position and orientation (130). In one embodiment, the appliance can be a bracket. The digital model of the bracket can be received from a scanner or digitizer. There are several means of digitizing the brackets, among them computer tomography, acoustic imaging, surface tracing, and destructive scanning. Any of these could be direct or indirect. The former digitizes the body itself. The latter digitizes an impression or a mold of the body. The data set produced by the 3D acquisition system may, of course, be converted to other formats to be compatible with the software which is used for manipulating 3D images within the data set. Additionally, a variety of range acquisition systems, generally categorized by whether the process of acquisition requires contact with the three dimensional object, can be used. A contact-type range acquisition system utilizes a probe, having multiple degrees of translational and/or rotational freedom. By recording the physical displacement of the probe as it is drawn across the sample surface, a computer-readable representation of the sample object is made. A non-contact-type range acquisition device can be either a reflective-type or transmissive-type system. There are a variety of reflective systems in use. Some of these reflective systems utilize non-optical incident energy sources such as microwave radar or sonar. Others utilize optical energy. Those non-contact-type systems working by reflected optical energy further contain special instrumentation configured to permit certain measuring techniques to be performed (e.g., imaging radar, triangulation and interferometry). Optical, reflective, non-contact-type scanners and other non-contact-type scanners are preferred because they are inherently nondestructive (i.e., do not damage the sample object), are generally characterized by a higher capture resolution and scan a sample in a relatively short period of time. Next, a standard position and orientation is selected and the digital model of the dental appliance is mapped to the selected standard position and orientation. A first embodiment to map appliances to the standard orientation and position is discussed next. When the physical brackets are digitized, they are held in the same position and orientation by a jig that allows them to be held in the same spatial location. In one embodiment, the bracket's slot can be used to attain the same location for models within a manufacturer's line as well as across manufacturers' lines because it is one of the most consistent geometric features with the greatest dimensional similarity among all brackets. A second embodiment to map appliances to the standard orientations and positions is discussed below. This embodiment may be used independently of or in conjunction with the first embodiment discussed above. In this embodiment, the digital representations of the brackets are opened in software that can read the file format(s)—it is not required that the bracket representations are in the same format. For instance, one could be an STL and another can be an IGES, STEP, or CAD native (e.g. Pro/E, SolidWorks, etc.) file. Next, two or more files are loaded into the same software space at one time. Alternatively, each representation is loaded into its own space and these, in turn, are loaded to a common space. One of the files is selected as the base bracket to determine orientations and positions, or a separate object or coordinate system is selected as the basis to determine bracket orientations and positions. Any other bracket in the software space is aligned on the base bracket or the basis using known or common dimensions and features. Examples of common dimensions and features: within some amount of tolerance, all manufacturers' bracket slots are either 0.018″ (0.46 mm) or 0.022″ (0.56 mm) in the occlusogingival direction, the slot lengths are typically specified so the midpoint is easily determined, and the ‘slot point’ and ‘base point’ can be identified from these two. Any other bracket is saved independently with its newly-defined position and orientation. In the case of contralateral brackets, the steps above could be followed or a bracket can simply be mirrored relative to a reference plane or surface to create its contralateral. If the manufacturers' digital representations are available, the process is essentially the same as discussed above, except there is no need to digitize physical models. The positioning and orienting is less complex because all referents will be defined in the digital representations. FIG. 1B shows an exemplary process for substituting dental appliances. First, an operator selects a model of a dental appliance previously placed on a tooth model (150). Next, the operator selects a model of a substitute dental appliance (160). The substitution can be based on a number of factors including fit, height of the appliance, comfort of the patient, or appearance of the appliance, among others. Based on the selection of the original model of the dental appliance and a substitute model of the appliance, the process of FIG. 1B places the substitute model in place of the original model of the dental appliance based on the standard position and orientation (170) FIG. 2 shows two different brackets in their own virtual spaces. Their coordinate systems are different—not co-located as also can be seen by the difference in arrow orientations shown in the bottom left corner of each panel. FIG. 3 shows the same two brackets isometrically displayed in the same virtual space. The coordinate system of the space does not coincide with that of either bracket. It can be seen that if one bracket were to replace the other, that the orientations, at least, would differ. FIG. 4 shows that an alignment of the dimensions and/or features of the brackets causes them to have shared positions and orientations. If one is replaced with the other, these would not be changed in a virtual orthodontic setup. The system can also be used to model the effects of more traditional appliances such as retainers, aligners and other removable dental appliances and therefore be used to generate optimal designs and treatment programs for particular patients. The model of the brackets can be displayed and manually positioned or manipulated using a suitable dental CAD system. In this embodiment, a bracket is positioned on a tooth based on a prescription. Should the user wish to use a different bracket, the user merely selects a different bracket and indicates to the computer that the new bracket is to be used. The system deletes the first bracket and inserts the new bracket in the same spatial position and orientation of the original bracket without requiring the user to manually place the new bracket at the same location of the original bracket. Alternatively, the system can automatically place the brackets for the user. In either a manual or automated placement system, the common coordinate system allows the user to select a substitute bracket and automatically insert the substitute bracket in place of the original bracket. A general flow of an exemplary process for defining and generating repositioning appliances for orthodontic treatment of a patient is discussed next. The process includes the methods, and is suitable for the apparatus, of the present invention, as will be described. The computational steps of the process are advantageously implemented as computer program modules for execution on one or more conventional digital computers. As an initial step, a mold or a scan of a patient's teeth or mouth tissue is acquired. This generally involves taking casts of the patient's teeth and gums, and may also involve taking wax bites, direct contact scanning, x-ray imaging, tomographic imaging, sonographic imaging, and other techniques for obtaining information about the position and structure of the teeth, jaws, gums and other orthodontically relevant tissue. From the data so obtained, a digital data set is derived that represents the initial (that is, pretreatment) arrangement of the patient's teeth and other tissues. The initial digital data set, which may include both raw data from scanning operations and data representing surface models derived from the raw data, is processed to segment the teeth into individual tooth models for manipulation. Digital models of each tooth can be produced, including measured or extrapolated hidden surfaces and root structures. The desired final position of the teeth—that is, the desired and intended end result of orthodontic treatment—can be received from a clinician in the form of a prescription, can be calculated from basic orthodontic principles, or can be extrapolated computationally from a clinical prescription. With a specification of the desired final positions of the teeth and digital representations of the teeth themselves, the final position and surface geometry of each tooth can be specified to form a complete model of the teeth at the desired treatment end. Generally, in this step, the position of every tooth is specified. The result of this step is a set of digital data structures that represents an orthodontically correct repositioning of the modeled teeth relative to presumed-stable tissue. The teeth and tissue are both represented as digital data. Having both a beginning position and a final position for each tooth, the process next defines a tooth path for the motion of each tooth. The tooth paths are optimized in the aggregate so that the teeth are moved in the quickest fashion with the least amount of round-tripping to bring the teeth from their initial positions to their desired final positions. (Round-tripping is any motion of a tooth in any direction other than directly toward the desired final position. Round-tripping is sometimes necessary to allow teeth to move past each other.) The tooth paths are segmented. The segments are calculated so that each tooth's motion within a segment stays within threshold limits of linear and rotational translation. In this way, the end points of each path segment can constitute a clinically viable repositioning, and the aggregate of segment end points constitute a clinically viable sequence of tooth positions, so that moving from one point to the next in the sequence does not result in a collision of teeth. The threshold limits of linear and rotational translation are initialized, in one implementation, with default values based on the nature of the appliance to be used. More individually tailored limit values can be calculated using patient-specific data. The limit values can also be updated based on the result of an appliance-calculation, which may determine that at one or more points along one or more tooth paths, the forces that can be generated by the appliance on the then-existing configuration of teeth and tissue is incapable of effecting the repositioning that is represented by one or more tooth path segments. With this information, the subprocess defining segmented paths can recalculate the paths or the affected subpaths. At various stages of the process, and in particular after the segmented paths have been defined, the process can, and generally will, interact with a clinician responsible for the treatment of the patient. Clinician interaction can be implemented using a client process programmed to receive tooth positions and models, as well as path information from a server computer or process in which other processes are implemented. The client process is advantageously programmed to allow the clinician to display an animation of the positions and paths and to allow the clinician to reset the final positions of one or more of the teeth and to specify constraints to be applied to the segmented paths. If the clinician makes any such changes, the subprocess of defining segmented paths is performed again. The data processing aspects of the invention can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Data processing apparatus of the invention can be implemented in a computer program product tangibly embodied in a machine-readable storage device for execution by a programmable processor; and data processing method steps of the invention can be performed by a programmable processor executing a program of instructions to perform functions of the invention by operating on input data and generating output. The data processing aspects of the invention can be implemented advantageously in one or more computer programs that are executable on a programmable system including at least one programmable processor coupled to receive data and instructions from and to transmit data and instructions to a data storage system, at least one input device, and at least one output device. Each computer program can be implemented in a high-level procedural or object-oriented programming language, or in assembly or machine language, if desired; and, in any case, the language can be a compiled or interpreted language. Suitable processors include, by way of example, both general and special purpose microprocessors. Generally, a processor will receive instructions and data from a read-only memory and/or a random access memory. Storage devices suitable for tangibly embodying computer program instructions and data include all forms of nonvolatile memory, including by way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM disks. Any of the foregoing can be supplemented by, or incorporated in, ASICs (application-specific integrated circuits). To provide for interaction with a user, the invention can be implemented using a computer system having a display device such as a monitor or LCD (liquid crystal display) screen for displaying information to the user and input devices by which the user can provide input to the computer system such as a keyboard, a two-dimensional pointing device such as a mouse or a trackball, or a three-dimensional pointing device such as a data glove or a gyroscopic mouse. The computer system can be programmed to provide a graphical user interface through which computer programs interact with users. The computer system can be programmed to provide a virtual reality, three-dimensional display interface. The invention has been described in terms of particular embodiments. Other embodiments are within the scope of the following claims. For example, the operations of the invention can be performed in a different order and still achieve desirable results.
<SOH> BACKGROUND <EOH>The invention relates generally to computer-automated development of an orthodontic treatment and appliance. Orthodontics is the branch of dentistry that deals with the straightening of crooked teeth. Although there are many types of appliances that can be used by an orthodontist to straighten the teeth, the most common appliance is braces. Braces include a variety of appliances such as brackets, archwires, ligatures, and O-rings, and attaching braces to a patient's teeth is a tedious and time consuming enterprise requiring many meetings with the treating orthodontist. Consequently, conventional orthodontic treatment limits an orthodontist's patient capacity and makes orthodontic treatment quite expensive. Before fastening braces to a patient's teeth, at least one appointment is typically scheduled with the orthodontist, dentist, and/or X-ray laboratory so that X-rays and photographs of the patient's teeth and jaw structure can be taken. Also during this preliminary meeting, or possibly at a later meeting, an alginate mold of the patient's teeth is typically made. This mold provides a model of the patient's teeth that the orthodontist uses in conjunction with the X-rays and photographs to formulate a treatment strategy. The orthodontist then typically schedules one or more appointments during which braces will be attached to the patient's teeth. Historically, the practice of orthodontics has been a manual process that relied on the doctor's skills and judgment. A number of parties are creating and providing products and services that can be grouped together under the appellation ‘virtual orthodontics’. The principle elements of virtual orthodontics are representations of the teeth and of orthodontic components such as brackets and wire. One of the values of virtual orthodontics is that the user can make choices among available components before actually implementing the treatment approach. For instance, an orthodontist can evaluate options by choosing different bracket prescriptions and features such as hooks or ligation methods before the brackets are applied to a patient's teeth.
<SOH> SUMMARY <EOH>Systems and methods are disclosed for performing virtual treatment using one or more dental appliances by receiving a digital model of a dental appliance; selecting a standard position and orientation; and mapping the digital model of the dental appliance to the standard position and orientation. Advantages may include one or more of the following. The system allows the doctors to easily change or substitute different brackets during treatment planning. Thus, the doctor can simply select a different bracket and the system automatically places the new bracket in the proper position and orientation relative to its underlying tooth. This is achieved by having all brackets in the same spatial coordinate system or making use of a transform function to relate the coordinate systems of the brackets.
20041105
20080415
20060511
60406.0
A61C300
1
STOKES, CANDICE CAPRI
SYSTEMS AND METHODS FOR SUBSTITUTING VIRTUAL DENTAL APPLIANCES
UNDISCOUNTED
0
ACCEPTED
A61C
2,004
10,981,901
ACCEPTED
Fiber-optic assay apparatus based on phase-shift interferometry
Apparatus and method for detecting the presence or amount or rate of binding of an analyte in a sample solution is disclosed. The apparatus includes an optical assembly having first and second reflecting surfaces separated by a distance “d” greater than 50 nm, where the first surface is formed by a layer of analyte-binding molecules, and a light source for directing a beam of light onto said first and second reflecting surface. A detector in the apparatus operates to detect a change in the thickness of the first reflecting layer resulting from binding of analyte to the analyte-binding molecules, when the assembly is placed in the solution of analyte, by detecting a shift in phase of light waves reflected from the first and second surfaces.
1. An assembly, comprising: an optical element adapted for coupling to a light source via a fiber, said optical element comprising a transparent material, a first reflecting surface, and a second reflecting surface, said first and second reflecting surfaces separated by at least 50 nm, wherein said first reflecting surface comprises a layer of analyte binding molecules. 2. The assembly of claim 1, wherein said second reflecting surface comprises a layer of material having refractive index greater than the refractive index of said optical element transparent material. 3. The assembly of claim 1, wherein the separation between said first and second reflecting surfaces is between 100 nm and 5,000 nm. 4. The assembly of claim 3, wherein the separation between said first and second reflecting surfaces is between 400 nm and 1,000 nm. 5. The assembly of claim 1, wherein the refractive index of said optical element transparent material is less than 1.8. 6. The assembly of claim 5, wherein said optical element transparent material is a material selected from the group consisting of SiO2 and a transparent polymer. 7. The assembly of claim 6, wherein said transparent polymer comprises polystyrene or polyethylene. 8. The assembly of claim 1, wherein the second reflecting surface comprises a layer of material having a refractive index greater than 1.8. 9. The assembly of claim 8, wherein said second reflecting surface layer comprises Ta2O5. 10. The assembly of claim 9, wherein the thickness of said second reflecting surface layer is between 5 nm and 50 nm. 11. The assembly of claim 1, wherein said layer of analyte binding molecules comprises a molecule selected from the group consisting of a protein, a small molecule, a nucleic acid and a carbohydrate. 12. The assembly of claim 11, wherein said protein is selected from the group consisting of an avidin, a streptavidin, an antibody, and an antibody fragment. 13. The assembly of claim 1, wherein said optical assembly is adapted for coupling to said light source through a mechanical coupling that engages said optical assembly with said fiber. 14. The assembly of claim 1, wherein said optical element is adapted for coupling to said light source through a coupling assembly that comprises a lens system. 15. The assembly of claim 1, further comprising a second optical element overlaying said second reflecting surface. 16. The assembly of claim 15, wherein the thickness of said second optical element is greater than 100 nm. 17. The assembly of claim 16, wherein the thickness of said second optical element is greater than 200 nm. 18. The assembly of claim 15, wherein said optical assembly is adapted for coupling to said light source through a mechanical coupling that engages said optical assembly with said fiber. 19. The assembly of claim 18, wherein said mechanical coupling provides an air gap between said assembly and said fiber. 20. The assembly of claim 19, wherein said air gap is less than 100 nm. 21. The assembly of claim 19, wherein said air gap is greater than 2 μm. 22. A two dimensional array of the assemblies of claim 1. 23. A two dimensional array of the assemblies of claim 15. 24. An apparatus for detecting an analyte, comprising: the assembly of claim 1; a light source for directing light onto said first and said second reflecting surfaces; and a detector that receives light from said first and said second reflecting surfaces and detects a change in optical thickness of said first reflecting surface upon exposure of said first reflecting surface to said analyte. 25. An apparatus for detecting an analyte, comprising: the assembly of claim 15; a light source for directing light onto said first and said second reflecting surfaces; and a detector that receives light from said first and said second reflecting surfaces and detects a change in optical thickness of said first reflecting surface upon exposure of said first reflecting surface to said analyte. 26. An apparatus for detecting an analyte, comprising: the two dimensional array of the assemblies of claim 22; a light source for directing light onto said first and said second reflecting surfaces; and a detector that receives light from said first and said second reflecting surfaces and detects a change in optical thickness of said first reflecting surface upon exposure of said first reflecting surface to said analyte. 27. An apparatus for detecting an analyte, comprising: the two dimensional array of the assemblies of claim 23; a light source for directing light onto said first and said second reflecting surfaces; and a detector that receives light from said first and said second reflecting surfaces and detects a change in optical thickness of said first reflecting surface upon exposure of said first reflecting surface to said analyte. 28. A kit, comprising: an assembly comprising an optical element adapted for coupling to a light source via a fiber, said optical element comprising a transparent material, a first surface, and a second reflecting surface, said first surface and said second reflecting surface separated by at least 50 nm, wherein said first surface can bind a layer of analyte binding molecules and said second reflecting surface comprises a layer of material having an index of refraction greater than the refractive index of said optical element transparent material; and instructions for binding said layer of analyte binding molecules to said first surface. 29. The kit of claim 28, further comprising a reagent for chemically modifying said first surface and instructions for using said reagent. 30. The kit of claim 28, wherein said optical assembly further comprises a second optical element overlaying said second reflecting surface. 31. The kit of claim 29, further comprising a second optical element overlaying said second reflecting surface. 32. A method for detecting analyte in a sample, comprising: providing the apparatus of claim 24 and a sample; exposing said first reflecting surface to said sample, and determining whether said exposure results in a change in optical thickness of said first reflecting surface. 33. A method for detecting analyte in a sample, comprising: providing the apparatus of claim 25 and a sample; exposing said first reflecting surface to said sample, and determining whether said exposure results in a change in optical thickness of said first reflecting surface. 34. A method for detecting analyte in a sample, comprising: providing the apparatus of claim 26 and a sample; exposing said first reflecting surface to said sample, and determining whether said exposure results in a change in optical thickness of said first reflecting surface. 35. A method for detecting analyte in a sample, comprising: providing the apparatus of claim 27 and a sample; exposing said first reflecting surface to said sample, and determining whether said exposure results in a change in optical thickness of said first reflecting surface. 36. An assembly comprising an optical element adapted for attachment to an end of an optical fiber for receiving a beam of light from the optical fiber, said optical element including (a) a proximal reflecting surface and a distal reflecting surface separated by at least 50 nm, and (b) a layer of analyte binding molecules positioned so that interference between a reflected beam from the proximal reflecting surface and a reflected beam from the distal reflecting surface varies as analyte binds to the layer of analyte binding molecules, and wherein the reflected beams are coupled into the optical fiber. 37. The assembly of claim 36 wherein the distal reflecting surface includes the layer of analyte binding molecules. 38. The assembly of claim 37 wherein an optical path length between the two reflecting surfaces increases as analyte binds to the layer of analyte binding molecules. 39. The assembly of claim 38 wherein a physical distance between the two reflecting surfaces increases as analyte binds to the layer of analyte binding molecules. 40. The assembly of claim 37 wherein the optical element further includes a transparent solid material located between the reflecting surfaces. 41. The assembly of claim 40 wherein the proximal reflecting surface includes a material with an index greater than the transparent solid material. 42. The assembly of claim 40 wherein the transparent solid material has an index approximately equal to that of the layer of analyte binding molecules. 43. The assembly of claim 36 wherein the distal reflecting surface is positioned between the proximately reflecting surface and the layer of analyte binding molecules. 44. The assembly of claim 43 wherein a physical distance between the two reflecting surfaces decreases as analyte binds to the layer of analyte binding molecules. 45. The assembly of claim 36 wherein the layer of analyte binding molecules is positioned between the two reflecting surfaces. 46. The assembly of claim 45 wherein a physical distance between the two reflecting surfaces increases as analyte binds to the layer of analyte binding molecules. 47. The assembly of claim 45 wherein an optical path length between the two reflecting surfaces increases as analyte binds to the layer of analyte binding molecules. 48. The assembly of claim 36 wherein the optical element further includes an air gap located between the reflecting surfaces. 49. The assembly of claim 36 wherein an optical path length between the two reflecting surfaces changes as analyte binds to the layer of analyte binding molecules and the change in optical path length causes a change in interference between the reflected beams. 50. The assembly of claim 36 wherein a physical distance between the two reflecting surfaces changes as analyte binds to the layer of analyte binding molecules and the change in physical distance causes a change in interference between the reflected beams. 51. The assembly of claim 36 wherein an index of material located between the two reflecting surfaces changes as analyte binds to the layer of analyte binding molecules and the change in index causes a change in interference between the reflected beams. 52. The assembly of claim 36 wherein an optical absorption of material located between the two reflecting surfaces changes as analyte binds to the layer of analyte binding molecules and the change in optical absorption causes a change in interference between the reflected beams. 53. The assembly of claim 36 wherein the layer of analyte binding molecules swells as analyte binds to the layer of analyte binding molecules and the swelling causes a change in interference between the reflected beams. 54. The assembly of claim 36 wherein the optical element is permanently attached to the end of the optical fiber. 55. The assembly of claim 36 wherein the optical element is removably attachable to the end of the optical fiber.
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/518,068, filed Nov. 6, 2003, and U.S. Provisional Application No. 60/558,381, filed Mar. 31, 2004 the entire disclosures of which are hereby incorporated by reference in their entirety for all purposes. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for detecting the presence, amount, or rate of binding of one or more analytes in a sample, and in particular, to apparatus and method based on fiber optic interferometry. 2. Description of the Related Art Diagnostic tests based on a binding event between members of an analyte-anti-analyte binding pair are widely used in medical, veterinary, agricultural and research applications. Typically, such methods are employed to detect the presence or amount or an analyte in a sample, and/or the rate of binding of the analyte to the anti-analyte. Typical analyte-anti-analyte pairs include complementary strands of nucleic acids, antigen-antibody pairs, and receptor-receptor binding agent, where the analyte can be either member of the pair, and the anti-analyte molecule, the opposite member. Diagnostics methods of this type often employ a solid surface having immobilized anti-analyte molecules to which sample analyte molecules will bind specifically and with high affinity at a defined detection zone. In this type of assay, known as a solid-phase assay, the solid surface is exposed to the sample under conditions that promote analyte binding to immobilized anti-analyte molecules. The binding event can be detected directly, e.g., by a change in the mass, reflectivity, thickness, color or other characteristic indicative of a binding event. Where the analyte is pre-labeled, e.g., with a chromophore, or fluorescent or radiolabel, the binding event is detectable by the presence and/or amount of detectable label at the detection zone. Alternatively, the analyte can be labeled after it is bound at the detection zone, e.g., with a secondary, fluorescent-labeled anti-analyte antibody. Co-owned U.S. Pat. No. 5,804,453, (the '453 patent) which is incorporated herein by reference, discloses a fiber-optic interferometer assay device designed to detect analyte binding to a fiber-optic end surface. Analyte detection is based on a change in the thickness at the end surface of the optical fiber resulting from the binding of analyte molecules to the surface, with greater amount of analyte producing a greater thickness-related change in the interference signal. The change in interference signal is due to a phase shift between light reflected from the end of the fiber and from the binding layer carried on the fiber end, as illustrated particularly in FIGS. 7a and 7b of the '453 patent. The device is simple to operate and provides a rapid assay method for analyte detection. Ideally, an interferometer assay device will yield readily observable changes in spectral peak and valley (extrema) positions within the range of a conventional visible-light spectrometer, that is, in the visible light range between about 450-700 nm, such that relatively small optical thickness changes at the fiber end can be detected as significant changes in the spectral positions of interference wavelength peaks and valleys. One limitation which has been observed with the device described in the '453 patent is the absence of readily identified wavelength spectral extrema over this spectral range. The present invention is designed to overcome this limitation, preserving the advantages of speed and simplicity of the earlier-disclosed device, but significantly enhancing sensitivity and accuracy. The present invention also provides a more convenient disposable-head format, as well as a multi-analyte array format, e.g., for gene-chip and protein-chip applications. SUMMARY OF THE INVENTION The invention includes, in one aspect, an apparatus for detecting an analyte in a sample, including detecting the presence of analyte, the amount of analyte or the rate of association and/or dissociation of analyte to analyte-binding molecules. The apparatus includes an optical element with a proximal reflecting surface and a distal reflecting surface separated by at least 50 nm. A beam of light from an optical fiber is directed to and reflected from the two reflecting surfaces. The reflected beams are coupled back into the optical fiber and interfere. The optical element also includes a layer of analyte binding molecules that is positioned so that the interference between the reflected beams varies as analyte binds to the layer of analyte binding molecules. The change in interference can be caused by different physical phenomenon. For example, analyte binding can cause a change in the optical path length or in the physical distance between the two reflecting surfaces. Alternately, analyte binding can cause a change in the index or in the optical absorption of material located between the reflecting surfaces. Analyte binding can also cause the layer of analyte binding molecules to swell, resulting in a change in the interference. In one particular design, the distal reflecting surface includes the layer of analyte binding molecules. As analyte binds to the layer of analyte binding molecules, the optical path length or the physical distance between the two reflecting surfaces may increase, for example. In another aspect of the invention, a transparent solid material is located between the reflecting surfaces and, optionally, the proximal reflecting surface includes a material with an index greater than that of the transparent solid material. Alternately, an air gap may be located between the reflecting surfaces. In yet another design, the distal reflecting surface is positioned between the proximately reflecting surface and the layer of analyte binding molecules. For example, analyte binding may cause the layer of analyte binding molecules to swell, moving the distal reflecting surface closer to the proximal reflecting surface. In yet another design, the layer of analyte binding molecules is positioned between the two reflecting surfaces. Analyte binding may cause the layer to swell or to change its index, thus changing the interference between the two reflected beams. In another aspect, the apparatus includes an optical assembly having first and second reflecting surfaces separated by a distance “d” greater than 50 nm. The optical assembly is composed of a transparent optical element that can have a thickness defined between proximal and distal faces of the element of at least 50 nm, preferably between 400-1,000 nm. The first reflecting surface is carried on the distal face of optical element, and is formed of a layer of analyte-binding molecules. The second reflecting surface is formed by a coating of transparent material having an index of refraction greater than that of the optical element. This coating can be formed of a Ta2O5 layer having a preferred thickness of between 5 and 50 nm. The optical element can be SiO2, and has a thickness of between about 100-5,000 nm, preferably 400-1,000 nm. Also included are a light source for directing a beam of light onto the first and second reflecting surfaces, and a detector unit that operates to detect a change in the optical thickness of the first reflecting layer resulting from binding of analyte to the analyte-binding molecules, when the assembly is placed in the solution of analyte. The optical thickness change at the first reflecting layer is related to a shift in a phase characteristic of the interference wave formed by the two light waves reflected from said first and second surfaces. This phase characteristic can be a shift in the spectral position(s) of one or more peaks and valleys of the interference wave, or by a change in the period of a full cycle of the wave. The light source can include an optical fiber having a distal end adapted to be placed adjacent the second reflecting surface in the assembly, and the apparatus further includes an optical coupling for directing reflected light waves reflected from the assembly to the detector. In a first embodiment, the optical assembly is fixedly mounted on the optical fiber, with the distal end of the optical fiber in contact with the second reflecting surface. In a second embodiment, the optical assembly further includes a second transparent optical element having an index of refraction less than that of the second coating and a thickness greater than about 100 nm, where the coating of high index of refraction material is sandwiched between the two transparent optical elements. In this latter embodiment, the assembly is removably attached to the distal end region of the fiber with a spacing of less than 100 nm or greater than 2 μm between the distal end of the fiber and the confronting face of the second transparent optical element in the assembly. For detecting multiple analytes, such as multiple nucleic acid species, the layer of analyte-binding molecules can be composed of an array of discrete analyte-binding regions, such as single strands of nucleic acid. The regions are effective to bind different analytes. The optical fiber includes a plurality of individual fibers, each aligned with one of the regions, the detector includes a plurality of detection zones, and the optical coupling functions to couple each of the plurality of fibers with one of the zones. The analyte-binding molecules in the assembly can be, for example, (i) an anti-species antibody molecules, for use in screening hybridoma libraries for the presence of secreted antibody, (ii) antigen molecules, for use in detecting the presence of antibodies specific against that antigen; (iii) protein molecules, for use in detecting the presence of a binding partner for that protein; (iv) protein molecules, for use in detecting the presence of multiple binding species capable of forming a multi-protein complex with the protein; or (v) single stranded nucleic acid molecules, for detecting the presence of nucleic acid binding molecules. The detector can be a spectrometer for measuring reflected light intensity over a selected range of wavelengths. Alternatively, or in addition, the light source can include a plurality of light-emitting diodes, each with a characteristic spectral frequency, and the detector functions to record light intensity of reflected light at each of the different LED frequencies. In still another embodiment, the light source includes a white-light source and the detector is designed to record light intensity of reflected light at each of a plurality of different wavelengths. In another aspect, the invention includes a method for detecting the presence or amount of an analyte in a sample solution. The method involves reacting the sample solution with a first reflecting surface formed by a layer of analyte-binding molecules carried on the distal surface of a transparent optical element having a thickness of at least 50 nm, thereby to increase the thickness of the first reflecting layer by the binding of analyte to the analyte-binding molecules in the layer. The change in thickness of the first reflecting layer is measured by detecting a shift in a phase characteristic of the interference wave formed by the two light waves reflected from the first layer and from a second reflecting layer that is formed on the opposite, proximal surface of the optical element and which has an index of refraction greater than that of the optical element. The detecting step can include directing light from an optical fiber onto the two reflecting surfaces, and directing reflected light from the two surfaces onto a detector through an optical coupling. The detector can be a spectrometer, where the detecting includes measuring a shift in the spectral position of one or more of the interference extrema produced by the two reflecting lightwaves. Where the method is used for measuring the rate of association of analyte to the second layer, the reacting step can be carried out until a near-maximum increase in thickness of the first reflecting layer is observed. Where the method is used for measuring the rate of dissociation of analyte to the second layer, the reacting steps can include immersing the second layer in a dissociation buffer for a period of time until a decrease in thickness of the first reflecting layer is observed. Where the method is used for measuring the amount of analyte present in the sample, the detecting is carried out over a period sufficient to measure the thickness of the first reflecting layer at a plurality of different time points. Where the method is used measuring one or more of a plurality of analytes in a sample, the first reflecting layer is composed of an array of discrete analyte-binding regions, the different regions being effective to bind different analytes, and the detecting is effective to detect a change in the thickness of each of the regions resulting from binding of analyte to the analyte-binding molecules. These and other objects and features of the present invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where: FIG. 1 shows the basic system setup for the bioprobe and its apparatus; FIG. 2 shows an optical assembly formed accordance to one embodiment of the invention; FIGS. 3A and 3B show a portion of an interference wave over 7 peak and valley orders (3A), and over in a visible portion of the spectrum (3B); FIG. 4 shows an optical assembly constructed according to another embodiment of the invention; FIG. 5 shows a disposable multi-analyte optical assembly having an analyte-binding array and constructed according to another embodiment of the invention; FIG. 6 shows a sequential binding of three molecules; FIG. 7 shows on and off curves generated from the association and dissociation of antibodies; FIG. 8 shows the curves of two antibodies binding to their antigen at different concentrations; FIG. 9 shows immobilization of bis amino PEG (MW 3300) specifically through an amide bond formation. The PEG (MW 8000) is used as a negative control to monitor non-specific binding of the PEG polymer; and FIG. 10 shows a small molecule binding to a large molecule, negative controls and the base line measurement. DETAILED DESCRIPTION OF THE INVENTION Definitions Terms used in the claims and specification are to be construed in accordance with their usual meaning as understood by one skilled in the art except and as defined as set forth below. Numeric ranges recited in the claims and specification are to be construed as including the limits bounding the recited ranges. The term “in vivo” refers to processes that occur in a living organism. An “analyte-binding” molecule refers to any molecule capable of participating in a specific binding reaction with an analyte molecule. Examples include but are not limited to, e.g., antibody-antigen binding reactions, and nucleic acid hybridization reactions. A “specific binding reaction” refers to a binding reaction that is saturable, usually reversible, and that can be competed with an excess of one of the reactants. Specific binding reactions are characterized by complementarity of shape, charge, and other binding determinants as between the participants in the specific binding reaction. An “antibody” refers to an immunoglobulin molecule having two heavy chains and two light chains prepared by any method known in the art or later developed and includes polyclonal antibodies such as those produced by inoculating a mammal such as a goat, mouse, rabbit, etc. with an immunogen, as well as monoclonal antibodies produced using the well-known Kohler Milstein hybridoma fusion technique. The term includes antibodies produced using genetic engineering methods such as those employing, e.g., SCID mice reconstituted with human immunoglobulin genes, as well as antibodies that have been humanized using art-known resurfacing techniques. An “antibody fragment” refers to a fragment of an antibody molecule produced by chemical cleavage or genetic engineering techniques, as well as to single chain variable fragments (SCFvs) such as those produced using combinatorial genetic libraries and phage display technologies. Antibody fragments used in accordance with the present invention usually retain the ability to bind their cognate antigen and so include variable sequences and antigen combining sites. A “small molecule” refers to an organic compound having a molecular weight less than about 500 daltons. Small molecules are useful starting materials for screening to identify drug lead compounds that then can be optimized through traditional medicinal chemistry, structure activity relationship studies to create new drugs. Small molecule drug compounds have the benefit of usually being orally bioavailable. Examples of small molecules include compounds listed in the following databases: MDL/ACD (http://www.mdli.com/), MDL/MDDR (http://www.mdli.com/), SPECS (http://www.specs.net/), the China Natural Product Database (CNPD) (http://www.neotrident.com/), and the compound sample database of the National Center for Drug Screening (http://www.screen.org.cn/). Abbreviations used in this application include the following: “ss” refers to single-stranded; “SNP” refers to single nucleotide polymorphism; “PBS” refers to phosphate buffered saline (0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 7.4); “NHS” refers to N-hydroxysuccinimide; “MW” refers to molecular weight; “Sulfo-SMCC” refers to sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Advantages and Utility The advantages and utility of the invention are illustrated by reference to the Figures and Examples as described in greater detail below. These include the ability to monitor in real time analyte binding reactions without the use of labels, diminishing cost and potential toxicity. A further advantage includes the ability to practice the method using visible wavelength light sources. Yet other advantages are provided by the fiber optic nature of the detector tip that allows binding reactions to be monitored in very small sample volumes, including in “in vitro” spaces, and to bundle fibers to carry out highly multiplexed analyses of binding reactions. FIG. 1 shows, in schematic view, an interferometer apparatus 20 constructed in accordance with the invention. In its most basic elements, the apparatus includes a light source 22, an optical assembly 26 that functions as a sensing element or detector tip and that will be detailed further with respect to FIGS. 2, 4 and 5 below, and a detector unit 28 for detecting interference signals produced by interfering light waves reflected from the optical assembly 26. Light from source 22 is directed onto the optical assembly 26, and reflected back to the detector through an optical coupling assembly indicated by dashed lines at 30. In a preferred embodiment, the coupling assembly includes a first optical waveguide or fiber 32 extending from the light source to the optical assembly, a second optical waveguide or fiber 34 which carries reflected light from the optical assembly to the detector, and an optical coupler 36 which optically couples fibers 32, 34. Suitable optical fiber and coupling components are detailed in the above-cited '453 patent. One exemplary coupler is commercially available from many vendors including Ocean Optics (Dunedin, Fla.). Alternatively, the coupling assembling can include a lens system constructed to focus a light beam onto the upper surface of the optical assembly and to direct reflected interfering light from the optical assembly to the detector. The latter system would not require optical fibers, but would impose relatively stringent requirements on the positioning of the lens elements used for the optical coupling. The light source in the apparatus can be a white light source, such as a light emitting diode (LED) which produces light over a broad spectrum, e.g., 400 nm or less to 700 nm or greater, typically over a spectral range of at least 100 nm. Alternatively, the light source can be a plurality of sources each having a different characteristic wavelength, such as LEDs designed for light emission at different selected wavelengths in the visible light range. The same function can be achieved by a single light source, e.g., white light source, with suitable filters for directing light with different selected wavelengths onto the optical assembly. The detector is preferably a spectrometer, such as charge-coupled device (CCD), capable of recording the spectrum of the reflected interfering light from the optical assembly. Alternatively, where the light source operates to direct different selected wavelengths onto the optical assembly, the detector can be a simple photodetector for recording light intensity at each of the different irradiating wavelengths. In still another embodiment, the detector can include a plurality of filters which allows detection of light intensity, e.g., from a white-light source, at each of a plurality of selected wavelengths of the interference reflectance wave. Exemplary light source and detector configurations are described in the above-cited '453 patent, particularly with respect to FIGS. 8 and 10 of that patent, and it will be understood that these configurations are suitable for use in the present invention. FIG. 2 shows an optical assembly 26 constructed in accordance with one embodiment of the invention, and an adjoining portion of the distal end region of an optical fiber 32 to which the optical assembly is fixedly attached. As seen, the assembly 26 includes a transparent optical element 38 having first and second reflecting surfaces 42, 40 formed on its lower (distal) and upper (proximal) end faces, respectively. According to an important feature of the invention, the thickness “d” of the optical element between its distal and proximal surfaces, i.e., between the two reflecting surfaces, is at least 50 nm, and preferably at least 100 nm. An exemplary thickness is between about 100-5,000 nm, preferably 400-1,000 nm. The first reflecting surface 42 is formed of a layer of analyte-binding molecules, such as molecules 44, which are effective to bind analyte molecules 46 specifically and with high affinity. That is, the analyte and anti-analyte molecules are opposite members of a binding pair of the type described above, which can include, without limitations, antigen-antibody pairs, complementary nucleic acids, and receptor-binding agent pairs. The index of refraction of the optical element is preferably similar to that of the first reflecting surface, so that reflection from the lower distal end of the end optical assembly occurs predominantly from the layer formed by the analyte-binding molecules, rather than from the interface between the optical element and the analyte-binding molecules. Similarly, as analyte molecules bind to the lower layer of the optical assembly, light reflection form the lower end of the assembly occurs predominantly from the layer formed by the analyte-binding molecules and bound analyte, rather than from the interface region. One exemplary material forming the optical element is SiO2, e.g., a high-quality quality glass having an index of refraction of about 1.4-1.5. The optical element can also be formed of a transparent polymer, such as polystyrene or polyethylene, having an index of refraction preferably in the 1.3-1.8 range. The second reflecting surface in the optical assembly formed as a layer of transparent material having an index of refraction that is substantially higher than that of the optical element, such that this layer functions to reflect a portion of the light directed onto the optical assembly. Preferably, the second layer has a refractive index greater than 1.8. One exemplary material for the second layer is Ta2O5 with refractive index equal to 2.1. The layer is typically formed on the optical element by a conventional vapor deposition coating or layering process, to a layer thickness of less than 50 nm, typically between 5 and 30 nm. The thickness of the first (analyte-binding) layer is designed to optimize the overall sensitivity based on specific hardware and optical components. Conventional immobilization chemistries are used in chemically, e.g., covalently, attaching a layer of analyte-binding molecules to the lower surface of the optical element. For example, a variety of bifunctional reagents containing a siloxane group for chemical attachment to SiO2, and an hydroxyl, amine, carboxyl or other reaction group for attachment of biological molecules, such as proteins (e.g., antigens, antibodies), or nucleic acids. It is also well known to etch or otherwise treat glass a glass surface to increase the density of hydroxyl groups by which analyte-binding molecules can be bound. Where the optical element is formed of a polymer, such as polystyrene, a variety of methods are available for exposing available chemically-active surface groups, such as amine, hydroxyl, and carboxyl groups. The analyte-binding layer is preferably formed under conditions in which the distal surface of the optical element is densely coated, so that binding of analyte molecules to the layer forces a change in the thickness of the layer, rather than filling in the layer. The analyte-binding layer can be either a monolayer or a multi-layer matrix. The measurement of the presence, concentration, and/or binding rate of analyte to the optical assembly is enabled by the interference of reflected light beams from the two reflecting surfaces in the optical assembly. Specifically, as analyte molecules attach to or detach from the surface, the average thickness of the first reflecting layer changes accordingly. Because the thickness of all other layers remains the same, the interference wave formed by the light waves reflected from the two surfaces is phase shifted in accordance with this thickness change. Assume that there are two reflected beams: The first beam is reflected from the first surface, which is the distal end interface between analyte-binding molecules and bound analyte and the surrounding medium; and the second beam is reflected from the second surface, which is the proximal interface between the optical element (the first layer) and the high-index of refraction layer (the second layer). The overall wavelength-dependent intensity of the interference wave is: I = I 1 + I 2 + 2 ⁢ I 1 ⁢ I 2 ⁢ cos ⁡ ( 2 ⁢ π ⁢ ⁢ Δ λ ) where I is the intensity, I1 and I2 are the intensity of two interference beams, Δ is the optical path difference, and λ is the wavelength. When (2πΔ/λ)=Nπ, the curve is at its peak or valley if N is an integer 0, 1, 2, . . . . The thickness of the first layer d=Δ/2n. Therefore, λ=4nd/N at peaks or valleys (extrema). For the first several values of N, i.e., 0, 1, 2, . . . 7, and assuming a d of 770 nm, the equation gives: N=0: λ=∞ (peak) N=1: λ=4nd=4,496.80 nm (Valley) N=2: λ=2nd=2,248.40 nm (Peak) N=3: λ=4nd/3=1,498.9 nm (Valley) N=4: λ=nd=1,124.20 nm (Peak) N=5: λ=4nd/5=899.36 nm (Valley) N=6: λ=2nd/3=749.47 nm (Peak) N=7: λ=4nd/7=642 nm (Valley) N=8: λ=nd/2=562 nm (Peak) N=9: λ=4nd/9=499.64 nm (Valley) N=10: λ=4nd/10=449.6 nm (Peak) As can be seen, and illustrated further in FIGS. 3A and 3B, at least three peaks/valleys (N=7-9) occur in the visible spectral range. If the 7th order valley is used to calculate the change in molecular layer thickness, when the molecular layer attached to the first layer increases from 0 nm to 10 nm, the 7th order valley will shift to 650.74 nm. Therefore, the ratio between the actual the phase shift of the 7th order valley and thickness change equals (650.74-642.40)/10=0.834. By contrast, if the initial spacing between the two reflecting layers is made up entirely of the analyte-binding molecules on the end of the fiber, assuming a thickness of this layer of 25 nm, then the first order peak will occur at 146 nm, clearly out of the range of the visible spectrum, so that the device will only see a portion of the region between the O-order valley and the first order peak, but will not see any peaks, making a shift in the spectral characteristics of the interference wave difficult to measure accurately. Not until the total thickness of the reflecting layer approaches about 100 nm will the first-order peak appear in the visible spectrum. Assuming a total thickness change of up to 50 nm, the thickness of the optical element can then be as small as 50 nm, but is preferably on the order of several hundred nm, so that the phase shift or change in periodicity of the interference wave can be measured readily by a shift in the spectral positions of higher-order peaks or valleys, e.g., where N=3-10. The ratio between the actual thickness and the measured phase shift is considered as a key factor of measurement sensitivity. It can be appreciated how one can adjust the thickness of the optical element and its refractive index to improve and optimize the sensitivity to accommodate the electronics and optical designs. FIG. 4 shows an optical assembly 50 that is removably carried on the distal end of an optical fiber 52 in the assay apparatus. The optical element includes a plurality of flexible gripping arms, such as arms 54, that are designed to slide over the end of the fiber and grip the fiber by engagement of an annular rim or detente 56 on the fiber with complementary-shaped recesses formed in the arms, as shown. This attachment serves to position the optical assembly on the fiber to provide an air gap 58 between the distal end of the fiber and the confronting (upper) face of the assembly, of less than 100 nm or greater than 2 μm. With an air gap of greater than about 100 nm, but less that 2 μm, internal reflection from the upper surface of the optical assembly can contribute significantly to undesirable fringes that can adversely impact the detection accuracy. With continued reference to FIG. 4, the optical assembly includes a first optical element 60 similar to optical element 38 described above, and having first and second reflective layers 62, 64, respectively, corresponding to above-described reflective layers 40, 42, respectively. The assembly further includes a second optical element 66 whose thickness is preferably greater than 100 nm, typically at least 200 nm, and whose index of refraction is similar to that of first optical element 60. Preferably, the two optical elements are constructed of the same glass or a polymeric material having an index of refraction of between about 1.4 and 1.6. Layer 64, which is formed of a high index of refraction material, and has a thickness preferably less than about 30 nm, is sandwiched between the 2 optical elements as shown. In operation, the optical assembly is placed over the distal fiber end and snapped into place on the fiber. The lower surface of the assembly is then exposed to a sample of analyte, under conditions that favor binding of sample analyte to the analyte-binding molecules forming reflective layer 62. As analyte molecules bind to this layer, the thickness of the layer increases, increasing the distance “d” between reflective surfaces 62 and 64. This produces a shift in the extrema of the interference wave produced by reflection from the two layers, as described above with reference to FIGS. 3A and 3B. This shift in extrema or wavelength, or wavelength period, in turn, is used to determine the change in thickness at the lower (distal-most) reflecting layer. After use, the optical assembly can be removed and discarded, and replaced with fresh element for a new assay, for assaying the same or a different analyte. FIG. 5 illustrates an optical assembly and fiber bundle in an embodiment of the invention designed for detecting one or more of a plurality of analytes, e.g., different-sequence nucleic acid analytes, in a sample. A fiber bundle 72 is composed of an array, e.g., circular array, for individual optical fibers, such as fibers 74. The optical assembly, indicated generally at 70, is composed of the basic optical elements described above with reference to FIG. 4, but in an array format. Specifically, a first optical element 80 in the element provides at its lower distal surface, an array of analyte-reaction regions, such as regions 84, each containing a layer of analyte-binding molecules effective to bind to one of the different analytes in the sample. Each region forms a first reflective layer in the optical assembly. One preferred sensing provides an array of different-sequence nucleic acids, e.g., cDNAs or oligonucleotides, designed to hybridize specifically with different-sequence nucleic acid analyte species in a sample. That is, the array surface forms a “gene chip” for detecting each of a plurality of different gene sequences. Also included in the optical assembly are a second optical element 78 and a layer 79 of high index of refraction material sandwiched between the two optical elements, and which provides the second reflecting surface in the optical assembly. The assembly is carried on the fiber bundle 72 by engagement between a pair of flexible support arm, such as arm 76 and an annular rim or detente 86 on the bundle. With the assembly placed on the fiber bundle, the lower distal ends of the fibers are spaced from the confronting surface of optical element 78 by an air gap 85 whose spacing is preferably less than 100 nm or greater than 2 μm. Further, each of the fibers is aligned with a corresponding assay region of the optical assembly, so that each fiber is directing light on, and receiving reflected light from, its aligned detection region. Similarly, the optical coupler in the apparatus, which serves to couple multiple fibers to the detector, preserves the alignment between the array regions and corresponding positions on an optical detector, e.g., two-dimensional CCD. The materials and thickness dimensions of the various optical-assembly components are similar to those described above with respect to FIG. 4. The apparatus described in this invention can be used more specifically for the following applications: (i) with an anti-species antibody carried on the tip, for screening hybridoma expression lines for cell lines with high antibody expression; (ii) with an antigen carried on the tip, to characterize high affinity antibodies against that antigen; (iii) with a protein carried on the tip, for identifying and characterizing binding partners (DNA, RNA, proteins, carbohydrates, organic molecules) for that protein; (iv) with a carbohydrate or glycosyl moiety carried on the tip, for identifying and characterizing binding partners (such as, e.g., DNA, RNA, proteins, carbohydrates, organic molecules) for that carbohydrate; (v) with a protein thought to participate in a multi-protein complex carried on the tip, for characterizing the binding components and/or kinetics of complex formation; (vi) with a small protein-binding molecule carried on the tip, for identifying and characterizing protein binders for that molecule; (vii) with an antibody carried on the tip, for constructing a calibration curve for the analyte using a set of analytes standards. Using this calibration curve, one can then determine the concentration of the analyte in unknown solutions (cell culture supernatants, biological samples, process mixtures, etc). (viii) with a single-stranded nucleic acid, e.g., ssDNA or RNA carried on the tip, for identifying and molecules that bind specifically to the nucleic acid. Using a temperature control block, the apparatus and method can also be used to monitor the binding and characterize the binding of an immobilized ssDNA to an oligonucleotide in solution to perform SNP analysis. The following examples illustrate various methods and applications of the invention, but are in no way intended to limit its scope. EXAMPLES Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for. The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., T. E. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman and Company, 1993); A. L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pa.: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B (1992). Example 1 Small Molecule-Protein Binding Reaction This example demonstrates the capability to detect the binding of protein to small molecule immobilized on a sensor tip and subsequent bindings of multiple antibodies. The two-layer configuration on the tip of an optic fiber is used for this test. The thickness of the first Ta2O5 layer is 25 nm and the thickness of the second SiO2 layer is 770 nm. The fiber was purchased from Ocean Optics (Dunedin, Fla.). It was manually cut into segments that are 40 mm long. Both ends of these segments were polished to standard mirror surface quality. The polishing method used here was exactly the same as those for optical lenses and mirrors. One surface of these fiber segments was outsourced to an optical coating house for Ta2O5 layer and SiO2 layer. This vendor employed an ion-beam assisted physical vapor deposition (IAPVD) coater made by Leybold. IAPVD is a commonly used coating technique for anti-reflection and optical filters. The experimental steps included the following (all steps are performed at room temperature unless otherwise noted): The fiber tip was coated with a polymer monolayer derivatized with biotin. The polymer monolayer was prepared using a biotinylated lipid (custom). This lipid was using to form a lipid monolayer on the surface of water solution. The monolayer was cross linked using UV light for 15 minutes. Clean, dry fibers were then brought in contact with the floating thin film and the biotin polymer was adsorbed onto the fiber tip. The fibers were then dryed at 60° C. for 1 hour. The fiber were then stored under ambient conditions The biosensor tip was immersed in 50 μg/ml streptavidin streptavidin (Pierce Biotechnology, Rockford Ill., cat # 21122) in PBS (Invitrogen, Carlsbad, Calif.; cat # 14190078) for 9 minutes and then rinsed briefly with PBS. The same tip was dipped into 10 μg/ml rabbit-anti-streptavidin solution (AbCam, Cambridge, Mass.; cat # ab6676-1000) in PBS for 36 minutes and then washed with PBS briefly. Finally, the tip was immersed in 50 μg/mL donkey-anti-rabbit antibody solution antibody (Jackson ImmunoResearch, West Grove, Pa.; cat# 711-005-152) in PBS for 25 minutes. A final 10 minute rinse was performed in PBS solution. FIG. 6 shows the real-time response curve for this sequential binding test. The vertical axis is the 7th order valley phase shift in nanometers. It clearly shows the binding of streptavidin to the biotin already immobilized on the tip, and subsequent bindings of anti-streptavidin antibody to streptavidin and a second antibody to this first antibody. The dissociation of the streptavidin layer from the tip was visible (a small reduction in the optical thickness) at 900 seconds. Example 2 Biomolecular Interaction Analysis of Kinetics and Affinity of Biomolecular Interactions This example illustrates use of the invention to carry out a biomolecular interaction analysis (BIA) measuring kinetics and affinity of biomolecular interactions. The same tip configuration as described in Example 1 was used. The experimental steps included the following (all steps are performed at room temperature unless otherwise noted): Mercaptosilane coated tips were prepared using the following procedure. Clean, dry fibers were incubated in a mixture of Toluene: hexanoic acid: mercaptopropyltrioxysilane (10:2:1 volumetric ratio) at room temperature for 24 hours. The fibers were rinsed 2× with 10 mL toluene for 5 minutes each. The fibers were then rinsed 1× with 10 mL of ethanol and dried under a stream of argon and stored at ambient conditions. The biosensor tip was first derivatized by immersion in a with 10 μg/ml solution of rabbit-IgG (Jackson ImmunoResearch, West Grove, Pa.; cat# 309-005-003) in PBS for 1 hour. The coated tip was dipped into 10 μg/ml goat-anti-rabbit antibody solution (Jackson ImmunoResearch, West Grove, Pa.; cat# 111-005-003) in PBS and remained in it for 15 minutes. The tip was removed and washed in PBS. To facilitate the dissociation of the second antibody from the first antibody, the PBS was agitated manually for 20 minutes. The tip was then dipped into the same goat-anti-rabbit solution again to show the reproducible association of goat-anti-rabbit to rabbit-IgG. FIG. 7 shows the on and off curves generated from the association and dissociation of rabbit-IgG and goat-anti-rabbit. The vertical axis is again the 7th order valley phase shift. The phase shift is directly related to the average thickness with a ratio of 0.834. The ability to detect the on and off curves reliably is essential for measuring interaction kinetics and affinity. Example 3 Calculating Affinity Constants from Antibody-Antigen Binding and Release Curves This experiment demonstrates the calculation of affinity constants from measuring on and off curves for two antibodies and their antigen. The proprietary antibodies were labeled as Ab-1 and Ab-2. The molecular weight of the antigen was about 30 kilodaltons. The same tip configuration as described in Example 1 was used. The same mercaptosilane fiber preparation as described in Example 2 was used. The experimental steps included (all steps are performed at room temperature unless otherwise noted): The fiber tip was activated for covalent attachment of the antigen. Mercaptosilane coated fibers were activated by immersing the sensor tips in 50 μL of a 50 mg/mL solution of sulfo-SMCC (Pierce Biotechnology, Rockford Ill.; cat # 22322) in DMF (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # 494488) at for 2 hours. The sensor tips were rinsed briefly in DMF and dried; The antigen was covalently bound to the activated fiber tip by immersing the activated tip in a 20 μg/ml solution of antigen in PBS for 20 minutes. The tip was rinsed with PBS for 2 minutes. Following the PBS rinse, the tip was quenched with an aqueous solution of 100 μM ethanolamine pH 8.5 (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # E9508) for 5 minutes and then was rinsed again in PBS for 2 minutes. The same tip was immersed in antibody for an association test and the real-time binding data were recorded for 9-15 minutes (depending on the antibody identity and concentration). Once those data were recorded, the tip was again immersed in PBS and agitated to measure the off curve (i.e., dissociation between the immobilized antigen and bound antibody) for 9-15 minutes. The binding (on curve) and dissociation (off curve) measurements were repeated using different concentrations of antibody (25 nM, 150 nM, and 430 nM) and with two different antibodies identified as Ab-1 and Ab-2. FIG. 8 shows the association and dissociation curves at different concentrations. The test of 25 nM Ab-2 was not completed because the association was extremely slow at this concentration. These illustrated curves are plots of the raw data. Kon, Koff, and KD were derived from these curves by fitting the raw data with a first order exponential function. By averaging two sets of data, kinetic and affinity coefficients were obtained as follows: Ab-1 Ab-2 Kon = 1.35 × 105 (M−1S−1) Kon = 2.01 × 105 (M−1S−1) Koff = 5.55 × 10−5 (S−1) Koff = 8.15 × 10−5 (S−1) KD = Koff/Kon = 3.99 × 10−9 (M) KD = Koff/Kon = 4.45 × 10−9 (M) Example 4 NHS-Ester Activated Tips The same tip configuration as described in Example 1 was used. The same mercaptosilane fiber preparation as described in Example 2 was used. Mercaptosilane coated fibers were activated by immersing the sensor tips in 50 μL of a 50 mg/mL solution of sulfo-SMCC (Pierce Biotechnology, Rockford Ill.; cat # 22322) in DMF (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # 494488) at for 2 hours. The sensor tips were rinsed briefly in DMF and dried. Amine containing molecules can be covalently bound to this surface through formation of a stable amide linkage. Molecules that do not contain free amines are not immobilized through the NHS moiety, but these molecules can still bind to the surface through non-specific binding. This non-specific binding can be multi-layered whereas the covalent immobilization through the NHS esters will be in a single layer controlled by the availability and accessibility of the NHS ester. In this set of experiments, a bis amino PEG (MW 3300) (Shearwater Polymers, San Carlos, Calif.) was used as a test compound to covalently bind to the activated surface. A PEG (MW 8000) (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # 04162) that contained no free amino groups was used as a negative control. This negative control was used to look for any non-specific or multi-layered binding that might be inherent to PEG polymers on this surface. FIG. 9 shows the time course of the treatment of the activated mercaptosilane tip with the test molecules. The activated tip showed a distinct increase in optical thickness upon exposure to the 0.1 mg/mL bis amino PEG (MW 3300) in PBS. This increase is stopped when the bis amino PEG solution is replaced by the PBS buffer. The activated tip exposed to 0.1 mg/mL PEG (MW 8000) in PBS, which contains no amines, shows a small initial increase in optical thickness but the trace quickly becomes flat. From this it can be concluded that the PEG polymer does not have intrinsic non-specific binding and that the binding seen for the bis amino PEG is attributed to the specific covalent immobilization of the amine group. Example 5 Antibody Derivatized Tips Using NHS-Ester Chemistry This example illustrates the binding of a low molecular weight molecule binding to an immobilized high molecular weight molecule. Using the same NHS ester terminated surface described in Example 4 and the same tip configuration as described in Example 1, an anti-biotin antibody was immobilized to 3 fibers. Immobilization of the antibody was accomplished by immersing the activated fiber in a 20 μg/mL solution of mouse anti-biotin antibody (Biodesign, Saco Minn.; cat # H61504M) in PBS for 1 hour at room temperature. The tip was rinsed with PBS for 2 minutes. Following the PBS rinse, the tip was quenched with an aqueous solution of 100 μM ethanolamine pH 8.5 (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # E9508) for 5 minutes and then was rinsed again in PBS for 2 minutes. The first fiber was exposed to a solution of 200 μg/mL biotin (Pierce Biotechnology, Rockford Ill.; cat # 29129) in PBS. Controls using a solution of sucrose (Sigma-Aldrich Chemical Company, St Louis, Mo.; cat # S8501) (2 mg/mL) and PBS were carried out on the second and the third fibers to determine baseline noise. Data from these tests are shown in FIG. 10. Biotin binding is seen as an increase in optical thickness, whereas exposure to sucrose shows no detectable increase over baseline (PBS). Another negative control was carried out using an irrelevant antibody (anti-Lewis Y antibody from Calbiochem, San Diego Calif.; cat# 434636) immobilized in an identical fashion to the anti-biotin antibody above. This immobilized antibody was exposed to a solution of 200 μg/mL biotin. The lack of biotin binding to this antibody indicates that the biotin binding to the anti-biotin antibody is a result of specific interactions and not due to non-specific binding. While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention. All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates to an apparatus and method for detecting the presence, amount, or rate of binding of one or more analytes in a sample, and in particular, to apparatus and method based on fiber optic interferometry. 2. Description of the Related Art Diagnostic tests based on a binding event between members of an analyte-anti-analyte binding pair are widely used in medical, veterinary, agricultural and research applications. Typically, such methods are employed to detect the presence or amount or an analyte in a sample, and/or the rate of binding of the analyte to the anti-analyte. Typical analyte-anti-analyte pairs include complementary strands of nucleic acids, antigen-antibody pairs, and receptor-receptor binding agent, where the analyte can be either member of the pair, and the anti-analyte molecule, the opposite member. Diagnostics methods of this type often employ a solid surface having immobilized anti-analyte molecules to which sample analyte molecules will bind specifically and with high affinity at a defined detection zone. In this type of assay, known as a solid-phase assay, the solid surface is exposed to the sample under conditions that promote analyte binding to immobilized anti-analyte molecules. The binding event can be detected directly, e.g., by a change in the mass, reflectivity, thickness, color or other characteristic indicative of a binding event. Where the analyte is pre-labeled, e.g., with a chromophore, or fluorescent or radiolabel, the binding event is detectable by the presence and/or amount of detectable label at the detection zone. Alternatively, the analyte can be labeled after it is bound at the detection zone, e.g., with a secondary, fluorescent-labeled anti-analyte antibody. Co-owned U.S. Pat. No. 5,804,453, (the '453 patent) which is incorporated herein by reference, discloses a fiber-optic interferometer assay device designed to detect analyte binding to a fiber-optic end surface. Analyte detection is based on a change in the thickness at the end surface of the optical fiber resulting from the binding of analyte molecules to the surface, with greater amount of analyte producing a greater thickness-related change in the interference signal. The change in interference signal is due to a phase shift between light reflected from the end of the fiber and from the binding layer carried on the fiber end, as illustrated particularly in FIGS. 7 a and 7 b of the '453 patent. The device is simple to operate and provides a rapid assay method for analyte detection. Ideally, an interferometer assay device will yield readily observable changes in spectral peak and valley (extrema) positions within the range of a conventional visible-light spectrometer, that is, in the visible light range between about 450-700 nm, such that relatively small optical thickness changes at the fiber end can be detected as significant changes in the spectral positions of interference wavelength peaks and valleys. One limitation which has been observed with the device described in the '453 patent is the absence of readily identified wavelength spectral extrema over this spectral range. The present invention is designed to overcome this limitation, preserving the advantages of speed and simplicity of the earlier-disclosed device, but significantly enhancing sensitivity and accuracy. The present invention also provides a more convenient disposable-head format, as well as a multi-analyte array format, e.g., for gene-chip and protein-chip applications.
<SOH> SUMMARY OF THE INVENTION <EOH>The invention includes, in one aspect, an apparatus for detecting an analyte in a sample, including detecting the presence of analyte, the amount of analyte or the rate of association and/or dissociation of analyte to analyte-binding molecules. The apparatus includes an optical element with a proximal reflecting surface and a distal reflecting surface separated by at least 50 nm. A beam of light from an optical fiber is directed to and reflected from the two reflecting surfaces. The reflected beams are coupled back into the optical fiber and interfere. The optical element also includes a layer of analyte binding molecules that is positioned so that the interference between the reflected beams varies as analyte binds to the layer of analyte binding molecules. The change in interference can be caused by different physical phenomenon. For example, analyte binding can cause a change in the optical path length or in the physical distance between the two reflecting surfaces. Alternately, analyte binding can cause a change in the index or in the optical absorption of material located between the reflecting surfaces. Analyte binding can also cause the layer of analyte binding molecules to swell, resulting in a change in the interference. In one particular design, the distal reflecting surface includes the layer of analyte binding molecules. As analyte binds to the layer of analyte binding molecules, the optical path length or the physical distance between the two reflecting surfaces may increase, for example. In another aspect of the invention, a transparent solid material is located between the reflecting surfaces and, optionally, the proximal reflecting surface includes a material with an index greater than that of the transparent solid material. Alternately, an air gap may be located between the reflecting surfaces. In yet another design, the distal reflecting surface is positioned between the proximately reflecting surface and the layer of analyte binding molecules. For example, analyte binding may cause the layer of analyte binding molecules to swell, moving the distal reflecting surface closer to the proximal reflecting surface. In yet another design, the layer of analyte binding molecules is positioned between the two reflecting surfaces. Analyte binding may cause the layer to swell or to change its index, thus changing the interference between the two reflected beams. In another aspect, the apparatus includes an optical assembly having first and second reflecting surfaces separated by a distance “d” greater than 50 nm. The optical assembly is composed of a transparent optical element that can have a thickness defined between proximal and distal faces of the element of at least 50 nm, preferably between 400-1,000 nm. The first reflecting surface is carried on the distal face of optical element, and is formed of a layer of analyte-binding molecules. The second reflecting surface is formed by a coating of transparent material having an index of refraction greater than that of the optical element. This coating can be formed of a Ta 2 O 5 layer having a preferred thickness of between 5 and 50 nm. The optical element can be SiO 2 , and has a thickness of between about 100-5,000 nm, preferably 400-1,000 nm. Also included are a light source for directing a beam of light onto the first and second reflecting surfaces, and a detector unit that operates to detect a change in the optical thickness of the first reflecting layer resulting from binding of analyte to the analyte-binding molecules, when the assembly is placed in the solution of analyte. The optical thickness change at the first reflecting layer is related to a shift in a phase characteristic of the interference wave formed by the two light waves reflected from said first and second surfaces. This phase characteristic can be a shift in the spectral position(s) of one or more peaks and valleys of the interference wave, or by a change in the period of a full cycle of the wave. The light source can include an optical fiber having a distal end adapted to be placed adjacent the second reflecting surface in the assembly, and the apparatus further includes an optical coupling for directing reflected light waves reflected from the assembly to the detector. In a first embodiment, the optical assembly is fixedly mounted on the optical fiber, with the distal end of the optical fiber in contact with the second reflecting surface. In a second embodiment, the optical assembly further includes a second transparent optical element having an index of refraction less than that of the second coating and a thickness greater than about 100 nm, where the coating of high index of refraction material is sandwiched between the two transparent optical elements. In this latter embodiment, the assembly is removably attached to the distal end region of the fiber with a spacing of less than 100 nm or greater than 2 μm between the distal end of the fiber and the confronting face of the second transparent optical element in the assembly. For detecting multiple analytes, such as multiple nucleic acid species, the layer of analyte-binding molecules can be composed of an array of discrete analyte-binding regions, such as single strands of nucleic acid. The regions are effective to bind different analytes. The optical fiber includes a plurality of individual fibers, each aligned with one of the regions, the detector includes a plurality of detection zones, and the optical coupling functions to couple each of the plurality of fibers with one of the zones. The analyte-binding molecules in the assembly can be, for example, (i) an anti-species antibody molecules, for use in screening hybridoma libraries for the presence of secreted antibody, (ii) antigen molecules, for use in detecting the presence of antibodies specific against that antigen; (iii) protein molecules, for use in detecting the presence of a binding partner for that protein; (iv) protein molecules, for use in detecting the presence of multiple binding species capable of forming a multi-protein complex with the protein; or (v) single stranded nucleic acid molecules, for detecting the presence of nucleic acid binding molecules. The detector can be a spectrometer for measuring reflected light intensity over a selected range of wavelengths. Alternatively, or in addition, the light source can include a plurality of light-emitting diodes, each with a characteristic spectral frequency, and the detector functions to record light intensity of reflected light at each of the different LED frequencies. In still another embodiment, the light source includes a white-light source and the detector is designed to record light intensity of reflected light at each of a plurality of different wavelengths. In another aspect, the invention includes a method for detecting the presence or amount of an analyte in a sample solution. The method involves reacting the sample solution with a first reflecting surface formed by a layer of analyte-binding molecules carried on the distal surface of a transparent optical element having a thickness of at least 50 nm, thereby to increase the thickness of the first reflecting layer by the binding of analyte to the analyte-binding molecules in the layer. The change in thickness of the first reflecting layer is measured by detecting a shift in a phase characteristic of the interference wave formed by the two light waves reflected from the first layer and from a second reflecting layer that is formed on the opposite, proximal surface of the optical element and which has an index of refraction greater than that of the optical element. The detecting step can include directing light from an optical fiber onto the two reflecting surfaces, and directing reflected light from the two surfaces onto a detector through an optical coupling. The detector can be a spectrometer, where the detecting includes measuring a shift in the spectral position of one or more of the interference extrema produced by the two reflecting lightwaves. Where the method is used for measuring the rate of association of analyte to the second layer, the reacting step can be carried out until a near-maximum increase in thickness of the first reflecting layer is observed. Where the method is used for measuring the rate of dissociation of analyte to the second layer, the reacting steps can include immersing the second layer in a dissociation buffer for a period of time until a decrease in thickness of the first reflecting layer is observed. Where the method is used for measuring the amount of analyte present in the sample, the detecting is carried out over a period sufficient to measure the thickness of the first reflecting layer at a plurality of different time points. Where the method is used measuring one or more of a plurality of analytes in a sample, the first reflecting layer is composed of an array of discrete analyte-binding regions, the different regions being effective to bind different analytes, and the detecting is effective to detect a change in the thickness of each of the regions resulting from binding of analyte to the analyte-binding molecules. These and other objects and features of the present invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.
20041104
20080701
20051117
57542.0
1
TURNER, SAMUEL A
FIBER-OPTIC ASSAY APPARATUS BASED ON PHASE-SHIFT INTERFEROMETRY
UNDISCOUNTED
0
ACCEPTED
2,004
10,981,904
ACCEPTED
Combination airborne substance detector
A combination airborne substance detection apparatus includes an enclosure, a first module disposed within the enclosure for detecting the presence of a quantity of a first airborne substance, a second module disposed within the enclosure for detecting the presence of a quantity of a second airborne substance, and an alarm module for producing a first perceivable emission when the first substance is detected and for producing a second perceivable emission when the second substance is detected. The first perceivable emission includes at least one of an audible and a visible emission that is distinguishable from the second perceivable emission. The first and second detector modules are each capable of independently and continuously detecting the first and second substances, respectively.
1. A combination airborne substance detection apparatus comprising: (a) an enclosure; (b) a first module disposed within said enclosure for detecting the presence of a quantity of a first airborne substance; (c) a second module disposed within said enclosure for detecting the presence of a quantity of a second airborne substance; and (d) an alarm module for producing a first perceivable emission when said first substance is detected and for producing a second perceivable emission when said second substance is detected, said first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from said second perceivable emission; wherein said first and second detector modules are each capable of independently and continuously detecting said first and second substances, respectively. 2. The apparatus of claim 1, wherein the first module and second module constitute a single module capable of sensing a plurality of airborne substances. 3. The apparatus of claim 1, wherein said first emission is implemented first followed by implementation of said second emission when said first and second substances are at least one of simultaneously or near simultaneously detected. 4. The apparatus of claim 1, wherein said first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, cholorfluorocarbons, toxic gases, and optically-detectable gases, and said first substance and said second substance are different group members. 5. The apparatus of claim 1, wherein said first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas, and said first substance and said second substance are different group members. 6. The apparatus of claim 1, wherein said quantity of at least one of said first and second airborne substances is recorded at predetermined intervals from at least one of said first and second modules, respectively. 7. A combination airborne substance detection apparatus comprising: (a) an enclosure having at least one opening; (b) a circuit board disposed within said enclosure; (c) a first electronic sensing device connected to said circuit board, said sensing device located near said at least one opening, said sensing device capable of continuously and independently detecting the presence of a quantity of a first airborne substance; (d) a second electronic sensing device connected to said circuit board, said sensing device located near said at least one opening, said sensing device capable of continuously and independently detecting the presence of a quantity of a second airborne substance; and (e) an alarm module for producing a first perceivable emission when said first substance is detected and for producing a second perceivable emission when said second substance is detected, said first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from said second perceivable emission, wherein said first and second emissions are capable of occurring independently of each other. 8. The apparatus of claim 7, wherein the first electronic sensing device and the second electronic sensing device constitute a single electronic sensing device capable of sensing a plurality of airborne substances. 9. The apparatus of claim 7, wherein said first emission is implemented first, followed by implementation of said second emission, when said first and second substances are at least one of simultaneously or near simultaneously detected. 10. The apparatus of claim 7, wherein said first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, cholorfluorocarbons, combustible gases, toxic gases, and optically-detectable gases, and said first substance and said second substance are different group members. 11. The apparatus of claim 7, wherein said first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas, and said first substance and said second substance are different group members. 12. The apparatus of claim 7, wherein said quantity of at least one of said first and second airborne substances is recorded at predetermined intervals from at least one of said first and second sensing devices, respectively. 13. A method of monitoring concentrations of airborne substances comprising: (a) continuously detecting the presence of a quantity of a critical airborne substance; (b) continuously detecting the presence of a quantity of a secondary airborne substance; and (c) implementing at least one of a first perceivable emission when said critical substance is detected and a second perceivable emission when said secondary substance is detected, where said first perceivable emission is distinguishable from said second perceivable emission; wherein said first emission is implemented first followed by implementation of said second emission when said critical and secondary substances are at least one of simultaneously and near simultaneously detected. 14. The method of claim 13, wherein said first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, chlorofluorocarbons, toxic gases, and optically-detectable gases, and said first substance and said second substance are different group members. 15. The apparatus of claim 13, wherein said first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas, and said first substance and said second substance are different group members. 16. The apparatus of claim 13, wherein said quantity of at least one of said first and second airborne substances is recorded at predetermined intervals.
FIELD OF THE INVENTION The present invention relates to an apparatus for detecting a combination of airborne substances. More particularly, the present invention relates to an apparatus for the detection of a plurality of substances, such as carbon monoxide gas and propane, where a warning is given when one or more substances is detected. Independent detection and warning continue for remaining non-detected substances, if any. BACKGROUND OF THE INVENTION Common types of airborne substance detectors include smoke and carbon monoxide detectors. Such devices are typically configured as single detector units that sound an alarm upon detection of a single target substance. Combination airborne substance detectors, by contrast, are capable of sensing, within the same device, the presence of a plurality of target substances. Combination airborne substance detectors are useful because they provide an efficient means for detecting and warning of the presence of potentially hazardous and/or harmful target substances. For instance, when detecting for a plurality of airborne substances, the use of more than one substance detector is undesirable in that multiple detectors does not allow for optimal placement near potential source(s) of target substances, requires additional power sources or connections, imposes additional space requirements, and can be visually unappealing. In typical combination detector systems, the detection of one substance has priority over the remaining secondary substance(s). The detection of secondary substances is disabled in typical combination detector systems once the primary substance is detected. The theory of operation in these typical combination detectors is that detection of the primary substance has priority that negates further detection of remaining target substance(s). A problem associated with typical combination airborne substance detectors is the user is no longer warned of the presence of secondary substances once the primary substance is detected. For airborne substances such as smoke, carbon monoxide or combustible gases, a life-threatening condition can occur for which no warning is given. For instance, in typical combination smoke-carbon monoxide detectors, smoke detection has precedence over carbon monoxide detection. But, in a combination combustible gas-carbon monoxide detector, carbon monoxide detection may have priority over combustible gas detection, thereby potentially endangering a user's health and/or safety. A combustible gas leak, such as a propane leak, requires the user to take immediate action, whereas excess carbon monoxide generally means the user has time to react. If carbon monoxide is detected causing the alarm to emit a warning, and there is further a propane leak, the user will be unaware of the dangerous second condition. For example, in reacting to a carbon monoxide alert, the user may activate an electrical device, such as a fan or light, which could in turn lead to ignition of a combustible gas that is also present in the nearby environment. A combination airborne substance detector, as disclosed herein, provides advantages over conventional devices by its capability to simultaneously alert a user of multiple life-threatening conditions. Furthermore, in environments where combustible gas(es) and/or other critical conditions involving potentially hazardous airborne substances are present, and for which immediate attention and remedial action is required or desirable, the present combination airborne substance detector provides the additional advantage of being able to initially warn of such critical conditions, followed by warnings of any secondary critical conditions. SUMMARY OF THE INVENTION A combination airborne substance detection apparatus provides one or more of the above advantages, and/or overcomes one or more of the above shortcomings. In a first embodiment, the detector comprises: (a) an enclosure; (b) a first module disposed within the enclosure for detecting the presence of a quantity of a first airborne substance; (c) a second module disposed within the enclosure for detecting the presence of a quantity of a second airborne substance; and (d) an alarm module for producing a first perceivable emission when the first substance is detected and for producing a second perceivable emission when the second substance is detected, the first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from the second perceivable emission. The first and second detector modules are each capable of independently and continuously detecting the first and second substances, respectively. In a preferred first embodiment, the first module and second module constitute a single module capable of sensing a plurality of airborne substances. In another preferred first embodiment, the first emission is implemented first followed by implementation of the second emission when the first and second substances are at least one of simultaneously or near simultaneously detected. In another preferred first embodiment, the first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, cholorfluorocarbons, toxic gases, and optically-detectable gases, and the first substance and the second substance are different group members. In another preferred first embodiment, the first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas, and the first substance and the second substance are different group members. In another preferred first embodiment, the quantity of at least one of the first and second airborne substances is recorded at predetermined intervals from at least one of the first and second modules, respectively. In a second embodiment, a combination airborne substance detection apparatus comprises: (a) an enclosure having at least one opening; (b) a circuit board disposed within the enclosure; (c) a first electronic sensing device connected to the circuit board, the sensing device located near the at least one opening, the sensing device capable of continuously and independently detecting the presence of a quantity of a first airborne substance; (d) a second electronic sensing device connected to the circuit board, the sensing device located near the at least one opening, the sensing device capable of continuously and independently detecting the presence of a quantity of a second airborne substance; and (e) an alarm module for producing a first perceivable emission when the first substance is detected and for producing a second perceivable emission when the second substance is detected, the first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from the second perceivable emission, wherein the first and second emissions are capable of occurring independently of each other. Preferred aspects of the second combination detector embodiment defined have the same or similar features as those defined above for the first combination detector embodiment. In one embodiment, a method of monitoring concentrations of airborne substances comprises: continuously detecting the presence of a quantity of a critical airborne substance; continuously detecting the presence of a quantity of a secondary airborne substance; and implementing at least one of a first perceivable emission when the critical substance is detected and a second perceivable emission when the secondary substance is detected, where the first perceivable emission is distinguishable from the second perceivable emission. The first emission is implemented first followed by implementation of the second emission when the critical and secondary substances are at least one of simultaneously and near simultaneously detected. In a preferred embodiment of the foregoing method, the first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, chlorofluorocarbons, toxic gases, and optically-detectable gases, and the first substance and the second substance are different group members. In another preferred embodiment of the foregoing method, the first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas; and the first substance and the second substance are different group members. In another preferred embodiment of the foregoing method, the quantity of at least one of the first and second airborne substances is recorded at predetermined intervals. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a functional diagram of an embodiment of the present combination airborne substance detector apparatus. FIG. 2 is a functional diagram of another embodiment of the present combination airborne substance detector apparatus. FIG. 3 is a functional diagram of another embodiment of the present combination airborne substance detector apparatus. FIG. 4 is a front view of a combination airborne substance detector of the type for carrying out the functions illustrated in one or more of FIGS. 1-3. FIG. 5 is a circuit diagram of an embodiment of the electronic components and connections for the airborne substance detector illustrated in FIG. 4. DETAILED DESCRIPTION OF PREFERRED EMBODIMENT(S) FIG. 1 illustrates a functional diagram of an embodiment of the present airborne substance detector apparatus. A first module 10 can be a sensing device for a first airborne substance. A second module 20 can be a sensing device for a second airborne substance, different from that being sensed by the first module 10. The first and second modules 10, 20 electronically communicate with a decision box 30. The decision box 30 continuously and independently communicates with the first and second modules 10, 20 monitoring for signal fluctuations indicative of the presence of target airborne substances. Continuous monitoring of the decision box 30 can include checking for signal input fluctuations on an intermittent basis in periods of approximately every few seconds. Additional modules may electronically communicate with the decision box 30 for detecting additional conditions. The first module 10, second module 20, and additional modules, if any, can also constitute (that is, form part of) a single module 100 (see FIG. 2) for sensing multiple airborne substances. The single module 100 also electronically communicates with the decision box 30. The first module 10 and second module 20 can contain sensors of the metal oxide type including tin, which detect airborne substances through changes in electrical conductivity. Other types sensors can be contained within the modules to provide similar sensing capabilities, including but not limited to, infrared or other optical-type sensors. Recordings can be made at predetermined intervals of a quantity of the first and/or second airborne substances. The recordings can be made electronically, either within the first or second modules 10, 20, outside the modules 10, 20 in separate memory devices, or in the decision box 30. The recording is made of the resistance, conductivity, or other relevant electrical parameter and is correlated to an appropriate concentration for the target substance via a fixed constant or correlation curve. The types of airborne substances that can be detected by the first module 10, second module 20, or additional modules, if any, include smoke, carbon monoxide, propane, methane, butane, mercury, ethylene oxide, ammonia, volatile organic compounds, hydrogen sulfide, hydrogen and other combustible gases, chlorofluorocarbons (such as, for example, duPont Freon® and similar refrigerants), other toxic gases, and optically-detectable gases. When an input signal fluctuation is received by the decision box 30 from the first module 10, the decision box 30 electronically communicates an output signal to an alarm module 40 to produce a first perceivable emission in a corresponding first alarm 50. When an input signal fluctuation is received by the decision box 30 from the second module 20, the decision box 30 electronically communicates an output signal to the alarm module 40 producing a second perceivable emission either through the same first alarm 50 or through a separate second alarm 60. When an input signal fluctuation is simultaneously or near simultaneously received by the decision box 30 from both the first and second modules 10, 20, the decision box 30 electronically communicates an output signal to the alarm module 40 to produce a perceivable emission. The perceivable emission warns for the conditions sensed by both the first and second modules 10, 20. The perceivable emissions will be distinct from each other so that the user is warned of both conditions. Furthermore, the emission alerting for the primary target substance can be more prominent relative to the secondary target substance(s). The perceivable emission(s) may occur through the first alarm 50, the second alarm 60, or a third alarm 70. The first and second perceivable emissions can include the types of emissions detectable or perceivable by the human senses. Typical perceivable emissions include audible and/or visible emissions. The alarm module 40 can be a self-contained unit containing devices for producing perceivable emissions as directed by the decision box 30. It can also consist of multiple units, each unit producing its own perceivable emission, as directed by the decision box 30. The modules 10, 20, decision box 30, and alarm module 40 can be disposed within an enclosure. The enclosure is typically shaped as a rectangular box or disc-like structure and typically constructed of plastic material. FIG. 2 illustrates a functional diagram of another embodiment of the present combination airborne substance detector apparatus. A circuit board 100 can contain a first electronic sensing device and a second electronic sensing device. The first sensing device can detect the presence of a first airborne substance. The second sensing device can detect the presence of a second airborne substance, generally different from the substance being sensed by the first device. The sensing devices electronically communicate with a decision box 30. The decision box 30 continuously and independently communicates with the first and second sensing devices to monitor for input signal fluctuations indicative of a presence of target airborne substances. Additional sensing devices can be contained on, or separate, from the circuit board 100. Furthermore, a single sensing device can be used that can detect multiple target airborne substances and electronically communicate with the decision box 30. Recordings can be made at predetermined intervals of a quantity of the first and/or second airborne substances detected by the sensing devices. For example, recordings can be made of the resistance, conductivity and/or other relevant electrical parameter(s) and correlated to a concentration level of the target airborne substance. As with the embodiment discussed in FIG. 1, when an input signal fluctuation is detected from only the first sensing device by the decision box 30, an output signal is sent from the decision box 30 to a first alarming device 110 that produces a first perceivable emission. When an input signal fluctuation is detected from only the second sensing device by the decision box 30, an output signal is sent from the decision box 30 to a second alarming device 120 that produces a second perceivable emission. In the case of a single sensing device, the output signal communication from the sensing device to the decision box 30 determines whether the first or second perceivable emission is triggered by the output signal from the decision box 30. The first and second perceivable emissions are distinct from each other. Typical emissions can include both audible and/or visible warnings. The sensing devices provide independent detection of airborne substances. The alarming devices provide corresponding independent warnings. Thus, where airborne substances are detected simultaneously or within a short time period of each other, two distinct perceivable emissions will occur from the alarming devices. This distinct alarming can occur from a third alarming device 130 that can include a combination of audible and/or visible perceivable emissions. The circuit board, sensing devices, decision box, and alarm devices can be contained within an enclosure. Furthermore, the sensing devices, decision box 30, and alarm devices can be contained on the circuit board 100. FIG. 3 illustrates another embodiment of the present combination airborne substance detector apparatus. A first module 200 can be a sensing device for a first airborne substance. A second module 210 can be a sensing device for a second airborne substance, generally different from that being sensed by the first module 200. The first and second modules 200, 210 electronically communicate with a decision logic device 220. The decision logic device 220 continuously and independently communicates with the first and second modules 200, 210 monitoring for input indicative of the presence of airborne substances subject to detection. Additional modules can be connected to the decision logic device 220 to detect additional conditions. Furthermore, the first module 200, second module 210, and additional modules, if any, can constitute a single module that senses multiple airborne substances where the single module electronically communicates with the decision logic device 220. An output signal (binary code=1) is electronically communicated from the first module 10 to the decision logic device 220 when a target substance is detected by the first module 200. If no output signal (binary code 0) is electronically communicated from the second module 210 to the decision logic device 220, the decision logic device 220 (A=1, B=0) signals a first alarm module 230 producing a first perceivable emission. When a signal fluctuation is detected only from the second module 210 (A=0, B=1), an output signal is sent from the decision logic device 220 to the second alarm module 240 producing a second perceivable emission. When a signal fluctuation is detected from both the first and second modules 200, 210 (A=1, B=1) simultaneously or near simultaneously, an output signal is sent from the decision logic device to both the first and second alarm modules 230, 240 producing distinctive first and second perceivable emissions for each detected airborne substance. In an embodiment of the present airborne substance detector, visible emissions are produced for both the first and second alarm modules 230, 240, with the addition of an audible emission for the more critical airborne substance. In the case of a combination carbon monoxide and propane detector (or other combustible gas), propane is generally the critical substance. Although the embodiment of the present apparatus described herein is particularly well-suited to the detection of carbon monoxide and propane, persons skilled in the technology involved here will appreciate that the apparatus can also be employed in connection with the detection of smoke, methane, butane, mercury, ethylene oxide, ammonia, volatile organic compounds generally, hydrogen sulfide, hydrogen and other combustible gases generally, chlorofluorocarbons (such as, for example, duPont Freon® chlorofluorocarbons, used primarily as refrigerants), other toxic gases generally, and optically-detectable gases. While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, of course, that the invention is not limited thereto since modifications can be made by those skilled in the art without departing from the scope of the present disclosure, particularly in light of the foregoing teachings.
<SOH> BACKGROUND OF THE INVENTION <EOH>Common types of airborne substance detectors include smoke and carbon monoxide detectors. Such devices are typically configured as single detector units that sound an alarm upon detection of a single target substance. Combination airborne substance detectors, by contrast, are capable of sensing, within the same device, the presence of a plurality of target substances. Combination airborne substance detectors are useful because they provide an efficient means for detecting and warning of the presence of potentially hazardous and/or harmful target substances. For instance, when detecting for a plurality of airborne substances, the use of more than one substance detector is undesirable in that multiple detectors does not allow for optimal placement near potential source(s) of target substances, requires additional power sources or connections, imposes additional space requirements, and can be visually unappealing. In typical combination detector systems, the detection of one substance has priority over the remaining secondary substance(s). The detection of secondary substances is disabled in typical combination detector systems once the primary substance is detected. The theory of operation in these typical combination detectors is that detection of the primary substance has priority that negates further detection of remaining target substance(s). A problem associated with typical combination airborne substance detectors is the user is no longer warned of the presence of secondary substances once the primary substance is detected. For airborne substances such as smoke, carbon monoxide or combustible gases, a life-threatening condition can occur for which no warning is given. For instance, in typical combination smoke-carbon monoxide detectors, smoke detection has precedence over carbon monoxide detection. But, in a combination combustible gas-carbon monoxide detector, carbon monoxide detection may have priority over combustible gas detection, thereby potentially endangering a user's health and/or safety. A combustible gas leak, such as a propane leak, requires the user to take immediate action, whereas excess carbon monoxide generally means the user has time to react. If carbon monoxide is detected causing the alarm to emit a warning, and there is further a propane leak, the user will be unaware of the dangerous second condition. For example, in reacting to a carbon monoxide alert, the user may activate an electrical device, such as a fan or light, which could in turn lead to ignition of a combustible gas that is also present in the nearby environment. A combination airborne substance detector, as disclosed herein, provides advantages over conventional devices by its capability to simultaneously alert a user of multiple life-threatening conditions. Furthermore, in environments where combustible gas(es) and/or other critical conditions involving potentially hazardous airborne substances are present, and for which immediate attention and remedial action is required or desirable, the present combination airborne substance detector provides the additional advantage of being able to initially warn of such critical conditions, followed by warnings of any secondary critical conditions.
<SOH> SUMMARY OF THE INVENTION <EOH>A combination airborne substance detection apparatus provides one or more of the above advantages, and/or overcomes one or more of the above shortcomings. In a first embodiment, the detector comprises: (a) an enclosure; (b) a first module disposed within the enclosure for detecting the presence of a quantity of a first airborne substance; (c) a second module disposed within the enclosure for detecting the presence of a quantity of a second airborne substance; and (d) an alarm module for producing a first perceivable emission when the first substance is detected and for producing a second perceivable emission when the second substance is detected, the first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from the second perceivable emission. The first and second detector modules are each capable of independently and continuously detecting the first and second substances, respectively. In a preferred first embodiment, the first module and second module constitute a single module capable of sensing a plurality of airborne substances. In another preferred first embodiment, the first emission is implemented first followed by implementation of the second emission when the first and second substances are at least one of simultaneously or near simultaneously detected. In another preferred first embodiment, the first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, cholorfluorocarbons, toxic gases, and optically-detectable gases, and the first substance and the second substance are different group members. In another preferred first embodiment, the first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas, and the first substance and the second substance are different group members. In another preferred first embodiment, the quantity of at least one of the first and second airborne substances is recorded at predetermined intervals from at least one of the first and second modules, respectively. In a second embodiment, a combination airborne substance detection apparatus comprises: (a) an enclosure having at least one opening; (b) a circuit board disposed within the enclosure; (c) a first electronic sensing device connected to the circuit board, the sensing device located near the at least one opening, the sensing device capable of continuously and independently detecting the presence of a quantity of a first airborne substance; (d) a second electronic sensing device connected to the circuit board, the sensing device located near the at least one opening, the sensing device capable of continuously and independently detecting the presence of a quantity of a second airborne substance; and (e) an alarm module for producing a first perceivable emission when the first substance is detected and for producing a second perceivable emission when the second substance is detected, the first perceivable emission comprising at least one of an audible and a visible emission that is distinguishable from the second perceivable emission, wherein the first and second emissions are capable of occurring independently of each other. Preferred aspects of the second combination detector embodiment defined have the same or similar features as those defined above for the first combination detector embodiment. In one embodiment, a method of monitoring concentrations of airborne substances comprises: continuously detecting the presence of a quantity of a critical airborne substance; continuously detecting the presence of a quantity of a secondary airborne substance; and implementing at least one of a first perceivable emission when the critical substance is detected and a second perceivable emission when the secondary substance is detected, where the first perceivable emission is distinguishable from the second perceivable emission. The first emission is implemented first followed by implementation of the second emission when the critical and secondary substances are at least one of simultaneously and near simultaneously detected. In a preferred embodiment of the foregoing method, the first and second airborne substances are each selected from the group consisting of smoke, propane, carbon monoxide, methane, butane, mercury, ethylene oxide, volatile organic compounds, hydrogen sulfide, hydrogen, ammonia, combustible gases, chlorofluorocarbons, toxic gases, and optically-detectable gases, and the first substance and the second substance are different group members. In another preferred embodiment of the foregoing method, the first and second airborne substances are each selected from the group consisting of carbon monoxide and a combustible gas; and the first substance and the second substance are different group members. In another preferred embodiment of the foregoing method, the quantity of at least one of the first and second airborne substances is recorded at predetermined intervals.
20041104
20070724
20060518
69902.0
G08B1900
2
TWEEL JR, JOHN ALEXANDER
COMBINATION AIRBORNE SUBSTANCE DETECTOR
SMALL
0
ACCEPTED
G08B
2,004
10,981,959
ACCEPTED
Method and apparatus to provide temporary peak power from a switching regulator
Various techniques directed to providing temporary peak power from a switching regulator are disclosed. In one aspect, a switching regulator includes a switch that is to be coupled between a power supply input and an energy transfer element of the power supply. A controller is coupled to be responsive to a feedback signal to be received from an output of the power supply. The controller is coupled to switch the switch in response to the feedback signal to regulate the output of the power supply. An oscillator is coupled to provide an oscillating signal to the controller to determine a maximum switching frequency of the switch. The oscillating signal is coupled to oscillate at a first frequency under a first moderate load condition at the power supply output. The oscillating signal is coupled to oscillate at a second frequency under a second peak load condition at the power supply output.
1. A switching regulator circuit, comprising: a switch coupled between an input of the power supply and an energy transfer element of the power supply, the energy transfer element to be coupled between the input and an output of the power supply; and a controller circuit coupled to a control terminal of the switch, the controller circuit coupled to receive a feedback signal representative of an output level of the power supply, the controller circuit to switch the switch on and off at a switching frequency to regulate the output level of the power supply, the controller having a maximum switching frequency that is substantially independent of the input of the power supply, the maximum switching frequency to be limited to a first switching frequency when the load does not exceed a moderate power level threshold value, the maximum switching frequency to be limited to a second switching frequency that is higher than the first switching frequency when the load is greater than the moderate power level threshold value. 2. The switching regulator circuit of claim 1 wherein the controller circuit is included in an integrated circuit. 3. The switching regulator circuit of claim 1 wherein the controller circuit and the switch are integrated on a monolithic integrated circuit. 4. The switching regulator circuit of claim 1 wherein the load at the power supply output is greater than the moderate power level threshold value for only substantially short time durations such that a temperature of the switching regulator does not substantially increase while the load at the power supply output is greater than the moderate power level threshold value. 5. The switching regulator circuit of claim 4 wherein the load at the power supply output is greater than the moderate power level threshold value at intervals that do not substantially increase the temperature of the switching regulator. 6. The switching regulator circuit of claim 1 wherein the controller circuit comprises a pulse width modulator coupled to the switch to regulate the output level of the power supply. 7. The switching regulator circuit of claim 1 wherein the controller disables the power switch during selected switching periods to regulate the output level of the power supply. 8. The switching regulator of claim 1 wherein the maximum switching frequency of the switch is adjusted in response to an external load demand signal coupled to be received by the controller circuit. 9. The switching regulator circuit of claim 1 wherein the controller circuit further includes a peak load detect circuit coupled to sense a current in the switch to adjust the maximum switching frequency of the switch. 10. The switching regulator of claim 4 wherein the controller circuit includes a time limit circuit coupled to limit a duration of time that the switch may be switched at the second switching frequency. 11. A switching regulator circuit, comprising: a switch between an input of the power supply and an energy transfer element of the power supply, the energy transfer element to be coupled between the input and an output of the power supply; and a controller circuit coupled to a control terminal of the switch, the controller circuit coupled to receive a feedback signal representative of an output level of the power supply, the controller circuit to switch the switch on and off to regulate the output level of the power supply as an output power varies, the controller circuit to have a first maximum switching frequency when the output power is below a moderate power threshold value, the controller circuit to have a second maximum switching frequency when the output power is above the moderate power threshold value. 12. The switching regulator circuit of claim 11 wherein a switching frequency of the switch is substantially constant when the output power is below the moderate power threshold value and above either a standby or no-load power threshold. 13. The switching regulator of claim 12 wherein the switching frequency is varied up to the second maximum switching frequency to regulate the output level when the output power is above the moderate power threshold level. 14. The switching regulator circuit of claim 12 wherein the substantially constant switching frequency is substantially equal to the first maximum switching frequency. 15. The switching regulator circuit of claim 11 wherein the controller circuit comprises a time limit circuit coupled to limit a period of time for which the controller has the second maximum switching frequency. 16. The switching regulator circuit of claim 11 wherein the controller disables the power switch during selected switching periods to regulate the output level of the power supply. 17. A switching regulator, comprising: a switch to be coupled between a power supply input and an energy transfer element of the power supply; a pulse width modulator coupled to be responsive to a feedback signal to be received from an output of the power supply, the pulse width modulator to switch the switch in response to the feedback signal to regulate the output of the power supply; an oscillator coupled to provide an oscillating signal to the pulse width modulator to determine a maximum switching frequency of the switch, the oscillating signal coupled to oscillate at a first frequency under a first moderate load condition at the power supply output, the oscillating signal coupled to oscillate at a second frequency under a second peak load condition at the power supply output. 18. The switching regulator of claim 17 wherein the first load condition occurs when a power supply output load is less than a first moderate load threshold value, the second load condition occurs when the power supply output load is greater than a second load threshold value. 19. The switching regulator of claim 17 further comprising a current limit circuit coupled to the switch and the pulse width modulator, the current limit circuit coupled to limit a current though the switch. 20. The switching regulator of claim 17 wherein the oscillator is coupled to receive a frequency shift signal to indicate whether to oscillate at the first frequency or the second frequency. 21. The switching regulator of claim 20 wherein the frequency shift signal is responsive to an external load demand signal coupled to be received by the switching regulator. 22. The switching regulator of claim 19 further comprising a peak load detect circuit coupled to the current limit circuit, the peak load detect circuit coupled to detect a peak load condition in response to the current limit circuit. 23. The switching regulator of claim 17 further comprising a time limit circuit coupled to the oscillator to limit a duration of time that the oscillating signal may oscillate at the second frequency. 24. The switching regulator of claim 17 wherein the second load condition occurs substantially less frequently than the first load condition. 25. The switching regulator of claim 17 wherein the second frequency is greater than the first frequency. 26. A method for regulating a power supply output, comprising: receiving a feedback signal representative of an output level of a power supply output; switching a switch in response to the feedback signal to regulate the flow of energy from an input of the power supply the power supply output; detecting a peak load condition of a load at the power supply output; and temporarily increasing a maximum switching frequency of the switch during the detected peak load condition. 27. The method of claim 26 wherein switching the switch in response to the feedback signal to regulate the flow of energy from the power supply input to the power supply output comprises pulse width modulating a control signal driving the switch. 28. The method of claim 26 further comprising detecting a current through the switch. 29. The method of claim 28 further comprising limiting the current through the switch to an amount below a current limit threshold. 30. The method of claim 28 further comprising detecting the peak load condition in response to the detected current through the switch. 31. The method of claim 26 further comprising identifying the peak load condition in response to an external load demand signal. 32. The method of claim 26 wherein temporarily increasing the maximum switching frequency of the switch during the detected peak load condition includes limiting a time duration that the switch may be switched at up to the increased maximum switching frequency.
BACKGROUND 1. Technical Field The present invention relates generally to electronic circuits, and more specifically, the invention relates to switched mode power supplies. 2. Background Information Many types of electronic equipment use varying amounts of power in normal operation. The range of power demanded from a power supply can be extreme, extending for example from a few milliwatts to nearly 100 watts. Large ranges of loading are common in equipment such as printers, digital video disc (DVD) recorders, and other products that require rapid activation of mechanical motion. Typically, a moderate continuous output power is required for a long duration, for example when a DVD disk is spinning continuously or the print head in a printer is moving across a page. However, a maximum or peak output power is usually required for a relatively short duration and infrequently, for example to reverse the direction of a moving printer head or to spin a disk from startup to its rated speed. Equipment to amplify signals that have a large dynamic range, such as music, for example, can demand power that covers a range of several orders of magnitude. Designers of power supplies for these applications are challenged to provide a wide range of power while conforming to conflicting requirements of efficiency, size, and cost. Power supplies that can deliver the maximum or peak required power often require the use of components that are over rated for the continuous moderate power level. Efforts to meet the requirements for continuous moderate power and short duration peak power from the same power supply usually lead to designs that are larger, heavier, and more costly than necessary if the load range were limited. BRIEF DESCRIPTION OF THE DRAWINGS The present invention detailed illustrated by way of example and not limitation in the accompanying Figures. FIG. 1 is a functional block diagram of a power supply that may include a switching regulator in accordance with the teachings of the present invention. FIG. 2 is a graph of a typical power demand for a switching regulator in accordance with the teachings of the present invention. FIG. 3 shows waveforms of the current in the switch of a switching regulator for two switching frequencies in accordance with the teachings of the present invention. FIG. 4 is a graph of the maximum theoretical output power for a switching regulator as a function of switching frequency in accordance with the teachings of the present invention. FIG. 5 shows graphs of power demand and corresponding switching frequency for one embodiment of a switching regulator in accordance with the teachings of the present invention. FIG. 6 shows graphs of power demand and an alternative corresponding switching frequency for one embodiment of a switching regulator in accordance with the teachings of the present invention. FIG. 7 shows functional elements of one embodiment of a controller for a switching regulator in accordance with the teachings of the present invention. FIG. 8 shows another embodiment of a controller for a switching regulator in accordance with the teachings of the present invention. DETAILED DESCRIPTION Embodiments of a power supply regulator that may be utilized in a power supply are disclosed. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. Well-known methods related to the implementation have not been described in detail in order to avoid obscuring the present invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. FIG. 1 shows a functional block diagram of a power supply that may include an embodiment of a power supply regulator in accordance with the teachings of the present invention. The topology of the power supply illustrated in FIG. 1 is known as a flyback regulator. It is appreciated that there are many topologies and configurations of switching regulators, and that the flyback topology shown in FIG. 1 is provided to illustrate the principles of an embodiment of the present invention that may apply also to other types of topologies in accordance with the teachings of the present invention. The power supply in FIG. 1 provides output power to a load 165 from an unregulated input voltage VIN 105. The input voltage VIN 105 is coupled to an energy transfer element T1 125 and a switch S1 120. In the example of FIG. 1, the energy transfer element T1 125 is coupled between an input of the power supply and an output of the power supply. In the example of FIG. 1, the energy transfer element T1 125 is illustrated as a transformer with two windings. A clamp circuit 110 is coupled to the primary winding of the energy transfer element T1 125 to control the maximum voltage on the switch S1 120. Switch S1 120 is switched on and off in response to one embodiment of a controller circuit 145 in accordance with the teachings of the present invention. In one embodiment, switch S1 120 is a transistor such as for example a power metal oxide semiconductor field effect transistor (MOSFET). In one embodiment, controller 145 includes integrated circuits and discrete electrical components. The operation of switch S1 120 produces pulsating current in the rectifier D1 130 that is filtered by capacitor C1 135 to produce a substantially constant output voltage VO or output current IO at the load 165. The output quantity to be regulated is UO 150, that in general could be an output voltage VO, an output current IO, or a combination of the two. A feedback circuit 160 is coupled to the output quantity UO 150 to produce a feedback signal UFB 155 that is an input to the controller 145. Another input to the controller 145 is the current sense signal 140 that senses a current ID 115 in switch S1 120. Any of the many known ways to measure a switched current, such as for example a current transformer, or for example the voltage across a discrete resistor, or for example the voltage across a transistor when the transistor is conducting, may be used to measure current ID 115. In one embodiment, the controller 145 operates switch S1 120 to substantially regulate the output UO 150 to its desired value. In one embodiment, controller 145 includes an oscillator that defines substantially regular switching periods. In one embodiment, regulation is accomplished by control of the conduction time of the switch within a switching period. In each switching period, the fraction of the switching period that the switch is closed is the duty ratio of the switch. As will be discussed, one embodiment of the oscillator included in controller 145 is configured to switch temporarily at a higher frequency to accommodate temporary peak load conditions in accordance with the teachings of the present invention. The instantaneous output power PO is the output voltage VO multiplied by the output current IO. The load draws an output power PO that may change abruptly with time. FIG. 2 shows a graph of the output power demand of a typical load that may be accommodated by a power supply regulator in accordance with the teachings of the present invention. A distinguishing characteristic of the power requirement of FIG. 2 is that the power is below a moderate level PM most of the time, going above PM only occasionally, and rising to a much higher peak level PPEAK infrequently for short durations. In this description, moderate power level PM describes a level of output power that typically determines the thermal design of the power supply. Embodiments of a power supply in accordance with the teachings of the present invention are therefore designed to provide this moderate output power continuously, the various power supply components not exceeding their thermal ratings. In this description, therefore, this moderate power level is much higher than very low output power operating conditions, such as no-load and standby, which are also often required operating conditions in power supply applications. For purposes of this disclosure, no-load is a condition where the output load of the power supply is removed altogether. For purposes of this disclosure, standby is a condition where the power supply output load is demanding a very low power, for example in a DVD application where the DVD player is waiting for a wake up signal from a remote controller. These no-load and standby conditions are typically substantially lower than the moderate power level, PM, as discussed here. As an example, in a DVD player, the peak output power requirement could be 20 watts, the continuous moderate output power requirement could be 10 watts and a standby output power could be less than 0.5 watts. No-load and standby conditions may require other long duration or continuous power supply operating modes, such as burst-modes and very low switching frequency, that are implemented when the output power demand falls below a no-load or standby power threshold, as will be known to one skilled in the art. The duration of the peak power, PPEAK, demand is usually much less than one second, and well below the thermal time constants of the electrical components in the switching regulator. Therefore, in many applications, the ability of the switching regulator to deliver the peak power is not restricted by the thermal limitations of the components. The regulator's peak power is limited by the maximum current of the components and by the switching frequency. Owing to the limitations of one or more components in the circuit, the switches in all regulator designs have a maximum current limit IMAX that they cannot exceed. Although all switches are inherently current limited, controllers in switching regulators usually prevent the switches from exceeding the maximum current limit for the design. FIG. 3 shows waveforms of the current ID in the switch of a switching regulator at two switching frequencies that correspond to the switching periods T1 and T2. Each current has the same maximum value IMAX. The regulator operates at the same input voltage and output voltage for each frequency. Measurements of the waveforms show that operation of the regulator at the higher frequency provides about 60% more output power than operation at the lower frequency in the example illustrated in FIG. 3. The waveforms in FIG. 3 also illustrate two fundamental modes of operation, indicated by the different shapes of the current. The triangular shape in FIG. 3A is characteristic of discontinuous conduction mode (DCM), whereas the trapezoidal shape in FIG. 3B is characteristic of continuous conduction mode (CCM). For a given maximum switch current IMAX, the maximum output power for a switching regulator is described by two simple functions of the switching frequency: P = ( P MAX ⁢ ⁢ DCM f S ⁢ ⁢ MAX ⁢ ⁢ DCM ) ⁢ f S ⁢ ⁢ 0 ≤ f S ≤ f S ⁢ ⁢ MAX ⁢ ⁢ DCM ⁢ ⁢ and ( Equation ⁢ ⁢ 1 ) P = P MAX ⁢ ⁢ DCM ⁡ ( 2 - f S ⁢ ⁢ MAX ⁢ ⁢ DCM f S ) ⁢ ⁢ f S ≥ f S ⁢ ⁢ MAX ⁢ ⁢ DCM ( Equation ⁢ ⁢ 2 ) where fS is the switching frequency, PMAXDCM is the maximum power in discontinuous conduction mode, and fSMAXDCM is the maximum switching frequency in discontinuous conduction mode that allows the current in the switch to reach IMAX. The values of PMAXDCM and fSMAXDCM are determined by the values of the components in the circuit, as will be understood by one skilled in the art. As such, they are constants in the expressions. FIG. 4 graphs the relationship between the theoretical maximum output power and the switching frequency of a switching regulator that has a current limited switch. The relationship is linear as described by Equation 1 in the region 410 between zero frequency and fSMAXDCM, the maximum frequency in discontinuous conduction mode. In the linear region 410, the output power is directly proportional to the switching frequency fS. The maximum power in discontinuous conduction mode is PMAXDCM at switching frequency fSMAXDCM. In the region 420, at frequencies greater than fSMAXDCM, the regulator operates in continuous conduction mode. In continuous conduction mode, the power is hyperbolic as described by Equation 2, approaching a maximum of twice PMAXDCM. FIG. 4 shows that higher switching frequency gives higher output power. Unfortunately, higher switching frequency also gives higher losses since each switching cycle consumes power. Therefore, in one embodiment of the present invention, a switching regulator operates at the lowest switching frequency necessary to deliver the required output power up to a maximum frequency, where the maximum frequency is varied depending on the output power demand, while meeting the constraints for size and cost. In one embodiment, a switching regulator has a first maximum switching frequency when the output power is less than a moderate power PM, and has a substantially higher second maximum frequency when the output power is higher than PM. FIG. 5 illustrates the relationship between output power and switching frequency in one embodiment of the invention. When the output power requirement of Figure SA goes above the moderate level PM, the switching frequency of FIG. 5B shifts from a low value fS1, to a higher value fS2. The shift in frequency can be one discrete step as illustrated in FIG. 5B, or it can include multiple discrete steps that correspond to intermediate peak power levels, or it can change continuously to meet the power demand as illustrated in FIG. 6B to meet the requirements of special loads. A step shift between two frequencies is usually adequate to satisfy typical specifications. In one embodiment, the change in switching frequency adjusts only the maximum power capability of the regulator and regulation of the output is accomplished by adjustment of a different variable, such as the conduction time of the switch. In another embodiment the frequency shift can be varied up to a maximum value of fS2 to regulate the output when the output power requirement goes above the moderate level PM, while the frequency is fixed at a value of fS1 for load conditions between the moderate level PM and the substantially lower power of either no-load or standby. When the output power requirement is between the moderate level PM and the substantially lower power of no-load or standby regulation of the output may be accomplished by adjustment of a variable other than switching frequency, such as the conduction time of the switch. In one embodiment, independent of the regulation technique used when the output power requirement goes above the moderate level PM, the frequency may be varied to a value below fS1 when the output power requirement drops below a lower threshold value that indicates operation either in no-load or standby condition. Other known techniques such as burst operation may be employed to reduce power supply power consumption at no-load or standby. When the output power requirement is above the lower threshold indicating either a no-load or standby condition, regulation techniques can include PWM current mode or voltage mode, on/off control or quasi resonant control as will be known to one skilled in the art. The shift to the higher maximum frequency for infrequent and short durations provides the required peak output power capability without the penalty of increased switching losses at moderate output power, and without the need to use larger components that are capable of higher currents. Components and a switching frequency can therefore be optimized to meet all requirements when the switching regulator provides the moderate power PM. Then, the relationship in FIG. 4, described by Equation 1 and Equation 2, can be used to determine the increase in frequency required to provide the peak power PPEAK from the design that is optimized for the lower output power. FIG. 7 shows one embodiment of a controller for a switching regulator in accordance with the teachings of the present invention. Controller 700 includes a pulse width modulator 720 that receives a current limit signal 730, a clock signal 735, and feedback signal 740. The controller operates switch S1 715 of the switching regulator to regulate an output UO 760 to its desired value. In one embodiment, the controller operates switch S1 715 with a maximum switching frequency that is substantially independent of the input of the power supply. In one embodiment, controller 700 includes integrated circuits. In one embodiment, controller 700 is included in an integrated circuit. In one embodiment, controller 700 and switch S1 715 are integrated on a monolithic integrated circuit. Current limit comparator 725 receives a current sense signal 705 that is proportional to the current in switch S1 715. When the current sense signal 705 exceeds a reference IMAX 710 that corresponds to a maximum permissible current in switch S1 715, current limit signal 730 goes from a logic low level to a logic high level. A logic high level of the current limit signal 730 forces pulse width modulator 720 to open switch S1. Pulse width modulator 720 can also open switch S1 715 to regulate the output UO even when the current limit signal 730 is low. Clock signal 735 from oscillator 745 establishes the switching frequency and the switching periods. The oscillator 745 changes the frequency of the clock signal 735 in response to the signal at a frequency shift input 750. The frequency shift input 750 receives a load demand signal 755 that corresponds to the power requirement of the load. Power that exceeds a moderate level increases the switching frequency. In various embodiments, the load demand signal 755 may sense the load directly, or it may be an external system command that anticipates an increase in load. In one embodiment the load demand signal 755 may be generated by sensing the loss of feedback signal 740 or a magnitude of the feedback signal 740 for a predetermined period, depending on the particular embodiment, which would also indicate that the moderate power PM load capabilities of the switching regulator have been exceeded. In that case, the load demand signal 755 may be combined with the feedback signal 740 to sense when the power demand has exceeded the moderate power PM load capabilities of the switching regulator. FIG. 8 shows an embodiment of a controller 800 that does not receive an external load demand signal. Instead, the controller 800 senses the current in the switch S1 815 to determine the load demand. Controller 800 in FIG. 8 includes pulse width modulator 820 that receives a current limit signal 830, a clock signal 835, and a feedback signal 840. The controller operates switch S1 815 of the switching regulator to regulate an output UO 880 to its desired value. Current limit comparator 825 receives a current sense signal 805 that is proportional to the current in switch S1 815. When the current sense signal 805 exceeds a reference IMAX 810 that corresponds to a maximum permissible current in switch S1 815, current limit signal 830 goes from a logic low level to a logic high level, forcing pulse width modulator 820 to open switch S1. Pulse width modulator 820 can open switch S1 815 to regulate the output even when the current limit signal 830 is low. Clock signal 835 from oscillator 845 establishes the switching frequency. The oscillator 845 changes the frequency of the clock signal 835 in response to the signal at a frequency shift input 850. In the embodiment of FIG. 8, the frequency shifts between two values. The switching frequency is at its lower value when the frequency shift signal at frequency shift input 850 is at a logic low level. The switching frequency is at its upper value when the frequency shift signal is at a logic high level. A peak load detect circuit 855 receives the current limit signal 830 and the clock signal 835 to determine if the load requires more than a moderate level of power. One can select among many different techniques to distinguish peak load from moderate load, depending on the particular regulator topology, control method, and nature of the load in accordance with the teachings of the present invention. For example, the peak load detect circuit 855 can count the number of switching periods that are current limited, or for example, the peak load detect circuit 855 can respond to a particular sequence of switching periods that are current limited and not current limited. When the peak load detect circuit 855 determines that there is a peak load event, the peak mode signal 860 changes from a logic low level to logic high level. An optional time limit circuit 865 can be used with AND gate 875 to restrict or limit the duration of time of the peak power output. A time limit circuit may be employed to reduce the possibility of damage to the regulator from a fault that demands a high load for an excessive time. The time limit circuit 865 sets its output 870 to a logic high level when the peak mode signal 860 goes to a logic high level. The output 870 of the time limit circuit 865 goes to a logic low level after the maximum permitted duration of a peak load event, returning the switching frequency to its lower value. In other embodiments, other circuits may be employed to perform the function of the time limit circuit 865 in accordance with the teachings of the present invention. In the foregoing detailed description, the methods and apparatuses of the present invention have been described with reference to a specific exemplary embodiment thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.
<SOH> BACKGROUND <EOH>1. Technical Field The present invention relates generally to electronic circuits, and more specifically, the invention relates to switched mode power supplies. 2. Background Information Many types of electronic equipment use varying amounts of power in normal operation. The range of power demanded from a power supply can be extreme, extending for example from a few milliwatts to nearly 100 watts. Large ranges of loading are common in equipment such as printers, digital video disc (DVD) recorders, and other products that require rapid activation of mechanical motion. Typically, a moderate continuous output power is required for a long duration, for example when a DVD disk is spinning continuously or the print head in a printer is moving across a page. However, a maximum or peak output power is usually required for a relatively short duration and infrequently, for example to reverse the direction of a moving printer head or to spin a disk from startup to its rated speed. Equipment to amplify signals that have a large dynamic range, such as music, for example, can demand power that covers a range of several orders of magnitude. Designers of power supplies for these applications are challenged to provide a wide range of power while conforming to conflicting requirements of efficiency, size, and cost. Power supplies that can deliver the maximum or peak required power often require the use of components that are over rated for the continuous moderate power level. Efforts to meet the requirements for continuous moderate power and short duration peak power from the same power supply usually lead to designs that are larger, heavier, and more costly than necessary if the load range were limited.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>The present invention detailed illustrated by way of example and not limitation in the accompanying Figures. FIG. 1 is a functional block diagram of a power supply that may include a switching regulator in accordance with the teachings of the present invention. FIG. 2 is a graph of a typical power demand for a switching regulator in accordance with the teachings of the present invention. FIG. 3 shows waveforms of the current in the switch of a switching regulator for two switching frequencies in accordance with the teachings of the present invention. FIG. 4 is a graph of the maximum theoretical output power for a switching regulator as a function of switching frequency in accordance with the teachings of the present invention. FIG. 5 shows graphs of power demand and corresponding switching frequency for one embodiment of a switching regulator in accordance with the teachings of the present invention. FIG. 6 shows graphs of power demand and an alternative corresponding switching frequency for one embodiment of a switching regulator in accordance with the teachings of the present invention. FIG. 7 shows functional elements of one embodiment of a controller for a switching regulator in accordance with the teachings of the present invention. FIG. 8 shows another embodiment of a controller for a switching regulator in accordance with the teachings of the present invention. detailed-description description="Detailed Description" end="lead"?
20041105
20070703
20060511
78622.0
H02M3335
1
HAN, YOUNGHUIE JESSICA
METHOD AND APPARATUS TO PROVIDE TEMPORARY PEAK POWER FROM A SWITCHING REGULATOR
UNDISCOUNTED
0
ACCEPTED
H02M
2,004
10,982,116
ACCEPTED
Apparatus and method for detecting displacement of a movable member of an electronic musical instrument
An apparatus for detecting the displacement of a movable member of an electronic musical instrument. The apparatus has superior mechanical durability compared to displacement sensors of the past and can withstand long-term use. The apparatus includes a sensor that provides a detectable electrical characteristic having a value and a spring that, when compressed upon displacement of the movable member acts with the sensor, causing the value of the electrical characteristic to change. The value of the electrical characteristic represents the amount of displacement of the movable member and is used by a controller of the electronic musical instrument.
1. A displacement sensor comprising: a sensor sheet having a surface area and providing electrical resistance having a value, the value of the electrical resistance changing with the surface area of the sensor sheet that is pressed; and a coil spring having a conical shape with a wider end, the wider end of the coil spring disposed opposite to the sensor sheet such that the coil spring presses an increasing surface area of the sensor sheet as the coil spring is compressed. 2. The displacement sensor as recited in claim 1, the sensor sheet of the displacement sensor further comprising: a sheet material providing electrical conductivity; and an electrode pattern that is disposed opposite the sheet material and is formed in a radial shape from a center of the pattern toward a peripheral edge of the pattern. 3. A displacement sensor for detecting displacement of a movable object, comprising: a member providing a detectable electrical characteristic that has a value; and a spring that, upon displacement of the movable object, is compressed and acts with the member providing the detectable electrical characteristic; wherein action between the spring and the member providing the detectable electrical characteristic causes the value of the electrical characteristic to change. 4. The displacement sensor as recited in claim 3, wherein the member providing the detectable electrical characteristic has the shape of a sheet. 5. The displacement sensor as recited in claim 3, wherein the value of the electrical characteristic represents an amount of displacement of the movable object and is input to a controller of a musical instrument that produces a sound signal dependent, at least in part, on the value of the electrical characteristic. 6. The displacement sensor as recited in claim 3, wherein the spring is a coil spring. 7. The displacement sensor as recited in claim 3, wherein the spring is a coil spring that has a conical shape. 8. The displacement sensor as recited in claim 3, wherein the spring and the member providing the detectable electrical characteristic are contained within a frame. 9. The displacement sensor as recited in claim 3, wherein the spring and the member providing the detectable electrical characteristic are contained within a cylindrical frame that has a concave end surface; and the frame is notched to receive a protuberant section of the member providing the detectable electrical characteristic. 10. The displacement sensor as recited in claim 3, wherein an elastic member is disposed between the spring and the member providing the detectable electrical characteristic. 11. The displacement sensor as recited in claim 3, wherein a member that distributes force of the action between the spring and the member providing the detectable electrical characteristic is disposed between the spring and the member providing the detectable electrical characteristic. 12. The displacement sensor as recited in claim 3, wherein the member providing the detectable electrical characteristic comprises: a first member having at least one surface that is electrically conductive; a second member having a center region, a peripheral region, and at least two electronically independent nodes; and a third member disposed between the first member and the second member that limits electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a first state of compression and that facilitates electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a second state of compression; wherein the spring is compressed to a greater degree when the spring is in the second state of compression relative to when the spring is in the first state of compression. 13. The displacement sensor as recited in claim 12, wherein in the first state of compression the spring is uncompressed. 14. The displacement sensor as recited in claim 12, wherein: the electrical characteristic is an electrical resistance; and the electrical resistance changes with displacement of the movable object, which changes a degree to which the spring is compressed. 15. The displacement sensor as recited in claim 14, wherein the degree to which the spring is compressed changes a degree to which the at least one surface of the first member provides electrical conductance between the at least two electronically independent nodes of the second member. 16. The displacement sensor as recited in claim 12, wherein one of the at least two electronically independent nodes of the second member comprises a connected series of radial segments disposed between the center region of the second member and the peripheral region of the second member. 17. The displacement sensor as recited in claim 3, wherein: the spring has an axis, through which the spring is compressed upon the displacement of the movable object; and the member providing the detectable electrical characteristic has a hole that is concentric with the axis of the spring. 18. The displacement sensor as recited in claim 17, wherein the hole in the member providing the detectable electrical characteristic receives a shaft disposed through the axis of the spring. 19. The displacement sensor as recited in claim 3, wherein: the spring is a coil spring composed of a spring material having a length arranged in multiple loops; and upon compression of the spring, one or more of the multiple loops engage the member providing the detectable electrical characteristic such that the length of the spring material engaging the member providing the detectable electrical characteristic changes with an amount of compression of the spring. 20. A system for generating an electrical characteristic, the electrical characteristic having a value, based on operation by a user, comprising: a pedal that is displaced by the user; a plate on which a first edge of the pedal is mounted; and a displacement sensor mounted between the plate and a second edge of the pedal; wherein the displacement sensor comprises: a member providing the electrical characteristic; and a spring that, upon displacement of the pedal, acts with the member providing the electrical characteristic, causing the value of the electrical characteristic to change. 21. The system as recited in claim 20, wherein the system further comprises a shaft that, upon displacement of the pedal, pushes the spring, causing the spring to compress and act with the member providing the electrical characteristic. 22. The system as recited in claim 20, wherein the system further comprises a shaft attached to a plate that, upon displacement of the pedal, pushes the spring, causing the spring to compress and act with the member providing the electrical characteristic. 23. An electronic musical instrument comprising the system as recited in claim 20, wherein the value of the electrical characteristic represents an amount of displacement of the pedal and is input to a controller of the electronic musical instrument that produces a sound signal dependent, at least in part, on the value of the electrical characteristic. 24. The system as recited in claim 20, wherein the value of the electrical characteristic with respect to displacement of the pedal may be adjusted by moving the displacement sensor and the second edge of the pedal relative to each other. 25. The system as recited in claim 20, wherein the spring is a coil spring. 26. The system as recited in claim 20, wherein the spring is a coil spring in a conical shape. 27. The system as recited in claim 20, wherein the member providing the electrical characteristic comprises: a first member having at least one surface that is electrically conductive; a second member having a center region, a peripheral region, and at least two electronically independent nodes; and a third member disposed between the first member and the second member that limits electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a first state of compression and that facilitates electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a second state of compression; wherein the spring is compressed to a greater degree when the spring is in the second state of compression relative to when the spring is in the first state of compression. 28. The system as recited in claim 27, wherein in the first state of compression the spring is uncompressed. 29. The system as recited in claim 20, wherein: the electrical characteristic is an electrical resistance; and the electrical resistance changes with displacement of the pedal, which changes a degree to which the spring is compressed. 30. The system as recited in claim 29, wherein the degree to which the spring is compressed changes a degree to which the at least one electrically conductive surface of the first member provides electrical conductance between the at least two electronically independent nodes of the second member. 31. The system as recited in claim 20, wherein: the spring is a coil spring composed of a spring material having a length arranged in multiple loops; and upon compression of the spring, one or more of the multiple loops engage the member providing the electrical characteristic such that the length of the spring material engaging the member providing the electrical characteristic changes with an amount of compression of the spring. 32. An electronic high hat cymbal system for generating an electrical characteristic having a value based on displacement of at least one cymbal member having a movable position, comprising: a shaft having an axis; first and second cymbal members, at least one movable relative to the other along the axis of the shaft; a displacement sensor mounted between the first and second cymbal members, wherein: the shaft passes through the first cymbal member, the displacement sensor and the second cymbal member; and the displacement sensor comprises: a member providing the electrical characteristic; and a spring that, upon displacement of the at least one cymbal member having the movable position, acts with the member providing the electrical characteristic, causing the value of the electrical characteristic to change. 33. The electronic high hat cymbal system as recited in claim 32, further comprising a fixing component, wherein: the shaft passes through the fixing component; and the fixing component, upon displacement of the at least one cymbal member having the movable position, pushes the member providing the electrical characteristic, causing the spring to compress and act with the member providing the electrical characteristic. 34. The electronic high hat cymbal system as recited in claim 32, wherein the value of the electrical characteristic represents the amount of displacement of the at least one cymbal member having a movable position and is input to a controller for the electronic high hat cymbal system that produces a sound signal dependent, at least in part, on the value of the electrical characteristic. 35. The electronic high hat cymbal system as recited in claim 32, wherein the value of the generated electrical characteristic with respect to the displacement of the at least one cymbal member having the movable position may be adjusted by moving the first and second cymbal members relative to the other. 36. The electronic high hat cymbal system as recited in claim 32, wherein the spring is a coil spring. 37. The electronic high hat system as recited in claim 32, wherein the spring is a coil spring in a conical shape. 38. The electronic high hat system as recited in claim 32, wherein the member providing the electrical characteristic comprises: a first member having at least one surface that is electrically conductive; a second member having a center region, a peripheral region, and at least two electronically independent nodes; and a third member disposed between the first member and the second member that limits electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a first state of compression and that facilitates electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a second state of compression; wherein the spring is compressed to a greater degree when the spring is in the second state of compression relative to when the spring is in the first state of compression. 39. The electronic high hat system as recited in claim 38, wherein in the first state of compression the spring is uncompressed. 40. The electronic high hat system as recited in claim 32, wherein: the electrical characteristic is an electrical resistance; and the electrical resistance changes with displacement of the at least one cymbal member having the movable position, which changes a degree to which the spring is compressed. 41. The electronic high hat system as recited in claim 40, wherein the degree to which the spring is compressed changes a degree to which the at least one electrically conductive surface of the first member provides electrical conductance between the at least two electronically independent nodes of the second member. 42. The electronic high hat system as recited in claim 32, wherein: the spring is a coil spring composed of a spring material having a length arranged in multiple loops; and upon compression of the spring, one or more of the multiple loops engage the member providing the electrical characteristic such that the length of the spring material engaging the member providing the electrical characteristic changes with an amount of compression of the spring. 43. A method for detecting displacement of a movable object, comprising: providing a member having a detectable electrical characteristic that has a value; disposing a spring opposite to the member having a detectable electrical characteristic; and disposing the movable object relative to the spring to compress the spring and cause the spring to act with the member having the detectable electrical characteristic upon displacement of the movable object, wherein action between the spring and the member having the detectable electrical characteristic causes the value of the electrical characteristic to change. 44. The method as recited in claim 43, wherein the spring is a coil spring. 45. The method as recited in claim 43, wherein the spring is a coil spring in a conical shape. 46. The method as recited in claim 43, wherein providing the member having the detectable electrical characteristic comprises: providing a first member having at least one surface that is electrically conductive; providing a second member having a center region, a peripheral region, and at least two electronically independent nodes; and disposing a third member between the first member and the second member that limits electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a first state of compression and that facilitates electrical conductance via the at least one surface of the first member between the at least two electronically independent nodes of the second member when the spring is in a second state of compression; wherein the spring is compressed to a greater degree when the spring is in the second state of compression relative to when the spring is in the first state of compression. 47. The method as recited in claim 46, wherein in the first state of compression the spring is uncompressed. 48. The method as recited in claim 43, wherein: the electrical characteristic is an electrical resistance; and the electrical resistance changes with displacement of the movable object, which changes a degree to which the spring is compressed. 49. The method as recited in claim 48, wherein the degree to which the spring is compressed changes a degree to which the at least one electrically conductive surface of the first member provides electrical conductance between the at least two electronically independent nodes of the second member. 50. The method as recited in claim 43, wherein: the spring is a coil spring composed of a spring material having a length arranged in multiple loops; and upon compression of the spring, one or more of the multiple loops engage the member having the detectable electrical characteristic such that the length of the spring material engaging the member providing the detectable electrical characteristic changes with an amount of compression of the spring.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates, generally, to electronic musical instruments and, in preferred embodiments, to electronic musical instruments having the capability of detecting the amount of displacement of a pedal or of other movable members. 2. Description of Related Art In electronic musical instruments, displacement sensors are used as sensors to detect the amount of displacement of, for example, a pedal. Examples of prior methods for the detection of the amount of displacement are described below. Method 1: This is a method in which, for example, a displacement sensor is configured with a rubber sensor that changes shape in conformance with the amount that a pedal is stepped on and a sensor sheet that is pressed by the rubber sensor as the rubber sensor changes shape. The resistance value of the sensor sheet changes in conformance with the area of the sheet that is pressed. Method 2: This is a method in which the resistance value of a volume control changes in conformance with the amount that a pedal is stepped on. The determination of the amount of displacement is possible with the use of any of the methods discussed above. However, in those cases where the displacement of a pedal is detected, the displacement sensor is required to have the durability to withstand the force that is repeatedly applied from the pedal over a long period of time. Each of the methods mentioned above has problems such as those described below. In Method 1, when the rubber sensor is used over a long period of time and its shape is repeatedly changed in conformance with the stepping operation of the pedal, the rubber sensor becomes deformed in shape such that it becomes impossible to accurately detect the amount that the pedal has been stepped on. In Method 2, when the volume control is used for a long period of time, the mechanical sliding portion is abraded and that becomes a problem. SUMMARY OF THE DISCLOSURE Therefore, it is an advantage of embodiments of the present invention to provide an apparatus and method for providing a displacement sensor that has superior mechanical durability and that can withstand use over a long period of time. An embodiment of the present invention that achieves the object described above is characterized in that the displacement sensor is furnished with a sensor structure, such as a sensor sheet, for which the resistance value changes in conformance with the area that has been pressed and a coil spring that has a conical shape. The wider end of said conical shape is in contact with the previously mentioned sensor sheet and increases the area of pressing of said sensor sheet in proportion to the compression of the spring. The coil spring with which an embodiment of the present invention is furnished possesses durability with respect to the compression force that is received from the object that is displaced. In addition, since the displacement sensor is furnished with a structure in which the mechanical rubbing portion that is the cause of abrasion is excluded, the mechanical durability is superior and long-term use is possible. In addition, it is preferable that an embodiment of the present invention be one in which the above mentioned sensor sheet is furnished with a sheet material that possesses electrical conductivity and with an electrode pattern that is disposed opposite the previously mentioned sheet material and is formed by radial segments extending between the center of the sensor sheet and its periphery. The direction over which the cone shaped coil spring presses the sensor sheet as the spring is compressed is from the outer periphery of the sensor sheet toward the center of the sensor sheet. The degree to which the spring presses the sensor sheet is in proportion to the compression of the coil spring. Since the electrode pattern described above is formed along the direction over which the spring presses the sensor sheet, the resistance value of the above mentioned sensor sheet changes with good efficiency due to the compression of the coil spring. As has been explained above, an embodiment of the present invention is superior in mechanical durability compared to the displacement sensors of the past and can withstand use for a long period of time. These and other objects, features, and advantages of embodiments of the invention will be apparent to those skilled in the art from the following detailed description of embodiments of the invention, when read with the drawings and appended claims. BRIEF DESCRIPTION OF THE FIGURES FIGS. 1a and 1b are oblique view drawings that show a first preferred embodiment of the displacement sensor of the present invention; FIGS. 2a and 2b are drawings that shows the range in which, when the conical coil spring is compressed and changes shape, the printed resistor sheet is pressed and comes into contact with a substrate having a conductive pattern, such as a printed carbon substrate, due to the shape change; FIG. 3 is a lateral drawing that shows a partial cross-section of the state in which the displacement sensor has been mounted in the pedal system of an electronic musical instrument; FIG. 4 is a lateral drawing that shows a partial cross-section of the state in which the displacement sensor has been mounted between the upper cymbal and the lower cymbal of an electronic high hat cymbal; FIGS. 5a and 5b are lateral drawings that show an enlarged cross-section of the state in which the displacement sensor is mounted between the upper cymbal and the lower cymbal; FIGS. 6a and 6b are oblique view drawing that show a second preferred embodiment of the displacement sensor of the present invention; FIGS. 7a and 7b are schematic drawings that show the state in which a portion of the resistive pattern of the base film has come into contact with the metal pattern on the obverse surface of the substrate; and FIG. 8 is a drawing that shows the change in the distance between the contacted portions of the two locations shown in FIG. 7 that accompanies the increase in the portion of the conical coil spring that is pushed and impacted on by the base film. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the preferred embodiments of the present invention. An explanation will be given below regarding preferred embodiments of the present invention while referring to the drawings. First, an explanation will be given regarding a first preferred embodiment of the present invention. FIGS. 1(a) and 1(b) are oblique view drawings that show a first preferred embodiment of the displacement sensor of the present invention. FIG. 1(a) is an exterior oblique view drawing seen from diagonally above the displacement sensor 1 and FIG. 1(b) is a disassembled oblique view drawing of the displacement sensor. The displacement sensor 1 that is shown in FIGS. 1(a) and 1(b) comprises a conical coil spring 11, a circular cushion sheet 12, a sensor structure, such as circular sensor sheet section 13, and a fixing frame 14. The fixing frame 14 has a cylindrical concave portion 14e. The sensor sheet 13 is configured with resistive material, such as the circular printed resistor sheet 131, and a substrate having a conductive pattern, such as the circular printed carbon substrate 132, on which the circular printed resistor sheet is superposed. On the printed carbon substrate 132, there is a square shaped protuberant section 132c and this is arranged such that, when the printed resistor sheet 131 is superposed on the printed carbon substrate 132, the protuberant section 132c extends beyond the printed resistor sheet 131. The printed resistor sheet 131 is made from a plastic and like materials, and a conductive ink such as carbon and the like is uniformly printed on the surface that faces the printed carbon substrate 132. There is a spacer 131 a between the printed resistor sheet 131 and the printed carbon substrate 132, and it is arranged such that, when the two are superposed and the conical coil spring 11 is not compressed, there is no direct contact. The spacer 131a is in the shape of a ring and is placed on the peripheral edge section of the printed resistor sheet 131 facing the printed carbon substrate 132. Incidentally, the spacer 131a may also be disposed in the center section in addition to the peripheral edge section of the printed resistor sheet 131. The printed carbon substrate 132 is a printed board on which two independent electrode patterns, the inner peripheral pattern 132b and the outer peripheral pattern 132a, which are formed with copper foil or other electrically conductive material, are disposed. The inner peripheral pattern 132b comprises a ring shaped pattern that is disposed in the center of the substrate 132 and a branch form pattern that extends in a radial shape from the outer periphery of the ring shaped pattern toward the outer periphery of the substrate 132. In addition, in the midst of the branch form pattern, a linear pattern extends from the end section of the pattern that is located closest to the previously discussed protuberant section 132c to the protuberant section 132c and becomes the electrical terminal 132e of the inner peripheral pattern. Also, carbon or another electrically conductive material is printed on the surface of the inner peripheral pattern 132b. The outer peripheral pattern 132a comprises a ring shaped pattern that is disposed on the outer periphery of the substrate 132 and a branch form pattern that extends from the inner circumference of the ring shaped pattern toward the center of the substrate 132. The branch form pattern of the outer peripheral pattern 132a is disposed between the branch form pattern of the inner peripheral pattern 132b such that the former branch form pattern does not come into contact with the latter branch form pattern. The ring shaped pattern of the outer peripheral pattern 132a is disconnected in one place near the protuberant section 132c such that the pattern does not intersect with the terminal 132e of the inner peripheral pattern. The linear pattern extends to the protuberant section 132c from one end of this pattern that is disconnected and becomes the electrical terminal 132d of the outer peripheral pattern. In addition, carbon or another electrically conductive material is printed on the surface of the outer peripheral pattern 132a in the same manner as the inner peripheral pattern 132b. The printed carbon substrate 132, the printed resistor sheet 131, and the cushion sheet 12 are received in the concave portion 14e of the fixing frame 14 in that order, the printed carbon substrate 132 received first. In addition, the conical coil spring 11 is set into the concave portion 14e of the fixing frame 14, the wider end 11a of the conical coil spring 11 first, and the wider end 11a of the conical coil spring 11 is in contact with the cushion sheet 12. With regard to the protuberant section 132c of the printed carbon substrate 132, when the substrate 132 is accommodated in the fixing frame 14, the protuberant section 132c is set into the notched section 14c that is disposed in the outer wall of the fixing frame 14, and by this means, the rotation of the substrate 132 within the fixing frame 14 is prevented. In the displacement sensor that is shown in FIG. 1(a), the attaching hole 1a is disposed in a position that is concentric with the axis of the conical coil spring 11. This attaching hole 1a is a hole that passes through all of the components that are shown in FIG. 1(b) in their accommodated state from top to bottom from the cushion sheet 12 through the fixing frame 14. The displacement sensor 1 is used in order to detect, for example, the displacement of a pedal. In this case, the displacement sensor 1 is mounted in a position that is between the pedal and the facing bottom plate. In addition, the bottom surface of the displacement sensor 1 is in contact with the bottom plate and the front end section of the conical coil spring 11 is in contact with the pedal. When the pedal is stepped on, the displacement sensor 1 is subjected to a compression force from the tip section 11b of the conical coil spring 11. The conical coil spring 11 is compressed and changes shape due to this compression force. One portion of the conical coil spring that has been compressed changes shape. This portion presses and impacts on the cushion sheet 12. A portion of the printed resistor sheet 131 that is below the cushion sheet 12 is pressed onto the printed carbon substrate 132. An advantage of using a cushion sheet 12 made of a elastic material such as rubber is, when a pressing force is applied to the surface of the cushion sheet 12 at one point, the pressing force spreads and is also transmitted to the area around the one point to which it was applied. Since the conical coil spring 11 presses the printed resistor sheet 131 onto the printed carbon substrate 132 through the cushion sheet 12, the force of the wire material of the conical coil spring on the printed resistor sheet 131 is made more uniform than if the sheet were directly pressed by the conical coil spring 11. The pressing force that has been made uniform is transmitted to the printed carbon substrate 132. Due to the fact that a portion of the printed resistor sheet 131 is pressed onto the printed carbon substrate 132, the conductive ink that has been printed on the surface of the printed resistor sheet 131 and the carbon that has been printed on the surface of the inner peripheral pattern 132b and the outer peripheral pattern 132a of the printed carbon substrate 132 come into contact. At this time, the current that flows in the outer peripheral pattern 132a passes through the carbon that has been printed on the surfaces of both patterns and the conductive ink that has been printed on the surface of the printed resistor sheet 131 and flows into the inner peripheral pattern 132b. Accordingly, the carbon and the conductive ink through which the current passes become an electrical resistance between both patterns. When the pedal is stepped on further, the compression that is applied to the displacement sensor 1 increases and the compression shape change of the conical coil spring 11 becomes greater. When the compression shape change becomes greater, the portions of the printed resistor sheet 131 that up to that point have not been in contact with the printed carbon substrate 132, are pressed onto the printed carbon substrate 132. As a result, the current also flows through the portions that have newly come into contact and, since the width of the path for the current that flows from the outer peripheral pattern 132a to the inner peripheral pattern 132b becomes broader, the electrical resistance between the two patterns decreases. The value of the electrical resistance is transmitted to, for example, the control section of the electronic musical instrument (not shown in the drawing) and the like as the amount that the pedal has been stepped on. FIGS. 2a and 2b are drawings that show the range in which, when the conical coil spring 11 is compressed and changes shape, the printed resistor sheet 131 is pressed and comes into contact with the printed carbon substrate 132 due to the compression shape change. When the displacement sensor 1 is subjected to the compression force to the tip section 11b of the conical coil spring 11 in a direction along the center axis of the conical coil spring 11, the conical coil spring 11 changes shape. As the conical coil spring 11 compresses, it presses and impacts on the cushion sheet 12 that is shown in FIG. 1. FIG. 2(a) is a lateral drawing that shows the shape of the conical coil spring 11 when the spring is pressed weakly by a small compression force P0 that is applied to the tip section 11b of the conical coil spring 11, the shape of the conical coil spring 11 when the spring is pressed to a medium degree by a medium level compression force P1, and the shape of the conical coil spring 11 when the spring is pressed strongly by a large compression force P2. FIG. 2(b) is a drawing that shows the range in which the printed resistor sheet 131, which had been isolated from the printed carbon substrate 132 by the spacer 131a, is pressed onto and comes into contact with the printed carbon substrate 132 by the conical coil spring that is shown in FIG. 2(a). The S0 that is shown in FIG. 2(b) indicates the narrow range in which the printed resistor sheet 131 comes into contact with the printed carbon substrate 132 due to the conical coil spring 11 being pressed weakly by the small compression force P0. S1 indicates the medium range in which the printed resistor sheet 131 comes into contact with the printed carbon substrate 132 due to the conical coil spring 11 being pressed at a medium level by the compression force P1, and S2 indicates the wide range in which the printed resistor sheet 131 comes into contact with the printed carbon substrate 132 due to the conical coil spring 11 being pressed strongly by the large compression force P2. Next, an explanation will be given of an example in which the displacement sensor 1 is used in order to detect the displacement of a pedal in the pedal system of an electronic musical instrument as a first utilization example of the present invention. FIG. 3 is a lateral drawing that shows a partial cross-section of the state in which the displacement sensor 1 has been mounted in the pedal system 2 of an electronic musical instrument. The pedal 22 of the pedal system 2 that is shown in FIG. 3 is supported by the bottom plate 21 so that it can swing and, together with this, is impelled upward by the compression coil spring 26 that has been disposed between the pedal 22 and the bottom plate 21. The upper end of the compression coil spring 26 is fixed to the back surface of the pedal 22, and the lower end of the compression coil spring 26 is supported through the intervening support plate 27 by the butterfly nut 25 that has been screwed onto the bolt 28 that has been disposed standing on the bottom plate 21. When the butterfly nut 25 is turned by hand, the butterfly nut 25 moves in the vertical direction and the degree of compression of the compression coil spring 26 is adjusted by means of the position of the butterfly nut 25, adjusting the operating weight of the pedal 22. The lower part of the shaft that is shown in FIG. 3 passes through the pass-through hole (not shown in the drawing) that has been disposed in the shaft fixing block 210 which has been further fixed to the fixed plate 29 that has been fixed to the pedal 22, and the tube 211 that has been fixed to the lower surface of the shaft fixing block 210 and extends between the pedal 22 and the bottom plate 21. In addition, the upper part of the shaft 23 is linked to the controlled section of the electronic musical instrument-(not shown in the drawing) that is operated by the pedal system 2. At this time, the displacement sensor 1 is mounted by being set in the pass-through hole 1a in the protuberant section 21a that has been disposed on the bottom plate 21 in a position that is opposite the plate 23a that is attached to the lower end of the shaft 23. When the pedal 22 is stepped on, the plate 23a on the lower end of the shaft 23 presses downward and pushes on the tip section 11b of the conical coil spring 11 of the displacement sensor 1. Since the conical coil spring 11 that is pressed by the tip section 11b is compressed, the electrical resistance of the displacement sensor 1 changes. The value of the electrical resistance is transmitted to the control section of the electronic musical instrument (not shown in the drawing) as the amount that the pedal 22 of the pedal system 2 is stepped on. The initial angle adjustment bolt 212 is furnished on the left part of the pedal system 2 of FIG. 3 and the fixed plate 29, which is fixed to the pedal 22, extends to the lower end of the initial angle adjustment bolt 212. The height H of the pedal 22 is adjusted by turning the initial angle adjustment bolt and changing the height h of the head of the bolt. In addition, the shaft fixing bolt 24 is furnished in the shaft fixing block 210 that is shown in FIG. 3 and presses the shaft 23 that passes through from the side fixing the shaft 23. By changing the length L of the portion of the lower end of the shaft 23 that protrudes from the tube 211, the amount of change in the electrical resistance of the displacement sensor 1 with respect to the change in the amount that the pedal is stepped on is adjusted. With the displacement sensors of the past, as one example, a rubber sensor is used on the portion that is compressed by the plate 23a on the lower end of the shaft 23, and when used continuously for a long period of time and repeatedly compressed, there is a problem that the shape of the rubber sensor itself becomes deformed and there is a danger that it will become impossible to accurately detect the amount that the pedal has been stepped on. However, with the embodiment of the displacement sensor 1 of the present invention, since a coil spring that is durable with respect to compression and changes in shape in conformance with the degree to which it is compressed is used, the sensor can be used for a long period of time compared to the displacement sensors of the past. Next, an explanation will be given of an example of the use of the displacement sensor 1 to detect the displacement of the cymbals of an electronic high hat cymbal as a second utilization example of the present invention. FIG. 4 is a lateral drawing that shows a partial cross-section of the state in which the displacement sensor 1 has been mounted between, for example, the upper cymbal 37 and the lower cymbal 36 of the electronic high hat cymbal 3. The electronic high hat cymbal 3 is configured with the upper cymbal 37, the lower cymbal 36, the extension rod 34, which is linked to the upper cymbal, the hollow shaft section 35, which is linked to the lower cymbal, the spring 38, which is set into the inside lower end of the hollow shaft section 35, the stepping type pedal 31, the joint 32, which is linked to the extension rod 34 and the pedal 31, and the legs 33, which are linked to the hollow shaft section 35. The upper part of the extension rod 34 is linked to the upper cymbal 37, the lower part is linked to the pedal 31 through the joint 32, and connecting and detaching is repeated from the upper part of the upper cymbal 37 in conformance with the stepping operation for the pedal 31. Incidentally, the linkage of the upper cymbal 37 to the extension rod 34 will be discussed later. The hollow shaft section 35 comprises the upper hollow shaft 351 and the lower hollow shaft 352, which has an inside diameter that is greater that the outside diameter of the upper hollow shaft 351. The upper hollow shaft 351 is inserted into the lower hollow shaft 352 and the height of the lower cymbal 36 is determined by the depth to which the upper hollow shaft 351 is inserted into the lower hollow shaft. Incidentally, the joint section 352a is disposed on the lower end of the lower hollow shaft 352. The inside diameter of the joint section 352a is made somewhat narrow and supports the spring 38 that is set inside from the bottom. The lower section of the extension rod 34 passes through the upper hollow shaft 351 and the lower hollow shaft 352 and, together with this, also passes through the spring 38 that has been set inside the lower hollow shaft 352. Since due to the fact that the spring 38 is held between the lower surface of the joint section 34a of the extension rod 34 and the joint section 352a of the lower hollow shaft 352, the extension rod 34 is always lifted upward, and when a stepping operation of the pedal 31 is not being carried out, the upper cymbal 37 and the lower cymbal 36 are separated at a prescribed interval. FIG. 5 is a lateral drawing that shows an enlarged cross-section of the state in which the displacement sensor 1 is mounted between the upper cymbal 37 and the lower cymbal 36. FIG. 5(a) is a lateral drawing in which the separated state of the upper cymbal 37 and the lower cymbal 36 are shown in cross-section, and FIG. 5(b) is a lateral drawing that shows in cross-section the state in which, as a result of the upper cymbal 37 and the lower cymbal 36 having been brought into contact, the displacement sensor 1 is subjected to a compression force in the vertical direction, and the conical coil spring 11 of the displacement sensor 1 is compressed and changes shape. If the two cymbals are arranged in a different configuration, then the displacement sensor 1 may be subjected to a compression force in an accordingly different direction. The upper felt washer 40, the lower felt washer 39, the upper nut 42, the lower nut 41, the fixing component 43, and the securing bolt 44, provided in order, link the upper cymbal 37 to the extension rod 34. The fixing component 43 is formed with the lower bolt 43a extending on the lower surface of the upper block 43b and-the pass-through hole 43c is disposed in the center in order for the extension rod 34 to pass through. The upper nut 42 is screwed onto the lower bolt 43a of the fixing component 43 until the nut connects with and is stopped by the upper block 43b of the fixing component 43. The lower bolt 43a of the fixing component 43 is inserted through the pass-through holes that are disposed respectively in, from the bottom of the upper nut 42, the upper felt washer 40, the upper cymbal 37, and the lower felt washer 39. By additionally screwing the lower nut 41 onto the lower bolt 43a from the lower side of the lower felt washer 39, the upper cymbal 37 is fixed by the fixing component 43. The tip section 351b of the upper hollow shaft 351 has the felt 45 held between the shaft bearer 351a and the lower cymbal 36 is supported from the bottom by the upper hollow shaft 351 by the insertion of the shaft into the pass-through hole that is disposed in the center of the lower cymbal 36. The upper part of the extension rod 34 passes through center of the conical coil spring 11 of the displacement sensor 1 and the displacement sensor 1 attachment hole 1a at the upper part of the upper hollow shaft 351 that supports the lower cymbal 36 and additionally, passes through the pass-through hole 43c of the fixing component 43 with which the upper cymbal 37 is fixed. The tip section 11b of the conical coil spring 11 of the displacement sensor 1 is in contact with the tip section 351b of the upper hollow shaft 351, and the bottom surface 14d of the displacement sensor 1 is in contact with the lower end section 43d of the fixing component 43. The upper block 43b of the fixing component 43 with which the upper cymbal 37 has been fixed is furnished with the securing bolt 44 that presses the extension rod 34 that passes through from the side and fixes the extension rod 34. The upper cymbal 37 is linked to the extension rod 34 through the fixing component 43 by means of the securing bolt 44. When the upper cymbal 37, which is linked to the extension rod 34 by the fixing component 43, moves downward in conformance with the stepping on the pedal 31 that is shown in FIG. 4, the displacement sensor 1 is subjected to a compression force on the bottom surface 14d from the lower end section 43d of the fixing component 43 that moves as a single unit with the upper cymbal 37. On the other hand, since the tip section 11b of the conical coil spring 11, which lies on the other end of the displacement sensor 1, is in contact with the tip section 352b of the upper hollow shaft 351, which supports the lower cymbal 36, and does not move, the conical coil spring of the displacement sensor 1 is compressed by the compression force that has been applied to the bottom surface 14d of the displacement sensor 1. The electrical resistance of the displacement sensor 1 changes due to this compression. The value of the electrical resistance is transmitted to the control section of the electronic high hat cymbal (not shown in the drawing) as the amount of displacement of the upper cymbal 37 of the electronic high hat cymbal 3. As has been explained above, the displacement of the upper cymbal in conformance with the stepping operation of the pedal 31 of the high hat cymbal 3 that is shown in FIG. 4 can be detected using the displacement sensor 1 of the present invention. Incidentally, in those cases where the displacement sensor 1 is mounted on the electronic high hat cymbal 3, since it is possible to attach the electronic high hat cymbal 3 and the displacement sensor 1 to an ordinary acoustic high hat stand without the addition of any other special components, in those cases where the user already possesses an acoustic high hat, an acoustic high hat stand can be used. Then, it is possible to plan for a reduction of the mounting expense. Next, an explanation will be given regarding a second preferred embodiment of the present invention. FIG. 6 is an oblique view drawing that shows a second preferred embodiment of the displacement sensor of the present invention. FIG. 6(a) is an exterior oblique view drawing seen from diagonally above the displacement sensor 5 and FIG. 6(b) is a disassembled oblique view drawing of the displacement sensor 5. The displacement sensor 5 that is shown in FIG. 6 here is furnished with the same conical coil spring and fixing frame as the conical coil spring 11 and fixing frame 14 with which the displacement sensor 1 that is shown in FIG. I is furnished but is furnished with components between the conical coil spring and fixing frame that are different from the components that are furnished between the conical coil spring 11 and the fixing frame 14 of the displacement sensor 1 that is shown in FIG. 1. The displacement sensor 5, except for the areas in which the components with which the sensor is furnished differ from those of the displacement sensor 1 that is shown in FIG. 1, has a structure that is the same as that of the displacement sensor 1 that is shown in FIG. 1. Therefore, for the components that are the same as the components of the displacement sensor 1 that is shown in FIG. 1, (the conical coil spring 11 and the fixing frame 14), the same keys are assigned and shown in FIG. 6, and an explanation of these components and that duplicates a structure that is equivalent to that of the displacement sensor 1 that is shown in FIG. 1 has been omitted. The displacement sensor 5 that is shown in FIG. 6 is furnished with the base film 511 and the substrate 512 between the conical coil spring 11 and the fixing frame 14. These two components comprise the sensor sheet 51. The base film 511 and the substrate 512 respectively have the protuberant sections 511a_1 and 512c and, when the base film 511 and the substrate 512 are accommodated in the fixing frame 14, the protuberant sections 511a_1 and 512c are in a mutually superposed state set into the concave portion 14e of the fixing frame 14. Because of this, the base film 511 and the substrate 512 are prevented from turning in the fixing frame 14 and the relative positional relationships between the two are maintained. The pressing film 511b is furnished with the two bridge sections 511b_1 and 511b_2 along the center line of the circular plastic sheet 511a. The pressing film 511b, which is affixed to the circular plastic sheet 511a, forms the thick convex portion of the pressing film 511b on the conical coil spring 11 side surface of the base film 511. When the conical coil spring 11 is compressed, a portion of the conical coil spring 11 pushes and impacts particularly strongly against the two bridge sections 511b_1 and 511b_2 and, as a result, the area below the portion of these two bridge sections 511b_1 and 511b_2 of the base film 511 that is pressed and impacted by the conical coil spring 11 is pressed strongly on the substrate 512. The conductive pattern 511c is printed with a conductive ink such as carbon and the like on the substrate 512 side surface of the plastic sheet 511a and is a ring shaped pattern that surrounds the attachment hole 1a of the displacement sensor 5. The resistive pattern 511d is a pattern in which a resistive material such as carbon and the like is printed superposed on the conductive pattern 511c described above on the substrate 512 side surface of the plastic sheet 511a. The resistive pattern 511d is furnished with the branch shaped patterns 511d_1 and 511d_2 that faces the outer edge of the plastic sheet 511a from the ring shaped pattern that is superposed on the conductive pattern 511c under the two bridge sections 511b_1 and 511b_2 of the pressing film 511b. When the conical coil spring 11 is compressed, a portion of each of the two branch shaped patterns 511d_1 and 511d_2 is pressed onto the substrate 512 through the above mentioned two bridge sections 511b_1 and 511b_2. The spacer film 511e is affixed on the resistive pattern 511d on the substrate 512 side surface of the plastic sheet 511a. The two openings 511e_1 and 511e_2 are disposed in two locations in positions that correspond to the two branch shaped patterns 511d_1 and 511d_2 of the resistive pattern 511d described above. When the conical coil spring is compressed, the two branch shaped patterns 511d_1 and 511d_2 are pressed onto the substrate 512 through the openings 511e_1 and 511e_2 in the two corresponding locations. However, it should be noted that, in a state in which the conical coil spring 11 is not compressed, the two branch shaped patterns 511d_1 and 511d_2 described above are separated from the substrate only by the thickness of the spacer film 511e. The substrate 512 is configured with a circular base material on which a metal pattern is disposed on both sides. On the spacer film 511e side obverse surface, the two metal patterns 512a and 512b, which are mutually independent, are disposed in positions that correspond respectively to the two branch shaped patterns 511d_1 and 511d_2 of the resistive pattern 511d. On the other hand, on the reverse surface, the two terminal patterns 512d and 512e, which extend to the protuberant section 512c of the substrate 512 and form electrical terminals on the protuberant section 512c, are disposed respectively below the two branch shaped patterns 511d_1 and 511d_2 described above. In addition, the two branch shaped patterns 511d_1 and 511d_2 described above are respectively conducted through by through holes not shown in the drawing to the corresponding terminal patterns 512d and 512e. When the conical coil spring 11 is compressed, a portion of each of the two branch shaped patterns 511d_1 and 511d_2 described above comes into contact respectively with the corresponding metal pattern 512a and 512b. In the same manner as the displacement sensor of the first preferred embodiment discussed previously, the displacement sensor 5 of the second preferred embodiment also is used, for example, in order to detect the displacement of a pedal and the like. In this case, when the conical coil spring 11 is compressed by stepping on the pedal, as was discussed above, a portion of the resistive pattern 511d of the base film 511 comes into contact with the metal patterns 512a and 512b on the obverse surface of the substrate 512. At this time, when the current is conducted through the metal patterns 512a and 512b and flows between the terminal patterns 512d and 512e on the reverse surface of the substrate 512, the current flows passing through the resistive pattern 511d described above, the ring shaped pattern on the resistive pattern 511d, and the conductive pattern 511c described above that is printed on the plastic sheet 511a on which the patterns are superposed. Accordingly, the resistive pattern 511d and the conductive pattern 511c through which the current passes become an electrical resistance between the terminal patterns 512d and 512e. FIGS. 7(a) and 7(b) are schematic drawings that show the state in which a portion of the resistive pattern of the base film has come into contact with the metal pattern on the obverse surface of the substrate. In FIG. 7(a), the condition is shown in which, in a case in which the displacement sensor 5 is utilized to detect the displacement of, for example, a pedal and the like, the conical coil spring 11 is compressed by the pedal being stepped on, the base film 511 is pushed and impacted on by a portion of the conical coil spring 11 and, in addition, a portion of the base film 511 is pushed and impacted on by the obverse side of the substrate 511 through the openings 511e_1 and 511e_2 of the spacer film 511e. By this means, as was discussed above, a portion of the resistive pattern 511d comes into contact with the metal patterns 512a and 512b on the obverse surface of the substrate 512. In FIG. 7(b), the two metal patterns 512a and 512b on the obverse surface of the substrate 512 and the resistive pattern 511d, which is in contact with these metal patterns 512a and 512b, are shown. As discussed above, when the base film 511 is pushed and impacted on by the substrate 512, a portion of each of the branch shaped patterns 511d_1 and 511d_2 of the resistive pattern 511d come into contact, respectively, with the corresponding metal patterns 512a and 512b. In addition, the portions of the resistive pattern 511d that are in between these two locations (excluding 511d_5), the contact portions 511d_3 and 512d_4, which are indicated by the diagonal lines in FIG. 7(b), and the conductive pattern 511c become an electrical resistance between the metal patterns 512a and 512b as well as between the terminal patterns 512d and 512e that are shown in FIG. 6. When the pedal described above is stepped on further and the conical coil spring 11 is further compressed, the portions of the resistive pattern 511d that, up to this point, have not been in contact with the metal patterns 512a and 512b also are pressed on by the metal patterns 512a and 512b. As a result, the distance La+Lb between the two locations described above, the contacted portions 511d_3 and 511d_4, is shortened and the value of the electrical resistance described above is reduced. FIG. 8 is a drawing that shows the change in the distance between the contacted portions of the two locations shown in FIG. 7 that accompanies the increase in the portion of the conical coil spring that is pushed and impacts on the base film. In FIG. 8, the condition in which the conical coil spring 11 is weakly pressed with a small compression force P0 and the base film is slightly pushed and impacted on by the conical coil spring 11 is shown. At this time, the portion that corresponds to the long distance La0+Lb0 between the contacted portions described above of the resistive pattern 511d (refer to FIG. 7) becomes the electrical resistance between the terminal patterns 512d and 512e that are shown in FIG. 6 and the value of the electrical resistance is large. In addition, when the compression force that is applied to the conical coil spring 11 is increased and becomes the medium level compression force P1, the base film is pushed and impacted on to a medium degree by the conical coil spring 11 and the value of the electrical resistance described above becomes a medium level value that is proportional to the medium level distance La1+Lb1 shown in FIG. 8. When the compression force that is applied to the conical coil spring 11 is increased and becomes the large compression force P2, a larger portion of the base film is pushed and impacted on by the conical coil spring 11 and the value of the electrical resistance described above becomes a small value that is proportional to the short distance La2+Lb2 shown in FIG. 8. That is to say, when the displacement of a pedal such as that discussed above is detected by means of the utilization of the displacement sensor 5, in the same manner as in the first preferred embodiment discussed previously, the value of the electrical resistance is transmitted to, for example, the control section of the electronic musical instrument (not shown in the drawing) and the like as the amount that the pedal has been stepped on. The second preferred embodiment, in the same manner as in the first preferred embodiment discussed previously, is utilized to detect the displacement of the pedal of the pedal system 2 of an electronic musical instrument shown in FIG. 3 or to detect the displacement of the cymbal in the electronic high hat cymbal 3 shown in FIG. 4 and FIG. 5 and the like. However, with regard to these kinds of utilization embodiments for the second preferred embodiment described above, since they are the same as the utilization embodiments of the first preferred embodiment for which explanations were given referring to FIG. 3 through FIG. 5, the duplicated explanations have been omitted. In addition, as has been discussed previously, by means of the first preferred embodiment, advantageous results are that durability is increased with the use of a coil spring and that, when the displacement sensor 1 is installed in the electronic high hat cymbal 3 that is shown in FIG. 4, the installation expenses are reduced. It need scarcely be said that advantageous results that are the same as these advantageous results can also be obtained by means of the displacement sensor 5 of the second preferred embodiment of the present invention. Incidentally, in the above preferred embodiments, as illustrations of the sensor sheet of the present invention, an example in which a printed carbon substrate 132 and a printed resistor sheet 131 having as conductive ink such as carbon and the like printed uniformly on a strong plastic sheet such as polyester have been combined, and an example in which a substrate 512 having metal patterns disposed on both surfaces and a base film 511 having a resistive pattern 511d printed on a plastic sheet have been combined were given. However, the sensor sheet in the embodiments of the present invention is not limited to these examples and, for example, a pressure sensitive printed resistor sheet in which the resistance value changes in accordance with the pressing force and the like may be used.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention relates, generally, to electronic musical instruments and, in preferred embodiments, to electronic musical instruments having the capability of detecting the amount of displacement of a pedal or of other movable members. 2. Description of Related Art In electronic musical instruments, displacement sensors are used as sensors to detect the amount of displacement of, for example, a pedal. Examples of prior methods for the detection of the amount of displacement are described below. Method 1: This is a method in which, for example, a displacement sensor is configured with a rubber sensor that changes shape in conformance with the amount that a pedal is stepped on and a sensor sheet that is pressed by the rubber sensor as the rubber sensor changes shape. The resistance value of the sensor sheet changes in conformance with the area of the sheet that is pressed. Method 2: This is a method in which the resistance value of a volume control changes in conformance with the amount that a pedal is stepped on. The determination of the amount of displacement is possible with the use of any of the methods discussed above. However, in those cases where the displacement of a pedal is detected, the displacement sensor is required to have the durability to withstand the force that is repeatedly applied from the pedal over a long period of time. Each of the methods mentioned above has problems such as those described below. In Method 1, when the rubber sensor is used over a long period of time and its shape is repeatedly changed in conformance with the stepping operation of the pedal, the rubber sensor becomes deformed in shape such that it becomes impossible to accurately detect the amount that the pedal has been stepped on. In Method 2, when the volume control is used for a long period of time, the mechanical sliding portion is abraded and that becomes a problem.
<SOH> SUMMARY OF THE DISCLOSURE <EOH>Therefore, it is an advantage of embodiments of the present invention to provide an apparatus and method for providing a displacement sensor that has superior mechanical durability and that can withstand use over a long period of time. An embodiment of the present invention that achieves the object described above is characterized in that the displacement sensor is furnished with a sensor structure, such as a sensor sheet, for which the resistance value changes in conformance with the area that has been pressed and a coil spring that has a conical shape. The wider end of said conical shape is in contact with the previously mentioned sensor sheet and increases the area of pressing of said sensor sheet in proportion to the compression of the spring. The coil spring with which an embodiment of the present invention is furnished possesses durability with respect to the compression force that is received from the object that is displaced. In addition, since the displacement sensor is furnished with a structure in which the mechanical rubbing portion that is the cause of abrasion is excluded, the mechanical durability is superior and long-term use is possible. In addition, it is preferable that an embodiment of the present invention be one in which the above mentioned sensor sheet is furnished with a sheet material that possesses electrical conductivity and with an electrode pattern that is disposed opposite the previously mentioned sheet material and is formed by radial segments extending between the center of the sensor sheet and its periphery. The direction over which the cone shaped coil spring presses the sensor sheet as the spring is compressed is from the outer periphery of the sensor sheet toward the center of the sensor sheet. The degree to which the spring presses the sensor sheet is in proportion to the compression of the coil spring. Since the electrode pattern described above is formed along the direction over which the spring presses the sensor sheet, the resistance value of the above mentioned sensor sheet changes with good efficiency due to the compression of the coil spring. As has been explained above, an embodiment of the present invention is superior in mechanical durability compared to the displacement sensors of the past and can withstand use for a long period of time. These and other objects, features, and advantages of embodiments of the invention will be apparent to those skilled in the art from the following detailed description of embodiments of the invention, when read with the drawings and appended claims.
20041105
20081202
20060511
60223.0
G10H314
2
FLETCHER, MARLON T
APPARATUS AND METHOD FOR DETECTING DISPLACEMENT OF A MOVABLE MEMBER OF AN ELECTRONIC MUSICAL INSTRUMENT
UNDISCOUNTED
0
ACCEPTED
G10H
2,004
10,982,319
ACCEPTED
Tool carrying and storage case
A storage and carrying case includes semi-rigid spaced end panels and a semi-rigid bottom panel all joined together by means of a fabric over layer and a fabric under layer which are stitched together by a binding which also connects to front and back panels to form an enclosure for tools or the like. A single binding may thus be utilized to join all of the flexible fabric materials which retain the semi-rigid or rigid panels forming the enclosure.
1. A case for carrying tools or other items comprising, in combination: planar, generally rigid, fabric covered first end panel having a generally rectangular lower section with a bottom side edge, a front side edge and a back side edge and a generally triangular upper section; a second, planar, generally rigid, fabric covered end panel having a configuration congruent with the first end panel and parallel to and spaced from the first end panel and with a bottom edge, a front side edge and a back side edge; a planar, generally rigid, fabric covered, rectangular bottom panel connecting between the first and second panels to form a three sided, generally rigid fabric covered box; a first, flexible, fabric front panel having a top edge and joined between the front side edges of the first and second panels; a second, flexible fabric back panel having a top edge and joined between the back side edges of the first and second end panels; a single continuous, closed loop binding joining the fabric covering the generally rigid panels and the flexible panels, said binding extending over the joined fabric and stitched thereto along the side edges and bottom edges of the end panels and the top edges of the flexible panels. 2. The storage case of claim 1 further including a reinforcing member sewn into the flexible panels intermediate the end panels. 3. The case of claim 1 further including a generally rigid handle member connecting the first and second end panels. 4. The case of claim 3 further including a rubber handle member fitted over the rigid handle member. 5. The case of claim 1 further including rigid reinforcing bridging elements fitted over at least a part of the first end panel and the second end panel. 6. The case of claim 1 wherein the end panels include a truncated triangular upper end configuration and are generally equal in size and shape. 7. The case of claim 1 wherein at least one of the end panels includes a strap along a top edge of said end panel which is affixed at one end to the end panel and attachable to the end panel to retain an item. 8. A case for carrying tools or other items comprising, in combination: planar, fabric covered first end panel having a generally rectangular, rigid lower section with a bottom side edge, a front side edge and a back side edge and a generally triangular upper section; a second, planar, fabric covered end panel constructed substantially identical to the first end panel and having a configuration generally congruent with the first end panel and parallel to and spaced from the first end panel and, said second panel also including a bottom edge, a front side edge and a back side edge; a planar, generally rigid, fabric covered, rectangular perimeter shaped, bottom panel between the first and second panel to form a generally three sided, generally rigid, fabric covered box with the first and second end panels extending upwardly from the bottom panel; a first, flexible, fabric front panel having a top edge and joined between the front side edges of the first and second panels; a second, flexible fabric back panel having a top edge and joined between the back side edges of the first and second end panels; a continuous, closed loop binding joining fabric covering the generally rigid end and bottom panels and the flexible panels, said binding extending over the joined fabric and stitched thereto along the side edges and bottom edges of the end panels and the top edges of the flexible panels. 9. The storage case of claim 8 further including a reinforcing member sewn into the flexible panels intermediate the end panels. 10. The case of claim 8 further including a generally rigid handle member connecting the first and second end panels. 11. The case of claim 10 further including a rubber handle member fitted over the rigid handle member. 12. The case of claim 8 further including rigid reinforcing bridging elements fitted over at least a part of the first end panel and the second end panel. 13. The case of claim 8 wherein the end panel upper sections comprise a truncated triangular upper end configuration and are generally equal in size and shape. 14. The case of claim 8 wherein at least one of the end panels includes a strap along a top edge of said end panel which is affixed at one end to the end panel and attachable to the end panel to retain an item. 15. The case 14 wherein the strap is attached at one end to the case and attachable at the opposite end to the case. 16. The case of claim 9 wherein said reinforcing member is sewn generally into the panels generally along the top edge. 17. The case of claim 2 wherein said reinforcing member is sewn generally into the panels generally along the top edge. 18. The case of claim 8 including a handle member connected between the upper sections of the first and second panels.
BACKGROUND OF THE INVENTION In a principal aspect, the present invention relates to a storage case for carrying tools and other items. Gardeners, tradesmen, workmen and the like often carry and transport their tools and/or equipment in an open top carrying case. An open top carrying case enables quick access to the contents of the case. Such a case also facilitates carrying of multiple tools and items necessary for performance of work. Desirable features of such a carrying case are that it be rugged, flexible, yet have a certain degree of structural integrity so that the tools or items carried in the case will be protected and will not deform the case due to their weight. Additionally, a carrying case for tools should be capable of including special storage pockets and other features for separating and transporting tools. Also, handles or carrying straps are desirable features for a carrying case. With these objectives in mind, the present invention provides extremely cost effective, yet especially rugged and aesthetically pleasing designs for a tool carrying case. SUMMARY OF THE INVENTION Briefly, the present invention comprises a storage case which includes congruently shaped, relatively rigid or semi-rigid, spaced and opposed end panels connected by a relatively rigid bottom panel. Flexible fabric, spaced front and back panels extend between the opposite side edges of the two end panels. The rigid or semi-rigid end and bottom panels are covered on both sides with a fabric or flexible material, and in one embodiment a single continuous binding is stitched to join all of the fabric material covering the end and bottom panels thereby enhancing the assembly procedure for the storage case and providing a desirable visual impression. The end panels each have a lower, generally rectangular section and an upper generally triangular or trapezoidal section. The flexible or partially reinforced front and back panels optionally include a rigid stiffening bar or rod member sewn or captured in a passage extending between the end panels to thereby provide additional rigidity or structural integrity to the carrying case. Alternative embodiments include a bar or rod extending between and connecting the triangular sections of the end panels. Also, the end panels may be comprised of a rigid material which is not flexible and which is covered by fabric, or a flexible, semi-rigid material which may be folded over the top of the case. Thus, it is an object of the invention to provide a storage case for carrying tools and other items. It is a further object of the invention to provide an open top storage case having a carry strap extending between two congruent, shaped end panels that are rigid or semi-rigid. A further object of the invention is to provide a storage case which has an aesthetically pleasing appearance to thereby enhance the marketability of the carrying case. Yet another object of the invention is to provide a carrying case for tools and the like which is economical, easy to manufacture, constructed of rugged materials and which is highly utilitarian. Another object of the invention is to provide a storage and carrying case which includes generally rigid, spaced, end panels and generally flexible, but reinforced, front and back panels all sewn together by a use of a single, continuous binding strip which forms a continuous loop about the periphery of the storage case. These and other objects, advantages and features of the invention will be set forth in the detailed description which follows. BRIEF DESCRIPTION OF THE DRAWING In the detailed description which follows, reference will be made to the drawing comprised of the following figures: FIG. 1 is an isometric view of a first embodiment of the storage and carrying case of the invention; FIG. 2 is an isometric view of an alternative embodiment of the storage and carrying case of the invention; FIG. 3 is a cross sectional view of a portion of the front panel of FIG. 1 taken along the line 3-3 illustrating the means for stiffening a portion of the front panel which connects opposite end panels; FIG. 4 is a cross sectional view of the binding construction of the carrying case taken along the line 4-4 in FIG. 1; FIG. 5 is an isometric view of a third embodiment of the invention especially useful for carrying and storage of garden tools; FIG. 6 is an isometric view of a fourth alternate embodiment wherein the upper ends of the end panels are foldable; FIG. 7 is an isometric view of the embodiment of FIG. 6 wherein the end panels are folded and fastened together to at least partially enclose the case; FIG. 8 is an exploded, cut away isometric view of the component parts of the case of FIG. 6; FIG. 9 is an exploded isometric view similar to FIG. 8 depicting the construction of the embodiment of FIG. 6; FIG. 10 is an isometric view of a fifth alternative embodiment; and FIG. 11 is an exploded isometric view of the rigid panel members incorporated in the embodiment of FIG. 10. DESCRIPTION OF THE PREFERRED EMBODIMENT The tool storage and carrying case of the invention is depicted in first and second embodiments in FIGS. 1 and 2, respectively, and a third embodiment in FIG. 5. The first embodiment of FIG. 1 is physically smaller than the second embodiment of FIG. 2. The methodology of assembly of the cases of FIGS. 1, 2 and 5 is substantially the same and the configuration of the various carrying cases is substantially the same. Referring therefore to FIG. 1, as well as FIGS. 3 and 5, the carrying case of the invention includes a first end panel 10 and a second, spaced end panel 12. The panels 10 and 12 are congruent or, in other words, substantially identical in size, shape and configuration. The first and second panels 10 and 12 include a lower generally rectangular section 14 and an upper triangular or trapezoidal section 16. The triangular section 16 has a generally isosceles triangular or truncated triangular shape. The first panel 10 is comprised of an interior generally semi-rigid or rigid member, for example, a polyethylene board or sheet. The first panel 10 further includes an inner and outer fabric or material covering 20 and 22. The second end panel 12 has a similar construction. The case further includes a generally rigid bottom panel 24 which is also comprised of a rigid board or semi-rigid board or panel member 24 covered by outer layers of fabric 20, 22 in a manner substantially the same as the construction and coverage of end panels 10 and 12. In the preferred embodiment, the fabric 22 covering the outer surface of the end panels 10 and 12 is a continuous sheet of fabric of material which fits over the end panel 10, the bottom panel 24 and the second end panel 12. The interior sheet of fabric 20 likewise is a continuous sheet fitted over the end panel 10, the bottom panel 24 and the second end panel 12. The carrying case further includes a front side fabric panel 28 and a back side fabric panel or side 30. The front panel 28 and the back panel 30 are each comprised of flexible material such as canvas, plastic or the like. The fabric utilized to make the case is thus typically a canvas material, a fabric material or flexible plastic material and is substantially the same fabric material for all panels 28, 30 and material covering 20, 22. However, it is possible to mix the types of fabric used to make the carrying case panels and covering. The front panel 28 optionally includes a passageway such as passageway 32, extending between the end panels 10 and 12. The passageway 32 is formed by sewing over a top flap of the fabric forming the front panel 28 along a seam 34 as depicted in cross section in FIG. 3. A reinforcing element or rod 36 may then be fitted into the channel or passageway 32 that extends between the end panels 10 and 12 thereby providing an enhanced stiffening and form retention function for the carrying case. The reinforcing rod 36 thus extends the entire length of the channel 32 between the end panels 10 and 12 in the preferred embodiment. An important aspect of the invention is the utilization of a single closed loop binding 40 in FIG. 4 which serves to join all of the flexible fabric component panels or parts 20, 22, 28 of the carrying case. Thus, referring to FIG. 4, by way of example, a binding 40 is folded over and stretched to provide a means to join the front panel 28, the first inside fabric layer 22 and the second outside fabric layer 20 which are fitted over the rigid bottom panel 24 at the bottom of the case. A single stitch 44 then joins the binding 40 and fabric layers 28, 22 and 20. In other words, the binding 40 folds over the edges of the layers of fabric 28, 22, and 20 and connects them one to the other by means of a single seam 41. This provides an enhanced visual appearance and further provides a means for joining multiple layers together to thereby simplify the construction of the carrying case. As depicted in the Figures and starting, by way of example at seam 31, the single binding 40 extends around the periphery of the triangular section of the first end panel 10 joining fabric covers 20, 22; then joins the side edge of back panel 30 and covering 20, 22 of end panel 10; then along the bottom edge connecting the back panel 30 and the covering 20, 22 of bottom panel 24; then along the junction of the back panel 30 with the covering 20, 22 of the second end panel 12. The binding 40 continues to connect coverings 20, 22 over the isosceles section 16 of the panel 12 and then continues to join the covering 20, 22 of second end panel 12 to the front panel 28. The binding 40 then continues along the bottom edge connecting coverings 20, 22 of the bottom panel 24 and end panel 28. Finally, binding 40 connects coverings 20, 22 and edge of panel 28 up to seam 31. In the manner described, a single binding 40 is useful for connecting all of the component parts forming the carrying case. The fabric which forms the front panel 28 and back panel 30 and which also forms the through passage or channel 32 may be captured by the binding 40 to thereby fix or retain the stiffening member 36 in position to give the carrying case appropriate form and shape. As shown in FIGS. 1, 2 and 5, the carrying case further includes a carrying strap 60. The strap 60 has its opposite ends attached, for example, by a rivet 62 to the second end panel 12. A similar connection is provided for the strap 60 to the first end panel 10. Numerous optional elements may be incorporated into the carrying case. For example, an internal intermediate wall 66 may be sewn between the front panel 28 and the back panel 30. Loops 68 may be sewn to the fabric covering for the second end panel 12. The front panel 28 may include a series of loops or pockets such as pocket 70 and tool carrying loop 72. Similarly, pockets 76 may be incorporated in the end panel 10. Special tool holders such as tool holder 78 may be fastened to the first end panel 10 or to the second end panel 12. Pockets such as pocket 80 may be incorporated on the outside of the end panel, such as end panel 12. The described construction thus enables a design of great flexibility. For example, as shown in FIG. 2, a zippered pocket 82 may be incorporated in a front panel 28 of a large carrying case. Another aspect of the invention that may be varied relates to the shape of end panels, for example, end panel 10. The embodiments depicted as described heretofore have included a generally rectangular lower section and a generally triangular upper section. Preferably, the triangular upper section has been in the form of an isosceles triangle or a truncated isosceles triangle. The configuration can also be generally trapezoidal. Thus, various configurations of the upper section of an end panel may be adopted or utilized and considered to be within the scope of the invention. Consequently, when using the language, “triangular”, to describe the upper end portion of an end panel, for example, end panel 10, the use generally encompasses functionally and by definition triangular shaped, truncated triangular shapes, trapezoidal shapes and other such shapes that are generally of narrowing upper dimension relative to the lower section of the end panel. Referring next to FIGS. 6-9, there is illustrated a further embodiment of the invention wherein the end panels are fabricated and configured from a material which enables those end panels to be folded one over the other and fastened together to thereby facilitate retention of tools or other items within the bag case or container. Thus, in general, the embodiment of FIGS. 6-9 includes a first end panel 100 and a generally congruent or similarly shaped second end panel 102 spaced from the first end panel 100. The end panel 100 is joined to the end panel 102 by means of a back side panel 104 and a front side panel 106. An auxiliary pouch or pocket 108 is formed on the outside of the front side panel 106. Auxiliary pouches 110, 112 and 114 are provided on the outside of the first end panel 100. A carry handle 116 connects upper ends 118 and 120 of first end panel 100 and second end panel 102. A carry strap or shoulder strap 122 connects between upper end 118 of first panel 100 and upper end 120 of second panel 102. A closure assembly, comprised of an elastic cord 126 attached to a tab 128 with an opening 130, is provided for engagement with a projecting stud 132 on the outside of the pouch 108. The elastic cord 126 is attached to the upper end or upper margin 134 of the front side panel 106. The notch 130 is a keyhole opening or notch so that the notch 130 may easily fit over the headed stud 132 and provide a retention feature to maintain the locking assembly or closure assembly described engaged so as to retain an item within the pouch 108. It will be noted that a binding 140 connects fabric layers as described hereinafter which encapsulate or enclose rigid and semi-rigid panels in the first end panel 100 and second end panel 102 as well as the bottom panel. That is, the binding 140 is attached to the assembly of the component parts of the embodiment of FIGS. 6-9 in the same manner as the binding utilized with respect to the embodiments heretofore described. In this manner, a single binding 140 serves to provide an aesthetically pleasing, yet highly functional, means for attaching and assembling the component parts of the bag or case. The bag or case of FIGS. 6-9 has a feature, perhaps illustrated more clearly in FIG. 7, wherein the upper end 118 of end panel 100 may be folded over and joined with the upper end 120 of panel 102 which is also folded over. The upper ends 118 and 120 of the panels 100 and 102 thus may be attached together by a fastener 140 to enclose the contents of the bag or case. Note that FIG. 7 illustrates the opposite end in isometric view of the case of FIG. 6. Thus, as illustrated, additional pouches, such as pouch 142 with a zipper fastener or closure 144, may be provided on a backside panel 104. End panel 102 may include pouches 146 and 148 each with its own flap 150 and 152, respectively. Thus, the versatility of the construction of bags of the nature named and described is clearly apparent. To achieve the functional characteristics of the case, reference is made to FIGS. 8 and 9. As depicted, for example, in FIG. 8, the first end panel 100 includes a semi-rigid or rigid polyethylene board 101 encapsulated between layers of fabric. Similarly, a reinforcing element, for example, a rigid or semi-rigid polyethylene slat 103 is sewn into the back panel 104 at or adjacent the upper margin 105 thereof. In a similar fashion, a rigid or semi-rigid slat 107 is sewn in the front panel 106 again adjacent the upper margin 134 thereof. The slats or reinforcing elements 103 and 107 extend generally totally between the first side panel 100 and second side panel 102 to enhance the structural integrity of the case or carrier. The pouch 108 may also include a reinforcing element formed from a rigid or semi-rigid member 109 sewn into the front panel 111 along top margin 113 of pouch 108. The reinforcing element 109 extends across the front panel 111 of pouch 108, but does not extend into a side panel 115 of the pouch 108. This arrangement is depicted in greater detail in FIG. 9. Note that with the embodiment of FIGS. 8 and 9 the upper ends or sections 118, 120 of the panels 100 and 102 may or may not include a reinforcing member. If the upper ends 118 and 120 include a reinforcing member, the reinforcing member is a more flexible polyethylene board, for example, so as to enable the folding of the upper ends 118 and 120 in the manner previously described. It has been found that the elimination of a reinforcing board in the upper ends 118 and 120 is possible assuming that the fabric material forming the covering of the boards or reinforcing elements 101 and its companion element 101A in FIG. 9 are adequately heavy, for example, a heavy canvas or plastic fabric material. Further, the handle 116 tends to space or separate the outer top or upper ends 118 and 120 inasmuch as the handle 116 is comprised of a molded rubber material which is flexible yet tends to elastically maintain the shape depicted in the figures thereby spreading the upper ends 118 and 120 unless those upper ends are manually flexed and joined together by the fastening mechanism 140 depicted in FIG. 7. FIGS. 10 and 11 illustrate another embodiment which is especially useful for carrying tools and which includes reinforcing elements maintained between layers of fabric so as to replicate the configuration of a carpenter's tool box. Referring to the figures, the tool box, bag or case of FIGS. 10 and 11 includes a first end panel 200 and a congruently shaped, spaced, second end panel 202. The end panels 200 and 202 are joined by a front side panel 204 and a back side panel 206. A rigid tubular metal bar handle 208 connects between the lateral or first end panel 200 and the lateral or the second end panel 202. All of the described panels are fabric covered, preferably by two layers of fabric which are sewn together and retained along their edges by a binding 210. Within the layers or between the layers of fabric forming each of the panels, are reinforcing elements, typically polyethylene board reinforcing elements having a desired configuration or shape. FIG. 11 illustrates the combination of reinforcing elements utilized in the bag construction of FIG. 10. Thus, there is included a bottom generally rigid reinforcing board 220, a first lateral side panel reinforcing board 222, a second opposite end lateral side reinforcing board 224, and a front side reinforcing bar or slat 226 as well as a back side reinforcing bar or slat 228. There is also included bridging elements, and more particularly a first bridging element 230 which fits over the truncated or generally triangular end portion 232 of the first end panel 222. A second bridging element 234 is provided to fit over the truncated or generally triangular shaped end 236 of the second end panel 224. All of the reinforcing elements depicted in FIG. 11 are sewn into or encapsulated between layers of fabric which are sewn together so as to form the tool bag depicted in FIG. 10 having various pouches, straps and the like which enable or facilitate carrying of the bag. The location of the elements or reinforcing elements or members is as previously described. For example, the slats 226 and 228 which extend substantially between the end panels 222 and 224 are located at upper margins 227 and 229 of the front panel 204 and back panel 206, respectively. Thus, it can be seen that the binding techniques, as well as the assembly techniques associated with the tool bag of FIGS. 10 and 11, is substantially similar to or the same as previously described with respect to the other embodiments of the invention. Other features of the embodiment of FIGS. 10 and 11 include an elastomeric or rubber handle member 209 which fits over the tubular metal handle 208 that is fastened at its opposite ends, for example, by rivets 211 to panel 222. A strap 250 is attached to the end panel 200 and fits along the top edge of the end panel 200. A similar strap 252 is attached to the opposite end panel 202. The straps 250 and 252 are affixed to the upper ends of the panels 200 and 202 by means of a hook and eye fastener construction (Velcro-type fasteners). Each strap 250 and 252 is sewn at one end 251 and 253 to the bag, and more particularly to the front panel juncture of the bag with the side panels. Thus, the strap may be utilized to retain a carpenter's level, for example, by attaching the strap over the level and against the top edge of the side panels 200 and 202. Numerous modifications may be made to the construction without departing from the spirit and scope of the invention. However, the use of binding 40 in a closed loop configuration as described enables such variations. Thus, the invention is to be limited only by the following claims and equivalents thereof.
<SOH> BACKGROUND OF THE INVENTION <EOH>In a principal aspect, the present invention relates to a storage case for carrying tools and other items. Gardeners, tradesmen, workmen and the like often carry and transport their tools and/or equipment in an open top carrying case. An open top carrying case enables quick access to the contents of the case. Such a case also facilitates carrying of multiple tools and items necessary for performance of work. Desirable features of such a carrying case are that it be rugged, flexible, yet have a certain degree of structural integrity so that the tools or items carried in the case will be protected and will not deform the case due to their weight. Additionally, a carrying case for tools should be capable of including special storage pockets and other features for separating and transporting tools. Also, handles or carrying straps are desirable features for a carrying case. With these objectives in mind, the present invention provides extremely cost effective, yet especially rugged and aesthetically pleasing designs for a tool carrying case.
<SOH> SUMMARY OF THE INVENTION <EOH>Briefly, the present invention comprises a storage case which includes congruently shaped, relatively rigid or semi-rigid, spaced and opposed end panels connected by a relatively rigid bottom panel. Flexible fabric, spaced front and back panels extend between the opposite side edges of the two end panels. The rigid or semi-rigid end and bottom panels are covered on both sides with a fabric or flexible material, and in one embodiment a single continuous binding is stitched to join all of the fabric material covering the end and bottom panels thereby enhancing the assembly procedure for the storage case and providing a desirable visual impression. The end panels each have a lower, generally rectangular section and an upper generally triangular or trapezoidal section. The flexible or partially reinforced front and back panels optionally include a rigid stiffening bar or rod member sewn or captured in a passage extending between the end panels to thereby provide additional rigidity or structural integrity to the carrying case. Alternative embodiments include a bar or rod extending between and connecting the triangular sections of the end panels. Also, the end panels may be comprised of a rigid material which is not flexible and which is covered by fabric, or a flexible, semi-rigid material which may be folded over the top of the case. Thus, it is an object of the invention to provide a storage case for carrying tools and other items. It is a further object of the invention to provide an open top storage case having a carry strap extending between two congruent, shaped end panels that are rigid or semi-rigid. A further object of the invention is to provide a storage case which has an aesthetically pleasing appearance to thereby enhance the marketability of the carrying case. Yet another object of the invention is to provide a carrying case for tools and the like which is economical, easy to manufacture, constructed of rugged materials and which is highly utilitarian. Another object of the invention is to provide a storage and carrying case which includes generally rigid, spaced, end panels and generally flexible, but reinforced, front and back panels all sewn together by a use of a single, continuous binding strip which forms a continuous loop about the periphery of the storage case. These and other objects, advantages and features of the invention will be set forth in the detailed description which follows.
20041104
20060131
20050317
64829.0
2
FERNSTROM, KURT
TOOL CARRYING AND STORAGE CASE
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,982,617
ACCEPTED
Low pressure fuel injector nozzle
A nozzle for a low pressure fuel injector that improves the control and size of the spray angle, as well as enhances the atomization of the fuel delivered to a cylinder of an engine.
1. A nozzle for a low pressure fuel injector, the fuel injector delivering fuel to a cylinder of an engine, the nozzle comprising: a nozzle body defining a valve outlet and a longitudinal axis; a metering plate connected to the nozzle body and in fluid communication with the valve outlet; the metering plate defining a nozzle cavity receiving fuel from the valve outlet; the metering plate defining a plurality of exit cavities receiving fuel from the nozzle cavity, each exit cavity radially spaced from the longitudinal axis and meeting the nozzle cavity at a first exit orifice; and each exit cavity including an upstream directing portion and a downstream portion, the intersection of the upstream directing portion and the downstream portion defining a second exit orifice having a diameter less than the smallest diameter of the upstream directing portion. 2. The nozzle of claim 1, wherein the upstream directing portion is cylindrical. 3. The nozzle of claim 1, wherein the upstream directing portion is conical. 4. The nozzle of claim 1, wherein the upstream directing portion decreases in diameter in the downstream direction. 5. The nozzle of claim 1, wherein the downstream portion increases in diameter in the downstream direction. 6. The nozzle of claim 1, wherein the upstream directing portion defines a separation zone trapping a portion of the fuel flow. 7. The nozzle of claim 1, wherein the upstream directing portion directs the fluid flow inwardly towards an exit axis of the exit cavity prior to passing through the second exit orifice. 8. The nozzle of claim 1, wherein each exit cavity defines an exit axis, each exit axis being tilted in the radial direction relative to the longitudinal axis to increase the spray angle of the nozzle. 9. The nozzle of claim 1, wherein each exit cavity defines an exit axis, the exit axis being tilted in the tangential direction relative to the longitudinal axis to produce a swirl component to the fuel exiting the nozzle.
FIELD OF THE INVENTION The present invention relates generally to fuel injectors for automotive engines, and more particularly relates to fuel injector nozzles capable of atomizing fuel at relatively low pressures. BACKGROUND OF THE INVENTION Stringent emission standards for internal combustion engines suggest the use of advanced fuel metering techniques that provide extremely small fuel droplets. The fine atomization of the fuel not only improves emission quality of the exhaust, but also improves the cold weather start capabilities, fuel consumption and performance. Typically, optimization of the droplet sizes dependent upon the pressure of the fuel, and requires high pressure delivery at roughly 7 to 10 MPa. However, a higher fuel delivery pressure causes greater dissipation of the fuel within the cylinder, and propagates the fuel further outward away from the injector nozzle. This propagation makes it more likely that the fuel spray will condense on the walls of the cylinder and the top surface of the piston, which decreases the efficiency of the combustion and increases emissions. To address these problems, a fuel injection system has been proposed which utilizes low pressure fuel, define herein as generally less than 4 MPa, while at the same time providing sufficient atomization of the fuel. One exemplary system is found in U.S. Pat. No. 6,712,037, commonly owned by the Assignee of the present invention, the disclosure of which is hereby incorporated by reference in its entirety. Generally, such low pressure fuel injectors employ sharp edges at the nozzle orifice for atomization and acceleration of the fuel. However, the relatively low pressure of the fuel and the sharp edges result in the spray being difficult to direct and reduces the range of the spray. More particularly, the spray angle or cone angle produced by the nozzle is somewhat more narrow. At the same time, additional improvement to the atomization of the low pressure fuel would only serve to increase the efficiency and operation of the engine and fuel injector. Accordingly, there exists a need to provide a fuel injector having a nozzle design capable of sufficiently injecting low pressure fuel while increasing the control and size of the spray angle, as well as enhancing the atomization of the fuel. BRIEF SUMMARY OF THE INVENTION One embodiment of the present invention provides a nozzle for a low pressure fuel injector which increases the spray angle, improves control over the direction of the spray, as well as enhances the atomization of the fuel delivered to a cylinder of an engine. The nozzle generally comprises a nozzle body and a metering plate. The nozzle body defines a valve outlet and a longitudinal axis. The metering plate is connected to the nozzle body and is in fluid communication with the valve outlet. The metering plate defines a nozzle cavity receiving fuel from the valve outlet. The metering plate defines a plurality of exit cavities receiving fuel from the nozzle cavity. Each exit cavity is radially spaced from the longitudinal axis and meets the nozzle cavity at a first exit orifice. Each exit cavity includes an upstream directing portion and a downstream portion. The intersection of the upstream directing portion and the downstream portion defines a second exit orifice. The second exit orifice has a diameter less than the smallest diameter of the upstream directing portion. According to more detailed aspects, the upstream directing portion has a diameter which does not increase along its length in the downstream direction. Thus, the upstream directing portion may be cylindrical, conical, or generally decrease in diameter in the downstream direction. Preferably the downstream portion does increase in diameter in the downstream direction and thus forms an expanding exit cone. The upstream directing portion defines a separation zone trapping a portion of the fuel flow therein. The upstream directing portion directs fluid flow inwardly past the separation zone and towards an exit axis of the exit cavity prior to passing through the second exit orifice. According to still further detailed aspects, each exit cavity defines an exit axis. Each exit axis may be tilted in the radial direction relative to the longitudinal axis to increase the spray angle of the nozzle. At the same time, the exit axis may be tilted in the tangential direction relative to the longitudinal axis to produce a swirl component to the fuel exiting the nozzle, thereby enhancing atomization of the fuel. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings: FIG. 1 is a cross-sectional view, partially cut-away, of a nozzle for a low pressure fuel injector constructed in accordance with the teachings of the present invention; FIG. 2 is an enlarged cross-sectional view, partially cut-away, of the nozzle depicted in FIG. 1; and FIG. 3 is a cross-sectional view, partially cut-away, of another embodiment of the nozzle for a low pressure fuel injector constructed in accordance with the teachings of the present invention. DETAILED DESCRIPTION OF THE INVENTION Turning now to the figures, FIG. 1 depicts a cross-sectional of a nozzle 20 constructed in accordance with the teachings of the present invention. The nozzle 20 is formed at a lower end of a low pressure fuel injector which is used to deliver fuel to a cylinder 10 of an engine, such as an internal combustion engine of an automobile. An injector body 22 defines an internal passageway 24 having a needle 26 positioned therein. The injector body 22 defines a longitudinal axis 15, and the internal passageway 24 extends generally parallel to the longitudinal axis 15. A lower end of the injector body 22 defines a nozzle body 32. It will be recognized by those skilled in the art that the injector body 22 and nozzle body 32 may be integrally formed, or alternatively the nozzle body 32 may be separately formed and attached to the distal end of the injector body 22 by welding or other well known techniques. In either case, the nozzle body 32 defines a valve seat 34 leading to a valve outlet 36. The needle 26 is translated longitudinally in and out of engagement with the valve seat 34 preferably by an electromagnetic actuator or the like. In this manner, fuel flowing through the internal passageway 24 and around the needle 26 is either permitted or prevented from flowing to the valve outlet 36 by the engagement or disengagement of the needle 26 and valve seat 34. The nozzle 20 further includes a metering plate 40 which is attached to the nozzle body 32. It will be recognized by those skilled in the art that the metering plate 40 may be integrally formed with the nozzle body 32, or alternatively may be separately formed and attached to the nozzle body 32 by welding or other well known techniques. In either case, the metering plate 40 defines a nozzle cavity 42 receiving fuel from the valve outlet 36. The nozzle cavity 42 is generally defined by a bottom wall 44 and a side wall 46 which are formed into the metering plate 40. The metering plate 40 further defines a plurality of exit cavities 50 receiving fuel from the nozzle cavity 42. Each exit cavity 50 is radially spaced from the longitudinal axis 15 and meets the nozzle cavity 42 at an exit orifice 52. The metering plate 40 has been uniquely designed to increase the spray angle, improve control over the direction of the spray, as well as to increase the atomization of the fuel flowing through the metering plate 40 and into the cylinder 10 of the engine. With reference to FIGS. 1, 2 and 4, the exit cavity 50 of the metering plate includes an upstream portion 58 and a downstream portion 60. The upstream portion preferably has a diameter which does not increase along its length in the downstream direction. Preferably, and as shown in the figure, the upstream directing portion 58 is cylindrical in shape. The downstream portion 60 however may increase in diameter and is shown as being conical in shape or flared. The intersection of the upstream directing portion 58 and the downstream portion 60 defines a second exit orifice 56. The second exit orifice 56 is preferably sharp edged such that fuel flowing past both sharp edge orifices 52, 56 have increased levels of turbulence which enhances the atomization of the fuel. The second exit orifice 56 has a diameter that is less than the smallest diameter of the upstream directing portion 58. Stated another way, a shoulder 54 is formed at the intersection of the upstream directing portion 58 and the downstream portion 60 of the exit cavity 50. Accordingly, it will be recognized by those skilled in the art that the exit cavity 50 defines a separation zone 62 in the upstream directing portion 58 which traps a portion of the fuel flow against the shoulder 54. In this manner, the turbulence of the fuel flowing through the exit cavity 50 is increased, to thereby enhance atomization of the fuel. At the same time, the constant or narrowing diameter of the upstream directing portion 58 prevents expansion of the fuel and thereby largely controls the direction of the fuel being spray into the cylinder 10 of the engine. The length to diameter ratio of the upstream directing portion 58 is controlled to prevent expansion of the fuel. Accordingly, it will be recognized by those skilled in the art that the upstream directing portion 58 may be utilized to improve the spray angle as well as improve control over the direction of the spray of fuel entering the engine cylinder 10. For example, the exit cavity 50 defines an exit axis 55. As best seen in FIG. 2, the exit axis 55 is tilted radially relative to the longitudinal axis 15, thereby increasing the spray angle of the nozzle 20. As best seen in FIG. 4, the exit axis 55 is also tilted in the tangential direction relative to the longitudinal axis 15. In this manner, the exit cavities 50 produce swirl component to the fuel exiting the nozzle 20 and being delivered to the engine cylinder 10. Thus, by tilting the exit cavities 50 radially and/or tangentially, the spray angle may be increased while at the same time obtaining better control over the direction of the spray and enhancing the atomization of the fuel through the swirling component of the discharge spray. Turning now to FIG. 3, an alternate embodiment of the nozzle and metering plate 40a has been depicted. First, it is noted that the nozzle cavity 42a is annular in shape and includes an island 41 formed in the center thereof about the longitudinal axis 15. Further, the bottom wall 44a of the nozzle cavity 42a slopes upwardly as it extends radially outwardly away from the longitudinal axis 15. These structures reduce the volume of the nozzle cavity 42a to thereby increase the pressure and acceleration of the fuel through the metering plate 40. In the embodiment of FIG. 3, it will also be noted that the upstream directing cavity 58a has been formed in a shape which decreases in diameter in the downstream direction. That is, the upstream directing portion 58a is conical. Thus the upstream directing portion 58a prevents the fuel from expanding, and actually decreases the available volume to further accelerate the fuel and enhance atomization. At the same time, the second exit orifice 56 is still provided at the intersection of the downstream cavity 60 and the upstream directing cavity 58a. Like the previous embodiments, the exit cavities 50a are oriented along an exit axis 55a which may be tilted radially and/or tangentially relative to the longitudinal axis 15 in order to increase the spray angle, as well as introduce a swirl component to the spray to thereby further increase the atomization of the fuel. Thus, the structure and orientation of each exit cavity, in concert with the plurality of exit cavities, enhances the spray angle and control over the direction of the spray. The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
<SOH> BACKGROUND OF THE INVENTION <EOH>Stringent emission standards for internal combustion engines suggest the use of advanced fuel metering techniques that provide extremely small fuel droplets. The fine atomization of the fuel not only improves emission quality of the exhaust, but also improves the cold weather start capabilities, fuel consumption and performance. Typically, optimization of the droplet sizes dependent upon the pressure of the fuel, and requires high pressure delivery at roughly 7 to 10 MPa. However, a higher fuel delivery pressure causes greater dissipation of the fuel within the cylinder, and propagates the fuel further outward away from the injector nozzle. This propagation makes it more likely that the fuel spray will condense on the walls of the cylinder and the top surface of the piston, which decreases the efficiency of the combustion and increases emissions. To address these problems, a fuel injection system has been proposed which utilizes low pressure fuel, define herein as generally less than 4 MPa, while at the same time providing sufficient atomization of the fuel. One exemplary system is found in U.S. Pat. No. 6,712,037, commonly owned by the Assignee of the present invention, the disclosure of which is hereby incorporated by reference in its entirety. Generally, such low pressure fuel injectors employ sharp edges at the nozzle orifice for atomization and acceleration of the fuel. However, the relatively low pressure of the fuel and the sharp edges result in the spray being difficult to direct and reduces the range of the spray. More particularly, the spray angle or cone angle produced by the nozzle is somewhat more narrow. At the same time, additional improvement to the atomization of the low pressure fuel would only serve to increase the efficiency and operation of the engine and fuel injector. Accordingly, there exists a need to provide a fuel injector having a nozzle design capable of sufficiently injecting low pressure fuel while increasing the control and size of the spray angle, as well as enhancing the atomization of the fuel.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>One embodiment of the present invention provides a nozzle for a low pressure fuel injector which increases the spray angle, improves control over the direction of the spray, as well as enhances the atomization of the fuel delivered to a cylinder of an engine. The nozzle generally comprises a nozzle body and a metering plate. The nozzle body defines a valve outlet and a longitudinal axis. The metering plate is connected to the nozzle body and is in fluid communication with the valve outlet. The metering plate defines a nozzle cavity receiving fuel from the valve outlet. The metering plate defines a plurality of exit cavities receiving fuel from the nozzle cavity. Each exit cavity is radially spaced from the longitudinal axis and meets the nozzle cavity at a first exit orifice. Each exit cavity includes an upstream directing portion and a downstream portion. The intersection of the upstream directing portion and the downstream portion defines a second exit orifice. The second exit orifice has a diameter less than the smallest diameter of the upstream directing portion. According to more detailed aspects, the upstream directing portion has a diameter which does not increase along its length in the downstream direction. Thus, the upstream directing portion may be cylindrical, conical, or generally decrease in diameter in the downstream direction. Preferably the downstream portion does increase in diameter in the downstream direction and thus forms an expanding exit cone. The upstream directing portion defines a separation zone trapping a portion of the fuel flow therein. The upstream directing portion directs fluid flow inwardly past the separation zone and towards an exit axis of the exit cavity prior to passing through the second exit orifice. According to still further detailed aspects, each exit cavity defines an exit axis. Each exit axis may be tilted in the radial direction relative to the longitudinal axis to increase the spray angle of the nozzle. At the same time, the exit axis may be tilted in the tangential direction relative to the longitudinal axis to produce a swirl component to the fuel exiting the nozzle, thereby enhancing atomization of the fuel.
20041105
20070306
20060511
57277.0
F02B5310
0
GANEY, STEVEN J
LOW PRESSURE FUEL INJECTOR NOZZLE
UNDISCOUNTED
0
ACCEPTED
F02B
2,004
10,983,535
ACCEPTED
Composite thermoplastic sheets including natural fibers
A composite sheet material includes, in an exemplary embodiment a porous core that includes at least one thermoplastic material and from about 20 weight percent to about 80 weight percent of natural fibers based on a total weight of the porous core. The natural fibers include at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers.
1. A composite sheet material comprising: a permeable core comprising discontinuous natural fibers bonded together with a thermoplastic resin, said permeable core having a density from about 0.1 gm/cc to about 1.8 gm/cc, said permeable core including a surface region 2. A composite sheet in accordance with claim 1 wherein said natural fibers comprise at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers. 3. A composite sheet material in accordance with claim 1 wherein said permeable core has an open cell structure with a void content of about 1 percent to about 95 percent of the total volume of said permeable core. 4. A composite sheet material in accordance with claim 1 wherein said permeable core comprises a thermoplastic resin selected from the group consisting of polyolefins, polystyrene, acrylonitrylstyrene, butadiene, polyesters, polybutyleneterachlorate, polyvinyl chloride, polyphenylene ether, polycarbonates, polyestercarbonates, acrylonitrile-butylacrylate-styrene polymers, amorphous nylon, and mixtures thereof. 5. A composite sheet material in accordance with claim 1 wherein said core comprises from about 20 to about 80 percent by weight of said natural fibers and from about 20 to about 80 percent by weight of said thermoplastic resin. 6. A composite sheet material in accordance with claim 1 wherein said core comprises from about 35 to about 55 percent by weight of said natural fibers and from about 45 to about 65 percent by weight of said thermoplastic resin. 7. A composite sheet material in accordance with claim 1 having a thickness from about 0.5 mm to about 50 mm. 8. A composite sheet material in accordance with claim 1 further comprising an adherent layer adjacent to said surface region. 9. A composite sheet material according to claim 8 wherein said adherent layer has a thickness from about 25 micrometers to about 2.5 mm. 10. A composite sheet material according to claim 8 wherein said adherent adjacent layer comprises at least one of a thermoplastic film, an elastomeric film, a metal foil, a thermosetting coating, an inorganic coating, a fiber based scrim, a non-woven fabric, and a woven fabric. 11. A composite sheet material in accordance with claim 2 wherein said permeable core further comprises at least one of metal fibers, metalized inorganic fibers, metalized synthetic fibers, glass fibers, graphite fibers, carbon fibers, ceramic fibers, basalt fibers, inorganic fibers, and aramid fibers. 12. A composite sheet material comprising: a porous core comprising at least one thermoplastic material and from about 20 weight percent to about 80 weight percent of natural fibers based on a total weight of said porous core layer, said natural fibers comprising at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers. 13. A composite sheet material in accordance with claim 12 wherein said porous core has an open cell structure with a void content of about 1 percent to about 95 percent of the total volume of said porous core. 14. A composite sheet material in accordance with claim 12 wherein said porous core comprises a thermoplastic resin selected from the group consisting of polyolefins, polystyrene, acrylonitrylstyrene, butadiene, polyesters, polybutyleneterachlorate, polyvinyl chloride, polyphenylene ether, polycarbonates, polyestercarbonates, acrylonitrile-butylacrylate-styrene polymers, amorphous nylon, and mixtures thereof. 15. A composite sheet material in accordance with claim 12 wherein said porous core comprises from about 35 to about 55 percent by weight of said natural fibers and from about 45 to about 65 percent by weight of said thermoplastic resin. 16. A composite sheet material in accordance with claim 12 having a thickness from about 0.5 mm to about 50 mm. 17. A composite sheet material in accordance with claim 12 further comprising at least one skin, each said skin covering at least a portion of a surface of said porous core layer, said skin comprising at least one of a thermoplastic film, an elastomeric film, a metal foil, a thermosetting coating, an inorganic coating, a fiber based scrim, a non-woven fabric, and a woven fabric. 18. A composite sheet material in accordance with claim 12 wherein said porous core further comprises at least one of metal fibers, metalized inorganic fibers, metalized synthetic fibers, glass fibers, graphite fibers, carbon fibers, ceramic fibers, basalt fibers, inorganic fibers, and aramid fibers. 19. A method of fabricating a porous, natural fiber-reinforced thermoplastic sheet, said method comprising: adding natural fibers having an average length of about 5 mm to about 50 mm, and thermoplastic resin powder particles to an agitated aqueous foam to form a dispersed mixture; laying the dispersed mixture of natural fibers and thermoplastic resin particles down onto a wire mesh; evacuating the water to form a web; heating the web above the glass transition temperature of the thermoplastic resin; and pressing the web to a predetermined thickness to form a porous thermoplastic composite sheet having a void content of about 1 percent to about 95 percent. 20. A method in accordance with claim 19 wherein the natural fibers comprise at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers. 21. A method in accordance with claim 19 wherein the thermoplastic resin comprises at least one of polyolefins, polystyrene, acrylonitrylstyrene, butadiene, polyesters, polybutyleneterachlorate, polyvinyl chloride, polyphenylene ether, polycarbonates, polyestercarbonates, acrylonitrile-butylacrylate-styrene polymers, amorphous nylon, and mixtures thereof. 22. A method in accordance with claim 19 wherein the porous thermoplastic composite sheet comprises from about 20 to about 80 percent by weight of the natural fibers and from about 20 to about 80 percent by weight of the thermoplastic resin. 23. A method in accordance with claim 19 wherein the porous thermoplastic composite sheet comprises from about 35 to about 55 percent by weight of the natural fibers and from about 45 to about 65 percent by weight of the thermoplastic resin. 24. A method in accordance with claim 19 further comprising adhering a skin to at least a portion of a surface of the porous thermoplastic composite sheet. 25. A method in accordance with claim 24 wherein the skin comprises at least one of a thermoplastic film, an elastomeric film, a metal foil, a thermosetting coating, an inorganic coating, a fiber based scrim, a non-woven fabric, and a woven fabric. 26. A method in accordance with claim 19 further comprises adding at least one of metal fibers, metalized inorganic fibers, metalized synthetic fibers, glass fibers, graphite fibers, carbon fibers, ceramic fibers, and aramid fibers to the agitated aqueous foam.
BACKGROUND OF THE INVENTION This invention relates generally to porous fiber reinforced thermoplastic polymer sheets, and more particularly to porous fiber reinforced thermoplastic polymer sheets that include natural fibers. Porous fiber reinforced thermoplastic sheets have been described in U.S. Pat. Nos. 4,978,489 and 4,670,331 and are used in numerous and varied applications in the product manufacturing industry because of the ease of molding the fiber reinforced thermoplastic sheets into articles. Known techniques, for example, thermo-stamping, compression molding, and thermoforming have been used to successfully form articles from fiber reinforced thermoplastic sheets. Porous fiber reinforced thermoplastic sheets are sometimes formed into decorative interior panels for use in the interior of automobiles, mass transit vehicles, and buildings including commercial buildings and private buildings. Incineration of these decorative panels upon the end of their useful life is made impractical because of the presence of glass fibrous reinforcements. BRIEF DESCRIPTION OF THE INVENTION In one aspect, a composite sheet material is provided. The composite sheet material includes a permeable core that includes discontinuous natural fibers bonded together with a thermoplastic resin. The permeable core has a density from about 0.1 gm/cc to about 1.8 gm/cc, and includes a surface region. In another aspect, a composite sheet material is provided that includes a porous core. The porous core includes at least one thermoplastic material and from about 20 weight percent to about 80 weight percent of natural fibers based on a total weight of the porous core. The natural fibers include at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers. In another aspect, a method of fabricating a porous, natural fiber-reinforced thermoplastic sheet is provided. The method includes adding natural fibers having an average length of about 5 mm to about 50 mm, and thermoplastic resin powder particles to an agitated aqueous foam to form a dispersed mixture, laying the dispersed mixture of natural fibers and thermoplastic resin particles down onto a wire mesh, evacuating the water to form a web, heating the web above the glass transition temperature of the thermoplastic resin, and pressing the web to a predetermined thickness to form a porous thermoplastic composite sheet having a void content of about 1 percent to about 95 percent of the volume of the composite sheet. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is sectional illustration of a composite plastic sheet in accordance with an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION A porous composite thermoplastic sheet containing natural fibers as reinforcement is described below in detail. Natural fiber is selected from variants that offer good dispersion and drainage characteristics in an aqueous foam. Natural fiber reinforcement provides environmental advantages over composite sheets having, for example, glass fiber reinforcement, such as, clean incineration at the end of useful life, and recycle possibilities. Natural fiber reinforcement also provides weight reduction in comparison to glass fibers. Referring to the drawing, FIG. 1 is a cross sectional schematic illustration of an exemplary composite thermoplastic sheet 10 that includes a porous core 12 having a first surface 14 and a second surface 16. A decorative skin 18 is bonded to first surface 14. In alternate embodiments, skins and/or barrier layers are bonded to second surface 16. Core 12 is formed from a web made up of open cell structures formed by random crossing over of reinforcing natural fibers held together, at least in part, by one or more thermoplastic resins, where the void content of porous core 12 ranges in general between about 1% and about 95% and in particular between about 30% and about 80% of the total volume of core 12. In another embodiment, porous core 12 is made up of open cell structures formed by random crossing over of reinforcing fibers held together, at least in part, by one or more thermoplastic resins, where about 40% to about 100% of the cell structure are open and allow the flow of air and gases through. Core 12 has a density in one embodiment of about 0.1 gm/cc to about 1.8 gm/cc and in another embodiment about 0.3 gm/cc to about 1.0 gm/cc. Core 12 is formed using known manufacturing process, for example, a wet laid process, an air laid process, a dry blend process, a carding and needle process, and other known process that are employed for making non-woven products. Combinations of such manufacturing processes are also useful. Core 12 includes about 20% to about 80% by weight of natural fibers having an average length of between about 5 mm and about 50 mm, and about 20% to about 80% by weight of a wholly or substantially unconsolidated fibrous or particulate thermoplastic materials, where the weight percentages are based on the total weight of core 12 In another embodiment, core 12 includes about 30% to about 55% by weight of natural fibers. In another embodiment, core 12 includes natural fibers having an average length of between about 5 mm and about 25 mm. Suitable natural fibers include, but are not limited to kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, coir fibers, and mixtures thereof. In the exemplary embodiment, natural fibers having an average length of about 5 mm to about 50 mm is added with thermoplastic powder particles, for example polypropylene powder, to an agitated aqueous foam which can contain a surfactant. The components are agitated for a sufficient time to form a dispersed mixture of the natural fibers and thermoplastic powder in the aqueous foam. The dispersed mixture is then laid down on any suitable support structure, for example, a wire mesh and then the water is evacuated through the wire mesh forming a web. The web is dried and heated above the softening temperature of the thermoplastic powder. The web is then cooled and pressed to a predetermined thickness to produce a composite sheet having a void content of between about 1 percent to about 95 percent. In an alternate embodiment, the aqueous foam also includes a binder material. The web is heated above the softening temperature of the thermoplastic resins on core 12 to substantially soften the plastic materials and is passed through one or more consolidation devices, for example calendaring rolls, double belt laminators, indexing presses, multiple daylight presses, autoclaves, and other such devices used for lamination and consolidation of sheets and fabrics so that the plastic material can flow and wet out the fibers. The gap between the consolidating elements in the consolidation devices are set to a dimension less than that of the unconsolidated web and greater than that of the web if it were to be fully consolidated, thus allowing the web to expand and remain substantially permeable after passing through the rollers. In one embodiment, the gap is set to a dimension about 5% to about 10% greater than that of the web if it were to be fully consolidated. A fully consolidated web means a web that is fully compressed and substantially void free. A fully consolidated web would have less than 5% void content and have negligible open cell structure. In another embodiment, core 12 also includes up to about 10 percent of inorganic fibers for added stiffness and or improved lofting. The inorganic fibers can include, for example, metal fibers, metalized inorganic fibers, metalized synthetic fibers, glass fibers, graphite fibers, carbon fibers, ceramic fibers, mineral fibers, basalt fibers, inorganic fibers, aramid fibers, and mixtures thereof. Particulate plastic materials include short plastics fibers which can be included to enhance the cohesion of the web structure during manufacture. Bonding is affected by utilizing the thermal characteristics of the plastic materials within the web structure. The web structure is heated sufficiently to cause the thermoplastic component to fuse at its surfaces to adjacent particles and fibers. In one embodiment, individual reinforcing fibers should not on the average be shorter than about 5 millimeters, because shorter fibers do not generally provide adequate reinforcement in the ultimate molded article. Also, fibers should not on average be longer than about 50 millimeters since such fibers are difficult to handle in the manufacturing process. In one embodiment, in order to confer structural strength the natural fibers have an average diameter between about 7 and about 22 microns. Fibers of diameter less than about 7 microns can easily become airborne and can cause environmental health and safety issues. Fibers of diameter greater than about 22 microns are difficult to handle in manufacturing processes and do not efficiently reinforce the plastics matrix after molding. In one embodiment, the thermoplastics material is, at least in part, in a particulate form. Suitable thermoplastics include, but are not limited to, polyolefins, including polymethylene, polyethylene, and polypropylene, polystyrene, acrylonitrylstyrene, butadiene, polyesters, including polyethyleneterephthalate, polybutyleneterephthalate, and polypropyleneterephthalate, polybutyleneterachlorate, and polyvinyl chloride, both plasticised and unplasticised, acrylics, including polymethyl methacrylate, and blends of these materials with each other or other polymeric materials. Other suitable thermoplastics include, but are not limited to, polyarylene ethers, acrylonitrile-butylacrylate-styrene polymers, amorphous nylon, as well as alloys and blends of these materials with each other or other polymeric materials. It is anticipated that any thermoplastics resin can be used which is not chemically attacked by water and which can be sufficiently softened by heat to permit fusing and/or molding without being chemically or thermally decomposed. The thermoplastic particles need not be excessively fine, but particles coarser than about 1.5 millimeters are unsatisfactory in that they do not flow sufficiently during the molding process to produce a homogenous structure. The use of larger particles can result in a reduction in the flexural modulus of the material when consolidated. The porous composite thermoplastic sheets containing natural fibers as reinforcement described above can be used in, but not limited to, building infrastructure, automotive headliners, door modules, side wall panels, ceiling panels, cargo liners, office partitions, and other such applications that are currently made with polyurethane foam, polyester fiber filled multi-layered composites, and thermoplastic sheets. The porous composite thermoplastic sheets containing natural fibers as reinforcement can be molded into various articles using methods known in the art, for example, pressure forming, thermal forming, thermal stamping, vacuum forming, compression forming, and autoclaving. Natural fiber reinforcement provides environmental advantages over composite sheets having, for example, glass fiber reinforcement, such as, clean incineration at the end of useful life, and recycle possibilities. Natural fiber reinforcement also provides weight reduction in comparison to glass fibers. While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>This invention relates generally to porous fiber reinforced thermoplastic polymer sheets, and more particularly to porous fiber reinforced thermoplastic polymer sheets that include natural fibers. Porous fiber reinforced thermoplastic sheets have been described in U.S. Pat. Nos. 4,978,489 and 4,670,331 and are used in numerous and varied applications in the product manufacturing industry because of the ease of molding the fiber reinforced thermoplastic sheets into articles. Known techniques, for example, thermo-stamping, compression molding, and thermoforming have been used to successfully form articles from fiber reinforced thermoplastic sheets. Porous fiber reinforced thermoplastic sheets are sometimes formed into decorative interior panels for use in the interior of automobiles, mass transit vehicles, and buildings including commercial buildings and private buildings. Incineration of these decorative panels upon the end of their useful life is made impractical because of the presence of glass fibrous reinforcements.
<SOH> BRIEF DESCRIPTION OF THE INVENTION <EOH>In one aspect, a composite sheet material is provided. The composite sheet material includes a permeable core that includes discontinuous natural fibers bonded together with a thermoplastic resin. The permeable core has a density from about 0.1 gm/cc to about 1.8 gm/cc, and includes a surface region. In another aspect, a composite sheet material is provided that includes a porous core. The porous core includes at least one thermoplastic material and from about 20 weight percent to about 80 weight percent of natural fibers based on a total weight of the porous core. The natural fibers include at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulosic fibers, sisal fibers, and coir fibers. In another aspect, a method of fabricating a porous, natural fiber-reinforced thermoplastic sheet is provided. The method includes adding natural fibers having an average length of about 5 mm to about 50 mm, and thermoplastic resin powder particles to an agitated aqueous foam to form a dispersed mixture, laying the dispersed mixture of natural fibers and thermoplastic resin particles down onto a wire mesh, evacuating the water to form a web, heating the web above the glass transition temperature of the thermoplastic resin, and pressing the web to a predetermined thickness to form a porous thermoplastic composite sheet having a void content of about 1 percent to about 95 percent of the volume of the composite sheet.
20041108
20081007
20060511
59036.0
D04H1300
1
EDWARDS, NEWTON O
COMPOSITE THERMOPLASTIC SHEETS INCLUDING NATURAL FIBERS
UNDISCOUNTED
0
ACCEPTED
D04H
2,004
10,983,557
ACCEPTED
Process for tracking vehicles
The invention is process for tracking a moving targeted vehicle from a remote sensor platform comprising the steps of 1) tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous, 2) tracking the target after it has left its ambiguous state and periodically recording its radar signature; and 3) comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signature taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous.
1. A process for tracking a moving targeted vehicle from a remote sensor platform comprising the steps of: tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous and; tracking the target after it has left its ambiguous state and periodically recording its radar signature; and comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signature taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous. 2. The process as set forth in claim 1 wherein: the step of tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous includes step of recording its aspect to the sensor platform; and comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signatures taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous includes the step comparing recorded signatures only at similar aspects to the platform. 3. The process as set forth in claim 1, wherein there is at least one other vehicle moving in proximity to the targeted vehicle, the process including the additional steps of: tracking and periodically recording its radar signature of the at least one other vehicle until its identity becomes ambiguous with the targeted vehicle; tracking the at least one other vehicle after it has left its ambiguous state and periodically recording its radar signature and comparing the recorded radar signatures prior to the at least one other vehicle becoming ambiguous to the recorded radar signature taken after the at least one other vehicle has left its ambiguous state and determining that the at least one other vehicle now tracked is the same as the at least one other vehicle being tracked prior to becoming ambiguous. 4. A process for tracking a moving targeted vehicle and at least one other moving vehicle from a remote sensor platform comprising the steps of: tracking the targeted vehicle and at least one other targeted vehicle until their identities becomes ambiguous with each other and periodically recording their radar signatures; tracking the target vehicle and at least one other vehicle after they have left their ambiguous states and periodically recording their radar signatures; determining the identity of the targeted vehicle and at least one other vehicle after they have left their ambiguous states by comparing the recorded radar signatures of the targeted vehicle and at least one other targeted vehicle prior to their becoming ambiguous with each other to the recorded radar signatures of the targeted vehicle and at least one other vehicle after they have left their ambiguous states in order to find a match. 5. The process as set forth in claim 4 including the steps of: recording the aspect of the targeted vehicle and the at least one other vehicle when recording all radar signatures; and comparing the recorded radar signatures only when the aspects of the vehicles are similar. 6. A process for tracking a moving targeted vehicle by radar from a from a remote sensor platform comprising the steps of: determining if the targeted vehicle is likely to become ambiguous as to its identification by the radar; if the targeted vehicle is likely to become ambiguous, tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous and; tracking the target after it has left its ambiguous state and periodically recording its radar signature; and comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signature taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous. 7. The process as set forth in claim 5 wherein: the step of tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous includes step of recording its aspect to the sensor platform; and comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signatures taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous includes the step comparing recorded signatures only at similar aspects to the platform. 8. The process as set forth in claim 5, wherein there is at least one other vehicle moving in proximity to the targeted vehicle, the process including the additional steps of: tracking and periodically recording its radar signature of the at least one other vehicle until its identity becomes ambiguous with the targeted vehicle; tracking the at least one other vehicle after it has left its ambiguous state and periodically recording its radar signature and comparing the recorded radar signatures prior to the at least one other vehicle becoming ambiguous to the recorded radar signature taken after the at least one other vehicle has left its ambiguous state and determining that the at least one other vehicle now tracked is the same as the at least one other vehicle being tracked prior to becoming ambiguous. 9. A process for tracking a moving targeted vehicle and at least one other moving vehicle by radar from a remote sensor platform comprising the steps of: determining if the targeted vehicle is likely to become ambiguous as to its identification by the radar; if the targeted vehicle is likely to become ambiguous with the at least one other targeted vehicle, tracking the targeted vehicle and at least one other targeted vehicle periodically recording their radar signatures until their identities becomes ambiguous with each other and; tracking the target vehicle and at least one other vehicle after they have left their ambiguous states and periodically recording their radar signatures; determining the identity of the targeted vehicle and at least one other vehicle after they have left their ambiguous states by comparing the recorded radar signatures of the targeted vehicle and at least one other targeted vehicle prior to their becoming ambiguous with each other to the recorded radar signatures of the targeted vehicle and at least one other vehicle after they have left their ambiguous states in order to find a match. 10. The process as set forth in claim 4 including the steps of: recording the aspect of the targeted vehicle and the at least one other vehicle when recording all radar signatures; and comparing the recorded radar signatures only when the aspects of the vehicles are similar.
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to the field of sensor resources management and tracking fusion and, in particular, to the tracking of vehicles who's identity becomes ambiguous. 2. Description of Related Art Tracking moving ground targets by radar from an aircraft in a battlefield situation is a difficult process. First of all, there may be a large number of moving vehicles in the vicinity of the targets of interest. In addition, the terrain and foliage can intermittently block surveillance. Thus sensor management is critical. In most previous tracking instances, the tracker was data driven. Trackers were at the mercy of the data they ingested. The only way to improve performance was to fine tune prediction models, sensor models, and association algorithms. Such fine-tuning led to improved performance, but only marginally. Potentially, trackers could realize much more significant improvements if they could manage their input data stream. Thus, it is a primary object of the invention to provide a process for improving the ability to track targets using sensor data. It is another primary object of the invention to provide a process for eliminating ambiguities when tracking vehicles. It is a further object of the invention to provide a process for eliminating ambiguities between targeted vehicles and other vehicles that come within close contact with the targeted vehicle. SUMMARY OF THE INVENTION Tracking vehicles on the ground by radar from an aircraft can be difficult. First of all, there may be a multiple number of vehicles in the immediate area, with several nominated for tracking. In addition, the vehicles may cross paths with other nominated or non-nominated vehicles, or become so close to each other that their identity for tracking purposes may be come ambiguous. Thus maximizing the performance of the radar systems becomes paramount. The radar systems, which are steered array type, can typically operate in three modes: 1. Moving target Indicator (MTI) mode. In this mode, the radar system can provide good kinematic tracking data. 2. High range resolution (HRR) mode. In this mode, the radar system is capable of providing target profiles. 3. High update rate (HUR) mode. In this mode, target is tracked at very high rate, such that the position is accurately determined. Tracking performance is enhanced if the radar is operated in the mode best suited to type of information required. An existing kinematic tracker is used to estimate the position of all the vehicles and their direction of travel and velocity. The subject process accepts the data from the kinematic tracker and maps them to fuzzy set conditions. Then, using a multitude of defined membership functions (MSFs) and fuzzy logic gates generates sensor mode control rules. It does this for every track and each sensor. The rule with the best score becomes a sensor cue. In co-pending U.S. patent application Ser. No. 10/976,150 Process for Sensor Resource Management by N. Collins, et al. filed Sep. 28, 2004, a process is disclosed for tracking at least a first targeted moving vehicle from at least one second non-targeted vehicle by means of a radar system within an aircraft, the radar having moving target indicator, high range resolution and high update rate modes of operation, the process comprising the steps: 1. Tracking the kinematic quality of the vehicles by calculating position, heading, and speed uncertainty of the vehicles and providing a first set of scores therefore; 2. Collecting data needed for future required disambiguations by calculating the usefulness and neediness of identification measurements of all tracked vehicles and providing a second set of scores therefore; 3. Collecting required data needed for immediate disambiguation by calculating the usefulness and neediness of identification measurements of all ambiguous tracked vehicles and providing a third set of scores therefore. 4. Selecting the highest over all score of from said first, second and third scores; and Cueing the radar to track the vehicle with the highest over all score to operate in the high update rate mode or, high range resolution mode, or moving target indictor mode depending upon which score is the highest score. The problem of vehicles crossing one another, or coming into close contact is what creates an ambiguity. Thus the subject invention makes use of a feature aided track stitcher (FATS). This system continuously monitors nominated vehicles and records their radar signature as a function of its angular relationship to the aircraft and stores this information in a database. Thus should two vehicles come so close together that an ambiguity is created and then separate, the FATS is used to compare the radar signature of the vehicles after separation with those in the database. If the nominated vehicle assumes an angular relationship to the vehicle that is similar to one in the database for that nominated vehicle, then the ambiguity may be removed. If there are two aircraft monitoring the area, then the second aircraft will take the second highest score with the limitation that the radar operates in a different mode to eliminate interference between the radar systems. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages thereof, will be better understood from the following description in connection with the accompanying drawings in which the presently preferred embodiment of the invention is illustrated by way of example. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified view of terrain being monitored by two aircraft. FIG. 2 is a long-term track maintenance architecture map for data fusion design. FIG. 3 is a depiction of the types of positional, direction and velocity data provided by a typical kinematic tracker. FIG. 4 is a chart of the Sensor mode options versus actions to be monitored and track status. FIGS. 5A and 5B are a simplified process flow chart for calculation scores for radar mode selection. FIG. 6 is a flow diagram for rule number one. FIG. 7 is a flow diagram for rule numbers two. FIG. 8 is a graph illustrating a portion of the formulas for determining the score of the long time since last measurement function M18. FIG. 9 is a graph illustrating a portion of the formulas for determining the score of the heading uncertainty big membership function M20 FIG. 10A is a graph illustrating the measurement of the good multi-lateration angle membership function M31. FIG. 10B is a graph illustrating a portion of the formulas for determining the score of the good multi-lateration angle membership function M31. FIG. 11A is a diagram of the ellipse used in the position uncertainty membership function M19. FIG. 11B is a graph illustrating a portion of the formulas for determining the score of the position uncertainty function uncertainty membership function M19. FIG. 12 is a flow diagram for rule number three. FIG. 13 is a graph illustrating a portion of the formulas for the good track σr (sigma r) membership function M37. FIG. 14A is a top view of a vehicle with aspect angles indicated. FIG. 14B is a graph illustrating a portion of the formulas for the not bad side pose membership function M32. FIG. 15 a graph illustrating a portion of the formulas for the availability of helpful aspect M12. FIG. 16 is a flow diagram for rule number four M24. FIG. 17 is a graph of a portion of the formula for the derivation of the closeness to nominated track membership function M1. FIG. 18 is a graph of a portion of the formula for the derivation of the same heading membership function M2. FIG. 19 is a graph of a portion of the formulas for the derivation of the similar speed membership function M3. FIG. 20A is a graph of a portion of the formula for the derivation of the time-to-go (TTG) to a common intersection membership function M4. FIG. 20B presents a flow diagram for determining the intersection scenario M7. FIG. 21 is a graph of a portion of the formulas for the derivation of the off road scenario membership function M36. FIG. 22 is a flow diagram for rule numbers five M25. FIG. 23 is a flow diagram for rule numbers six M26. FIG. 24 is a graph of a portion of the formulas for the derivation of the holes in the “on the fly” database M11 FIG. 25 is a graph of a portion of the formula for the derivation of the uniqueness of the available aspect membership function M10. FIG. 26 is a flow diagram formula number seven M27. FIG. 27 is a flow diagram for rule numbers eight M28. FIG. 28 is a flow diagram for rule numbers nine M29. FIG. 29 is a flow diagram for rule numbers ten M30. FIG. 30 is a depiction of the terrain screening scenario causing an ambiguity. FIG. 31 is a depiction of the road intersection scenario causing an ambiguity. FIG. 32 is a depiction of a first step in the elimination of an ambiguity in a road intersection scenario. FIG. 33 is a depiction of a second step in the elimination of an ambiguity in a road intersection scenario. FIG. 34 is a depiction of a third step in the elimination of an ambiguity in a road intersection scenario. FIG. 35 is a depiction of a fourth step in the elimination of an ambiguity in a road intersection scenario. FIG. 36 is a depiction of a fifth step in the elimination of an ambiguity in a road intersection scenario. FIG. 37 is first test case of the intersection scenario. FIG. 38 is second test case of the intersection scenario. FIG. 39 is third test case of the intersection scenario. FIG. 40 is fourth test case of the intersection scenario. FIG. 41 is a table summarizing the results of the test cases illustrated in FIGS. 37, 38, 39, and 40. FIG. 42 is a disambiguate logic chart for the FATS. FIG. 43 is a Probability of feature match logic for the FATS. FIG. 44 is a top-level control chart of the feature added track stitcher FATS. FIG. 45 is a FATS system Functional architecture diagram. DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, which is a simplified view of terrain wherein several vehicles are traveling and are being monitored by aircraft 10 and 12. Because the vehicle position as well as its velocity and direction of travel are estimates, they are generally defined as “tracks”, thus vehicle and track are used interchangeably hereinafter. The terrain includes hills 16, with several structures 18 nearby. Vehicles 20A, and 20B are traveling on road 21 in the direction indicated by arrow 22 toward the hills 16. Vehicles 24A, and 24B are traveling on road 25, which intersects road 21 at point 26, while vehicle 27 and 28 are traveling toward each other on road 29 some distance away. The situation illustrated in FIG. 1 is for purposes of illustration, for any real situation in the battlefield will be far more complex. Furthermore, while two aircraft are shown, there may be only one or more than two aircraft involved in the tracking. In addition, while aircraft are used, the system could be ground based or on ships. Thus the use of aircraft is for purposes of illustration only. The long-term track maintenance architecture map for the sensor management system design is illustrated in FIG. 2. There are three stages: target tracking 30, situation assessment and priority calculation 32, and sensor resource management (SRM) 33. Target tracking 30 involves the use of a Kinematic Tracker program 34, which receives input from the sensor in the moving target Indicator (MTI) mode. Kinematic tracking programs are available from such Companies as Orincon Corporation, San Diego, Calif. and Northrop Grumman Corporation, Melbourne, Fla. Tracking a vehicle that is isolated from other vehicles is easy; however, when the vehicles are in close proximity and traveling at the same or nearly the same speed, it becomes difficult (see FIG. 1). Thus the second level is the use of a Feature Aided Tracking Stitcher (FATS) system 36 to refine the data provided by the kinematic tracking program 34. The data from the FATS 36 is stored in an on-the-fly database 38. The output from the Kinematic tracker 34 is provided to the SRM 33, which is a process that provides the analysis of tracking information from radar systems and makes the decision as to which of three radar modes (herein after referred to as Sensor Modes) is necessary to ensure that the vehicle remains tracked. Note that the sensors by use of the Kinematic tracker 34 and FATS 36 can determine the radar cross-section (RCS), speed, direction of travel and distance to the vehicle as well as the distance between vehicles. FIG. 3 presents a summary of the data provided by the Kinematic tracking program 34. The three modes of the radar system are: 1. Moving target Indicator (MTI) mode. In this mode, the radar system can provide good kinematic tracking data. 2. High range resolution (HRR) mode. In this mode, the radar system is capable of providing target profiles. 3. High update rate (HUR) mode. In this mode, the target is tracked at very high rate, such that the position is accurately determined. Tracking performance is enhanced if the radar is operated in the mode best suited to the type of information required. FIG. 4 is chart of Sensor modes versus to be monitored and track status. The SRM uses a two-stage process to aggregate hundreds of variables and constraints into two sensor cue decisions. First, it accepts input data from the sensors and maps this to fuzzy set conditions. The system uses thirty-seven defined membership functions (MSF). A membership function is a fuzzy set concept for assigning a quantitative score to a characteristic. The score is determined by the degree to which that characteristic is met. The membership functions are as follows: MSF1 Closeness To Nominated Track (M1 Closeness)—How far away is a track that may be confused with the nominated track. MSF2 Same Heading As Nominated Track (M2 Same Heading)—If the confuser track is heading in the same direction as the nominated track. MSF3 Similar Speed As Nominated Track (M3 Similar Speed)—How close is the speed of a confuser track to the nominated track. MSF4 Small Time-To-Go To Common Intersection Of Nominated Track (M4 Small TTG To Common Intersection)—Is the time that a confuser track is from an intersection to which a nominated track is heading small. MSF5 Similar Time-To-Go to Common Intersection As Nominated Track (M5 Similar TTG to Common Intersection)—Confuser Track has about the same time-to-go to the same intersection as the nominated track is heading towards. MSF6 Passing Scenario Confuser Track to Nominated Track (M6 Passing Scenario)—It is the minimum of MSF 1, 2, and 3. MSF7 Common Intersection Factor To Nominated Track (M7 Intersection Scenario)—It is the maximum of MSF 4 and 5. MSF8 Confuser Factor (M8 Confuser Status)—It is the maximum of MSF 6 and 7. MSF9 Nominated Status (M9 Nomination Status)—The track is nominated by the operator or is ambiguous with a nominated track. MSF10 Uniqueness Of Available Aspect of Vehicle to fill hole (M10 Unique Aspect)—Has the FATS system provided a new aspect of the vehicle at an angle not already in the data base. MSF11 Holes In “On-The-Fly” database (M11 Holes In db)—Does this track have big gaps of missing aspect angle coverage in the “on-the-fly” database. MSF12 Helpfulness of Aspect Angle to Disambiguate (M12 Helpful Aspect)—Will a profile at this predicted aspect angle help to disambiguate the track. Are there similar aspects already in the “on-the-fly” database. MSF13 Poor Kinematic Quality (M13 Poor Kin. Qual.)—Minimum of MSF 18, 19, and 20 MSF14 Track Not Screened (M14)—Is track screened by terrain or trees, etc. MSF15 Track is not kinematically ambiguous (M15 Not Kin Ambig.)—Is track not close to other tracks. MSF16 Track Not in Limbo (M16 Not Limbo)—Is track identified by FATS as ambiguous (0 or 1). MSF17 Track in Limbo (M17 Limbo or ambiguous) Track marked by FATS as ambiguous (0 or 1). MSF18 Time Since Last Measurement (M18 Long Time Since Last Measurement) How long has track gone without an updating measurement. MSF19 Position Uncertainty Big (M19 Position Uncertainty)—Does the track's covariance matrix reflect that the track's position estimate is of a low quality. MSF 20 Heading Uncertainty Big (M20 Heading Uncertainty)—Does the track's covariance matrix reflect that the track's heading estimate is of a low quality. MSF21 is the score for Rule. MSF22 is the score for Rule 2. MSF23 is the score for Rule 3. MSF24 is the score for Rule 4. MSF25 is the score for Rule 5. MSF26 is the score for Rule 6. MSF27 is the score for Rule 7. MSF28 is the score for Rule 8. MSF29 is the score for Rule 9. MSF30 is the score for Rule 10. MSF31 Helpful Multi-Lateral Angle (M31 Good Multi-Lat Angle)—Is the current line-of-sight angle from the sensor to the track a good angle to reduce position error covariance? MSF32 Not A Bad Pose or Low Minimum Detectable Velocity (M32 Not Bad Pose)—Is the current aspect angle to the track not a good pose for use of Profiles (Side poses do not work as well) MSF33 In Field Of View (M33FOV)—Is track in field of view of sensor. MSF34 Small Distance Of Closest Separation (M34 Small Distance Of Closest Separation)—Will this confuser track be close to the nominated track at the predicted closest point of spearation. MSF35 Small Time-To-Go To Closest Separation (M35 Small TTG to closest separation)—Is the time-to-go until the predicted point of closest separation small? MSF36 Off-Road Scenario (M36 Off-Road Scenario)—Minimum of M34 and M35. MSF37 Good Sigma Range Rate Estimate (M37 Good σr)—Does the current track's covariance matrix reflect that the track has a good quality range rate estimate?. MSF38 Clearness Of Track M38 Clearness)—How far away is track from other tracks. Fuzzy logic gates are used to generate ten sensor mode control rules, shown in FIGS. 5A and 5B, which are multiplied by weighing factors (to be subsequently discussed) to determine a rule score. It does this for every track and each sensor. The rule with the best score becomes a sensor cue. The second sensor cue, if there is a second sensor, is the next best score. In this way, the fuzzy network decides which of three modes to request and where to point each sensor. Again note that while two sensors will be discussed, a single sensor or more than two could be used. Referring to FIGS. 3-5 and additionally to FIG. 6, rule number 1 (indicated by numeral 40), is illustrated in detail. Rule number 1 is the only hard or non-fuzzy logic rule. Rule 1 provides a HUR Burst data when a key track (nominated) is near an intersection or near other vehicles. This is to maintain track continuity when a nominated track is predicted to be taking a maneuver or predicted to be close to other tracks (confusers). 1. It is first necessary to determine the nomination status of the track (M9). Nomination status is assigned a one if it is a nominated track OR track is ambiguous with a nominated track (determined by either the kinematic tracker 34 or “FATS” system 36 to be subsequently discussed) AND is kinematically ambiguous (M1) AND 2. Track is in field of view (M32) AND not terrain screened (M14) AND not near an intersection (M4). The resulting score is multiplied by weighing factor W1 to provide the rule number one score. The track is nominated (M9) by the operator as one of importance and Kinematically ambiguous (M17) status is determined by the kinematic tracker 34 or FATS 36, to be subsequently discussed. The calculation of the clearness M38 score is as follows: Given: From the kinematic Tracker Xt1=Track one X position in meters (eastward) Yt1=Track one Y position in meters (northward) Yt1=Track two X position in meters (eastward) Xt2=Track two Y position in meters (northward) From the aircrafts navigation system XP=Sensor aircraft X position in meters (eastward) YP=Sensor aircraft Y position in meters (northward) Then: D=Distance Track 1 to Track 2 D=√{square root over (((Xt1−Xt2)2+(Yt1−Yt2)2))} R1=Range of sensor aircraft to Track 1 R1=√{square root over (((XP−Xt1)2+(YP−Yt1)2))} R2=Range of sensor aircraft to track 2 R2=√{square root over (((XP−Xt2)2+(YP−Yt2)2))} ΔR=Approximate down range difference between tracks ΔR=R1−R2 ΔXR=Approximate cross range difference between tracks ΔXR=√{square root over (D2−ΔR2)} If ΔR>D1 or ΔXR>D2, Score=1 If not, Score = ( Δ ⁢ ⁢ R - D 1 ) * ( Δ ⁢ ⁢ XR - D 2 ) D 1 * D 2 Where D1,=Minimum distance threshold, D2=maximum distance threshold. The clearness score typically must be greater than 0.2 for the sensors presently being used; they may vary from sensor to sensor. As to the Time-To-go to the nearest intersection (M4), the vehicle speed and position are known, as well as the distance to the nearest intersection. Thus the time can be easily computed. For the sensors presently used, the time must be less than five seconds Still referring to FIGS. 3-5 and additionally to FIG. 7, the second rule, designated by numeral 42. provides standard MTI data for nominated track who currently have marginal kinematic estimation accuracy for estimation improvement and includes the following steps: 1. If nominated track (M9) OR track ambiguous with nominated track (M 9) AND poor kinematic quality (M13), which comprises time since last measurement is long (M18), or position uncertainty (M19), AND helpful multi-lateral angle (M31) OR heading uncertain (M20). AND 2. Track is not terrain screened AND track is in FOV (M33) AND not in discrete area (M 38). The result of Rule 2 is multiplied by weighting factor W2, which provides Rule 2 score (M22). The Membership function M13 poor kinematic quality is a function of M19 position uncertainty, M 31 Good Multi-lateral angle, M18 Time since last measurement and M20 heading uncertainty. Following are the calculations for M18 Long time since last measurement M18. Given ΔT=average sensor revisit rate. T1≅2ΔT T2≅10ΔT TLM=Time since last measurement. If TLM≦T1 Then Score=0 If TLM≧T2 Then Score=1 If T1<TLM<T2 Then: Score = ( TLM - T 1 T 2 - T 1 ) 2 See FIG. 8 for graph 44. The heading uncertainty function (M20) is calculated using the following formula. The heading σh is first calculated using location values from the kinematic tracker. σ H ≅ ( Y * P XX - 2 * X * Y * P XX + X * P YY X 2 + Y 2 ) * 180 π Then if: σH<A1, Then Score=0 σH>A2, Then Score=1 A1<σH>A2, Then: Score = σ H - A 1 A 2 - A 1 , See graph 48 in FIG. 9. The value of A1 and A2 of course will depend upon the sensor system. Note that uncertainty varies as the square of the time elapsed from the last measurement because of the possibility of acceleration of he vehicle. The formula for determining the good multi-lateral angle M31 is provided in FIG. 10B and is discussed below. The first calculations require the determination of the angular relationships between the aircraft 10 and track 50 indicated (FIG. 10A). The Xt, Xp, Yt, Pxy, Pyy and Pxx values are all obtained from the kinematic tracker system 34 (FIG. AZ = Tan - 1 ⁡ ( X T - X P Y T - Y P ) θ O = Tan - 1 ⁡ ( 2 ⁢ P XY P YY - P XX ) 2 DA =  AZ - θ O  Score = DA * ( A 1 - 1.0 ) 90 + 1.0 See graph 52 in FIG. 10B. Where A1=An initial setting depending upon system sensors. The Position uncertainty (M19) is determined by calculating the area of an ellipse 56, as illustrated in FIG. 11A, in which it is estimated that the vehicle being tracked resides. Major ⁢ ⁢ ⁢ axis = P XY + P XX ⁢ + P YY 2 + P XX 2 + 4 ⁢ P XY 2 - 2 ⁢ P xx * P YY 2 Minor ⁢ ⁢ ⁢ axis = P YY + P XX ⁢ - P YY 2 + P XX 2 + 4 ⁢ P XY 2 - 2 ⁢ P XX * P YY 2 Pxx, Pyy, Pxx2, Pxy2, Pyy2 are measurements provided by the kinematic tracker system 34 (FIG. 2). Area=π*major axis*minor axis If area<A1, Then score=0 If area>A2, Then score=1 In between A1 and A2, then: Score = Area - A 1 A 2 - A 1 , see graph 53 in FIG. 11B The value of A1 and A2 are determined by the capability of the sensor system. Still referring to FIGS. 4-6, and additionally to FIG. 12, rule 3, and indicated by numeral 59, requests HRR on nominated tracks to get profiles to try to disambiguate tracks that are now in the open but in the past where ambiguous with other tracks. Rule 3 is follows: 1. If nominated track (M9) OR track ambiguous with nominated track is in limbo (M17) AND 2. A helpful aspect is available (M12) and not bad side pose (M32) and not in discrete area (M38) AND 3. Track is not kinematically ambiguous (M15) AND 4. Track has good sigma range rate (M37). The result is multiplied by Weighting factor W3 to provide Rule 3 score (M23). Referring to FIG. 13, The good track σR′, standard deviation of range rate (M37) is easily determined by the kinematic tracker program 34. First calculate relative north and east from aircraft: YT=North Position of Track. YP=North Position of Aircraft. T=East Position of Track. XP=East Position of Track. N=YT−YP E=XT−XP N′=YT′−YP′ E′=XT′−XP′ Then calculate horizontal range R: R=√{square root over (N2−E2)} Calculate H transformation: H11 = E * ( N ′ * E - N * E ′ ) R 3 H12 = N R H14 = N * ( N * E ′ - N ′ * E ) R 3 H15 = E R Where D=Target speed. Thus: σ R ′ = H11 2 * P YY + 2 * H11 * H12 * P YY ′ + 2 * H11 * H14 * P YX + 2 * H11 * H15 * P YX ′ + H12 * P YY ′ + 2 * H12 * H14 * P Y ′ ⁢ X + 2 * H12 * H15 * P Y ′ ⁢ X ′ + H14 2 * P XX + 2 * H14 * H15 * P XX ′ + H15 2 * P X ′ ⁢ X ′ Knowing σR′ If σR′<V1, Then Score=1 If σR′>V2, then Score=0 If V1<σR′<V2, Then: Score = V 1 - σ r ′ V 2 - V 1 + 1 and as illustrated in the graph 60 in FIG. 13. Where the value of V1 is the minimum valve and V2 is the maximum value in meters per second. Referring to FIGS. 14A and 14B, it can be seen that the not bad side pose (M32) is also easily calculated and depends on the viewing angle of he vehicle shown in FIG. 14A. If 80°<Aspect angle<100°, Score=0 If Aspect angle<80°, Then: Score = 1 - Aspect . Angle 80 If Aspect angle>100°, Then: Score = Aspect . Angle - 100 • 80 A graph 62 in FIG. 14B plots these relationships. The availability of a helpful Aspect function (M12) is also easily determined using the following equations: Given |Δ Heading|=Absolute value of difference in heading between two vehicles. If |Δ Heading|>A2, Then Score=0 If A1<|Δ Heading|<A2, Then: Score = A 1 -  Δ ⁢ ⁢ Heading  A 2 - A 1 + 1 , As illustrated in the graph 62 in FIG. 15. If |Δ Heading|<A1 Then score=1 In order to disambiguate using profile matching, the profiles matched must be at nearly the same aspect angle. The helpful aspect membership functions quantifies the fuzzy membership (0.0 to 1.0) of the “helpfulness” of a collected new profile based upon how far away it is from the existing profiles in the Track's ‘on-the-fly’ profile database. If the collection aspect angle is close to the closest stored profile, it will be completely helpful, (Score=1.0). If the aspect angle is different, say over over 15 degrees away from the nearest stored profile, it will be completely useless (score=zero). In between, the usefulness will vary. Referring to FIG. 16, rule 4, indicated by numeral 64, provides standard MTI data for tracks deemed to be potential confuser tracks with a nominated track, which currently have marginal kinematic estimation accuracy for estimation improvement. Rule 4 is as follows: 1. If a track is a confuser status (M8) to a (nominated track OR track is ambiguous with nominated track) AND 2. Has poor kinematic quality (M13) AND track is not terrain screened (M38) AND track is in field of view (M33) AND not in discrete area, The resulting score multiplied by W4 provides the rule 4 score M24. M8 confuser status is determined by: 1. If a track (is close to nominated track (M1) AND at the same heading (M2) AND at a similar Speed (M3)), which is the passing scenario (M6) OR 2. Has a small time-to-go to a common intersection with a nominated track (M4) AND a similar time-to-go to a common intersection (M5) OR 3. Has a small-predicted distance of closest separation to a nominated track M34) AND a small Time-to-Go to predicted time of closest separation M35. The closeness to nominated track membership function M1 is also easily determined. If no nominated track, Then Score=0 If D>D2, Then Score=0 If D<D1, Then Score=1 If D1<D<D2, Then: Score = D 1 - D D 2 - D 1 + 1 See graph 65 in FIG. 17. Where: D1 is the minimum distance threshold and D2 is the maximum distance threashold. The formulas for calculating the same heading membership M2 are as follows. If no nominated track, Then Score=0 If |A Heading|>A2, Then Score=0 If |Δ Heading|<A1, Then Score=1 If A1<|Δ Heading|<A2, Then: Score = A 1 -  Δ . Heading  A 2 - A 1 + 1 , See graph 65 in FIG. 18 Where A1 and A2 are minimum and maximum angles. The formulas for calculating the similar speed membership function M3 are as follows: If no nominated track, Then Score=0 If ΔSpeed>V2, Then Score=0 If ΔSpeed<V1, Then Score=1 If V1<ΔSpeed<V2, Then: V 1 - Δ . Speed V 2 - V 1 + 1 , See graph 69 in FIG. 19 Where V1 and V2 are minimum and maximum thresholds in speed. The formulas for the calculation of Off road scenario-Closest Separation M34 are as follows: Following is calculation for closest separation distance of the nominated track and a track of interest and the calculation of the Time-To-Go (TTG) to closest separation. Obtain required terms from track Xi=Track of interest X (East) Position Yi=Track of interest Y (North) Position VXi=Track of interest X (East) Speed VYi=Track of interest Y (East) Speed Xn=Track of interest X (East) Position Yn=Track of interest Y (North) Position VXn=Track of interest X (East) Speed Vyn=Track of interest Y (North) Speed Calculate intermediate variables a = X n - X i b = VX n - VX i c = VY n - VY i d = VY n - VY i TTG = a * b + c * d b 2 + d 2 If TTG is positive the vehicles are approaching other, calculations proceed. Calculate closest separation distance D. D=√{square root over ((a+b*TTG)2+(c+d*TTG)2)} With this information, the TTG Small function (M4) and TTG Similar (M5) function and M7 function can be determined. If no nominated track, Then Score=0 If no common intersection, Then Score=0 If TTG>T2, Then Score=0 If T1<TTG<T2, Then: Score = T 1 - TTG T 2 - T 1 + 1 , See graph 70, FIG. 20A If TTG<T1, Then Score=1 The T1 and T2, values are minimum and maximums. Note that given the above, a determination whether the track is considered a confuser track (M7) can be determined (See FIG. 20B) FIG. 22 illustrates rule 5 (M25), indicated by numeral 72, requests HRR on confuser tracks to get profiles to try to disambiguate tracks that are now in the open but in the past where ambiguous with other tracks. Rule 5 is as follows: 1. If a track is a confuser to a (nominated track OR track ambiguous with nominated track (M8) AND is in limbo (M17) AND 2. A helpful aspect (M12) is available AND not side pose (M32) AND 3. Track is not terrain screened (M14) AND track is in field of view (M33) AND not in discrete area (M38) AND 4. Track is not kinematically ambiguous AND 5. Track has good sigma range rate. The score multiplied by W5 provides the rule 5 score M25. FIG. 23 illustrates rule 6, and indicated by numeral 74, HRR on unambiguous nominated tracks to get profiles to fill-up the on-the-fly data base for fingerprinting of the important track for possible disambiguation, if required, at a later time. Rule 6 is as follows: 1. If nominated track (M9) OR track ambiguous with nominated track is not in limbo (M16) AND 2. Track has holes in “on the fly” data base (M11), 3. A unique/helpful aspect is available (M10) AND track not bad pose (M32) AND 4. Track is not terrain screened (M14) AND track is in field of view ((M33) AND not in discrete area (M38) AND 5. Track is not kinematically ambiguous (M15) AND 6. Track has good sigma range rate. The score multiplied by W6 provides the rule 6 score M26 Following is the calculation of Holes in on the fly database (M11): Score = 1 - Number.of.profiles.in.regular.database. 360 / Δ ⁢ ⁢ θ , See graph 75, FIG. 24, Where Δθ=Resolution of database. Following is the calculation of the uniqueness of available aspect M10. If Dθ<A1, Score=0 If Dθ>A2, Score=1 If A1<Dθ<A2. Then: Score = D ⁢ ⁢ θ - A 1 A 2 - A 1 , See graph 76, FIG. 25 Where A1 is minimum angle threshold and A2 is maximum angle threshold. FIG. 26 presents rule 7, indicated by numeral 78, requests HRR on unambiguous nominated tracks to get profiles to fill-up the on-the-fly data base for fingerprinting of the important track for possible disambiguation, if required, at a later time. Rule 7 is as follows: 1. If track is a confuser to (a nominated track OR track ambiguous with nominated track (M8) and is not in limbo. (M16) AND 2. Track has holes in “on the fly” data base (M11), 3. A unique/helpful aspect is available (M10) AND track not bad pose (M32) AND 4. Track is not terrain screened (M14) AND track is in field of view ((M33) AND not in discrete area (M38) AND 5. Track is not kinematically ambiguous (M15) AND 6. Track has good sigma range rate (M37). The score multiplied by W7 provides the rule 7 score M27. FIG. 27 presents rule 8, indicated by numeral 80, standard MTI data for background surveillance track who currently have marginal kinematic estimation accuracy for estimation improvement. Rule 8 is as folllows: 1. If track has poor kinematic quality (M13) and not nominated (M9) AND not terrain screened (M14) AND not in discrete area (M38) AND in field of view (M33). The score multiplied by W8 provides the rule 8 score M28. FIG. 28 presents rule 9 (M29), indicated by numeral 82, requests HRR on confuser tracks to get profiles to try to disambiguate background surveillance tracks that are now in the open but in the past where ambiguous with other tracks. Rule 9 is as follows: 1. If regular surveillance track is (not nominated or a confuser) in limbo, AND 2. A unique/helpful aspect is available (M12) and Not bad pose (M32), AND 3. Track is not terrain screened (M14) and track is in field of view (M33) and not in discrete area (M38), AND 4. Track is not kinematically ambiguous (M15), AND 5. Track has good sigma range rate (M37) The score multiplied by W9 provides the rule 0 score M29. FIG. 29 presents rule 10, indicated by numeral 84, requests HRR on unambiguous background surveillance tracks to get profiles to populate the on-the-fly data base for fingerprinting of the track for possible disambiguation at a later time. Rule 10 is as follows: 1. If a regular surveillance track (not nominated or a confuser) not in limbo (M16) 2. Has holes in “on the fly” data base (M11), AND 3. A unique/helpful aspect is available (M10) and not bad pose (M32), AND 4. Track is not terrain screened (M14) and track in field of view (M33) and not in discrete area (M38), AND 5. Track is not kinematically ambiguous (M15), AND 6. Track has good sigma range rate (M37). The score multiplied by W10 provides the rule 10 score M30. The weights W2 to W10 proved the system the ability to “tune” the process to place more or less emphasis on each individual rule's degree of influence, or weight, on the overall radar mode selection. Thus it can be seen that rules 1, 2, 4 and 8 are attempts to improve kinematic quality by calculating position, heading, and speed uncertainty of the tracked vehicles and providing a first set of scores therefore. Rules 6, 7 and 10 attempt to collect required data needed for future required disambiguations by calculating the usefulness and neediness of identification measurements of all tracked vehicles and providing a second set of scores therefore. Rules 3, 5 and 9 are attempts to collect required data needed for immediate disambiguation by calculating the usefulness and neediness of identification measurements of all ambiguous tracked vehicles and providing a third set of scores therefore. The highest score of all the rules determines which mode the radar operates in. With the above process, the effectiveness of the radar system is is greatly improved over traditional techniques. The subject of this invention is the FATS program, which helps resolve kinematically ambiguous tracks. Referring to FIG. 30, the first typical problem occurs when two vehicles 85 and 85B approach and disappear behind foliage or terrain such as a mountain 86, and then reemerges into view. The question is have the the two vehicles swapped their extrapolated tracks. Referring to FIG. 31, a more common problem is when the two vehicles, 85A and 85B, approach an intersection 87. At the intersection 87, the two vehicles are so close that it is impossible to distinguish between the two. If both vehicles turn, the problem again becomes identifying which vehicle is which. The FATS program reduces the possibility of the two vehicles remaining ambiguous by learning the radar signatures of the two vehicles at various angles to the aircraft prior to the point where they are so close that they become ambiguous. Thus referring to FIG. 32, when the two vehicles approach each other, the radar profiles or signatures are obtained and stored in the “on the fly” data base; in this case at time equals t3. Thus vehicle 1 is at 210 degrees and vehicle 2 is at 30 degrees. Referring to FIG. 33, at t5 the vehicles have become ambiguous. In FIG. 35, the vehicles have now separated, but the track segments are ambiguous. However, at t7 radar profiles are again recorded. Referring to FIG. 36, the vehicles have now turned again and at t11 profile matches can be made with profiles collected at t7 as shown in FIG. 35 and the vehicles identified. The profile matching is accomplished by the root mean square test, however other techniques can be used. FIG. 36, the FATS continues to record radar profiles. Referring to FIG. 37, is an actual test scenario (case 1) wherein 2 vehicles 89A and 89B approach each other on tracks 90A and 90B, respectfully. The FATS builds a database on both vehicles 89A and 89B as they approach the ambiguous area 92. Both vehicles 89A and 89B enter the ambiguous area 92 and travel on segments 93A and 93B and then turn on to segments 94A and 94B. While on segments 93A and 93B they are in limbo, because no profile exits for the vehicles in this position. However, a match is made when vehicle 98A travels over segment 94A. The match verified that there is no kinematic miss-association back at the intersection, no track tag change (the FATS system miss-identifies the vehicle tracks), there is a positive match, and all “on the fly” databases are converted to unambiguous. Referring to FIG. 38, is second actual test scenario (case 2) wherein 2 vehicles 96A and 86B approach each other on tracks 97A and 97B, respectfully. The FATS system builds a database on both vehicles 96A and 96B as they approach the ambiguous area 98. Both vehicles 96A and 96B enter the ambiguous area 98 and travel on segments 99A and 99B and then turn on to segments 100A and 100B. While on segments 100A and 100B they are in limbo, because no profile exits for the vehicles in this position. When vehicle 96A turns on segment 102A a no match is made because vehicle 96A is moving toward the sensor. However, vehicle 96B turns on to segment 102B, an attempted comparison of vehicle's 96B profile will fail. This of course will indicate that vehicle 96A is on segment 102A. Here there is no kinematic miss-association back at the intersection, no track tag change is needed (the FATS system did not mis-identify the vehicle tracks), there is a positive match, and all “on the fly” data bases are converted to unambiguous FIG. 39 is third actual test scenario (case 3) wherein 2 vehicles 106A and 106B approach each other on segments 107A and 107B, respectfully. The FATS system builds a database on both vehicles 106A and 106B as they approach the ambiguous area 108. Thereafter vehicle 106A turns on to segment 110A and then on to segment 112A. However, the FATS system has assumed that vehicle 106A has turned on to segment 110B and then on to segment 112B indicated by track 113. On the other hand, vehicle 106B travels down segment 110B and onto segment 112B. However, the FATS system has assumed that vehicle 106B is on track 114. When the FATS system compares the profile of vehicle 106B on segment 112B to the profile taken of vehicle 106A on segment 107A, it will determine that the tracks of vehicle 106A and 106B must be exchanged. Here there is a kinematic miss-association back at the intersection, and a track tag change is required (the FATS system miss-identifies the vehicle tracks), there is a negative profile match, and all “on the fly” data bases are converted. FIG. 40, is fourth actual test scenario (case 4) wherein 2 vehicles 116A and 116B approach each other on segments 117A and 117B, respectfully. The FATS system builds a database on both vehicles 116A and 116B as they approach the ambiguous area 118. Thereafter vehicle 116A turns on to segment 120A and then on to segment 122A. However, the FATS system has assumed that vehicle 116A has turned on to segment 120B and then on to segment 112B indicated by track 123. On the other hand, vehicle 116B travels down segment 120B and onto segment 122B. However, the FATS system has assumed that vehicle 116B is on track 124. When the FATS system compares the profile of vehicle 116B on segment 122A to the profile taken of vehicle 110A on segment 117A, it will determine that the tracks of vehicle 116A and 116B must exchanged. Here there was a kinematic miss-association back at the intersection, and therefor a track tag change is required (the FATS system miss-identifies the vehicle tracks), there is a positive profile match, and all “on-the-fly” databases are converted. FIG. 41 presents a chart summarizing the results of the four cases. The FIGS. 42, 43 and 44 present a summary of the FATS system logic. The Functional Architecture for FATS is shown in FIG. 45. Descriptions of the individually numbered elements are as follows: Step 130 New track “On the fly” Data Initiation—Updates the tracks in the FATS database with new measurements received. Step 132 Fats Measurement Up Dates-Declares tracks' ambiguous after coasting (with no updates) for a specified time period. Step 134 Timeout Ambiguous—Modifies the database for a track that has been dropped (removes associations with other tracks within the database). From Step 132: Step 136 Determines when tracks become ambiguous with each other in confusing kinematic situations Step 138 Ambiguous Correlation Test-Updates the “on-the-fly” database with a measurement profile if the track is unambiguously correlated to the measurement it is paired with. Step 140 Update “On the fly” Data Structures—The process of disambiguating tracks that have interacted with other confuser tracks. The process determines whether the current profile collected within the current measurement shows that it came from the same vehicle or a different one. Action is taken if a same or different declaration is found. Step 142 Disambiguates—Initializes FATS data for a newly established track. Step 144 Find Ambiguous Combinations—Finds potential combinations of ambiguous tracks for possible association. From Step 142: Step 146 Probability Of Feature Match—Determines the probability of a match using feature matching. From Step 156: Step 148 Retrieve Closest Feature—Retrieves the closest HRR profiles within the database that matches the aspect of the track Step 150 Compute Feature Match Score-Probability Of Feature Match-Computes the mean square error score for the profile extracted from the tracks' database and the profile within the current measurement Step 152 Range Extent Estimation Evidence Accumulation—Estimates the range extent of the signature within the HRR profile. This is used to validate whether the HRR profile matches an estimate of the targets length based on the tracks' pose. From Step 142 Step 154 Evidence Accumulation—Accumulates same/difference evidence for each track pairing combinations as HRR profile features are collected for that track. Step 156 Perform the Dempster—Shaeffer combine. This function uses the correlation probabilities returned when comparing profiles and updates the combined evidence state. The combined evidence state is then used to determine whether the vehicle is the same or different during the disambiguation process. Step 158 Dempster Retract—The Dempster retract un-does a previous combine if necessary. Step 160 Track Stitcher—“Stitches”, or pieces together tracks and determines whether an “id” swap is necessary between two tracks. Step 162 Combine “On the fly” Databases—Combines the profiles collected in the tracks' “limbo” database with the tracks' “on-the-fly” database. From Step 142 Step 164 Ambiguity Resolution—Resolves ambiguities between tracks using the process of elimination. Operates on the track's ambiguity matrix. Thus it can be seen that the FATS system, by means of storing vehicle profiles in a “on the fly” data base can be used to can greatly reduce ambiguities in tracking vehicles and the like, when such vehicles come in close contact with others. While invention has been described with reference to a particular embodiment, it should be understood that the embodiment is merely illustrative, as there are numerous variations and modifications, which may be made by those skilled in the art. Thus, the invention is to be construed as being limited only by the spirit and scope of the appended claims. INDUSTRIAL APPLICABILITY The invention has applicability to electronic war equipment industry.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The invention relates to the field of sensor resources management and tracking fusion and, in particular, to the tracking of vehicles who's identity becomes ambiguous. 2. Description of Related Art Tracking moving ground targets by radar from an aircraft in a battlefield situation is a difficult process. First of all, there may be a large number of moving vehicles in the vicinity of the targets of interest. In addition, the terrain and foliage can intermittently block surveillance. Thus sensor management is critical. In most previous tracking instances, the tracker was data driven. Trackers were at the mercy of the data they ingested. The only way to improve performance was to fine tune prediction models, sensor models, and association algorithms. Such fine-tuning led to improved performance, but only marginally. Potentially, trackers could realize much more significant improvements if they could manage their input data stream. Thus, it is a primary object of the invention to provide a process for improving the ability to track targets using sensor data. It is another primary object of the invention to provide a process for eliminating ambiguities when tracking vehicles. It is a further object of the invention to provide a process for eliminating ambiguities between targeted vehicles and other vehicles that come within close contact with the targeted vehicle.
<SOH> SUMMARY OF THE INVENTION <EOH>Tracking vehicles on the ground by radar from an aircraft can be difficult. First of all, there may be a multiple number of vehicles in the immediate area, with several nominated for tracking. In addition, the vehicles may cross paths with other nominated or non-nominated vehicles, or become so close to each other that their identity for tracking purposes may be come ambiguous. Thus maximizing the performance of the radar systems becomes paramount. The radar systems, which are steered array type, can typically operate in three modes: 1. Moving target Indicator (MTI) mode. In this mode, the radar system can provide good kinematic tracking data. 2. High range resolution (HRR) mode. In this mode, the radar system is capable of providing target profiles. 3. High update rate (HUR) mode. In this mode, target is tracked at very high rate, such that the position is accurately determined. Tracking performance is enhanced if the radar is operated in the mode best suited to type of information required. An existing kinematic tracker is used to estimate the position of all the vehicles and their direction of travel and velocity. The subject process accepts the data from the kinematic tracker and maps them to fuzzy set conditions. Then, using a multitude of defined membership functions (MSFs) and fuzzy logic gates generates sensor mode control rules. It does this for every track and each sensor. The rule with the best score becomes a sensor cue. In co-pending U.S. patent application Ser. No. 10/976,150 Process for Sensor Resource Management by N. Collins, et al. filed Sep. 28, 2004, a process is disclosed for tracking at least a first targeted moving vehicle from at least one second non-targeted vehicle by means of a radar system within an aircraft, the radar having moving target indicator, high range resolution and high update rate modes of operation, the process comprising the steps: 1. Tracking the kinematic quality of the vehicles by calculating position, heading, and speed uncertainty of the vehicles and providing a first set of scores therefore; 2. Collecting data needed for future required disambiguations by calculating the usefulness and neediness of identification measurements of all tracked vehicles and providing a second set of scores therefore; 3. Collecting required data needed for immediate disambiguation by calculating the usefulness and neediness of identification measurements of all ambiguous tracked vehicles and providing a third set of scores therefore. 4. Selecting the highest over all score of from said first, second and third scores; and Cueing the radar to track the vehicle with the highest over all score to operate in the high update rate mode or, high range resolution mode, or moving target indictor mode depending upon which score is the highest score. The problem of vehicles crossing one another, or coming into close contact is what creates an ambiguity. Thus the subject invention makes use of a feature aided track stitcher (FATS). This system continuously monitors nominated vehicles and records their radar signature as a function of its angular relationship to the aircraft and stores this information in a database. Thus should two vehicles come so close together that an ambiguity is created and then separate, the FATS is used to compare the radar signature of the vehicles after separation with those in the database. If the nominated vehicle assumes an angular relationship to the vehicle that is similar to one in the database for that nominated vehicle, then the ambiguity may be removed. If there are two aircraft monitoring the area, then the second aircraft will take the second highest score with the limitation that the radar operates in a different mode to eliminate interference between the radar systems. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages thereof, will be better understood from the following description in connection with the accompanying drawings in which the presently preferred embodiment of the invention is illustrated by way of example. It is to be expressly understood, however, that the drawings are for purposes of illustration and description only and are not intended as a definition of the limits of the invention.
20041108
20070123
20060511
66304.0
G01S1352
2
ALSOMIRI, ISAM A
PROCESS FOR TRACKING VEHICLES
UNDISCOUNTED
0
ACCEPTED
G01S
2,004
10,983,606
ACCEPTED
Dynamic bar oriented user interface
Method and user interface for controlling an apparatus are provided. At least one dynamic bar is provided for displaying on a main screen of a graphical user interface for controlling the apparatus. Each dynamic bar is associated with respective one or more interfaces for applications and/or functions provided by the apparatus and each dynamic bar has a pop-up interface for providing at least one of preview information determined from information managed by the applications and/or functions and links to invoke said respective interfaces.
1. A method for controlling an apparatus comprising: providing at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for at least one of applications and functions provided by the apparatus, said each dynamic bar having an expandable pop-up interface for providing at least one of respective preview information determined from information managed by the at least one of applications and functions and links to invoke said respective interfaces; and invoking said respective interfaces a to control said apparatus in response to user input. 2. The method of claim 1 comprising associating with at least some of the dynamic bares respective dynamic preview information determined from information managed by at least one of the respective applications and functions associated with the some of the dynamic bars and displaying the respective dynamic preview information within the associated dynamic bar. 3. The method of claim 2 including updating the display of the at least some dynamic bars in response to a change to the respective dynamic preview information. 4. The method of claim 2 comprising providing a filter defining interface for defining a filter with which to determine the preview information. 5. The method of claim 1 comprising selecting particular applications and functions for associating with the at least one dynamic bar in response to logical relationships between the applications and functions. 6. The method of claim 5 including labeling the dynamic bars in response to the logical relationship. 7. The method of claim 1 wherein providing at least one dynamic bar includes displaying said at least one dynamic bar in a main screen of a user interface for controlling the apparatus, the main screen including a plurality of icons for activating respective interfaces for at least one of applications and functions provided by the apparatus. 8. The method of claim 1 comprising at least one of expanding and collapsing a respective pop-up interface associated with a dynamic bar in response to respective user input. 9. The method of claim 1 including associating a respective menu interface with at least some of the dynamic bars, said respective menu interface displayable to provide links to invoke at least one of interfaces for the applications and functions associated with the respective dynamic bar and interfaces to configure options for controlling the operation of the respective dynamic bar. 10. The method of claim 1 wherein at least some of the links to invoke respective interfaces are represented by respective icons. 11. The method of claim 10 wherein an icon is associated with a respective dialog interface for configuring one of more options for controlling the operation of the apparatus, said dialog interface displayed in association with the icon. 12. The method of claim 10 including selecting the icon for representing with a respective link in response to a value of said one or more options. 13. An apparatus comprising: a storage medium having stored therein a plurality of programming instructions designed to enable the apparatus to: provide at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for at least one of applications and functions provided by the apparatus, said each dynamic bar having an pop-up interface for providing at least one of preview information determined from information managed by the at, least one of applications and functions and links to invoke said respective interfaces; and invoke said respective interfaces to control said apparatus in response to user input; and processor coupled to the storage medium to execute the programming instructions. 14. The apparatus of claim 13 wherein said programming instructions are designed to associate with at least some of the dynamic bars respective dynamic preview information determined from information managed by at least one of the respective at least one of applications and functions associated with the some of the dynamic bars and to display the dynamic preview information. 15. The apparatus of claim 14 wherein said programming instructions are designed to update the display of the at least some dynamic bars in response to a change to the respective dynamic preview information. 16. The apparatus of claim 14 wherein said programming instructions are designed to provide a filter defining interface for defining a filter with which to determine the dynamic preview information. 17. The apparatus of claim 13 wherein particular applications and functions are selected for associating with the at least one dynamic bar in response to logical relationships between the applications and functions. 18. The apparatus of claim 17 wherein said programming instructions are designed to label the dynamic bars in response to the logical relationship. 19. The apparatus of claim 13 wherein said programming instructions are designed to display said at least one dynamic bar in a main screen of a user interface for controlling the apparatus, the main screen including a plurality of icons for activating respective interfaces for at least one of applications and functions provided by the apparatus. 20. The apparatus of claim 13 wherein said programming instructions are designed to at least one of expand and collapse a respective pop-up interface associated with a dynamic bar in response to respective user input. 21. The apparatus of claim 13 wherein said programming instructions are designed to provide a respective menu interface in association with at least some of the dynamic bars, said respective menu interface displayable to provide links to invoke at least one of interfaces for the applications and functions associated with the respective dynamic bar and interfaces to configure options for controlling the operation of the respective dynamic bar. 22. The apparatus of claim 13 wherein said programming instructions are designed to represent at least some of the links to invoke respective interfaces with respective icons. 23. The apparatus of claim 22 wherein said programming instructions are designed to provide a respective dialog interface in association with an icon for configuring one of more options for controlling the operation of the apparatus, said dialog interface displayed in association with the icon. 24. The apparatus of claim 22 wherein said programming instructions are designed to select the icon for representing with a respective link in response to a value of said one or more options. 25. A machine readable medium comprising program code executable :on a processor for implementing the method of claim 1.
FIELD OF THE INVENTION The present invention relates generally to communication devices, and more particularly to a graphical user interface for controlling such devices. DESCRIPTION OF THE RELATED ART With the proliferation of communications services available on wireless mobile devices, it becomes increasingly complex to create a single device that can excel at many different functions. Many critics claim that a wireless telephone device can never make a good handheld personal digital assistant (PDA) device and a handheld PDA device will never make a good wireless telephone. It is also said that only teenagers are using Instant Messaging (IM) services or Short Message Services (SMS) to exchange messages with friends and acquaintances and that such users should get an entirely different wireless mobile device. However, many users of wireless handheld devices desire to have multiple services and functionality on a single device. Representing multiple services and functions to a user on a single wireless mobile device presents a number of challenges to the designer of a user interface, particularly a graphical user interface (GUI), for controlling the device. Wireless devices are usually small relative to less portable computing devices such as laptops and desktop computers. Inherently then, a visual display such as an LCD or other screen component of the wireless mobile device has a small display area. Typically, GUIs for wireless mobile devices comprise a main or home screen and one or more sub-screens that may be navigated from the main screen. Notification icons are often, rendered on a portion of the main screen to indicate a new event such as the receipt of a new IM message, electronic mail (e-mail) or other service events such as a calendar reminder or alarm and other status information such as time, date and battery life. For each type of service or function available via the device, a graphical image or icon is often rendered on a major portion of the main screen, which icon may be selected by moving a focus or cursor about the interface and selecting the desired item to launch a specific GUI for the selected service or function. There is a demand to have information made available to a user quicker than previously available in order to optimize the control of the wireless device. An application icon or information or text (e.g. name or title) describing the application is generally static and as such is not particularly useful for representing changing information associated with the application activated by the icon. Representing current information to a user via a predominantly iconic GUI is difficult. Further, organizing such information in a useful manner to permit a user to better control the device is also problematic. Accordingly, there is a resulting need for a method and apparatus that addresses one or more of these shortcomings. SUMMARY The invention relates to a method, graphical user interface and apparatus for controlling an apparatus. In accordance with a first aspect of the invention, there is provided a method for controlling an apparatus comprising: providing at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for applications and/or functions provided by the apparatus, said each dynamic bar having an pop-up interface for providing at least one of preview information determined from information managed by the applications and/or functions and links to invoke said respective interfaces; and invoking said respective interfaces to control said apparatus in response to user input. In accordance with a second aspect of the invention, there is provided an apparatus comprising: a storage medium having stored therein a plurality of programming instructions designed to enable the apparatus to: provide at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for applications and/or functions provided by the apparatus, said each dynamic bar having an pop-up interface for providing at least one of preview information determined from information managed by the applications and/or functions and links to invoke said respective interfaces; and invoke said respective interfaces to control said apparatus in response to user input; and a processor coupled to the storage medium to execute the programming instructions. These and other aspects will be apparent to persons of ordinary skill in the art including a computer program product such as a machine readable medium storing computer program code executable to perform a method aspect of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of present invention will now be described by way of example with reference to attached figures, wherein: FIG. 1 is a block diagram which illustrates pertinent components of a wireless communication device which communicates within a wireless communication network in accordance with the prior art; FIG. 2 is a more detailed diagram of a preferred wireless communication device of FIG. 1 in accordance with the prior art; FIG. 3 is an illustration of an example of a main screen of a graphical user interface, in accordance with an embodiment of the invention, for a wireless communication device such as the devices of FIGS. 1 and 2; FIG. 4 is an illustration of the main screen of FIG. 3 following a user action; FIG. 5 is an illustration of an example of a main screen of a graphical user interface, in accordance with a further embodiment of the invention; FIG. 6 is an illustration of the main screen of FIG. 5 following a user action; FIG. 7 is an illustration of an example of a main screen, in accordance with another embodiment of the invention, for a wireless communication device such as the devices of FIGS. 1 and 2; FIGS. 8 and 9 are illustrations of the main screen of FIG. 7 following respective user actions; and FIG. 10 is an illustration of an example of a main screen, in accordance with another embodiment of the invention, for a wireless communication device such as the devices of FIGS. 1 and 2; FIGS. 11A to 11D are illustrations of particular views of the main screen of FIG. 10; FIGS. 12A to 12D are detailed illustrations of the screen of F11D in accordance with an embodiment of the invention; FIGS. 13A to 13C are respective illustrations of FIGS. 11A to 11C. following user action in accordance with an embodiment of the invention; FIG. 14 is an illustration of an example of a main screen, in accordance with another embodiment of the invention, for a wireless communication device such as the devices of FIGS. 1 and 2; FIGS. 15A to 15C are illustrations of particular views of the main screen of FIG. 14 in accordance with an embodiment of the invention; FIGS. 16 and 17 are flowcharts for operations of a user interface in accordance with embodiments of the invention. DETAILED DESCRIPTION FIG. 1 is a block diagram of a communication system 100 which includes a mobile station 102 which communicates through a wireless communication network 104 symbolized by a station. Mobile station 102 preferably includes a visual display 112, a keyboard 114, and perhaps one or more auxiliary user interfaces (UI) 116, each of which are coupled to a controller 106. Controller 106 is also coupled to radio frequency (RF) transceiver circuitry 108 and an antenna 110. Typically, controller 106 is embodied as a central processing unit (CPU) which runs operating system software in a memory component (not shown). Controller 106 will normally control overall operation of mobile station 102, whereas signal processing operations associated with communication functions are typically performed in RF transceiver circuitry 108. Controller 106 interfaces witch device display 112 to display received information, stored information, user inputs, and the like Keyboard 114, which may be a telephone type keypad, full alphanumeric keyboard or full or condensed QWERTY keypad, is normally provided for entering data for storage in mobile station 102, information for transmission to network 104, a telephone number to place a telephone call, commands to be executed on mobile station 102, and possibly other or different user inputs. Mobile station 102 sends communication signals to and receives communication signals from the wireless network 104 over a wireless link via antenna 110. RF transceiver circuitry 108 performs functions similar to those of a base station and a base station controller (BSC) (not shown), including for example modulation/demodulation and possibly encoding/decoding and encryption/decryption. It is also contemplated that RF transceiver circuitry 108 may perform certain functions in addition to those performed by a BSC. It will be apparent to those skilled in art that RF transceiver circuitry 108 will be adapted to particular wireless network or networks in which mobile station 102 is intended to operate. Mobile station 102 includes a battery interface (IF) 134 for receiving one or more rechargeable batteries 132. Battery 132 provides electrical power to electrical circuitry in mobile station 102, and battery IF 132 provides for a mechanical and electrical connection for battery 132. Battery IF 132 is coupled to a regulator 136 which regulates power to the device. When mobile station 102 is fully operational, an RF transmitter of RF transceiver circuitry 108 is turned on only when it is sending to network, and is otherwise turned off or placed in a low-power mode to conserve power. Similarly, an RF receiver of RF transceiver circuitry 108 is typically periodically turned off to conserve power until it is needed to receive signals or information (if at all) during designated time periods. Mobile station 102 operates using a Subscriber Identity Module (SIM) 140 which is connected to or inserted in mobile station 102 at a SIM interface (IF) 142. SIM 140 is one type of a conventional “smart card” used to identify an end user (or subscriber) of mobile station 102 and to personalize the device, among other things. Without SIM 140, the mobile station terminal is not fully operational for communication through the wireless network. By inserting SIM 140 into mobile station 102, an end user can have access to any and all of his/her subscribed services. SIM 140 generally includes a processor and memory for storing information. Since SIM 140 is coupled to SIM IF 142, it is coupled to controller 106 through communication lines 144. In order to identify the subscriber, SIM 140 contains some user parameters such as an International Mobile Subscriber Identity (IMSI). An advantage of using SIM 140 is that end users are not necessarily bound by any single physical mobile station. SIM 140 may store additional user information for the mobile station as well, including date book (or calendar) information and recent call information. Mobile station 102 may consist of a single unit, such as a data communication device, a multiple-function communication device with data and voice communication capabilities a personal digital assistant (PDA) enabled for wireless communication, or a computer incorporating an internal modem. Alternatively, mobile station 102 may be a multiple-module unit comprising a plurality of separate components, including but in no way limited to a computer or other device connected to a wireless modem. In particular, for example, in the mobile station block diagram of FIG. 1, RF transceiver circuitry 108 and antenna 110 may be implemented as a radio modem unit that may be inserted into a port on a laptop computer. In this case, the laptop computer would include display 112, keyboard 114, one or more auxiliary UIs 116, and controller 106 embodied as the computer's CPU. It is also contemplated that a computer or other equipment not normally capable of wireless communication may be adapted to connect to and effectively assume control of RF transceiver circuitry 108 and antenna 110 of a single-unit device such as one of those described above. Such a mobile station 102 may have a more particular implementation as described later in relation to mobile station 202 of FIG. 2. FIG. 2 is a detailed block diagram of a preferred mobile station 202. Mobile station 202 is preferably a two-way communication device having at least voice and advanced data communication capabilities, including the capability to communicate with other computer systems. Depending on the functionality provided by mobile station 202, it may be referred to as a data messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a wireless Internet appliance, or a data communication device (with or without telephony capabilities). Mobile station 202 may communicate with any one of a plurality of fixed transceiver stations 200 within its geographic coverage area. Mobile station 202 will normally incorporate a communication subsystem 211, which includes a receiver, a transmitter, and associated components, such as one or more (preferably embedded or internal) antenna elements and, local oscillators (LOs), and a processing module such as a digital signal processor (DSP) (all not shown). Communication subsystem 211 is analogous to RF transceiver circuitry 108 and antenna 110 shown in FIG. 1. As will be apparent to those skilled in field of communications, particular design of communication subsystem 211 depends on the communication network in which mobile station 202 is intended to operate. Network access is associated with a subscriber or user of mobile station 202 and therefore mobile station 202 requires a Subscriber Identity Module or “SIM” card 262 to be inserted in a SIM IF 264 in order to operate in the network. SIM 262 includes those features described in relation to FIG. 1. Mobile station 202 is a battery-powered device so it also includes a battery IF 254 for receiving one or more rechargeable batteries 256. Such a battery 256 provides electrical power to most if not all electrical circuitry in mobile station 202, and battery IF 254 provides for a mechanical and electrical connection for it. The battery IF 254 is coupled to a regulator (not shown) which provides power V+ to all of the circuitry. Mobile station 202 includes a microprocessor 238 (which is one implementation of controller 106 of FIG. 1) which controls overall operation of mobile station 202 Communication functions, including at least data and voice) communications, are performed through communication subsystem 211. Microprocessor 238 also interacts with additional device subsystems such as a display 222, a flash memory 224, a random access memory (RAM) 226, auxiliary input/output (I/O) subsystems 228, a serial port 230, a keyboard 232, a speaker 234, a microphone 236, a short-range communications subsystem 240, and any other device subsystems generally designated at 242. Some of the subsystems shown in FIG. 2 perform communication-related functions, whereas other subsystems may provide “resident” or on-device functions. Notably, some subsystems, such as keyboard 232 and display 222, for example, may be used for both communication related functions, such as entering a text message for transmission over a communication network, and device-resident functions such as a calculator or task list. Operating system software used by microprocessor 238 is preferably stored in a persistent store such as flash memory 224, which may alternatively be a read-only memory (ROM) or similar storage element (not shown). Those skilled in the art will appreciate that the operating system, specific device applications, or parts thereof, may be temporarily loaded into a volatile store such as RAM 226. Microprocessor 238, in addition to its operating system functions preferably enables execution of software applications on mobile station 202. A predetermined set of applications which control basic device operations, including at least data and voice communication applications, will normally be installed on mobile station 202 during its manufacture. A preferred application that may be loaded onto mobile station 202 may be a personal information manager (PIM) application having the ability to organize and manage data items relating to the user such as, but not limited to, instant messaging (IM), e-mail, calendar events, voice mails, appointments, and task items. Naturally, one or more memory stores are available on mobile station 202 and SIM 262 to facilitate storage of PIM data items and other information. The PIM application preferably has the ability to send and receive data items via the wireless network. In a preferred embodiment, PIM data items are seamlessly integrated, synchronized, and updated via the wireless network, with the mobile station user's corresponding data items stored and/or associated with a host computer system thereby creating a mirrored host computer on mobile station 202 with respect to such items. This is especially advantageous where the host computer system is the mobile station user's office computer system. Additional applications may also be loaded onto mobile station 202 through network 200, an auxiliary I/O subsystem 228, serial port 230, short-range communications subsystem 240, or any other suitable subsystem 242, and installed by a user in RAM 226 or preferably a non-volatile store (not shown) for execution by microprocessor 238. Such flexibility in application installation increases the functionality of mobile station 202 and may provide enhanced on-device functions, communication-related functions, or both. For example, secure communication applications may enable electronic commerce functions and other such financial transactions to be performed using mobile station 202. In a data communication mode, a received signal such as a text message, an e-mail message, or web page download will be processed by communication subsystem 211 and input to microprocessor 238. Microprocessor 238 will preferably further process the signal for output to display 222, to auxiliary I/O device 228 or both as described further herein below with reference to FIGS. 3-9. A user of mobile station 202 may also compose data items, such as e-mail messages, for examples, using keyboard 232 in conjunction with display 222 and possibly auxiliary I/O device 228. Keyboard 232 is preferably a telephone type keypad, full alphanumeric keyboard or full or condensed QWERTY keypad. These composed items may be transmitted over a communication network through communication subsystem 211. For voice communications, the overall operation of mobile station 202 is substantially similar, except that the received signals would be output to speaker 234 and signals for transmission would be generated by microphone 236. Alternative voice or audio I/O subsystems, such as a voice message recording subsystem, may also be implemented on mobile station 202. Although voice or audio signal output is preferably accomplished primarily through speaker 234, display 222 may also be used to provide an indication of the identity of a calling party, duration of a voice call, or other voice call related information, as some examples. Serial port 230 in FIG. 2 is normally implemented in a personal digital assistant (PDA)-type communication device for which synchronization with a user's desktop computer is a desirable, albeit optional, component. Serial port 230 enables a user to set preferences through an external device or software application and extends the capabilities of mobile station 202 by providing for information or software downloads to mobile station 202 other than through a wireless communication network. The alternate download path may, for example, be used to load an encryption key onto mobile station 202 through a direct and thus reliable and trusted connection to thereby provide secure device communication. Short-range communications subsystem 240 of FIG. 2 is an additional optional component which provides for communication between mobile station 202 and different systems or devices, which need not necessarily be similar devices. For example, subsystem 240 may include an infrared device and associated circuits and components, or a Bluetooth™ communication module to provide for communication with similarly-enabled systems and devices. Bluetooth™ is a registered trademark of Bluetooth SIG, Inc. In accordance with an embodiment of the invention, mobile station 202 is configured for sending and receiving data items and includes a PIM for organizing and managing data items relating to the user such as, but not limited to, instant messaging (IM), e-mail, calendar events, calendar appointments, and task items, etc. By way of example, mobile station 202 is configured for voice (which may include push to talk over cellular (POC)) and data services, voice mail service, e-mail service, SMS and chat services to which the user subscribes. To provide a user-friendly environment to control the operation of mobile station 202, PIM together with the operation system and various software applications resident on the station 202 provides a GUI having a main screen from which to access various services via applications stored on said device or available to it. Referring now to FIG. 13, there is an illustration of an exemplary main screen 300, in accordance with an embodiment of the invention, for display 222 of mobile station 202 providing a graphical user interface for controlling mobile station 202. Main screen 300 is divided into three main portions, namely an application portion 302 for displaying and manipulating icons (e.g. 312) for various software applications and functions enabled by mobile station 202 and a mobile station status portion 306 for displaying status, information such as time, date, battery and signal strength, etc. Main screen 300 may not represent all application icons at once in application portion 302. A user may be required to navigate or scroll through the icons of application portion 302 to view additional application icons. In accordance with a first embodiment of the invention, FIG. 3 includes a third portion 304 comprising a dynamic bar for controlling device 202. Dynamic bar 304 stretches horizontally across the main screen between portions 302 and 306. Persons skilled in the art will appreciate that such portions may be arranged differently about screen 300. For example, dynamic bar 304 may lie horizontally across the bottom of screen 300 or vertically. Dynamic bar 304 need not extend fully from one margin of the screen to another. Dynamic Bar 304 includes a label portion 308 which in the present embodiment comprises a date reference and an expansion icon (downward pointing arrowhead) 310. A user may click on the dynamic bar (e.g. using a point device, such as a thumb wheel) and expand the dynamic bar to preview items associated with the bar 304. In the present embodiment, dynamic bar 304 is associated with an email application to preview email messages. FIG. 4, in accordance with an embodiment of the invention, illustrates FIG. 3 following a user action to expand the dynamic bar 304. In FIG. 4, mobile station status portion 306 includes a new email count 402 indicating 30 unread emails. Dynamic bar 304 is expanded via a drop down or pop-up interface 407 overlaying a portion of screen 300. Therein, there is displayed a count of available and unread messages 404 and a preview of recent new emails 406 preferably filtered relative to the date shown in the label portion 308 of the dynamic bar as described further below. Optionally, a user may scroll through the list of recent emails. Clicking on the list will automatically invoke the email application, preferably at a view showing the selected email. Cancelling (e.g. via an escape or other key or click) closes the expansion pop-up 407. FIGS. 5 and 6 illustrate similar main screens 300 as shown in FIGS. 3 and 4 but with a dynamic bar and expansion pop-up interface in accordance with a further embodiment of the invention. Dynamic bar 304 of FIGS. 5 and 6 includes counts of new events 502 (e.g. new voice mail messages, email messages, SMS messages or contacts online with which to chat). As such, mobile stations status portion 306 need not display such dynamic preview information. Other events types may be counted and displayed such as available friends or groups for Push-to-Talk over Celluar (POC) calls etc. The dynamic preview information need not be limited to a count. For example, the information may include some details of a recent event, which may be displayed temporarily for example. One such example is information about a missed call (e.g. “Missed call from NNN . . . ”) which may be temporarily displayed. Thereafter, count or other preview information may be displayed. Expansion pop-up 602 in the present embodiment does not preview a content of the new event but lists particular services 604 associated with the dynamic bar 304 such as voice mail, email, SMS and chat including an iconic representation of the service 606 and preview information comprising a count 608 as similarly displayed by bar 304 and a link 610 to invoke the associated application user interface for the service. Preview information may thus comprise information maintained by the associated applications and/or functions as well as information determined from this managed informations. FIGS. 7 and 8 illustrate a similar dynamic bar and expansion pop-up 602 as shown in FIGS. 5 and 6 but with a difference, appearance to application portion 302. Rather than presenting icons for invoking respective interfaces to various applications or functions application portion 302 presents a list of bars 702 which may be navigated and selected to invoke an associated interface. Mobile station status portion 306 also has an alternative look from that shown in FIGS. 3-6. FIG. 9 illustrates a search or filter function having a dialog screen 902 which may be invoked from dynamic bar 304. Label portion 308 may be clicked for editing to select a different date 904. This date is then used to filter the associated events such that some or all of the counts 502 and 608 may be determined relative to the new date. For example, a count of friends on-line available to chat is not particularly relevant except in relation to the current date/time. In the embodiment of the dynamic bar and expansion pop-up of FIG. 4, such a date may filter the new messages for previewing, for example. As seen below and with reference to FIGS. 10 and 11B, a dynamic bar may be associated with other services or applications including a calendar application and the date may be useful for searching or filter calendar events and entries or a particular view. FIGS. 10 and 11A to 11D illustrate yet a further embodiment of a main screen user interface of the present invention. FIG. 10 illustrates a user interface main screen 300 comprising a plurality of dynamic bars 1004, 1008, 1012, 1016 and 1020 each with respective label portions 1002, 1007, 1011, 1015 and 1019 and expansion pop-ups 1006, 1010, 1014, 1018 and 1022. When expanded the bars and pop-ups of main screen 300 of FIG. 10 are distinguished from the bar and pop-up of main screen 300 of earlier figures in that they cannot all be displayed on the display device at one time below mobile station status portion 1002. The remaining portion of display device 222 is denoted by box 1001. As such a user may navigate the main screen, scrolling up or down as necessary to display the desired dynamic bar and expansion screen of interest. FIGS. 11A to 11D illustrate respective views of main screen 300 of FIG. 10 visible within the dimensions of display device 222. A user may navigate from bar to bar such as by using a thumb wheel to position the desired bar at the top of portion 302. In the present embodiment, the dynamic bars 1004, 1008, 1012, 1016 and 1020 and expansion pop-ups 1006, 1010, 1014, 1018 and 1022 are associated with various applications and services and/or device functions in accordance with a contextual view of how the mobile station may be used by a user. For example, the label portions 1002, 1007, 1011, 1015 and 1019 denote activities such as “communicate”, “plan”, “entertain” “configure” and “extra”. Communicate bar 1004 and expansion pop-up 1006 is similar to the dynamic bar 304 and associated pop-up 602 of earlier embodiments. With reference to FIG. 11B, plan bar 1008 and expansion pop-up 1010 are associated with calendar and task functions 1102 previewing items (e.g. 1006) for the current day 1004 and additional upcoming days 1008 and 1110. A user may navigate the expansion pop-up and select an item or day to invoke the associated application's interface, preferably jumping to the item within the application. As discussed with reference to FIG. 9, a search or filter interface maybe incorporated into a dynamic bar (e.g. in association with the label portion or in another manner) to define a filter with which to determine preview information to be displayed. Entertain bar 1012 and expansion pop-up 1014 is associated with applications for gaming, or presenting or working with media such as a browser, audio application or camera etc. Window 1014 may include links to web pages (e.g. 1112). Entertain bar 1012 may be associated with events, similar to communicate bar 1004, which events may include the availability of new items to download 1114. A count 1113 of same may be displayed in entertain bar 1012 as well. More than one different event type maybe monitored and counted as per communicate bar 1004. Expansion pop-up 1018 of configure bar illustrates a further optional user interface arrangement whereby associated functions are invoked via an icon based interface comprising a plurality of respective icons 1116 (FIG. 11C) and optional labels 1118. Expansion pop-up 1022 for extras bar 1020 comprises a list of links to respective miscellaneous applications or functions provided by device 202. FIGS. 12A to 12D further illustrate features of expansion pop-up 1018 for configure bar 1016. A user may navigate expansion pop-up 1018 moving among the icons 1116 (e.g. 1202, 1206, 1210 and 1214). Selecting an icon invokes a dialog (e.g. 1204, 1208, 1212 and 1216) to configure options associated with the function represented by the particular icon. For example, icon 1202 relates to wireless networking functions, particularly, turning communication subsystem 211 on or off. Dialog 1204 may be opened (e.g. by moving the focus to the icon 1202 and clicking an enter key or pointing device, etc.) Options may then be reviewed and/or changed and saved. Dialog 1204 may be positioned over a portion of the screen 300 below the associated bar. Preferably a dialog is displayed in association with its respective icon, such as, with the icon visible at a margin of the dialog. Once an option is defined and its value saved, the associated icon may be changed (in whole or in part) to reflect the value of the option. For example, if the wireless communication system is set to off, icon 1202 may change to include an X through the icon or the icon changed to another image completely such as an airplane image. As shown in dialog 1216 (Edit profiles . . . ), links to additional dialogs or other interfaces/function activations may be included. FIGS. 13A, 13B and 13C show examples 1302, 1304 and 1306 of an additional dynamic bar interface expansion element for respective dynamic bars 1004, 1008 and 1012. Each expansion element 1302, 1304 and 1306 is a drop down list comprising particular functions or features of the application(s) associated with the respective dynamic bar which may be invoked from the dynamic bar interface as well as dynamic bar features (e.g. search) or other configurable options (e.g. view agenda, week, month of list 1304) for configuring the dynamic bar or its associated expansion pop-up (e.g. the view of 1010). The expansion element may be invoked by moving a focus to the label portion (e.g. 1003, 1007 or 1011) and hovering for short period of a few seconds or by other well known manners. The expansion element may be closed by click an escape or other cancel key. Though a drop down list is shown, the expansion element may take other forms such as a pop-up. Preferably the element overlays only a portion of the screen 300, leaving the associated dynamic bar and a portion of its expansion pop-up viewable. FIGS. 14 and 15A to 15C illustrate yet another embodiment of the user interface main screen. The present embodiment is similar to the embodiment of FIG. 10. However the dynamic bars are functionally oriented rather than contextually. Screen 300 of FIG. 14 includes a calendar bar 1402, messages bar 1404, browser bar 1406, configure bar 1408 and extras bar 1410 with respective labels 1403, 1405, 1407, 1409 and 1411. Configure bar 1408 is associated with expansion pop-up 1412 including a list of links (as distinguished from the icons 1116 of FIG. 11C) to invoke interfaces for configuring mobile station 202. FIGS. 15A, 15B and 15C illustrate views of the main screen 300 of FIG. 14 as would appear on a display device 222 as a user navigated the dynamic bars as per similar views in FIGS. 11A to 11D. Note that while not shown, the expansion pop-ups could be selectively individually closed and the plurality of dynamic bars rendered in a list of bars. Like FIG. 3, an application portion of screen 300 may be present to render application icons. Alternative embodiments of the dynamic bar interface, such as the embodiments of FIG. 10 and FIG. 14 may be available for selection by a user of mobile station 202. Alternatively, a mobile station may be configured to store only one embodiment. The dynamic bars may be configurable or shown in different order. Particular applications and functions may be selected by a user to be associated to a paricualr dynamic bar. FIGS. 16 and 17 illustrate operations of a dynamic bar user interface in accordance with embodiments of the invention. With reference to FIGS. 3-9 and 16, operations 1600 commence at start 1602, typically following power-up of mobile station 202 and a rendering of a default or initial view of main screen 300. A user may select the dynamic bar (e.g. using a thumb wheel device or other pointer to move a focus about the screen 300) at step 1604. The view of main screen 300 may require updating and redisplay (steps 1605 and 1606) for example to indicate the change to the focus. If a user cancels the selection (step 1608) operations may close (as necessary) at end steps 1610. A new message or other event occurrence, as represented by a count displayed on the dynamic bar, may be received (step 1614) and the view updated and output (steps 1616 and 1606). The dynamic bar interface may be extended to view an associated expansion pop-up (e.g. FIGS. 4, 6 and 8). At steps 1622-1624, the pop-up interface is invoked in response to user input and the pop-up IF view output. Thereafter, the user may take action such as my moving the thumb wheel or pressing an arrow key on the device to move the focus about the pop-up (step 1626) and in response, the focus is logically moved (step 1628) and the appropriate view determined (step 1630) and output (step 1624). The focus may move to the dynamic bar itself. New events, etc. may be received (step 1632) as described above and the appropriate view (count) determined and output (steps 1630, 1624). A user may wish to filter the events or other items previewed via the dynamic bar. An editing sequence may commence to select a date (step 1634) and a search or filtering is performed (step 1636). The view is updated and displayed accordingly (steps 1630 and 1624). An item in the pop-up may be selected, such as a new message (step 1640) and the selection invoked (step 1642) such as by invoking the user interface to the message application. Thereafter operations 1600 may closer and end at steps 1610 and 1612 following decision step 1643. Alternatively, depending on the selection invoked, for example, operations may continue via steps 1630 and 1624 to update the view and output same. Window IF display (e.g. step 1624) may be closed such as by a cancel input (step 1644). In response, the view is updated and output (steps 1616 and 1606) and operations continue from the dynamic bar interface. Operations for the embodiments of user interface of FIGS. 10-15 are quite similar to those described. With reference to FIG. 17, operations 1700 are similar but include steps 1702-1716 for invoking the expansion element (i.e. menu list), and, variously, navigating by moving the focus (steps 1706, 1708, 1710, and 1704 as similarly described with reference to 1626, 1628, 1630 and 1624), selecting and invoking an item from the list (steps 1712 and 1714) and canceling the display of the list (1716, 1616 and 1660). Following the invocation of a selection from the menu list (step 1714) operations may close at end step 1610 in response to decision step 1715. Some selected invocations may continue operations via update view step 1616 and output step 1606 Persons of ordinary skill in the art will appreciate that their may be differences in implementing certain steps of the operations described depending on the configuration of the specific dynamic bar and its associated pop-up interface. For example, a dynamic bar not representing a count of associated events will not require steps 1614 et seq. or 1632 et seq. Moving the focus and updating the view within expansion pop-up 1014 may be different than similar operations about pop-up 1018. Though described with reference to a mobile station device, persons of ordinary skill in the art will appreciate that the user interface and methods herein described may be usefully incorporated into other computing devices which may not be mobile such as personal computers, workstations, telephone handsets and the like. The above-described embodiments of the present application are intended to be examples only. Those of skill in the art may effect alterations, modifications and variations to the particular embodiments without departing from the scope of the application. The invention described herein in the recited claims intends to cover and embrace all suitable changes in technology.
<SOH> FIELD OF THE INVENTION <EOH>The present invention relates generally to communication devices, and more particularly to a graphical user interface for controlling such devices.
<SOH> SUMMARY <EOH>The invention relates to a method, graphical user interface and apparatus for controlling an apparatus. In accordance with a first aspect of the invention, there is provided a method for controlling an apparatus comprising: providing at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for applications and/or functions provided by the apparatus, said each dynamic bar having an pop-up interface for providing at least one of preview information determined from information managed by the applications and/or functions and links to invoke said respective interfaces; and invoking said respective interfaces to control said apparatus in response to user input. In accordance with a second aspect of the invention, there is provided an apparatus comprising: a storage medium having stored therein a plurality of programming instructions designed to enable the apparatus to: provide at least one dynamic bar for displaying on a main screen of a graphical user interface for controlling the apparatus, each dynamic bar associated with respective one or more interfaces for applications and/or functions provided by the apparatus, said each dynamic bar having an pop-up interface for providing at least one of preview information determined from information managed by the applications and/or functions and links to invoke said respective interfaces; and invoke said respective interfaces to control said apparatus in response to user input; and a processor coupled to the storage medium to execute the programming instructions. These and other aspects will be apparent to persons of ordinary skill in the art including a computer program product such as a machine readable medium storing computer program code executable to perform a method aspect of the invention.
20041109
20130319
20060511
98516.0
G06F1700
1
SALOMON, PHENUEL S
Dynamic bar oriented user interface
UNDISCOUNTED
0
ACCEPTED
G06F
2,004
10,983,806
ACCEPTED
Impact instrument
An impact instrument for delivering an impulse to an object. The impact instrument may include an impact surface for contacting the object and an elongated member extending from the impact surface that terminates in an end. The elongated member may include a grasping region in the vicinity of the end. When the instrument is grasped within the grasping region, the center of percussion of the instrument preferably coincides with the impact surface. The instrument may also contain pivoting grasping member disposed on the elongated member. A cavity is preferably formed between the grasping member and the elongated member and may contain compressible material. The grasping member may rigidly contact the elongated member at an ideal pivot point. The grasping member is preferably adapted to pivot with respect to the elongated member at the ideal pivot point. The pivoting of the grasping member preferably increases the amount of impulse delivered to an object, decreases vibration experienced by the user of the instrument, and reduces counter-rotational forces imparted from the instrument to the user. The impact instrument may be a hammer, ax, golf club, tennis racket, or similar device.
1-98. (canceled) 99. A hammering device comprising: an impact surface adapted to contact an object; an elongated member extending from the impact surface, the elongated member comprising a first end substantially more proximate to the impact surface and a second end substantially distal from the impact surface; a grasping member coupled to the elongated member, wherein the grasping member is configured to fit over at least a portion of the elongated member and is formed of a substantially rigid material, wherein at least one cavity is formed between the grasping member and the elongated member and wherein the at least one cavity comprises a first cavity located on top of the elongated member running from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 100. The hammering device of claim 99, further comprising a second cavity located on bottom of the elongated member. 101. The hammering device of claim 99, wherein the at least one cavity is filled with air. 102. The hammering device of claim 99, wherein the at least one cavity is filled with a compressible material. 103. A hammering device comprising: an impact surface adapted to contact an object; an elongated member extending from the impact surface, the elongated member comprising a first end substantially more proximate to the impact surface and a second end substantially distal from the impact surface; a grasping member coupled to the elongated member, wherein the grasping member is configured to fit over at least a portion of the elongated member and is formed of a substantially rigid material, wherein at least one cavity is formed between the grasping member and the elongated member and wherein the at least one cavity comprises a first cavity located on bottom of the elongated member running from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 104. The hammering device of claim 103, further comprising a second cavity located on top of the elongated member. 105. The hammering device of claim 103, wherein the at least one cavity is filled with air. 106. The hammering device of claim 103, wherein the at least one cavity is filled with a compressible material. 107. A hammering device comprising: an impact surface adapted to contact an object; an elongated member extending from the impact surface, the elongated member comprising a first end substantially more proximate to the impact surface and a second end substantially distal from the impact surface; a grasping member coupled to the elongated member, wherein the grasping member is configured to fit over at least a portion of the elongated member, wherein at least one cavity is formed between the grasping member and the elongated member and wherein the at least one cavity comprises a first cavity located on bottom of the elongated member located more distal to the impact surface relative to an ideal pivot point. 108. The hammering device of claim 107, wherein the first cavity has a minimum thickness more proximate to the ideal pivot point. 109. The hammering device of claim 107, wherein the grasping member is formed of a substantially rigid material and is joined to the elongated member near the ideal pivot point. 110. The hammering device of claim 107, wherein the first cavity contains air. 111. The hammering device of claim 107, wherein the first cavity contains a compressible material. 112. The hammering device of claim 107, further comprising a second cavity located on top of the elongated member located more distal from the impact surface relative to the ideal pivot point. 113. The hammering device of claim 112, wherein each of the one or more cavities has a minimum thickness more proximate to the ideal pivot point. 114. The hammering device of claim 113, wherein the grasping member is formed of a substantially rigid material and is joined to the elongated member near the ideal pivot point. 115. A hammering device comprising: an impact surface adapted to contact an object; an elongated member extending from the impact surface, the elongated member comprising a first end substantially more proximate to the impact surface and a second end substantially distal from the impact surface; a grasping member coupled to the elongated member, wherein the grasping member is configured to fit over at least a portion of the elongated member and comprises a foamed material located relative to an ideal pivot point to reduce vibration. 116. The hammering device of claim 115, wherein the grasping member further comprises an outer layer that is less compressible than the foamed material. 117. The hammering device of claim 115, wherein the foamed material surrounds at least a portion of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 118. The hammering device of claim 115, wherein the foamed material located on top of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 119. The hammering device of claim 115, wherein the foamed material located on bottom of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 120. A hammering device comprising: an impact surface adapted to contact an object; an elongated member extending from the impact surface, the elongated member comprising a first end substantially more proximate to the impact surface and a second end substantially distal from the impact surface; a grasping member coupled to the elongated member, wherein the grasping member is configured to fit over at least a portion of the elongated member and comprises a foamed material located proximate to an anti-node of the hammering device to reduce vibration. 121. The hammering device of claim 120, wherein the grasping member further comprises a less compressible outer layer. 122. The hammering device of claim 120, wherein the foamed material surrounds at least a portion of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 123. The hammering device of claim 120, wherein the foamed material located on top of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point. 124. The hammering device of claim 120, wherein the foamed material is located on bottom of the elongated member from a point more proximate to the impact surface relative to the ideal pivot point to a point more distal from the impact surface relative to the ideal pivot point.
PRIORITY CLAIM This application claims the benefit of U.S. Provisional Application No. 60/028,636 entitled “Improved Hammering Device,” filed Oct. 18, 1996, and U.S. Provisional Application No. 60/043,681 entitled “Hammering Device,” filed Apr. 14, 1997. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to impact instruments including hammering devices such as claw hammers, ball-pein hammers, axes, hachets, sledges, and the like, and also including recreational devices such as croquet rackets, badmitten racquets, tennis racquets, racquetball racquets, golf clubs, baseball bats, softball bats, cricket bats, hockey sticks, and the like. An embodiment of the invention relates to an impact instrument having an improved mass distribution. Another embodiment relates to an impact instrument that includes a handle that focuses the contact of the hand onto a more limited region. Another embodiment relates to an impact instrument that includes a pivoting handle. Yet another embodiment relates to an impact instrument having a handle that dampens and/or decrease shock and vibration. These embodiments may be used independently or in combination to increase the peak impulse produced by the impact instrument and/or to decrease or dampen shock/vibrational forces felt by a user of the instrument. 2. Description of the Related Art FIG. 1 illustrates a conventional hammer 10 that includes a head 12 and a shank 14 extending from the head. The head terminates at one end in an impact surface 18 through which the hammer delivers an impulse during use. An actual pivot point 16 exists on the shank about which the hammer is pivoted or rotated in the hand during use. Hammers are typically grasped in a user's hand(s) during use and so pivot point 16 may actually be an extended pivot (i.e., a pivot region) rather than a point pivot, since the hammer pivots about a region of finite width (i.e., a hand). Nevertheless the center of this extended pivot region is generally the pivot point 16. When the hammer is grasped in the hand, pivot point 16 may be approximated to lie at a point along the shaft that is proximate the center of the middle finger of the hand. Obviously the pivot point 16 varies depending on where the hand is grasping the shank 14. The center of impact surface 18 is separated from pivot point 16 by a vertical distance d as illustrated in FIG. 1. The center of percussion is located at a distance b from pivot point 16. The center of percussion is the point at which an impulse could be applied in a direction perpendicular to shank 14, thereby causing shank 14 to pivot about a point, such that there is minimal (in a real world application) or no force (ideally) that is perpendicular to the longitudinal axis of the shank. It should be noted that the center of percussion is not necessarily the same as the center of mass. In most objects the center of percussion is not the same as the center of mass. The radius of gyration is separated from the actual pivot point by a distance k. The radius of gyration, k, is the distance from the actual pivot point to a location at which the mass of the hammer could be concentrated without altering the rotational inertia of the hammer about the actual pivot point. The locations of the radius of gyration and the center of percussion both depend upon the actual pivot point and the mass distribution of the hammering device. The moment of inertia, I, the radius of gyration, k, and the mass of the hammering device, m, are related by the following equation: I=m·k2. The center of mass of the hammer is located at a vertical distance h from pivot point 16. The “ideal pivot point” is defined as follows for the purposes of this application. It is believed that distance b will always be equal to k2 divided by h (i.e., k2/h). Thus the “ideal pivot point” is when b, as calculated by the equation b=k2/h, is equal to d. Stated another way, for an impact instrument the ideal pivot point is the pivot point where the center of percussion coincides with the center of the impact surface. In most cases, the “ideal pivot point” 20 exists at a location (e.g., on an elongated member) where an impulse could be applied in a direction perpendicular to the elongated member, thereby causing the elongated member to pivot about a point, such that there is no reactive force that is perpendicular to the longitudinal axis of the elongated member at that point. Conventional impact instruments (e.g., hammers) tend to have an ideal pivot point that does not coincide with pivot point 16 when held by the typical user. That is, during normal use the center of percussion does not typically coincide with the center of the impact surface of a conventional impact instrument (e.g., hammer), which tends to make use of the impact instrument (e.g., hammer) inefficient and uncomfortable. The amount of vibration felt by the user tends to increase as the vertical distance between the actual pivot point and the ideal pivot point increases. In most conventional hammers, for instance, the ideal pivot point is often displaced from the actual pivot point in a direction toward head 12. For hammers that weigh about 1-2 pounds, the ideal pivot point is frequently between about 0.3 cm and about 3.0 cm removed from the actual pivot point. During use of a hammering device, it is generally desirable to grasp the hammer at a location such that at least a portion of the hand is proximate or at least in the vicinity of the end 17 of the hammer as shown in FIG. 1. Grasping the hammer proximate the end allows the user to impart a given impulse to a target object with relatively less effort than if the hammer is grasped at a location that is higher up on the shank in a direction towards the head. If the hammer were grasped at the ideal pivot point of a conventional hammer, the “moment length” between the hand and the impact surface would be shortened, tending to result in more inefficient use of the hammer. It is desirable that an act instrument be derived to deliver a greater impulse and reduce vibration and shock imparte the user of the device. U.S. Pat. No. 4,870,868 relates to a sensing device that produces a response when the point of impact between an object and a member occurs at a preselected location on the member. U.S. Pat. No. 5,289,742 to Vaughan relates to a shock-absorbing device for a claw hammer to dampen vibrations occurring through a steel hammer head. U.S. Pat. No. 5,375,487 to Zimmerman relates to a maul assembly having a maul head with an annular body that is partially filled with a quantity of flowable inertia material. U.S. Pat. No. 5,259,274 to Hreha relates to an internally reinforced jacketed handle for a hand tool. U.S. Pat. No. 5,362,046 to Sims relates to vibration damping devices placed in the butt end of implements which are subject to impact. The above-mentioned patents are incorporated herein by reference. SUMMARY OF THE INVENTION In accordance with the present invention, an impact instrument is provided that generally eliminates or reduces the aforementioned disadvantages of conventional impact instruments. An embodiment of the invention relates to a hammering device that includes a head and a shank extending from the head. The head has an impact surface adapted to deliver an impulse to an object during use. The shank may terminate opposite the head in an end and preferably includes a grasping region in the vicinity of the end. The mass distribution throughout the hammering device is preferably such that when the hammering device is grasped within the grasping region during use, the center of percussion of the device coincides with the impact surface. An impact point is preferably centrally-disposed on the impact surface, and the center of percussion preferably coincides with the impact point during use. Another embodiment of the invention relates to an impact instrument that includes an impact surface for delivering an impulse to an object. A shank or elongated member extends from the head and may extend substantially along a longitudinal axis. The impact instrument preferably includes a sheath substantially surrounding a portion of the shank. A cavity that contains compressible material is preferably formed between the sheath and the shank. When an object is struck with the impact surface, the shank may compress a portion of the compressible material, allowing the sheath to pivot with respect to the longitudinal axis of the shank. The sheath may lie along an axis that is substantially parallel to the longitudinal axis of the shank when the impact instrument is at rest. The ideal pivot point is usually located at some point on the shank. During use of the instrument, the pivoting of the grasping member (e.g., a sheath) may cause the axis of the grasping member to form an angle with the longitudinal axis of the shank. The pivoting of the grasping member preferably occurs about the pivot point such that the formed angle has a vertex at the ideal pivot point and is less than about 10°. The pivoting of the grasping member preferably increases the impulse delivered to the object and decreases vibration and shock imparted to the user. The compressible material preferably dampens any vibrational forces, further reducing vibration felt by the user. The pivoting of the grasping member may also allow the rotational motion of the hand to continue at the moment of impact to reduce counter-rotational forces, shock, and stress imparted from the hammering device to the user. The grasping member may surround the shank to form a substantially annular cavity where the compressible material is contained. The annular cavity may have a cross-section that is circular or non-circular. An inner member may be disposed between the compressible material and the shank. The inner member preferably surrounds the shank to form the annular cavity between the member and the sheath. The thickness of the cavity may vary along the length of the shank. The thickness of the cavity is preferably at a minimum proximate the ideal pivot point and may increase along the shank as the distance from the pivot point increases. The grasping member or sheath preferably rigidly contacts the shank solely at or in the region of the ideal pivot point. At other points along the shank, the compressible material preferably separates the grasping member (e.g., sheath) and the shank. The compressible material may be disposed completely around the perimeter of a cross-section of the shank to allow the sheath to pivot with respect to the shank. The shank may comprise a front and a side, and the sheath may be adapted to pivot about the front of the shank to form an angle of about 3-7 degrees, and more preferably 5 degrees, between the axis of the sheath and the front of the shank. The sheath is preferably adapted to pivot about the side of the shank to form an angle of about 5 degrees between the axis of the sheath and the side of the shank. The impact instrument may be a relatively small hand tool having a mass between about 1 pound and about 3 pounds. The impact surface and the elongated member may comprise metal, plastic, polycarbonate, graphite, wood, fiberglass, other similar materials, or a combination thereof. The hammering device may include a substantially rigid, non-pivoting butt located at the end of the shank to facilitate the pulling of nails. The impact instrument may be a hammering device (e.g., ball-pein hammer, maul, bricklayer's hammer, scaling hammer, sledge, hachet, ax, etc.), a recreational device (e.g., croquet mallet, racquetball racket, badmitton racket, tennis racket, golf club, softball bat, cricket bat, baseball bat, hockey stick, etc.), or any hand-held instrument that ordinarily is swung by a human to deliver an impulse to an object. An advantage of the invention relates to an impact instrument having a impact surface that coincides with the center of percussion during use. Another advantage of the invention relates to an impact instrument adapted to pivot about an ideal pivot point to increase the impulse (e.g., the peak impulse) delivered by the instrument during use. Another advantage of the invention relates to increasing the effective moment length of a impact instrument without lengthening its elongated member to increase the total impulse delivered from the device. Yet another advantage of the invention relates to an impact instrument adapted to pivot about an ideal pivot point to decrease vibrations and shock imparted from the instrument to the user. Another advantage of the invention relates to a pivoting impact instrument that reduces fatigue experienced by a user of the instrument. Still another advantage of the invention relates to a handle that dampens vibrations felt by the user through the handle. Another advantage relates to an impact instrument that pivots to reduce reactive forces and stress exerted by the instrument on the user, thereby reducing incidents of stress disorders such as “tennis elbow.” BRIEF DESCRIPTION OF THE DRAWINGS Further advantages of the present invention will become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings in which: FIG. 1 depicts a conventional hammer having an actual pivot point that is offset from the ideal pivot point. FIG. 2 illustrates various modifications that can be made to a conventional hammer design to alter the center of mass of hammer. FIG. 3 depicts a hammering device having a pivoting handle in accordance with the present invention. FIG. 4 depicts a pivoting handle constructed in accordance with the present invention FIG. 5 depicts reaction forces imparted from the hand to the shank at the moment that an object is impacted. FIG. 6 depicts a pivoting handle adapted to contain compressible material partially surrounding a portion of the shank. FIG. 7 depicts a pivoting handle adapted to contain compressible material completely surrounding a portion of the shank FIG. 8 depicts graph of force imparted from an impact surface versus time for a conventional hammering device and for a hammering device constructed in accordance with the present invention. FIG. 9 depicts a hammering device having an asymmetric pivoting handle. FIG. 10 depicts a hammering device having an asymmetric pivoting handle and an ideal pivot point proximate its end. FIG. 11 depicts a racket having an adaptive pivoting handle constructed in accordance with the present invention. FIG. 12 depicts the pivoting handle of FIG. 12 in a pivoted position. FIG. 13 depicts an impact instrument wherein the extended grasping region of the hand has been reduced to a smaller effective grasping region. FIG. 14 depicts an impact instrument with a pin or similar device. FIG. 15 depicts an impact instrument with one embodiment of the grasping member. FIG. 16 depicts an impact instrument with another embodiment of the grasping member. FIG. 17 depicts an impact instrument with four cavities in the grasping member. FIG. 18 depicts an impact instrument with two cavities in the grasping member. FIG. 19 depicts an impact instrument with a bent elongated member and two cavities in the grasping member. FIG. 20 depicts an impact instrument with a bent elongated member and a cavity in the grasping member. FIG. 21 depicts an impact instrument with a grasping member having a substantially rigid outer surface. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A claw hammer is depicted in FIG. 2. The claw hammer may include a grasping region 21 located on shank 14. The grasping region is preferably in the vicinity of end 17. The width of the shank in the grasping region may be increased or decreased relative to portions of the shank that lie outside of the grasping region. The grasping region may include one or more indentions or curved surfaces to facilitate grasping of the shank. The end 17 or butt of the hammer may be slightly wider than the remainder of the shank to inhibit the shank from slipping out of the hand during use. The grasping region preferably begins at a location on or adjacent to the butt and preferably extends upwardly (i.e., towards head 12) a vertical distance of between about 3.5 inches and about 4.5 inches, and more preferably a vertical distance between about 3.8 inches and about 4.2 inches. The grasping region preferably terminates at a location beyond which the hammer could not be grasped and used efficiently. For instance, if the shank were grasped above the grasping region during use, the reduced moment length between the hand and the hammer head would tend to measurably reduce the efficiency of hammering. The “efficiency of hammering” may be considered to be the amount of impulse or peak impulse that is deliverable by a user per unit of weight of the hammer. Throughout this description, the “hand” is taken to include the palm and all of the fingers but not the thumb. It is to be understood that the thumb may contact the shank at a point outside the grasping region to stabilize the shank during use. It has been found that the mass of an impact instrument may be distributed to reduce the vibration experienced by a user and to increase the peak impulse that is delivered by the impact instrument. In a conventional hammer, the weight of the handle tends to cause the center of percussion to lie below the impact surface towards the shank. In many cases, the distance that the center of percussion is removed from the impact surface increases as the ratio of the weight of the shank to the weight of the head increases. Thus, assuming the same pivot point, a hammering device having a lighter (e.g., wooden) shank often tends to have a center of percussion that is closer to the impact surface as compared to a hammering device having a heavier shank made of steel, fiberglass, graphite, or another similar material. Raising the center of mass of the hammer (i.e., moving the center of mass further away from the end of the shank and closer to the head of the hammer) tends to raise the center of percussion of the hammer. In an embodiment of the invention, the mass of the impact instrument is selectively distributed to create a selected distribution of mass throughout the device such that the center of percussion coincides with the impact surface during use, and more preferably coincides with an impact point that is located in the center of the impact surface. In an embodiment of the invention, the impact surface may be lowered towards the end of the shank relative to its position in FIG. 2 to increase the proportion of the mass of head 12 that lies above impact surface 18. The neck 22 that connects the impact surface to head base 23 may be angled or curved in a slightly downward direction (i.e., in a direction toward end 17) to bring the impact surface closer to the shank. It is preferred that the impact surface remain substantially parallel to longitudinal axis 39 of the shank, although neck 22 may lie along an axis that is perpendicular or oblique to axis 39. The impact surface may contain an impact point 24 that lies in the center of the impact surface. In an embodiment, the vertical distance (i.e., distance in the direction of axis 39) between the impact point 24 and the top of head 12 is approximately equal to the vertical distance between the impact point and the bottom 25 of head 12. In yet another embodiment, the impact surface extends downwardly towards end 17 further than the tip 26 of claw 15 that extends from the head opposite the impact surface. In an embodiment, the width or diameter of the impact surface and/or neck may be altered to reduce or increase the mass of these portions to create a selected distribution of mass throughout the hammer. If the impact surface is positioned relatively high as compared to head base 23, the size of the impact surface and/or neck 22 may be increased to raise the center of mass of the hammer. In an embodiment, neck 22 has a width or diameter that is approximately equal to the width or diameter of the impact surface. Alternately, if the impact surface and/or neck is located low in relation to the head base, the size of the impact surface and/or neck may be decreased to adjust the mass distribution of the hammer to change the location of the center of percussion. The degree of curvature of the claw 15 may be selected to attain a desired mass distribution and selectively locate the center of percussion of the hammer. The curvature of the claw may be reduced so that the claw terminates in a tip 26 that lies above the center of mass of the head. In an embodiment, the claw is somewhat curved and the vertical distance between end 17 and the bottom 25 of the head is less than the vertical distance between end 17 and tip 26 of the claw. The claw may be curved such that the vertical distance between end 17 and the impact surface 18 is greater than the vertical distance between end 17 and tip 26. Alternately, the claw may be substantially straight. Increasing the “triangularity” of any portion of the head tends to redistribute mass toward the top of head 12, and thus raises the center of mass of the hammer. “Triangularity” may be taken to mean the ratio of the average width of the upper half of an object to the average width of the lower half of the object. Alternately, cavities may be placed in the head to increase the effective triangularity and move the center of percussion to the desired location. In an embodiment, the triangularity of the front 30 of the head may be increased such that the front of the head is thinnest proximate the bottom of the head. In an embodiment, the ratio of the frontal portion 29 proximate the top of the head to the frontal portion 27 proximate bottom 25 is preferably at least about 1.5, more preferably at least about 2, and more preferably still at least about 3. The triangularity of the side 28 of the head may be increased in the same manner such that the side of the head is thinnest proximate bottom 25. In another embodiment, the impact surface has a triangularity greater than 1.0 such that its top edge has a width greater than that of its bottom edge. The impact surface may have a substantially trapezoidal or triangular shape. Various combinations of the above teachings may be used to selectively distribute mass throughout the hammer to cause the center of percussion to coincide with the impact point when the shank is grasped within the grasping region during use. For instance, for a 16 oz hammer having a shank length of about 13 inches, the mass of the hammer may be selectively distributed to cause the center of mass to be between the impact surface and the butt at a distance between about 1.8 inches and about 1.9 inches from the impact point. The center of mass of the hammering device may also be located at a point on head 12. It is to be understood that the preferred distance between the center of mass of the device and the impact surface will vary among embodiments of the invention. The preferred distance is dependent upon a number of factors including the length of the shank, the shape of the head, the weight of the hammering device, etc. Although a claw hammer has been used above for illustration, related methods may be used to selectively place or alter (e.g., raise, lower) the center of mass and or the mass distribution of any impact instrument to cause the center of percussion and the impact surface to coincide. In a preferred embodiment, the mass distribution of the impact instrument is such that the following equation is satisfied: d = k 2 h , where d is the vertical distance between an impact point on the impact surface of the instrument and an actual pivot point about which the instrument pivots during use, k is the vertical distance between radius of gyration of the instrument and the actual pivot point, and h is the distance from the actual pivot point to the center of mass of the instrument (see FIG. 1). Most of the terms and equations used herein are based on calculations made for the “static” case. It is believed that the static case is very close to the dynamic case, and thus these calculations will still be substantially accurate for the dynamic case. The actual pivot point 19 of relatively small hammering devices tends to be located substantially in the middle of the grasping region, approximately where a portion of a user's hand between (a) the middle of the middle finger and (b) the interface between the middle finger and the index finger would contact the shank if the shank were grasped by the hand entirely within the grasping region. In an embodiment, the actual pivot point 19 preferably is located at a vertical distance between about 2.5 inches and about 3.5 inches from the butt of the shank, more preferably between about 2.9 inches and about 3.4 inches, and more preferably still between-about 3.0 inches and about 3.3 inches. The distance d preferably differs from the value of k 2 h by less than about 10 percent, more preferably by less than about 5 percent, and more preferably still by less than about 2 percent. The impact instrument preferably contains a point within the grasping region where substantially little or no reactive force is felt during use. This point is generally the ideal pivot point. It is preferred that an impact instrument have a mass distribution such that ideal pivot point coincides with the actual pivot point. That is, the ideal pivot point is preferably located about where a portion of the middle finger of the user contacts the shank during “efficient use” of the instrument. “Efficient use” is taken not to include instances in which the shank is grasped at a location high enough to reduce the moment length between the hand and the impact surface to an extent that efficiency of impulse transfer is measurably reduced. When the impact instrument is grasped such that the ideal pivot point and the actual pivot point coincide, the center of percussion will coincide with the impact surface. It has been found that the total impulse delivered by a hammer having a center of percussion coincident with its impact surface tends to be greater than that delivered by a conventional hammer of identical weight. In addition, the characteristic time of impact is shorter and the peak impulse deliverable tends to be greater for the hammers according to the present invention as compared to conventional hammers of identical weight and length. When a nail is hammered into an object, a certain threshold force is required in order to overcome the static friction between the nail and the object in order to force the nail into the object. A force below the threshold force does not contribute to driving the nail into the surface. FIG. 8 illustrates two schematic oscilloscope curves that each represent the hammering force imparted to an object versus time. The curve having the lower peak represents the force imparted to the object by a conventional hammer A. The curve having the greater peak represents the force imparted to the object by hammer B, which has a selected mass distribution such that its impact surface and center of percussion coincide. The two hammers have identical weights and the curves are corrected for any difference in moment of inertia between the hammers. The total impulse (i.e., the area under the force curve) delivered by hammer B is about 2% greater than that delivered by hammer A, however the peak force delivered by hammer B is about 10% greater than that delivered by hammer A. The force curve for hammer A exceeds that of hammer B largely at locations where the force is lower than the threshold force. Since forces lower in magnitude than the threshold force tend not to contribute to hammering a nail, the total amount of “useful” impulse transferred by hammer B tend to be at least between 2% and 10% greater than that transferred by hammer A, depending on the value of the threshold force. It is to be understood that these numbers are presented merely to illustrate the increase in peak force that may be achieved in an embodiment of the present invention. The increase in peak force delivered at impact may differ among embodiments of the invention. Even if a hammering device is designed to be grasped about the ideal pivot point such that the center of percussion coincides with the impact point, the user likely will still experience significant vibration during use. A typical hand has a width between 3.5 inches and 4.5 inches, which disallows the hammering device to be grasped within the hand at a single point. The hand approximates an extended pivot rather than a point pivot, and most of the hand cannot be located at the ideal pivot point during use. It has been found that a pivoting handle may cause the connection between the hand and the impact instrument to approximate a point pivot. Such a pivoting handle is preferably used in combination with the above-mentioned embodiments in which the distribution of mass is selected to cause the center of percussion of the impact instrument to coincide with the impact surface. The pivoting handle preferably rigidly contacts the shank at or proximate the ideal pivot point. Transverse vibrations (i.e., oscillations in one or more planes perpendicular to the longitudinal axis of the elongated member or shank) tend not to be felt by the user at the ideal pivot point when the impact surface contacts an object, since such vibrations may be considered to be equivalent to an “AC” torque (i.e., oscillatory torque). The pivoting handle preferably rigidly connects the hand and the shank only at the ideal pivot point, thereby reducing the vibration and shock typically experienced by the user. Shock may be considered to be a “DC” torque (i.e., a largely non-oscillatory torque) as compared to vibrational forces. The shock typically experienced by the user is preferably reduced by the pivoting action of the pivoting handle in the “primary pivot plane” (i.e., the plane defined by the swinging arc of the instrument). Vibration experienced by the user is preferably reduced by the pivoting of the handle in a direction perpendicular to the longitudinal axis of the shank. It is believed that a pivoting handle of the present invention does not eliminate shock or vibration throughout the hammering device. It preferably reduces the shock and vibration experienced by the user by creating a connection between the user and the hammering device at or proximate the ideal pivot point. It is also believed that eliminating the shock and vibration in an impact instrument is somewhat counterproductive to making an impact instrument that delivers a relatively large impulse transfer during use. Conventional hammers typically must be grasped relatively tightly because of the shock and vibrational forces that are typically imparted to the user. Grasping the hammer in such a manner for a long period of time tends to both fatigue the user and transfer vibration to the elbow which may lead to “tennis elbow” syndrome. The reduction in shock and vibration through a pivoting handle of the present invention preferably allows the user to grasp the hammering device relatively loosely during use, reducing fatigue and repetitive stress injuries experienced by the user. It has also been found that embodiments of the pivoting handle described herein increase the peak force and the total impulse delivered from the impact surface to an object. An embodiment of an impact instrument having a pivoting handle is illustrated in FIG. 3. Hammering device 31 may include a head 32 having a face or impact surface 34 and claws 36 that may be used for pulling hammered nails. It is to be understood that although a claw hammer is depicted in FIG. 3, the pivoting handle of the present invention is applicable to many additional hammering devices (e.g., ball-pein hammers, mauls, bricklayer's hammers, scaling hammers, sledges, axes, hachets, etc.) and impact instruments (e.g., croquet mallets, racquetball rackets, badmitton rackets, tennis rackets, golf clubs, baseball bats, softball bats, cricket bats, hockey sticks, etc.) as well. A shank 38 extends from the head along axis 39 and terminates in an end 40. The shank may include wood, metal (e.g., steel), graphite, fiberglass, hard plastic, polycarbonate, various other materials, or a combination thereof A pivoting handle 42 is preferably provided on the shank at a selected location at least partially within the grasping region of the device. An embodiment of a pivoting handle 42 is illustrated in FIG. 4. This handle may be used with any impact instrument, including hammering devices and recreational devices. The handle preferably includes an outer sheath 44 that covers at least a portion of shank 38, and preferably the sheath completely surrounds a portion the shank. The sheath may be made of a relatively rigid, substantially incompressible material. A cavity is preferably formed between the sheath and the shank, and a compressible material 46 is preferably disposed within the cavity. The compressible material is preferably shock-dampening and may include a foam (e.g., closed-cell foam) or another similar material. The pivoting handle may include an inner member 48 disposed between the shank and the compressible material such that the compressible material is contained between the outer surface of the sheath and the inner member, allowing pivoting handle 42 to be slid onto or off of the shank. In an alternate embodiment, the cavity formed between the sheath and the shank contains no compressible material and is filled with a gas (e.g., air) that may be pressurized or unpressurized. The cavity formed between the sheath and the shank preferably has a thickness that varies along the length of the shank. The thickness of the cavity preferably has a minimum value at a location proximate ideal pivot point 52. In an embodiment, the thickness of the cavity preferably has a minimum value proximate the ideal pivot point and the thickness increases as a quadratic function in a direction away from the ideal pivot point. The cavity preferably terminates proximate the ideal pivot point such that a portion 50 of the sheath contacts shank 38 at the ideal pivot point. Alternatively, the sheath may contact the inner member 48 at the ideal pivot point. After the impact surface contacts an object, a portion of the compressible material 46 preferably is compressed by the shank to allow the sheath to pivot. The sheath preferably contacts the shank only at or near the ideal pivot point to allow the sheath to pivot with respect to the shank at the ideal pivot point, thereby effectively transforming the extended pivot formed by the hand to a point pivot located at the ideal pivot point. An impact instrument such as a hammering device may be grasped at any location on the outside surface of the sheath during use with the result that the sheath pivots with respect to longitudinal axis 39 about the ideal pivot point. Thus, an impact instrument may be grasped entirely above or below the ideal pivot point during use with the sheath being adapted to pivot with respect to the longitudinal axis of the elongated member or shank at or near the ideal pivot point. The impact instrument is preferably grasped on the pivoting handle such that the actual pivot point of the hand and the ideal pivot point substantially coincide. The compressible material 46 may serve to dampen vibrations throughout the shank and prevent contact between the shank and the shaft along the entire length of the shank except at or near the ideal pivot point. The compressible material preferably maintains the sheath somewhat rigid with respect to the shank to allow the pivot to be somewhat stiff so that it does not tend to “flop” or pivot when the impact instrument is picked up or swung. The grasping member and/or the elongated member are preferably lossy (i.e., if force is applied to these members, they preferably have some ability to rebound to their equilibrium position after the force is removed). Such lossiness of the grasping member and/or the elongated member may tend to inhibit oscillatory motions of the sheath after an object is struck, pivoting occurs, and force has been applied to such members during the pivoting action. The degree that the sheath may pivot with respect to the shank may be limited by the compressibility of the compressible material and/or by the amount or thickness of the compressible material disposed between the sheath and the shank. The compressible material also preferably dampens the rotational motion of the hand during and after an object is impacted by the impact surface. The sheath may lie along an axis 37 (shown in FIG. 3) that is parallel to and preferably coincident with longitudinal axis 39 before the impact surface contacts an object. When the sheath pivots with respect to the shank, an angle is preferably formed between axis 37 and longitudinal axis 39. The angle preferably has a vertex at the ideal pivot point and opens in a direction substantially toward the object impacted. The angle formed by the pivot may be limited by the compressible material to be less than about 10°, more preferably less than about 5°, and more preferably still between about 1° and about 3° (see FIG. 3(a)). The angle may also be less than 1°. The sheath preferably does not pivot with respect to the shank unless a substantial force (such as a force derived from delivering an impulse to a target object) is imparted to the impact instrument. The reaction forces exerted onto a shank during impact by a hand located about the ideal pivot point are illustrated in FIG. 5 for an impact instrument (e.g., for a hammer). At impact, the rigidity of the shank of a conventional hammer typically prevents the hand from continuing to rotate in the direction of the forces in FIG. 5. Since the shank tends to be relatively inflexible, the rotation of the hand is abruptly stopped at the moment of impact. Shortly after impact, the hammering device typically rotates (i.e., rebounds) in a direction opposite the direction that the hand is moving. Significant shock can be imparted to the hand at impact and shortly thereafter. The pivoting handle may reduce such stress by allowing the hand to continue rotating in the direction of the target object at the moment of impact. The hand's tendency to continue rotating during impact is impeded to a much less degree by the compressible material than it would be by a rigid, non-pivoting handle. The pivoting handle preferably rigidly connects the hand to the shank at the ideal pivot point and preferably only “loosely” connects the hand to the other locations of the shank through compressible material 46. During impact, the hammer preferably exerts little reaction force on the hand. The compressible material preferably allows the rotation of the hand to be more gradually brought to a stop, thereby decreasing the reaction force that is exerted on the hand at impact. In'this manner, the stress and fatigue that would otherwise be experienced in the wrist and/or elbow of the user are reduced. This allows shank of the hammer to be gripped relatively loosely during use. The compressible material also preferably lessens the tendency of the user to interfere with the counter-rotational motion of the hammer after impact. The pivoting action of the hammer may shorten the time of impact and increase the peak impulse and thus the “hammering power” delivered. Such may be accomplished by reducing the degree to which the reaction force of the hand on the shank lengthens the contact time between the impact surface and the object that is impacted. An embodiment of the pivoting handle disposed on a shank 38 is illustrated in FIG. 6. The pivoting handle preferably surrounds a lower portion 60 of the shank, which has a reduced width relative to the upper portion of the shank. Although lower portion 60 is illustrated having a rectangular cross-section, it is to be understood that it may have a number of other cross-sectional geometries including a circular, orthogonal or oval cross-section. The cavity 64 formed between sheath 42 and lower portion 60 preferably has a minimum thickness proximate ideal pivot point 52. Sheath 44 may contain a protrusion 62 proximate ideal pivot point 52 that rigidly contacts lower portion 60 to cause the sheath to pivot about the ideal pivot point. Although not shown in FIG. 6, compressible material may be disposed about two sides of the lower portion 60 to allow the sheath to pivot “forward and backward” in the directions indicated by arrows 68 in a plane perpendicular to the impact surface. The pivoting handle may also contain a plurality of openings 66 adapted to receive a connector such as a screw for securing the top and bottom sections of the handle together. It is preferred that the sheath also be adapted to pivot in a plane that is parallel to the impact surface during impact. The ability of the sheath to pivot with respect to the shank both “forward and backward” and “sideways” tends to reduce transverse vibrations to a greater degree as compared to an embodiment in which the sheath is limited to pivoting with respect to the shank only along a single plane. A single pivot point can reduce experienced vibration and shock in both direction 68 and direction 69 because the moment of inertia about the pivot point 52 is approximately equal in these directions. Therefore, the ideal pivot point associated with each direction has approximately the same location. The pivoting action in direction 69 largely addresses vibration, since any shock occurring in this direction tends to be relatively small in magnitude. In an embodiment illustrated in FIG. 7, a pivoting handle 42 that includes a first section 70 and a second section 72. The sections may be disposed about the side of a lower portion of shank 38 and secured together with connectors. Cavity 64 preferably surrounds the shank such that the sheath is fully pivotable in the two dimensions perpendicular to the longitudinal axis of the shank. At a given location along the shank, the separation between the sheath and front portion 76 of the shank may be greater than the separation between the sheath and side portion 74 of the shank. Second section 72 may contain inner member 48 disposed along its length. The inner member may contain openings through which the protrusions 62 on the inner surface of the sheath extend as illustrated in FIG. 7. The first and second sections may also include a raised portion 78 to provide rigid contact between the sheath and the side portion 74 of the shank proximate the ideal pivot point. An endcap may be attached to the butt of the shank The endcap may be relatively small. In a hammer the endcap is preferably relatively large to assist in the pulling of hammered nails. In an embodiment, the sheath surrounds the shank such that the cavity formed therebetween is an annular cavity disposed about the shank. The pivoting handle may be formed from a pair of concentric tubes with compressible material disposed therebetween. The tube of greater width (e.g., diameter) may function as sheath 44 and the inside tube may function as inner member 48. The width of the sheath may vary along the length of the handle such that it has a minimum proximate the ideal pivot point on the shank and increases (preferably smoothly) in a direction away from the ideal pivot point. The reaction force exerted on the hand at impact tends to increase as the distance from the ideal pivot point increases, and the thickness of the sheath preferably varies as a function of the typical reaction force imparted from the shank to a user during use. The sheath is preferably adapted to radially pivot with respect to the shank such that it can pivot in the two dimensions perpendicular to the longitudinal axis of the shank. Generally, it is preferred that the ideal pivot point be located in the middle of the pivoting handle (as shown in FIG. 4) such that the handle tends to be grasped about the ideal pivot point where the sheath contacts the shank. Alternately, it may be desired to add a pivoting handle to a conventional hammer without altering the mass properties of the hammer. An asymmetric pivot handle (i.e., one in which the midpoint along the length of the pivoting handle does not coincide with the ideal pivot point) may be placed onto the hammer to rigidly connect the hand to the sheath at the ideal pivot point. In an embodiment of the invention, pivoting handle 42 is placed onto a hammering device having an ideal pivot point located on the shank above the grasping region 21. FIG. 9 illustrates an asymmetric pivot hammer in which the top end of the handle is closer to the ideal pivot point than the bottom end of the handle. During use, any outer portion of the sheath may be grasped and the hand retains its rigid connection with the shank only at the ideal pivot point. The sheath can be grasped below the ideal pivot point at a location in the vicinity of the end of the hammering device so that a selected moment length exists between the actual pivot point and the impact surface. Although the sheath may be grasped below the ideal pivot point, the pivoting handle causes the sheath to pivot with respect to the shank at the ideal pivot point. In this manner, the vibration felt by the user may be reduced and the peak impulse delivered by the device may be increased. The pivoting handle preferably creates rigid contact between the sheath and the shank such that pivoting occurs about the ideal pivot point regardless of where the sheath is grasped. Hammered nails can be pulled by positioning the nail between the claws of the hammer and applying a sudden impulse to the butt of the hammer. If a pivoting handle extends over the butt, the compressible material proximate the butt may lessen the effectiveness the above-mentioned nail-pulling technique. In an embodiment, the hammer contains a substantially rigid, non-pivoting butt 80 (shown in FIG. 9). The pivoting handle preferably terminates short of the butt. The rigid butt may be impacted to facilitate the pulling of nails. In an embodiment of the invention, the pivoting handle contains an elastic or flexible material 82 disposed proximate its top end. The material 82 may be rubber, plastic, or another similar material. The material 82 preferably covers the interface between the top end of the pivoting handle and the adjacent shank portion. The material 82 preferably serves to prevent the user from being “pinched” between the top end of the handle and the shank during pivoting of the sheath during impact. The material 82 may cover the entire outer surface of the pivoting handle and the butt and may extend onto the shank slightly beyond the top end of the pivoting handle. In an embodiment illustrated in FIG. 10, the hammering device has a mass distribution such that the ideal pivot point is proximate to or at the end of the shank of the hammer. A pivoting handle is preferably positioned onto the shank as shown in Figure D. It is preferred that the cavity containing the compressible material has a thickness that decreases along the length of the shank toward the end of the hammering device. The cavity preferably terminates proximate the end so that the sheath contacts either the shank or inner member 48 at the ideal pivot point. The hammer may be grasped at any location on the sheath during use, and the sheath preferably pivots with respect to the shank at the ideal pivot point. Although the hammering device may be held at a location on the sheath above the ideal pivot point during use, it is believed that the impact characteristics of the device would be equivalent to those of a hammering device having a longer handle. It is anticipated that the “effective” moment length may be increased by about at least about 10% and perhaps a substantially greater amount. For conventional, relatively small hammering devices (i.e., those with shanks having a length of less than about 14 inches), the ideal pivot point may be lowered from its usual location on the shank by a distance in excess of about 34 inches. The impulse delivered tends to increase by an amount proportional to the square root of the increase in the moment length. Thus, the hammering device can impart a greater impulse than a conventional hammer of identical weight and length with the same effort. Although hammering devices have been used to exemplify the above embodiments of the present invention, it is to be understood that such embodiments are also applicable to wide range of impact instruments including but not limited to croquet mallets, racquetball rackets, badmitton rackets, tennis rackets, golf clubs, baseball bats, softball bats, cricket bats, hockey sticks, mauls, sledges, axes, hachets, etc. An embodiment of a racket 90 having a pivoting handle 91 constructed in accordance with the present invention is depicted in FIG. 11. The racket contains an impact surface 92 and a sweet spot 94 centrally disposed on the impact surface. The pivoting handle preferably contains a plurality of pairs of bumpers 96 provided along the length of the handle. The bumpers of a given pair may contact opposite sides of the racket frame portion 98 disposed within the handle. The length of each bumper is preferably variable such that the bumpers are operable between retracted and extended positions. In the absence of a force of selected magnitude applied against the bumpers, the bumpers may tend to extend to their maximum length. The bumpers are preferably selectively retractable such that each bumper retracts a distance that is determined by the magnitude of the force exerted against it. Each bumper preferably contains a force sensor 100 proximate its end. The force sensors may be piezoelectric transducers, strain gauges, or similar devices well known to those skilled in the art. Each force sensor preferably is adapted to determine the force exerted by the frame member against a bumper at the moment that the impact surface of the racket contacts an object. The force sensors may be adapted to send an electronic signal to a processing device 102. Each bumper pair is preferably adapted to become rigid or stiffen to maintain a constant length upon receiving an electronic signal from the processing device. The stiffening of the bumpers may be accomplished by a solenoid. The stiffening of a pair of bumpers preferably rigidly secures a portion of the frame member between the bumpers. When the impact surface of the racket contacts an object, a torque is exerted on the frame member within the handle. It is preferred that only a single bumper pair (e.g., the bumper pair closest to the ideal pivot point when the object contact the “sweet spot” of the impact surface) is stiff prior to impact. Forces of varying magnitudes are exerted on each of the force sensors shortly after impact. Each of the sensors may send an electronic signal to the processing device that varies as a function the magnitude of a force sensed by the sensors. The processing device preferably compares the received signals to determine the set of bumpers that is closest to the ideal pivot point by locating the set of bumpers where the least amount of force is exerted at impact. Alternately, the processing device may determine where a “change in sign” of the force exerted along the bumpers occurs to determine the location of the ideal pivot point. The processing device may send an electronic signal to cause the set of bumpers closest to the ideal pivot point to stiffen, thereby inhibiting movement of the portion of the rod “pinched” between the stiffened bumper pair. The stiffened bumpers preferably create a pivot point about which the frame member pivots after impact. By changing the location along the handle about which the frame member pivots, the “sweet spot” can be effectively defined on the impact surface where the object contacts the impact surface. FIG. 11 illustrates the position of the bumpers before an object contacts the impact surface. If the object contacts the impact surface at a location proximate the sweet spot, bumpers 104 will stiffen to define the actual pivot of the handle at the ideal pivot point. FIG. 12 illustrates the position of the bumpers after an object contacts the impact surface of the racket at a location 106 beyond the sweet spot. Shortly after the object is impacted, the force sensors determine the force exerted on each bumper by the frame member, and the approximate location of the “modified” ideal pivot point 53 is determined. The processing device preferably sends a signal to the bumper pair 110 proximate the “modified” pivot point causing the bumpers to stiffen so that the pivoting handle pivots about the “modified” pivot point. In this manner, the “sweet spot” of the racket may essentially be redefined at or near the location that the object contacts the racket. Relocating the sweet spot in this manner preferably allows a greater impulse to be delivered to the object and reduces vibration felt by the user through the handle. Similar “adaptive” handles may be used for a variety of other impact instruments. The electronic signals are preferably transmitted to and from the processing device in substantially less time than the characteristic time of impact on the impact surface. In an embodiment of the invention illustrated in FIG. 13, the impact instrument may contain an elongated member 124 and a grasping member 128 connected to the elongated member. The elongated member preferably extends from head 121 and includes an upper section 122 and a lower section 126. The lower section may have a width less than that of the upper section. The grasping member is preferably connected to the lower section at a location proximate the ideal pivot point 52 on the elongated member. The grasping member preferably surrounds the lower section, although it may include two sections disposed on opposite sides of the elongated member as shown in FIG. 13. The grasping member preferably contains an end 128 that is in spaced relation with the lower section of the elongated member to form a cavity 130 therebetween. Grasping member 120 is preferably connected to the elongated member at a relatively small region or single location proximate the ideal pivot point. Grasping member 120 may serve to rigidly connect the hand with the elongated member at a location proximate the ideal pivot point to reduce shock or vibration experienced by the user through grasping member 120. In an embodiment, the elongated member does not pivot with respect to grasping member 120, however the grasping member reduces the amount of indirect contact between the user and locations on the elongated member where vibration and shock and vibrational forces are present (e.g., locations proximate cavity 130). In an alternate embodiment, the elongated member is adapted to pivot about the point at which the grasping member is connected to the elongated member. The cavity 130 may contain compressible material. In an embodiment illustrated in FIG. 14, the pivoting handle 42 has an opening that contains a pin 140 or similar device. The pin preferably extends through sheath 44 and the lower portion of the shank to connect the pivoting handle to the shank. The pin preferably extends through the shank at or proximate the ideal pivot point, and the sheath is preferably adapted to pivot about the pin. The pin is preferably flush or recessed with respect to the outer surface of the sheath to prevent the pin from interfering with the user's ability to grasp the sheath about the ideal pivot point. In an embodiment of the invention illustrated in FIG. 15, the instrument may contain an elongated member 124 and a grasping member 120 connected to the elongate member. The elongate member preferably extends from head 121 and may include an upper section 122 and a lower section 126. The lower section may have a width or thickness less than that of the upper section. The grasping member is preferably connected to elongated member 124 to the lower section 126 at three locations. The grasping member is preferably connected to the lower section proximate the ideal pivot point 52. The grasping member may also be connected to the lower section proximate the butt end 80 and near the end of the grasping section proximate the border between the lower section 126 and upper section 122 of the elongated member 145 as shown in FIG. 15. At least two cavities 130 and 150 are preferably formed between the grasping member and the lower section. In some embodiments only one cavity may be formed. The cavities preferably extend between the locations where the grasping member contacts the lower section. The cavities formed between the grasping member and the lower section preferably have a thickness that varies along the length of the shank. The thickness of the each of the cavities preferably has a minimum near the ideal pivot point 52 and may have a maximum proximate the two ends of the lower section 126. The cavities may be filled with a compressible material. The grasping member may be made of a semi-rigid material. Upon impact, the grasping member may bend to momentarily alter the thickness of a portion of the cavities so as to form an “effective pivot” about the ideal pivot point. The only means by which shock and vibration may reach the user's hand is preferably through the ends of the grasping section 155 and 160. Since the average distance between the ends 155 and 160 and the user's hand is generally several times greater than the average closest distance between the lower section and the user's hand (as in a typical hammer), little shock or vibration is felt. Furthermore, power is generally coupled to the user through the ends 155 and 160. This further reduces the shock and vibration felt by the user. Although different in form, this embodiment is nearly identical in function and possesses the advantages of an actual pivot embodiment in a more practical form. In another embodiment, the regions of the grasping member 160 and 155 that contact the lower portion of the elongated member at ends 80 and 145, respectively, may be made of a compressible material. This further allows an “effective pivot” at the ideal pivot point 52. In an embodiment illustrated in FIG. 16, the mass properties of an impact instrument such as a hammer are such that the ideal pivot point 52 is proximate the butt end of the hammer 80. Here, the grasping member 120 is connected to the lower section 126 at two locations 80 and 145, corresponding to the butt of the hammer and the end of the grasping section proximate the border between the lower section 126 and upper section 122 of the elongated member 145, respectively. A cavity 130 is formed between the grasping member and the lower section and between the ends of the grasping region 155 and 160. The cavity formed between the grasping member and the lower section preferably has a thickness that varies along the length of the shank. The thickness of the cavity preferably has a minimum near the ideal pivot point 52 and may have a maximum proximate end 145. The cavity may be filled with a compressible material. The grasping member may be made of a semi-rigid material. Upon impact, the grasping member may bend to momentarily alter the thickness of a portion of the cavity so as to form an “effective pivot” about the ideal pivot point. In an embodiment, the regions of the grasping member 155, which contact the lower portion of the elongated member 145 may be composed of a compressible material. This further allows an “effective pivot” at the ideal pivot point 52. In an embodiment, the member which the user grasps is generally loosely coupled to the elongated member (e.g., shank) of the impact instrument in some manner. FIG. 21 illustrates the an embodiment in which most of grasping member is loosely coupled to the elongated member. In the embodiment the striking instrument would still tend to pivot about its ideal pivot point, however the amount of pivot would generally be less than with respect to other embodiments described herein. That is, the performance is less in this instrument. It should be noted that the embodiment depicted in FIG. 21 includes a grasping member that has a substantially rigid exterior surface 222 with a compressible (e.g., “spongy”) material between it and the elongated member. The hand tends to involuntarily flex during impact for ordinary impact instruments. The hand preferably does not involuntarily flex, or flexes much less than with ordinary impact devices, during impact when using an embodiment of this invention. Such an impact instrument has less of a tendency to cause a user to feel that the instrument is going to jump out of the hand during impact, so the hand does not try to compensate and flex to hold the instrument more tightly. The physiological reason for such is not completely understood, but the end result is that the user tends to feel noticeably more comfort and significantly less fatigue during use. It is believed that the ideal pivot point is preferably located in the grasping region of the grasping member. The grasping region, however, is not normally at the end of the elongated member since it is somewhat more difficult for a user to maintain a grip onto the elongated member if the user is only grasping it at its end. The maximum striking efficiency (i.e., maximum force per input of energy from the user), however, occurs when and if the user grasps the elongated member at its end that is distant from the impact surface. More leverage (i.e., more moment force) can be applied to the impact surface when the user grasps at or nearer to this end of the elongated member. As such, professional framers will tend to grasp a hammer at or near to the very end of the shank in order to get more leverage and drive nails faster (such a grasp is partially depicted in FIG. 1 in that the hand is grasping the hammer at a location nearer to the end of the shank than the ideal pivot point). Professional baseball players will likewise tend to grasp a baseball bat at the extreme end of the handle while hitting. Nonprofessional framers and nonprofessional baseball players, however, need additional control so they will tend to grasp the instrument much higher up on the handle. It is believed that the professional framer tends to develop tennis elbow and experience more fatigue than they should because their hand is not located close to the ideal pivot point, and because their hand is an extended pivot. The professional baseball player, however, does not have this problem. Since a baseball bat is not designed to strike at a particular point on the bat (as a hammer is), moving one's hands to the very end of the bat moves the “sweet spot” down towards the very end of the bat too. An advantage for the professional baseball player is that the distance that the sweet spot moves is much less than the distance the hands move, so the baseball player has, in effect, increased the length of the baseball bat when he moves his hands “down” towards the knob at the end of the bat. An average user gains an increase in momentum transfer by using a striking instrument. It is believed that an impact instrument which is swung and does not ordinarily pivot at the extreme butt end of the elongated member can be improved upon. The improvement in impulse transfer is approximately proportional to the increase in moment length. In an embodiment, a grasping member that pivots during use is advantageous because it focuses or concentrates the grip of the user in or about the region of the ideal pivot point during use. Thus, no matter where the user grasps the hammer, it will tend to pivot at or about the same region, and that same region is in or about the region of the ideal pivot point. Moreover, the ideal pivot point can be varied by adjusting the mass distribution, physical characteristics, etc. of the impact instrument. Thus it is possible to choose where the ideal pivot point is to be located in the impact instrument. Preferably the ideal pivot point is located at a point wherein the momentum transfer to the impact surface is improved and/or optimized. In some embodiments the ideal pivot point may be at or close to the butt end of the elongated member of the instrument, thereby lengthening and/or maximizing the moment for a given mass and length of the elongated member. Such an instrument will have the ability to impart greater momentum transfer to the object being struck, per unit of perceived effort applied by the user to the instrument, than an instrument with the same mass (but not mass distribution) and length. Stated another way, moving the ideal pivot point closer to the distal or butt end of the elongated member tends to increase the effective length of the elongated member. Therefore the hammering power of the instrument has been increased, assuming the same amount of hammering effort is utilized. By way of example, a hammer with an ideal pivot point located near the “butt” end of the elongated member of the hammer (i.e., located near the end of the handle of the hammer) may be compared with a hammer that does not pivot but still has the same mass and other dimensions. When both hammers are swung with equal effort, immediately before impact each hammer will have the same amount of kinetic energy. Assuming that the impact is elastic (a similar analysis is true with respect to an inelastic target), then, during and immediately after impact the grasping member of the pivoting hammer will pivot. Since momentum transfer (or leverage) is a function of the mass and the length of the moment arm, the hammer with the ideal pivot point moved closer to the butt end of the elongated member will have a longer effective moment arm. So this hammer will be able to apply more momentum transfer to the impact surface per unit of energy applied by the user to the hammer. In the embodiments described herein, an impact instrument is often described as pivoting about a certain point. It is to be understood that the same concepts apply with respect to two handed impact instruments such as axes, golf clubs, baseball bats, etc. Althought such impact instruments are intended to be grasped with two hands, they nevertheless typically tend to pivot at only one of the hands during use. Terms such as center of percussion, radius of gyration, and ideal pivot point generally only apply, in the theoretical sense, to a rigid body. In reality few objects are completely rigid bodies. For instance, a golf club shaft bends during swinging and during impact. Even the shank and the claws of a claw hammer deform during impact. Thus most of the embodiments depicted in the figures are not, in the strict theoretical sense, rigid bodies. In a theoretical sense, a rigid body cannot vibrate. Because nearly all impact instruments are significantly stiff, rigid body calculations and equations are still approximately accurate. Referring to FIG. 3, there is some pivoting action between the grasping member and the shank of the instrument. The amount of pivot depends on the stiffness of the grasping member/shank combination and the magnitude of impact. The entire instrument may be modeled as a single rigid body or as two rigid bodies. In the case wherein there is a very loose pivot and/or a very large impact, the grasping member and the rest of the instrument are not strongly coupled. Thus, calculation of the center of mass, the radius of gyration, the center of percussion, and the ideal pivot point are properly calculated by disregarding the grasping member. In the case in which the pivot is very stiff and the impact is small, the entire instrument is reasonably approximated as a rigid body. In this approximation, the instrument acts similarly to an unpivoted impact instrument, and therefore has similar performance also. The calculation for the ideal pivot point is somewhere in between the above two cases. For the case in which the mass of the grasping member is small compared to that of the instrument, the position of the ideal pivot point is virtually constant, regardless of the pivot stiffness or impact magnitude. There is a simple method to empirically determine or approximate the ideal pivot point in an impact instrument. In the case of a hammer, one may grasp the shank of a hammer with the thumb and forefinger and lift the head of the hammer with the other hand and drop the head of the hammer a few inches onto a hard surface, e.g., an anvil or a concrete floor. During impact, one should notice the shock and vibration felt in the thumb and forefinger during impact. This procedure may be repeated several times, moving the thumb and forefinger up and down the shaft. With the exception of some very poorly designed instruments, at some point in the shaft there is minimal shock and vibration. That point is the ideal pivot point. The method for determining the ideal pivot point is different than determining the sweet spot, in, for example, a baseball bat. With a baseball bat, the bat may be grasped at a single point (e.g., the butt end) and hung like a pendulum so that it is able to be easily pivoted. Then the bat may be lightly and repeatedly tapped with the same amount of impulse along the main (longitudinal) axis, i.e. up and down the bat. There will be a point in the bat at which it will react more strongly to the impulse (i.e. swing with greater amplitude). This is the “sweet spot” or the center of percussion of the bat. If the bat is grasped at a single point and strikes an object, i.e. a ball, at the sweet spot, there will not only be optimal impulse transfer to the ball, but there will be minimal shock and vibration at the pivot point. The sweet spot and ideal pivot points are technically only single points and are dependent on the instrument being pivoted at a single point and striking an object at a single point. Such is not the case with real instruments. For instance, a 16 ounce claw hammer has an impact surface that tends to be approximately 1 inch in diameter. A nail could be struck anywhere on that impact surface. Furthermore, if the hammer is striking a flat object, i.e. a board, the impact is across the entire impact surface. As such, for a hammer the ideal pivot point is, in reality, a somewhat mushy spot with width on the order of or slightly smaller than the impact surface. The ideal pivot point is generally less dramatically felt as the length of elongated member of the instrument increases. In general as the length of the instrument increases, then the importance of the placement of the pivot decreases. This is why that golf clubs, for instance, may be cut to different lengths for different users and still be effective. This also means that in an embodiment of the invention a golf club could be made such that it pivots at the very butt end, and this golf club may include minimal changes to the head of the club. It should be noted that the cavities between the grasping member and the elongated member do not need to be annular for increased performance. Since the motion of the striking instrument is principally in one plane, the portion of the cavities which tend to more important for increased performance are those cavities that are in the plane of motion, i.e., the top and the bottom of the elongated member. Cavities on the sides of the elongated member tend to yield a comparatively smaller increase in the performance. To increase durability and allow the grasping member of the impact instrument to be better attached to the elongated member, it is possible to only have four cavities only on the top and the bottom. Such an impact instrument is depicted in FIG. 17 wherein impact instrument 200 includes a impact surface 202, and elongated member 204, a grasping member 206, an ideal pivot point 208, and cavities 210, 212, 214, and 216. It is to be understood that impact instrument 200 may be a hammering device or a recreational device. The shape of the impact surface 202 will vary depending on what type of instrument the impact instrument 200 is. For instance, if the impact instrument 200 is a golf club, then impact surface 202 will be in the shape of a “wood” or an “iron”. If impact instrument 202 is a hammer, the impact surface 202 will be in the shape of a hammer head with the striking surface being at location 201 and the “claw” being at location 203. Shock in an impact instrument such as a hammer may causes damage to the user. The vibration, or the after-ringing of the impact instrument, while somewhat annoying, is usually less damaging. Thus, in an embodiment the impact instrument may only include two of the four above-mentioned cavities since those two cavities 212 and 216 tend to be more important in addressing and lessening the shock felt by the user (see FIG. 18). During and immediately after impact, the hand and the impact instrument are counter rotating with respect to one another (the hand is still proceeding forward while the impact instrument is now rebounding backward). Consequently, the pinky and ring finger as well as the web of the hand tend to feel the majority of the shock. These portions of the hand will be proximate to (i.e. on the outside of) the cavities 212 and 216 shown in FIG. 18. Thus when the grasping member includes flexible material, then immediately after impact the flexible material will bend into the cavities 212 and 216, thus causing the grasping material and such cavities to isolate the user from and/or absorb some of the shock that would otherwise be felt by the user. In the embodiment shown in FIG. 18, only a relatively small portion of the grasping material comprises the cavities 212 and 216. Thus a larger portion of the grasping material is left in place, without cavities, thereby tending to increase the strength and durability of the grasping member, as well as the adhesiveness of the grasping member to the elongated member. Cavities 212, 214, 216, and 218 may preferably be filled with air, or a material more compressible than the material of the grasping material. In one embodiment the material in the cavities may be a soft foam rubber or closed cell material whereas the grasping material may be a harder or stiffer rubber, a harder or stiffer plastic material, fiberglass, metal (e.g., steel), aluminum, graphite, polycarbonate, or vinyl. In an embodiment the elongated member 204 (or shank in a hammer) may be curved or include curves. As shown in FIG. 19, the elongated member 204 may be curved to allow more room for the cavities 212 and 216 and still maintain the wall thickness 218 of the grasping material on the outside of the cavities 212 and 216. Furthermore, the strength of the elongated member/grasping member combination is substantially maintained along its length since as the cross section of the rigid elongated member preferably remains relatively constant along the length of such combination. In an embodiment such as FIG. 20 a single cavity 220 may be used. In this embodiment, and in the embodiment shown in FIG. 19, the ideal pivot point 208 may be varied to be located further from the impact surface 202 (such variance may be achieved by varying the dimensions, shapes and/or masses of the various components in the impact instrument). As such, it is possible that only a single cavity 220 may be located on the “top” of the elongated member 204. Preferably the cavity is located such that post-impact rebound shock is isolated from the user and/or such shock is at least partially absorbed by material in the cavity and/or the material surrounded or proximate the cavity. Thus it is to be understood that the “top” of the elongated member 204 is the location of the cavities when location 201 is the impact surface of, e.g., a hammer. As shown in FIG. 21, in an embodiment an impact instrument 200 may include a substantially rigid outer surface 222. Between outer surface 222 and the elongated member 204 may be a cavity 224, which may or may not include a compressible material, air, or a combination thereof (e.g., compartments filled with air). In the context of this application a “rigid” outer surface 222 means an outer surface that is less compressible than the material in the cavity 224. The impact instrument 200 is not constrained to pivot at any single point. An advantage of this embodiments depicted in the figures is that the instruments may typically be constructed (e.g., with cavities) such that its appearance may not be substantially different from the appearance of an ordinary instrument that does not have any features of the invention. In an embodiment the cavities may include ribs and/or protrusions for structural support. Cavities may be joined by strips or pieces of material. Cavities may be in the form of cells of air separated from each other with pieces of material. In an embodiment the elongated member comprises ribs and/or protrusions to enhance the fit and/or adhesion of the grasping member to the elongated member. It is believed that when vibration dampening devices of the prior art are located proximate the impact end of an impact instrument then such devices have the effect of decreasing the shock and vibration, but this action simultaneously decreases the peak impulse that the striking instrument can deliver during use. Such vibration dampening devices may significantly decrease the effectiveness of an impact instrument, especially with respect to a hammer. It is believed that, when a vibration dampening device of the prior art is located proximate the butt end of an impact device, then that the vibration dampening device has the effect of reducing the vibration without largely reducing the impact transfer. The shock, however, is believed to cause much more damage and fatigue to the user. This shock is largely unaffected by this vibration dampening device. This is because the shock, which originates from the impact region, generally travels through the portion of the elongated member where the hand is grasping before it can be damped at the butt end. A human hand tends to involuntarily flex, or clench, during impact while swinging an impact instrument. Shock and vibration are often perceived as being less when a user holds the instrument very tightly. A professional framer, however, tends to grasp a conventional hammer on the very butt end (in order to maximize the impulse transferred to the surface being hammered). At the butt end, the shock and vibration are generally the worst, so the framer tends to hold the handle more tightly to lessen the sting in the hand, particularly in the pinky and ring finger. Such tight holding, however, tends to increase fatigue and also transfer more of the shock to the elbow, thereby increasing the chance of developing damage to the arm or “tennis elbow.” In sum, in a convention hammer maximizing impulse transfer causes more vibration and more stinging. To lessen the sting in the hand, a user such as a framer will hold a hammer more tightly, but this action causes tennis elbow to develop more readily. Thus certain advantages of the invention are readily apparent. An impact instrument can be designed so that the hand grasps the instrument at or about the region of the ideal pivot point. The impact instrument can be designed to convert the extended pivot of the hand to a less extended pivot region. The grasping member may be designed to pivot, and such pivoting preferably occurs at or about the ideal pivot point. Energy absorbing material in cavities may be used. All of these features tend to lessen vibration and/or shock felt by the user. In addition, the effective length of the elongated member may be increased by moving the ideal pivot point to a location closer to the butt end of the impact instrument, thus increasing the amount of momentum imparted to the object being struck (assuming the mass and length of the impact instrument is the same, and assuming the same about of energy is input into the impact instrument by the user). This effective length increase can be combined with the other above described features to optimize the characteristics of the impact instrument and to design the instrument so that the user does not have to grasp the butt end of the elongated member to have the same increased momentum transfer (but without the increased stinging or vibration) experienced by the “professional” user who is skilled enough to grasp the instrument at the butt end of the instrument. Another advantage of an embodiment of the invention is that the instrument may be designed such that the pivot point, which preferably is located at or about the ideal pivot point, remains substantially the same for different users of the instrument. As such, the center of the preferred impact surface (which is preferably the center of percussion) will remain the same. The impact instrument may become, in effect, standardized so that different users can grasp the same elongated member at different positions on the grasping member and the device will be constrained to pivot at or about the ideal pivot point. Moreover, for instruments with larger and/or more varied impact surfaces (e.g., baseball bats, tennis rackets, etc.), the preferred impact surface remains relatively constant and is located at the position on the instrument such that maximum impulse transfer is attained. Thus the preferred impact surface can be painted or marked on the instrument. With a baseball bat, for instance, no such information could be previously provided since the sweet spot varied depending on where the bat was held. Thus an advantage of an embodiment of the invention is that, in the case of a device in which the impact surface is reasonably well defined (e.g., a hammer or pick), it is now possible to manufacture an impact instrument such that the impact surface is at the center of percussion for all users. Different users grasp such an impact instrument at different locations along the elongated member, however the device is constrained to nevertheless pivot at a selected point (at or about the ideal pivot point). While some of the embodiments of impact instruments described herein may only be used with one hand (e.g., hammers), it is to understood that the impact instruments of the invention will also include instruments that are intended to be held with two hands (e.g., golf clubs, baseball bats, etc.). Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. More specifically, while many of the embodiments shown and described herein relate to hammering devices, it is to be understood that these same embodiments may also apply to other impact instruments such as recreational devices.
<SOH> BACKGROUND OF THE INVENTION <EOH>1. Field of the Invention The present invention generally relates to impact instruments including hammering devices such as claw hammers, ball-pein hammers, axes, hachets, sledges, and the like, and also including recreational devices such as croquet rackets, badmitten racquets, tennis racquets, racquetball racquets, golf clubs, baseball bats, softball bats, cricket bats, hockey sticks, and the like. An embodiment of the invention relates to an impact instrument having an improved mass distribution. Another embodiment relates to an impact instrument that includes a handle that focuses the contact of the hand onto a more limited region. Another embodiment relates to an impact instrument that includes a pivoting handle. Yet another embodiment relates to an impact instrument having a handle that dampens and/or decrease shock and vibration. These embodiments may be used independently or in combination to increase the peak impulse produced by the impact instrument and/or to decrease or dampen shock/vibrational forces felt by a user of the instrument. 2. Description of the Related Art FIG. 1 illustrates a conventional hammer 10 that includes a head 12 and a shank 14 extending from the head. The head terminates at one end in an impact surface 18 through which the hammer delivers an impulse during use. An actual pivot point 16 exists on the shank about which the hammer is pivoted or rotated in the hand during use. Hammers are typically grasped in a user's hand(s) during use and so pivot point 16 may actually be an extended pivot (i.e., a pivot region) rather than a point pivot, since the hammer pivots about a region of finite width (i.e., a hand). Nevertheless the center of this extended pivot region is generally the pivot point 16 . When the hammer is grasped in the hand, pivot point 16 may be approximated to lie at a point along the shaft that is proximate the center of the middle finger of the hand. Obviously the pivot point 16 varies depending on where the hand is grasping the shank 14 . The center of impact surface 18 is separated from pivot point 16 by a vertical distance d as illustrated in FIG. 1 . The center of percussion is located at a distance b from pivot point 16 . The center of percussion is the point at which an impulse could be applied in a direction perpendicular to shank 14 , thereby causing shank 14 to pivot about a point, such that there is minimal (in a real world application) or no force (ideally) that is perpendicular to the longitudinal axis of the shank. It should be noted that the center of percussion is not necessarily the same as the center of mass. In most objects the center of percussion is not the same as the center of mass. The radius of gyration is separated from the actual pivot point by a distance k. The radius of gyration, k, is the distance from the actual pivot point to a location at which the mass of the hammer could be concentrated without altering the rotational inertia of the hammer about the actual pivot point. The locations of the radius of gyration and the center of percussion both depend upon the actual pivot point and the mass distribution of the hammering device. The moment of inertia, I, the radius of gyration, k, and the mass of the hammering device, m, are related by the following equation: I=m·k 2 . The center of mass of the hammer is located at a vertical distance h from pivot point 16 . The “ideal pivot point” is defined as follows for the purposes of this application. It is believed that distance b will always be equal to k 2 divided by h (i.e., k 2 /h). Thus the “ideal pivot point” is when b, as calculated by the equation b=k 2 /h, is equal to d. Stated another way, for an impact instrument the ideal pivot point is the pivot point where the center of percussion coincides with the center of the impact surface. In most cases, the “ideal pivot point” 20 exists at a location (e.g., on an elongated member) where an impulse could be applied in a direction perpendicular to the elongated member, thereby causing the elongated member to pivot about a point, such that there is no reactive force that is perpendicular to the longitudinal axis of the elongated member at that point. Conventional impact instruments (e.g., hammers) tend to have an ideal pivot point that does not coincide with pivot point 16 when held by the typical user. That is, during normal use the center of percussion does not typically coincide with the center of the impact surface of a conventional impact instrument (e.g., hammer), which tends to make use of the impact instrument (e.g., hammer) inefficient and uncomfortable. The amount of vibration felt by the user tends to increase as the vertical distance between the actual pivot point and the ideal pivot point increases. In most conventional hammers, for instance, the ideal pivot point is often displaced from the actual pivot point in a direction toward head 12 . For hammers that weigh about 1-2 pounds, the ideal pivot point is frequently between about 0.3 cm and about 3.0 cm removed from the actual pivot point. During use of a hammering device, it is generally desirable to grasp the hammer at a location such that at least a portion of the hand is proximate or at least in the vicinity of the end 17 of the hammer as shown in FIG. 1 . Grasping the hammer proximate the end allows the user to impart a given impulse to a target object with relatively less effort than if the hammer is grasped at a location that is higher up on the shank in a direction towards the head. If the hammer were grasped at the ideal pivot point of a conventional hammer, the “moment length” between the hand and the impact surface would be shortened, tending to result in more inefficient use of the hammer. It is desirable that an act instrument be derived to deliver a greater impulse and reduce vibration and shock imparte the user of the device. U.S. Pat. No. 4,870,868 relates to a sensing device that produces a response when the point of impact between an object and a member occurs at a preselected location on the member. U.S. Pat. No. 5,289,742 to Vaughan relates to a shock-absorbing device for a claw hammer to dampen vibrations occurring through a steel hammer head. U.S. Pat. No. 5,375,487 to Zimmerman relates to a maul assembly having a maul head with an annular body that is partially filled with a quantity of flowable inertia material. U.S. Pat. No. 5,259,274 to Hreha relates to an internally reinforced jacketed handle for a hand tool. U.S. Pat. No. 5,362,046 to Sims relates to vibration damping devices placed in the butt end of implements which are subject to impact. The above-mentioned patents are incorporated herein by reference.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the present invention, an impact instrument is provided that generally eliminates or reduces the aforementioned disadvantages of conventional impact instruments. An embodiment of the invention relates to a hammering device that includes a head and a shank extending from the head. The head has an impact surface adapted to deliver an impulse to an object during use. The shank may terminate opposite the head in an end and preferably includes a grasping region in the vicinity of the end. The mass distribution throughout the hammering device is preferably such that when the hammering device is grasped within the grasping region during use, the center of percussion of the device coincides with the impact surface. An impact point is preferably centrally-disposed on the impact surface, and the center of percussion preferably coincides with the impact point during use. Another embodiment of the invention relates to an impact instrument that includes an impact surface for delivering an impulse to an object. A shank or elongated member extends from the head and may extend substantially along a longitudinal axis. The impact instrument preferably includes a sheath substantially surrounding a portion of the shank. A cavity that contains compressible material is preferably formed between the sheath and the shank. When an object is struck with the impact surface, the shank may compress a portion of the compressible material, allowing the sheath to pivot with respect to the longitudinal axis of the shank. The sheath may lie along an axis that is substantially parallel to the longitudinal axis of the shank when the impact instrument is at rest. The ideal pivot point is usually located at some point on the shank. During use of the instrument, the pivoting of the grasping member (e.g., a sheath) may cause the axis of the grasping member to form an angle with the longitudinal axis of the shank. The pivoting of the grasping member preferably occurs about the pivot point such that the formed angle has a vertex at the ideal pivot point and is less than about 10°. The pivoting of the grasping member preferably increases the impulse delivered to the object and decreases vibration and shock imparted to the user. The compressible material preferably dampens any vibrational forces, further reducing vibration felt by the user. The pivoting of the grasping member may also allow the rotational motion of the hand to continue at the moment of impact to reduce counter-rotational forces, shock, and stress imparted from the hammering device to the user. The grasping member may surround the shank to form a substantially annular cavity where the compressible material is contained. The annular cavity may have a cross-section that is circular or non-circular. An inner member may be disposed between the compressible material and the shank. The inner member preferably surrounds the shank to form the annular cavity between the member and the sheath. The thickness of the cavity may vary along the length of the shank. The thickness of the cavity is preferably at a minimum proximate the ideal pivot point and may increase along the shank as the distance from the pivot point increases. The grasping member or sheath preferably rigidly contacts the shank solely at or in the region of the ideal pivot point. At other points along the shank, the compressible material preferably separates the grasping member (e.g., sheath) and the shank. The compressible material may be disposed completely around the perimeter of a cross-section of the shank to allow the sheath to pivot with respect to the shank. The shank may comprise a front and a side, and the sheath may be adapted to pivot about the front of the shank to form an angle of about 3-7 degrees, and more preferably 5 degrees, between the axis of the sheath and the front of the shank. The sheath is preferably adapted to pivot about the side of the shank to form an angle of about 5 degrees between the axis of the sheath and the side of the shank. The impact instrument may be a relatively small hand tool having a mass between about 1 pound and about 3 pounds. The impact surface and the elongated member may comprise metal, plastic, polycarbonate, graphite, wood, fiberglass, other similar materials, or a combination thereof. The hammering device may include a substantially rigid, non-pivoting butt located at the end of the shank to facilitate the pulling of nails. The impact instrument may be a hammering device (e.g., ball-pein hammer, maul, bricklayer's hammer, scaling hammer, sledge, hachet, ax, etc.), a recreational device (e.g., croquet mallet, racquetball racket, badmitton racket, tennis racket, golf club, softball bat, cricket bat, baseball bat, hockey stick, etc.), or any hand-held instrument that ordinarily is swung by a human to deliver an impulse to an object. An advantage of the invention relates to an impact instrument having a impact surface that coincides with the center of percussion during use. Another advantage of the invention relates to an impact instrument adapted to pivot about an ideal pivot point to increase the impulse (e.g., the peak impulse) delivered by the instrument during use. Another advantage of the invention relates to increasing the effective moment length of a impact instrument without lengthening its elongated member to increase the total impulse delivered from the device. Yet another advantage of the invention relates to an impact instrument adapted to pivot about an ideal pivot point to decrease vibrations and shock imparted from the instrument to the user. Another advantage of the invention relates to a pivoting impact instrument that reduces fatigue experienced by a user of the instrument. Still another advantage of the invention relates to a handle that dampens vibrations felt by the user through the handle. Another advantage relates to an impact instrument that pivots to reduce reactive forces and stress exerted by the instrument on the user, thereby reducing incidents of stress disorders such as “tennis elbow.”
20041108
20070220
20050526
58163.0
1
MEISLIN, DEBRA S
IMPACT INSTRUMENT
SMALL
1
CONT-ACCEPTED
2,004
10,984,146
ACCEPTED
Camera and method for operating a camera based upon available power in a supply
In one aspect of the invention, a camera for use with a power supply is provided. The camera has a voltage detecting circuit adapted to detect a voltage level at the power source and to generate a voltage level signal. An image capture system is also provided and performs a set of image capture operations. A controller receives the voltage level signal and prevents the image capture system from capturing an image when the voltage level signal indicates that there is insufficient power available in the power supply to perform all of operation in the set of image capture operations.
1. A camera for use with a power supply, the camera comprising: a voltage detecting circuit adapted to detect a voltage level at the power supply and to generate a voltage level signal; an image capture system for performing a set of image capture operations; and a controller that receives the voltage level signal and prevents the image capture system from capturing an image when the voltage level signal indicates that there is insufficient power available in the power supply to perform all of the operations in the set of image capture operations. 2. The camera of claim 1, wherein the image capture system captures images on a photographic film. 3. The camera of claim 2, wherein the set of image capture operations includes a picture taking operation and a film wind operation. 4. The camera of claim 3, wherein the set of image capture operations includes a standby operation. 5. The camera of claim 3, wherein the set of image capture operations includes a film rewind operation. 6. The camera of claim 1, wherein the controller comprises a power control switch. 7. The camera of claim 1, wherein the controller comprises a microprocessor. 8. The camera of claim 1, wherein the image capture system comprises an image capture system for capturing electronic signals. 9. A camera having a power supply, the camera comprising: a trigger circuit adapted to generate a trigger signal; a voltage detecting circuit adapted to detect voltage levels at the power supply and to generate a voltage level signal; and an image capture system for executing a set of image capture operations capturing images in response to a capture signal from a controller; wherein the controller receives the trigger signal and the voltage level signal and generates a capture signal when the trigger signal is received and the voltage level signal indicates that there is sufficient power available in the power supply to perform the image capture operation. 10. The camera of claim 9, wherein the image capture system comprises a shutter system for controllably exposing a photosensitive film to light from a scene a film drive system and wherein the set of image capture operations include a film exposure operation and a film advance operation. 11. The camera of claim 9, wherein the image capture system comprises a shutter system for controllably exposing a photosensitive film to light from a scene a film drive system and wherein the set of image capture operations include a film exposure operation and a film rewind operation. 12. The camera of claim 9, wherein the image capture system comprises a shutter system for controllably exposing a photosensitive film to light from a scene a film drive system and wherein the set of image capture operations include a film exposure operation and a film wind operation and a standby operation. 13. A camera for use with a power supply, the camera comprising: a trigger circuit generating an activation signal; a voltage detecting circuit adapted to measure the voltage in the power supply and to generate a trigger signal when the voltage in the power supply indicates that the power supply has at least a minimum amount of power; and an image capture system adapted to capture an image in response to the trigger signal, wherein the minimum amount of power required is sufficient to complete a set of image capture operations used by the image capture system to capture an image. 14. The camera of claim 13, wherein the camera further comprises a trigger input and said image capture system is adapted to measure the voltage in the power supply only when the activation signal is received. 15. A method for operating an image capture system of the type having a power supply, the method comprising the steps of: detecting a trigger signal; measuring the voltage level of the power supply; and performing a set of image capture operations only when a trigger signal is detected and the measured voltage level indicates that the power supply has sufficient power to permit completion of the set of image capture operations. 16. The method of claim 15, wherein the set of image capture operations includes a film exposure and a film winding operation. 17. The method of claim 15, wherein the set of image capture operations includes a film exposure and a film rewinding operation. 18. The method of claim 15, wherein the set of image capture operations includes a film exposure, a film winding operation and a standby operation.
CROSS-REFERERENCE TO RELATED APPLICATION This application is a continuation-in-part of commonly assigned, co-pending application Ser. No. 10/331,429 filed Dec. 30, 2002 in the names of David R. Dowe et al. and entitled CAMERA AND METHOD FOR OPERATING A CAMERA BASED UPON AVAILABLE POWER IN A SUPPLY. FIELD OF THE INVENTION The present invention relates to cameras with electronically controlled elements and more particularly to camera systems having finite power supplies. BACKGROUND OF THE INVENTION Film cameras have been developed with electromechanical systems that support automatic functions such as film winding, film rewinding, exposure control, electronic flash, etc., all controlled by a controller such as a microprocessor. Electrical energy is provided to such electromechanical systems and the controller by a power supply. Most often, the power supply is a chemical battery of conventional design that stores a fixed amount of potential energy and releases this potential energy in the form of electricity. As this electricity is used, the amount of power remaining in the power supply is reduced. After extended operation, the potential energy stored in the power supply can be reduced to a level that is insufficient to allow the camera to reliably perform certain camera operations. The amount of potential energy stored in the power supply can be determined based upon the difference of potential or voltage between electrically positive and negative terminals of the power supply. As potential energy in the power supply is reduced, the difference in potential at the terminals lowers. Accordingly, cameras are known that monitor voltage levels between the terminals of the power supply and provide a warning when voltage levels at the terminals reach a predetermined low level. However, it can also be useful to prevent the camera from attempting to perform functions that cannot be reliably performed when the camera is in operation. The cameras of the prior art employ various general strategies to prevent camera mis-operation caused by low levels of available energy in a battery. One strategy is to modify the operation of certain camera elements in order to ensure that the operation of the camera components does not consume so much power as to interfere with the operation the camera. For example, U.S. Pat. No. 5,023,470, filed by Onozuka et al. on Apr. 18, 1989 shows an electronic flash charging circuit for use with a camera having a power source common to a microcomputer that controls a plurality of camera functions and to an electronic flash. The charging circuit has a booster circuit for boosting a charging voltage with which a main capacitor of the electronic flash is charged and a controller that causes the booster circuit to operate intermittently. This intermittently charges the main capacitor so that charging the capacitor does not lower the battery voltage below the level necessary to support operation of the microcomputer. Another strategy involves using the voltage level at the battery to determine whether the operation of the camera microprocessor will be altered by the performance of particular camera functions. U.S. Pat. No. 5,027,150, entitled “Camera” filed on Jun. 25, 1991, by Inoue et al. describes a camera system that detects a battery voltage that is below a threshold and suspends camera operation in response thereto. The camera described in the '150 patent also stores data that is in the microprocessor in a backup memory so that such data is not lost when the camera batteries are changed. In still another example of this type, U.S. Pat. No. 4,126,874 entitled “Power Supply Circuit for A Camera”, filed by Suzuki et al. on Dec. 20, 1976 describes a power supply circuit that uses a delayed testing scheme to test battery voltage levels. In this patent, camera operation is disabled where the voltage levels detected after the delay are below a threshold. This delayed testing is used where the battery response to the testing is such that the battery responds more accurately to testing after the battery has been used for a period of time. Yet another strategy involves testing the battery under load to determine whether the battery has sufficient energy to support a maximum load that may occur during camera operation. Where the monitoring indicates that the load is below the maximum, functions associated with the maximum load are disabled. For example, Suzuki et al. U.S. Pat. No. 4,502,744 describes a battery check procedure that applies an actual load on the camera battery that simulates the maximum load that can be placed on the battery by one of the camera components. The voltage at the power supply is monitored during this maximum load. If this voltage is below a threshold, photography is inhibited. A further strategy involves determining whether particular functions can be performed and disabling those functions when the camera battery does not have enough energy to perform those functions. For example, U.S. Pat. No. 5,500,710 entitled “Source Voltage Monitor for A Photographic Camera”, filed by Saito et al. on Dec. 15, 1994 describes a system that applies a load to a battery and tests the battery voltage levels under load prior to release of the shutter to determine whether there is sufficient power in the camera to effect shutter release. Shutter release is prohibited where the voltage levels indicate that there is insufficient power in the camera battery to properly release the shutter. Similarly, U.S. Pat. No. 4,611,989 entitled “Voltage Detecting Device” filed by Matsuyama on Feb. 13, 1985 describes a voltage detector that measures voltage during movement of a leader screen on a camera shutter so that an accurate determination can be made as to whether there is sufficient energy in a power supply to effect a normal release of a follower screen. In these patents, shutter release is prohibited where the voltage levels indicate that there is insufficient power in the camera battery. The systems described above show various means for insuring the particular camera operations do not create a risk of unusual operation by testing the battery to determine whether there is sufficient power to perform one or another of the camera operations. In most automatic cameras, the photographic process involves many operations each of which consumes power. Thus, while there may be sufficient power in the power supply to provide reliable performance of one camera operation, there may not be sufficient power in the power supply to provide reliable performance of that camera operation after other precursor operations have been performed as the camera operations are executed to capture an image. Thus, testing a camera power supply to detect whether there is sufficient energy in the camera power supply to perform a particular camera function does not always provide an accurate indication as to whether there is sufficient energy to perform the entire set of camera operations. The alternative strategy of testing voltage levels at a power supply during the photographic process and selectively disabling certain camera functions as is described in certain of the above-cited patents, can be problematic. This is because many photographers can be confused when a camera ceases operation during a portion of a photographic process and can draw the wrong conclusion that the camera mechanical systems have failed when the source of the problem is exhaustion of the power supply. Thus, what is needed is a camera and method for controlling a camera having a new control strategy that addresses these considerations. SUMMARY OF THE INVENTION In one aspect of the invention, a camera for use with a power supply is provided. The camera has a voltage detecting circuit adapted to detect a voltage level at the power source and to generate a voltage level signal. An image capture system is also provided and performs a set of image capture operations. A controller receives the voltage level signal and prevents the image capture system from capturing an image when the voltage level signal indicates that there is insufficient power available in the power supply to perform all of the operations in the set of image capture operations. In another aspect of the invention, a camera for use with a power supply is provided. The camera has a trigger circuit adapted to generate a trigger signal and a voltage detecting circuit adapted to detect a voltage level at the power supply and to generate a voltage level signal. An image capture system is also provided and executes a set of image capture operations to capture images in response to a capture signal from a controller. The controller receives the trigger signal and the voltage level signal and generates a capture signal when the trigger signal is received and the voltage level signal indicates that there is sufficient power available in the power supply to perform the image capture operations. In still another aspect of the invention, a camera for use with a power supply is provided. The camera has a trigger circuit generating an activation signal and a voltage detecting circuit adapted to measure the voltage in the power supply and to generate a trigger signal when the voltage in the power supply indicates that the power supply has at least a minimum amount of power. An image capture system is adapted to capture an image in response to the trigger signal. Wherein, the minimum amount of power required is sufficient to complete a set of image capture operations used by the image capture system to capture an image. In a further aspect of the invention, a method for operating an image capture system of the type having a power supply is provided. In accordance with the method, a trigger signal is detected and a voltage level at the power supply is measured. A set of image capture operations is executed only when a trigger signal is detected and the measured voltage level indicates that the power supply has sufficient power to permit completion of the set of image capture operations. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of one embodiment of a camera of the present invention having a control system; FIG. 2 is a flow diagram depicting the steps of a camera initialization operation that can be used in accordance with the method of the present invention; FIG. 3 is a flow diagram depicting the steps of a standby operation; FIG. 4 is a flow diagram depicting the steps of a take picture operation; FIG. 5 is a flow diagram depicting the steps of a wind operation; FIG. 6 is a flow diagram depicting the steps of a rewind operation; FIG. 7 is a schematic diagram of another embodiment of a camera control system useful in the camera of the present invention; and FIG. 8 is a schematic diagram of another embodiment of a camera of the present invention; DETAILED DESCRIPTION OF THE INVENTION FIG. 1 shows a schematic illustration of one embodiment of a camera 10 in accordance with the present invention. As is shown in FIG. 1, camera 10 has an image capture system 12 and a control system 14. Image capture system 12 comprises a taking lens unit 16 for focusing light from a scene onto a film 18 stored in a film chamber 20 in camera body 22. Camera body 22 has a film door 24 that can be opened to permit film to be moved in and out of camera body 22 and closed to secure film 18 in camera body 22. As will be described in greater detail below, image capture system 12 also comprises a shutter system 52 for controllably exposing film 18 to light from the scene. Control system 14 has a controller 30 which can be any of a programmable general-purpose microprocessor, a special-purpose camera control microprocessor, or other programmable processor. In one embodiment, controller 30 has a memory 32 containing a program with instructions to be executed by controller 30 during operation. Memory 32 can be integral to controller 30 or can be separate as is shown in the embodiment FIG. 1. Controller 30 receives electronic signals from input systems 40, extracts information from the signals, and uses this information in executing the programmed instructions. In the embodiment shown in FIG. 1, input systems 40 comprise a shutter trigger input 42, a scene illumination level detector 44, a mid-roll rewind input 46, a film door position detector 48, and a film metering sensor 49. Shutter trigger input 42 is a controllable transducer that generates a signal when a user indicates a desire to capture an image. Shutter trigger input 42 can comprise, for example, a switch that the user of camera 10 can selectively open or close to indicate when the user wants to capture an image. Scene illumination level detector 44 monitors light levels in the photographic scene confronting camera 10 and generates a signal indicative of the light levels in the scene. One example of such a scene illumination level detector 44 is a conventional photocell. Scene illumination level detector 44 can also comprise other conventional light level detection devices and systems. Mid-roll rewind input 46 is a controllable transducer such as a switch that generates a rewind signal when a user indicates a desire to manually initiate film rewind operations. Mid-roll rewind input 46 can comprise, for example a switch that the user of camera 10 can selectively close or open to indicate when the user wants to manually initiate film rewind operations. A film door position detector 48 generates a signal that indicates when film door 24 is open and when film door 24 is closed. Film door position detector 48 can comprise a transducer such as an electromechanical switch or electro-optical switch or electromagnetic switch. Film metering sensor 49 monitors movement of film 18 within a film metering area 26 in film chamber 20. In one embodiment, where film 18 has perforations, film metering sensor 49 can comprise an electromechanical switch which engages the perforations. The electromechanical switch opens and closes as perforations on film 18 are moved through film metering area 26. In another embodiment, film metering sensor 49 comprises an opto-electric switch that photo-electrically senses movement of film 18 by optically detecting perforations on film 18. Other film movement detecting devices can also be used to detect movement of film 18 and to generate a signal from which it can be determined that there has been movement of film 18 within the film metering area 26. Controller 30 generates signals that operate controlled systems 50. In the embodiment shown in FIG. 1, controlled systems 50 include shutter system 52, a motorized film drive system 54, and a flash system 56. Shutter system 52 comprises an optical barrier located between taking lens unit 16 and film 18. In a rest state, shutter system 52 blocks light from striking film 18. During an exposure, actuators in shutter system 52 move shutter system 52 so that a controlled amount of light from a scene strikes film 18. Motorized film drive system 54 winds film 18 between frames to provide appropriate separation of images between images recorded on film 18 and is also adapted to rewind film 18. Flash system 56 has a flash charging circuit 58, a flash trigger circuit 60 and a flash lamp 62. Flash charging circuit 58 builds potential in an energy storage device such as a flash capacitor (not shown). Flash trigger circuit 60 receives a flash signal from controller 30 and, in response thereto, causes energy stored in the flash charging circuit 58 to flow to flash lamp 62 to achieve a discharge of flash illumination. In operation, controller 30 receives input signals from input systems 40 processes the input signals in accordance with the camera control programming stored in memory 32 to generate output signals that cause the controlled systems 50 to perform various functions. A power supply 64 supplies energy that is used to operate the systems of camera 10. Power supply 64 typically comprises a chemical battery of conventional design that stores a fixed amount of potential energy and releases this potential energy in the form of electricity. The amount of potential energy in power supply 64 is fixed. As image capture system 12, control system 14, input systems 40 and controlled systems 50 operate, the amount of potential energy stored in the power supply 64 decreases. After extended operation, energy stored in power supply 64 can become insufficient to maintain reliable operation of control systems 14, input systems 40 and/or controlled systems 50. The amount of potential energy stored in power supply 64 can be determined based upon the difference of potential between positive and negative terminals (not shown) of power supply 64. As potential energy is removed from power supply 64 to operate the control system 14, the difference in potential is reduced. A voltage detecting circuit 66 is provided which monitors the voltage level at power supply 64 and generates an output signal based upon the voltage level. Voltage detecting circuit 66 can take many forms. In one embodiment, a TC54 series integrated circuit sold by Microchip Technology Inc., Chandler, Ariz., USA or equivalent is used. Other known voltage detecting circuits can also be used. In the embodiment shown, voltage detecting circuit 66 detects whether the voltage at power supply 64 is above a threshold voltage, for example, a threshold of 2.4 volts. When voltage detecting circuit 66 detects that the voltage across the terminals of power supply 64 is above the 2.4 volt threshold, voltage detecting circuit 66 will produce a first output signal. When voltage detecting circuit 66 detects that the voltage across the terminals of power supply 64 is below 2.4 volts, voltage detecting circuit 66 will produce a second output signal. One sample of such a first output signal is a signal having a difference of potential of 2.4 volts while one example of a second signal is a signal having a ground potential. Voltage detecting circuit 66 can work in other ways. For example, voltage detecting circuit 66 can generate an output signal that is proportional to the voltage level at the terminals. The signal from voltage detecting circuit 66 is supplied to controller 30 which determines information useful in executing the instructions in the program. In this embodiment, controller 30 monitors the output signal from voltage detecting circuit 66. Where controller 30 detects the first signal from voltage detecting circuit 66, controller 30 is programmed to allow a shutter system 52 to operate. Conversely, where controller 30 detects the second signal from voltage detecting circuit 66, controller 30 is programmed to prevent shutter system 52 from operating. As will be described in greater detail below, the threshold voltage level is determined based upon the requirements of the system to perform a set of more than one image capture operations during an image capture operation. FIGS. 2-5 are flow diagrams depicting one embodiment of a method for controlling a camera in accordance with the present invention. FIG. 2 shows a film initialization operation. Control system 14 performs the steps of the film initialization operation when control system 14 is activated (step 70). This activation can occur for example when a camera on/off switch (not shown) is moved to an “on” position from an “off” position. Typically, an on/off switch determines whether power stored in power supply 64 is available to be used by controller 30, input systems 40, or controlled systems 50. Where the on/off switch is in the “off” position, no power is supplied. Where the on/off switch is in the “on” position power is supplied and initialization begins. Other known activation systems can also be used. Once activated, controller 30 samples the signal generated by film door position detector 48 to determine if film door 24 is closed (step 72). If film door 24 is open, controller 30 waits for a delay period to expire (step 74). After the delay period has expired, controller 30 again monitors film door position detector 48. When controller 30 determines that film door 24 is closed, controller 30 samples the signal generated by voltage detecting circuit 66 to determine whether the voltage level at power supply 64 matches a predetermined threshold voltage (step 76). In the present invention, the threshold voltage is determined to be the voltage level that indicates that there is sufficient power in power supply 64 to perform a set of operations used by camera 10 to capture an image. As defined herein the set of image capture operations includes at least a take picture operation shown in FIG. 4 and a film wind operation shown in FIG. 5. These and other operations that can optionally be included in the set of image capture operations considered when determining a threshold voltage will be described in greater detail below. By way of introduction, the operations can also include a standby operation shown in FIG. 3, and a film rewind operation shown in FIG. 6. Energy is consumed in performing each of these steps. Accordingly, the threshold voltage used to determine whether there is sufficient power in power supply 64 to completely perform at least a minimum combination of the steps of the set of image capture operations. Table 1 illustrates how this threshold voltage can be determined. Table 1 shows the voltage thresholds for the operation of various components of camera 10. TABLE 1 Voltage Level Requirements: Minimum voltage at power supply Control system element for operation of element. Motorized film drive system (54) 2.3 volts Shutter system (52) 2.2 volts Controller (30) 2.0 volts Scene Illumination Detector (44) 2.0 volts Flash System (56) 1.6 volts Mid-Roll Rewind Input (46) 1.2 volts Film Door Position detector (48) 1.2 volts As can be seen from this, a voltage level at power supply 64 that is below 2.3 volts indicates that there is insufficient power stored in power supply 64 to permit motorized film drive system 54 to complete the operation associated with advancing photographic film from one position to another. Similarly, a voltage at the terminals of power supply 64 of 2.2 volts indicates that there is insufficient power stored in power supply 64 to permit shutter system 52 to complete an exposure operation. However, under both of these conditions, there is still sufficient power to operate controller 30, scene illumination detector 44, flash system 56, mid-roll rewind input 46, and other components of camera 10 not shown in Table 1. There are many steps in the set of image capture operations, each step is performed to complete the process. Each of these operations consume power when more than one step is to be performed. To capture an image, it is necessary to ensure that there will be sufficient power remaining in power supply 64 after the performance of the operations in the set of image capture operations to permit any subsequent steps to be performed. In accordance with the present invention, the set of image capture operations are not performed unless it is first determined that there is sufficient energy available in power supply 64 to execute each step in the set of image capture operations. For example, it will be noted that the operation of shutter system 52 requires the second largest amount of energy that is required by any component of camera 10 and that the operation of motorized film drive system 54 which occurs after an operation of shutter system 52. Thus, if controller 30 were programmed to use a threshold voltage of 2.3 volts and the power remaining in power supply 64 was such that power supply 64 could maintain 2.3 volts at the start of the set of image capture operations, it could occur that the operation of shutter system 52 consumes so much of the energy remaining in power supply 64 that when the set of image capture operations reached the step of activating the motorized film drive system 54, the voltage at power supply 64 is below 2.3 volts, a level that is insufficient to operate the motorized film drive system 54. Thus, in the present invention the threshold voltage is set at a level that indicates that power supply 64 has enough stored energy to allow all of the steps of the set of image capture operations to be performed. If the voltage at power supply 64 is below this threshold, controller 30 executes a delay (step 74) without executing any part of a set of image capture operations. This camera inactivity provides an intuitive indication to the user of camera 10 that the power supply 64 does not have sufficient energy to execute the set of image capture operations. If it is determined that the voltage at power supply 64 is above the threshold voltage, controller 30 sends a signal to motorized film drive system 54 causing motorized film drive system 54 to advance film 18 to the first usable picture area which is known as the first frame. Thus, camera 10 is now ready to perform the standby operations shown in FIG. 3. If it is determined that the voltage of power supply 64 is below the threshold voltage, then a delay is executed (step 74) and voltage levels are retested. Camera 10 cannot capture images when this occurs in this way. Camera 10 does not perform a partial image capture operation leading a user to possibly to possibly conclude that there has been a camera malfunction caused by a problem that requires a repair. As is shown in FIG. 3, during the standby operations, controller 30 sends a signal to flash system 56 causing flash charging circuit 58 to store energy for use in flash photography (step 80). In cameras having a mid-roll rewind input 46, a check is performed to determine if mid-roll rewind input 46 is generating a signal indicating that film 16 should be rewound. If the mid-roll rewind signal is detected by controller 30, controller 30 performs the rewind operations described in FIG. 6 (step 82). If the mid-roll rewind switch is not detected, controller 30 determines whether a shutter trigger signal has been generated indicating that a user wants to capture an image (step 84). Where the shutter trigger signal is not received, controller 30 executes a delay for period of time (step 86) after which controller 30 again determines whether a shutter trigger signal has been generated. When the user of camera 10 causes the shutter trigger input 42 to transmit the shutter trigger signal, controller 30 causes flash charging circuit 58 to stop the charging of the flash (step 88). This reduces the amount of power drawn from the power supply 64 during the subsequent steps. The voltage level at power supply 64 is again monitored to determine if the voltage is above the threshold (step 90). If the voltage at power supply 64 is not above the threshold voltage, controller 30 does not proceed to the take picture operations. In this way, the power available for image capture operations is checked immediately before controller 30 attempts to execute the instructions for performing the image capture operations. If the voltage at power supply 64 is above the threshold, controller 30 proceeds to the take picture operations shown in FIG. 4. When controller 30 determines that the take picture operations are to be performed, controller 30 examines signals provided by scene illumination detector 44 to controller 30 to determine a scene illumination level (step 92). Where the scene illumination is determined to be bright, controller 30 transmits a signal that causes shutter system 52 to expose film 18 to light from the scene for a predetermined period of time that is appropriate for recording useful images of bright scenes on film 18 (step 94). Where controller 30 determines that the scene illumination is not bright, controller 30 transmits a signal causing shutter system 52 to expose film 18 for a period of time that is sufficient for capturing useful images of scenes that are not bright (step 96). Typically, shutter system 52 exposes film 18 for a period of time that is relatively longer than the period of time that is used for capturing images of scenes that are bright. In the embodiment shown, controller 30 also transmits a signal to flash trigger circuit 60 which releases flash energy stored in flash charging circuit 58 to flow through flash lamp 62 causing a flash of light (step 98). In this embodiment of camera 10, controller 30 is programmed to cause a flash of light to be triggered with each image. However, this is not necessarily so. In an alternative embodiment, controller 30 can evaluate the scene brightness and can selectively elect to whether to cause flash trigger circuit 60 to permit a flash discharge based upon this evaluation. After the flash is fired, controller 30 samples the signal generated by shutter trigger input 42 and determines if the camera user has released shutter trigger input 42 from an image capture position. If shutter trigger input 42 has not been released controller 30 executes a delay (step 102) and again determines whether shutter trigger input 42 has been released (step 100). When shutter trigger input 42 is released, controller 30 executes the film wind operations described in FIG. 45. Referring to FIG. 5, controller 30 determines a film advance period (step 110). This can be determined by accessing information in memory 32. Controller 30 then causes motorized film drive 54 to advance film 18 in a forward direction (step 112). Controller 30 monitors signals from film metering sensor 49 to detect movement of film 18 and uses the detected film movement to determine when film 18 is properly advanced or metered (step 114). Controller 30 continues running motorized film drive system 54 until the film advance period ends (step 118) or until it is determined that film 18 has been moved one full image frame (step 114). When film 18 has advanced one full frame, film 18 is positioned to capture another image and controller 30 stops motorized film drive 54 (step 116). Controller 30 goes to the standby operations FIG. 3. If controller 30 determines that motorized film drive system 54 has been operating for the entire film advance period without detecting movement of film 18, then controller 30 assumes that film 18 is jammed or that the end of the film roll has been reached. Controller 30 stops motorized film drive system 54 from advancing film 18 (step 120) and proceeds to the rewind operations shown in FIG. 6. Referring to FIG. 6, controller 30 in the rewind operation disables flash charging (step 122), starts motorized film drive system 54 in the reverse direction (step 124), and determines a film rewind time (step 126). Controller 30 monitors the signal generated by film metering sensor 49 during this time and determines if film 18 moves in response to operation of motorized film drive system 54 (step 128). If film metering sensor 49 detects film movement when motorized film drive system 54 is operated, then controller 30 knows that film 18 is moving in film metering area 26. It will be appreciated that during this time film 18 is in one of two states. In one state film 18 is fully rewound on, for example, a film spool inside a housing (not shown) and in the other state, the film is not rewound into the housing. Controller 30 can detect if film 18 is not wound into the film housing by monitoring film metering sensor 49 to detect film movement. When film movement occurs, controller 30 runs motorized film drive system 54 in the reverse direction for an additional time period (step 132) and loops back to determine if movement (step 128) and, to check if film 18 has started moving again (step 128). If no film movement is determined, the program continues to monitor the film drive run time (step 130). If the run time is greater than or equal to the rewind time, film 18 is considered rewound and, controller 30 stops motorized film drive system 54 (step 134), starts the charging of the flash (step 136), and proceeds to the film initialization operation. As the preceding descriptions of FIGS. 2-6 show, the power remaining in power supply 64 is checked before a picture sequence is initiated and before film advancement during initialization is started. This insures that power supply 64 has enough power to complete both of these two activities when performed together. Power supply 64 is not checked before initiating a film winding operation because film wind occurs immediately after the picture taking operation where the battery status was just checked and because the threshold voltage used in determining whether there is sufficient power in power supply 64 before the set of image capture operations was established with consideration that there should be sufficient energy in power supply 64 to complete the take picture operation and the film wind operation. In an alternate embodiment, the threshold voltage is determined based upon the amount of power required to execute the take picture, film wind and film rewind operations. In still another alternate embodiment, the threshold voltage is determined based upon the amount of power required to execute the standby, take picture, and film wind operations. Other combination of such operations can be used. In another embodiment of the present invention shown in FIG. 7, voltage detecting circuit 66 controls a power control switch 140 such as a relay, transistor, or other like switching device. Power control switch 140 is connected in series between power supply 64, controller 30, input systems 40 and/or controlled systems 50. In circumstances where voltage detecting circuit 66 determines that the voltage that power supply 64 does not meet the threshold voltage, voltage detecting circuit 66 transmits a signal to power control switch 140 which prevents power from being supplied to controller 30, input systems 40 and controlled systems 50. This disables camera 10 where it is determined that there is insufficient power remaining in power supply 64 to fully executes the set of image capture operations. Alternatively, this arrangement can also be used to selectively disable controlled systems 50 so that controller 30 and input systems 40 can continue to operate. For example camera 10 can optionally incorporate a warning or alarm that can be used to indicate that there is insufficient power in power supply 64 to permit operation of camera 10. It will also be appreciated that in this embodiment, the voltage detecting circuit 66 and power control switch 140 combine to control whether camera 10 operates. FIG. 8 shows still another embodiment of the present invention. In this embodiment, shutter trigger input 42 acts as an input that activates voltage detecting circuit 66. When voltage detecting circuit 66 detects a voltage level at power supply 64 indicating that there is sufficient power in power supply 64 to execute all of the set of image capture operations, voltage detecting circuit 66 transmits a signal to controller 30 which then executes the set of image capture operations. However, where shutter trigger input 42 does not activate voltage detecting circuit 66 or where an activated voltage detecting circuit 66 does not detect sufficient voltage in power supply 64 to permit completion of the set of image capture operations, no signal is sent to controller 30, and therefore no image capture operations are attempted. Image capture system 12 has been described herein in the context of a film camera. However, image capture system 12 can also comprise a hybrid film/electronic image capture system or an electronic image capture system such as any conventional digital image capture system that uses a solid state imager to capture images of a scene in a digital or analog electronic form as are known in the art. One example of such an image capture system is described in commonly assigned and co-pending U.S. patent application Ser. No. 10/028,644, entitled “Method and Camera System for Blurring Portions of a Verification Image to Show Out of Focus Areas in a Captured Archival Image”, filed on Dec. 21, 2001, by Belz, et al. incorporated herein by reference. Where image capture system 12 comprises such an electronic image capture system, image capture system 12 will operate in the same fashion with the threshold voltage being established at a level sufficient to complete the set of image capture operations. The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. For example, in FIG. 1, shutter trigger input 42 is described as a single switch that the user activates to provide a shutter trigger signal to controller 30. Controller 30 then determines whether there is sufficient power available in power supply 54 for the entire set of image capture operations, including operation of shutter system 52, to be performed. Alternatively, as is in prior art U.S. Pat. No. 6,134,391 issued Oct. 17, 2000 in the name of Takahashi, the shutter trigger input can be two switches that when successively activated provide first and second trigger signals to begin a battery residual-power check and to operate the shutter, assuming there remains sufficient power in the battery. Thus, shutter trigger input 42 in FIG. 1 can have two switches that when successively activated provide first and second trigger signals to controller 30. Controller 30 would determine whether there is sufficient power available in power supply 54 for the entire set of image capture operations to be performed, when receiving the first trigger signal. If controller 30 determines there is sufficient power available in power supply 54 for the entire set of image capture operations to be performed, when receiving the first trigger signal, then upon receiving the second trigger signal shutter system 52 would be operated. Conversely, if controller 30 determines there is not sufficient power available in power supply 54 for the entire set of image capture operations to be performed, when receiving the first trigger signal, then upon receiving the second trigger signal shutter system 52 would not be operated. Of course, a visible insufficient-power warning, such as a flashing LED, could be energized to alert the user. Parts List 10 camera 12 image capture system 14 control system 16 taking lens unit 18 film 20 film chamber 22 camera body 24 film door 26 film metering area 30 controller 32 memory 40 input systems 42 shutter trigger input 44 scene illumination detector 46 mid-roll rewind input 48 film door position detector 49 film metering sensor 50 controlled systems 52 shutter system 54 motorized film drive system 56 flash system 58 flash charging circuit 60 flash trigger circuit 62 flash lamp 64 power supply 66 voltage detecting circuit 70 initialize step 72 film door closed determination step 74 delay step 76 voltage level threshold determining step 78 advance film step 80 start flash charger step 82 mid-roll rewind signal detecting step 84 trigger signal detecting step 86 delay step 88 stop flash charger step 90 voltage level threshold determining step 92 determine scene illumination level step 94 output short exposure pulse step 96 output long exposure pulse step 98 fire flash step 100 detect trigger signal step 102 delay step 110 film advance time determining step 112 runs film drive and forward direction step 114 determine rewind time step 116 determine film metering step 118 stop film drive step 122 determine film drive run time greater than film advance time 124 stop film drive step 126 disable flash charger step 128 run film drive in reverse direction step 130 determine rewind time period step 132 determine film movement step 134 reset rewind time period step 136 determine film drive run time greater than rewind time period step 138 stop motor step 139 start flash charger step 140 power control switch
<SOH> BACKGROUND OF THE INVENTION <EOH>Film cameras have been developed with electromechanical systems that support automatic functions such as film winding, film rewinding, exposure control, electronic flash, etc., all controlled by a controller such as a microprocessor. Electrical energy is provided to such electromechanical systems and the controller by a power supply. Most often, the power supply is a chemical battery of conventional design that stores a fixed amount of potential energy and releases this potential energy in the form of electricity. As this electricity is used, the amount of power remaining in the power supply is reduced. After extended operation, the potential energy stored in the power supply can be reduced to a level that is insufficient to allow the camera to reliably perform certain camera operations. The amount of potential energy stored in the power supply can be determined based upon the difference of potential or voltage between electrically positive and negative terminals of the power supply. As potential energy in the power supply is reduced, the difference in potential at the terminals lowers. Accordingly, cameras are known that monitor voltage levels between the terminals of the power supply and provide a warning when voltage levels at the terminals reach a predetermined low level. However, it can also be useful to prevent the camera from attempting to perform functions that cannot be reliably performed when the camera is in operation. The cameras of the prior art employ various general strategies to prevent camera mis-operation caused by low levels of available energy in a battery. One strategy is to modify the operation of certain camera elements in order to ensure that the operation of the camera components does not consume so much power as to interfere with the operation the camera. For example, U.S. Pat. No. 5,023,470, filed by Onozuka et al. on Apr. 18, 1989 shows an electronic flash charging circuit for use with a camera having a power source common to a microcomputer that controls a plurality of camera functions and to an electronic flash. The charging circuit has a booster circuit for boosting a charging voltage with which a main capacitor of the electronic flash is charged and a controller that causes the booster circuit to operate intermittently. This intermittently charges the main capacitor so that charging the capacitor does not lower the battery voltage below the level necessary to support operation of the microcomputer. Another strategy involves using the voltage level at the battery to determine whether the operation of the camera microprocessor will be altered by the performance of particular camera functions. U.S. Pat. No. 5,027,150, entitled “Camera” filed on Jun. 25, 1991, by Inoue et al. describes a camera system that detects a battery voltage that is below a threshold and suspends camera operation in response thereto. The camera described in the '150 patent also stores data that is in the microprocessor in a backup memory so that such data is not lost when the camera batteries are changed. In still another example of this type, U.S. Pat. No. 4,126,874 entitled “Power Supply Circuit for A Camera”, filed by Suzuki et al. on Dec. 20, 1976 describes a power supply circuit that uses a delayed testing scheme to test battery voltage levels. In this patent, camera operation is disabled where the voltage levels detected after the delay are below a threshold. This delayed testing is used where the battery response to the testing is such that the battery responds more accurately to testing after the battery has been used for a period of time. Yet another strategy involves testing the battery under load to determine whether the battery has sufficient energy to support a maximum load that may occur during camera operation. Where the monitoring indicates that the load is below the maximum, functions associated with the maximum load are disabled. For example, Suzuki et al. U.S. Pat. No. 4,502,744 describes a battery check procedure that applies an actual load on the camera battery that simulates the maximum load that can be placed on the battery by one of the camera components. The voltage at the power supply is monitored during this maximum load. If this voltage is below a threshold, photography is inhibited. A further strategy involves determining whether particular functions can be performed and disabling those functions when the camera battery does not have enough energy to perform those functions. For example, U.S. Pat. No. 5,500,710 entitled “Source Voltage Monitor for A Photographic Camera”, filed by Saito et al. on Dec. 15, 1994 describes a system that applies a load to a battery and tests the battery voltage levels under load prior to release of the shutter to determine whether there is sufficient power in the camera to effect shutter release. Shutter release is prohibited where the voltage levels indicate that there is insufficient power in the camera battery to properly release the shutter. Similarly, U.S. Pat. No. 4,611,989 entitled “Voltage Detecting Device” filed by Matsuyama on Feb. 13, 1985 describes a voltage detector that measures voltage during movement of a leader screen on a camera shutter so that an accurate determination can be made as to whether there is sufficient energy in a power supply to effect a normal release of a follower screen. In these patents, shutter release is prohibited where the voltage levels indicate that there is insufficient power in the camera battery. The systems described above show various means for insuring the particular camera operations do not create a risk of unusual operation by testing the battery to determine whether there is sufficient power to perform one or another of the camera operations. In most automatic cameras, the photographic process involves many operations each of which consumes power. Thus, while there may be sufficient power in the power supply to provide reliable performance of one camera operation, there may not be sufficient power in the power supply to provide reliable performance of that camera operation after other precursor operations have been performed as the camera operations are executed to capture an image. Thus, testing a camera power supply to detect whether there is sufficient energy in the camera power supply to perform a particular camera function does not always provide an accurate indication as to whether there is sufficient energy to perform the entire set of camera operations. The alternative strategy of testing voltage levels at a power supply during the photographic process and selectively disabling certain camera functions as is described in certain of the above-cited patents, can be problematic. This is because many photographers can be confused when a camera ceases operation during a portion of a photographic process and can draw the wrong conclusion that the camera mechanical systems have failed when the source of the problem is exhaustion of the power supply. Thus, what is needed is a camera and method for controlling a camera having a new control strategy that addresses these considerations.
<SOH> SUMMARY OF THE INVENTION <EOH>In one aspect of the invention, a camera for use with a power supply is provided. The camera has a voltage detecting circuit adapted to detect a voltage level at the power source and to generate a voltage level signal. An image capture system is also provided and performs a set of image capture operations. A controller receives the voltage level signal and prevents the image capture system from capturing an image when the voltage level signal indicates that there is insufficient power available in the power supply to perform all of the operations in the set of image capture operations. In another aspect of the invention, a camera for use with a power supply is provided. The camera has a trigger circuit adapted to generate a trigger signal and a voltage detecting circuit adapted to detect a voltage level at the power supply and to generate a voltage level signal. An image capture system is also provided and executes a set of image capture operations to capture images in response to a capture signal from a controller. The controller receives the trigger signal and the voltage level signal and generates a capture signal when the trigger signal is received and the voltage level signal indicates that there is sufficient power available in the power supply to perform the image capture operations. In still another aspect of the invention, a camera for use with a power supply is provided. The camera has a trigger circuit generating an activation signal and a voltage detecting circuit adapted to measure the voltage in the power supply and to generate a trigger signal when the voltage in the power supply indicates that the power supply has at least a minimum amount of power. An image capture system is adapted to capture an image in response to the trigger signal. Wherein, the minimum amount of power required is sufficient to complete a set of image capture operations used by the image capture system to capture an image. In a further aspect of the invention, a method for operating an image capture system of the type having a power supply is provided. In accordance with the method, a trigger signal is detected and a voltage level at the power supply is measured. A set of image capture operations is executed only when a trigger signal is detected and the measured voltage level indicates that the power supply has sufficient power to permit completion of the set of image capture operations.
20041109
20070306
20050324
66963.0
1
BLACKMAN, ROCHELLE ANN J
CAMERA AND METHOD FOR OPERATING A CAMERA BASED UPON AVAILABLE POWER IN A SUPPLY
UNDISCOUNTED
1
CONT-ACCEPTED
2,004
10,984,277
ACCEPTED
Direct acting gas regulator
A direct acting pressure regulator controls the flow of a gas from a high pressure source to a low pressure device. Gas is delivered from the regulator at a predetermined outlet pressure. The regulator includes a body having a high pressure inlet and defining a seat. A bonnet is engageable with the body to define a piston chamber within the body and the bonnet. The bonnet has a regulated gas outlet. A piston is disposed within the piston chamber and defines a gap between the piston and a wall defining the chamber. The piston is movable between an open regulator condition and a closed regulator condition. The piston includes a plug having a sealing surface engageable with the seat and movable toward the seat to the closed regulator condition and away from the seat to the open regulator condition. The plug includes axially disposed openings therein for communicating gas from around the plug to a central longitudinal bore in the piston. The piston has an impingement surface in flow communication with the central bore such that gas pressure on the impingement surface exerts a force on the piston to move the piston to the closed regulator condition. A spring urges the piston to the open regulator condition.
1-16. (canceled) 17. A direct acting pressure regulator for controlling the flow of a gas from a high pressure source to a low pressure device, the gas being delivered from the regulator at a predetermined outlet pressure, comprising: a body having a high pressure inlet and defining a seat; a bonnet engageable with the body to define a piston chamber within the body and the bonnet, the bonnet having a regulated gas outlet; a piston disposed within the piston chamber and defining a gap between the piston and a wall defining the chamber, the piston movable between an open regulator condition and a closed regulator condition, the piston including a support having a sealing element with a sealing surface engageable with the seat and movable toward the seat to the closed regulator condition to close a flow path through the regulator and away from the seat to the open regulator condition to open the flow path through the regulator, the support having axially disposed openings therein for communicating gas from around the support to a central longitudinal bore in the piston, the piston having an impingement surface in flow communication with the central bore such that gas pressure on the impingement surface exerts a force on the piston to move the piston to the closed regulator condition; and a spring for urging the piston to the open regulator condition. 18. The direct acting pressure regulator in accordance with claim 17 wherein the spring is disposed within the piston chamber. 19. The direct acting pressure regulator in accordance with claim 17 wherein the sealing element is a disk. 20. The direct acting pressure regulator in accordance with claim 19 wherein the disk is formed from a resilient material. 21. The direct acting pressure regulator in accordance with claim 17 wherein the sealing element is a ball element. 22. The direct acting pressure regulator in accordance with claim 21 wherein the ball element is formed from a resilient material. 23. The direct acting pressure regulator in accordance with claim 17 including a pin valve disposed within the central longitudinal bore in the piston. 24. The direct acting pressure regulator in accordance with claim 17 including a first seal disposed between the plug and the piston chamber and a second seal disposed between the impingement surface and the piston chamber. 25. The direct acting pressure regulator in accordance with claim 17 wherein the piston includes a shoulder for engaging a stop surface within the bonnet to define the open regulator condition. 26. The direct acting pressure regulator in accordance with claim 24 including a guide sleeve formed as part of the body and configured for receiving a portion of the piston, and wherein the seal between the plug and the piston chamber is disposed at about the guide sleeve. 27. The direct acting pressure regulator in accordance with claim 17 including a guide sleeve formed as part of the body, the guide sleeve extending into the piston chamber. 28. The direct acting pressure regulator in accordance with claim 17 wherein the high pressure inlet and the regulated gas outlet are collinear with one another. 29. The direct acting pressure regulator in accordance with claim 24 wherein the piston includes a shoulder for engaging a stop surface within the bonnet to define the open regulator condition, and wherein the shoulder is disposed between the first and second seals. 30. The direct acting pressure regulator in accordance with claim 17 wherein the spring is a coil spring. 31. The direct acting pressure regulator in accordance with claim 17 wherein the spring is formed as a stack of washer-shaped spring elements. 32. The direct acting pressure regulator in accordance with claim 31 wherein the sealing element is a resilient ball element.
BACKGROUND OF THE INVENTION The present invention is directed to a novel pressure regulator. More particularly, the present invention relates to a linear, direct acting pressure regulator for use in paint ball guns that use compressed gas to fire projectiles. The present invention is also adapted for use with other pressurized gas devices. Sporting events that provide the participant with an adventure in military strategy and the feel of the fear and exhilaration of battle have become very popular. Generally participants are equipped with a gas projectile gun or rifle (which can launch a projectile without seriously harming the victim) and protective gear and are divided into two or more combat groups each with the goal of surviving the others. One such sporting event is commonly referred to as “paintball”. In this event, participants fire paint-filled projectile balls at one another. In a typical paintball event, participants fire projectiles, or paintballs, at one another and, when struck, are “painted” by the paint ball. The objective of such an event is to be the last person that has not been “painted” or hit with a projectile. Typically, the projectiles used in these events are propelled, generally using a compressed gas to avoid the potential dangers of explosives such as gun powder. The dangers of explosives include not only the physical danger of the explosion but also the increased speed that such explosions impart to projectiles, potentially making innocuous projectiles, such as paintballs, deadly. Moreover, compressed gas is less costly than explosives and is readily obtainable. When these types of systems are used, compressed gas is provided or supplied from a high-pressure source carried by the participant in a gas bottle. Although high-pressure gas is needed at the gun firing mechanism to propel the paint balls, typically the pressure in these bottles is greater than the pressure needed to safely propel the projectile within the parameters of the game. As such, it is necessary to regulate the pressure of the compressed gas provided to the gun firing mechanism to allow projectiles to be launched at a safer velocity and prevent damage to the gun. Typically, a regulator is provided, mounted to the gun or the compressed gas bottle. That is, it is carried by the game participant. Known pressure regulator can be quite large and as such can add considerable weight to the gun. In that one of the objectives of paint ball is to avoid one's opponent, any added weight is undesirable. In addition, such large, highly machined regulators can be quite costly. Moreover, although many such regulators in fact function well to regulate and reduce pressure from the bottle to the firing mechanism, often such pressure regulation or reduction is rough. That is, the outlet pressure is typically within a range that is specified for the particular gun. However, there remains an “optimum” pressure for the mechanism to operate. Accordingly, there exists a need for a low cost, highly accurate pressure regulator. Desirably, such a regulator is sufficiently small and light-weight so that it does not increase, to any extent, the weight carried by a participant in a paint ball sporting event. BRIEF SUMMARY OF THE INVENTION A direct acting pressure regulator controls the flow of a gas from a high pressure source to a low pressure device. Gas is delivered from the regulator at a predetermined outlet pressure. The present regulator provides a low cost, highly accurate pressure regulating device that is sufficiently small and light-weight so that it does not increase, to any extent, the weight carried by a participant in a paint ball sporting event. The regulator includes a body having a high pressure inlet and defining a seat. Preferably, the seat is conical. A bonnet is engageable with the body to define a piston chamber within the body and the bonnet. The bonnet has a regulated gas outlet. A piston is disposed within the piston chamber and defines a gap between the piston and a wall defining the chamber. The piston is movable between an open regulator condition and a closed regulator condition. The piston includes a support or plug having a sealing surface engageable with the seat and movable toward the seat to the closed regulator condition and away from the seat to the open regulator condition. The plug includes axially disposed openings therein for communicating gas from around the plug to a central longitudinal bore in the piston. The sealing surface can be formed as a disk or as a resilient spherical (ball-shaped) element. The piston has an impingement surface in flow communication with the central bore such that gas pressure on the impingement surface exerts a force on the piston to move the piston to the closed regulator condition. A spring urges the piston to the open regulator condition. In a present regulator, the spring is disposed within the piston chamber. A pin valve can be disposed within the central longitudinal bore in the piston. The pin valve permits removal of the regulator from the downstream device without loss of pressure. A present regulator includes a first seal disposed between the plug and the piston chamber and a second seal disposed between the impingement surface and the piston chamber. The piston includes a shoulder for engaging a stop surface within the bonnet to define the open regulator condition. The shoulder is disposed between the first and second seals. In a preferred embodiment, a guide sleeve is formed as part of the body and is configured for receiving a portion of the piston. The seal between the plug and the piston chamber is disposed at about the guide sleeve. The guide sleeve extends into the piston chamber. To maintain the regulator as a compact, efficient unit, the high pressure inlet and the regulated gas outlet are collinear with one another. These and other features and advantages of the present invention will be apparent from the following detailed description, in conjunction with the appended claims. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS The benefits and advantages of the present invention will become more readily apparent to those of ordinary skill in the relevant art after reviewing the following detailed description and accompanying drawings, wherein: FIG. 1 is a cross-sectional view of a direct acting gas regulator embodying the principles of the present invention, the regulator being shown in the closed condition; FIG. 2 is a cross-sectional view of the regulator shown in the open condition; and FIG. 3 is a cross-sectional view of an alternate embodiment of the direct acting gas regulator. DETAILED DESCRIPTION OF THE INVENTION While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiment illustrated. It should be further understood that the title of this section of this specification, namely, “Detailed Description Of The Invention”, relates to a requirement of the United States Patent Office, and does not imply, nor should be inferred to limit the subject matter disclosed herein. Referring to the figures and briefly to FIG. 2, a present regulator 10 is shown in the open condition such that a regulated flow path, indicated generally at 12, is provided from a high pressure gas source to a downstream device such as a paint ball gun or the like. The controlled downstream pressure is regulated essentially regardless of the higher upstream pressure. The regulator 10 includes generally, a main body 14, a biased piston assembly 16 and a bonnet 18. The body 14 and bonnet 18 threadedly engage one another to seal the regulator 10 as a unit. A piston chamber 20 is defined within the sealed together body 14 and bonnet 18, and the piston assembly 16 is disposed within the chamber 20. A spring 22 is disposed about the piston assembly 16, between the piston 16 and the body 14, to bias the piston 16 (and the regulator 10) to the open condition as will be discussed in more detail below. A pin valve 24 is disposed within a central, longitudinal bore, indicated generally at 26 in the piston assembly 16. The pin valve, which will be recognized by those skilled in the art, provides a sealable flow path from the regulator 10 to the down stream device. The pin valve 24 is maintained within the piston bore 26 by a spring (not shown) to bias the pin valve 24 closed. The pin valve 24 permits removing or separating the regulator 10 from the downstream device (e.g., the paint ball gun) without loss of gas pressure. Gas flows into the regulator 10 through a high pressure inlet port 28 at the body side 14 of the regulator 10. The inlet port 28 opens into a plug chamber 30. A seat 32 defines the entry into the plug chamber 30. The seat 32 can be formed having a generally conical shape with angled or inclined sides 33 terminating at a flat or relatively flat end 35. The plug chamber 30 is configured to accommodate a plug portion 34 of the piston 16. The plug portion 34 is formed at an end of the piston 16 and serves as a support for a sealing disk 36 within an end of the plug 34. The sealing disk 36 can be formed from a resilient material such as urethane or the like to form a gas-tight seal when the disk 36 is seated on the seat 32. The plug 34 and plug chamber 30 are dimensioned and configured such that a gap, indicated generally at 38, is defined between the plug 34 and the chamber 30 wall. The gap 38 defines a portion of the flow path 12. Openings 40 are formed in the sides of the plug 34 that provide a flow path into the center (e.g., central bore 26) of the piston 16. In this manner, when the piston 16 is moved away from the seat 32 (when the disk 36 is disengaged from the seat 32), the flow path is established through the seat 32, around the plug 34, into the openings 40 and into the piston central bore 26. A seal 42, such as a neoprene O-ring, is positioned on the piston 16 between the piston 16 and the wall that defines the plug chamber 30. In this manner, gas is precluded from flowing in to the piston chamber 20 from around the plug 34. The regulator 10 includes a low pressure region indicated generally at 44 in FIG. 1, (within the piston chamber 20) and a regulated pressure region, indicated generally at 46 in FIGS. 1 and 2, separated from the low pressure region 44 by the plug seal 42 and a piston seal 48 at an opposing end of the piston 16. The regulated pressure region 46 includes an impingement surface 50 against which the (pressure) regulated gas exerts a force for moving the piston 16 to the closed position. The piston 16 includes a shoulder 52 that engages a stop surface 54 within the bonnet 18 to prevent the piston 16 from moving beyond the open condition. A guide sleeve 57 is formed in the body 14 that extends into the piston chamber 20 from about the plug chamber 30. The sleeve 57 defines a guide for movement of the piston 16 toward and away from the seat 32 and further provides a surface against which the seal 42 acts. The regulator 10 can include a high pressure over pressurization device 56 and a regulated pressure over pressurization device 58, such as the illustrated, exemplary high pressure and regulated pressure burst disks. Gas exits the regulator 10 through a regulated pressure outlet 62 at the bonnet side 18. As seen in the figures, the inlet 28 and outlet 62 are substantially collinear with one another. In operation, referring first to FIG. 1, the regulator 10 is shown in the closed condition. This is the condition of the regulator when the outlet side pressure is at the desired or preset pressure. The outlet pressure on the regulated side exerts a force on the impingement surface 50 that is sufficiently high to offset the spring 22 force (i.e., compress the spring). This in turn urges the sealing disk 36 against the seat 32 to stop or isolate flow through the regulator 10. When the pressure on the regulated side 46 begins to decrease (such as when the pin valve 24 is opened), the gas pressure exerts a lesser force on the impingement surface 50. The spring 22 force thus overcomes the gas pressure force which in turn urges the piston 16 (to the right as seen in the figures) to move the plug 34 and sealing disk 36 off of the seat 32. As the disk 36 moves away from the seat 32, the flow path 12 is established allowing gas to flow over the seat 32, and into the space (gap) 38 between the plug 34 and plug chamber 30 walls. Gas then flows through the plug openings 40 and into the piston central opening 26. The gas flows around the pin 24 and into the outlet region 60 of the regulator 10, exerting a force on the impingement surface 50. As the gas pressure at the outlet region 60 increases, the force exerted on the impingement surface 50 likewise increases until that force is sufficient to overcome the spring 22 force to urge the piston 16 closed (i.e., to the left as seen in the figures). In that the present regulator 10 is intended to be a relatively low cost unit, the pressure of the gas exiting at the outlet 62 or the regulated gas pressure cannot be adjusted by any adjusting mechanism within the regulator 10. Rather, in order to adjust the outlet pressure, the piston spring 22 is replaced with a spring having a desired spring force. However, as will be recognized and appreciated from a study of the figures and the above description, changing the spring 22 is readily accomplished by opening the regulator 10, replacing the spring 22 around the piston 16 and resealing the regulator 10. As set forth above, the disk 36 and various seals (or O-rings) 42, 48 are formed from a resilient, polymeric material, such as neoprene and the like. The various pressure retaining and structural elements are formed from metals, such as steel, aluminum and the like. Those skilled in the art will recognize other materials from which the regulator 10 and components can be formed. Referring now to FIG. 3, there is shown an alternate embodiment of the direct acting gas regulator 110. This embodiment is similar to the embodiment 10 illustrated in FIGS. 1-2, except for the main spring and plug. As is seen in FIG. 3, in this embodiment, spring washers (belleville springs) 122 are used in lieu of a coil spring 22. In addition, a spherical element (e.g., a ball) 136 formed from nylon or another resilient material is used in place of the disk 36. It has been found that such spherical elements made from such resilient materials are readily commercially available (e.g., as, for example, nylon ball bearings) and the use of these can result in reduced cost and greater regulator operating precision due to manufacturing tolerances. The remaining portions of the regulator 110 are identical or similar to that of the previous embodiment 10. Changes, to elements may be required to, for example, provide support for the belleville springs 122 or to the support or plug 134 to provide a cradle for the resilient ball sealing element 136. All patents referred to herein, are hereby incorporated herein by reference, whether or not specifically done so within the text of this disclosure. In the present disclosure, the words “a” or “an” are to be taken to include both the singular and the plural. Conversely, any reference to plural items shall, where appropriate, include the singular. From the foregoing it will be observed that numerous modifications and variations can be effectuated without departing from the true spirit and scope of the novel concepts of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated is intended or should be inferred. The disclosure is intended to cover by the appended claims all such modifications as fall within the scope of the claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>The present invention is directed to a novel pressure regulator. More particularly, the present invention relates to a linear, direct acting pressure regulator for use in paint ball guns that use compressed gas to fire projectiles. The present invention is also adapted for use with other pressurized gas devices. Sporting events that provide the participant with an adventure in military strategy and the feel of the fear and exhilaration of battle have become very popular. Generally participants are equipped with a gas projectile gun or rifle (which can launch a projectile without seriously harming the victim) and protective gear and are divided into two or more combat groups each with the goal of surviving the others. One such sporting event is commonly referred to as “paintball”. In this event, participants fire paint-filled projectile balls at one another. In a typical paintball event, participants fire projectiles, or paintballs, at one another and, when struck, are “painted” by the paint ball. The objective of such an event is to be the last person that has not been “painted” or hit with a projectile. Typically, the projectiles used in these events are propelled, generally using a compressed gas to avoid the potential dangers of explosives such as gun powder. The dangers of explosives include not only the physical danger of the explosion but also the increased speed that such explosions impart to projectiles, potentially making innocuous projectiles, such as paintballs, deadly. Moreover, compressed gas is less costly than explosives and is readily obtainable. When these types of systems are used, compressed gas is provided or supplied from a high-pressure source carried by the participant in a gas bottle. Although high-pressure gas is needed at the gun firing mechanism to propel the paint balls, typically the pressure in these bottles is greater than the pressure needed to safely propel the projectile within the parameters of the game. As such, it is necessary to regulate the pressure of the compressed gas provided to the gun firing mechanism to allow projectiles to be launched at a safer velocity and prevent damage to the gun. Typically, a regulator is provided, mounted to the gun or the compressed gas bottle. That is, it is carried by the game participant. Known pressure regulator can be quite large and as such can add considerable weight to the gun. In that one of the objectives of paint ball is to avoid one's opponent, any added weight is undesirable. In addition, such large, highly machined regulators can be quite costly. Moreover, although many such regulators in fact function well to regulate and reduce pressure from the bottle to the firing mechanism, often such pressure regulation or reduction is rough. That is, the outlet pressure is typically within a range that is specified for the particular gun. However, there remains an “optimum” pressure for the mechanism to operate. Accordingly, there exists a need for a low cost, highly accurate pressure regulator. Desirably, such a regulator is sufficiently small and light-weight so that it does not increase, to any extent, the weight carried by a participant in a paint ball sporting event.
<SOH> BRIEF SUMMARY OF THE INVENTION <EOH>A direct acting pressure regulator controls the flow of a gas from a high pressure source to a low pressure device. Gas is delivered from the regulator at a predetermined outlet pressure. The present regulator provides a low cost, highly accurate pressure regulating device that is sufficiently small and light-weight so that it does not increase, to any extent, the weight carried by a participant in a paint ball sporting event. The regulator includes a body having a high pressure inlet and defining a seat. Preferably, the seat is conical. A bonnet is engageable with the body to define a piston chamber within the body and the bonnet. The bonnet has a regulated gas outlet. A piston is disposed within the piston chamber and defines a gap between the piston and a wall defining the chamber. The piston is movable between an open regulator condition and a closed regulator condition. The piston includes a support or plug having a sealing surface engageable with the seat and movable toward the seat to the closed regulator condition and away from the seat to the open regulator condition. The plug includes axially disposed openings therein for communicating gas from around the plug to a central longitudinal bore in the piston. The sealing surface can be formed as a disk or as a resilient spherical (ball-shaped) element. The piston has an impingement surface in flow communication with the central bore such that gas pressure on the impingement surface exerts a force on the piston to move the piston to the closed regulator condition. A spring urges the piston to the open regulator condition. In a present regulator, the spring is disposed within the piston chamber. A pin valve can be disposed within the central longitudinal bore in the piston. The pin valve permits removal of the regulator from the downstream device without loss of pressure. A present regulator includes a first seal disposed between the plug and the piston chamber and a second seal disposed between the impingement surface and the piston chamber. The piston includes a shoulder for engaging a stop surface within the bonnet to define the open regulator condition. The shoulder is disposed between the first and second seals. In a preferred embodiment, a guide sleeve is formed as part of the body and is configured for receiving a portion of the piston. The seal between the plug and the piston chamber is disposed at about the guide sleeve. The guide sleeve extends into the piston chamber. To maintain the regulator as a compact, efficient unit, the high pressure inlet and the regulated gas outlet are collinear with one another. These and other features and advantages of the present invention will be apparent from the following detailed description, in conjunction with the appended claims.
20041109
20060613
20050519
96424.0
5
HEPPERLE, STEPHEN M
DIRECT ACTING GAS REGULATOR
SMALL
1
CONT-ACCEPTED
2,004
10,984,366
ACCEPTED
Light emitting diode light source
A light source that utilizes light emitting diodes that emit white light is disclosed. The diodes are mounted on an elongate member having at least two surfaces upon which the light emitting diodes are mounted. The elongate member is thermally conductive and is utilized to cool the light emitting diodes. In the illustrative embodiment, the elongate member is a tubular member through which a heat transfer medium flows.
1. A light source comprising: an elongate thermally conductive member having an outer surface; a plurality of solid state light sources carried on said elongate member outer surface at least some of said solid state light sources being disposed in a first plane and others of said solid state light sources being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of solid state light sources to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said solid state light sources to fluid contained by said elongate thermally conductive member; said elongate thermally conductive member comprises one or more heat dissipation protrusions. 2. A light source in accordance with claim 1, wherein: at least one of said heat dissipation protrusions being carried on said elongate member outer surface. 3. A light source in accordance with claim 2, wherein: said elongate thermally conductive member is configured to conduct heat away from said solid state light sources to fluid proximate said elongate member outer surface. 4. A light source in accordance with claim 3, wherein: said fluid proximate said elongate member outer surface comprises air. 5. A light source in accordance with claim 4, wherein: said fluid contained by said elongate thermally conductive member is a cooling medium other than air. 6. A light source in accordance with claim 3, wherein: said elongate thermally conductive member comprises a tube. 7. A light source in accordance with claim 6, wherein: said tube has a cross-section in the shape of a polygon. 8. A light source in accordance with claim 6,wherein: said tube has a cross-section having flat portions. 9. A light source in accordance with claim 1, wherein: said elongate thermally conductive member comprises a channel. 10. A light source in accordance with claim 3, wherein: said elongate thermally conductive member comprises an extrusion. 11. A light source in accordance with claim 10, wherein: said extrusion is an aluminum extrusion. 12. A light source in accordance with claim 10, wherein: said elongate thermally conductive member is a tubular member. 13. A light source in accordance with claim 12, wherein: said tubular member has a polygon cross-section. 14. A light source in accordance with claim 1, wherein: said fluid is moved in said elongate thermally conductive member. 15. A light source in accordance with claim 1, wherein: said elongate thermally conductive member comprises a thermal transfer media disposed therein. 16. A light source in accordance with claim 15, wherein: said elongate thermally conductive member comprises a flow channel for said thermal transfer media. 17. A light source in accordance with claim 1, wherein: each of said solid state light sources emits white light. 18. A light source in accordance with claim 1, wherein: at least some of said solid state light sources emit colored light. 19. A light source comprising: an elongate thermally conductive member having an outer surface; at least one solid state light source carried on said elongate member outer surface; one or more electrical conductors carried by said elongate thermally conductive member and connected to said at least one solid state light source to supply electrical power thereto; said elongate thermally conductive member being configured to conduct heat away from said at least one solid state light source to fluid contained by said elongate thermally conductive member; and said elongate thermally conductive member comprises one or more heat dissipation protrusions. 20. A light source comprising: an elongate thermally conductive member having an outer surface; at least one solid state light source carried on said elongate member outer surface; one or more electrical conductors carried by said elongate thermally conductive member and connected to said at least one solid state light source to supply electrical power thereto; said elongate thermally conductive member being configured to conduct heat away from said at least one solid state light source to fluid contained by said elongate thermally conductive member; and said fluid is moved in said elongate thermally conductive member. 21. A light source comprising: an elongate thermally conductive member having an outer surface; a plurality of solid state light sources solid state light sources carried on said elongate member outer surface at least some of said solid state light sources being disposed in a first plane and others of said solid state light sources being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of solid state light sources to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said solid state light sources to fluid contained by said elongate thermally conductive member; and said fluid is moved in said elongate thermally conductive member. 22. A light source comprising: an elongate thermally conductive member having an outer surface; a plurality of solid state light sources carried on said elongate member outer surface at least some of said solid state light sources being disposed in a first plane and others of said solid state light sources being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of solid state light sources to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said solid state light sources to fluid contained by said elongate thermally conductive member; and a coating carried on said elongate thermally conductive member. 23. A light source in accordance with claim 22, wherein: said coating is infused with optically reflective material. 24. A radiation emitting source comprising: an elongate thermally conductive member having an outer surface; a plurality of radiation emitting semiconductor devices carried on said elongate member outer surface at least some of said radiation emitting sources being disposed in a first plane and others of said radiation emitting semiconductor devices being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of radiation emitting semiconductor devices to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said radiation emitting semiconductor devices to fluid contained by said elongate thermally conductive member; A said elongate thermally conductive member comprises one or more heat dissipation protrusions. 25. A radiation emitting source in accordance with claim 24, wherein: at least one of said heat dissipation protrusions being carried on said elongate member outer surface. 26. A radiation emitting source in accordance with claim 25, wherein: said elongate thermally conductive member is configured to conduct heat away from said radiation emitting semiconductor devices to fluid proximate said elongate member outer surface. 27. A radiation emitting source in accordance with claim 26, wherein: said fluid proximate said elongate member outer surface comprises air. 28. A radiation emitting source in accordance with claim 27, wherein: said fluid contained by said elongate thermally conductive member is a cooling medium other than air. 29. A radiation emitting source in accordance with claim 26, wherein: said elongate thermally conductive member comprises a tube. 30. A radiation emitting source in accordance with claim 29, wherein: said tube has a cross-section in the shape of a polygon. 31. A radiation emitting source in accordance with claim 29, wherein: said tube has a cross-section having flat portions. 32. A radiation emitting source in accordance with claim 24, wherein: said elongate thermally conductive member comprises a channel. 33. A radiation emitting source in accordance with claim 26, wherein: said elongate thermally conductive member comprises an extrusion. 34. A radiation emitting source in accordance with claim 33, wherein: said extrusion is an aluminum extrusion. 35. A radiation emitting source in accordance with claim 33, wherein: said elongate thermally conductive member is a tubular member. 36. A radiation emitting source in accordance with claim 35, wherein: said tubular member has a polygon cross-section. 37. A radiation emitting source in accordance with claim 24, wherein: said fluid is moved in said elongate thermally conductive member. 38. A radiation emitting source in accordance with claim 24, wherein: said elongate thermally conductive member comprises a thermal transfer media disposed therein. 39. A radiation emitting source in accordance with claim 38, wherein: said elongate thermally conductive member comprises a flow channel for said thermal transfer media. 40. A radiation emitting source in accordance with claim 24, wherein: each of said radiation emitting semiconductor devices emits white light. 41. A radiation emitting source in accordance with claim 24, wherein: at least some of said radiation emitting semiconductor devices emit colored light. 42. A radiation emitting source comprising: an elongate thermally conductive member having an outer surface; at least one solid state radiation emitting semiconductor device carried on said elongate member outer surface; one or more electrical conductors carried by said elongate thermally conductive member and connected to said at least one radiation emitting semiconductor device to supply electrical power thereto; said elongate thermally conductive member being configured to conduct heat away from said at least one radiation emitting semiconductor device to fluid contained by said elongate thermally conductive member; and said elongate thermally conductive member comprises one or more heat dissipation protrusions. 43. A radiation emitting source comprising: an elongate thermally conductive member having an outer surface; at least one radiation emitting semiconductor device carried on said elongate member outer surface; one or more electrical conductors carried by said elongate thermally conductive member and connected to said at least one radiation emitting semiconductor device to supply electrical power thereto; said elongate thermally conductive member being configured to conduct heat away from said at least one radiation emitting semiconductor device to fluid contained by said elongate thermally conductive member; and said fluid is moved in said elongate thermally conductive member. Page 21 of 25 44. A radiation emitting source comprising: an elongate thermally conductive member having an outer surface; a plurality of radiation emitting semiconductor devices carried on said elongate member outer surface at least some of said radiation emitting semiconductor devices being disposed in a first plane and others of said radiation emitting semiconductor devices being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of radiation emitting semiconductor devices to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said radiation emitting semiconductor devices to fluid contained by said elongate thermally conductive member; and said fluid is moved in said elongate thermally conductive member. 45. A radiation emitting source comprising: an elongate thermally conductive member having an outer surface; a plurality of radiation emitting semiconductor devices carried on said elongate member outer surface at least some of said radiation emitting semiconductor devices being disposed in a first plane and others of said radiation emitting semiconductor devices being disposed in a second plane not coextensive with said first plane; electrical conductors carried by said elongate thermally conductive member and connected to said plurality of radiation emitting semiconductor devices to supply electrical power thereto; and said elongate thermally conductive member being configured to conduct heat away from said radiation emitting semiconductor devices to fluid contained by said elongate thermally conductive member; and a coating carried on said elongate thermally conductive member. 46. A radiation emitting source in accordance with claim 45, wherein: said coating is infused with optically reflective material. 47. A light source comprising: a thermally conductive member carrying a surface; at least one light emitting diode carried on said surface; one or more electrical conductors carried by said thermally conductive member and connected to said at least one light emitting diode to supply electrical power thereto; said thermally conductive member comprising at least one elongate channel; and said thermally conductive member being configured to conduct heat away from said at least one light emitting diode to fluid contained by said elongate channel. 48. A light source in accordance with claim 47, comprising: at least a pair of heat dissipation protrusions, said heat dissipating protrusions forming said channel. 49. A light source comprising: an elongate thermally conductive channel; an elongate thermally conductive surface proximate to and thermally coupled to said elongate thermally conductive channel; at least one light emitting diode carried on said surface; one or more electrical conductors carried by said elongate thermally conductive member and connected to said at least one light emitting diode to supply electrical power thereto; said elongate thermally conductive channel being configured to conduct heat away from said at least one light emitting diode to fluid within said elongate thermally conductive channel.
RELATED APPLICATIONS This application is a continuation of my co-pending application Ser. No. 10/430,732, filed May 5, 2003 which is a continuation of application Ser. No. 10/156,810 filed May 29, 2002, now U.S. Pat. No. 6,573,536 issued Jun. 3, 2003. FIELD OF THE INVENTION This invention pertains to lighting sources, in general, and to a lighting source that utilizes Light Emitting Diodes (LED's), in particular. BACKGROUND OF THE INVENTION LED's have many advantages as light sources. However, in the past LED's have found application only as specialized light sources such as for vehicle brake lights, and other vehicle related lighting, and recently as flashlights. In these prior applications, the LED's are typically mounted in a planar fashion in a single plane that is disposed so as to be perpendicular to the viewing area. Typically the LED planar array is not used to provide illumination, but to provide signaling. Recent attempts to provide LED light sources as sources of illumination have been few, and generally unsatisfactory from a general lighting standpoint. It is highly desirable to provide a light source utilizing LED's that provides sufficient light output so as to be used as a general lighting source rather than as a signaling source. One problem that has limited the use of LED's to specialty signaling and limited general illumination sources is that LED's typically generate significant amounts of heat. The heat is such that unless the heat is dissipated, the LED internal temperature will rise causing degradation or destruction of the LED. It is therefore further desirable to provide an LED light source that efficiently conducts heat away from the LED's. SUMMARY OF THE INVENTION In accordance with the principles of the invention, an improved light source is provided. The light source includes an elongate thermally conductive member having an outer surface. A plurality of light emitting diodes is carried on the elongate member outer surface. At least some of the light emitting diodes are disposed in a first plane and others of said light emitting diodes are disposed in a second plane not coextensive with the first plane. Electrical conductors are carried by the elongate thermally conductive member and are connected to the plurality of light emitting diodes to supply electrical power thereto. The elongate thermally conductive member conducts heat away from the light emitting diodes. In accordance with one aspect of the invention, an illustrative embodiment of the invention utilizes light emitting diodes that emit white light. However, other embodiments of the invention may utilize light emitting diodes that are of different colors to produce monochromatic light or the colors may be chosen to produce white light or other colors. In accordance with another aspect of the invention the elongate thermally conductive member transfers heat from the light emitting diodes to a medium within said elongate thermally conductive member. In the illustrative embodiment of the invention, the medium is air. In accordance with another aspect of the invention, the elongate thermally conductive member has one or more fins to enhance heat transfer to the medium. In accordance with another aspect of the invention the elongate thermally conductive member comprises a tube. In one embodiment of the invention, the tube has a cross-section in the shape of a polygon. In another embodiment of the invention, the tube has a cross-section having flat portions. In accordance with another embodiment of the invention, the elongate thermally conductive member comprises a channel. In accordance with the principles of the invention, the elongate thermally conductive member may comprise an extrusion, and the extrusion can be highly thermally conductive material such as aluminum. In one preferred embodiment of the invention the elongate thermally conductive member is a tubular member. The tubular member has a polygon cross-section. However, other embodiments my have a tubular member of triangular cross-section. In one embodiment of the invention, a flexible circuit is carried on a surface of said elongate thermally conductive member; the flexible circuit includes the electrical conductors. In another aspect of the invention, the flexible circuit comprises a plurality of apertures for receiving said plurality of light emitting diodes. Each of the light emitting diodes is disposed in a corresponding one of the apertures and affixed in thermally conductive contact with said elongate thermally conductive member. The elongate thermally conductive member includes a thermal transfer media disposed therein in a flow channel. At least one clip for mounting the elongate thermally conductive member in a fixture may be included. BRIEF DESCRIPTION OF THE DRAWING The invention will be better understood from a reading of the following detailed description of a preferred embodiment of the invention taken in conjunction with the drawing figures, in which like reference indications identify like elements, and in which: FIG. 1 is a planar side view of a light source in accordance with the principles of the invention; FIG. 2 is a top planar view of the light source of FIG. 1; FIG. 3 is a perspective view of the light source of FIG. 1 with mounting clips; FIG. 4 is a planar side view of the light source of FIG. 3 showing mounting clips separated from the light source; FIG. 5 is a top view of the light source and mounting clips of FIG. 4; and FIG. 6 is a partial cross-section of the light source of FIG. 1. DETAILED DESCRIPTION A light source in accordance with the principles of the invention may be used as a decorative lighting element or may be utilized as a general illumination device. As shown in FIG. 1, a light source 100 in accordance with the invention includes an elongate thermally conductive member or heat sink 101. Elongate heat sink 101 is formed of a material that provides excellent thermal conductivity. Elongate heat sink 101 in the illustrative embodiment of the invention is a tubular aluminum extrusion. To improve the heat dissipative properties of light source 100, elongate heat sink 101 is configured to provide convective heat dissipation and cooling. As more clearly seen in FIG. 2, tubular heat sink 101 is hollow and has an interior cavity 103 that includes one or more heat dissipating fins 105. Fins 105 are shown as being triangular in shape, but may take on other shapes. Fins 105 are integrally formed on the interior of elongate heat sink 101. In the illustrative embodiment convective cooling is provided by movement of a medium 102 through elongate heat sink 101. The medium utilized in the illustrative embodiment is air, but may in some applications be a fluid other than air to provide for greater heat dissipation and cooling. The exterior surface 107 of elongate heat sink 101 has a plurality of Light Emitting Diodes 109 disposed thereon. Each LED 109 in the illustrative embodiment comprises a white light emitting LED of a type that provides a high light output. Each LED 109 also generates significant amount of heat that must be dissipated to avoid thermal destruction of the LED. By combining a plurality of LEDs 109 on elongate heat sink 101, a high light output light source that may be used for general lighting is provided. Conductive paths 129 are provided to connect LEDs 109 to an electrical connector 111. The conductive paths may be disposed on an electrically insulating layer 131 or layers disposed on exterior surface 107. In the illustrative embodiment shown in the drawing figures, the conductive paths and insulating layer are provided by means of one or more flexible printed circuits 113 that are permanently disposed on surface 107. As more easily seen in FIG. 6, printed circuit 113 includes an electrically insulating layer 131 that carries conductive paths 129. As will be appreciated by those skilled in the art, other means of providing the electrically conductive paths may be provided. Flexible printed circuit 113 has LED's 109 mounted to it in a variety of orientations ranging from 360 degrees to 180 degrees and possibly others depending on the application. Electrical connector 111 is disposed at one end of printed circuit 113. Connector 113 is coupleable to a separate power supply to receive electrical current. Flexible printed circuit 113, in the illustrative embodiment is coated with a non-electrically conductive epoxy that may be infused with optically reflective materials. Flexible printed circuit 113 is adhered to the tube 101 with a heat conducting epoxy to aid in the transmission of the heat from LEDs 109 to tube 101. Flexible printed circuit 113 has mounting holes 134 for receiving LEDs 109 such that the backs of LEDs 109 are in thermal contact with the tube surface 107. Tubular heat sink 101 in the illustrative embodiment is formed in the shape of a polygon and may have any number of sides. Although tubular heat sink 101 in the illustrative embodiment is extruded aluminum, tubular heat sink 101may comprise other thermal conductive material. Fins 105 may vary in number and location depending on particular LED layouts and wattage. In some instances, fins may be added to the exterior surface of tubular heat sink 101. In addition, apertures may be added to the tubular heat sink to enhance heat flow. Light source 100 is mounted into a fixture and retained in position by mounting clips 121,123 as most clearly seen in FIGS. 3, 4, and 5. Each of the clips is shaped so as to engage and retain light source 100. Each clip is affixed on one surface 122, 124 to a light fixture. Although light source 100 is shown as comprising an elongate tubular heat sink, other extruded elongate members may be used such as channels. In the illustrative embodiment shown, convection cooling by flow of air through tubular heat sink 101 is utilized such that cool or unheated air enters tubular heat sink 101 at its lower end and exits from the upper end as heated air. In higher wattage light sources, rather than utilizing air as the cooling medium, other fluids may be utilized. In particular, convective heat pumping may be used to remove heat from the interior of the heat sink. In one particularly advantageous embodiment of the invention, the light source of the invention is configured to replace compact fluorescent lighting in decorative applications. As will be appreciated by those skilled in the art, the principles of the invention are not limited to the use of light emitting diodes that emit white light. Different colored light emitting diodes may be used to produce monochromatic light or to produce light that is the combination of different colors. Although the invention has been described in terms of illustrative embodiments, it is not intended that the invention be limited to the illustrative embodiments shown and described. It will be apparent to those skilled in the art that various changes and modifications may be made to the embodiments shown and described without departing from the spirit or scope of the invention. It is intended that the invention be limited only by the claims appended hereto.
<SOH> BACKGROUND OF THE INVENTION <EOH>LED's have many advantages as light sources. However, in the past LED's have found application only as specialized light sources such as for vehicle brake lights, and other vehicle related lighting, and recently as flashlights. In these prior applications, the LED's are typically mounted in a planar fashion in a single plane that is disposed so as to be perpendicular to the viewing area. Typically the LED planar array is not used to provide illumination, but to provide signaling. Recent attempts to provide LED light sources as sources of illumination have been few, and generally unsatisfactory from a general lighting standpoint. It is highly desirable to provide a light source utilizing LED's that provides sufficient light output so as to be used as a general lighting source rather than as a signaling source. One problem that has limited the use of LED's to specialty signaling and limited general illumination sources is that LED's typically generate significant amounts of heat. The heat is such that unless the heat is dissipated, the LED internal temperature will rise causing degradation or destruction of the LED. It is therefore further desirable to provide an LED light source that efficiently conducts heat away from the LED's.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with the principles of the invention, an improved light source is provided. The light source includes an elongate thermally conductive member having an outer surface. A plurality of light emitting diodes is carried on the elongate member outer surface. At least some of the light emitting diodes are disposed in a first plane and others of said light emitting diodes are disposed in a second plane not coextensive with the first plane. Electrical conductors are carried by the elongate thermally conductive member and are connected to the plurality of light emitting diodes to supply electrical power thereto. The elongate thermally conductive member conducts heat away from the light emitting diodes. In accordance with one aspect of the invention, an illustrative embodiment of the invention utilizes light emitting diodes that emit white light. However, other embodiments of the invention may utilize light emitting diodes that are of different colors to produce monochromatic light or the colors may be chosen to produce white light or other colors. In accordance with another aspect of the invention the elongate thermally conductive member transfers heat from the light emitting diodes to a medium within said elongate thermally conductive member. In the illustrative embodiment of the invention, the medium is air. In accordance with another aspect of the invention, the elongate thermally conductive member has one or more fins to enhance heat transfer to the medium. In accordance with another aspect of the invention the elongate thermally conductive member comprises a tube. In one embodiment of the invention, the tube has a cross-section in the shape of a polygon. In another embodiment of the invention, the tube has a cross-section having flat portions. In accordance with another embodiment of the invention, the elongate thermally conductive member comprises a channel. In accordance with the principles of the invention, the elongate thermally conductive member may comprise an extrusion, and the extrusion can be highly thermally conductive material such as aluminum. In one preferred embodiment of the invention the elongate thermally conductive member is a tubular member. The tubular member has a polygon cross-section. However, other embodiments my have a tubular member of triangular cross-section. In one embodiment of the invention, a flexible circuit is carried on a surface of said elongate thermally conductive member; the flexible circuit includes the electrical conductors. In another aspect of the invention, the flexible circuit comprises a plurality of apertures for receiving said plurality of light emitting diodes. Each of the light emitting diodes is disposed in a corresponding one of the apertures and affixed in thermally conductive contact with said elongate thermally conductive member. The elongate thermally conductive member includes a thermal transfer media disposed therein in a flow channel. At least one clip for mounting the elongate thermally conductive member in a fixture may be included.
20041108
20070710
20050901
87893.0
2
HO, TU TU V
LIGHT EMITTING DIODE LIGHT SOURCE
SMALL
1
CONT-ACCEPTED
2,004
10,984,378
ACCEPTED
Electronic property viewing system for providing virtual tours via a public communications network, and a method of exchanging the same
Disclosed is an electronic real property viewing system for providing virtual tours of real property units via a public communications network such as the internet. The electronic property viewing system includes a system for affiliates to create their own virtual tours in real time by uploading photographs into a template, resulting in both movable and still photographs with accompanying data sets. Another embodiment of this invention involves the exchange of the creation and/or maintenance of such virtual tour available on a public communications network for occupation time units in the real property units.
1. A method in a computer system for providing an electronic template for inputting and providing a virtual tour of one or more real property units over a public communications network, comprising the following steps: a. making available to one or more affiliates via the public communications network, a virtual tour template on one or more memory areas, said virtual tour template providing a framework for affiliates to input photographs and a data set to create a virtual tour of a real property unit; b. receiving from the affiliate via the public communications network, at least one movable photograph of part or all of the real property unit, and storing the at least one movable photograph in one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; c. receiving from the affiliate via the public communications network, the data set corresponding to the movable photograph, and storing the data set in the one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; and d. making available to one or more clients via the public communications network, the virtual tour dynamically utilizing the at least one movable photograph and the data set in the virtual tour template. 2. A method in a computer system for providing an electronic template as recited in claim 1, and further the virtual tour is made available via the public communications network, as a link from a website of the affiliate. 3. A method in a computer system for providing an electronic template as recited in claim 2, and further comprising the steps of returning the client viewing the virtual tour to the website of the affiliate upon conclusion of the virtual tour. 4. A method in a computer system as recited in claim 1, and further comprising the following steps: a. receiving from the one or more affiliates via the public communications network at least one still photograph of the real property unit, and storing the at least one still photograph in the one or more memory areas such that the still photograph is available to be included in the virtual tour; and b. making available to one or more clients via the public communications network, the virtual tour which also dynamically includes the at least one still photograph in the virtual tour template as part of the virtual tour. 5. A method in a computer system as recited in claim 4, and further comprising the steps of providing a brochure template of the real property unit on the one or more memory areas, the brochure template utilizing the at least one still photograph and data from the first data set, to create an electronic real property unit brochure. 6. A method in a computer system for providing an electronic template for inputting and providing a virtual tour of one or more real property units over a public communications network, comprising the following steps: a. making available to one or more affiliates via the public communications network, a virtual tour template on one or more memory areas, said virtual tour template providing a framework for affiliates to input photographs and a data set to create a virtual tour of a real property unit; b. said virtual tour template giving the one or more affiliates the option to input a movable photograph having a three hundred sixty degree range and a movable photograph having less than a three hundred sixty degree range; c. receiving from the affiliate via the public communications network, at least one movable photograph of part or all of the real property unit, and storing the at least one movable photograph in one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; d. receiving from the affiliate via the public communications network, the data set corresponding to the movable photograph, and storing the data set in the one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; and e. making available to one or more clients via the public communications network, the virtual tour dynamically utilizing the at least one movable photograph and the data set in the virtual tour template. 7. A method in a computer system for providing an electronic template for inputting and providing a virtual tour of one or more real property units over a public communications network, as recited in claim 6, and wherein the virtual tour template additionally gives the affiliate the option of inputting a still photograph. 8. A computer-readable medium containing instructions for controlling a computer system, for providing an electronic template for inputting and providing a virtual tour of one or more real property units over a public communications network, comprising the following steps: a. making available to one or more affiliates via the public communications network, a virtual tour template on one or more memory areas, said virtual tour template providing a framework for affiliates to input photographs and a data set to create a virtual tour of a real property unit; b. receiving from the affiliate via the public communications network, at least one movable photograph of part or all of the real property unit, and storing the at least one movable photograph in one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; c. receiving from the affiliate via the public communications network, the data set corresponding to the movable photograph, and storing the data set in the one or more memory areas such that it is available to be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour; and d. making available to one or more clients via the public communications network, the virtual tour dynamically utilizing the at least one movable photograph and the data set in the virtual tour template. 9. A method in a computer system for displaying an affiliate input system to enable an affiliate to input via a public communications network, at least one movable photograph and at least one data set pertaining to the at least one movable photograph, into a real property unit virtual tour template, to create or edit a dynamic virtual tour of the real property unit, comprising the following steps: a. providing a set of computer readable instructions providing the dynamic virtual tour of the real property unit, which includes the affiliate input system; b. displaying a login screen for the entry of data to enable the affiliate to access the affiliate input system; c. displaying a data set input template which allows the affiliate to enter a data set pertaining to the real property unit such that the data set is made available for use in the dynamic virtual tour; d. displaying a photograph input template which allows the affiliate to upload at least one movable photograph, such that the photographs are available for use in the dynamic virtual tour; and e. making available for display to a client via the public communications network, a display of the virtual tour which includes part or all of the data set and includes the at least one movable photograph. 10. A method in a computer system as recited in claim 9, and only wherein the displaying of the data input template and the displaying of the photograph input window are contained on the same screen display. 11. An apparatus which provides virtual touring of real property units accessible to clients over a public communications network, comprising: a. a web server computer which is accessible by client computers via the public communications network, the web server having one or more memory areas configured to store a virtual tour of one or more real property units, the virtual tour including at least one movable photograph with an accompanying data set; b. wherein the web server computer is accessible by affiliate computers via the public communications network 12. A method in a computer system for providing and exchanging virtual tours of one or more real property units which have occupation time units available, for the creation and/or maintenance of the virtual tour, comprising the following steps: a. providing a computer readable medium which includes a virtual tour template of a real property unit on one or more memory areas which are accessible via a public communications network, the real property unit having occupation time units available; b. storing on the computer readable medium one or more photographs and a data set corresponding to the one or more photographs such that the one or more photographs and the data set may be dynamically retrieved by the virtual tour template and thereby included as part of the virtual tour, in response to a client request over the public communications network; and c. making said virtual tour of the real property unit accessible via the public communications network, in exchange for one or more of the occupation time units.
TECHNICAL FIELD This invention pertains an electronic property viewing system for providing virtual property tours through a public communications network, the system allowing consumers to tour real and personal property, and wherein affiliates themselves may independently access, input and edit the property tour data sets and photographs. REFERENCE TO MICROFICHE INDEX Pursuant to 37 C.F.R. 1.96, this specification includes a microfiche appendix which is filed herewith, comprising two microfiche cards, labeled as appendix electronic property viewing system 1 of 2, and appendix electronic property viewing system 2 of 2. The microfiche contains eighty five pages of computer source code comprising one embodiment of the computer readable instructions which may be used to practice an embodiment of this invention, and which are hereby incorporated into this specification by this reference. BACKGROUND OF THE INVENTION The more recent acceptance and use of public communications networks such as the internet, has provided a network or system through which the viewing of both real and personal property may be accomplished in a much more efficient and desirable way than has ever previously been provided or available. The increased ability to handle larger amounts of data and information over the internet has further allowed more graphical images to be presented to the viewer, which facilitates much more effective presentations or tours to users of the internet. While there have been prior attempts to make available the viewing of still photographs of property over the internet, the prior systems have typically required that a photographer be hired on behalf of the company providing the website, who must go to the property to take photographs. The website company then posted the one or more still photographs on the website, and later input text describing the still photographs. These prior systems therefore have a relatively high cost in the commercial creation of the photographs, and then in their placement on the website of the website company. The prior systems also took an unjustifiably long amount of time before the photographs of the property were available to viewers or potential purchasers. It is therefore an object of an embodiment of this invention to provide a property viewing system wherein affiliates, such as real estate agents or property owners (in the real estate embodiments of this invention), property managers (in the rental property embodiments of this invention), or the property management companies & owners (in the vacation rental or room rental embodiments of this invention), may take their own photographs and upload the images along with the desired data sets to the website, thereby constructing their own virtual tour which would be available immediately or in real-time. In the typical prior systems the viewer accessing a property viewing website over the internet would find one or more photographs on the first page for that property unit, but typically must then move from new page to new page in order to view the plurality of photographs of the property. In order to go back to a prior view of the property to look at it a second time and to look at other pages which contain other photographs of the property, the user must typically click on the back button on his internet browser. Requiring a user to continually go back to the start page for a series of photographs or images makes the tour more tedious and less desirable for the user. This becomes a relatively slow process and does not provide a sufficiently easy or desirable virtual tour of the property. It is therefore an object of an embodiment of this invention to provide a property viewing system in which the viewer may take a virtual tour of property while staying on the same reference page, and further which provides the index, tabs or other selection means to directly go to each of the other multiple views of the property from the same page. Some of the embodiments of this invention have the advantage of providing a tab system which allows the user to view or access any one of the tour views or pages from any one of the tour views or pages, significantly reducing the amount of time to take a complete virtual tour, and making it more pleasing to the consumer. In most property viewing situations, merely providing small single shot still photographs does not make the best presentation of the property being viewed. It is much more desirable to provide larger photographs, panorama photographs or movable photographs, which allow the potential customer or viewer to see a more complete view of the property, and to control the movement of the photograph or the view of the property. Providing panorama photographs also gives the viewer more of a feeling or belief that he or she is actually taking a tour of the property, and turning their head or looking around the property unit, as opposed to merely looking at a still photograph. A feature of one embodiment of this invention therefore provides a virtual property viewing or tour system, which provides one or more panorama or movable photographs. Text and/or still photographs may be combined with the movable photographs as part of the same virtual tour. There are numerous different embodiments for which this invention may be used, such as without limitation, providing virtual tours of real property for sale or lease, virtual tours of vacation properties and virtual tours of vehicles, virtual tours of art or museums using movable photographs; to name but a few examples. There is not currently a sufficiently versatile website which contains a virtual tour of real property, with options of having a movable photograph with a three hundred sixty degree range, a movable photograph having less than a three hundred sixty degree range, and still photographs, in the same is virtual tour. With the varying types of photographs and photographic capabilities of affiliates and potential affiliates, this type of flexibility is long overdue. It is therefore an object of this invention and a feature of one embodiment of the invention to provide a virtual tour site which is versatile enough to optionally provide a movable photograph with a three hundred sixty degree range, a movable photograph having less than a three hundred sixty degree range. It is a still further object to provide such a site which additionally provides the option for still photographs. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the invention are described below with reference to the following accompanying drawings: FIG. 1 is a flowchart block diagram overview of the property viewing system in relation to the internet and client computers; FIG. 2 is a process flow diagram of an embodiment a property viewing system as contemplated by this invention; FIG. 3 is a block depiction of a diagram of an embodiment of a start page or home page screen display, as shown more fully in FIGS. 4A and 4B; FIG. 4A is a partial diagram of the Home Page screen display for one embodiment of the electronic property viewing system contemplated by this invention; FIG. 4B is a partial diagram of the lower portion of the Home Page screen display for the embodiment of the electronic property viewing system contemplated by this invention and shown in FIG. 4A; FIG. 5 is a block depiction of a diagram of a Sign Up screen display for an embodiment of the electronic property viewing system contemplated by this invention, wherein new clients or affiliates, input personal information to create a new account, and as shown more fully in FIGS. 6A, 6B and 6C; FIG. 6A is a partial diagram of a Sign Up screen display represented in FIG. 5; FIG. 6B is a partial diagram of the sign up screen display represented in FIG. 5; FIG. 6C is a partial diagram of the sign up screen display represented in FIG. 5; FIG. 7 is a block depiction of a diagram of a Login screen display which may be used in an embodiment of this invention, wherein existing clients or affiliates input their unique information such as email address and password, and as shown more fully in FIGS. 8A and 8B; FIG. 8A is a partial diagram of the login screen display represented in FIG. 7; FIG. 8B is a partial diagram of the login screen display represented in FIG. 7; FIG. 9 is a block depiction of a diagram of a Modify a Tour screen display which may be used in an embodiment of this invention, wherein existing affiliates input their unique information such as email address and password, and as shown more fully in FIGS. 10A and 10B; FIG. 10A is a partial diagram of the Modify a Tour screen display represented in FIG. 9; FIG. 10B is a partial diagram of the modify a tour screen display represented in FIG. 9; FIG. 11 is a block depiction of a diagram of a main tour editing screen display which may be used in an embodiment of this invention, wherein existing clients or affiliates choose in which way to input, access, or update information within their account, as more fully shown in FIGS. 10A and 10B; FIG. 12A is a partial diagram of the main tour editing screen display represented in FIG. 11; FIG. 12B is a partial diagram of the main tour editing screen display represented in FIG. 11; FIG. 13 is a block depiction of a diagram of the Contact Information screen display which may be used in an embodiment of this invention, wherein the affiliate or agent may input personal, business or advertising data and photographs for their use of the system, as more fully shown in FIGS. 14A, 14B and 14C; FIG. 14A is a partial diagram of the contact information screen display represented in FIG. 13; FIG. 14B is a partial diagram of the contact information screen display represented in FIG. 13; FIG. 14C is a partial diagram of the contact information screen display represented in FIG. 13; FIG. 15 is a block depiction of a diagram of a Tour Counter, or hit counter, screen display which may be used in an embodiment of this invention, wherein the affiliate or agent may obtain information about the number of visits or hits on each of his or her property units for which virtual tours are provided, as more fully shown in FIGS. 16A and 16B; FIG. 16A is a partial diagram of the hit counter screen display represented in FIG. 15; FIG. 16B is a partial diagram of the hit counter screen display represented in FIG. 15; FIG. 17 is a block depiction of a diagram of a Quick Edit tour display which may be used to allow the agent or affiliates to edit the most commonly changed fields in a given property tour, and from which open houses or other scheduled items may be scheduled, as more fully shown in FIG. 18A and 18B; FIG. 18A is a partial diagram of the Quick Edit tour screen display represented in FIG. 17; FIG. 18B is a partial diagram of the Quick Edit tour screen display represented in FIG. 17; FIG. 19 is a diagram of a Schedule Open House screen display which may be used to allow the affiliate to schedule an open house and thereby notify potential customers as well; FIG. 20 is a diagram of a Schedule Open House screen display wherein an open house date has been input by the affiliate in the template containing part of the data set for the property unit; FIG. 21 is a block depiction of a diagram of the Quick Edit tour screen display with the open house scheduled in FIG. 20 teen shown on the Quick Edit tour screen display; FIG. 22A is a partial diagram of the edited Quick Edit tour screen display represented in FIG. 21; FIG. 22B is a partial diagram of the edited Quick Edit tour screen display represented in FIG. 21; FIG. 23 is a partial diagram of a Terms and Conditions of Use screen display which may be used in an embodiment of this invention, and a which would be encountered by a user selecting the Create a New Tour menu item from the screen display depicted in FIG. 18A (or others with the same menu item selection); FIG. 24 is a block depiction of a diagram of a checklist for the creation of a new tour which the affiliate reviews before proceeding to create a new property virtual tour, as more fully shown in FIGS. 25A, 25B and 25C; FIG. 25A is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24; FIG. 25B is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24; FIG. 25C is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24; FIG. 26 is a diagram of a Creating a New Tour” screen display which may be used in an embodiment of this invention, wherein the affiliate inputs basic information to initiate the creation of a new virtual tour within the contemplation of this invention, and after accepting the Terms and Conditions of Use as more fully set forth in FIG. 23; FIG. 27 is a block depiction of a diagram of the main tour information editing screen display which may be used in an embodiment of this invention, and which would be encountered by a user desiring to create a new virtual tour or by a user desiring to edit an existing virtual tour, as more fully shown in FIGS. 28A, 28B and 28C; FIG. 28A is a partial diagram of the main tour information editing screen display represented in FIG. 27; FIG. 28B is a partial diagram of the main tour information editing screen display represented in FIG. 27; FIG. 28C is a partial diagram of the main tour information editing screen display represented in FIG. 27; FIG. 29 is a block depiction of a diagram of the main tour information editing screen display, showing the partial input of property information and further showing the drop-down menu selections for “Property Type”, which may be used in an embodiment of this invention, as more fully shown in FIGS. 30A, 30B, and 30C; FIG. 30A is a partial diagram of the main tour information editing screen display represented in FIG. 29; FIG. 30B is a partial diagram of the main tour information editing screen display represented in FIG. 29; FIG. 30C is a partial diagram of the main tour information editing screen display represented in FIG. 29; FIG. 31 is a block depiction of a diagram of the main tour information editing screen display, showing the partial input of property information and further showing the drop-down menu selections for Property Subtitle, which may be used in an embodiment of this invention, as more fully shown in FIGS. 32A, 32B, and 32C; FIG. 32A is a partial diagram of the main tour information editing screen display represented in FIG. 31; FIG. 32B is a partial diagram of the main tour information editing screen display represented in FIG. 31; FIG. 32C is a partial diagram of the main tour information editing screen display represented in FIG. 31; FIG. 33 is a block depiction of a diagram of the main tour information editing screen display, showing the drop-down menu selections for the Property Style data to be included in the template, which may be used in an embodiment of this invention, as more fully shown in FIGS. 34A, 34B and 34C: FIG. 34A is a partial diagram of the main tour information editing screen display represented in FIG. 33; FIG. 34B is a partial diagram of the main tour information editing screen display represented in FIG. 33; FIG. 34C is a partial diagram of the main tour information editing screen display represented in FIG. 33; FIG. 35 is a block depiction of a diagram of a photograph edit page accessed from the main tour information editing screen by clicking on the picture tab, in an embodiment of this invention, and is more fully shown in FIGS. 36A, 36B, 36C, 36D and 36E; FIG. 36A is a partial diagram of the photograph edit page represented in FIG. 35; FIG. 36B is a partial diagram of the photograph edit page represented in FIG. 35; FIG. 36C is a partial diagram of the photograph edit page represented in FIG. 35; FIG. 36D is a partial diagram of the photograph edit page represented in FIG. 35; FIG. 36E is a partial diagram of the photograph edit page represented in FIG. 35; FIG. 37 is a pop-up window which is encountered when selecting the photograph name tab by selecting or clicking on the Photo Name tab, and allows the affiliate to choose from pre-selected names to use for photographs; FIG. 38 is an Upload Photo screen display which is encountered when selecting or clicking on the Upload Photo box just below where the photograph window will appear; FIG. 39 is a Tune Photo screen display which is provided via a pop-up window and which allows the user to edit certain attributes of a photograph; FIG. 40 is a block depiction of the main tour information editing screen display as reflected in FIG. 27, wherein the drop-down menu for number of photographs has been selected, as more fully shown in FIGS. 41A and 41B; FIG. 41A is a partial diagram of the main tour information editing screen display represented in FIG. 40; FIG. 41B is a partial diagram of the main tour information editing screen display represented in FIG. 40; FIG. 42 is a block depiction of a brochure information editing screen display which provides the affiliate with three different brochure options which may be selected, as well as data boxes for the entry of data for inclusion in the data set for the brochure or brochures chosen, as more fully shown in FIGS. 43A and 43B; FIG. 43A is a partial diagram of the brochure edit screen display represented in FIG. 42; FIG. 43B is a partial diagram of the brochure edit screen display represented in FIG. 42; FIG. 44 is a block depiction of a screen display containing a first brochure created as the virtual tour was created, as more fully shown in FIGS. 45A and 45B; FIG. 45A is a partial diagram of the first brochure screen display represented in FIG. 44; FIG. 45B is a partial diagram of the first brochure screen display represented in FIG. 44; FIG. 46 is a block depiction of a screen display containing a second brochure, as more fully shown in FIGS. 47A and 47B; FIG. 47A is a partial diagram of the second brochure screen display represented in FIG. 46; FIG. 47B is a partial diagram of the second brochure screen display represented in FIG. 46; FIG. 48 is a block depiction of a screen display containing a third brochure option, as more fully shown in FIGS. 49A and 49B; FIG. 49A is a partial diagram of the third brochure screen display represented in FIG. 48; FIG. 49B is a partial diagram of the third brochure screen display represented in FIG. 48; FIG. 50 is a block depiction of a diagram of the purchase screen display wherein the affiliate initiates the purchase of the virtual tour, selects advertising and methods of providing data or photographs, as more fully shown in FIGS. 51A and 51B; FIG. 51A is a partial diagram of the purchase screen display represented in FIG. 50; FIG. 51B is a partial diagram of the purchase screen display represented in FIG. 50; FIG. 52 illustrates an embodiment of a Tour Invoice screen display which may be printed by the affiliate, and which provides basic information regarding the tour, as more fully shown in FIGS. 53A, 53B and 53C; FIG. 53A is a partial diagram of the Tour Invoice screen display represented in FIG. 52; FIG. 53B is a partial diagram of the Tour Invoice screen display represented in FIG. 52; FIG. 53C is a partial diagram of the Tour Invoice screen display represented in FIG. 52; FIG. 54 is a figurative illustration of one way to provide a movable photograph as part of a virtual tour contemplated by an embodiment of this invention; FIG. 55 is a representation of a panoramic photograph which has been stitched or spliced, and which shows the relative area of the viewing window to the entire panoramic photograph; FIG. 56 is a diagram showing how locating the computer mouse pointer causes the movable photograph to move; FIG. 57 is an embodiment of a screen display which would preferably be used as a first page in a virtual tour, within the contemplation of this invention; FIG. 58 is an embodiment of a screen display which may be used as a page or display in a virtual tour, within the contemplation of this invention; FIG. 59 is an embodiment of a screen display which may be used as a page in a virtual tour, within the contemplation of this invention, figuratively illustrating a movable photograph; FIG. 60 is an embodiment of a screen display which may be used as a page in a virtual tour within the contemplation of this invention; FIG. 61 is a block diagram illustrating the exchange of time units in consideration for a virtual tour posting on a website; FIG. 62 is a pop-up window screen display of an Insert Photo which is prompted by selecting or clicking on the Upload Photo buttons described herein, giving the affiliate the option to either directly upload the photograph or to email it as an attachment to the virtual tour web site; FIG. 63 is a pop-up window screen display of an Pick a Photo which is prompted by selecting or clicking on the Email a Photo button shown in FIG. 62; FIG. 64 is a pop-up window screen display of a second Pick a Photo screen which is prompted by selecting the “Pick an E-mailed Photo” button in FIG. 63; and FIG. 65 is a pop-up window screen display of a Panorama Mode page wherein the affiliate must identify the nature of the photograph selected. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made to a preferred embodiment of the Applicants' invention. One exemplary implementation is described below and depicted with reference to the drawings comprising an electronic property virtual tour system for use on a public network such as the internet. While the invention is described via a preferred embodiment, it is understood that the description is not intended to limit the invention to this embodiment, but is intended to cover equivalents and modifications such as are included within the scope of the appended claims. Further, due to the nature of the level of skill in the art, there may be various menu items, explanatory text, buttons, menus, routines, subroutines, source code, display configurations which are known or may readily be duplicated by known programming means by one skilled in the art, and they will not therefore be described in significant detail. The term photograph as used herein is used in a broader sense than its normal definition, to include without limitation, traditional photographs, photographic images, digital photographs, electronic depictions of photographs, video taped segments, digitized photographs, digital and manipulated photographs, and any other image which is derived from, or based on, a photograph. The term “movable photograph” as used herein means a photograph, as defined above, and which is caused to move or appear to move within the viewer window, to allow more of the photograph to be seen than is shown in the viewer window. In this case if a given photograph is larger than the viewer photograph window, it may be designated as such when being input, and it is the selection during input that determines whether the embodiment of this invention, creates a movable photograph or picture, versus a still photograph. The term panorama or panoramic as used herein in connection with photographs, in addition to its traditional definitions, is used herein for photographs which are larger than the viewer photograph window (either vertically or horizontally), which is typically measured in pixels. The term “affiliate” as used herein is intended to broadly apply to any person or entity authorized to create or modify virtual tours of property units, examples of which for various embodiments of this invention, including without limitation: real estate agents listing real property and rental/lease property; resorts; property managers; sellers of vehicles; hotel owners; travel agents; travel promoters; chambers of commerce; visitors bureaus; and others. The term “property” or “property unit” as used herein is intended to cover not only what is traditionally considered real property, but also, without limitation, time share interests, condominium interests, motel rooms, hotel rooms, resorts, golf courses, and bed and breakfast facilities, to name but a few. The term property unit also includes all types and kinds of personal property such as, without limitation, automobiles, trucks, recreational vehicles, airplanes, artwork, to name just a few. The term “template” as used herein in relation to the format of a virtual tour of a given screen display is used in a broad sense to include a form, framework, report form, format or other electronic or screen display structure for the input, editing or presentation of a virtual tour. While the preferred embodiment is described and used in connection with the internet and the world wide web, the term communications network or public communications network as used herein is meant in its broadest sense to include these and all other current and future communication is networks, including public packet switched communications networks, and the current or future internet. FIG. 1 illustrates a preferred embodiment of Applicants' invention wherein a basic system configuration is provided for an electronic property virtual tour system for use on a public communications network, which is identified as reference numeral 100. An online network 102 is provided in one form as the internet 104, and more particularly as the World Wide Web (WWW). Network 102 is part of a network environment, or networked computer system 108. Networked computer system 108 includes a web server computer 110, one or more client or host computers 112, and an online network 102. Client computers 112 would typically have a web browser 114 and may also include a web document 116. It will be appreciated by those skilled in the art that the web server 110 illustrated may be one or more such servers connected by known means local or remote from one another. There will further be one or more affiliate computers 117, which would be connected to the internet 104 and through which the affiliate may create or edit virtual tours. In an embodiment of this invention, the affiliate may have his or her own website which is accessed over the internet by clients or prospective clients of affiliate (or potential purchasers/lessees of the property units). FIG. 1 illustrates an affiliate server computer 800, affiliate web server 801, affiliate website 802, affiliate webpage 803 and affiliate property unit listings 804, all of which are connected to the public communications network, which in this embodiment is the internet. A feature of one embodiment of this property viewing system to affiliates is that customers who visit the affiliate's web site 802 will be returned to that web site after viewing the virtual tour selected from the affiliates site. For instance, a potential client of the affiliates may be viewing a list of property units on the affiliates's web site 802 and click on a particular property unit to see a virtual tour. This will link the client to web site 122 where the one or more memory areas store the virtual tour. The one or more memory areas may also be located on linked or electronically connected computers, sites or memory areas, and they need not be physically near one another. Once done with the virtual tour, the client may select or click on the Back to Your List button 851 or link (shown on the sample tour illustrated in FIG. 57, and others), and be returned to the affiliates web site without the need to repetitiously hit the back button of the client's internet browser. More particularly, Web server computer 110 is a hardware component that serves codes and data to the WWW. Web server computer 110 includes a web server 118 comprising a software program that receives, manages, and responds to client requests for web documents and files. Web server 118 includes a central electronic property viewing system 120 in which a virtual property tour may be viewed by client computers 112. The virtual tour is carried out pursuant to the electronic property viewing system 100. Website 120 includes web page 122 and virtual property tour memory area 124. Web page 122 comprises a unit of information in a form of a data unit, that may include text and/or graphics. The unit of data or data unit is presented on a screen out of client computer 112 to a user, such as to an individual searching for property or desiring to virtually tour real or personal property. Individual web pages are active and may include buttons, icons and/or links, which are all well known in the art and which will be referred to herein as triggers. Triggers enable the launching of application software programs and/or access or links to other pages. Virtual property tour memory area 124 comprises the collective memory area allocated for part or all of property unit data sets, on the web server computer 110. The term memory areas as used herein is intended to cover any area with temporary or permanent memory capabilities, including any memory storage mediums, such as a computer hard drives, disks, data storage devices, and others as set forth below. For purposes of this disclosure, it is understood that memory generally refers to a data storage device resident within or associated with a computer, such as a random access memory (RAM). As utilized herein, memory is intended to refer to any form of storage medium associated with a computer, such as a data storage device, and including hard disk drives (HDDs), semiconductor memories and addressable storage spaces present within a processing unit or other internal storage devices that are used to execute instructions and/or store data and addresses, or any other form of memory as presently understood within the art, or which may later be developed. Furthermore, it is understood that memory can be physically subdivided into units such as a first memory area, a second memory area, and a third memory area. Such units are not necessarily physically associated, but can be associated via the ability to address and/or locate such memory areas. As shown in FIG. 1, it is understood that client computer 112 is a general-purpose machine that processes data via a set of instructions that is stored in a data storage device, such as memory or a memory area. The computer server components comprise hardware on which one or more software programs are implemented. The typical hardware includes a processor or microprocessor; a hard disk drive; screen displays; input devices such as a keyboard and/or a mouse; and other associate components which are well understood and known in the art. Additionally, Web server computer 110 includes hardware such as one or more processors, or microprocessor; one or more data storage devices, such as a hard disk drive (“HDD”); memory, such as random access memory (“RAM”); and an interface device, such as a display, a keyboard and/or a mouse. According to one implementation of Applicants' invention, web server computer 110 comprises two servers which are identical in hardware, each machine having 300 MHz Intel Pentium II processors, 256 MB of 100 MHzRAM, and a 13 GB IDE hard drive. Both machines are running Windows NT4.0 (with the service pack 5 update). One server is the data warehouse server (includes memory area), and it has Microsoft SQL 6.5 installed thereon. The second server is the web server (includes memory area), which is running Microsoft Internet Information Server (IIS) 4.0, and a host of third party add-ons (server objects), including: SA-Fileup, v2.0.3.8 by Software Artisians, AspMail, v3.0.2 by ServerObjects.com, AspImage, v1.9 by ServerObjects.com, AspHTTP, v3.0.2 by ServerObjects.com, AspInet, v2.0 by ServerObjects.com, ImgSize, v1.1.1 by ServerObjects.com and Counter, and v5.2 by Henn Saar. A variety of programming languages are used in this system. For server-side processing, Microsoft's Active Server Pages (ASP) is used, and is included in the Microsoft Internet Information Server. For client side technologies, HTML, DHTML, Java (applets) and JavaScript are utilized. It will be appreciated by those skilled in the art that the foregoing is to disclose the preferred embodiment, and that there would be numerous alternatives and combinations of alternatives available. FIG. 2 is a process flow diagram of one embodiment of a property viewing system as contemplated by this invention, and which is an embodiment for application over the internet. Step P1 is a representative home page for which an exemplary home page for an internet embodiment is shown more fully in FIGS. 3, 4A and 4B. Step P2 is a Log-in screen display for authorized users or affiliates to enter personal data to gain access to the input, or editing portion of the viewing system. FIGS. 7, 8A and 8B illustrate an internet embodiment of step P2. Step P3 is a Sign-Up screen display for persons who are not yet authorized to access, create and/or edit the viewing system. FIGS. 5, 6A, 6B and 6C show a representative internet embodiment screen display representing step P3. An affiliate or a potential affiliate would typically access the home page of the virtual tour service provider. In order for the affiliate to proceed to access, create or edit virtual tours, he or she would choose step P2 or step P3 to either log in if he or she is already an authorized user, choose step P3 to sign up and thereby become authorized to enter step P4. Step P4 is the main tours editing screen display, and an internet embodiment of step P4 is illustrated in FIGS. 9, 10A and 10B. From step P4, the affiliate may review a Tour Hit Counter screen display, represented by step P5, and an internet embodiment of which is more fully illustrated in FIGS. 15, 16A and 16B, which allows the affiliate to ascertain the number of times each of the listed virtual tours has been accessed. Also from the main tour editing screen display, the affiliate may enter affiliate contact information via step P6. An internet embodiment of step P6 is more fully illustrated in FIGS. 13, 14A, 14B and 14C. As can be seen at step P6, the Contact Information screen display, at this point an affiliate may choose to upload company logo 1 (step P7), upload company logo 2 (step P8), or provide the data which will comprise the contact information within step P6. The contact information data may include a photograph of the affiliate or affiliates, as represented by step P9. As will be seen below from the feature of this invention which creates electronic property unit brochures, the company logo which may be entered in step P7 or step P8 may be chosen based upon the desired result in the various styles of brochures, which may be created concurrently with the virtual tour. At step P9, the affiliate may upload photographs which would then appear in the virtual tour and on brochures created concurrently with the virtual tour. From the main tour editing screen display, step P4, the affiliate may choose to perform quick editing of an existing virtual tour that he or she already has on the site, and representative step P10 provides a Quick Edit Tour screen display, and an internet embodiment of this invention as illustrated in FIGS. 17, 18A and 18B. The quick edit feature allows the affiliate to manipulate the most commonly changed fields in a listing and also to schedule various items, such as an open house for instance, if it is a real property sale virtual tour. In the event an affiliate wishes to schedule an open house in that embodiment, he or she proceeds to step P11, which represents a Schedule Open House screen display, as more fully illustrated in FIG. 19. FIG. 20 illustrates a part of the template for the entry of open house data within step P11, and as shown more fully in FIGS. 21, 22A and 22B. The resulting screen display illustrates the edit or change to the Quick Edit tour screen display after step P11 is followed and an open house is scheduled. If the affiliate desires to proceed to Step P12, which is a tour information editing screen display to create a new tour, he or she would proceed to such step but would be interrupted by a pop-up window which would contain the Terms and Conditions of Use for the property viewing system, which is represented by step P13. The Terms and Conditions of use must be accepted before the viewing system will allow the affiliate to proceed to build or create a new tour. Step P13 is more fully illustrated in FIG. 23. An affiliate desiring to create a new virtual tour should have the requisite information or data ready for input before proceeding to create a tour, and this system provides the affiliate a checklist of the requisite data required for input. The checklist may be provided at multiple locations, such as just after the affiliate has accepted the Terms and Conditions of Use (step P13). If the checklist is provided at that point, it would be step P14. An internet embodiment screen display for step P14 is illustrated in FIGS. 24, 25A, 25B and 25C. It is at this step that the affiliate is reminded of the information which needs to be input to create a virtual tour, as well as the decisions that must be made once he or she proceeds to step P14. This checklist may alternatively be provided at step P2 or P3, as shown in FIG. 8B by selecting the “click here for a list of things you will need to build a new tour” button or selection. FIG. 2 further illustrates step P12 being a tour information editing screen display, an internet embodiment of which is more fully shown in FIGS. 27, 28A, 28B and 28C. This is the main tour creation and editing screen for creating and editing virtual tours of property units. FIG. 2 further illustrates step P23, which is a main pictures and text editing screen which is encountered when selecting or clicking on the pictures tab to create or edit existing pictures for a virtual tour. An internet embodiment of step P23 is more fully reflected in FIGS. 35 and 36A through 36E. From step P23, the affiliate may choose step P22 which is the Upload Photo screen display, as shown more fully in FIG. 38. Step P16 is a step which involves a pop-up window which appears when the affiliate selects the photo name by clicking on it. The pop-up window provides a list of pre-selected photograph names to choose from in labeling the uploaded photograph, and is more fully illustrated in FIG. 37 and explained below. Step P17 illustrates the brochure information editing screen display step which is more fully shown in FIGS. 42, 43A and 43B. The brochure information editing screen display then provides three different brochure selections or options, as is more fully shown in FIG. 43A. The brochures are more fully illustrated in FIGS. 44, 45A, 45B, 46, 47A, 47B, 48, 49A, and 49B. Once the virtual tour has been created, there is a Purchase Tour screen display, represented by step P18, which is more fully reflected in FIGS. 50, 51a and 51b. The affiliate may then proceed to step P19 to print the invoice, or to step P20 to engage in an online transaction, e-commerce, or to step P21 to request the server to bill the affiliate. FIG. 3 is a block depiction of an embodiment of a starting page or Home Page screen display for an internet application of this invention, which is shown more fully in FIGS. 4A and 4B. FIG. 4A illustrates a common browser page or outline with the Home Page for a virtual tour site therein. From the Home Page screen display illustrated in FIGS. 4A and 4B, there are numerous common or known menu selection or options for customer and affiliates. The Home Page screen display provides several buttons which may be selected or clicked on by the mouse pointer to move to other memory areas or pages of the website. Sign-Up Now button 140 retrieves the Sign-Up Now screen display, as more fully illustrated in FIGS. 5, 6A, 6B and 6C, and described below, which allows a new potential affiliate to sign up and become authorized to modify or build virtual tours. The Build a New Tour button 141 and the Modify a Tour button 142 retrieve the Log-In screen display reflected and more fully explained with respect to FIGS. 7, 8A, 8B, 9, 10A and 10B. The Click Here to See a Tour button 143 retrieves a sample virtual tour of a property unit, in this example a house offered for sale, which is then available for the user to virtually tour or preview. The Click Here to See a Tour button 143 or link in FIG. 4A, when selected or clicked on, presents a pop-up window which gives a preview or sample virtual tour of the property unit, in this embodiment a real property unit. The Tour Examples button 145 retrieves the same sample or preview virtual tour as the Click Here to See a Tour button 143. The Click Here to Build a Tour button 144 or link, takes the affiliate to the Terms and Conditions of Use screen which is described more fully elsewhere herein. FIGS. 4A and 4B also present self-explanatory information to affiliates and potential affiliates, such as testimonials, lists of persons who are using the virtual tour in their business, frequently asked questions, and other self-explanatory and sales, customer service related features. FIG. 5 is a block depiction of a Sign-Up screen display wherein new affiliates or clients input their personal information and are required to review and accept the Terms and Conditions of Use in order to gain access to the property viewing system, and in order to be able to create and edit virtual tours of property units. FIGS. 6A, 6B and 6C illustrate this “Sign Up Now” screen display. Once the personal information 150 is entered and the prospective affiliate selects or clicks on the I Agree to These Terms button 151, the affiliate is then able to proceed to build or modify virtual tours. If the affiliate chooses the Build a New Tour button 141, the Build a Tour login screen display depicted in FIGS. 8A and 8B are retrieved. The affiliate then enters his or her e-mail address in box 155 and his or her password in box 156, thereafter clicking login button 157 to gain access to the main tour editing screen. If the affiliate chooses the Modify a Tour button 142 in FIG. 4A, he or she will be presented with a screen display reflected in FIGS. 10A and 10B, which allow him or her to modify an existing tour. The affiliate will then be required to enter his or her e-mail address in box 158, password in box 159 (FIG. 10A), and then select or click on the log-in button 160 to gain access to the main tour editing screen. If the affiliate selects or clicks on “Quick Edit” button 166, he or she will be directed to step P10 and FIG. 17, as described more fully below. It will be appreciated from viewing the screen displays reflected in FIGS. 8A and 8B and FIGS. 10A and 10B, that from this display the affiliate can choose other selections on the left-most column to enter other parts of the website or other web pages, all of which are known in the art. Once the e-mail address and password are properly entered and accepted, the affiliate is logged in, he or she may be presented with a getting started aid as depicted in FIG. 11 and illustrated in FIGS. 12A and 12B. The e-mail and password information results in the “retrieval of a list of tours” button 160 as reflected in FIG. 12A. From the list of tours provides certain information regarding the existing virtual tours that affiliate currently has on the website, in the database or on the system. From the column on the left of the screen display reflected in FIGS. 12A and 12B, the affiliate is presented with a tour menu 161 which provides certain linking buttons to click on to allow better navigation or maneuvering through the site or to particular virtual tours that the affiliate already has created. Tour menu 161 provides help button 170, contact information button 169, quick edit tours button 162, create a new tour button 163, tour hit counters button 164, and logout button 165. The left-hand column also provides a list of tours section which provides the affiliate's name and a listing of tours the affiliate already has in the viewing system. For example, inactive tour number 100409 in FIG. 12A is for a real property unit with an address of 123 Yellowbrick Lane. Selecting or clicking on the listing 167 will allow the affiliate to edit and perform other tasks relative to that particular virtual tour. FIGS. 12A and 12B also provide a right-hand column with other helpful information to the affiliate, and this can be changed as desired, and is generally known in the art. Selecting or clicking the Contact Information button 169 allows the affiliate to change contact information and photographs regarding the affiliate, his or her company, and other pertinent information which appears with virtual tours and on brochures. Selecting Contact Information button 169 takes the affiliate to the screen display reflected in FIGS. 13, 14A, 14B and 14C, which will be discussed more fully below. If the affiliate selects the Quick Edit Tours button 162, he or she will be taken to the quick edit tours screen display more fully reflected in FIGS. 17, 18A and 18B, which will be more fully discussed below. If the affiliate selects or clicks on the Create a New Tour button 163, the affiliate will be returned to the main tours editing screen display, assigned a tour number and provided the template boxes to input data to compose a data set, and to upload photographs if desired. If the affiliate selects the Tour Hit Counters button 164, the Tour Hit Counters screen display will be retrieved, as shown more fully in FIGS. 15, 16A and 16B, which will be more fully discussed below. Needless to say, if the affiliate selects or clicks on the logout button 165, he or she will be logged out of the system. FIG. 13 is a block depiction of a diagram of the Contact Information screen display which may be used in an internet embodiment of this invention, wherein the affiliate may input or edit personal, business or advertising data and photographs about the affiliate, such as shown in FIGS. 14A, 14B and 14C. The Contact Information screen display further allows the affiliate to upload company logo information and photographs. For instance, in FIG. 14C the affiliate may upload his or her company logo into logo box 180 by selecting or clicking the upload button 181. The affiliate may similarly upload a second company logo into the logo box 182 by selecting or clicking on upload button 183. The affiliate may also upload his or her personal photograph into contact photo box 184 by selecting or clicking upload button 185. Once the affiliate has completed his or her entries into the Contact Information page, the “post changes” button 186 may be selected or clicked to update the database and/or memory area where the information, logos and photographs are stored. Clicking on upload button 181, upload button 183 or upload button 185 will retrieve and upload a standard windows screen display, an example of which is shown in FIG. 38, and which is discussed more fully below. If the affiliate selects “tour hit counters” button 164 shown in FIG. 12A, it will retrieve a Tour Counters screen display for that affiliate, which provides a list of tours stored in the viewing system and informs the affiliate of the number of hits or visits to that tour per day, as well as the total number of hits, as more fully reflected in FIGS. 16A and 16B. The hits column 190 and the hits per day column 191 are shown as of the applicable start dates for each of the respective tours of the affiliate shown in FIG. 16A. If the affiliate selects the Quick Edit Tours button 162 in FIG. 12A, the Quick Edit Tours screen display as reflected in FIGS. 17, 18A and 18B, will be retrieved. The quick edit tours screen display allows the affiliate to manipulate the most commonly changed fields in a virtual tour, such as the price and the active versus inactive status of the virtual tour. The Quick Edit Tours screen display also provides an open house column 193 to indicate information regarding an open house on the property unit itself. For instance, as shown in FIG. 18A, virtual tour number 100409 has a schedule button 194 which allows the affiliate to select or click on the schedule button 194 to schedule an open house for that property unit. If the affiliate selects schedule button 194, the schedule open house screen display reflected in FIG. 19 will be retrieved. The Schedule Open House screen display illustrated in FIG. 19 provides information boxes to input data regarding an open house and provides information box 194 for the last date the open house (the date the system clears the open house scheduled date in FIG. 20), information box 195 for the date of an upcoming open house, information box 196 for the name of the host or hostess who will be at the open house. Once the date is entered in the respective information boxes, the affiliate may select the “OK” button 197 to approved the entry of the data into the Quick Edit Tours screen display if any new data has been entered, and to then return to the Quick Edit Tours screen display. FIG. 20 reflects that an affiliate has entered a date of Apr. 10, 1999 (item 177) into information box 195 to schedule an open house, and FIGS. 21, 22A and 22B reflect the now scheduled open house in open house column 193, of Apr. 10, 1999 (item 177). The information reflected in FIG. 22A for tour number 100409, for an address of 1244 Yellowbrick Lane, reflects the information for one property unit, in this case a real property unit which is a house located on Yellowbrick Lane. FIG. 22A further reflects a status column 200 which informs the affiliate of the status of the virtual tour on the viewing system, such as whether the subscription has been paid, and if so the date through which it has been paid, or whether it is expired. From the main tours editing screen display, if the affiliate selects the “create a new tour” button 163, the Terms and Conditions of Use screen display reflected in FIG. 23 will be retrieved. Before the affiliate will be allowed to create a new virtual tour, the terms and conditions of use must be accepted by selecting “accept” button 201. The affiliate may choose not to proceed to create a virtual tour or choose not to agree to the terms and conditions of use by selecting or clicking on “cancel” button 202. FIGS. 24, 25A, 25B and 25C reflect a checklist for tours screen display which informs the affiliate of the information and data that will be required in order to create or build a new virtual tour. The checklist for tours screen display may be retrieved after the affiliate has accepted the terms and conditions of use by selecting the accept button. After the affiliate has accepted the terms and conditions of use, a pop-up window is presented for creating a new tour and requires that the affiliate enter or select certain basic information about the tour to be built or created. FIG. 26 reflects the creating a new tour screen display, which is step P14 in FIG. 2. In FIG. 26, the affiliate selects the type of tour, whether it be residential, commercial or other, by selecting the name from the drop-down menu 210. The affiliate also selects the number of photos to be presented as part of the virtual tour through drop-down menu 211, and indicates whether the photographs will be supplied by uploading them or by mailing them. By selecting the appropriate upload or mail indicator, the affiliate identifies the method for building the virtual tour with photographs. Once the creating a new tour information has been input or selected, the affiliate may select the “OK” button 212 to proceed to the tour information editing screen, shown more fully in FIGS. 27, 28A, 28B, and 28C. In the preferred embodiment of this invention the tour data or text information is stored in a database or a memory area, and the photographs are stored in a memory area. The tour information editing screen display is reflected in FIGS. 27, 28A, 28B and 28C. It is from this tour information editing screen display that most of the editing and creation of a virtual tour are accomplished, and FIGS. 28A through 28C reflect a sample template for a data set to be entered into, relating to a particular property unit. A data set may be a variety of information chosen for the specific embodiment or application of the embodiment, all within the contemplation of this invention. In FIGS. 28A through 28C, tour information tab 220 has been selected and provides the template for a basic data set about the property unit, which in this case is a real property unit for sale. It will be appreciated by those in the industry that there are numerous different items which may be added or removed from the data set about the property, all within the contemplation of this invention, with the preferred information being shown in FIGS. 28A through 28C. The template may allow information to be input in certain of the information boxes, while in others allow it to be selected from a pre-selected list in a pull-down menu format. In FIGS. 28A through 28C, it reflects the tour information in a field column and in a data column, the field and data being related to a database where the information is stored. The various fields shown in FIG. 28A relate to tour identification number and the tour identification information box 230. The affiliate or agent identification number is input into information box 231 and the price field has information box 232 receives price data. The property type may be selected from pull-down menu 233 which is shown pulled down in FIGS. 30A and 30B, giving a plurality of property types to select from to input the data into the template. Examples of property types which may be selected are residential, commercial, travel, rent, education, golf, entertainment, automobile, senior, industrial or dealership. It will be appreciated that this list is no way by limitation, as there are many other property types that may be used for real property and for other types of property, all within the contemplation of the viewing system provided by this invention. FIG. 28A further shows a field entitled “property sub-type” wherein data may likewise be selected to input a data set about the property unit reflected as tour number 102461. FIGS. 32A and 32B reflect a possible pull-down menu to be used for the property sub-type data field box 234 and lists such selections as residential, residential with acreage, lots and land, waterfront, and others. FIG. 28A further illustrates a tour title information box 235 where the affiliate may enter a title of the virtual tour being created. Information box 236 in FIG. 28B allows the affiliate to input address information about the property unit and information boxes 237, 238 and 239 allow the input of the zip code, city, state and region (box 240) of the particular property unit in question. In the preferred embodiment, the affiliate inputs the zip code and the city, state and region are automatically inputted by the system, thereby removable the need for the affiliate to enter the data manually. Information box information box 241 (FIG. 28B) allows the input of information regarding the area of town in which the property unit is located. Information in the number of bedrooms field may be selected by clicking on the pull-down menu 242 and then selecting the applicable number of bedrooms. In similar manner, data may be input into the number of baths field by clicking on the pull-down menu 243 and then selecting the appropriate number. FIG. 28B further illustrates other fields which may be used and corresponding information boxes or pull-down menus to build the virtual tour and receive the data to comprise a data set about the property unit. Fields such as multiple listing service (“MLS”) number, style of the property unit, year the property unit was built, mortgage calculator link and list date are also shown in FIG. 28B. FIG. 28C shows additional database fields into which data can be entered into the template, including a map link which provides a map of the area and a location of the property unit on the map, a school link which provides information about the applicable schools for the property unit, and a database field for the selection of web sites used to showcase the virtual tour. “Post changes” button 244 may be selected or clicked on to then enter the changes, additions or edits made to the template as reflected in FIGS. 28A, 28B and 28C. The virtual tour template creates a framework for the entry of data and photographs. FIG. 29 is a block depiction of a diagram of the main tour information editing screen display showing the pull-down menu for the selection of property type information and is more fully shown in FIGS. 30A, 30B and 30C. FIGS. 30A and 30B are intended to show the pull-down menu selections which are used for entry to comprise the data set for the property unit in question. FIG. 31 is a block depiction of a diagram of the main tour information editing screen display showing the pull-down menu and selections available for the property sub-type database field, as reflected more fully in FIGS. 32A, 32B and 32C. Other information has been input into the various information boxes, which will then comprise a data set for the property unit. FIG. 33 is a block depiction of a diagram more fully shown in FIGS. 34A, 34B and 34C, of the main tour information editing screen showing the drop-down menu selections for the style database field, showing pull-down menu 246 and selections for ranch, bungalow, cape cod, contemporary and colonial in the pull-down menu. If the affiliate selects or clicks on the pictures tab 250 in FIG. 28A, the screen display reflected in FIGS. 35 and 36A through 36E will be retrieved to allow the affiliate to name and upload photographs which will comprise the virtual tour. FIG. 35 is a block depiction of a diagram of the screen display one encounters in an internet embodiment of this invention when selecting or clicking on the “pictures” tab 250, as shown in FIG. 28A (and other figures), and as more fully shown in FIGS. 36A, 36B, 36C, 36D and 36E. FIG. 37 is a pop-up window which appears when the affiliate selects the photo name by selecting it or clicking on it. The pop-up window provides a list of pre-selected photograph names to choose from in labeling the uploaded photograph. This selection may be used to edit or change an existing photograph name. FIG. 36A allows the affiliate to select the number of photographs to be included in the virtual tour by making a selection from pull-down menu 180. FIG. 36A further illustrates the first photo and accompanying data for the first photo which comprises part of the data set for this property unit. Photo tab label 181 indicates a front view of the house as what is shown, and that is what is also reflected in photograph 182. If the affiliate desires to change the photo name, he or she can select or click on the photo label tab and a pop-up window will be retrieved which provides a listing of preselected photo names for potential inclusion in photo label tab 181. The pop-up window is shown more fully in FIG. 37 and discussed below. During the initial creation of a virtual tour, the first photo label tab 181 would be labeled “first photo” and the affiliate would need to choose which photo to use as the first photograph and the corresponding photo name to place within tab 181. FIG. 36B illustrates more of the photograph and text editing screen display and includes photograph 185 of a kitchen area and photo name 186 indicates it as a kitchen area. The affiliate would next add text or data to the data input box 187 to provide information relating to the image of the kitchen area. If the affiliate desires to change or alter photograph 185, selecting or clicking on upload photo button 211 would bring an upload of photo pop-up window to the screen to allow a new photograph to be designated for this location. A sample upload of photograph pop-up window is illustrated in FIG. 38 and described more fully below. The remainder of the screen display illustrated on FIGS. 36A through 36E are similar to that indicated for photo number 2 for the kitchen area. In FIG. 36E, room number eight (8) is indicated as the photo name and remains to be completed by the affiliate. If the affiliate chooses to only use seven photographs, he or she would then go up to pull-down menu 180 and change the number of photographs. Any additional views and accompanying data text may be input for the property unit to complete the designated areas for photograph and accompanying data text for room number 8 and for room number 9. FIG. 37 is an embodiment of an exemplary pop-up window 189 which can provide pre-selected names to place on the photograph label tabs, such as photograph label tag 181 shown in FIG. 36A. In order to select a pre-selected photograph label to place in a photograph label tab, the affiliate would simply select or click on the photograph label tab 181, which would bring up the pop-up window 189 screen display with the pre-selected labels contained thereon. By selecting or clicking on a particular pre-selected label or name, this causes that label or name to be placed within the tab which had previously been selected by the affiliate and which caused the pop-up window 189 to appear. FIG. 38 is an “upload a photograph” pop-up window 188 which would become displayed when an affiliate would select or click on an upload photo button, such as upload photo button 190 shown in FIG. 36A. Selecting the upload photo button 190 would cause the pop-up window 188 shown in FIG. 38 to appear, and this then allows the affiliate to input the file location of the photograph in file information box 192. The affiliate may select or click on browse button 193 to browse various memory areas to select the appropriate photograph file from those areas. The pop-up window 188 also allows the affiliate to identify the nature of the photo, i.e., whether it is a standard photograph, a panoramic or extra-wide photograph, 360 degree panoramic photograph, or a 360 degree IPIX photograph. IPIX is a type of photograph by IPIX Corporation. Once the photograph file has been identified and the photo type selected, the affiliate would select the “OK” button 194 to cause the photograph to be uploaded into the designated location on the screen display, such as photograph window 182 in FIG. 36A. This viewing system gives the affiliate the option to input multiple types of photographs into the same virtual tour template, namely a still photograph, an over-sized photograph, a movable photograph, a 360 degree panoramic photograph, a panoramic photograph less than 360 degrees, as can be seen from the accompanying drawings. An alternative or complementary embodiment allows the affiliate to email the photograph to the web server computer 110 instead of directly uploading it from the affiliate computer, which is more fully explained below in connection with FIGS. 62, 63, 64 and 65. In the alternative embodiment illustrated in FIGS. 62, 63, 64 and 65, the process of e-mailing the photograph to the web server 118 where the virtual tour is located is considered herein to be uploading that photograph. If the affiliate selects or clicks on any particular photograph which has already be uploaded into the viewing system, as shown in FIGS. 36A through 36E, it will cause a pop-up window 201 to be displayed in FIG. 39. The pop-up window is to allow the affiliate to adjust or tune the photograph selected. The affiliate may choose to edit the JPEG file quality by changing the number in the JPEG quality information box 202 and/or may change the brightness in the photograph by inputting into brightness information box 203 a different brightness setting. Once the subject photograph has been sufficiently tuned or edited, the affiliate may select the “accept new photo” button 204 to incorporate the edited photograph back into the screen display of the pictures in the virtual tour as more fully reflected in FIGS. 36A through 36E. FIG. 40 is a block depiction of the main tour information editing screen display, with the number of photos pull-down menu selected and being utilized to select the number of photographs to be included in the virtual tour of the subject property unit. FIGS. 41A and 41B more fully illustrate the screen display with the pull-down window 180 in the pulled down position. Another advantage and feature of this property viewing system and this invention is the creation of brochures or flyers using part or all of the data set and photographs inputted for the virtual tour by selecting the brochure info tab 251 on the screen display shown in FIG. 28A. FIGS. 43A and 43B show the screen display depicted in the block diagram in FIG. 42. FIG. 43A illustrates a first brochure template 300, a second brochure template 301, and a third brochure template 302, each having a different format and each incorporating part or all of the data set inputted for the tour for the subject property unit and each incorporating one or more photographs from the pictures uploaded for the virtual tour. The affiliate is able to select the brochure type or types desired for promotion of the property unit. FIG. 45A illustrates brochure template 300 (shown in FIG. 43A) in larger display form, illustrating a sample format for a property unit brochure. For the subject property, the photograph 302 in FIG. 45A was taken from photograph 182 in FIG. 36A where the photograph was uploaded. Photograph 303 from brochure template 300 is photograph 185 from FIG. 36B and which was input for the virtual tour and additionally incorporated into brochure template 300. It will be appreciated by those skilled in the art that the affiliate may also be given the option to upload or e-mail a different or a non-tour photograph for inclusion within in the brochure. The remaining data 305 illustrated in FIGS. 45A and 45B is taken from the property data set input to create the virtual tour of the property unit. Brochure template 300 may be printed and used by the affiliate in the promotion of the property unit or the promotion of a time unit of the property unit, or the web page which brochure template 300 represents may be e-mailed to potential business associates or customers of the affiliate in order to further promote the property unit. FIG. 46 is a block depiction of the screen display represented by FIGS. 47A and 47B and is a second brochure template 310 of the subject property unit, illustrating photograph 311, photograph 312, and photograph 313, all of which are photographs utilized in the virtual tour and uploaded in the creation of the virtual tour. The data 314 shown on brochure template 310 was taken from the data set for the property unit in question. FIG. 48 is a block depiction of the brochure screen display illustrated in FIGS. 49A and 49B of a property brochure template 320. This is a third option for a property brochure which includes photograph 321 and data 322. The photograph 321 and the data 322 were taken from the photographs entered for the virtual tour for the subject property, and the data was taken from the data set for the property unit. FIG. 50 is a block depiction of a diagram of the purchase screen display wherein the affiliate initiates the purchase of the virtual tour, selects advertising and methods of providing text, which is self explanatory from the review of FIGS. 51A and 51B. The affiliate may select “printable invoice” button 333 and will be provided an invoice for the purchase of the virtual tour and listing. The tour invoice is more fully shown in FIG. 52 and FIGS. 53A, 53B and 53C. The tour invoice may be printed by the affiliate and provides basic information regarding the tour, what was purchased, billing information, property description and any other information desired. FIG. 53C provides a credit card information section to accomplish an electronic commerce transaction, wherein the affiliate can fill in credit card information to pay for the virtual tour, all of which is well known in the trade and will therefore not be discussed in any further detail. FIG. 54 figuratively illustrates one way to visualize or provide a movable photograph as part of a virtual tour. The preferred movable photograph 370 is made to move by a java applet which provides the photograph 370 in the desired browser window 371, and then provides a way to appear to make it move. The preferred size of the browser window 371 is 270 pixels by 450 pixels, whereas the size of the photograph 370 is larger than the browser window 371 size. When the photograph is uploaded or e-mailed and then uploaded (depending on the alternative chosen), the affiliate is asked to identify the type of photograph, as is more fully explained in relation to FIG. 38 above. While this is the preferred way, i.e. using a java applet, it will be appreciated by those skilled in the art that there are other known ways to accomplish this, such as without limitation, through the use of a floating frame reference, or the use of a program plugin. Since movable photographs or the appearance of a movable photograph is known, it will not be discussed in significant detail. Furthermore, the java applet source code is set forth in the microfiche appendix being filed herewith. The microfiche contains seventy nine pages of computer source code comprising one embodiment of the computer readable instructions which may be used to practice an embodiment of this invention, and which are hereby incorporated into this specification by this reference. FIG. 55 is an elevation view of a panoramic photograph 400 of the front of a property unit 402 for which a virtual tour is desired. The photograph 400, as digitized, is larger than the size of the viewer window 401 in the browser. This invention provides for a movable photograph 400 and the java applet routines causes the underlying image to move relative to the viewer window 401, thereby appearing to the viewer that he or she is movable his or her head to view the property. FIG. 55 also figuratively show splice or stitch lines 404 where more than one actual photograph was digitized and the multiple photographs were stitched or spliced together. It will be appreciated in the art that there are numerous known ways to achieve a panoramic photograph, including by stitching or splicing, using a panoramic camera which produces these in a single photograph, or by using other types of cameras and film which are well known in the industry. There are numerous well known computer software programs which perform the stitching or splicing of photographs together, including PhotoVista by Live Picture, as one example. When it comes to panoramas, the size of the digital file is very important and too large of a photograph may take too long to load. This may cause potential clients or buyers to become irritated and possibly move on to other property or other search sites. On the other hand, some clients and potential clients look for property units that have a panorama because it gives them a better understanding for what they're seeing. The size of the photograph should be at least 270 pixels in height to fill the viewer window, and if it is taller than this, the viewer or client may scroll the entire photograph using the movable photograph feature of this invention. When taking a panoramic photograph in a series of photographic views, the affiliate preferably should leave approximately twenty percent (20%) overlap from one photograph to the next so that the photographs may be spliced or stitched together. It is important that the camera be kept level of all times when taking panoramic photographs for splicing together. If possible, a tripod should be used. If the internet browser utilized by the viewer is java compatible, the panoramic photographs will automatically launch into motion and can be navigated by the mouse of the user, upon the proper identification upon uploading the photograph, as described above. As bandwidth is increased over the internet or other networks, it will allow larger photographs and video taping of properties, all within the contemplation of this invention. In the preferred embodiment, if a movable picture is being viewed, the client may move the mouse arrow in the viewer window to cause the photograph to move relative to the viewer window, and in the direction of the side of the photograph where the mouse pointer is moved. This is figuratively illustrated in FIG. 56. Panoramic photograph 410 is broken into sections, and when the mouse pointer is placed in section 411 the photograph 410 appears to move to the right so that more of the left side of the photograph 410 may be viewed, analogous to the viewer turning their head to the left. The further to the left the mouse pointer is moved, the faster the photograph 410 appears to move the right. When the mouse pointer is moved into section 412 it causes the photograph 410 to appear to move downwardly to appear that the viewer is looking up or seeing more of the top of the photograph 410. The higher up in section 412 the mouse pointer is moved, the faster the photograph 410 appears to move downward. The photograph will actually start to move when the mouse pointer is within the middle section of the photograph 410, but off from center in the horizontal direction. Similarly, when the mouse pointer is placed in section 413, the photograph moves to the left, and when the mouse pointer is moved into section 414, the photograph appears to move upward so the viewer may see more of the bottom of the photograph. FIGS. 57 through 60 are a partial example of a virtual tour of a property unit. FIG. 57 illustrates the virtual tour page 500, with the large viewing window 501 for viewing the various view displayed, depending on which tab above is selected. In the example shown, eleven tabs are illustrated: master tab 503; master bath tab 504; neighborhood tab 505; brochure 506; map tab 507; front tab 508; kitchen tab 509; dining tab 510; second dining tab 511; golf course tab 512; and family tab 513. Each tab represents a link to another photograph or view of the property unit with accompanying data. In the view shown, photograph 502 is the front view shown. In order to go directly from any view or photograph in the virtual tour to any other photograph or image, the viewer need only select or click on the desired tab. For example, if the viewer wants to view the kitchen photograph 520 and accompanying text, he or she would simply click on the kitchen tab 509, and the view shown in FIG. 58 would appear. Similarly, if the viewer wanted to look at a view of the dining room photograph 521, he or she would click on the dining tab 511, and the screen display shown in FIG. 59 would appear. Note that the dining photograph 521 is a larger than standard photograph and is a panorama photograph (or movable photograph), as that term is used herein. The asterisk next to the name on the tabs indicates that the photograph is a movable photograph or panorama photograph versus merely a still photograph. In FIG. 57, the master tab 503 links to a movable photograph, as indicated by the asterisk. If the viewer of FIG. 59 desired to see the master bathroom, he or she would click on the master bathroom tab 504 and the bathroom photograph 522 shown in FIG. 60 would be displayed. The utilization of such a tab system allows all of the photographs from the same property unit to be viewed with ease, enabling the viewer to move directly from one photograph to any other makes the virtual tour much more pleasing to view. It will be appreciated by those in the property management, travel and vacation rental industries, that there are other embodiments of the present invention which may be utilized in those industries. For example, one embodiment or application of this invention is in the rental or vacation industry. In that embodiment, a rental agency has certain occupation time units available for its rental property, and has a need to provide virtual tours accessible over the internet to potential and existing customers. In order to avoid in the cost of photographing, uploading and providing a virtual tour on a website or web server, the property manager may exchange one or more of the time units in his or her property unit, in consideration for the construction of a virtual tour of the property, and/or for maintaining the virtual tour onsite available for viewing by persons having access to the public communications network. FIG. 61 illustrates in block diagram form an example of one possible embodiment of the invention wherein one or more available time units 600 for a property unit 599 are exchanged in consideration for creating and/or maintaining or posting a virtual tour 601 posting of the property unit on a webserver 602 available over a public communications network such as the internet 603. Client computers 604 and affiliate computers 598 may then be connected to virtual tour of properties via the public communications network, to tour the property unit. FIG. 62 is a pop-up window screen display of an Insert Photo which is prompted by selecting or clicking on the Upload Photo buttons described herein, giving the affiliate the option to either directly upload the photograph or to email it as an attachment to the virtual tour web site, as part of step P9. The term “upload a photo” as used herein is intended to cover, without limitation, both the uploading of the photograph and the e-mailing of the photograph, as set forth herein. In FIG. 62, the affiliate is presented with pop-up window 850 in order to insert a photograph into a window of a virtual tour of a property unit, the pop-up window 850 giving the affiliate two options, namely to directly upload 854 or to email a photo 853. If the affiliate directly uploads the photograph, he or she selects the “upload a photo now” button 852 and follows the procedure outlined above with respect to step P9. If the affiliate has chosen to email the photograph, it would be received by the web server 118 (shown in FIG. 1) and when the affiliate then chooses the “pick an e-mailed photo” button shown in the screen display in FIG. 62, the affiliate will be presented with pop-up window 860 illustrated in FIG. 63. The system keys on the address from which the photograph was e-mailed (as it may come from one or more sources), and provides the affiliate a list or viewing of those photographs which came from that e-mail address. FIG. 63 further reflects viewing box 863 in which a list of source email addresses are listed, which in the example shown, is only one source address 863, namely “herb@tours.net.” The affiliate may then select the “view photos” button 864 to review thumbnail photographic depictions of those photographs which have been e-mailed to the web server from the selected email address. If the affiliate selects the “view photos” button 864, he or she is provided with thumbnails such as thumbnail photograph 871 and thumbnail photograph 873 shown in FIG. 64, which are identified by their file name 100316B.jpg (item 872) and file name 100316D.jpg (item 874). The photograph naming convention utilized is the combination of the six digit tour identification number combined with a letter, “A” representing the first photograph in the tour, “B” representing the second photograph in the tour, and so on. Once the affiliate selects one of the e-mailed photographs, the pop-up window 880 reflected in FIG. 65 will be displayed, showing the selected photograph 881, along with its name, and selection options for the affiliate to identify whether the photograph is a standard photograph 882, a panoramic (extra-wide) photograph 883 or a 360 degree panoramic photograph 884. Once the proper photograph is displayed and the type of photograph identified, the affiliate selects the OK button 885 and the photograph is copied from the web server to the one or more memory areas where the tour photographs are stored. In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
<SOH> BACKGROUND OF THE INVENTION <EOH>The more recent acceptance and use of public communications networks such as the internet, has provided a network or system through which the viewing of both real and personal property may be accomplished in a much more efficient and desirable way than has ever previously been provided or available. The increased ability to handle larger amounts of data and information over the internet has further allowed more graphical images to be presented to the viewer, which facilitates much more effective presentations or tours to users of the internet. While there have been prior attempts to make available the viewing of still photographs of property over the internet, the prior systems have typically required that a photographer be hired on behalf of the company providing the website, who must go to the property to take photographs. The website company then posted the one or more still photographs on the website, and later input text describing the still photographs. These prior systems therefore have a relatively high cost in the commercial creation of the photographs, and then in their placement on the website of the website company. The prior systems also took an unjustifiably long amount of time before the photographs of the property were available to viewers or potential purchasers. It is therefore an object of an embodiment of this invention to provide a property viewing system wherein affiliates, such as real estate agents or property owners (in the real estate embodiments of this invention), property managers (in the rental property embodiments of this invention), or the property management companies & owners (in the vacation rental or room rental embodiments of this invention), may take their own photographs and upload the images along with the desired data sets to the website, thereby constructing their own virtual tour which would be available immediately or in real-time. In the typical prior systems the viewer accessing a property viewing website over the internet would find one or more photographs on the first page for that property unit, but typically must then move from new page to new page in order to view the plurality of photographs of the property. In order to go back to a prior view of the property to look at it a second time and to look at other pages which contain other photographs of the property, the user must typically click on the back button on his internet browser. Requiring a user to continually go back to the start page for a series of photographs or images makes the tour more tedious and less desirable for the user. This becomes a relatively slow process and does not provide a sufficiently easy or desirable virtual tour of the property. It is therefore an object of an embodiment of this invention to provide a property viewing system in which the viewer may take a virtual tour of property while staying on the same reference page, and further which provides the index, tabs or other selection means to directly go to each of the other multiple views of the property from the same page. Some of the embodiments of this invention have the advantage of providing a tab system which allows the user to view or access any one of the tour views or pages from any one of the tour views or pages, significantly reducing the amount of time to take a complete virtual tour, and making it more pleasing to the consumer. In most property viewing situations, merely providing small single shot still photographs does not make the best presentation of the property being viewed. It is much more desirable to provide larger photographs, panorama photographs or movable photographs, which allow the potential customer or viewer to see a more complete view of the property, and to control the movement of the photograph or the view of the property. Providing panorama photographs also gives the viewer more of a feeling or belief that he or she is actually taking a tour of the property, and turning their head or looking around the property unit, as opposed to merely looking at a still photograph. A feature of one embodiment of this invention therefore provides a virtual property viewing or tour system, which provides one or more panorama or movable photographs. Text and/or still photographs may be combined with the movable photographs as part of the same virtual tour. There are numerous different embodiments for which this invention may be used, such as without limitation, providing virtual tours of real property for sale or lease, virtual tours of vacation properties and virtual tours of vehicles, virtual tours of art or museums using movable photographs; to name but a few examples. There is not currently a sufficiently versatile website which contains a virtual tour of real property, with options of having a movable photograph with a three hundred sixty degree range, a movable photograph having less than a three hundred sixty degree range, and still photographs, in the same is virtual tour. With the varying types of photographs and photographic capabilities of affiliates and potential affiliates, this type of flexibility is long overdue. It is therefore an object of this invention and a feature of one embodiment of the invention to provide a virtual tour site which is versatile enough to optionally provide a movable photograph with a three hundred sixty degree range, a movable photograph having less than a three hundred sixty degree range. It is a still further object to provide such a site which additionally provides the option for still photographs.
<SOH> BRIEF DESCRIPTION OF THE DRAWINGS <EOH>Preferred embodiments of the invention are described below with reference to the following accompanying drawings: FIG. 1 is a flowchart block diagram overview of the property viewing system in relation to the internet and client computers; FIG. 2 is a process flow diagram of an embodiment a property viewing system as contemplated by this invention; FIG. 3 is a block depiction of a diagram of an embodiment of a start page or home page screen display, as shown more fully in FIGS. 4A and 4B ; FIG. 4A is a partial diagram of the Home Page screen display for one embodiment of the electronic property viewing system contemplated by this invention; FIG. 4B is a partial diagram of the lower portion of the Home Page screen display for the embodiment of the electronic property viewing system contemplated by this invention and shown in FIG. 4A ; FIG. 5 is a block depiction of a diagram of a Sign Up screen display for an embodiment of the electronic property viewing system contemplated by this invention, wherein new clients or affiliates, input personal information to create a new account, and as shown more fully in FIGS. 6A, 6B and 6 C; FIG. 6A is a partial diagram of a Sign Up screen display represented in FIG. 5 ; FIG. 6B is a partial diagram of the sign up screen display represented in FIG. 5 ; FIG. 6C is a partial diagram of the sign up screen display represented in FIG. 5 ; FIG. 7 is a block depiction of a diagram of a Login screen display which may be used in an embodiment of this invention, wherein existing clients or affiliates input their unique information such as email address and password, and as shown more fully in FIGS. 8A and 8B ; FIG. 8A is a partial diagram of the login screen display represented in FIG. 7 ; FIG. 8B is a partial diagram of the login screen display represented in FIG. 7 ; FIG. 9 is a block depiction of a diagram of a Modify a Tour screen display which may be used in an embodiment of this invention, wherein existing affiliates input their unique information such as email address and password, and as shown more fully in FIGS. 10A and 10B ; FIG. 10A is a partial diagram of the Modify a Tour screen display represented in FIG. 9 ; FIG. 10B is a partial diagram of the modify a tour screen display represented in FIG. 9 ; FIG. 11 is a block depiction of a diagram of a main tour editing screen display which may be used in an embodiment of this invention, wherein existing clients or affiliates choose in which way to input, access, or update information within their account, as more fully shown in FIGS. 10A and 10B ; FIG. 12A is a partial diagram of the main tour editing screen display represented in FIG. 11 ; FIG. 12B is a partial diagram of the main tour editing screen display represented in FIG. 11 ; FIG. 13 is a block depiction of a diagram of the Contact Information screen display which may be used in an embodiment of this invention, wherein the affiliate or agent may input personal, business or advertising data and photographs for their use of the system, as more fully shown in FIGS. 14A, 14B and 14 C; FIG. 14A is a partial diagram of the contact information screen display represented in FIG. 13 ; FIG. 14B is a partial diagram of the contact information screen display represented in FIG. 13 ; FIG. 14C is a partial diagram of the contact information screen display represented in FIG. 13 ; FIG. 15 is a block depiction of a diagram of a Tour Counter, or hit counter, screen display which may be used in an embodiment of this invention, wherein the affiliate or agent may obtain information about the number of visits or hits on each of his or her property units for which virtual tours are provided, as more fully shown in FIGS. 16A and 16B ; FIG. 16A is a partial diagram of the hit counter screen display represented in FIG. 15 ; FIG. 16B is a partial diagram of the hit counter screen display represented in FIG. 15 ; FIG. 17 is a block depiction of a diagram of a Quick Edit tour display which may be used to allow the agent or affiliates to edit the most commonly changed fields in a given property tour, and from which open houses or other scheduled items may be scheduled, as more fully shown in FIG. 18A and 18B ; FIG. 18A is a partial diagram of the Quick Edit tour screen display represented in FIG. 17 ; FIG. 18B is a partial diagram of the Quick Edit tour screen display represented in FIG. 17 ; FIG. 19 is a diagram of a Schedule Open House screen display which may be used to allow the affiliate to schedule an open house and thereby notify potential customers as well; FIG. 20 is a diagram of a Schedule Open House screen display wherein an open house date has been input by the affiliate in the template containing part of the data set for the property unit; FIG. 21 is a block depiction of a diagram of the Quick Edit tour screen display with the open house scheduled in FIG. 20 teen shown on the Quick Edit tour screen display; FIG. 22A is a partial diagram of the edited Quick Edit tour screen display represented in FIG. 21 ; FIG. 22B is a partial diagram of the edited Quick Edit tour screen display represented in FIG. 21 ; FIG. 23 is a partial diagram of a Terms and Conditions of Use screen display which may be used in an embodiment of this invention, and a which would be encountered by a user selecting the Create a New Tour menu item from the screen display depicted in FIG. 18A (or others with the same menu item selection); FIG. 24 is a block depiction of a diagram of a checklist for the creation of a new tour which the affiliate reviews before proceeding to create a new property virtual tour, as more fully shown in FIGS. 25A, 25B and 25 C; FIG. 25A is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24 ; FIG. 25B is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24 ; FIG. 25C is a partial diagram of the checklist for the creation of a new tour represented in FIG. 24 ; FIG. 26 is a diagram of a Creating a New Tour” screen display which may be used in an embodiment of this invention, wherein the affiliate inputs basic information to initiate the creation of a new virtual tour within the contemplation of this invention, and after accepting the Terms and Conditions of Use as more fully set forth in FIG. 23 ; FIG. 27 is a block depiction of a diagram of the main tour information editing screen display which may be used in an embodiment of this invention, and which would be encountered by a user desiring to create a new virtual tour or by a user desiring to edit an existing virtual tour, as more fully shown in FIGS. 28A, 28B and 28 C; FIG. 28A is a partial diagram of the main tour information editing screen display represented in FIG. 27 ; FIG. 28B is a partial diagram of the main tour information editing screen display represented in FIG. 27 ; FIG. 28C is a partial diagram of the main tour information editing screen display represented in FIG. 27 ; FIG. 29 is a block depiction of a diagram of the main tour information editing screen display, showing the partial input of property information and further showing the drop-down menu selections for “Property Type”, which may be used in an embodiment of this invention, as more fully shown in FIGS. 30A, 30B , and 30 C; FIG. 30A is a partial diagram of the main tour information editing screen display represented in FIG. 29 ; FIG. 30B is a partial diagram of the main tour information editing screen display represented in FIG. 29 ; FIG. 30C is a partial diagram of the main tour information editing screen display represented in FIG. 29 ; FIG. 31 is a block depiction of a diagram of the main tour information editing screen display, showing the partial input of property information and further showing the drop-down menu selections for Property Subtitle, which may be used in an embodiment of this invention, as more fully shown in FIGS. 32A, 32B , and 32 C; FIG. 32A is a partial diagram of the main tour information editing screen display represented in FIG. 31 ; FIG. 32B is a partial diagram of the main tour information editing screen display represented in FIG. 31 ; FIG. 32C is a partial diagram of the main tour information editing screen display represented in FIG. 31 ; FIG. 33 is a block depiction of a diagram of the main tour information editing screen display, showing the drop-down menu selections for the Property Style data to be included in the template, which may be used in an embodiment of this invention, as more fully shown in FIGS. 34A, 34B and 34 C: FIG. 34A is a partial diagram of the main tour information editing screen display represented in FIG. 33 ; FIG. 34B is a partial diagram of the main tour information editing screen display represented in FIG. 33 ; FIG. 34C is a partial diagram of the main tour information editing screen display represented in FIG. 33 ; FIG. 35 is a block depiction of a diagram of a photograph edit page accessed from the main tour information editing screen by clicking on the picture tab, in an embodiment of this invention, and is more fully shown in FIGS. 36A, 36B , 36 C, 36 D and 36 E; FIG. 36A is a partial diagram of the photograph edit page represented in FIG. 35 ; FIG. 36B is a partial diagram of the photograph edit page represented in FIG. 35 ; FIG. 36C is a partial diagram of the photograph edit page represented in FIG. 35 ; FIG. 36D is a partial diagram of the photograph edit page represented in FIG. 35 ; FIG. 36E is a partial diagram of the photograph edit page represented in FIG. 35 ; FIG. 37 is a pop-up window which is encountered when selecting the photograph name tab by selecting or clicking on the Photo Name tab, and allows the affiliate to choose from pre-selected names to use for photographs; FIG. 38 is an Upload Photo screen display which is encountered when selecting or clicking on the Upload Photo box just below where the photograph window will appear; FIG. 39 is a Tune Photo screen display which is provided via a pop-up window and which allows the user to edit certain attributes of a photograph; FIG. 40 is a block depiction of the main tour information editing screen display as reflected in FIG. 27 , wherein the drop-down menu for number of photographs has been selected, as more fully shown in FIGS. 41A and 41B ; FIG. 41A is a partial diagram of the main tour information editing screen display represented in FIG. 40 ; FIG. 41B is a partial diagram of the main tour information editing screen display represented in FIG. 40 ; FIG. 42 is a block depiction of a brochure information editing screen display which provides the affiliate with three different brochure options which may be selected, as well as data boxes for the entry of data for inclusion in the data set for the brochure or brochures chosen, as more fully shown in FIGS. 43A and 43B ; FIG. 43A is a partial diagram of the brochure edit screen display represented in FIG. 42 ; FIG. 43B is a partial diagram of the brochure edit screen display represented in FIG. 42 ; FIG. 44 is a block depiction of a screen display containing a first brochure created as the virtual tour was created, as more fully shown in FIGS. 45A and 45B ; FIG. 45A is a partial diagram of the first brochure screen display represented in FIG. 44 ; FIG. 45B is a partial diagram of the first brochure screen display represented in FIG. 44 ; FIG. 46 is a block depiction of a screen display containing a second brochure, as more fully shown in FIGS. 47A and 47B ; FIG. 47A is a partial diagram of the second brochure screen display represented in FIG. 46 ; FIG. 47B is a partial diagram of the second brochure screen display represented in FIG. 46 ; FIG. 48 is a block depiction of a screen display containing a third brochure option, as more fully shown in FIGS. 49A and 49B ; FIG. 49A is a partial diagram of the third brochure screen display represented in FIG. 48 ; FIG. 49B is a partial diagram of the third brochure screen display represented in FIG. 48 ; FIG. 50 is a block depiction of a diagram of the purchase screen display wherein the affiliate initiates the purchase of the virtual tour, selects advertising and methods of providing data or photographs, as more fully shown in FIGS. 51A and 51B ; FIG. 51A is a partial diagram of the purchase screen display represented in FIG. 50 ; FIG. 51B is a partial diagram of the purchase screen display represented in FIG. 50 ; FIG. 52 illustrates an embodiment of a Tour Invoice screen display which may be printed by the affiliate, and which provides basic information regarding the tour, as more fully shown in FIGS. 53A, 53B and 53 C; FIG. 53A is a partial diagram of the Tour Invoice screen display represented in FIG. 52 ; FIG. 53B is a partial diagram of the Tour Invoice screen display represented in FIG. 52 ; FIG. 53C is a partial diagram of the Tour Invoice screen display represented in FIG. 52 ; FIG. 54 is a figurative illustration of one way to provide a movable photograph as part of a virtual tour contemplated by an embodiment of this invention; FIG. 55 is a representation of a panoramic photograph which has been stitched or spliced, and which shows the relative area of the viewing window to the entire panoramic photograph; FIG. 56 is a diagram showing how locating the computer mouse pointer causes the movable photograph to move; FIG. 57 is an embodiment of a screen display which would preferably be used as a first page in a virtual tour, within the contemplation of this invention; FIG. 58 is an embodiment of a screen display which may be used as a page or display in a virtual tour, within the contemplation of this invention; FIG. 59 is an embodiment of a screen display which may be used as a page in a virtual tour, within the contemplation of this invention, figuratively illustrating a movable photograph; FIG. 60 is an embodiment of a screen display which may be used as a page in a virtual tour within the contemplation of this invention; FIG. 61 is a block diagram illustrating the exchange of time units in consideration for a virtual tour posting on a website; FIG. 62 is a pop-up window screen display of an Insert Photo which is prompted by selecting or clicking on the Upload Photo buttons described herein, giving the affiliate the option to either directly upload the photograph or to email it as an attachment to the virtual tour web site; FIG. 63 is a pop-up window screen display of an Pick a Photo which is prompted by selecting or clicking on the Email a Photo button shown in FIG. 62 ; FIG. 64 is a pop-up window screen display of a second Pick a Photo screen which is prompted by selecting the “Pick an E-mailed Photo” button in FIG. 63 ; and FIG. 65 is a pop-up window screen display of a Panorama Mode page wherein the affiliate must identify the nature of the photograph selected. detailed-description description="Detailed Description" end="lead"?
20041108
20080624
20050825
83661.0
1
DESHPANDE, KALYAN K
ELECTRONIC PROPERTY VIEWING METHOD AND COMPUTER-READABLE MEDIUM FOR PROVIDING VIRTUAL TOURS VIA A PUBLIC COMMUNICATIONS NETWORK
SMALL
1
CONT-ACCEPTED
2,004
10,984,417
ACCEPTED
Balloon flareable branch vessel prosthesis and method
A stent graft system for intraluminal deployment in an aorta and a branch vessel that includes an aorta stent graft for deployment within the aorta and defining a lumen for the passage of blood therethrough, and having a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel. The system also includes a branch vessel prosthesis, preferably a stent graft, having a tubular portion and a flaring portion, such that, when deployed, the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel. A balloon expansion catheter expands the tubular portion and flare the flaring portion. The expansion of the tubular portion and the flaring of the flaring portion may occur sequentially or simultaneously.
1. A stent graft system for intraluminal deployment in an aorta and a branch vessel comprising: an aorta stent graft for deployment within the aorta and defining a lumen for the passage of blood therethrough, and having a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel; a branch vessel prosthesis having a tubular portion and a flaring portion, such that, when deployed, the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel; a balloon expansion catheter adapted to expand the tubular portion and flare the flaring portion. 2. The system of claim 1 wherein the balloon expansion catheter comprises a first balloon for expanding the tubular portion and a second for flaring the flaring portion. 3. The system of claim 2 wherein the first and second balloons are independently inflatable. 4. The system of claim 2 wherein the first and second balloons are inflated simultaneously. 5. The system of claim 1 wherein the balloon expansion catheter comprises a single balloon with a first portion for expanding the tubular portion and a second portion for flaring the flaring portion, and wherein the inflated diameter of the first portion is smaller than the inflated diameter of the second portion. 6. The system of claim 1 wherein the branch vessel stent graft is loaded over the balloon expansion catheter in the branch vessel stent graft delivery device. 7. The system of claim 1 wherein the balloon expansion catheter is deployed separately from the branch vessel stent graft. 8. The system of claim 1 wherein the balloon expansion catheter is adapted to expand at least a portion of the tubular portion to a diameter greater than the diameter of the fenestration. 9. The system of claim 8 wherein the balloon expansion catheter comprises a first balloon for expanding the tubular portion to a diameter greater than the diameter of the fenestration, and a second balloon for flaring the flaring portion. 10. The system of claim 9 wherein the balloon expansion catheter comprises a balloon with a first portion for expanding the tubular portion to a diameter greater than the diameter of the fenestration, and a second portion for flaring the flaring portion. 11. The system of claim 10 wherein the balloon comprises a third portion adapted to be aligned with the fenestration during deployment and which inflates to a maximum diameter less than the diameter of the fenestration. 12. A method of deploying a stent graft system in an aorta and a branch vessel comprising: deploying an aorta stent graft the aorta, which defines a lumen for the passage of blood therethrough, and comprises a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel; deploying a branch vessel prosthesis, which comprises a tubular portion and a flaring portion, so that the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel; and using a balloon expansion catheter adapted to expand the tubular portion and flare the flaring portion. 13. The method of claim 12 wherein the balloon expansion catheter comprises a first balloon for expanding the tubular portion and a second for flaring the flaring portion. 14. The method of claim 13 wherein the first and second balloons are inflated independently. 15. The method of claim 13 wherein the first and second balloons are inflated simultaneously. 16. The method of claim 12 wherein the balloon expansion catheter comprises a single balloon with a first portion for expanding the tubular portion and a second portion for flaring the flaring portion, and wherein the inflated diameter of the first portion is smaller than the inflated diameter of the second portion. 17. The method of claim 12 wherein the branch vessel stent graft is loaded over the balloon expansion catheter in the branch vessel stent graft delivery device. 18. The method of claim 12 wherein the balloon expansion catheter is deployed separately from the branch vessel stent graft. 19. The method of claim 12 wherein the balloon expansion catheter expands at least a portion of the tubular portion to a diameter greater than the diameter of the fenestration. 20. The method of claim 19 wherein the balloon expansion catheter comprises a first balloon that expands the tubular portion to a diameter greater than the diameter of the fenestration, and a second balloon that flares the flaring portion. 21. The method of claim 20 wherein the balloon expansion catheter comprises a balloon with a first portion that expands the tubular portion to a diameter greater than the diameter of the fenestration, and a second portion that flares the flaring portion. 22. The method of claim 21 wherein the balloon comprises a third portion adapted which is aligned with the fenestration during deployment and which inflates to a maximum diameter less than the diameter of the fenestration.
RELATED APPLICATIONS This application claims priority to provisional application No. 60/518,565 filed on Nov. 8, 2003, the entire disclosure of which is incorporated by reference herein. TECHNICAL FIELD This invention relates to medical devices and more particularly, to endoluminal devices suitable for various medical applications and the methods for making and using such endoluminal devices. BACKGROUND The functional vessels of human and animal bodies, such as blood vessels and ducts, occasionally weaken or even rupture. For example, an aortic wall can weaken, resulting in an aneurysm. Upon further exposure to hemodynamic forces, such an aneurysm can rupture. In Western European and Australian men who are between 60 and 75 years of age, aortic aneurysms greater than 29 mm in diameter are found in 6.9% of the population, and those greater than 40 mm are present in 1.8% of the population. One intervention for weakened, aneurismal, dissected or ruptured vessels is the use of an endoluminal device or prosthesis such as a stent graft to provide some or all of the functionality of the original, healthy vessel and/or preserve any remaining vascular integrity by replacing a length of the existing vessel wall that contains the site of vessel weakness or failure. Stent grafts for endoluminal deployment are generally formed from a tube of a biocompatible material in combination with one or more stents to maintain a lumen therethrough. Stent grafts effectively exclude the defect by sealing both proximally and distally to the defect, and shunting blood through its length. A device of this type can, for example, treat various arterial aneurysms, including those in the thoracic aorta or abdominal aorta. A bifurcated stent graft, one example of an endoluminal prosthesis, is known for use in treating abdominal aortic aneurysms, where the stent graft at the proximal end defines a single lumen for placement within the aorta and at the other end bifurcates into the iliac arteries. One such stent graft, disclosed in PCT application WO98/53761, is useful for repair of abdominal aortic aneurysms. That application discloses a stent graft that includes a sleeve or tube of biocompatible graft material such as woven polyester fabric or polytetrafluoroethylene (PTFE) defining a main lumen and two iliac limbs. The stent graft further includes several stents secured therealong. The stent graft is designed to span an aneurysm that extends along the aorta between the iliac and renal arteries. Unbifurcated stent grafts, in which the distal portion extends into only one iliac artery in treating an abdominal aorta, or which are used to treat the thoracic aorta are also used. In the WO98/53761 application, the fabric-covered portion of the single-lumen proximal end of the stent graft bears against the wall of the aorta above the aneurysm and distal to the renal arteries to seal off the aneurysm. Thin wire struts of a juxtarenal attachment stent traverse the renal artery ostia without occluding them. Barbs on the attachment stent help anchor the stent graft in place. One stent graft approved by the Food and Drug Administration (FDA) to treat aortic aneurysms is the ZENITH® AAA Endovascular Graft (Cook Incorporated, Bloomington, Ind.). The ZENITH® AAA Endovascular Graft is made up of three prosthetic modules: a bifurcated main body module and two leg modules. The main body is positioned in the aorta. The legs are positioned in the iliac arteries and connect to the main body. The stent graft thus extends from a section of the aorta, typically below the renal arteries and into both iliac arteries. The graft material is made of a woven polyester fabric like that used in open surgical repair. Standard surgical suturing techniques are used to sew the graft material to a frame of stainless steel stents. These self-expanding stents provide support for the graft material. An endoluminal prosthesis may be comprised of multiple prosthetic modules. A modular prosthesis allows a surgeon to accommodate a wide variation in vessel morphology while reducing the necessary inventory of differently sized prostheses. For example, aortas vary in length, diameter and angulation between the renal artery region and the region of the aortic bifurcation. Prosthetic modules that fit each of these variables can be assembled to form a prosthesis, obviating the need for a custom prosthesis or large inventories of prostheses that accommodate all possible combinations of these variables. A modular system may also accommodate deployment options by allowing the proper placement of one module before the implantation of an adjoining module. Modular prostheses are typically assembled in situ by overlapping the tubular ends of the prosthetic modules so that the end of one module sits partially inside the other module, preferably forming circumferential apposition through the overlap region. This attachment process is called “telescoping.” The connections between prosthetic modules are typically maintained by the friction forces at the overlap region and enhanced by the radial force exerted by the internal prosthetic module on the external prosthetic modules where the two overlap. The fit may be further enhanced by stents attached to the modules at the overlap region. In many cases, however, the damaged or defected portion of the vasculature may include a branch vessel. For example, in the case of the abdominal aorta, there are at least three branch vessels, including the celiac, mesenteric, and renal arteries, leading to various other body organs. Thus, when the damaged portion of the vessel includes one or more of these branch vessels, some accommodation must be made to ensure that the stent graft does not block or hinder blood flow through the branch vessel. Attempts to maintain blood flow to branch vessels have included providing one or more fenestrations or holes in the side wall of the stent graft. Other attempts have included providing a stent graft in which the branch vessel portion of the vessel is spanned by wires or the like. These devices have been used to treat diseased vessels, such as abdominal aortic aneurysms within the aorta that extend to or above the renal, celiac and/or mesenteric arteries. Generally, this treatment involves aligning the fenestrations with the branch vessels, which may extend approximately at right angles on both sides from the aorta. In many cases, the vasculature is not symmetric. In addition, even with symmetrical vasculature, physiological forces may cause a previously placed branch vessel stent graft to shift causing the position of the fenestration with respect to the branch vessel to become offset. In other instances, the diseased vasculature may extend into the branch vessel and affects the ostium of the branch vessel. In some circumstances the branch vessel stent graft deployed within the main vessel may not properly seal and secure to the branch vessel and lead to leaks (endoleaks) between the branch vessel stent graft and the main vessel, a reduced blood flow to the branch vessels, and/or obscure access to portions of the branch vessel, necessitating further interventional procedures. When treating a vessel with an endoluminal prosthesis, it may therefore be preferable to preserve the original circulation by providing a prosthetic branch that extends from the prosthesis to a side branch vessel so that the blood flow into the branch vessel is not impeded. For example, the aortic section of the ZENITH® abdominal aortic stent graft (Cook Incorporated, Bloomington, Ind.), described above, can be designed to extend above the renal arteries, and/or the celiac or mesenteric arteries, and to have prosthetic side branches that extend into the renal arteries. Branch vessel prostheses can form a connection to an aortic stent graft through fenestrations in the stent graft to complete the prosthesis. Furthermore, some aneurysms extend into the branch vessels in both the thoracic and abdominal aorta. Deploying prostheses with prosthetic branches into these vessels may help prevent expansion and/or rupture of these aneurysms. In other situations, it may not be necessary to form a lumen that extends into the branch vessel, i.e. a stent graft. Instead, it may only be necessary to maintain patency of the branch vessel by propping the walls of the branch vessel open, also known as “stenting.” In these situations, the branch vessel prosthesis can be a mere stent, also known as an “open stent” or “bare stent.” Thus, there remains a need for a device a branch vessel stent or stent graft to secure and seal the branch vessel stent graft to a branch vessel and within a fenestrated device. SUMMARY This application relates to a branch vessel stent for use in connection with a fenestrated stent graft device for placement in a vessel of a body. In particular this application relates to a stent graft system for intraluminal deployment in an aorta and a branch vessel is provided that includes an aorta stent graft for deployment within the aorta and defining a lumen for the passage of blood therethrough, and having a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel. The system also includes a branch vessel prosthesis, preferably a stent graft, having a tubular portion and a flaring portion, such that, when deployed, the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel. A balloon expansion catheter expands the tubular portion and flares the flaring portion. A method of deploying a stent graft system in an aorta and a branch vessel is also provided. The method includes deploying an aorta stent graft the aorta, which defines a lumen for the passage of blood therethrough, and comprises a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel; deploying a branch vessel prosthesis, which comprises a tubular portion and a flaring portion, so that the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel; and using a balloon expansion catheter adapted to expand the tubular portion and flare the flaring portion. BRIEF DESCRIPTION OF THE DRAWINGS The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views. FIG. 1 shows an abdominal aorta with an aorta stent graft having fenestrations aligned with the renal arteries; FIG. 1A is a partial side cross-section of the aorta stent graft of FIG. 1 having a branch vessel prosthesis. FIG. 1B is a top cross-sectional view of the aorta stent graft of FIG. 1 having a branch vessel prosthesis. FIG. 2A illustrates a stent graft positioned in the thoracic aorta and having fenestrations aligned with the left subclavian artery and the left common carotid artery. FIG. 2B shows the aorta stent graft of FIG. 2A with a branch vessel prosthesis extending into the subclavian artery. FIG. 3 is a partial illustration of the abdominal aorta with an aorta stent graft placed in an iliac artery and having a branch vessel prosthesis extending into the hypogastric artery. FIG. 4A is a perspective view of a branch vessel prosthesis having a flareable portion and a tubular portion. FIG. 4B is a perspective view of the branch vessel prosthesis of FIG. 4A placed in a fenestration of an aorta stent graft. FIG. 4C is perspective view of a partially deployed branch vessel prosthesis. FIG. 5 is perspective view of a branch vessel prosthesis have a reinforcement ring at its proximal end. FIG. 6 is a perspective view of the branch vessel prosthesis of FIG. 5 in a partially deployed state. FIG. 7 is a partial cross-sectional view of a branch vessel prosthesis having a reinforcement ring at its proximal end and an aorta stent graft fenestration having a reinforcement ring about its circumference. FIG. 8 is illustrates a branch vessel prosthesis comprising a helical coil stent graft positioned in an aorta stent graft and the branch vessel. FIG. 9 shows the helical coil branch vessel prosthesis of FIG. 8 in greater detail. FIG. 10 shows a branch vessel prosthesis having a flareble stent portion. FIGS. 11-14 are partial views of a stent configuration having a bending portion for use with a branch vessel prosthesis. FIGS. 15-16 are partial views of alternative bending portions. FIG. 17 shows a branch vessel prosthesis in which a portion of the stent forms a proximal bulge. FIG. 18 is a partial cross-sectional view of a branch vessel prosthesis positioned in an aorta stent graft having a flaring attachment mechanism. FIG. 19 shows the attachment mechanism of FIG. 18. FIG. 20 is a perspective view of branch vessel prosthesis having an inverted flaring portion. FIG. 21 is a cross-sectional view of the branch vessel prosthesis of FIG. 20 placed in an aorta stent graft and branch vessel. FIG. 22 is an exploded perspective view of an introducer system that may be used to deploy an aorta stent graft or a branch vessel prosthesis. FIG. 23 is a partial side view of an introducer for a branch vessel prosthesis. FIG. 24A-C are cross-sectionals views of the deployment of a branch vessel prosthesis in an aorta stent graft. FIG. 25 is a cross-sectional view of a positional indicator system for use with a branch vessel prosthesis. FIGS. 26A-E illustrate a balloon catheter deployment system, including a positional indicator system, that may be used to deploy a branch vessel prosthesis. FIGS. 27A-H illustrate balloon deployment systems that may used to deploy or expand a branch vessel prosthesis. DETAILED DESCRIPTION OF THE INVENTION To help understand this description, the following definitions are provided with reference to terms used in this application. Throughout this specification and in the appended claims, when discussing the application of this invention to the aorta or other blood vessels, the term “distal” with respect to such a device is intended to refer to a location that is, or a portion of the device that when implanted is, further downstream with respect to blood flow; the term “distally” means in the direction of blood flow or further downstream. The term “proximal” is intended to refer to a location that is, or a portion of the device that when implanted is, further upstream with respect to blood flow; the term “proximally” means in the direction opposite to the direction of blood flow or further upstream. The term “prosthesis” means any replacement for a body part or function of that body part. It can also mean a device that enhances or adds functionality to a physiological system. As used herein, “prosthesis” includes a stent, a graft, and/or a stent graft. The term “endoluminal” describes objects that are found or can be placed inside a lumen in the human or animal body. A lumen can be an existing lumen or a lumen created by surgical intervention. This includes lumens such as blood vessels, parts of the gastrointestinal tract, ducts such as bile ducts, parts of the respiratory system, etc. An “endoluminal prosthesis” is thus a prosthesis that can be placed inside one of these lumens. A stent graft is a type of endoluminal prosthesis. The term “stent” means any device or structure that adds rigidity, expansion force or support to a prosthesis. In some cases, the stent, by itself, is the prosthesis. A stent may be self-expanding, balloon expandable or may have both characteristics. A zigzag stent is a stent that has alternating struts and peaks (i.e., bends) and defines a generally cylindrical space. A “Gianturco Z stent” is a type of self-expanding zigzag stent. However, variety of other stent configurations are contemplated by use of the term stent. The term “stent graft” is intended to refer to a prosthesis comprising a stent and a graft material associated therewith that forms a lumen through at least part of its length. The term “branch vessel” refers to a vessel that branches off from a main vessel. The “branch vessels” of the thoracic and abdominal aorta include the celiac, inferior phrenic, superior mesenteric, lumbar, inferior mesenteric, middle sacral, middle suprarenal, renal, internal spermatic, ovarian (in the female), innominate, left carotid, and left subclavian arteries. As another example, the hypogastric artery is a branch vessel to the common iliac, which is a main vessel in this context. Thus, it should be seen that “branch vessel” and “main vessel” are relative terms. The term “aorta stent graft” refers to a prosthesis that shunts blood through a main vessel. An “aorta stent graft lumen” runs through the aorta stent graft. The term flaring, as used herein, encompasses the terms flared and flareable. An aorta stent graft may be deployed within a body lumen having branch vessels to repair the body lumen. In order to prevent the occlusion of branch vessels, some accommodation may be necessary to preserve flow into those vessels. Thus, for those situations, it is desireable to provide branch vessel prostheses extending from the aorta stent graft into the branch vessels in order to preserve flow to those branch vessels. The present invention provides a branch vessel prosthesis, for use with an aorta stent graft defining a lumen and having a fenestration aligned with a branch vessel, including a flaring portion and a tubular portion. The flaring portion is retained within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel. FIG. 1 illustrates a bifurcated aorta stent graft 1 that having a proximal end 2 and a distal end 3, that has been positioned in an abdominal aortic aorta 4 from a point above the renal arteries 5 to a point where the stent graft 1 bifurcates into the iliac arteries 6. As shown in FIG. 1, the aorta stent graft 1 includes two fenestrations 7 or holes in the stent graft 1 that are aligned with the renal arteries 5, which may accommodate branch vessel prostheses as described further below. In FIG. 1, the aorta 4 has an aneurysm 8 between the renal arteries 5 and the iliac arteries 6 and another aneurysm 9 in the region of the renal arteries 5. The aorta stent graft 1 may include an attachment member 10 for securing the aorta-stent graft 1 to an aortic side wall to prevent migration of the stent graft 1 after it has been placed. The attachment member may comprise a zig zag stent extending from the proximal end 2. FIG. 1A is a partial side view of the aorta stent graft 1 of FIG. 1 having a branch vessel prosthesis 11 secured within a fenestration 7 of the aorta stent graft 1 and extending into a renal artery 5. FIG. 1B is a top cross-sectional view of the aorta stent graft 1 and the branch vessel prosthesis 11 of FIGS. 1A and 1B. As shown in FIGS. 1A and 1B, a proximal end 12 of the branch vessel prosthesis 11 extends through the fenestration 7 of the aorta stent graft 1 and the aortic ostium 13 into the side branch vessel/renal artery 5, thereby bypassing the aneurysm 9 located in the area of the renal arteries 5. FIGS. 2A and 3 illustrate aorta stent grafts 1 having fenestrations 7 that are aligned with various vessels that branch off of the aorta 4. For example, FIG. 2A illustrates an aorta stent graft 1 that has been placed within the thoracic aorta 14 that has fenestrations 7 aligned with the left subclavian artery 15 and the left common carotid artery 16. FIG. 2B shows the aorta stent graft 1 of FIG. 2A having a branch vessel prosthesis 11 extending from within the fenestration 7 of the stent graft 1 through to the left subclavian artery 15. FIG. 3 is a partial illustration of the bifurcated aortic vessel of FIG. 1 at the point of the bifurcation 17 into the iliac arteries 6. As shown, a stent graft 1, having a generally tubular shape, is disposed within the left iliac artery 6 with a fenestration 7 aligned with the hypogastric artery 18. A branch vessel prosthesis 11 extends from the stent graft 1 through the fenestration 7 and into the hypogastric artery 18. Both the aorta-stent graft 1 and the branch vessel prosthesis 11 may be formed from a biocompatible woven or non-woven fabric or other graft material, and make include one or more external and internal stents, for example, as shown in FIG. 1. For example, along the length of the aorta stent graft 1 and/or the branch vessel prosthesis 11, there may be a number of self-expanding zigzag stents 19 such as Gianturco Z stents on the outside of the body, as shown in FIG. 1. At one or both ends 2, 3 of the aorta stent graft 1 there may be an internal zigzag stent 20 which helps seal against a vascular wall or an interconnecting module. However, the configuration of the stents is not limited to zig zag stents, as any stent configuration known to those in the art can be used. The outer surface of the tubular body at the ends 2, 3 may present an essentially smooth outer surface that can engage and seal against the wall of the aorta or an adjoining prosthetic module when it is deployed. The internal stent 20 may be comprised of struts with bends at each end of the struts. Barbs may extend from the struts or the bends through the graft material to engage the surrounding vessel wall to prevent distal movement of the aorta stent graft 1 that may be caused by pulsatile blood flow through the aorta stent graft 1. The stents 19, 20 may be joined to the graft material by any known means. Preferably, the stents 19, 20 may be joined to the graft material by stitching, for example by using a monofilament or braided suture material. The branch vessel prosthesis may comprise a stent or series of stents alone or with graft material. The stents may comprise a balloon-expandable stent or a self-expanding stent. The self expanding stent can include stainless steel, materials with elastic memory properties, such as NITINOL, or any other suitable material. The branch vessel prosthesis 11 may be formed from self-expanding stents such as Z-STENTS®. Z-STENTS® are available from Cook, Incorporated, Bloomington, Ind. USA. The balloon expandable stent portion (typically 316LSS, CoCr, Etc.) can also include a shape memory material having self expanding portion(s) such as titanium, magnesium, nickel, alloys and the like. Graft material may include a film, a coating, a sheet of biocompatible fabrics, non-woven materials or porous materials. Examples of biocompatible polymers from which porous sheets can be formed include polyesters, such as poly(ethylene terephthalate), polylactide, polyglycolide and copolymers thereof; fluorinated polymers, such as polytetrafluoroethylene (PTFE), expanded PTFE and poly(vinylidene fluoride); polysiloxanes, including polydimethyl siloxane; and polyurethanes, including polyetherurethanes, polyurethane ureas, polyetherurethane ureas, polyurethanes containing carbonate linkages and polyurethanes containing siloxane segments. In addition, materials that are not inherently biocompatible may be subjected to surface modifications in order to render the materials biocompatible. Examples of surface modifications include graft polymerization of biocompatible polymers from the material surface, coating of the surface with a crosslinked biocompatible polymer, chemical modification with biocompatible functional groups, and immobilization of a compatibilizing agent such as heparin or other substances. Thus, any polymer that may be formed into a porous sheet can be used to make a graft material, provided the final porous material is biocompatible. Polymers that can be formed into a porous sheet include polyolefins, polyacrylonitrile, nylons, polyaramids and polysulfones, in addition to polyesters, fluorinated polymers, polysiloxanes and polyurethanes as listed above. Preferably the porous sheet is made of one or more polymers that do not require treatment or modification to be biocompatible. The graft material may include a biocompatible polyurethane. Examples of biocompatible polyurethanes include THORALON® (Thoratec, Pleasanton, Calif.), BIOSPAN®, BIONATE®, ELASTHANE™, PURSIL™ and CARBOSIL™ (Polymer Technology Group, Berkeley, Calif.). As described in U.S. patent application Publication No. 2002/0065552 A1, incorporated herein by reference, THORALON® is a polyetherurethane urea blended with a siloxane-containing surface modifying additive. Specifically, the polymer is a mixture of base polymer BPS-215 and an additive SMA-300. The graft material may also include extracellular matrix materials. The “extracellular matrix” is typically a collagen-rich substance that is found in between cells in animal tissue and serves as a structural element in tissues. Such an extracellular matrix is preferably a complex mixture of polysaccharides and proteins secreted by cells. The extracellular matrix can be isolated and treated in a variety of ways. Following isolation and treatment, it is referred to as an “extracellular matrix material,” or ECMM. ECMMs may be isolated from submucosa (including small intestine submucosa), stomach submucosa, urinary bladder submucosa, tissue mucosa, renal capsule, dura mater, liver basement membrane, pericardium or other tissues. Purified tela submucosa, a preferred type of ECMM, has been previously described in U.S. Pat. Nos. 6,206,931, 6,358,284 and 6,666,892 as a bio-compatible, non-thrombogenic material that enhances the repair of damaged or diseased host tissues. U.S. Pat. Nos. 6,206,931, 6,358,284 and 6,666,892 are incorporated herein by reference. Purified submucosa extracted from the small intestine (“small intestine submucosa” or “SIS”) is a more preferred type of ECMM for use in this invention. Another type of ECMM, isolated from liver basement membrane, is described in U.S. Pat. No. 6,379,710, which is incorporated herein by reference. ECMM may also be isolated from pericardium, as described in U.S. Pat. No. 4,502,159, which is also incorporated herein by reference. In addition to xenogenic biomaterials, such as SIS, autologous tissue can be harvested as well. Additionally Elastin or Elastin Like Polypetides (ELPs) and the like offer potential as a material to fabricate the covering or frame to form a device with exceptional biocompatibility. Another alternative would be to use allographs such as harvested native valve tissue. Such tissue is commercially available in a cryopreserved state. In addition, a bare metal stent or a covered stent could be coated with an anti-restenotic agent, such as paclitaxel, sirilomis or other equivalent. In addition, the graft can be coated with an anti-thrombogenic agent, such as heparin. The graft material may be attached to the stent by any means known, for example, the graft material may be attached to the stent by sutures. The graft material also may be affixed to the stent by dipping the stent in a liquefied polymer and allowing the polymer to solidify into a film. The liquefied polymer may be a molten polymer or a polymer or pre-polymer before curing or cross-linking occurs. Various configurations for the branch vessel prosthesis 11 are illustrated in FIGS. 4-21. The branch vessel prosthesis also may have the structure described in pending U.S. application Ser. No. 10/267,576, filed Oct. 8, 2002, which is hereby incorporated by reference, or U.S. Pat. Nos. 5,718,713, 5,741,327, 5,746,691, 5,843,175, 5,868,782, 6,042,606, 6,299,635 each of which is hereby incorporated by reference. The branch vessel prosthesis 11 may be a stent, a series of stents, formed from a piece of graft material, or comprise a stent graft. One end of the branch vessel prosthesis 11 is intended to be placed within the lumen of the aorta stent graft 1 through a fenestration 7 in the stent graft 1 as discussed in more detail below and the other end is intended to be placed in a branch vessel. The branch vessel prosthesis 11 is preferably of a size and shape suitable for the branch vessel in which it is to be deployed. Thus, the size and shape of the branch vessel prosthesis 11 may be dictated by the particular anatomy of the patient to be treated and the location where the branch vessel prosthesis 11 is to be place. The branch vessel prosthesis 11 permits the repair of a diseased or compromised vessel without obstructing blood flow in other portions of the vasculature and conforms to a fenestration 7 of the aorta stent graft 1 without causing swirling in the blood flow and creating the potential for thrombi formation. The branch vessel prosthesis 11 also permits access to all portions of the branch vessel in the event of further interventional treatment. Additionally, the branch vessel prosthesis 11 provides a secure seal between branch vessel prosthesis 11 and a branch vessel, while assisting in anchoring the branch vessel prosthesis 11 to a main vessel, such as an aorta. FIGS. 4A-C generally show a branch vessel prosthesis 11 defining a lumen 34 and having a proximal end 30, a distal end 32, a flaring portion 36, and a tubular portion 33. As described above, the branch vessel prosthesis 11 may comprise graft material and have one or more stents fastened to the inner, the outer, or both surfaces. The distal end 32 may include an internal stent 40 having barbs 42 projecting through the graft material for securement to the branch vessel and to prevent migration of the device after placement. The proximal end 30 or flaring portion 36 may also be provided with attachment mechanism, such as barbs 42, for securing the flaring portion 36 within the aorta stent graft 1. Preferably, at least a part of the flaring portion 36 has a diameter greater than the diameter of the fenestration 7. Positional indicators 43, such as radiopaque markers, may be attached to or integral with the stent and/or graft material, and may be placed at positions on the branch vessel prosthesis 11 to indicate the proximal end 30, the flaring portion 36 and/or the distal end 32. Preferably, a positional marker 43 is placed so as to indicate that portion of the branch vessel prosthesis 11 that generally aligns with the fenestrations. During deployment, the barbs 42 may be enclosed in an endcap 44 of the delivery system 46, as shown in FIG. 4C. As described above, and shown in FIG. 4B, the branch vessel prosthesis 11 is intended to provide a conduit from previously placed aorta stent graft 1 and a branch vessel. The flaring portion 36 extends through the fenestration 7 of the aorta stent graft 1 while the tubular portion 33 extends into the branch vessel. FIGS. 5-7 illustrate another embodiment of a branch vessel prosthesis 11. FIG. 5 is a side perspective view of a branch vessel prosthesis I1 in its deployed state. FIG. 6 is a side perspective view of a branch vessel prosthesis 11 in a partially deployed state. FIG. 7 is a partial view in cross-section of an aorta stent graft 1 having a fenestration 7 and a branch vessel prosthesis 11 secured within the aorta stent graft 1 through the fenestration 7. The branch vessel prosthesis illustrated in FIGS. 5-7 includes mating reinforcements 38, 60 for securing the branch vessel prosthesis 11 within the aorta stent graft 1. As shown in FIG. 5, the branch vessel prosthesis 11 may be a tubular stent graft. The branch vessel prosthesis 11 includes a proximal end 30, a distal end 32, a tubular portion 33, a lumen 34 between the proximal end 30 and the distal end 32, a flaring portion 36, and a reinforcement ring 38 adjacent the proximal end 30. The reinforcement ring 38 may be attached to the flaring portion 36 of the branch vessel prosthesis 11 around its circumference. The reinforcement ring 38 is adapted to engage a second reinforcement ring 60 associated the fenestration 7, as shown in FIG. 7 and discussed in detail with reference to that figure below. As shown in FIG. 5, the distal end 32 of the branch vessel prosthesis may also be flared to secure the distal end 32 of the branch vessel prosthesis 11 in the branch vessel. The flaring portion 36 and reinforcement ring 38 are deployed within the lumen of an aorta stent graft 1 and retained in the lumen of the stent graft 1. The tubular portion 33 is configured to be received through a fenestration 7. Thus, the remainder of the branch vessel prosthesis 11, the tubular portion 33, is configured to be received and retained within a branch vessel. The distal end 32 may include an internal stent 40 having barbs 42 projecting through the graft material for securement to the branch vessel. One or more external stents 29 may also be secured to the graft material as shown in FIG. 5. FIG. 6 shows the branch vessel prosthesis 11 of FIG. 5 in a partially deployed state. The branch vessel prosthesis 11 is shown mounted on an introduction system 50 comprising an inner cannula 52 on which the branch vessel prosthesis 11 mounted. The distal end 32 including the barbs 42 enclosed within end cap 44 to permit adjust the placement of the branch vessel prosthesis 11 without causing damage to the vessel wall. In operation, the introducer system for the branch vessel prosthesis is introduced into the lumen of a previously positioned aorta stent graft. The tubular portion 33 of the branch vessel prosthesis is introduced through the fenestration and into the branch vessel and partially deployed, leaving the barbs enclosed until proper placement is ensured. Thereafter the flaring portion of the branch vessel prosthesis 11 is properly aligned with the fenestration and deployed within the lumen of the aorta stent graft 1. Then the barbed distal end of the tubular portions 33 is released and the prosthesis is placed. If the tubular portion 33 and flaring portion 36 are self expandable, one or more molding balloons may be used to further fit the prosthesis in the aorta stent graft lumen and branch vessel. Alternatively, the branch vessel prosthesis 11 may comprise balloon expandable stents and may be introduced on a balloon expansion catheter, as described more fully herein. In that case, the flaring portion 36 is flared and the tubular portion 33 is expanded by one or more balloons. In yet another embodiment, the flaring portion 36 is balloon expandable and the tubular portion 33 is self expandable. Other combinations of these types of stents are contemplated as well. FIG. 7 shows the placement of the proximal end 30 of the branch vessel prosthesis I1 within the lumen 34 of the aorta stent graft 1. The aorta stent graft 1 includes a reinforcement ring 60 positioned around the fenestration 7 wherein the fenestration 7 is substantially aligned with a branch vessel when deployed. As shown in FIG. 7, the flaring portion 36 retains the proximal end 30 of the branch vessel prosthesis 11 within the aorta stent graft 1. The tubular portion 33 extends through the fenestration 7 and into the branch vessel 5 when deployed. Preferably, the branch vessel prosthesis reinforcement ring 60 and the flaring portion 36, have a diameter equal or greater than the diameter of the aorta stent graft reinforcement ring 38. In a preferred embodiment, both the flaring portion 36 and the branch vessel prosthesis reinforcement ring 38 have a diameter greater than the aorta stent graft reinforcement ring 60. In this embodiment, the branch vessel prosthesis reinforcement ring 38 diameter is greater than the aorta stent graft reinforcement ring diameter so that the flaring portion 36 seals against the fenestration 7 of the aorta stent graft 1 as the branch vessel prosthesis reinforcement ring 38 and the aorta stent graft reinforcement ring 60 engage. Preferably, the branch vessel prosthesis reinforcement ring 38 and the aorta stent graft reinforcement ring 60 at least partially abut. The aorta stent graft reinforcement ring may be secured to a surface of graft material located on the aorta stent graft. For example, the aorta stent graft reinforcement ring may be secured to an inner surface of the aorta stent graft by sutures, adhesives or other means. The branch vessel prosthesis reinforcement ring also may be secured to a surface of graft material located on the branch vessel prosthesis. The branch vessel prosthesis reinforcement ring may be secured to an outer surface of the flaring portion by the same means. In one preferred embodiment shown in FIG. 7, both rings 38, 60 may be partially or wholly encased in the graft material. When a penetrable material, such as graft material is used, barbs 42 (as shown in FIG. 7), or other attachment mechanisms may be provided on one or more of the reinforcement rings to further secure the rings. At least one of the rings may be of resilient material to allow compaction until deployment. In addition, at least one of the rings may be made of a shape memory alloy. The reinforcement rings may be shaped and sized so as to interlock with each other when deployed. In alternate embodiments, the reinforcement rings may comprise hooks or other mechanical fastening means. For example, one of the reinforcement rings can include a surface with loops and the other of the reinforcement rings can include a surface with hooks, such as in the material known as Velcro®, so as to facilitate attachment of the two reinforcement rings to each other when deployed. In another example, one of the reinforcement rings can include tabs and the other reinforcement ring can include holes for receiving the tabs to facilitate attachment of the two reinforcement rings to each other when deployed. In another embodiment, at least one of the reinforcement rings comprises a magnetic material so that the reinforcement rings are drawn together by magnetic force when deployed. At least one of the reinforcement rings can include a surface of a sealing material to facilitate a seal between the aorta stent graft and the branch vessel prosthesis. In addition, both of the reinforcement rings can comprise a surface of a sealing material to facilitate a seal between the aorta stent graft and the branch vessel prosthesis. For example, one of the reinforcement rings can include a surface with a biocompatible adhesive to facilitate attachment of the two reinforcement rings to each other when deployed. As with the branch vessel prosthesis 11 described in FIGS. 4A-C, positional indicators may be located at any point on the branch vessel prosthesis 11. In particular, positional indicators 43, such as radiopaque or other types of markers that would be visible to the doctor during deployment, may be located at the proximal end 30, the distal end 32 and the point of the graft intended to align with the fenestration of the aorta stent graft 1. The branch vessel prosthesis 11 of FIGS. 5-6 is deployed, for example, by introducing the prosthesis 11 into an aorta stent graft 1 such that the flaring portion 36 retains the proximal end of the branch vessel prosthesis in the aorta stent graft, the tubular portion extends through the fenestration 7 and into the branch vessel 5, and the reinforcement rings 38, 60 engage one another. Another branch vessel prosthesis 11 is shown in FIGS. 8 and 9. The branch vessel prosthesis 11 includes a generally helical coiled stent 70. Graft material 62 may be affixed thereto to form a branch vessel lumen 34. For example, when the aneurysm extends into the branch vessel, the helical coil stent is preferably covered with graft material. However, if the aneurysm stops short of the branch vessel, a bare helical coil stent may be used to maintain patency of the branch vessel and/or to maintain alignment of the aorta stent graft with the fenestration. The graft material 62 may be attached to the helical coil stent 70 by any means known, for example, the graft material may be attached to the helical coil stent 70 by sutures. The graft material 62 may be any of the materials described previously for use as graft materials. For example, the graft material may be a woven fabric or a polymer film. The graft material also may be affixed to the helical coil stent 70 by dipping the stent in a liquefied polymer and allowing the polymer to solidify into a film. The helical coil may be composed of a metal wire. The helical coiled stent 70 may be an expandable stent including a flaring portion 72 that is deployed within the aorta stent graft 1, and a distal portion 74 that is deployed within the branch vessel 5, such as a renal artery. The proximal end of the branch vessel prosthesis 11 may form a seal with an inner surface of the aorta stent graft 1 around the fenestration 7. The fenestration 7 may include a reinforcement around the fenestration 7. For example, the reinforcement may be a reinforcement ring 60, such as that shown and described previously with reference to FIG. 7. In this example, the reinforcement ring cooperates with at least one full turn of the helical coil stent 70 at the proximal end 76 to form a seal between the aorta stent graft and the branch vessel stent graft. As shown in FIG. 8, the flaring portion 72 has a larger diameter D2 than the distal portion diameter D1 and may assist to pull the aorta stent graft 1 and the branch vessel 5 together. The diameter of the turn of the coil 78 immediately adjacent an outer surface of the fenestration 7 may also be greater than the diameter of the fenestration 7 to thereby capture the fenestration 7 between two adjacent coils. Preferably, the diameter of the turn of the coil 78 is only slightly greater than the diameter of the fenestration. In one embodiment, one full turn of the helical coil stent at a proximal end has a diameter larger than the diameter of the fenestration, and at least two full turns of the helical coiled stent have a diameter smaller than the diameter of the fenestration. During deployment, at least two full turns of the helical coil are passed through the fenestration into the branch vessel while the proximal end with at least one full turn is retained in the aorta stent graft 1 lumen. Positional indicators 43 may be located on the proximal and distal most coils, as well as at the location of the coil where the coiled stent flares, so as to indicate the position of alignment with the fenestration. The coil may also be provided with barbs 42 or some other fastening mechanism, either on the coil itself or attached to graft material to facilitate attachment of the device to the branch vessel wall and/or the lumen of the aorta stent graft. Another branch vessel prosthesis configuration is shown in FIGS. 10-14. The branch vessel prosthesis 11 includes a stent having a flaring proximal portion 36, a tubular section 33, a bending portion 80 at a junction between the flareable proximal portion 36 and the tubular portion 33 and a distal end 30, for use with an aorta stent graft 1 defining a lumen and having a fenestration aligned with a branch vessel. The branch vessel prosthesis 11 preferably includes an expandable stent with a graft material affixed thereto to form a branch vessel lumen. The tubular portion 33 of the branch vessel prosthesis 11 may comprise a self expanding stent while the flaring portion 36 may be a balloon expandable stent. Alternatively, both portions may be balloon expandable. In one preferred embodiment, the proximal stent 82 is connected to the proximal body stent 86 by the bending portion 80. In another embodiment, when the stent is encapsulated in graft material such as Thoralon, the proximal stent 82 may not be directly connected to the proximal body stent 86 and the Thoralon material between the proximal stent 82 and the proximal body stent 86 may form the bending portion 80. In the embodiment of FIGS. 10-14, the branch vessel prosthesis 11 is deployed such that the bending portion 80 is aligned with a fenestration 7 of the aorta stent graft 1, the flaring portion 36 resides within the lumen of the aorta stent graft 1 and the tubular portion 33 resides in the branch vessel. Upon deployment, the flaring of the flaring portion 36 is preferably accomplished by a balloon that facilitates bending of the bending portion 80. As shown in FIGS. 10-14, the branch vessel prosthesis 11 may comprise a multi-cell stent structure having a proximal cell 82 intended to be the cell closest to the ostium or branch vessel entrance. The proximal cell 82 is connected to a plurality 83 of interconnected body cells 84. Each cell is a substantially circular ring comprising an endless undulating pattern. As shown in FIGS. 12-14, the plurality 83 of interconnected body cells 84 forms the tubular portion 33 of the branch vessel prosthesis 11 and includes a proximal body-cell 86 and a distal body cell 88. When deployed, the proximal body cell 86 is the body cell closest to the fenestration 7 (and thus the ostium of the main vessel) and is connected to the proximal cell 82. The distal body 88 cell is the body cell farthest from the fenestration 7 (and thus the ostium of the main vessel). The proximal cell 82 is configured to flare-out in the expanded configuration and forms the flaring portion 36 of the branch vessel prosthesis 11. The proximal cell configuration is contemplated to form the flaring portion 36. For example, the proximal cell 82 may be configured with a wider cell width or a longer strut length than the body cells 84. As shown in the Figures the peaks 92 of the proximal cell 82 are unattached and free to separate and thereby permit the flaring portion 36 to flare-out in the expanded configuration. It should be noted that, as used herein the term “peak” is interchangeable with the term “valley” and both refer to a turn or bend in a stent cell. Also, the frequency of the points of attachment between the flaring portion 36 and the tubular portion 33 can be varied to facilitate bending in the bending portion 80 of the branch vessel prosthesis 11 in the expanded configuration. As shown in the 11-13, each peak 94 along the distal edge of the proximal cell 82 is connected to every other peak 96 along the proximal edge of the proximal body cell 86. The flaring of the flaring portion 80 in the expanded configuration may be decreased if each peak along the distal edge of the proximal cell is connected to each peak along the proximal edge of the proximal body cell. Conversely, interconnecting each proximal cell peak to every third proximal body cell peak increases the ability of the flaring portion to flare in the expanded configuration. Each of the plurality of interconnected body cells 84 may have a shorter cell width and shorter strut length than the proximal cell 82. Further, adjacent body cells 84 are connected to each other by tie-bars 98 and/or connection members 100. Flexibility along the body cells may be provided by altering the shape of the connection members 100. Thus, the connection member may comprise a “V” shape (FIGS. 10-14), an “S” shape (FIG. 15) or a “W” shape (FIG. 16) to increase the flexibility of the tubular portion 36 of the branch vessel prosthesis 11. The bending portion 80 interconnects the proximal cell 82 to the plurality of interconnected body cells 84. The bending portion 80 also forms a junction between the flaring portion 36 and the tubular portion 33 of the branch vessel prosthesis 11. The bending portion 80 minimizes the stress imposed by the flaring portion 36 on the tubular portion 33 in the expanded configuration by providing a point of flexibility. Increasing the flexibility of bending portion 80, increases the ability of the flaring portion 36 to flare-out in the expanded configuration. Flaring of the flaring portion 36 is thus facilitated by the bending portion 80. Multiple configurations of the bending portion 80 are contemplated. In one embodiment, such as that depicted in FIGS. 10 and 11, the bending portion 80 includes metal struts having a reduced diameter to facilitate bending at the bending portion 80. For example, the bending portion 80 may undergo some form of material reduction to enhance the flexibility between the proximal cell 86 and the plurality 83 of body cells 84. Thus, as shown in FIG. 12, the side edges 102, 104 of the bending portion 80 may comprise a radius of curvature such that the bending portion 80 forms an hour-glass configuration. Increasing the radius of curvature along the edges of the bending portion 80 increases the flexibility of the bending portion 80. Similarly, the top and bottom surfaces of the bending portion 80 may be polished to enhance flexibility. In other embodiments, the metal struts can be heat treated or mechanically worked to facilitate bending at the bending portion. In still other embodiments, the configuration of the bending portion 80 may be altered to enhance the flexibility. Thus, the bending portion 80 may comprise a “V” shape (FIG. 11), an “S” shape (FIG. 15), a “W” shape (FIG. 16) to increase the flexibility between the flaring portion 36 and tubular portion 33 of the branch vessel prosthesis 11. In still yet other embodiments, the material at the bending portion 80 may be more bendable than the material of the tubular portion or flaring portion. In still yet another embodiment, the bending portion 80 may include fewer struts per unit area than the tubular portion 33 or the flaring portion 36 to thereby facilitate bending at the bending portion 80. In the alternate embodiment shown in FIG. 17, using the principles described above, the proximal body cell 86 may be configured to expand or “bulge” 106 to secure the branch vessel prosthesis 11 against the main vessel 4. As with previous embodiments, positional indicators 43 may be associated with the branch vessel prosthesis to facilitate visualization of the prosthesis during and after deployment. For example, positional indicators 43 may be on or associated with the proximal cell 82 and the distal end 30. Preferably, at least one positional indicator is positioned on or associated with the bending portion 80 of the branch vessel prosthesis 11 to facilitate alignment of the bending portion with the fenestration 7 of the aorta stent graft 1. As shown in FIGS. 10-14, for example, positional indicators 43 may be located at or associated with the apices of the proximal cell 82, located at or associated with the bending portion 80, and located at or associated with the distal end 86. The branch vessel prosthesis 11 of this embodiment may also be provided with barbs or other fastening mechanisms, either on the stent itself or attached to graft material to facilitate attachment of the device to the branch vessel wall and/or the lumen of the aorta stent graft 1. For example, the proximal cell 82 may be provided with barbs 42, as shown in FIG. 139 Another branch vessel prosthesis configuration is shown in FIGS. 18 and 19. As shown, the branch vessel prosthesis 11 has a flaring portion 36 and a tubular portion 33 with an anchoring device 200, such that when deployed, the flaring portion 36 is located within the lumen of the aorta stent graft 1 and the tubular portion 33 passes through the fenestration 7 and into the branch vessel 5, with the anchoring device 200 affixing the position of the tubular portion 202 within the branch vessel 5. Upon deployment, the system further allows the tubular portion 33 to be inserted and affixed a predetermined depth into the branch vessel 5 such that the flaring portion 36 is maintained against an inside wall of the aorta stent graft 1 to thereby bias the aorta stent graft 1 toward the branch vessel 5. The flaring portion 36 is configured to engage a fenestration 7 of the aorta stent graft 1. The anchoring device 200 comprises securement arms 202. that extend within the fenestration 7 of the aorta stent graft 1 and secure the branch vessel stent graft 11 against the fenestration 7 of the aorta stent graft 1 and the ostium of the branch vessel 5. In this example, the branch vessel prosthesis 11 includes metal struts in the flaring portion 36 that form an acute angle with the tubular portion 33 such that when the tubular portion 36 is inserted a predetermined depth into the branch vessel 5, the flaring portion 36 is maintained against an inside wall of the aorta stent graft 1 to thereby bias the aorta stent graft 1 toward the branch vessel 5. When deployed, the metal struts are curved through than arc of more than 90 degrees with respect to the tubular portion 33. For example, when deployed, the metal struts may be curved through an arc of about 180 degrees with respect to the tubular portion. As shown in FIGS. 18-19, the anchoring device 200 may comprise a zig zag portion 204 with the securement arms 202 extending from the proximal apices 206 of the zig zag portion 204. The proximal ends 208 of the securement arms 202 may form an arc or hook 210 at the ends 208 of the arms 202 for anchoring the flaring portion 36 of the branch vessel prosthesis 11 with the aorta stent graft 1. Anchoring barbs 42 may provided at the distal apices 214 of the zig zag portion 204. Positional indicators 43 Radiopaque or other visual markers 43 may also be provided at the distal apices 212, the proximal ends 208 of the arms 208 to facilitate viewing of the branch vessel prosthesis 11 during and after deployment. Another branch vessel configuration is shown in FIGS. 20-21. In this configuration the flaring portion 300 that is configured to engage a fenestration 7 of the aorta stent graft 1 is inverted relative to the flaring portions of other configurations shown here. In other words, in this configuration, as shown in FIG. 21, the flaring portion 300 forms an acute angle with respect to the tubular portion 302, and forms a seal with an inner surface of the lumen of the aorta stent graft 1. As shown in FIG. 21, the flaring portion 300 extends through the fenestration 7 of the aorta stent graft 1 and secures the branch vessel prosthesis 11 against the aorta stent graft 1. In this configuration, positional indicators 304 may be located at or associated with the proximal end 306, the distal end 308 and/or the rim 310 of the flaring portion 300. Additionally, one or more fastening barbs 312 may be placed circumferentially about the rim the rim 310 of the flaring portion 300 to secure the rim 310 to the aorta stent graft 1 as shown in Figures. Additional barbs 314, may be included on the tubular portion 316 of the branch vessel prosthesis 11 to secure the tubular portion 316 to the branch vessel 5. As shown in the Figures, the additional barbs 314 may be circumferentially placed about the tubular portion 316 in one or more sets of the additional barbs 314. The Introducer FIG. 22 shows a self-expanding aorta stent graft 1, and an endovascular deployment system 500, also known is an introducer 100, that may be used to deploy the aorta stent graft 1 in a main vessel, such as the abdominal or thoracic aorta, of a patient during a medical procedure. These items are each described in greater detail in PCT application WO 98/53761. The same deployment system 500 may be used for the deployment the branch vessel prosthesis and, thus, FIG. 22 is fully applicable thereto. The aorta stent graft 1 has an expandable tubular portion 502 having a proximal end 504, and a distal end 506. The aorta stent graft 1 comprises a tubular graft material, such as woven polyester, with self-expanding stents 506 attached thereto. The self-expanding stents 506 cause the aorta stent graft 1 to expand following its release from the introducer 500. The aorta stent graft 1 also includes a self-expanding proximal stent 508 that extends from its proximal end 504. The proximal stent 508 may have distally extending barbs 510. When it is released from the introducer 500, the proximal stent 508 anchors the barbs 510, and thus the proximal end 504 of the aorta stent graft 1, to the lumen of the patient. The proximal end 504 of the aorta stent graft 1 is provided with one or more fenestrations 512 that are intended to align with a branch vessel. The introducer 500 includes an external manipulation section 514, a distal attachment region 516 and a proximal attachment region 518. The distal attachment region 516 and the proximal attachment region 518 secure the distal and proximal ends of the aorta stent graft 1, respectively. During the medical procedure to deploy the aorta stent graft 1, the distal and proximal attachment regions 516 and 518 will travel through the lumen to a desired deployment site. The external manipulation section 514, which is acted upon by a user to manipulate the introducer, remains outside of the patient throughout the procedure. The proximal attachment region 518 of the introducer 500 includes a cylindrical sleeve 520. The cylindrical sleeve 520 has a long tapered flexible extension 522 extending from its proximal end. The flexible extension 522 may be substantially aligned with a longitudinal axis of the introducer 500, as shown in FIG. 22. Alternatively, flexible extension 522 may curve to accommodate curves or turns in a patient's anatomy, as shown in FIGS. 23 and 24A-B. The flexible extension 520 has an internal longitudinal aperture (not shown). This longitudinal aperture facilitates advancement of the tapered flexible extension 522 along an insertion wire (not shown). The longitudinal aperture also provides a channel for the introduction of medical reagents. For example, it may be desirable to supply a contrast agent to allow angiography to be performed during placement and deployment phases of the medical procedure. A thin walled metal tube 524 is fastened to the extension 522. The thin walled metal tube 524 is flexible so that the introducer 500 can be advanced along a relatively tortuous vessel, such as a femoral artery, and so that the distal attachment region 516 can be longitudinally and rotationally manipulated. The thin walled metal tube 524 extends through the introducer 500 to the manipulation section 514, terminating at a connection means 526. The connection means 526 is adapted to accept a syringe to facilitate the introduction of reagents into the thin walled metal tube 524. The thin walled metal tube 524 may be in fluid communication with the apertures 528 of the flexible extension 522. Therefore, reagents introduced into connection means 526 will flow to and emanate from the apertures 528. A plastic tube 530 is coaxial with and radially outside of the thin walled metal tube 524. The plastic tube 530 is “thick walled”—its wall is preferably several times thicker than that of the thin walled metal tube 524. A sheath 532 is coaxial with and radially outside of the plastic tube 530. The thick walled plastic tube 530 and the sheath 532 extend distally to the manipulation region 514. During the placement phase of the medical procedure, the aorta stent graft 1 is retained in a compressed condition by the sheath 532. The sheath 532 extends distally to a gripping and hemostatic sealing means 534 of the external manipulation section 526. During assembly of the introducer 500, the sheath 532 is advanced over the cylindrical sleeve 520 of the proximal attachment region 518 while the aorta stent graft 1 is held in a compressed state by an external force. A distal attachment (retention) section 536 is coupled to the thick walled plastic tube 530. The distal attachment section 536 retains a distal end 538 of the aorta stent graft 1 during the procedure. Likewise, the cylindrical sleeve 520 retains the proximal stent 508. The distal end 538 of the aorta stent graft 1 is retained by the distal attachment section 536. The distal end 538 of the aorta stent graft 1 has a loop (not shown) through which a distal trigger wire (not shown) extends. The distal trigger wire extends through an aperture (not shown) in the distal attachment section 536 into an annular region between the thin walled tube 524 and the thick walled tube 530. The distal trigger wire extends through the annular space to the manipulation region 514. The distal trigger wire exits the annular space at a distal wire release mechanism 540. The external manipulation section 514 includes a hemostatic sealing means 534. The hemostatic sealing means 534 includes a hemostatic seal (not shown) and a side tube 542. The hemostatic sealing means 534 also includes a clamping collar (not shown) that clamps the sheath 532 to the hemostatic seal, and a silicone seal ring (not shown) that forms a hemostatic seal around the thick walled plastic tube 530. The side tube 542 facilitates the introduction of medical reagents between the thick walled tube 530 and the sheath 532. A proximal portion of the external manipulation section 514 includes a release wire actuation section that has a body 544. The body 544 is mounted onto the thick walled plastic tube 530. The thin walled tube 524 passes through the body 544. The distal wire release mechanism 540 and the proximal wire release mechanism 546 are mounted for slidable movement onto the body 544. The positioning of the proximal and distal wire release mechanisms 540 and 544 is such that the proximal wire release mechanism 540 must be moved before the distal wire release mechanism 544 can be moved. Therefore, the distal end 538 of the aorta stent graft 1 cannot be released until the proximal stent 508 has been released, and the barbs 510 have been anchored to the lumen. Clamping screws 548 prevent inadvertent early release of the aorta stent graft 1. A hemostatic seal (not shown) is included so that the release wires can extend out through the body 544 without unnecessary blood loss during the medical procedure. A distal portion of the external manipulation section 514 includes a pin vise 550. The pin vise 550 is mounted onto the distal end of the body 544. The pin vise 550 has a screw cap 552. When screwed in, vise jaws (not shown) of the pin vise 550 clamp against or engage the thin walled metal tube 524. When the vise jaws are engaged, the thin walled tube 524 can only move with the body 544, and hence the thin walled tube 524 can only move with the thick walled tube 530. With the screw cap 552 tightened, the entire assembly can be moved together as one piece. A second introducer based on the same principles as the introducer 500 described above may also be adapted so that it can introduce a self-expanding branch vessel prosthesis by passing it through the fenestration 512 in the aorta stent graft 562. As shown in FIGS. 23 and 24A-C the introducer 500, having a curved flexible extension 522, may be introduced into the lumen 560 of a previously placed stent graft 562, and through the fenestration 564 into the branch vessel 566. Once positioned properly, the sheath 532 may be retracted, and the branch vessel prosthesis 568 expanded. Any barbs 570 located at the distal end 572 of the branch vessel prosthesis 568, remain in the end cap 574 until the prosthesis is properly placed. The end cap 574 is released during deployment by a trigger wire. Deployment of the branch vessel prosthesis is discussed in further detail below. As shown in FIG. 25, the introducer for the branch vessel prosthesis 11 may include a positional indicator system 600, either to compliment or to replace the positions indicator system on the branch vessel prosthesis. As discussed above, positional indicators may be placed on or associated with the branch vessel prosthesis 11 indicate various points on the branch vessel prosthesis 11. Also, as previously discussed, one or more positional indicators may be placed on or associated with the fenestration 7 of the aorta stent graft 1. The system shown in FIG. 25 includes multiple positional indicators on the introducer 602. A first positional indicator 604 is positioned on the introducer 602 and indicates the position of the proximal end 606 of the branch vessel prosthesis 11. A second positional indicator 608 is positioned on the introducer 602 and indicates the position of that part of the branch vessel prosthesis 11 that is to be aligned with the fenestration 7 of the aorta stent graft 1. In FIG. 25, the second positional indicator 608 indicates the bending portion 610 of the branch vessel prosthesis 11. A third positional marker 612 is located on the introducer 602 and indicates the position of branch vessel prosthesis 11 tubular portion. A fourth positional indicator 614 may be positioned on or near the end cap 616 to indicate the distal end of the branch vessel prosthesis 11. Other positional indicators may be included on the introducer at other locations as may be desired to facilitate visualization of the branch vessel prosthesis 11 branch vessel prosthesis during and after deployment. These positional indicators may be used alone or in combination with positional indicators on the branch vessel prosthesis 11 and/or the aorta stent graft 1 to further enhance visualization. In another aspect, where the branch vessel prosthesis 11 is partially or entirely balloon expandable, a positional indicator system is provided in connection with a balloon delivery system for implanting the branch vessel prosthesis 11, as shown in FIGS. 26A-E. As shown in FIG. 26B, the delivery system 700 used to place and deploy the branch vessel prosthesis 11 comprises a balloon catheter 702 having a proximal portion 704 and a distal portion 706. As used with reference to the delivery catheter 702, the term “proximal” refers to the direction or position closest to the user and the term “distal” refers to the direction or position farthest from the user. The balloon catheter further includes a stent-loading area 708 located on a distal portion 706 of the catheter 702. The stent-loading area 708 comprises a balloon 710 and a positional indicator system 711. The positional indicator system includes one or more positional indicators that correspond with various parts of the of the branch vessel prosthesis 11. For example, the positional indicator system may include a first positional indicator 712 on the catheter that corresponds with that part of the branch vessel prosthesis 11 that is intended to align with the fenestration 7 of the aorta stent graft 1. The system may further include positional indicators 714, 715 that correspond with the proximal distal ends of a branch vessel prosthesis 11. Preferably the positional indicators are shaped so as to indicate position and orientation of the branch vessel prosthesis during and after deployment. The positional markers may be of any configuration to facilitate their visualization. For example, the positional markers may be v-shaped with one leg longer than the other. In a preferred embodiment, the positional indicator system may include a first positional indicator 714 for indicating the position of the proximal end of the branch vessel prosthesis 11 during deployment, a second positional indicator 716 associated with the branch vessel prosthesis 11 for indicating the position of a distal end of the branch vessel prosthesis 11 during deployment, a third positional indicator 712 associated with the branch vessel prosthesis 11 for indicating the position of a point along the branch vessel prosthesis 11 predetermined for optimal alignment with the fenestration 7 during deployment. The system 711 can also include a fourth positional indicator 718 on the aorta stent graft 1 indicating the position of the fenestration 7. At least first, second and third positional indicators also may located on the branch vessel prosthesis 11, as previously described, and are shaped so as to indicate position and orientation of the branch vessel prosthesis 11 during and after deployment. In operation, the branch vessel prosthesis 11 is positioned about the balloon on the catheter and crimped thereto so that desired portions of the branch vessel prosthesis 11 align with the corresponding positional indicators of the positional indicator system 711. The marker system 711 may be placed on a wire guide lumen 720 or an inflation lumen 722 of the balloon catheter. The balloon may comprise a see-through material so that the marker system 711 can be viewed therethrough to facilitate the placement of the branch vessel prosthesis 11 in the loading area. In one variation shown in FIGS. 26D-E, the balloon catheter may comprise a multi-lumen balloon catheter having a support lumen 724 having a flaring portion through which a mandril (not shown) extends. The mandril stops proximally of the balloon. The mandril provides support to the delivery catheter 702. The mandril may comprise a tapered wire. The delivery system may also include a balloon expansion catheter 800 that is configured to expand a branch vessel prosthesis of the various configurations described herein having a flaring portion 802 and a tubular portion 804. As shown in FIG. 27A, a delivery catheter 800 may comprise multiple balloons 806, 808. Preferably, the first balloon 806 may be sized and adapted to flare the flaring portion 804 of a branch vessel prosthesis 11, as described herein, and the second balloon 808 may be sized and to adapted expand a tubular portion of a branch vessel prosthesis, as described herein. Accordingly, the balloons may have different compliances. As shown in 27A, the balloons 806, 808 may be positioned on a branch vessel prosthesis loading area 810 such that the when the branch vessel stent graft 11 is mounted on the stent-loading area 810, the tubular portion 804 of the branch vessel stent graft 11 aligns with the first balloon 806 and the flaring portion 802 of the branch vessel stent graft 11 that is configured to align with the fenestration 7 of the aorta stent graft 1 is aligned with the second balloon 808. In one embodiment, the balloon catheter carrying the balloons 806, 808 is introduced into the lumen of the aorta stent graft (not shown). The first balloon 806 is aligned substantially with the flaring portion 802 of the branch vessel stent graft 11 and the second balloon 808 is aligned substantially with the tubular portion 806 and the balloons are inflated, as shown in FIG. 27B. The balloons 806, 808 may be inflated simultaneously so as to simultaneously expand the tubular portion and flare the flaring portion. Alternatively, the balloons 806, 808 may be sequentially inflated. In one embodiment, the second balloon 808 is inflated before the first balloon 806, thereby expanding the tubular section 804 before flaring the flaring portion 802. Alternatively, the first balloon 806 may be inflated first. The catheter may be adapted such that the balloons may be inflated independently of each other. The first balloon 806 may be constructed of a semi-compliant (or non-compliant) material and the second balloon 808 may be constructed of a compliant material. In an alternative configuration, shown in FIGS. 27C the delivery catheter 800 may have a single balloon 806 having a first portion 803 for expanding the tubular portion 804 and a second portion 805 for expanding the flaring portion 802 of the branch vessel prosthesis 11. As shown in FIG. 27D, the inflated diameter D1 of the first portion 803 may be smaller than the inflated diameter D2 of the second portion 805. In another variation, shown in FIGS. 27E-F, the balloon 806 includes a first portion 803, a second portion 805, and a third portion 807, with the first portion 803 for expanding the tubular portion 804 and a second portion 805 for expanding the flaring portion 802 of the branch vessel prosthesis 11. The third portion 807 of the balloon 806 is sized and configured to align with that part of the branch vessel prosthesis 11 that aligns with the fenestration 7 of the aorta stent graft 1. As shown in 27E, the first portion 803 and the second portion 805 may have substantially the same diameter D1. The third portion 807 may have a diameter D2 smaller than the diameter D, of the first and second portions 803, 805. Alternatively, as shown in FIG. 28F, the diameter D1of the first portion 803 may be smaller than the diameter D2 of the second portion 805 and greater than the diameter D3 of the third portion 807. The balloon 806 may also have multiple layers that extend over the balloon length as shown in FIG. 27G-H. For example, the multi-layer balloon 806 may include an inner layer 810 and an outer layer 812. The inner and outer layers 810, 812 may be of different compliancy. The inner layer 810 may be less compliant than the outer layer 812. For example, the inner layer 810 may be constructed of a semi-compliant or noncompliant material, and the outer layer 812 may be constructed of a compliant material. To expand and flare the branch vessel prosthesis 11 with this embodiment, the inner layer may be inflated to expand the branch vessel prosthesis 11. Subsequently or simultaneously, the outer layer 812 may be inflated to expand or flare the flaring portion 814, which is not constrained by the branch vessel 5, of the branch vessel stent graft 814. In each of the embodiments described, the balloon catheter may be the same as the branch vessel prosthesis introducer or it may be a separate device. In addition, the balloon catheter may comprise a monorail system or rapid-exchange type system. The balloons described may be inflated in any manner known to one of skill in the art. For example, the delivery catheter may include a lumen having a port that exits into the balloon for delivering an inflation fluid to the balloon. When two balloons are present, the delivery catheter may include a first fluid delivery lumen and port for inflation of one balloon and a second fluid delivery lumen and port for inflation of the other balloon. Alternatively, a single lumen may be used that has two ports and a valve for alternating delivery of fluid to the two ports. Deployment The branch vessel prosthesis can be deployed in any method known in the art, preferably, the method described in WO 98/53761 in which the device is inserted by an introducer via a surgical cut-down into a an artery, and then advanced into the desired position over a stiff wire guide using endoluminal interventional techniques. For example, a guide wire (not shown) is first introduced into an artery of the patient and advanced until its tip is beyond the desired deployment region the aortic stent graft 1. At this stage, the introducer assembly 500 is fully assembled, and ready for introduction into the patient. Referring to the components of FIG. 23 and FIGS. 5A-C, the branch vessel prosthesis 11 is retained at one end by the cylindrical sleeve 520 and the other by a proximal attachment section 536, and compressed by the sheath 532. Because the branch vessel prosthesis 11 is mounted on the delivery system in the opposite direction (i.e., the distal end is retained in the cylindrical sleeve and the proximal end is retained in what was previously referred to as the distal attachment section 536), various of the components referred to previously with regard to the introduction system for the aorta stent graft 1 are referred to here as distal rather than proximal and proximal rather than distal. If the branch vessel prosthesis is to be placed in a branch vessel of the abdominal or thoracic aortic arteries, the introducer assembly 500 can be inserted through a femoral artery over the guide wire, and positioned by radiographic techniques, which are not discussed here. Once the introducer assembly 500 is in the desired deployment position, the sheath 532 is withdrawn to just proximal of the distal attachment section 536. This action releases the middle portion of the branch vessel prosthesis 11 so that it can expand radially. The distal end of the 32 of the branch vessel prosthesis, for example as shown in FIG. 4A, however, is still retained within the cylindrical sleeve 520 (the end cap as shown in FIG. 25B). Also, the proximal end 30 of the branch vessel prosthesis 11 is still retained within the external sheath 532. Next, the pin vise 550 is released to allow small movements of the thin walled tube 524 with respect to the thick walled tube 530. These movements allow the prosthesis 11 to be lengthened or shortened or rotated or compressed for accurate placement in the desired location within the lumen. Positional indicators, such as X-ray opaque or radio markers (not shown) may be placed along the branch vessel prosthesis 11 to assist with placement of the prosthesis. When the distal end of the branch vessel prosthesis 11 is in place in branch vessel, the distal trigger wire is withdrawn by movement of the distal wire release mechanism 540. The distal wire release mechanism 540 and the distal trigger wire can be completely removed by passing the distal wire release mechanism 540 over the pin vise 550, the screw cap 550, and the connection means 526. Next, the screw cap 550 of the pin vise 540 is then loosened. After this loosening, the thin walled tube 524 can be pushed in a distal direction to move the cylindrical sleeve 530 in a distal direction. When the 520 no longer surrounds a barbed self-expanding stent (such as 40 in FIG. A), the self-expanding stent expands. When the self-expanding stent expands, the barbs 42 grip the walls of the lumen to hold the proximal end of the prosthesis 11 in place. From this stage on, the proximal end of the prosthesis 11 typically cannot be moved. Once the tubular portion 33 has been placed in the branch vessel and the distal end of the branch vessel prosthesis 11 is anchored, the external sheath 432 is withdrawn to proximal of the proximal attachment section 536. This withdrawal releases the flaring portion 36 of the branch vessel prosthesis 11 within the aorta stent graft lumen. Upon release the flaring portion 36, if it is constructed of self expanding material, flares and secures the flaring portion within the lumen of the aorta-stent graft 11. Thereafter, either or both the flaring portion 36 and the tubular portion 33 may be expanded or further expanded by one or more balloons. Alternatively, the prosthesis may be delivered by way of one of the balloon catheters described previously herein. Throughout this specification various indications have been given as to the scope of the invention but the invention is not limited to any one of these but may reside at two or more of these combined together. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
<SOH> BACKGROUND <EOH>The functional vessels of human and animal bodies, such as blood vessels and ducts, occasionally weaken or even rupture. For example, an aortic wall can weaken, resulting in an aneurysm. Upon further exposure to hemodynamic forces, such an aneurysm can rupture. In Western European and Australian men who are between 60 and 75 years of age, aortic aneurysms greater than 29 mm in diameter are found in 6.9% of the population, and those greater than 40 mm are present in 1.8% of the population. One intervention for weakened, aneurismal, dissected or ruptured vessels is the use of an endoluminal device or prosthesis such as a stent graft to provide some or all of the functionality of the original, healthy vessel and/or preserve any remaining vascular integrity by replacing a length of the existing vessel wall that contains the site of vessel weakness or failure. Stent grafts for endoluminal deployment are generally formed from a tube of a biocompatible material in combination with one or more stents to maintain a lumen therethrough. Stent grafts effectively exclude the defect by sealing both proximally and distally to the defect, and shunting blood through its length. A device of this type can, for example, treat various arterial aneurysms, including those in the thoracic aorta or abdominal aorta. A bifurcated stent graft, one example of an endoluminal prosthesis, is known for use in treating abdominal aortic aneurysms, where the stent graft at the proximal end defines a single lumen for placement within the aorta and at the other end bifurcates into the iliac arteries. One such stent graft, disclosed in PCT application WO98/53761, is useful for repair of abdominal aortic aneurysms. That application discloses a stent graft that includes a sleeve or tube of biocompatible graft material such as woven polyester fabric or polytetrafluoroethylene (PTFE) defining a main lumen and two iliac limbs. The stent graft further includes several stents secured therealong. The stent graft is designed to span an aneurysm that extends along the aorta between the iliac and renal arteries. Unbifurcated stent grafts, in which the distal portion extends into only one iliac artery in treating an abdominal aorta, or which are used to treat the thoracic aorta are also used. In the WO98/53761 application, the fabric-covered portion of the single-lumen proximal end of the stent graft bears against the wall of the aorta above the aneurysm and distal to the renal arteries to seal off the aneurysm. Thin wire struts of a juxtarenal attachment stent traverse the renal artery ostia without occluding them. Barbs on the attachment stent help anchor the stent graft in place. One stent graft approved by the Food and Drug Administration (FDA) to treat aortic aneurysms is the ZENITH® AAA Endovascular Graft (Cook Incorporated, Bloomington, Ind.). The ZENITH® AAA Endovascular Graft is made up of three prosthetic modules: a bifurcated main body module and two leg modules. The main body is positioned in the aorta. The legs are positioned in the iliac arteries and connect to the main body. The stent graft thus extends from a section of the aorta, typically below the renal arteries and into both iliac arteries. The graft material is made of a woven polyester fabric like that used in open surgical repair. Standard surgical suturing techniques are used to sew the graft material to a frame of stainless steel stents. These self-expanding stents provide support for the graft material. An endoluminal prosthesis may be comprised of multiple prosthetic modules. A modular prosthesis allows a surgeon to accommodate a wide variation in vessel morphology while reducing the necessary inventory of differently sized prostheses. For example, aortas vary in length, diameter and angulation between the renal artery region and the region of the aortic bifurcation. Prosthetic modules that fit each of these variables can be assembled to form a prosthesis, obviating the need for a custom prosthesis or large inventories of prostheses that accommodate all possible combinations of these variables. A modular system may also accommodate deployment options by allowing the proper placement of one module before the implantation of an adjoining module. Modular prostheses are typically assembled in situ by overlapping the tubular ends of the prosthetic modules so that the end of one module sits partially inside the other module, preferably forming circumferential apposition through the overlap region. This attachment process is called “telescoping.” The connections between prosthetic modules are typically maintained by the friction forces at the overlap region and enhanced by the radial force exerted by the internal prosthetic module on the external prosthetic modules where the two overlap. The fit may be further enhanced by stents attached to the modules at the overlap region. In many cases, however, the damaged or defected portion of the vasculature may include a branch vessel. For example, in the case of the abdominal aorta, there are at least three branch vessels, including the celiac, mesenteric, and renal arteries, leading to various other body organs. Thus, when the damaged portion of the vessel includes one or more of these branch vessels, some accommodation must be made to ensure that the stent graft does not block or hinder blood flow through the branch vessel. Attempts to maintain blood flow to branch vessels have included providing one or more fenestrations or holes in the side wall of the stent graft. Other attempts have included providing a stent graft in which the branch vessel portion of the vessel is spanned by wires or the like. These devices have been used to treat diseased vessels, such as abdominal aortic aneurysms within the aorta that extend to or above the renal, celiac and/or mesenteric arteries. Generally, this treatment involves aligning the fenestrations with the branch vessels, which may extend approximately at right angles on both sides from the aorta. In many cases, the vasculature is not symmetric. In addition, even with symmetrical vasculature, physiological forces may cause a previously placed branch vessel stent graft to shift causing the position of the fenestration with respect to the branch vessel to become offset. In other instances, the diseased vasculature may extend into the branch vessel and affects the ostium of the branch vessel. In some circumstances the branch vessel stent graft deployed within the main vessel may not properly seal and secure to the branch vessel and lead to leaks (endoleaks) between the branch vessel stent graft and the main vessel, a reduced blood flow to the branch vessels, and/or obscure access to portions of the branch vessel, necessitating further interventional procedures. When treating a vessel with an endoluminal prosthesis, it may therefore be preferable to preserve the original circulation by providing a prosthetic branch that extends from the prosthesis to a side branch vessel so that the blood flow into the branch vessel is not impeded. For example, the aortic section of the ZENITH® abdominal aortic stent graft (Cook Incorporated, Bloomington, Ind.), described above, can be designed to extend above the renal arteries, and/or the celiac or mesenteric arteries, and to have prosthetic side branches that extend into the renal arteries. Branch vessel prostheses can form a connection to an aortic stent graft through fenestrations in the stent graft to complete the prosthesis. Furthermore, some aneurysms extend into the branch vessels in both the thoracic and abdominal aorta. Deploying prostheses with prosthetic branches into these vessels may help prevent expansion and/or rupture of these aneurysms. In other situations, it may not be necessary to form a lumen that extends into the branch vessel, i.e. a stent graft. Instead, it may only be necessary to maintain patency of the branch vessel by propping the walls of the branch vessel open, also known as “stenting.” In these situations, the branch vessel prosthesis can be a mere stent, also known as an “open stent” or “bare stent.” Thus, there remains a need for a device a branch vessel stent or stent graft to secure and seal the branch vessel stent graft to a branch vessel and within a fenestrated device.
<SOH> SUMMARY <EOH>This application relates to a branch vessel stent for use in connection with a fenestrated stent graft device for placement in a vessel of a body. In particular this application relates to a stent graft system for intraluminal deployment in an aorta and a branch vessel is provided that includes an aorta stent graft for deployment within the aorta and defining a lumen for the passage of blood therethrough, and having a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel. The system also includes a branch vessel prosthesis, preferably a stent graft, having a tubular portion and a flaring portion, such that, when deployed, the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel. A balloon expansion catheter expands the tubular portion and flares the flaring portion. A method of deploying a stent graft system in an aorta and a branch vessel is also provided. The method includes deploying an aorta stent graft the aorta, which defines a lumen for the passage of blood therethrough, and comprises a fenestration positioned and sized so as to allow blood to flow to a contiguous branch vessel; deploying a branch vessel prosthesis, which comprises a tubular portion and a flaring portion, so that the flaring portion is located within the lumen of the aorta stent graft and the tubular portion passes through the fenestration and into the branch vessel; and using a balloon expansion catheter adapted to expand the tubular portion and flare the flaring portion.
20041108
20150714
20060316
95400.0
A61F206
0
EASTWOOD, DAVID C
BALLOON FLAREABLE BRANCH VESSEL PROSTHESIS AND METHOD
UNDISCOUNTED
0
ACCEPTED
A61F
2,004
10,984,603
ACCEPTED
METHOD AND APPARATUS FOR LIQUID FUEL PREPARATION TO IMPROVE COMBUSTION
An apparatus and method for dissolving gas or gases in liquid fuel to improve combustion of the liquid fuel when injected into a combustion chamber is provided. A gas-charger unit is provided to dissolve the gas into liquid fuel at a first pressure. The pressure of the fuel/gas solution is raised to a second pressure before injection of the atomized fuel into a combustion chamber. In one embodiment, a high pressure gas or gasses is/are introduced into the gas charger at a crosscurrent to the liquid fuel. In another embodiment, a gas charger for dissolving gas into a liquid fuel is provided including a plurality of highly porous baffles to increase the contact surfaces between the gas and the liquid.
1. A gas charger for providing a liquid/gas fuel solution to a combustion chamber, comprising: a housing having a liquid inlet port, a gas inlet port, and a liquid/gas outlet port, a plate honeycomb packing element disposed in said housing and formed with highly developed surfaces for creating a laminar streamline liquid flow, said housing defining a liquid flow path therethrough between said liquid inlet port and said liquid/gas outlet port; a gas source for providing at least one gas at a first pressure P1 to said gas inlet port, wherein the gas is dissolved in the liquid fuel for forming a liquid/gas fuel solution; a gas supply system for supplying and maintaining the gas first pressure P1 in said housing: a high-pressure fuel pump for supplying liquid fuel at a second pressure P2 to said liquid inlet port; a high-pressure charge pump connected at said liquid/gas outlet port or inside said housing, for raising a pressure of the liquid/gas fuel solution to a third pressure P3 higher than said first pressure. 2. (canceled) 3. (canceled) 4. (canceled) 5. The gas charger according to claim 1, wherein said first pressure P1 lies preferably between 7 and 22 MPa and the second pressure P2 is elevated over the first pressure P1 by approximately 1 to 5%. 6. The gas charger according to claim 5, wherein said second pressure is preferably between 7 and 22 MPa and said third pressure is between 11 and 33 MPa. 7. The gas charger according to claim 1, wherein said third pressure is between 11 and 33 MPa. 8. The gas charger according to claim 1, wherein said plate honeycomb packing element is constructed from at least one rolled, corrugated screen formed with a plurality of holes having a nominal diameter of 0.5 mm connecting two sides of said rolled, corrugated screen. 9. The gas charger according to claim 8, wherein said plate honeycomb packing element includes a plurality of plate honeycomb packing elements including, at least one rolled packing element comprising at least one corrugated screen rolled with at least one flat screen, and at least one flat screen located in close proximity to said at least one rolled element. 10. A method for providing fuel to a combustion chamber, comprising the steps of: (a) providing a gas charger unit comprising, a housing subject to high pressure and defining a liquid flow path therethrough, the liquid flow path being defined between a liquid inlet port and a liquid outlet port, the housing additionally including a gas inlet port; and (b) feeding liquid fuel at a relatively high second pressure P2 to the liquid inlet port, (c) feeding at least one gas at a relatively high pressure P1 to the gas inlet port, where P1 is in a range 0.95 to 0.99 P2 and P2 lies in a range 7 to 22 MPa, and dissolving the gas in the liquid fuel to form a liquid/gas fuel solution, (d) pumping the liquid/gas fuel solution from the liquid outlet port to a third pressure P3 higher than the first pressure P1 prior to injection into the combustion chamber, to change the liquid/gas fuel solution to a substantially non-saturated solution. 11. (canceled) 12. (canceled) 13. (canceled) 14. The method according to claim 10, wherein the first pressure is between 7 and 22 MPa. 15. (canceled) 16. The method according to claim 14, wherein the third pressure is between 11 and 33 MPa. 17. The method according to claim 10, wherein the third pressure is between 11 and 33 MPa. 18. The method according to claim 10, which further comprises guiding the fuel over a plate honeycomb packing element constructed from at least one rolled, corrugated screen inside the housing. 19. The method according to claim 18, wherein the plate honeycomb packing element includes a plurality of plate honeycomb packing elements including, at least one rolled element comprising at least one corrugated screen rolled with at least one flat screen, and at least one flat screen located in close proximity to said at least one rolled element. 20. In an internal combustion fuel system including a fuel injection system for injection into a combustion chamber of an engine, a gas charger comprising, comprising: a reservoir including a liquid flow path therethrough, the liquid flow path being defined between a liquid inlet port and a liquid outlet port, said housing further including a gas inlet port; a plurality of plate honeycomb packing elements disposed in said liquid flow path, at least a first of said plurality comprising at least one corrugated screen rolled with at least one flat screen, and at least a second of said plurality comprising a flat screen disposed in close proximity to said first; a first high pressure pump for providing liquid fuel at a second pressure to said liquid inlet port, a high pressure gas source for providing at least one gas at a first pressure to said gas inlet port unit, wherein the first pressure and the second pressure are sufficient to substantially dissolve the gas in the liquid fuel to form a liquid/gas fuel solution, and a second high pressure pump connected at said liquid outlet port or in a lower section of said housing for raising the pressure of the liquid/gas fuel solution to a third pressure higher than said second pressure prior to injection into the combustion chamber.
CROSS REFERENCE TO RELATED APPLICATION The present application is related to and claims the benefit of U.S. Provisional Application Ser. No. 60/590,239 filed on Jul. 22, 2004 and entitled Method and Apparatus for Liquid Fuel Preparation to Improve Combustion. BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The present invention relates to liquid fuel combustion and, more particularly, to the dissolution of gasses in liquid fuels under high pressure prior to injection into a combustion chamber. Efficient burning of the fuel-air mixture is critical to the performance of all internal combustion engines. To attain the most desirable combustion characteristics in reciprocating engines, the fuel charge should be of uniformly small droplet size and properly distributed in the combustion chamber prior to ignition and burning. Conventional fuel atomizing devices (fuel injectors or carburetors) typically provide a fuel spray charge having a wide range of droplet sizes. Small droplets (less than 20 microns) improve the efficiency of fuel combustion since they are vaporized much faster. The vaporization process is one of progressively and significantly increasing the surface area of the injected fuel, thus bringing more fuel molecules into direct contact with oxygen. Current fuel injector devices do not break up the fuel into small droplets, and particularly not into droplets in the size range of 10 micrometers or less. Compared to carburetion or injection into the manifold, greatly improved distribution of the fuel charge in the combustion chamber can be achieved by direct injection of fuel into the combustion chamber of the cylinder. Direct injection has long been used in diesel (compression combustion) engines, and has recently re-emerged in gasoline (ignition combustion) engines as a means of increasing efficiency. For example, the Australian ORBITAL ENGINE COMPANY (Australia) PTY LTD of Balcutta, Western Australia, has introduced a direct injection system for mass-produced gasoline engine automobiles, and such direct injection systems are also currently used in some 2-stroke outboard marine engines. That prior art fuel preparation and injection system apparently is difficult to control because of the considerable difficulties associated with controlling air volumes (compressible fluid) and high pressure injection in the mixture. U.S. Pat. No. 4,191,153 to Strem et al. discloses a system and method of feeding gasoline fuel into a gasoline burning internal combustion engine. In Strem et al., gasoline fuel in a liquid state is first supplied to a vaporization chamber where it is vaporized, preferably without the use of externally applied heat. The gasoline in this state is then directed to the engine. However, there remain disadvantages to the above systems. There is a need to implement a direct injection system into multi-cylinder 4-stroke automobile engines. Further, there is a need for a system that provides uniformity of the injected liquid/gas mixture droplets to prevent the air injection characteristics from varying from cylinder to cylinder. SUMMARY OF THE INVENTION It is accordingly an object of the invention to provide a method and apparatus which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provides for a further improvement in fuel/gas dissolution and fuel injection into a combustion chamber. With the foregoing and other objects in view there is provided, in accordance with the invention, a gas-charger unit for dissolving the liquid fuel at a first high pressure. The pressure of the fuel/gas mixture is raised to a second higher pressure before injection of the fuel into a combustion chamber. In one particular embodiment, a high pressure gas or gasses is/are introduced into the gas charger at a crosscurrent to the liquid fuel. In another particular embodiment, a gas charger for dissolving gas into a liquid fuel is provided including a plurality of highly porous baffles to increase the contact surfaces between the gas and the liquid. In other words, the objects of the invention are achieved with a gas charger for providing a liquid/gas fuel solution to a combustion chamber, comprising: a housing having a liquid inlet port, a gas inlet port, and a liquid/gas outlet port, said housing defining a liquid flow path therethrough between said liquid inlet port and said liquid/gas outlet port; at least one porous baffle disposed in the liquid flow path; a fuel pump for providing liquid fuel at a first pressure to said liquid inlet port; a gas source for providing at least one gas at a second pressure to said gas inlet port, wherein the gas is dissolved in the liquid fuel for form a liquid/gas fuel solution; and a charge pump connected between said liquid/gas outlet port and the combustion chamber, for raising a pressure of the liquid/gas fuel solution to a third pressure higher than said first and second pressures prior to injection into the combustion chamber. In accordance with an added feature of the invention, the assembly includes a cooling system to cool the liquid/gas fuel solution. Preferably, the liquid/gas fuel solution is cooled to 20° C.±15° C. In accordance with an additional feature of the invention, the first pressure lies preferably between 7 and 22 MPa and is elevated over the second pressure by approximately 1 to 5%. Advantageously, said second pressure lies between 7 and 22 MPa and said third pressure is preferably between 11 and 33 MPa. In accordance with a further feature of the invention, the high porosity baffle element are constructed from at least one rolled, corrugated screen. In a preferred implementation, the high porosity baffle element includes a plurality of high porosity baffle elements including, at least one rolled element comprising at least one corrugated screen rolled with at least one flat screen, and at least one flat screen located in close proximity to said at least one rolled element. With the above and other objects in view there is also provided, in accordance with the invention, a method for providing fuel to a combustion chamber, comprising the steps of: providing a gas charger unit comprising, a housing defining a liquid flow path therethrough, the liquid flow path being defined between a liquid inlet port and a liquid outlet port, the housing additionally including a gas inlet port; and at least one high porosity baffle disposed in the liquid flow path, feeding liquid fuel at a first pressure to the liquid inlet port, feeding at least one gas at a second pressure to the gas inlet port, and dissolving the gas in the liquid fuel to form a liquid/gas fuel solution, pumping the liquid/gas fuel solution from the liquid outlet port to a third pressure level higher than the first and second pressures prior to injection into the combustion chamber. The system as described in the present patent application has a number of advantages over present fuel injection systems, including homogeneity of the gas distribution in the liquid fuel, and equal gas/fuel characteristics for injection in each cylinder of a combustion engine. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a fuel preparation assembly and method, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of the specific embodiment when read in connection with the accompanying drawing. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing one preferred embodiment of the present invention as deployed in connection with an ignition combustion reciprocating engine. FIG. 2 is a diagram of a gas charger unit in accordance with one preferred embodiment of the present invention. FIG. 3 is an exploded perspective view of a portion of a gas charger unit in accordance with one particular embodiment of the present invention with a specific detail shown. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to the use of a “gas-charger”, “gas-charger unit” or “gas charging system” that is employed to dissolve a gas or gases into liquid fuel to improve fuel efficiency. The solubility of a gas in a liquid is governed by certain principles. According to Henry's law, an increase in the partial pressure of a gas above a gaseous solution results in a linear increase in the concentration of the gas in the solution, at a given temperature. Specifically, the product concentration (C) of gas in a solution and the partial pressure (P) of a gas above a solution are related by a constant (k) according to the following equation: C=k P Additionally, in a liquid/gas solution, the solubility of gasses in a liquid generally decreases with increasing temperature. This is because gaseous solutes have an exothermic heat of solution. Therefore, since increasing the temperature will always favor the endothermic process, the dissolution (solution breakdown) process will be favored and solubility will decrease. The relative polarity of the solvent and solute materials is also an important factor in gas liquid solutions. Relatively non-polar gasses such as light hydrocarbons will dissolve better in non-polar hydrocarbon liquids than will polar gasses such as ammonia for example. In one particular embodiment of the present invention, gas is dissolved into the fuel at a given temperature and pressure and then the pressure is greatly increased by a secondary pump prior to injection of the fuel. While the design of engine systems is such that the fuel increases somewhat in temperature as it approaches the injection port, the increase in pressure more than offsets the temperature effect, insuring that the gas stays in solution until the pressure is released upon injection, wherein, the pressure decrease upon injection is substantial. The present embodiment uses pressures at injection from 7 to 22 MPa (MegaPascals)+150%, while combustion chamber pressures are typically from 1 to 2.5 MPa or less. Referring now to the figures of the drawing in detail and first, particularly, to FIG. 1 thereof, there is provided an efficient liquid fuel combustion system for use with an internal combustion engine 116 in accordance with one embodiment of the present invention. As shown, liquid fuel from a fuel tank 102 is conveyed, under elevated pressure Pfuel, to the fuel gas charger unit 105. The fuel pressure Pfuel is generated by means of a fuel pump 101 and the fuel is delivered by means of a fuel line 117. A level sensor 103 is used to control the amount of liquid fuel provided by the fuel pump 101 to the gas charger unit 105. The fuel pressures at this first pressure stage of the system range from about 7 to 22 (+3%) MPa, for example. In heavier and more highly charged engines the fuel pressure Pfuel will lie in the upper part of the range. In typical sedan motor vehicles, the preferred pressure is approximately Pfuel=10 MPa. Gas or gases, such as air, are supplied from one or more high-pressure sources. In the embodiment depicted in FIG. 1, two alternate sources are shown. One source is high-pressure air supplied by a mechanical compressor 108, which is driven by the engine 116. The second source is a high-pressure tank 107. The pressure of the gas, or gases, supplied into the charger is controlled by the pressure regulator 106 and the pressure relief valve 110. The gas or gasses are supplied at a pressure Pgas of between approximately 7 MPa and 22 MPa. A gas pressure relief valve 110 helps control gas pressure to the charger unit 105. The injection pressures of the gas and the fuel into the gas charger 105 are approximately equal, with the fuel pressure being slightly higher than the gas pressure. In order to assure proper injection and solution, the fuel pressure Pfuel is slightly higher than the gas pressure Pgas. In a preferred embodiment of the invention, the relationship is Pfuel=Pgas+3%. In the embodiment depicted in FIG. 1 a two-way valve 109 can be used to select between compressed air from the compressor 108 or the gas or gasses in a storage tank 107. However, this is not meant to be limiting. It is understood that the two-way valve 109 can be omitted and only one source of gas (i.e. either compressor 108 or tank 107) could be provided. The dissolved gas or gases provided to the system may include air, oxygen, light hydrocarbons such as butane or propane, other hydrocarbon gasses, or hydrogen. A second stage fuel pump 111 in fluid communication with the fuel outlet of the gas charger 105 boosts the pressure of the fuel/gas solution from the range of between 7 and 22 MPa by approximately 50% to between 11 and 33 MPa. That is, the second stage pressure pump 111 raises the outlet pressure Pout of the gas charger which is made up of the partial pressures Pfuel, and Pgas to a rail pressure according to the relationship Prail=Pout+50%. It should be understood that the percentage indicators (50% and 3%) provided herein are approximate only and that these pressure boosts may be varied considerably. The pressurized fuel/gas solution, in liquid phase but “charged” with gas and at the high rail pressure Prail then flows via fuel line 118 to an injection rail 113, and then to one or more injectors 115. A pressure regulator 112, that is used to maintain proper fuel pressure in the rail 113, and also serves to return unused fuel via line 114 to the fuel tank 102. In one particular embodiment, check valves are used as the pressure regulators 106 and 112, to prevent back flow into the gas supply line 119 and fuel line 114, respectively. It should be understood that the common rail system described herein is but one embodiment of the invention, which is equally applicable for direct injection, partial rail, prechamber injection, and the like. The use of a gas charger in accordance with the present invention with a direct injection system serves two primary and advantageous functions. First, in a direct injection system there is an effective dispersion of liquid fuel into the cylinder. Second, the present system provides for an optimal distribution of the injected portion of gasified fuel into the cylinder. In constructing the above-described systems, standard parts may be used for components such as for the first-stage pump 101, the storage tank 102, level controller 103, overpressure protection 106, 110 and 112 and the second-stage high pressure pump 111. Additionally, the gas-saturated liquid fuel generated by the above described gas charger systems is intended for injection into a combustion chamber by existing or very slightly modified fuel injection systems. Referring back to FIG. 1, the charger unit 105 and/or its associated fuel lines 117, 118 may be cooled or thermally controlled by a coolant jacket 104 (shown in dotted line). In such a system, cooling the high-pressure fuel pump 111 and associated fluid connecting lines 118 to a temperature of 20±15° C. can help prevent the dissolved gas from exiting the fuel/gas solution before entering the fuel injector(s) 115. The cooling system, in a preferred embodiment is an active system that is driven by the air conditioning system that is present in the vehicle anyway. In the preferred embodiment, cooled liquid is pumped inside a jacket 104 surrounding the fuel lines 117, 118, charger unit 105, second stage fuel pump 111, injection rail 113 and fuel lines 120. Coolant jacket 104 of charger unit 105, second stage fuel pump 111 and injection rail 113 is a liquid grid jacket surrounding these units. The fuel lines 117, 118 and 120 therefore, a double-jacket pipes with the coaxial core pipe carrying the fuel and the coaxial outer jacket pipe carrying the coolant. In an alternative embodiment, it may be possible to cool at least a portion of the fuel supply system with heat exchange or air cooling. Because the amount of gas or gases diluted in liquid fuel is the function of gas pressure, time of contact between liquid and gas and the contact surface characteristics, the gas charger of the present invention can be constructed to address each of these factors. The gas charger described herein comprises a reservoir containing liquid fuel into which a gas or mixture of gasses has been dissolved. In one embodiment, specially constructed porous materials deployed as baffle elements in the reservoir generate a streamline or laminar flow of the liquid fuel against a counter flow of the solute gas under the increased pressure Pgas to dissolve the gas(es) into the liquid fuel. FIG. 2 depicts one such embodiment of a gas charger 200, that may be used as the gas charger unit 105 of FIG. 1. The gas charger 200 is used to prepare liquid fuel for injection and dispersion into a combustion chamber, such as is used in the engine 116 of FIG. 1. In the gas charger 200, liquid fuel is saturated with gas(es) under pressure to store energy. This energy is released during fuel injection in the combustion chamber for effective dispersion of the atomized fuel. As a result, the consistency of the prepared fuel/gas mixture is identical for injection in each cylinder for the multi-cylinder engine. Inside the gas-charger 200, liquid fuel flows in streamline mode over the porous baffle elements 201 against a countercurrent of the solute gas(es) introduced through gas inlet 208. As described above, it is preferred that the gas(es) be introduced into the gas charger at a pressure Pgas of between 7-22 MPa. The gas flow bed of the gas charger 200 is designed to provide for maximum surface contact. Liquid fuel flows downward from the upper fuel inlet 210 towards the lower fuel outlet 211 over baffle elements 201, 202 and 203 and through the flat screens 205 and 206. To prevent liquid fuel from exiting the gas charger 200 through the gas outlet 209, baffle plates 207 are provided. The gas outlet 209 is connected into the low-pressure gas system, i.e., into the recirculating system communicating with the gaseous volume in the gas tank 102, via a pressure relief valve. The baffle plates 207 or baffles 207 prevent liquid fuel from escaping to and flowing through the pressure relief valve. Gas(es) is/are pumped into the gas-charger 200 in the lower zone of the gas charger 200 at a countercurrent to the liquid flow. As a result, gas-saturated liquid fuel flows from the upper zone through the baffle elements 201, 202, 203 and flat screens 205 and 206 and to the fuel outlet 211. The quantity of liquid fuel in the gas charger 200 (typically approx. 4 mm3/s) is controlled by the fuel supply device (101 of FIG. 1) communicating with the level sensor 103. The screen and baffle element system of one particular embodiment of the present invention will now be described in connection with FIG. 3. The fluid path 300 of a gas charger unit is shown including a plurality of multi-channeled rolled filler elements 301 and flat screens 304. The flat screens 304 essentially act as flow redirectors, i.e., stratified fluid flow from a flow channel in the upstream honeycomb is redistributed and broken up into partial flows into several flow channels in the downstream honeycomb. In one particular preferred embodiment, the multi-channeled rolled filler elements 301 of the present embodiment are used as the baffle elements 201, 202 and 203 of FIG. 2. The multi-channeled rolled filler elements 301 of the present embodiment are constructed from rolled or corrugated screens having honeycomb type openings of 0.5-3 mm2 and preferably approx. 1-1.5 mm2. Openings of this size provide effective mixing of the liquid fuel flowing downward with the gas flowing upward. If desired, the filler elements 301 can have other geometrical configurations, including, cylindrical, spherical, toroidal, or prismatic. Additionally, the working surfaces of the filler elements may be coated with a low-friction material, such as the tetrafluoro-polymer TEFLON® by DUPONT. Further, the high porosity baffle elements may be constructed from materials with arbitrary surfaces, such as, wire mesh, Teflon filings, ceramic pellets or fibrous materials to provide large surface interface between gas and liquid fuel flows. The baffle elements are used to generate a streamline flow of fuel, and maximize the surface area of the fuel/gas interface. It is also possible to have stamped deflectors on the corrugations of the screen 303 and/or the flat sheet 302, so as to facilitate crossflow between adjacent flow channels. As shown in the inset to FIG. 3, screen portion 305 may comprise two flat screens 302 and two corrugated screens 303, the two corrugated screens 303 being superimposed over the two flat screens 302, which are then rolled together to form the element 301. The two screen layers are employed to achieve slit like channels for liquid passage. The area of one cross section ripple (ridge and groove) in corrugated screen 303 defining the flow channels is preferably between 0.5 and 1.5 mm2. It is preferred that all screens, when assembled, have openings between 1 to 3 mm2 and preferably approximately 1.5 mm2. The streamline liquid fuel flow breaks up on these openings. Streamline-interrupted liquid flow increases contact surface between gas and liquid. A charger design having such rolled multi-channels baffle elements will provide effective contact between gas and liquid. Referring now once more to FIGS. 1 and 2, in operation, liquid fuel is pumped into the charger unit 105, 200 from the fuel tank 102, at a pressure Pfuel greater than atmospheric pressure (up to 22 MPa). External gas(es) is/are introduced to the gas charger unit 105, also at a pressure Pgas greater than atmospheric pressure, preferably from about 7 to 22 MPa. As provided at the gas inlet 208, the high pressure gas(es) is/are introduced at a crosscurrent to the liquid flow. At these pressures, the liquid fuel is saturated, or nearly saturated, with the external gas. Such gas or gasses can include compressed air, oxygen, light hydrocarbons such as propane or butane or other hydrocarbon gasses, or hydrogen. According to the present invention gas, or gasses, are dissolved into the liquid fuel prior to injection into the combustion chamber. Gasses thus introduced and injected under high pressure into the combustion chamber expand rapidly as the external pressure decreases in the combustion chamber. The stored energy of the compressed gas helps to rapidly and uniformly atomize the liquid fuel. The gas-saturated liquid fuel is then pumped again using the second stage pump 111 to an increased pressure e.g. 1.1 to 500 times greater than pressure in the combustion chamber during fuel/air mixture final injection. The saturated fuel gas solution is then pumped into the injector system, preferably a common rail injector system, at the pressure Prail of between 11 and 33 MPa (Pout+50%). The mixture is subsequently injected directly into the cylinder combustion chamber where it is rapidly dispersed with the help of the expanding gas formally dissolved in the fuel gas mixture. Upon injection, the dissolved gas rapidly expands as the pressure is reduced. Due to the rapid decrease in pressure between the injected gas/fuel solution and that of the combustion chamber, gas exiting from the gas/fuel solution during injection will create an aerosol. This is analogous to the “fizz” effect observed when the pressure is suddenly released on the dissolved carbon dioxide in a vigorously shaken soft drink container by opening the lid or it may be compared to the energy release when a champagne bottle is opened. The energy of this expansion helps to rapidly and uniformly break up the injected fuel stream into small droplets (in the 10 micron range) of relatively uniform size. The expansion of the dissolved gasses also helps generate a uniform fuel charge throughout the volume of the combustion chamber. Accelerated expansion of the fuel charge and its atomization into uniformly small droplets greatly increase the efficiency of the combustion process in the cylinder. This results in increased power, smoother delivery of power and reduced hydrocarbon emissions, especially from diesel engines. The system as described in the present patent application has a number of advantages over present fuel injection systems. Among these is the homogeneity of the gas distribution in the liquid fuel, which thus providing equal identical gas/fuel characteristics for injection in each cylinder of combustion engine. By achieving much finer dispersion of the liquid fuel, the present invention provides more complete combustion, thus increasing engine efficiency and decreasing exhaust pollution. The gas-charger stores energy from gases or gas, for example, air, saturated in liquid fuel for further release into combustion chamber and also converts liquid fuel into uniform fuel/gas solution. In addition to the traditional means for primary fuel atomization, break-up of the liquid fuel core into liquid fuel ligaments and secondary atomization or break-up of the liquid droplets into smaller droplets in the combustion chamber, as described herein, will greatly improve dispersion process. While various embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention. Parts List 101 fuel pump 102 fuel tank 103 level sensor 104 coolant jacket 105 gas charger unit 106 pressure regulator 107 high-pressure tank 108 mechanical compressor 109 two-way valve 110 pressure relief valve 111 second stage fuel pump 112 pressure relief valve 113 injection rail 114 excess fuel return line 115 injector 116 internal combustion engine 117 fuel supply line 118 fuel supply line 119 gas supply line 120 fuel supply lines 200 gas charger 201 baffle element 202 baffle element 203 baffle element 205 screen 206 screen 207 deflecting plates 208 gas inlet 209 gas outlet 210 fuel inlet 211 fuel outlet 300 gas charger unit 301 multi-channeled rolled filler element 302 flat screen 303 corrugated screens 304 flat screens 305 screen portion
<SOH> BACKGROUND OF THE INVENTION <EOH>
<SOH> SUMMARY OF THE INVENTION <EOH>It is accordingly an object of the invention to provide a method and apparatus which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provides for a further improvement in fuel/gas dissolution and fuel injection into a combustion chamber. With the foregoing and other objects in view there is provided, in accordance with the invention, a gas-charger unit for dissolving the liquid fuel at a first high pressure. The pressure of the fuel/gas mixture is raised to a second higher pressure before injection of the fuel into a combustion chamber. In one particular embodiment, a high pressure gas or gasses is/are introduced into the gas charger at a crosscurrent to the liquid fuel. In another particular embodiment, a gas charger for dissolving gas into a liquid fuel is provided including a plurality of highly porous baffles to increase the contact surfaces between the gas and the liquid. In other words, the objects of the invention are achieved with a gas charger for providing a liquid/gas fuel solution to a combustion chamber, comprising: a housing having a liquid inlet port, a gas inlet port, and a liquid/gas outlet port, said housing defining a liquid flow path therethrough between said liquid inlet port and said liquid/gas outlet port; at least one porous baffle disposed in the liquid flow path; a fuel pump for providing liquid fuel at a first pressure to said liquid inlet port; a gas source for providing at least one gas at a second pressure to said gas inlet port, wherein the gas is dissolved in the liquid fuel for form a liquid/gas fuel solution; and a charge pump connected between said liquid/gas outlet port and the combustion chamber, for raising a pressure of the liquid/gas fuel solution to a third pressure higher than said first and second pressures prior to injection into the combustion chamber. In accordance with an added feature of the invention, the assembly includes a cooling system to cool the liquid/gas fuel solution. Preferably, the liquid/gas fuel solution is cooled to 20° C.±15° C. In accordance with an additional feature of the invention, the first pressure lies preferably between 7 and 22 MPa and is elevated over the second pressure by approximately 1 to 5%. Advantageously, said second pressure lies between 7 and 22 MPa and said third pressure is preferably between 11 and 33 MPa. In accordance with a further feature of the invention, the high porosity baffle element are constructed from at least one rolled, corrugated screen. In a preferred implementation, the high porosity baffle element includes a plurality of high porosity baffle elements including, at least one rolled element comprising at least one corrugated screen rolled with at least one flat screen, and at least one flat screen located in close proximity to said at least one rolled element. With the above and other objects in view there is also provided, in accordance with the invention, a method for providing fuel to a combustion chamber, comprising the steps of: providing a gas charger unit comprising, a housing defining a liquid flow path therethrough, the liquid flow path being defined between a liquid inlet port and a liquid outlet port, the housing additionally including a gas inlet port; and at least one high porosity baffle disposed in the liquid flow path, feeding liquid fuel at a first pressure to the liquid inlet port, feeding at least one gas at a second pressure to the gas inlet port, and dissolving the gas in the liquid fuel to form a liquid/gas fuel solution, pumping the liquid/gas fuel solution from the liquid outlet port to a third pressure level higher than the first and second pressures prior to injection into the combustion chamber. The system as described in the present patent application has a number of advantages over present fuel injection systems, including homogeneity of the gas distribution in the liquid fuel, and equal gas/fuel characteristics for injection in each cylinder of a combustion engine. Other features which are considered as characteristic for the invention are set forth in the appended claims. Although the invention is illustrated and described herein as embodied in a fuel preparation assembly and method, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. The construction of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of the specific embodiment when read in connection with the accompanying drawing.
20041109
20060314
20060126
63491.0
F02B4300
1
HUYNH, HAI H
METHOD AND APPARATUS FOR LIQUID FUEL PREPARATION TO IMPROVE COMBUSTION
SMALL
0
ACCEPTED
F02B
2,004
10,984,967
ACCEPTED
Detecting irises and pupils in images of humans
In an eye detection method, a plurality of candidate eyes are located within a digital image. Pixels of interest having a predetermined characteristic and a predetermined association to respective eyes are found. Pixels of interest associated with each eye are grouped. Parametric boundaries are fit on each of the groups to define a plurality of detected eye features. The boundaries have a predefined uniform shape and a size matched to a respective group. Each of the detected eye features is scored as to a geometric relationship between the respective boundary and pixels of interest associated with the respective eye to provide eye feature scores.
1. An eye detection method for use with a digital image having a plurality of pixels, said method comprising the steps of: locating a plurality of candidate eyes within the image; finding pixels of said digital image having a predetermined characteristic and a predetermined association to respective said eyes, to provide pixels of interest; grouping said pixels of interest associated with each of said eyes into a plurality of different groups; fitting parametric boundaries on each of said groups to define a plurality of detected eye features, said boundaries having a predefined uniform shape and a size matched to a respective said group; scoring each of said detected eye features as to a geometric relationship between the respective one of said boundaries and said pixels of interest associated with the respective said eye to provide respective eye feature scores. 2. The method of claim 1 wherein said groups are of uniform size. 3. The method of claim 1 wherein said groups each have a number of pixels minimally sufficient to define said parametric boundaries. 4. The method of claim 3 wherein each of said boundaries is defined by a polynomial. 5. The method of claim 3 wherein said boundaries are circles. 6. The method of claim 5 wherein each of said groups consists of three pixels. 7. The method of claim 1 wherein each of said boundaries is defined by a polynomial. 8. The method of claim 1 wherein said boundaries are circles. 9. The method of claim 1 wherein said finding further comprises identifying a local neighborhood relative to each of said candidate eyes. 10. The method of claim 9 wherein said locating further comprises detecting a plurality of pairs of candidate eyes, and the size of said local neighborhoods is a function of the separation of members of respective said pairs of candidate eyes. 11. The method of claim 10 wherein said candidate eyes each have a redeye defect and said locating further comprises finding respective said redeye defects. 12. The method of claim 9 wherein said finding further comprises producing a map of values of a predetermined property for each of said local neighborhoods; and identifying positions on each said map having said values of said property in a predefined range. 13. The method of claim 12 wherein said map includes at least one of: edge values, color values, and color adjacency values. 14. The method of claim 9 wherein said finding further comprises producing an edge map of each of said local neighborhoods; and identifying positions on each said edge map having an edge magnitude greater than a predefined threshold to define said pixels of interest. 15. The method of claim 9 wherein said scoring of each of said detected eye features further comprises ascertaining separations of said pixels of interest from the respective said boundary. 16. The method of claim 15 wherein said scoring of each of said detected eye features further comprises counting a number of said pixels of interest within a predetermined distance of the respective said boundary. 17. The method of claim 16 wherein said distance is 0.7 pixels. 18. An eye detection method for use with a digital image having a plurality of pixels, said method comprising the steps of: locating one or more candidate eyes within the image; identifying one or more local neighborhoods, each said local neighborhood being inclusive of and larger than a respective one of said candidate eyes; determining a plurality of different groups of pixels of interest within each of said local neighborhoods; fitting predefined parametric boundaries on each of said groups to define a plurality of detected eye features; scoring each of said detected eye features as to a geometric relationship between pixels of interest in the local neighborhood and the respective said boundary to provide respective eye feature scores. 19. The method of claim 18 further comprising, in each said local neighborhood, selecting one of said detected eye features having a highest ranked one of said eye feature scores to provide selected eye features. 20. The method of claim 19 wherein said locating further comprises detecting redeye defects and said method further comprises modifying said redeye defects based upon said selected eye features. 21. The method of claim 20 wherein said modifying further comprises revising respective said redeye defects in accordance with respective said selected eye features. 22. The method of claim 18 wherein said scoring of each of said detected eye features further comprises ascertaining the number of said pixels of interest that are within a small distance of the respective said boundary. 23. The method of claim 18 wherein each of said boundaries is defined by a polynomial. 24. The method of claim 23 wherein said groups of pixels of interest each have a number of pixels minimally needed to define the respective said polynomial. 25. The method of claim 18 wherein said boundaries are circles. 26. The method of claim 18 wherein said groups of pixels of interest each have a number of pixels minimally needed to define the respective said parametric boundary. 27. The method of claim 26 wherein said parametric boundaries are circles and each of said groups consists of three pixels. 28. The method of claim 18 wherein said locating further comprises detecting one or more redeye defect pairs. 29. The method of claim 28 wherein the size of said local neighborhoods is a function of the separation of members of respective redeye defect pairs. 30. The method of claim 28 wherein each said local neighborhood has an upper left corner having pixel coordinates, which are the minimum of the x and y coordinates, respectively, of points B1, B2, B3, and B4, and has a lower right corner having pixel coordinates, which are the maximum of the x and y coordinates, respectively, of points B1, B2, B3, and B4; wherein point B1=D0+b0D point B2=D0+b1D point B3=D0+b2Dperp point B4=D0−b2Dperp where: D0 is the (x,y) position of a first defect of a respective said defect pair, D1 is the (x,y) position of the second defect of the respective said defect pair, D is a vector from D0 to D1, such that D=D1−D0, Dperp is a vector extending through D0 perpendicular to D and having the same length as D, and b0, b1, and b2 are coefficients. 31. The method of claim 30 wherein b0=0.35, b1=−0.51, and b2=0.2. 32. The method of claim 30 further comprising determining an age class associated with each of said redeye defect pairs and adjusting one or more of b0, b1, and b2 based upon the associated age class. 33. The method of claim 30 further comprising determining a degree of out of plane rotation associated with each of said redeye defect pairs and adjusting one or more of b0, b1, and b2 based upon the associated degree of out of plane rotation. 34. The method of claim 30 wherein said boundaries are circles, and said fitting further comprises excluding from consideration ones of said groups fit to circles having a radius beyond a range of maximum and minimum radii given by: rmax=Rx∥D∥+B rmin=Rn∥D∥+B where rmax is the maximum radius, rmin is the minimum radius, ∥D∥ is the length of vector D, B is imaging system blur, and Rn and Rx are multipliers. 35. The method of claim 34 wherein B is 2 pixels, Rn is 0.06, and Rx is 0.14. 36. The method of claim 34 further comprising further comprising determining an age class of adult or child associated with each of said redeye defect pairs and wherein Rn=0.06 and Rx=0.12, when the respective age class is adult, and Rn=0.09 and Rx=0.14, when the respective age class is child. 37. The method of claim 18 wherein said determining further comprises producing an edge map of each of said local neighborhoods. 38. The method of claim 37 wherein said determining further comprises identifying positions on each said edge map having an edge magnitude greater than a predefined threshold to define said pixels of interest. 39. The method of claim 38 wherein said threshold is predefined as a dynamically selected value such that a predetermined percentage of the pixels of the local neighborhood are pixels of interest. 40. The method of claim 39 wherein said predetermined percentage is at least 2 percent of the pixels of the local neighborhood. 41. The method of claim 38 wherein said boundaries are circles. 42. The method of claim 41 wherein said groups each include two pixels and said fitting further comprises ascertaining from said edge map, local edge orientations at said two pixels. 43. The method of claim 42 wherein said scoring of each of said detected eye features further comprises ascertaining the number of said pixels of interest that are within a predetermined distance of the respective said boundary. 44. The method of claim 43 wherein said scoring further comprises excluding from consideration detected eye features having local edge orientations that are beyond π/24 radians from tangency at one or both of said pixels of said group. 45. The method of claim 41 wherein said groups each include three pixels. 46. The method of claim 41 wherein said determining and fitting steps further comprise applying one or more stages of Hough transform to said pixels of interest within each of said local neighborhoods. 47. The method of claim 18 wherein said fitting further comprises excluding from consideration pixels of said groups at more than a predetermined distance from respective said boundaries. 48. The method of claim 47 wherein said distance is 0.7 pixels. 49. The method of claim 47 wherein said scoring further comprises, following said excluding, classifying non-excluded pixels of said groups into lateral pixels and longitudinal pixels and weighting said lateral pixels and said longitudinal pixels differently. 50. The method of claim 18 wherein: said locating further comprises detecting a plurality of pairs of candidate eyes; the size of said local neighborhoods is a function of the separation of members of respective said pairs of candidate eyes; said boundaries are circles; and said scoring of each of said detected eye features further comprises counting a number of said pixels of interest within a predetermined distance of the respective said boundary, and assigned a weight to each of said pixels of interest within said predetermined distance of the respective said boundary, each said weight being based upon an angle formed by a line joining the respective pixel of interest and the center of the respective boundary and a line joining the members of the respective pair of candidate eyes. 51. An eye detection method for use with a digital image having a plurality of pixels, said method comprising the steps of: locating one or more redeye defect pairs in the digital image; identifying a local neighborhood relative to each member of each of said redeye defect pairs; ascertaining pixels of interest within each said local neighborhood, said pixels of interest each having a predetermined characteristic; determining a circle best fitting said pixels of interest in each said local neighborhood. 52. The method of claim 51 further comprising using each said circle to correct the respective said redeye defect pairs. 53. The method of claim 52 wherein each said circle defines a detected iris and said using further comprises removing redeye only within respective said circles. 54. The method of claim 52 wherein each said circle defines a detected pupil said using further comprises removing redeye only within respective said circles. 55. The method of claim 51 wherein said predetermined characteristic is an edge magnitude and edge orientation. 56. The method of claim 51 wherein said determining further comprises producing an edge map of each of said local neighborhoods; and identifying positions on each said edge map having an edge magnitude greater than a predefined threshold to define said pixels of interest. 57. The method of claim 51 wherein the size of said local neighborhoods is a function of the separation of members of respective said redeye defect pairs. 58. The method of claim 51 wherein said determining further comprises fitting a plurality of circles on different groups of said pixels of interest within each of said local neighborhoods and scoring said circles based upon relative positions of pixels of interest within respective said local neighborhoods. 59. A method of detecting a human iris in a digital image having a plurality of pixels and one or more redeye defects, said method comprising: locating one or more redeye defect pairs in the digital image; identifying a local neighborhood relative to each member of each of said redeye defect pairs, said local neighborhoods each having a size that is a function of the separation of members of the respective said redeye defect pair; producing an edge map of each of said local neighborhoods; identifying positions on each said edge map having an edge magnitude greater than a predefined threshold to define pixels of interest; grouping said pixels of interest associated with each of said redeye defects into a plurality of different groups, each group having two pixels; fitting circles on each of said groups, wherein said edge directions are tangent to the respective said circle at each of said pixels of each said group, to define a plurality of detected eye features; counting a number of said pixels of interest within a predetermined distance of each of said circles; and assigning a weight to each of said pixels of interest within said predetermined distance of respective said circles. 60. A method of correcting redeye defects in an image having pixels of a human subject, said method comprising: locating a pair of redeye defects representing a right eye and a left eye, said defects each having one or more pixels; identifying a local neighborhood associated with each of said eyes; searching in each said local neighborhood to detect a candidate eye feature having a circular shape and provide a pair of detected eye features; using said detected eye features and associated said redeye defects to correct the image. 61. The method of claim 60 wherein each said circle defines a detected iris and said using further comprises removing redeye only within respective said circles. 62. The method of claim 60 wherein each said circle defines a detected pupil said using further comprises removing redeye only within respective said circles. 63. A computer program product for use with a digital image having a plurality of pixels, the computer program product comprising computer readable storage medium having a computer program stored thereon for performing the steps of: locating a plurality of candidate eyes within the image; finding pixels of said digital image having a predetermined characteristic and a predetermined association to respective said eyes, to provide pixels of interest; grouping said pixels of interest associated with each of said eyes into a plurality of different groups; fitting parametric boundaries on each of said groups to define a plurality of detected eye features, said boundaries having a predefined uniform shape and a size matched to a respective said group; scoring each of said detected eye features as to a geometric relationship between the respective one of said boundaries and said pixels of interest associated with the respective said eye to provide respective eye feature scores. 64. An eye detection apparatus for use with a digital image having a plurality of pixels, comprising: means for locating a plurality of candidate eyes within the image; means for finding pixels of said digital image having a predetermined characteristic and a predetermined association to respective said eyes, to provide pixels of interest; means for grouping said pixels of interest associated with each of said eyes into a plurality of different groups; means for fitting parametric boundaries on each of said groups to define a plurality of detected eye features, said boundaries having a predefined uniform shape and a size matched to a respective said group; means for scoring each of said detected eye features as to a geometric relationship between the respective one of said boundaries and said pixels of interest associated with the respective said eye to provide respective eye feature scores.
CROSS REFERENCE TO RELATED APPLICATIONS Reference is made to commonly assigned, co-pending U.S. patent application Ser. No. 10/792,079, [Attorney Docket No. DOCKET 87517RLW], filed Mar. 3, 2004, entitled: CORRECTION OF REDEYE DEFECTS IN IMAGES OF HUMANS”, in the name(s) of Andrew C. Gallagher and Jay S. Schildkraut. FIELD OF THE INVENTION The invention relates to image processing and more particularly relates to detection of human irises and pupils, especially for correction of redeye defects in images of humans having redeye. BACKGROUND OF THE INVENTION Numerous digital image processing procedures, such as identification of persons in digital photographs and redeye correction procedures, find human eyes in digital images. In many of these procedures, the located position of human eyes is approximate. This is suitable for some purposes, but deleterious for others. Redeye correction can be improved by accurate determination of eye locations. The term “redeye” refers to red light from flash illumination that is reflected off the eye retina of a human subject and back out through the pupil to the camera. Redeye is commonly a problem in cameras that have a flash unit located close to the taking lens. In a digital image, a “redeye defect” is a cluster of one or more pixels that exhibit the red coloration characteristic of redeye. A “redeye defect pair” is a pair of clusters within a digital image that can be classified, based upon such characteristics as relative sizes and locations, as representing light from a right eye and a left eye of the same person. Many algorithms have been proposed to correct redeye, with the goal of generating an improved image, in which the pupils appear natural. In those algorithms, image pixels that need to undergo color modification are determined along an appropriate color or colors for the modified pixels. In some redeye correction procedures, redeye is detected manually. An operator moves a cursor to manually indicate to a computer program the redeye portion of a digital image. This approach is effective, but labor-intensive and slow. Automated detection of redeye pixels can be faster, but it is often the case that the boundary of a redeye defect is not well defined. This is also a problem in a semi-automated approach, in which a user indicates an eye location by setting a single point. When determining redeye defect pixels, it is easy for an algorithm to mistakenly miss pixels that should be considered redeye and/or include pixels that are not really redeye. When coupled with defect correction, these misclassifications can produce objectionable artifacts. An under-correction occurs when some redeye pixels are correctly identified and color corrected, but others are not. As a result, a portion of the human subject's pupil can still appear objectionably red. An over-correction occurs when non-redeye pixels are mistakenly considered redeye, and the color modification is applied. As a result, a non-pupil portion of the human face, such as the eyelid, can be modified by the color correction normally applied to redeye pixels, resulting in a very objectionable artifact. In correcting redeye pixels, modified pixels are often blended with neighboring pixels of the original image to reduce unnatural harsh edges. For example, in U.S. Published Patent Application No. 2003/0007687A1 a blending filter is used. If such a blending filter is of uniform size for all human images, then some (typically relatively small) human faces having redeye defects may appear over smoothed, with objectionable blurriness. Other, relatively large human faces may retain harsh edges. A solution to this problem, disclosed in U.S. Published Patent Application No. 2003/0007687A1, is operator control of the level of blending. This may be effective, but it is another labor-intensive and slow procedure. In Yuille et al., “Feature Extraction from Faces Using Deformable Templates,” Int. Journal of Comp. Vis., Vol. 8, Iss. 2, 1992, pp. 99-111, the authors describe a method of using energy minimization with template matching for locating the eye and iris/sclera boundary. In Kawaguchi et al, “Detection of the Eyes from Human Faces by Hough Transform and Separability Filter”, ICIP 2000 Proceedings, pp. 49-52, the authors describe a method of detecting the iris sclera boundary in images containing a single close-up of a human face. U.S. Pat. No. 6,252,976 and U.S. Pat. No. 6,292,574 discloses methods for detecting red eye defects, in which skin colored regions of a digital image are searched for pixels with color characteristics of red eye defects to determine eye locations. U.S. Pat. No. 6,134,339 discloses a method, in which pixel coordinates of red eye defects are analyzed for spacing and spatial structure to determine plausible eye locations. Template matching is used. The above approaches tend to have limited applicability or place large demands on processing resources. Algorithms for finding shapes are known. The Hough transform method is described in U.S. Pat. No. 3,069,654. Kimme et al., “Finding Circles by an Array of Accumulators,” Communications of the ACM, Vol. 18, No. 2, February 1975, pp. 120-122, describes an efficient method for determining circles from an array of edge magnitudes and orientations. A RANSAC fitting routine is described in Hartley and Zisserman, Multiple View Geometry, 2000, pp. 101-107. It would thus be desirable to provide eye detection methods and systems, in which iris boundaries can be detected with relatively good efficiency and moderate computing resources. It would further be desirable to provide eye detection methods and systems, in which redeye defects can be used, but are not mandatory. SUMMARY OF THE INVENTION The invention is defined by the claims. The invention, in broader aspects, provides an eye detection method, in which a plurality of candidate eyes are located within a digital image. Pixels of interest having a predetermined characteristic and a predetermined association to respective eyes are found. Pixels of interest associated with each eye are grouped. Parametric boundaries are fit on each of the groups to define a plurality of detected eye features. The boundaries have a predefined uniform shape and a size matched to a respective group. Each of the detected eye features is scored as to a geometric relationship between the respective boundary and pixels of interest associated with the respective eye to provide eye feature scores. It is an advantageous effect of the invention that an improved eye detection methods and systems are provided, in which iris boundaries can be detected with relatively good efficient and moderate computing resources. It is a further advantageous effect of the invention that an improved eye detection methods and systems are provided, in which redeye defect information is usable, but not mandatory. BRIEF DESCRIPTION OF THE DRAWINGS The above-mentioned and other features and objects of this invention and the manner of attaining them will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying Figures wherein: FIG. 1 is a flow chart of the method. FIG. 2 is a more detailed flow chart of an embodiment of the method of FIG. 1. FIG. 3 is a more detailed flow chart of a modification of the embodiment of FIG. 2. FIG. 4 is a schematic diagram of computer system implementing the method. FIG. 5 is a schematic view of the digital image processor of the system of FIG. 4. FIG. 6 is a more detailed schematic of the defect corrector of FIG. 5. FIG. 7 is a diagram of one of the local neighborhoods identified by the neighborhood finder of FIG. 6. FIG. 8 is more detailed schematic of the eye parts detector of FIG. 6. FIG. 9 is more detailed schematic of the iris shape detector of FIG. 8. FIG. 10 is a diagram illustrating two pairs of edge pixels selected by the edge pixel selector of FIG. 9 and circles fit on the edge pixels, in accordance with the method. Edge orientations are indicated by arrows. FIG. 11 is the same kind of diagram as FIG. 10, but the pairs of edge pixels are disposed such that circles cannot be fit in accordance with the method. Dashed lines indicate attempts to fit circles. Edge orientations are indicated by arrows. FIG. 12 is diagram of a weighting function applied by the score determiner of FIG. 9. The ordinate is in units of a probability. The abscissa is in units of radians* 100. FIG. 13 is a diagram of an empirically determined probability density function of ratio of pupil radius to iris radius usable by the pupil shape detector of FIG. 8. FIG. 14 is a diagram of the probability that a pair of detected eye parts is accurate given empirically determined ratios of size differences between irises of a pair of human eyes. The ordinate is in units of a probability. The abscissa is the value of feature F1. FIG. 15 is a diagram of the probability that a pair of detected eye parts is accurate given empirically determined differences in the average color of the iris region of human eyes. The ordinate is in units of a probability. The abscissa is the value of feature F2. FIG. 16 is a diagram of the probability that a pair of detected eye parts is accurate given empirically determined minimum iris shape detector score associated with a pair of human eyes. The ordinate is in units of a probability. The abscissa is the value of feature F3. FIG. 17 is a diagram of the effect of the size limiter of FIG. 6 on a defect from a defect pair as a function of the detected eye parts and the associated probability. DETAILED DESCRIPTION OF THE INVENTION In the following eye detection methods, eye features are detected in a digital image. The eye features are iris-sclera borders or pupil-iris borders or both. For convenience, the following discussion is directed primarily to detection of iris-sclera borders. It will be understood that pupil-iris borders can be detected in a comparable manner and that both borders can be detected for the same eye, either independently or using the first border detected to limit the possible locations of the second of the two borders. In the following description, some embodiments of the present invention will be described as software programs. Those skilled in the art will readily recognize that the equivalent of such software can also be constructed in hardware. Because image manipulation algorithms and systems are well known, the present description will be directed in particular to algorithms and systems forming part of, or cooperating more directly with, the method in accordance with the present invention. Other aspects of such algorithms and systems, and hardware and/or software for producing and otherwise processing the image signals involved therewith, not specifically shown or described herein may be selected from such systems, algorithms, components, and elements known in the art. Given the description as set forth in the following specification, all software implementation thereof is conventional and within the ordinary skill in such arts. The present invention can be implemented in computer hardware and computerized equipment. For example, the method can be performed in a digital camera, a digital printer, and on a personal computer. Referring to FIG. 4, there is illustrated a computer system 110 for implementing the present invention. Although the computer system 110 is shown for the purpose of illustrating a preferred embodiment, the present invention is not limited to the computer system 110 shown, but may be used on any electronic processing system such as found in digital cameras, home computers, kiosks, retail or wholesale photofinishing, or any other system for the processing of digital images. The computer system 110 includes a microprocessor-based unit 112 (also referred to herein as a digital image processor) for receiving and processing software programs and for performing other processing functions. A display 114 is electrically connected to the microprocessor-based unit 112 for displaying user-related information associated with the software, e.g., by means of a graphical user interface. A keyboard 116 is also connected to the microprocessor based unit 112 for permitting a user to input information to the software. As an alternative to using the keyboard 116 for input, a mouse 118 may be used for moving a selector 120 on the display 114 and for selecting an item on which the selector 120 overlays, as is well known in the art. A compact disk-read only memory (CD-ROM) 124, which typically includes software programs, is inserted into the microprocessor based unit for providing a means of inputting the software programs and other information to the microprocessor based unit 112. In addition, a floppy disk 126 may also include a software program, and is inserted into the microprocessor-based unit 112 for inputting the software program. The compact disk-read only memory (CD-ROM) 124 or the floppy disk 126 may alternatively be inserted into externally located disk drive unit 122, which is connected to the microprocessor-based unit 112. Still further, the microprocessor-based unit 112 may be programmed, as is well known in the art, for storing the software program internally. The microprocessor-based unit 112 may also have a network connection 127, such as a telephone line, to an external network, such as a local area network or the Internet. A printer 128 may also be connected to the microprocessor-based unit 112 for printing a hardcopy of the output from the computer system 110. Images may also be displayed on the display 114 via a personal computer card (PC card) 130, such as, as it was formerly known, a PCMCIA card (based on the specifications of the Personal Computer Memory Card International Association), which contains digitized images electronically embodied in the card 130. The PC card 130 is ultimately inserted into the microprocessor based unit 112 for permitting visual display of the image on the display 114. Alternatively, the PC card 130 can be inserted into an externally located PC card reader 132 connected to the microprocessor-based unit 112. Images may also be input via the compact disk 124, the floppy disk 126, or the network connection 127. Any images stored in the PC card 130, the floppy disk 126 or the compact disk 124, or input through the network connection 127, may have been obtained from a variety of sources, such as a digital camera (not shown) or a scanner (not shown). Images may also be input directly from a digital camera 134 via a camera docking port 136 connected to the microprocessor-based unit 112 or directly from the digital camera 134 via a cable connection 138 to the microprocessor-based unit 112 or via a wireless connection 140 to the microprocessor-based unit 112. The output device provides a final image that has been subject to transformations. The output device can be a printer or other output device that provides a paper or other hard copy final image. The output device can also be an output device that provides the final image as a digital file. The output device can also include combinations of output, such as a printed image and a digital file on a memory unit, such as a CD or DVD. The present invention can be used with multiple capture devices that produce digital images. For example, FIG. 2 can represent a digital photofinishing system where the image-capture device is a conventional photographic film camera for capturing a scene on color negative or reversal film, and a film scanner device for scanning the developed image on the film and producing a digital image. The capture device can also be an electronic capture unit (not shown) having an electronic imager, such as a charge-coupled device or CMOS imager. The electronic capture unit can have an analog-to-digital converter/amplifier that receives the signal from the electronic imager, amplifies and converts the signal to digital form, and transmits the image signal to the microprocessor-based unit 112. The microprocessor-based unit 112 provides the means for processing the digital images to produce pleasing looking images on the intended output device or media. The present invention can be used with a variety of output devices that can include, but are not limited to, a digital photographic printer and soft copy display. The microprocessor-based unit 112 can be used to process digital images to make adjustments for overall brightness, tone scale, image structure, etc. of digital images in a manner such that a pleasing looking image is produced by an image output device. Those skilled in the art will recognize that the present invention is not limited to just these mentioned image processing functions. A digital image includes one or more digital image channels or color components. Each digital image channel is a two-dimensional array of pixels. Each pixel value relates to the amount of light received by the imaging capture device corresponding to the physical region of pixel. For color imaging applications, a digital image will often consist of red, green, and blue digital image channels. Motion imaging applications can be thought of as a sequence of digital images. Those skilled in the art will recognize that the present invention can be applied to, but is not limited to, a digital image channel for any of the herein-mentioned applications. Although a digital image channel is described as a two dimensional array of pixel values arranged by rows and columns, those skilled in the art will recognize that the present invention can be applied to non rectilinear arrays with equal effect. Those skilled in the art will also recognize that for digital image processing steps described hereinbelow as replacing original pixel values with processed pixel values is functionally equivalent to describing the same processing steps as generating a new digital image with the processed pixel values while retaining the original pixel values. The general control computer shown in FIG. 4 can store the present invention as a computer program product having a program stored in a computer readable storage medium, which may include, for example: magnetic storage media such as a magnetic disk (such as a floppy disk) or magnetic tape; optical storage media such as an optical disc, optical tape, or machine readable bar code; solid state electronic storage devices such as random access memory (RAM), or read only memory (ROM). The associated computer program implementation of the present invention may also be stored on any other physical device or medium employed to store a computer program indicated by offline memory device. Before describing the present invention, it facilitates understanding to note that the present invention can be utilized on any well-known computer system, such as a personal computer. It should also be noted that the present invention can be implemented in a combination of software and/or hardware and is not limited to devices, which are physically connected and/or located within the same physical location. One or more of the devices illustrated in FIG. 4 can be located remotely and can be connected via a network. One or more of the devices can be connected wirelessly, such as by a radio-frequency link, either directly or via a network. The present invention may be employed in a variety of user contexts and environments. Exemplary contexts and environments include, without limitation, wholesale digital photofinishing (which involves exemplary process steps or stages such as film in, digital processing, prints out), retail digital photofinishing (film in, digital processing, prints out), home printing (home scanned film or digital images, digital processing, prints out), desktop software (software that applies algorithms to digital prints to make them better—or even just to change them), digital fulfillment (digital images in—from media or over the web, digital processing, with images out—in digital form on media, digital form over the web, or printed on hard-copy prints), kiosks (digital or scanned input, digital processing, digital or hard copy output), mobile devices (e.g., PDA or cell phone that can be used as a processing unit, a display unit, or a unit to give processing instructions), and as a service offered via the World Wide Web. In each case, the invention may stand alone or may be a component of a larger system solution. Furthermore, human interfaces, e.g., the scanning or input, the digital processing, the display to a user (if needed), the input of user requests or processing instructions (if needed), the output, can each be on the same or different devices and physical locations, and communication between the devices and locations can be via public or private network connections, or media based communication. Where consistent with the foregoing disclosure of the present invention, the method of the invention can be fully automatic, may have user input (be fully or partially manual), may have user or operator review to accept/reject the result, or may be assisted by metadata (metadata that may be user supplied, supplied by a measuring device (e.g. in a camera), or determined by an algorithm). Moreover, the algorithm(s) may interface with a variety of workflow user interface schemes. The invention is inclusive of combinations of the embodiments described herein. References to “a particular embodiment” and the like refer to features that are present in at least one embodiment of the invention. Separate references to “an embodiment” or “particular embodiments” or the like do not necessarily refer to the same embodiment or embodiments; however, such embodiments are not mutually exclusive, unless so indicated or as are readily apparent to one of skill in the art. Referring now to FIGS. 1-3, in the methods, one or more pair of candidate eyes are located (200) within a digital image. Pixels of interest associated with each of the eyes are then found (202). The pixels of interest for each eye are grouped (204) into a plurality of different groups. Parametric boundaries are fitted (206) on each of the groups. Each of the boundaries is scored (208) as to a geometric relationship between the respective boundary and the associated pixels of interest. The parametric boundary with the highest ranked score is selected as most closely representing the detected eye feature. The detected eye feature can be used in later procedures. For example, the location of an iris-sclera boundary can be used to identify pixels outside the boundary, which had been identified as part of a redeye defect. Those outside pixels can then be treated as non-redeye pixels. A “candidate eye”, as the term is used herein, is a cluster of one or more pixels in the digital image that are identified as representing a human eye. This identification can be made manually, for example, by a user dragging a cursor to each eye and clicking a mouse button. Alternatively, eyes can be located automatically within the digital image. A variety of algorithms are known that identify eyes within images. Many algorithms find candidate eyes by identifying the locations of redeye defects or redeye defect pairs. A candidate eye defined by one of these algorithms can be limited to redeye defect pixels or can include both redeye defect pixels and other pixels, depending upon the algorithm used. Pixels of interest are pixels that are likely to represent parts of an eye. Each pixel has a predetermined characteristic and a predetermined association to a respective candidate eye. The predetermined characteristic is a property having a value in a predetermined range. The property is related to one or both of color (hue) and texture in the digital image. The predetermined association can be based upon previously imposed limitations on image content in the images under review. For example, pixels of interest can be limited to a fixed location in an image, subject to limitations on image scale and pose of persons photographed. The predetermined association can also be based upon inclusion within a geometric area defined by operator intervention. An example of the latter is the predetermined association being inclusion within a border drawn by an operator. These approaches are workable, but can be limiting. Alternatively, the predetermined association can be a location within a local neighborhood that is based upon an automatically determined geometric relationship to particular image content, preferably, the respective candidate eye. A simple example of a predetermined association is all pixels within the respective redeye defect. This approach is simple, but includes too few pixels in some cases. It is preferred that the local neighborhood is inclusive of and larger than the respective candidate eye, if the candidate eye is a redeye defect or is similar in relative size to a redeye defect. FIG. 2 illustrates particular embodiments, in which the candidate eyes/redeye defects are located (210) and local neighborhoods are identified (212) relative to respective redeye defects. Pixels of interest in each local neighborhood are ascertained (214), and circles are fitted (216) and scored (218). In particular embodiments discussed herein, the predetermined association to a respective candidate eye is inclusion within a local neighborhood relative to a particular pair of eyes (right and left eyes of the same person). In particular embodiments, the local neighborhood is inclusive of and larger than a respective redeye defect. In some embodiments, the size of local neighborhoods is a function of the separation of members of respective pairs of candidate eyes or respective pairs of redeye defects. The predetermined characteristic can be the same as or closely related to features controlling the predetermined association. An example of this is a predetermined characteristic of pixels exhibiting redeye. Clusters of these pixels can also provide the predetermined association. This approach is practical, but has a greater risk of errors than if the predetermined characteristic is unrelated or less closely related to the features controlling the predetermined association. In the latter approach, the method includes, as a separate and additional step, identifying pixels having the predetermined characteristic. This can be accomplished by producing a map of values of the predetermined property for each of the local neighborhoods and identifying positions on each map having values in a predefined range. Currently preferred properties are color values, color adjacency values, edges values, and combinations of one or more of these. Color values can be derived from multiple color channels or a single color channel. Color adjacency values can be computed using the color values of adjacent or nearly adjacent pixels. For example, one color adjacency value for two neighboring pixels where each pixel has three color channels (red, green, blue) is computed by considering the color channel values as a 3-dimensional vector. The color adjacency value is computed as the Euclidean distance between the two neighboring pixel values in the 3-dimensional space. A further discussion of color adjacency values is disclosed in I. Park, et al., “Color Image Retrieval Using Hybrid Graph Representation,” Image and Vision Computing, Elsevier, (1999), 17(7) pages 465-474. Edge values or edge maps can be calculated with digital image processing techniques such as the well-known Canny edge detector, application of the Prewitt operator, or application of the Sobel operator. In a particular embodiment discussed in greater detail below, an edge map of each of the local neighborhoods is produced and pixels of interest are identified at the positions on the edge maps having an edge magnitude greater than a predefined threshold. Pixels having the predetermined characteristic and predetermined association with each eye are grouped and parametric boundaries are fitted on each group. The parametric boundaries have shapes characteristic of eye features. The parametric boundaries can be defined by a polynomial, such as boundaries in the form of parabolas, ellipses, or circles. The parametric boundaries for each candidate eye or pair of candidate eyes can be scaled relative to the size of the respective eye or pair of eyes. In particular embodiments, the size of local neighborhoods is a function of the size of the respective pair of candidate eyes (e.g., the separation of the two candidate eyes of the pair) and the ranges of sizes of the parametric boundaries are each correlated with the size of a respective local neighborhood. The number of groups associated with each eye is relatively large and the number of pixels of interest in each group is small. For easier computation, it is preferred that the number of pixels of interest in each group is uniform. In particular embodiments, the groups each have a number of pixels minimally sufficient to define the geometric shape of a respective parametric boundary. For example, if the parametric boundary is a circle, then the minimally required number of pixels of interest in a group is three or, with directional information, two. (Fitting circles to two pixels using respective edge orientation information is discussed below.) Each boundary is scored. Scoring is a function of the separations of pixels of interest from respective boundaries. In embodiments in which local neighborhoods are determined, boundaries can be located fully within a respective local neighborhood or can extend partway out. Pixels of interest as to a particular eye are located within the respective local neighborhood. In particular embodiments, the scoring is a count of pixels of interest within a predetermined distance of a respective boundary. The contribution due to each pixel of interest can be weighted or otherwise adjusted. In particular embodiments, pixels from sides of an eye (“lateral pixels”) are weighted differently than pixels from the top or bottom (“longitudinal pixels”) based on the effect of other facial features, such as eyelids, on photographed eye shape. Similarly, pixels beyond a boundary can be adjusted differently than those within the boundary. Scoring determines an applicable circle or other parametric boundary for a particular eye. Since numerical values can be chosen to associate a highest or lowest score with the parametric boundary of best match, the term “highest rank” and like terms are used to define a best match. In the embodiment illustrated in FIG. 3, redeye defect pairs are located (220), local neighborhoods are identified (212), an edge map is produced for each local neighborhood (222), edge pixels are identified from the edge map (224) and grouped (226), circles are fit (228) on each of the groups, pixels of interest within a predetermined distance from respective circles are counted (230) and weighted (232). Referring now to FIGS. 4-5, the digital image processor 112 is programmed to perform the method of the present invention. An original digital image 302 can be received from the image capture device (shown in FIG. 4) in a variety of different color representations. However, the most typical implementation of the present invention receives the original digital image as a color digital image with red, green, and blue digital image channels. Preferably, the pixel values of the original digital image are related to video-ready code values, that is, the sRGB color space. Preferably, each pixel value of each color channel is represented as an 8-bit value 0 to 255. The present invention can operate successfully with other encodings, although modification to equation constants and shapes of functions may be required. The digital image 302 is input to the digital image processor 112 for redeye detection and correction. FIG. 5 is a block diagram of the digital image processor 112. The digital image 302 is input to the redeye defect corrector 310 for detection of the objectionable redeye defect. The output of the redeye defect detector is a defect position pair 312 for each detected redeye defect pair (i.e. pair of human left and right eye defects) in the digital image 302. For a given image, the redeye defector detector may be used to detect 0, 1, or multiple defect pairs 312. The redeye defect detector 310 can be any method known in the art. The preferred redeye defect detector 310 is described by Schildkraut et al. in U.S. Pat. No. 6,292,574 B 1. Briefly summarized, in analyzing an image, skin regions are identified based on color and shape and resized for analysis. Each skin region is searched for pairs of small red candidate defects. Various scores are analyzed (e.g. symmetry, score with respect to matching an eye template, etc.) and a final classification is performed indicating the position of likely redeye pairs in an image. Note that the redeye defect detector 310 can internally scale the size of the digital image 302 by interpolation to normalize the analysis image size or to normalize the size of faces or skin regions in the image, for example. In summary, the redeye defect detector 310 finds groups of pixels in the image that it believes represent human pupils with a red appearance. The redeye defect detector 310 finds the defects based on color, shape, and related features. However, as with all statistical classification processes, these features sometimes result in the redeye defect detector 310 making mistakes resulting in a defect that: is actually either the inside or outside corner of the eye includes both the pupil AND the iris pixels (this occurs especially for people with brown or hazel eyes) includes the pupil and a portion of the eyelid or other skin surrounding the eye. When correction of the defects 312 is performed, defects having mistakes such as those described above can result in artifacts that consumers find objectionable. Each defect position pair 312 includes at least two pixels (one for each of the left and right eyes) of the digital image 302 affected by the redeye defect. Specifically, each defect is a set of pixels believed by the redeye defect detector 310 to be pixels representing a human pupil with an unnatural reddish appearance caused by flash reflection. One defect of the pair corresponds to the left eye of a human affected by the redeye defect, and the other defect corresponds to the right eye. The defect position pair 312 may be in the form of an image map where pixels determined by the redeye defect detector 310 to be affected by redeye defect are assigned a different value than other pixels. The defect position pair 312 can also be a list of pixels ((x,y) coordinate locations and possibly pixel color values) included in the redeye defect. The defect position pair 312 is input to the defect corrector 314, along with the digital image 302 and other information 313 from the redeye defect detector 310. The defect corrector 314 determines pixels in the digital image 302 to modify, based on the defect position pair 312. The defect corrector 314 modifies the colors of the determined pixels to reduce the visibility of the redeye defect and outputs an improved digital image 320. FIG. 6 shows the defect corrector 314 in more detail. The operation of the defect corrector 314 is similar with respect to each defect of the pair. The defect position pair 312 and the digital image 302 are input to the neighborhood finder 330. The purpose of the neighborhood finder 330 is to determine a neighborhood 331 around the defect position pair 312 that should be searched for iris and pupil shapes. Preferably, the neighborhood 331 is rectangular (and oriented with sides parallel to the digital image 302) and is determined based on the fact that when a defect position pair 312 contains a mistake, it has often detected the inside or outside corner of one or both eyes. Preferably, the neighborhood is determined by computing the following: Vector: D=D1−D0 Point: B1=D0+b0D Point: B2=D0+b1D Point: B3=D0+b2Dperp Point: B4=D0−b2Dperp where: D0 is the (x,y) position of the first defect. D1 is the (x,y) position of the second defect. D is the vector from D0 to D1. Dperp is a vector extending through D0, of the same length as D, but perpendicular to it. b0 is a coefficient. Preferably 0.35. b1 is a coefficient. Preferably −0.51. b2 is a coefficient. Preferably 0.2. The upper left corner Bul of the neighborhood has coordinates (xul, yul). Coordinates xul and yul are determined by finding the minimum of the x and y coordinates, respectively, of points B1, B2, B3, and B4. Similarly, the lower right corner Blr of the neighborhood has coordinates (xlr, ylr). Coordinates xlr and ylr are determined by finding the minimum of the x and y coordinates, respectively, of points B1, B2, B3, and B4 FIG. 7 illustrates the points D0, D1, B1, B2, B3, and B4, Bul, Blr, and the neighborhood for the defect D0 is shown with a dashed line. It is easy to see that the size of the neighborhood 331 depends on the distance between the defects of the defect pair 312 and the coefficients b0, b1, and b2. The selection of the parameters b0, b1, and b2 may be influenced by the age of the human subject or the out-of-plane rotation of the human subject's head relative to the subject plane of the image. Next, the neighborhood is passed to the eye parts detector 332 for detection of the anatomical regions of the iris and pupil. As used herein, the detection of the iris refers to the detection of the boundary between the iris and the sclera and the detection of the pupil refers to the detection of the boundary between the iris and the pupil. The eye parts detector 332 is shown in more detail in FIG. 8. An edge detector 360 is applied to the neighborhood 331 output from the neighborhood finder 330. In a particular embodiment, only the red channel is passed to the edge detector 360. Those skilled in the art will recognize that other color channels (e.g. green or blue) or combinations of color channels (e.g. a luminance channel or chrominance channel) can be used instead of the red channel. Many edge detectors are known in the art, for instance the well-known Canny, Sobel, and Prewitt edge detectors can all be used to detect edges in the neighborhood. The edge detector 360 produces an edge map 362 of the neighborhood for further analysis. In a particular embodiment, the Sobel operator is used to create an edge map 362 that indicates both the magnitude and orientation of edges at each position in the neighborhood. Edge pixels are identified as those positions in the edge map 362 having an edge magnitude greater than a threshold T0. For example, T0 may be dynamically selected such that at least 2% of the pixels in the edge map have an edge magnitude greater than T0, and are thus considered edge pixels. In a particular embodiment, T0 is 28. The edge map is passed to the iris shape detector 364 for detection of the iris shape. (I.e. the curve forming the boundary between the iris and the sclera.) This shape is generally modeled as a curve or polynomial on the image coordinates. The iris/sclera boundary forms a circle that is projected to form a curve on the image plane when the image is captured. The iris/sclera boundary can be aligned with the image plane or in an out-of-plane rotation relative to the image plane. An ellipse can be used to fit the curve, but an ellipse has five free parameters and is difficult to fit. The difficulty arises, because often only a small portion of the boundary between the iris and the sclera is visible. Generally, most of the iris/sclera boundary is covered by the upper and/or lower eyelids. It is not at all uncommon for a person to be looking out of the corner of his/her eye so that only a small portion of the iris/sclera boundary is visible (e.g. arc of less than π/6 radians). In such cases, it is very difficult to control the fitting of the parameters as many quite different ellipses fit the edge with nearly equivalent performance. It has been observed that most photographs of people (especially when the redeye defect is present) occur in images of people facing the camera. For this reason, a circle almost always provides a good fit for the boundary between the iris and sclera. There are only three free parameters and the parameters can be robustly determined. In a particular embodiment, the iris shape detector 364 searches the edge map 362 for circular shapes that might be a human iris. The detection of the circular iris shape from the edge map can be accomplished by many different methods. For example, in Kimme et al., “Finding Circles by an Array of Accumulators,” Communications of the ACM, Vol. 18, No. 2, February 1975, pp. 120-122, there is described an efficient method for determining circles from an array of edge magnitudes and orientations. This method is an extension of the well known Hough transform method first described in U.S. Pat. No.3,069,654. In a particular embodiment, a RANSAC (described by Hartley and Zisserman, Multiple View Geometry, 2000, pp. 101-107) fitting routine is employed. In essence, several (2) pixels from the neighborhood are selected. Since the local edge orientation at these two points is known, the maximum likelihood circle can be determined. Then, the edge image is examined to determine a score for that maximum likelihood circle, based on the number of edge pixels that are within a small distance of the circle boundary. The process is repeated many times (or for all pairs of edge pixels) and the circle having the highest associated shape is output as the detected iris 366. FIG. 9 shows the iris shape detector 364 in more detail. The edge pixels selector 380 selects a pair of edge pixels and the shape fitter 382 determines the maximum likelihood circle, based on these two edge pixels. For example, FIG. 10 illustrated by showing a number of pairs of edge pixels 500, their edge orientations (indicated by arrows 502), and the determined maximum likelihood circles (504). It often occurs that no circle can be constructed that will pass through the two edge points and have the tangent to the circle at the position of each edge point match (within T1 radians, where preferably T1=π/24) the required edge orientation, see the examples in FIG. 11. (Examples of unacceptable circles 506 are indicated by dashed lines.) In these cases, the shape fitter 382 reports a failure and the process continues when the edge pixel selector 380 selects a new pair of edge pixels. In some additional cases, the shape fitter 382 will also report a failure. An acceptable iris radius range is defined by a minimum radius rmin and a maximum radius rmax. Preferably rmin=Rn ∥D∥+B, and rmax=Rx∥D∥+B, where ∥D∥ is the length of the D vector above, B is imaging system blur, and Rn and Rx are multipliers. In a particular embodiment, B is 2 pixels, Rn is 0.06, and Rx is 0.14. It has been observed that the ratio of iris radius to distance between the eyes is highly dependent on the age of the human subject. The values of rmin and rmax can be influenced by the age. For example, when the human subject is classified as a child, Rn is preferably 0.09, and Rx is preferably 0.14. When the human subject is classified as an adult, Rn is preferably 0.06, and Rx is preferably 0.12. As an alternative embodiment, the Hough transform method may be used by the iris shape detector 364 to find the iris/sclera boundary. It is well known that a multiple stage approach can be used. For example, a Hough transform can be used to identify the center of the circle. Then a second Hough transform can be used to identify the radius. Furthermore, those skilled in the art will recognize that there are many possible variations to the iris shape detector 364. For example, edge orientations can be completely ignored if the edge pixel selector 380 selects a trio of points (rather than just two points as described hereinabove) at a time, because of the commonly known fact that three non-linear points determine a unique circle. The optional age determiner 327 analyzes the image of the human subject's face corresponding to the defect pair, and outputs an age classification that is input to the iris shape detector 364 to be used to determine the values of rmin and rmax. An example of an automatic method of performing age classification of human faces is disclosed in U.S. Pat. No. 5,781,650, to Lobo et al. When the radius of the maximum likelihood circle either exceeds rmax or is smaller than rmin, the shape fitter 382 reports a failure and the process continues when the edge pixel selector 380 selects a new pair of edge pixels. The score determiner 384 determines an inclusion score for the maximum likelihood circle output from the shape fitter 382. The score is generated by finding edge pixels of the image that are within a small distance from the maximum likelihood circle's perimeter. In a particular embodiment, distance is 0.7 pixels. Each edge pixel within the distance is assigned a weight based the angle formed by the line joining the edge pixel to the center of the maximum likelihood circle and the line joining the left and right defect of the defect pair 312. Weights are assigned based upon the probability that a given angular portion of the iris/sclera boundary circle is visible. This probability will vary depending upon the nature of the image, for example, casual photography vs. carefully posed portraits. FIG. 12 illustrates a function used to assign the weights in a particular embodiment. The shape of the function was derived by examining hundreds of typical consumer images and determining the probability that a given angular portion of the iris/sclera boundary circle is visible. The variable weights place more importance on edge pixels located on the sides (rather than the top and bottom) of the maximum likelihood circle's perimeter, because it is far more common that these portions of the iris/sclera boundary will be visible in a photograph of a human face. The score for the maximum likelihood circle is the sum of all the weights for all of the edge pixels within a small distance of the maximum likelihood circle's perimeter. The best shape determiner 386 receives inclusion scores for the different maximum likelihood circles and identifies the detected iris 366 having the maximum likelihood circle with the highest associated score. The iris shape detector 364 outputs a representation of the detected iris 366. Many different types of representation of the detected iris 366 can be used. The simplest is the values of the three parameters that form the circle. The iris shape detector 364 optionally also outputs, as related features 368, the scores associated with the detected iris 366, that can later be used to establish a confidence, probability, or belief that the detected iris 366 does in fact represent a human iris in the image. Although in this preferred embodiment the boundary between the iris and sclera is detected first, followed by the detection of the pupil/iris boundary, those skilled in the art will recognize that that order may be reversed. The pupil shape detector 370 then determines a pupil/iris boundary, using knowledge of the detected iris 366. In a particular embodiment, the pupil boundary is assumed a circle having the same center as the detected iris 366. With this approach, the pupil shape detector 370 need only compute the pupil radius, that is, the radius of the pupil/iris boundary. The computation of the pupil radius, rpupil is accomplished as follows: An error e(rpupil) is computed as a function of radius rpupil, where 0<=rpupil<=riris (riris is the detected iris's radius) according to the following method: 1. Two mean values are computed. A first mean value (the “pupil color mean”) is computed for all pixels <=rpupil to the detected iris circle's center. A second mean value (the “iris color mean”) is computed for other pixels <=riris to the detected iris circle's center. So-called glint pixels are ignored by excluding all pixels whose value is greater than T3 (preferably 97%) of the pixels inside the detected iris circle. Pixels are also ignored if a line passing through the center of the circle and the pixel does not pass through or near (e.g. within 1.5 pixels) an edge pixel. 2. For all (non-excluded) pixels, an error is calculated by finding the difference between the pixel value and the appropriate mean value. The first mean value is used for pixels <=rpupil from the iris circle's center. The second mean value is used for pixels <=riris (but further than rpupil) from the iris circle's center. 3. The value of e(rpupil) is the standard deviation of the errors computed in step 2. The e(rpupil) function is then weighted by a function related to the probability that a photograph of an eye will have a given ratio between pupil diameter and iris diameter. The pupil radius is then determined by finding the value rpupil associated with the minimum of the e(rpupil) function. FIG. 13 shows an example of a suitable probability density function for this purpose that was derived by examining many hundred images containing several thousand human eyes. The pupil shape detector 370 outputs a detected pupil 372 and optionally outputs, as associated detection features 368, iris color and pupil color that can later be used to establish a confidence, probability, or belief that the detected pupil 372 does in fact represent a human pupil in the image. The detected iris 366 and detected pupil 372 (referred to collectively as “eye parts 374”) are input to the belief determiner 376 for establishing the confidence, probability, or belief that the detected eye parts are accurate and do accurately represent the corresponding eye parts in the digital image 302. The belief determiner 376 can establish the probability that the detected eye parts 374 of an individual defect of the defect pair 312 are accurate, or it can establish the probability based on detected eye parts 374 of the defect pair 312. In a particular embodiment, the belief determiner 376 computes a set of defect pair features based on the detected eye parts and the related detection features 368. A first feature, F1, is related to the size difference between the two detected irises and is computed as: F 1 = min ⁡ ( R 0 , R 1 ) max ⁡ ( R 0 , R 1 ) where R0 is the radius of the detected iris associated with the first defect of the defect pair 312 and R1 is the radius of the detected iris associated with the second defect of the defect pair 312. A second feature, F2, is related to the consistency of the color of those pixels that are inside the detected iris, but outside of the detected pupil; in other words, those pixels that make up the iris itself and correspond to the part of a person's eyes that provides the eye color, such as “blue” or “brown”, or “hazel”. The difference in the average color of the iris region is computed as follows: F 2 = ∑ i = 0 c ⁢ ⁢ ( C 0 ⁢ i - C ni ) 2 where: c is the number of channels of color information contained in the digital image. (Typically c=3). Cni is the value of the iris color for the (n+1)th defect for the ith color channel. A third feature, F3, is related to the score produced by the iris shape detector 364. This feature is simply the minimum of the scores associated with each of the two detected irises: F3=min(s0, s1) The probabilities associated with various values of the defect pair features was ascertained by analyzing many hundred images containing several thousand human eyes. The probability that the pair of detected eye parts 374 is accurate given F1 is shown in FIG. 14. The probability that the pair of detected eye parts 374 is accurate given F2 is shown in FIG. 15. The probability that the pair of detected eye parts 374 is accurate given F3 is shown in FIG. 16. An overall probability that the pair of detected eye parts is accurate given features F1, F2, and F3 can be computed as: P(A|F1, F2, F3)=(P(F1)*P(F2)*P(F3))k In a particular embodiment, the value of k is ⅓. The belief determiner 376 outputs the probability, P(A|F1, F2, F3) (indicated by reference numeral 378 in FIG. 5. Those skilled in the art will readily recognize that although in the preferred embodiment three features are used to establish the probability 378, any number of features could be used. Referring back to FIG. 6, the size limiter 334 inputs a defect of the defect pair 312, determined eye parts 374, and the associated probabilities and, when necessary, trims the defect by determining pixels of the defect to delete from the defect. In a particular embodiment, the size limiter 334 determines a limiting circle and deletes all pixels from the defect that are outside the limiting circle. The limiting circle is the detected pupil when the associated probability is very high (greater than a limit T4). The limiting circle is the detected iris when the associated probability is moderate (less than T4 and greater than a lower limit T5). The limiting circle is a circle with infinite radius (that is, the modified defect is identical to the original defect) when the associated probability is low (less than T5). If the limiting circle is the detected pupil, then it has been found to be advantageous to enlarge the limiting circle by adding a distance of 1.5 pixels to the radius of the limiting circle before the size limiter 334 uses it for trimming operations. An example of suitable values is T4=0.6 and T5=0.35. FIG. 17 illustrates the effect of the size limiter 334 on a defect from a defect pair 312 as a function of the detected eye parts 374 and the associated probability 378. FIG. 14 shows a set of 23 eyes. The top row shows an original eye 400, the eye with overlaid accurate eye parts detection 402, and the eye with less accurate eye parts detection 404. The detected irises and pupils are shown as dashed lines. The bottom four eyes of the left column show four hypothetical defects (indicated with hatching) from a defect pair 312. The top defect 406 is the desired correct output from the redeye defect detector 310. The next defect is a false positive where the corner of the eye is mistakenly identified as a defect. Correction of the false positive defect 408 by the color modifier 336 would result in an undesirable dark spot in the corner of the eye (and would leave any redeye pixels in the pupil untouched). In the next, the entire pupil and iris is identified as defect 410. Correction of this overgrown defect by the color modifier 336 would correct any redeye pupil pixels, but the iris pixels would be undesirably darkened and color would be desaturated. In the last original defect, correction of overgrown defect 412 would also result in undesirable darkening of the upper eyelid. The second column 414 of eyes shows the modified defects when accurate eye parts detection 402 is used by the size limiter 334 to trim defects 406-412 to the pupil as the limiting circle defined by: (P(A|F1, F2, F3 )>T4) In each case, a good result is obtained. The false positive defect 408 is entirely removed in the modified defect, because it is located entirely outside of the limiting circle. Therefore, undesirable darkening of the eye corner will not occur. The third column 416 shows the set of modified defects created when the limiting circle is defined by the detected iris: (T4>P P(A|F1, F2, F3)>T5) These modified defects corresponding to defects 408 and 412 are improved, but the improvement overall is less than in the second column. The fourth and fifth columns 418,420 show the modified defects that result for (P(A|F1, F2, F3)>T4) and (T4>P P(A|F1, F2, F3 )>T5), respectively, when the eye parts detection 374 is less accurate. In general, it can be seen that the best results are obtained when the detected eye parts are accurate and the probability determined by the belief determiner 376 is high. If the detected eye parts are less accurate, the modified defects made by the size limiter 334 are still an improvement over the original defects if the probability determined by the belief determiner 376 is appropriately lower. Damage may occur when the detected eye parts are less accurate and the belief determiner 376 mistakenly attributes a very high confidence to the detected eye parts, as can be seen by the modified defects of the fourth column. Referring back to FIG. 6, The modified defect is input to the color modifier 336 for improving the color of the digital image pixels that are included in the modified defect. The color modifier 336 modifies the color of pixels of the modified defect to reduce the redeye effect, producing an improved digital image 320. The output of the color modifier 336 is a color modified image p(x,y) with a corrected redeye defect (e.g. a human pupil appears black instead of red.) In a particular embodiment, the method of correcting the colors of the pixels of the modified defect is the following. As previously stated, a color image includes one or more color component values (or channel) of color information. In an original digital image 302 having red, green and blue color components, there are red pR(x,y), green pG(x,y), and blue pB(x,y) component values for each pixel position in the image p(x,y). It is determined which color component is least sensitive to red light. In the case of common digital cameras that produce images with red, green, and blue color components, the color component with the least sensitivity to red light is the blue component. Then the color of each pixel included in the modified defect is corrected as follows: All color component values are replaced with the color component of the digital image having the least sensitivity to red light. When the color component with the least sensitivity to red light is the blue component, then the correction is as follows: for each pixel in the modified defect, the color is modified by replacing the values of every color component with that of the blue color component value. The color modification of pixels included in the modified defect for digital images having red, green and blue color components can be described as: pR(x,y)=pB(x,y) pG(x,y)=pB(x,y) Notice that the blue color component does not need to be modified and the glint of the eye can be treated with the same correction technique as the redeye pixels, thus this correction has the advantage that it is very fast. Finally, the color modified digital image output from the color modifier 336 is input to the defect blender 338 for reducing the visibility of the border between the defect pixels and the border pixels. A spatial operator is computed and applied. In a particular embodiment, the spatial operator is an N×N filter. The size N is determined based on the size of the modified defect. Preferably, if modified defect includes fewer than 28 pixels, then N=3, otherwise N=5. Using a smaller spatial operator to blend a smaller defect correction prevents excessive blurring that can lead to objectionable blurring of a human subject's eyes. To preserve phase, N must be odd. The spatial operator is preferably a symmetric lowpass filter. The relative magnitudes of the coefficients of the spatial operator F(i,j) are: F ⁡ ( i , j ) = [ N -  i  -  j  ] 2 ⁢ ⁢ for ⁢ ⁢  i  ,  j  ≤ N - 1 2 = D Filter F(ij) is then normalized such that the sum of all coefficients is 1.0. The defect blender 338 operates as follows. For each pixel, a local N×N neighborhood is examined. The number of pixels P belonging to the modified defect within the local neighborhood is tabulated. The number P can range between 0 and N2, inclusive. When the number P is either 0 (no pixels belong to the modified defect region) or N2 (all pixels in the local neighborhood belong to the modified defect region) the pixel is left unchanged. Otherwise, for each color channel that was modified by the color modifier 336 (recall that in the preferred embodiment for a digital image with red, green and blue color components, the blue color component is not modified by the color modifier 336 and therefore is not modified by the defect blender 338), a blurred pixel value BC(x,y) is calculated by convolution as follows: B C ⁡ ( x , y ) = ∑ m = - D m - D ⁢ ⁢ ∑ n = - D n = D ⁢ ⁢ p C ⁡ ( x - m , y - n ) * F ⁡ ( m , n ) The improved pixel value is: IC(x,y)=(1−W)pC(x,y)+W BC(x,y) where W is a weight related to the aforementioned number of pixels P in the local N×N neighborhood belonging to the modified defect. The preferred weight W is: W = 1 - 2 ⁢  P N 2 - 1 2  W ranges from 0 to 1 and is maximized when the local neighborhood is centered on the border between pixels belonging to modified defect and non-defect pixels in the image. The improved pixel values are substituted into the color modified image, producing the output improved digital image 320. The improved digital image 320 has been improved by modifying redeye affected pixels, producing an image with naturally appearing human pupils. For example, in a particular embodiment, information including the distance between the redeye defect positions, age classification, and blur amount in the optical system that captured the image are all be used to find the iris/sclera boundary and/or the pupil/iris boundary. From this information, a limiting circle is created. The limiting circle is then used to trim a grown defect, removing pixels that would otherwise have contributed to an objectionable over-correction. The output of the size limiter 334 is a modified defect. The methods can be combined with other procedures to better locate candidate eyes or utilize eye feature information or both. For example, redeyes defects can be corrected using one or more of: inter eye distance, a determination of age class, distance of pixels from a seed location or centroid, blue channel values, or other features disclosed in U.S. patent application Ser. No. 10/792,079, [Attorney Docket No. DOCKET 87517RLW], filed Mar. 3, 2004, entitled: CORRECTION OF REDEYE DEFECTS IN IMAGES OF HUMANS”, in the name(s) of Andrew C. Gallagher and Jay S. Schildkraut, which is hereby incorporated herein by reference. The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
<SOH> BACKGROUND OF THE INVENTION <EOH>Numerous digital image processing procedures, such as identification of persons in digital photographs and redeye correction procedures, find human eyes in digital images. In many of these procedures, the located position of human eyes is approximate. This is suitable for some purposes, but deleterious for others. Redeye correction can be improved by accurate determination of eye locations. The term “redeye” refers to red light from flash illumination that is reflected off the eye retina of a human subject and back out through the pupil to the camera. Redeye is commonly a problem in cameras that have a flash unit located close to the taking lens. In a digital image, a “redeye defect” is a cluster of one or more pixels that exhibit the red coloration characteristic of redeye. A “redeye defect pair” is a pair of clusters within a digital image that can be classified, based upon such characteristics as relative sizes and locations, as representing light from a right eye and a left eye of the same person. Many algorithms have been proposed to correct redeye, with the goal of generating an improved image, in which the pupils appear natural. In those algorithms, image pixels that need to undergo color modification are determined along an appropriate color or colors for the modified pixels. In some redeye correction procedures, redeye is detected manually. An operator moves a cursor to manually indicate to a computer program the redeye portion of a digital image. This approach is effective, but labor-intensive and slow. Automated detection of redeye pixels can be faster, but it is often the case that the boundary of a redeye defect is not well defined. This is also a problem in a semi-automated approach, in which a user indicates an eye location by setting a single point. When determining redeye defect pixels, it is easy for an algorithm to mistakenly miss pixels that should be considered redeye and/or include pixels that are not really redeye. When coupled with defect correction, these misclassifications can produce objectionable artifacts. An under-correction occurs when some redeye pixels are correctly identified and color corrected, but others are not. As a result, a portion of the human subject's pupil can still appear objectionably red. An over-correction occurs when non-redeye pixels are mistakenly considered redeye, and the color modification is applied. As a result, a non-pupil portion of the human face, such as the eyelid, can be modified by the color correction normally applied to redeye pixels, resulting in a very objectionable artifact. In correcting redeye pixels, modified pixels are often blended with neighboring pixels of the original image to reduce unnatural harsh edges. For example, in U.S. Published Patent Application No. 2003/0007687A1 a blending filter is used. If such a blending filter is of uniform size for all human images, then some (typically relatively small) human faces having redeye defects may appear over smoothed, with objectionable blurriness. Other, relatively large human faces may retain harsh edges. A solution to this problem, disclosed in U.S. Published Patent Application No. 2003/0007687A1, is operator control of the level of blending. This may be effective, but it is another labor-intensive and slow procedure. In Yuille et al., “Feature Extraction from Faces Using Deformable Templates,” Int. Journal of Comp. Vis. , Vol. 8, Iss. 2, 1992, pp. 99-111, the authors describe a method of using energy minimization with template matching for locating the eye and iris/sclera boundary. In Kawaguchi et al, “Detection of the Eyes from Human Faces by Hough Transform and Separability Filter”, ICIP 2000 Proceedings , pp. 49-52, the authors describe a method of detecting the iris sclera boundary in images containing a single close-up of a human face. U.S. Pat. No. 6,252,976 and U.S. Pat. No. 6,292,574 discloses methods for detecting red eye defects, in which skin colored regions of a digital image are searched for pixels with color characteristics of red eye defects to determine eye locations. U.S. Pat. No. 6,134,339 discloses a method, in which pixel coordinates of red eye defects are analyzed for spacing and spatial structure to determine plausible eye locations. Template matching is used. The above approaches tend to have limited applicability or place large demands on processing resources. Algorithms for finding shapes are known. The Hough transform method is described in U.S. Pat. No. 3,069,654. Kimme et al., “Finding Circles by an Array of Accumulators,” Communications of the ACM , Vol. 18, No. 2, February 1975, pp. 120-122, describes an efficient method for determining circles from an array of edge magnitudes and orientations. A RANSAC fitting routine is described in Hartley and Zisserman, Multiple View Geometry, 2000, pp. 101-107. It would thus be desirable to provide eye detection methods and systems, in which iris boundaries can be detected with relatively good efficiency and moderate computing resources. It would further be desirable to provide eye detection methods and systems, in which redeye defects can be used, but are not mandatory.
<SOH> SUMMARY OF THE INVENTION <EOH>The invention is defined by the claims. The invention, in broader aspects, provides an eye detection method, in which a plurality of candidate eyes are located within a digital image. Pixels of interest having a predetermined characteristic and a predetermined association to respective eyes are found. Pixels of interest associated with each eye are grouped. Parametric boundaries are fit on each of the groups to define a plurality of detected eye features. The boundaries have a predefined uniform shape and a size matched to a respective group. Each of the detected eye features is scored as to a geometric relationship between the respective boundary and pixels of interest associated with the respective eye to provide eye feature scores. It is an advantageous effect of the invention that an improved eye detection methods and systems are provided, in which iris boundaries can be detected with relatively good efficient and moderate computing resources. It is a further advantageous effect of the invention that an improved eye detection methods and systems are provided, in which redeye defect information is usable, but not mandatory.
20041110
20081028
20060511
58639.0
G06K900
1
ALAVI, AMIR
DETECTING IRISES AND PUPILS IN IMAGES OF HUMANS
UNDISCOUNTED
0
ACCEPTED
G06K
2,004
10,985,098
ACCEPTED
Buckle safety device
A buckle safety device formed for use with a seat belt assembly. The seat belt assembly includes a tongue and a buckle. The buckle safety device includes a first housing member having a pair of first arms. Each of the first arms has a first locking member for securing the first housing member to a base of the tongue. The first housing member has a base receiving cavity for receiving the base and a tongue receiving slot communicating with the base receiving cavity for receiving the tongue. A cover extends from the first housing member adjacent to the tongue receiving slot. The cover has an inner surface for positioning adjacent to a release button on the buckle. The inner surface has a recessed surface for allowing limited access to the release button.
1. A buckle safety device for a seat belt assembly including a tongue and a buckle, comprising: a housing having a base receiving cavity for receiving a base of the tongue, the housing having an end wall with a tongue receiving slot communicating with the base receiving cavity, the tongue receiving slot being arranged proximate a mating interface that is on an outside of the housing; and a cover extending away from the housing, the cover having a free end for positioning adjacent to a release button on the buckle, the free end having a recessed surface for allowing limited access to the release button. 2. The buckle safety device of claim 1, wherein the housing includes a first housing member releasably attached to a second housing member. 3. The buckle safety device of claim 2, wherein the first housing member has a first locking member and the second housing member has a second locking member for attaching the first housing member to the second housing member. 4. The buckle safety device of claim 3, wherein the first latching member is formed on a pair of first arms extending from first housing member and the second latching member is formed on a pair of second arms extending from second housing member. 5. The buckle safety device of claim 1, wherein the cover is formed as an elongated plate that extends substantially parallel to a top surface of the housing. 6. The buckle safety device of claim 5, further comprising an extension between the housing and the elongated plate, the extension extending substantially perpendicular to a top surface of the housing. 7. The buckle safety device of claim 1, wherein the housing has cutouts in a top and bottom surface thereof for receiving a belt attached to the tongue. 8. The buckle safety device of claim 1, wherein the recessed surface is conical in shape. 9. The buckle safety device of claim 1, wherein the housing has a first pair of arms extending in a direction opposite from the cover, the first pair of arms being resilient and having a closed end portion for attaching the housing to the base. 10. The buckle safety device of claim 1, wherein the cover is formed as a sleeve, the sleeve having a buckle receiving passage at the free end. 11. A buckle safety device for a seat belt assembly including a tongue and a buckle, comprising: a first housing member having a pair of first arms, each of the first arms having a first locking member for securing the first housing member to a base of the tongue, the first housing member having a base receiving cavity for receiving the base and a tongue receiving slot communicating with the base receiving cavity; and a cover extending from the first housing member adjacent to the tongue receiving slot, the cover having an inner surface for positioning adjacent to a release button on the buckle, the inner surface having a recessed surface for allowing limited access to the release button. 12. The buckle safety device of claim 11, wherein the pair of first arms are resilient and the first locking member is a closed end portion. 13. The buckle safety device of claim 11, wherein the cover is a sleeve, the sleeve having a buckle receiving passage for receiving the buckle. 14. The buckle safety device of claim 11, further comprising a second housing member, the second housing member having a pair of second arms, each of the second arms having a second locking member, the second locking members being engageable with the first locking members for securing the first housing member and the second housing member to the base of the tongue. 15. The buckle safety device of claim 14, wherein the first locking member is a latching projection and the second locking member is an aperture. 16. The buckle safety device of claim 14, wherein the cover is a sleeve, the sleeve having a buckle receiving passage for receiving the buckle. 17. The buckle safety device of claim 11, wherein the cover is formed as an elongated plate that extends substantially parallel to a top surface of the first housing member. 18. The buckle safety device of claim 11, wherein the first housing member has cutouts on top and bottom surfaces thereof for receiving a belt attached to the tongue. 19. The buckle safety device of claim 11, wherein the recessed surface is conical in shape. 20. The buckle safety device of claim 11, wherein the pair of first arms extend in a direction opposite from the cover. 21. A buckle safety device for a seat belt assembly including a tongue and a buckle, comprising: a housing having a cutout and a buckle receiving opening, the cutout and the buckle receiving opening communicating with a cavity inside the housing; and a base receiving member extending from the housing, the base receiving member being arranged proximate the buckle receiving opening and having a base receiving slot extending therethrough. 22. The buckle safety device of claim 21, wherein the base receiving member is arranged at a mating interface that is outside of the housing. 23. The buckle safety device of claim 21, wherein the cutout is formed on a top surface of the housing, the buckle receiving opening is formed on a first end surface and bottom surface of the housing, and the base receiving member extends from the bottom surface of the housing.
FIELD OF THE INVENTION The invention relates to seat belt assemblies and, more particularly, to a buckle safety device for a seat belt assembly. BACKGROUND OF THE INVENTION For safety purposes, children are often restrained in a vehicle seat, child safety seat, etc. with a conventional seat belt assembly. The seat belt assembly may include, for example, a base with a tongue and a buckle. The tongue is inserted into the buckle and latched therein to lock the seat belt assembly. To unlock the seat belt assembly, a release button on the buckle is manually pushed to unlatch the tongue from the buckle. Because the release button is in open view and is easily accessible, children are capable of intentionally or inadvertently pressing the release button and unlocking the seat belt assembly. This can be extremely dangerous in that the child can endure harm if not properly restrained, especially if an adult supervising the child is unaware that the child has become unrestrained. It is therefore desirable to develop a buckle safety device that can be used with any seat belt assembly, including those provided on child safety seats, wherein the buckle safety device prevents a child from unlocking the seat belt assembly and ensures that the child remains safely restrained. It is further desirable to develop a buckle safety device that can remain attached to the seat belt assembly between uses such that use of the buckle safety device is simplified and misplacement of the buckle safety device can be prevented. SUMMARY OF THE INVENTION The invention relates to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a housing having a base receiving cavity for receiving a base of the tongue. The housing has an end wall with a tongue receiving slot communicating with the base receiving cavity. The tongue receiving slot is arranged proximate a mating interface that is on an outside of the housing. A cover extends from the housing and has a free end for positioning adjacent to a release button on the buckle. The free end has a recessed surface for allowing limited access to the release button. The invention further relates to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a first housing member having a pair of first arms. Each of the first arms has a first locking member for securing the first housing member to a base of the tongue. The first housing member has a base receiving cavity for receiving the base and a tongue receiving slot communicating with the base receiving cavity for receiving the tongue. A cover extends from the first housing member adjacent to the tongue receiving slot. The cover has an inner surface for positioning adjacent to a release button on the buckle. The inner surface has a recessed surface for allowing limited access to the release button. The invention still further related to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a housing having a cutout and a buckle receiving opening. The cutout and the buckle receiving opening communicate with a cavity inside the housing. A base receiving member extends from the housing. The base receiving member is arranged proximate the buckle receiving opening and has a base receiving slot extending therethrough. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a first embodiment of a buckle safety device; FIG. 2 is an exploded view of the buckle safety device of FIG. 1 showing attachment of the buckle safety device to a base of a tongue of a seat belt assembly; FIG. 3 is a perspective view of the buckle safety device of FIG. 1 showing the buckle safety device attached to the base of the tongue and arranged for receipt of a buckle of the seat belt assembly; FIG. 4 is perspective view of the buckle safety device of FIG. 1 shown fully assembled with the seat belt assembly; FIG. 5 is a partial sectional view of the buckle safety device of FIG. 1 taken along line 5-5 of FIG. 4; FIG. 6 is a perspective view of a second embodiment of a buckle safety device; FIG. 7 is a perspective view of a third embodiment of a buckle safety device; FIG. 8 is a perspective view of the buckle safety device of FIG. 7 showing attachment of the buckle safety device to the base of the tongue of the seat belt assembly; FIG. 9 is perspective view of the buckle safety device of FIG. 7 shown fully assembled with the seat belt assembly; FIG. 10 is a perspective view of a fourth embodiment of a buckle safety device; FIG. 11 is a perspective view of a fifth embodiment of a buckle safety device showing the buckle safety device attached to the base of the tongue and arranged for receipt of a buckle of the seat belt assembly; and FIG. 12 is a partial sectional view of the buckle safety device of FIG. 11 showing attachment of the buckle safety device to the base of the tongue of the seat belt assembly. DETAILED DESCRIPTION OF THE INVENTION FIGS. 1-5 show a first embodiment of a buckle safety device 1. The buckle safety device 1 may be used with any conventional seat belt assembly, such as a seat belt assembly in a standardized vehicle, on a child safety seat, etc. As shown in FIG. 1, the buckle safety device 1 includes a housing 2 consisting of a first housing member 3 and a second housing member 4. The first and second housing members 3, 4, have first and second cutouts 5, 6 that communicate with a base receiving cavity 8. At a mating interface 7, the first housing member 3 has a tongue receiving slot 9. A cover 10 extends from the first housing member 3 adjacent to the tongue receiving slot 9 and has a recessed surface 11 formed therein. As shown in FIGS. 2-3, the seat belt assembly includes a belt 14 that extends through a base 12 of a tongue 13. The housing 2 is attached to the base 12 such that the tongue 13 extends through the tongue receiving slot 9 of the first housing member 3 and projects from the tongue receiving slot 9 adjacent to the cover 10. As shown in FIGS. 4-5, the tongue 13 is then inserted into an end of a buckle 15 of the seat belt assembly to lock the tongue 13 to the buckle 15. When the tongue 13 is locked to the buckle 15, the cover 10 extends over the buckle 15 and substantially adjacent to a tongue release button 16 on the buckle 15 to prevent a child from intentionally or inadvertently pressing the tongue release button 16 and unlocking the seat belt assembly. The individual elements of the first embodiment of the buckle safety device 1 will now be described in greater detail. As shown in FIG. 1, the housing 2 includes the first housing member 3 and the second housing member 4. As shown in FIG. 2, the first housing member 3 includes a top surface 17, a bottom surface 18, an end surface 19, and side surfaces 20. The top surface 17, the bottom surface 18, the end surface 19, and the side surfaces 20 define a portion of the base receiving cavity 8. The tongue receiving slot 9 is formed in the end surface 19 proximate the mating interface 7. One of the first cutouts 5 is formed in the top surface 17 and the other of the first cutouts 5 is formed in the bottom surface 18. As shown in FIG. 2, the first cutouts 5 are substantially c-shaped and define a pair of first arms 21. Each of the first arms 21 has a first locking member 22. In the illustrated embodiment, the first locking members 22 are each formed as a pair of resilient latching projections, however, it will be appreciated by those skilled in the art that other types of locking members may be used. Additionally, the shape of the first cutouts 5 may be varied. On a side of the end surface 19, an extension 23 extends upward from the top surface 17 of the first housing member 3. In the illustrated embodiment, the extension 23 extends substantially perpendicular to the top surface 17, however, it will be appreciated by those skilled in the art that the extension 23 may extend at other angles relative to the top surface 17 to account for variations in the shape of the buckle 15 of the seat belt assembly and the positioning of the release button 16 thereon. The cover 10 extends from an end of the extension 23 away from the end surface 19 in a direction opposite from the first arms 21 and substantially parallel to the top surface 17. The cover has an outer surface 24, an inner surface 25, and a free end 26. The recessed surface 11 is formed on the inner surface 25 and extends from the free end 26 of the cover 10 toward the extension 23. In the illustrated embodiment, the recessed surface 11 is substantially conical in shape, however, it will be appreciated by those skilled in the art that the recessed surface 11 may be any of a variety of shapes. The cover 10 has a length from the end of the extension 23 to the free end 26 such that the cover 10 substantially covers the release button 16 on the buckle 15 when positioned adjacent thereto. As shown in FIG. 2, the second housing member 4 includes a top surface 27, a bottom surface 28, an end surface 29, and side surfaces 30. The top surface 27, the bottom surface 28, the end surface 29, and the side surfaces 30 define another portion of the base receiving cavity 8. One of the second cutouts 6 is formed in the top surface 27 and the other of the second cutouts 6 is formed in the bottom surface 28. As shown in FIG. 2, the second cutouts 6 may be substantially c-shaped and define a pair of second arms 31. Each of the second arms 31 has a second locking member 32. In the illustrated embodiment, the second locking member 32 is formed as a pair of apertures corresponding to the latching projections of the first locking members 22, however, it will be appreciated by those skilled in the art that other types of locking members may be used. Additionally, the shape of the second cutouts 6 may be varied. The buckle safety device 1 may be formed, for example, from a molded plastic material. As shown in FIG. 2, to assemble the buckle safety device 1 to the base 12 of the tongue 13, the first housing member 3 is inserted onto a first end of the base 12 of the tongue 13 such that the tongue 13 is received in the tongue receiving slot 9 and the base 12 is received in the base receiving cavity 8. The tongue 13 extends through the tongue receiving slot 9 and projects from the tongue receiving slot 9 adjacent to the cover 10, as shown in FIG. 3. As shown in FIG. 2, the second housing member 4 is inserted onto a second end of the base 12 of the tongue 13 such that the base 12 is received in the base receiving cavity 8, and the second locking members 32 engage with the first locking members 22 to attach the first housing member 3 to the second housing member 4. In this position, the base 12 is arranged in the base receiving cavity 8 such that the belt 14 extends through the first and second cutouts 6, 7, as shown in FIG. 3. As shown in FIG. 2, during operation, the tongue 13 is inserted into the end of the buckle 15 to latch the tongue 13 to the buckle 15. Because the mating interface 7 is outside of the housing 2, the tongue 13 is latched to the buckle 15 outside of the housing 2. As shown in FIGS. 4-5, when the tongue 13 is latched to the buckle 15, the cover 10 extends substantially parallel to a major surface of the buckle 15. The inner surface 25 of the cover 10 is arranged proximate to an outside surface of the buckle 15, and the recessed surface 11 is positioned adjacent to the release button 16. Since the cover 10 substantially covers the release button 16, it is difficult for a child, but not an adult, to access the release button 16. The cover 10 thereby prevents the child from intentionally or inadvertently pressing the release button 16 and unlocking the seat belt assembly. Although in the illustrated embodiment, the release button 16 is arranged on a top surface of the buckle 15, it will be appreciated by those skilled in the art that the buckle safety device 1 may also be used with buckles having a release button arranged on an end surface thereof, such as the buckle 115 shown in FIG. 11, by changing the angular position of the extension 23 and/or the cover 10. To release the tongue 13 from the buckle 15, an adult inserts their finger (not shown) or other elongated object, such as a pencil, key, etc., into the recessed surface 11 between the inside surface 25 of the cover 10 and the buckle 15. The adult then presses the release button 16 to release the tongue 13 from the buckle 15 thereby unlocking the seat belt assembly. After the seat belt assembly is unlocked, the buckle safety device 1 remains attached to the base 12 of the tongue 13 for repeated use. To remove the buckle safety device 1 from the base 12 of the tongue 13, the first and second locking members 22, 32 are unlatched by pressing the latching projections of the first locking members 22 together and removing the latching projections from the apertures of the second locking members 32. The buckle safety device 1 can then be re-attached to another seat belt assembly or stored for later use. FIG. 6 shows a second embodiment of a buckle safety device 40. As shown in FIG. 6, the buckle safety device 40 is identical to the first embodiment of the buckle safety device 1, except the buckle safety device 40 has a cover 41 formed as a sleeve. Elements of the buckle safety device 40 that are identical to elements of the first embodiment of the buckle safety device 1 will be referenced using the same reference numerals and will not be explained in further detail hereafter. As shown in FIG. 6, the cover 41 has a rear wall 42 that extends upward from the end surface 19 and substantially parallel thereto. A top wall 51 extends from an end of the rear wall 42 away from the end surface 19 in a direction opposite from the first arms 21 and substantially perpendicular to the rear wall 42. The top wall 51 has an outer surface 43 and an inner surface 45. A recessed surface 44 is formed on the inner surface 45 and extends from a free end 50 of the cover 41 toward the rear wall 42. In the illustrated embodiment, the recessed surface 44 is substantially conical in shape, however, it will be appreciated by those skilled in the art that the recessed surface 44 may be any of a variety of shapes. Opposite from the top wall 51 and substantially parallel thereto, a bottom wall 47 extends from the end surface 19 substantially below the tongue receiving slot 9. Side walls 46 extend between the top wall 51 and the bottom wall 47. The top wall 51, bottom wall 47, side walls 46, rear wall 42, and end surface 19 define a buckle receiving passage 49. The top wall 51, bottom wall 47, and side walls 46 may be formed to have beveled edges 48 to facilitate insertion of the buckle 15 into the buckle receiving passage 49. The cover 41 has a length from the rear wall 42 to the free end 50 such that the top wall 51 of the cover 41 substantially covers the release button 16 on the buckle 15 when the buckle 15 positioned in the buckle receiving passageway 49. The buckle safety device 40 is assembled and operates in the same manner as the first embodiment of the buckle safety device 1, except that the buckle 15 is received in the buckle receiving passage 49 when the tongue 13 is inserted into the end of the buckle 15 to latch the tongue 13 to the buckle 15. Because the mating interface 7 is outside of the housing 2, the tongue 13 is latched to the buckle 15 outside of the housing 2. When the tongue 13 is latched to the buckle 15, the top wall 51 of the cover 41 extends substantially parallel to the major surface of the buckle 15. The inner surface 45 of the top wall 51 is arranged proximate to the outside surface of the buckle 15 such that the recessed surface 44 is positioned adjacent to the release button 16. The cover 41 therefore makes it difficult for the child, but not the adult, to access the release button 16. The cover 41 thereby prevents the child from intentionally or inadvertently pressing the release button 16 and unlocking the seat belt assembly. FIGS. 7-9 show a third embodiment of a buckle safety device 60. As shown in FIG. 7, the buckle safety device 60 has a housing 61. The housing 61 includes a top surface 62, a bottom surface 63, an end surface 64, and side surfaces 65. The top surface 62, the bottom surface 63, the end surface 64, and the side surfaces 65 define a base receiving cavity 69. A tongue receiving slot 66 is formed in the end surface 64 proximate a mating interface 68. A pair of first cutouts 67 is formed in the housing 61. One of the first cutouts 67 is formed in the top surface 62 and the other of the first cutouts 67 is formed in the bottom surface 63. The first cutouts 67 may be substantially c-shaped and define a pair of resilient first arms 70. Each of the first arms 70 has a first locking member 71. The first arms 70 have a length from the end surface 64 to the first locking member substantially the same as a length of the base 12 of the tongue 13. In the illustrated embodiment, the first locking member 71 is a closed outer surface, however, it will be appreciated by those skilled in the art that other types of locking members may be used. Additionally, the shape of the first cutouts 67 may be varied. On a side of the end surface 64, an extension 72 extends upward from the top surface 62 of the housing 71. In the illustrated embodiment, the extension 72 extends substantially perpendicular to the top surface 62, however, it will be appreciated by those skilled in the art that the extension 72 may extend at other angles relative to the top surface 62 to account for variations in the shape of the buckle 15 of the seat belt assembly and the positioning of the release button 16 thereon. A cover 73 extends from an end of the extension 72 away from the end surface 72 in a direction opposite from the first arms 70 and substantially parallel to the top surface 62. The cover 73 has an outer surface 74, an inner surface 75, and a free end 77. A recessed surface 76 is formed on the inner surface 75 and extends from the free end 77 of the cover 73 toward the extension 72. In the illustrated embodiment, the recessed surface 76 is substantially conical in shape, however, it will be appreciated by those skilled in the art that the recessed surface 76 may be any of a variety of shapes. The cover 73 has a length from the end of the extension 72 to the free end 77 such that the cover 73 substantially covers the release button 16 on the buckle 15 when positioned adjacent thereto. The buckle safety device 60 may be formed, for example, from a molded plastic material. As shown in FIG. 8, to assemble the buckle safety device 60 to the base 12 of the tongue 13, the housing member 71 is inserted onto a first end of the base 12 by pulling the first arms 70 away from each other and sliding the base 12 into the base receiving cavity 69 until the tongue 13 is received in the tongue receiving slot 66. The first arms 70 are then released and resile toward each other such that the closed end portions 71 rest on an end of the base 12. The first arms 70 and the closed end portions 71 thereby secure the housing 61 to the base 12. The tongue 13 extends through the tongue receiving slot 66 and projects from the tongue receiving slot 66 adjacent to the cover 73, as shown in FIG. 9. In this position, the base 12 is arranged in the base receiving cavity 69 such that the belt 14 extends through the first cutouts 67. As shown in FIG. 9, during operation, the tongue 13 is inserted into the end of the buckle 15 to latch the tongue 13 to the buckle 15. Because the mating interface 68 is outside of the housing 61, the tongue 13 is latched to the buckle 15 outside of the housing 61. When the tongue 13 is latched to the buckle 15, the cover 73 extends substantially parallel to the major surface of the buckle 15. The inner surface 75 of the cover 73 is arranged proximate to the outside surface of the buckle 15, and the recessed surface 76 is positioned adjacent to the release button 16. Since the cover 73 substantially covers the tongue release button 16, it is difficult for the child, but not the adult, to access the release button 16. The cover 73 thereby prevents the child from intentionally or inadvertently pressing the release button 16 and unlocking the seat belt assembly. Although in the illustrated embodiment, the release button 16 is arranged on a top surface of the buckle 15, it will be appreciated by those skilled in the art that the buckle safety device 60 may also be used with buckles having a release button arranged on an end surface thereof, such as the buckle 115 shown in FIG. 11, by changing the angular position of the extension 72 and/or the cover 73. To release the tongue 13 from the buckle 15, the adult inserts their finger (not shown) or other elongated object, such as a pencil, key, etc., into the recessed surface 76 between the inside surface 76 of the cover 71 and the buckle 15. The adult then presses the release button 16 to release the tongue 13 from the buckle 15 thereby unlocking the seat belt assembly. After the seat belt assembly is unlocked, the buckle safety device 60 remains attached to the base 12 of the tongue 13 for repeated use. To remove the buckle safety device 60 from the base 12 of the tongue 13, the first arms 70 are pulled away from the base 12 until the closed end portions 71 are released from the end of the base 12. The buckle safety device 60 can then be re-attached to another seat belt assembly or stored for later use. FIG. 10 shows a fourth embodiment of a buckle safety device 80. As shown in FIG. 10, the buckle safety device 80 is identical to the third embodiment of the buckle safety device 60, except the buckle safety device 80 has a cover 81 formed as a sleeve. Elements of the buckle safety device 80 that are identical to elements of the third embodiment of the buckle safety device 60 will be referenced using the same reference numerals and will not be explained in further detail hereafter. As shown in FIG. 10, the cover 81 has a rear wall 82 that extends upward from the end surface 64 and substantially parallel thereto. A top wall 91 extends from an end of the rear wall 82 away from the end surface 64 in a direction opposite from the first arms 70 and substantially perpendicular to the rear wall 82. The top wall 91 has an outer surface 83 and an inner surface 85. A recessed surface 84 is formed on the inner surface 85 and extends from a free end 90 of the cover 81 toward the rear wall 82. In the illustrated embodiment, the recessed surface 84 is substantially conical in shape, however, it will be appreciated by those skilled in the art that the recessed surface 84 may be any of a variety of shapes. Opposite from the top wall 91 and substantially parallel thereto, a bottom wall 87 extends from the end surface 64 substantially below the tongue receiving slot 66. Side walls 86 extend between the top wall 91 and the bottom wall 87. The top wall 91, bottom wall 87, side walls 86, rear wall 82, and end surface 64 define a buckle receiving passage 89. The top wall 91, bottom wall 87, and side walls 86 may be formed to have beveled edges 88 to facilitate insertion of the buckle 15 into the buckle receiving passage 89. The cover 81 has a length from the rear wall 82 to the free end 90 such that the top wall 91 of the cover 81 substantially covers the release button 16 on the buckle 15 when the buckle 15 is positioned in the buckle receiving passageway 89. The buckle safety device 80 is assembled and operates in the same manner as the third embodiment of the buckle safety device 60, except that the buckle 15 is received in the buckle receiving passage 89 when the tongue 13 is inserted into the end of the buckle 15 to latch the tongue 13 to the buckle 15. Because the mating interface 68 is outside of the housing 61, the tongue 13 is latched to the buckle 15 outside of the housing 61. When the tongue 13 is latched to the buckle 15, the top wall 91 of the cover 81 extends substantially parallel to the major surface of the buckle 15. The inner surface 84 of the top wall 91 is arranged proximate to an outside surface of the buckle 15 such that the recessed surface 84 is arranged adjacent to the release button 16. The cover 81 therefore makes it difficult for the child, but not the adult, to access the release button 16. The cover 41 thereby prevents the child from intentionally or inadvertently pressing the release button 16 and unlocking the seat belt assembly. FIGS. 11-12 show a fifth embodiment of a buckle safety device 100. As shown in FIG. 11, the buckle safety device 100 has a housing 101. The housing 101 includes a top surface 102, a bottom surface 103, a first end surface 104, a second end surface 105, and side surfaces 106. The top and bottom surfaces 102, 103, the first and second end surfaces 104, 105, and the side surfaces 106 define a cavity 107. The top surface 102 has a cutout 108 that communicates with the cavity 107. The cutout 108 is formed at a position closer to the second end surface 105 than the first end surface 104. In the illustrated embodiment, the cutout 108 is substantially round and is formed in the top wall 102, however, it will be appreciated by those skilled in the art that the cutout 108 may be any of a variety of shapes and may be formed on the first or second end surfaces 104, 105 or the side surfaces 106. The second end surface 105 and the bottom surface 103 have a buckle receiving opening 109 that communicates with the cavity 107. A base receiving member 110 extends from the bottom surface 103 of the housing 101 proximate the buckle receiving opening 109 at a mating interface 119. As shown in FIG. 12, the base receiving member 110 has a base receiving slot 111 extending therethrough. The buckle safety device 100 may be formed, for example, from a molded plastic material. As shown in FIG. 11, to assemble the buckle safety device 100 to the base 112 of the tongue 113, the tongue 113 is inserted into the base receiving slot 111 of the base receiving member 110 until the tongue 113 projects from an opposite side of the base receiving slot 111 proximate the buckle receiving opening 109, and an end portion of the base 112 is received in the base receiving slot 111. The base 112 is preferably slightly larger than the base receiving slot 111 so that the resiliency of the base receiving member 110 secures the base 112 therein. As shown in FIG. 12, during operation, the tongue 113 is inserted into the end of the buckle 115 to latch the tongue 113 to the buckle 115. Because the mating interface 119 is outside of the housing 101, the tongue 113 is latched to the buckle 115 outside of the housing 101. As the tongue 113 is inserted into the end of the buckle 115, a portion of the buckle 115 having the release button 116 is received in the buckle receiving opening 109 so that the release button 116 is positioned within the cavity 107. Since the release button 116 is positioned within the cavity 107, it is difficult for the child, but not the adult to access the release button 116. The buckle safety device 100 thereby prevents the child from intentionally or inadvertently pressing the release button 116 and unlocking the seat belt assembly. Although in the illustrated embodiment, the release button 116 is arranged on an end of the buckle 115, it will be appreciated by those skilled in the art that the buckle safety device 100 may also be used with buckles having a release button arranged on a top surface thereof, such as the buckle 15 shown in FIG. 3. To release the tongue 13 from the buckle 115, the adult inserts their finger 117 or other elongated object, such as a pencil, key, etc, into the cutout 108. The adult then presses the release button 116 in the direction indicated by arrow 118 to release the tongue 113 from the buckle 115 thereby unlocking the seat belt assembly. After the seat belt assembly is unlocked, the buckle safety device 100 remains attached to the base 112 of the tongue 113 for repeated use. To remove the buckle safety device 100 from the base 12 of the tongue 13, the base is pulled out of the base receiving slot 111 until it is released from the base receiving member 110. The buckle safety device 100 can then be re-attached to another seat belt assembly or stored for later use. The foregoing illustrates some of the possibilities for practicing the invention. Many other embodiments are possible within the scope and spirit of the invention. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.
<SOH> BACKGROUND OF THE INVENTION <EOH>For safety purposes, children are often restrained in a vehicle seat, child safety seat, etc. with a conventional seat belt assembly. The seat belt assembly may include, for example, a base with a tongue and a buckle. The tongue is inserted into the buckle and latched therein to lock the seat belt assembly. To unlock the seat belt assembly, a release button on the buckle is manually pushed to unlatch the tongue from the buckle. Because the release button is in open view and is easily accessible, children are capable of intentionally or inadvertently pressing the release button and unlocking the seat belt assembly. This can be extremely dangerous in that the child can endure harm if not properly restrained, especially if an adult supervising the child is unaware that the child has become unrestrained. It is therefore desirable to develop a buckle safety device that can be used with any seat belt assembly, including those provided on child safety seats, wherein the buckle safety device prevents a child from unlocking the seat belt assembly and ensures that the child remains safely restrained. It is further desirable to develop a buckle safety device that can remain attached to the seat belt assembly between uses such that use of the buckle safety device is simplified and misplacement of the buckle safety device can be prevented.
<SOH> SUMMARY OF THE INVENTION <EOH>The invention relates to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a housing having a base receiving cavity for receiving a base of the tongue. The housing has an end wall with a tongue receiving slot communicating with the base receiving cavity. The tongue receiving slot is arranged proximate a mating interface that is on an outside of the housing. A cover extends from the housing and has a free end for positioning adjacent to a release button on the buckle. The free end has a recessed surface for allowing limited access to the release button. The invention further relates to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a first housing member having a pair of first arms. Each of the first arms has a first locking member for securing the first housing member to a base of the tongue. The first housing member has a base receiving cavity for receiving the base and a tongue receiving slot communicating with the base receiving cavity for receiving the tongue. A cover extends from the first housing member adjacent to the tongue receiving slot. The cover has an inner surface for positioning adjacent to a release button on the buckle. The inner surface has a recessed surface for allowing limited access to the release button. The invention still further related to a buckle safety device for a seat belt assembly that includes a tongue and a buckle. The buckle safety device includes a housing having a cutout and a buckle receiving opening. The cutout and the buckle receiving opening communicate with a cavity inside the housing. A base receiving member extends from the housing. The base receiving member is arranged proximate the buckle receiving opening and has a base receiving slot extending therethrough.
20041110
20070717
20060511
72813.0
A44B1125
0
RODRIGUEZ, RUTH C
BUCKLE SAFETY DEVICE
SMALL
0
ACCEPTED
A44B
2,004
10,985,124
ACCEPTED
Utility knife with actuator for moving blade carrier and for releasing blade therefrom, and related method
A utility knife has a blade carrier defining a blade support surface movably mounted in a housing between retracted and extended positions. A catch is mounted on the blade carrier and is movable between a first position engagable with a blade seated on the blade carrier and substantially preventing the blade from moving relative to the blade carrier, and a second position spaced away from the blade located on the blade carrier and permitting removal of the blade from the blade carrier. An actuator is mounted on the blade carrier and is operable to move the blade carrier between the retracted and extended positions to, in turn, move a blade located on the blade carrier between retracted and extended positions, and move the catch between the first and second positions to release a blade from the blade carrier. The housing has a nose portion that defines the blade aperture and is made of a more wear-resistant material than the other portions of the housing. A sheet material spare blade holder is mounted within the housing and defines a fold, a support portion located on one side of the fold, and a biased retaining portion located on the other side of the fold for receiving spare blades therebetween.
1. A utility knife comprising: a housing; a blade carrier movably mounted on the housing and including a blade supporting surface for supporting a blade, wherein the blade carrier is movable between a retracted position with at least a substantial portion of the blade retracted in the housing, and at least one extended position with at least a portion of the blade extending outwardly of the housing; a catch movable between a first position engagable with a blade located on the blade carrier and substantially preventing relative movement of the blade and blade carrier, and a second position spaced away from a blade located on the blade carrier and permitting removal of the blade from the blade carrier; and an actuator mounted on the blade carrier and operable to (1) move the blade carrier between the retracted and extended positions to, in turn, move a blade located on the blade carrier between retracted and extended positions, and (2) move the catch between the first and second positions to release a blade from the blade carrier. 2. A utility knife as defined in claim 1, wherein the catch is biased toward the first position. 3. A utility knife as defined in claim 2, further comprising a spring biasing the catch toward the first position. 4. A utility knife as defined in claim 3, wherein the catch is pivotally mounted on the blade carrier and the spring biases the catch toward the first position. 5. A utility knife as defined in claim 4, wherein the spring is a torsion spring. 6. A utility knife as defined in claim 3, wherein the catch is secured to the blade carrier and at least a portion of the catch forms the spring biasing the catch toward the first position. 7. A utility knife as defined in claim 1, wherein the actuator is pivotally mounted on the blade carrier for moving the catch between the first and second positions. 8. A utility knife as defined in claim 7, wherein the catch is pivotally mounted on the blade carrier. 9. A utility knife as defined in claim 8, wherein the actuator includes a shaft coupled to the catch for moving the actuator laterally to, in turn, move the catch. 10. A utility knife as defined in claim 9, further comprising a second spring coupled to the actuator for biasing the actuator outwardly of the housing. 11. A utility knife as defined in claim 9, wherein the blade carrier defines a stop surface engagable with at least one of the actuator and catch in the first position. 12. A utility knife as defined in claim 9, wherein the catch defines an aperture for receiving therein the shaft of the actuator. 13. A utility knife as defined in claim 8, wherein the housing defines an elongated slot, and the actuator is movable through the slot between the retracted and extended positions. 14. A utility knife as defined in claim 13, wherein the slot defines at least one laterally-expanded portion for receiving therein the actuator upon pivoting the actuator. 15. A utility knife as defined in claim 13, wherein the actuator is aligned with the laterally-expanded portion of the slot when the blade carrier is located in a fully-extended position. 16. A utility knife as defined in claim 1, wherein the actuator is rotatably mounted on the blade carrier for moving the catch between the first and second positions. 17. A utility knife as defined in claim 16, wherein the actuator includes a blade-releasing portion extending therefrom and engagable with the catch upon rotating the actuator. 18. A utility knife as defined in claim 17, wherein the housing defines an elongated slot, and the actuator is movable through the slot between the retracted and extended positions. 19. A utility knife as defined in claim 18, wherein the slot defines at least one laterally-expanded portion for receiving therein the actuator upon rotating the actuator to, in turn, move the catch. 20. A utility knife as defined in claim 19, wherein the catch is secured to the blade carrier and at least a portion of the catch forms a spring biasing the catch toward the first position 21. A utility knife as defined in claim 1, further comprising an axially-elongated surface defining an axially-elongated slot, and a fastener coupled between the blade carrier and slot for guiding movement of the blade carrier between retracted and extended positions. 22. A utility knife as defined in claim 21, wherein the axially-elongated surface is defined by a bar fixedly secured to an interior surface of the housing and forming therein the axially-elongated slot. 23. A utility knife as defined in claim 22, wherein the blade carrier defines an axially-elongated boss received within the slot for guiding movement of the carrier through the slot. 24. A utility knife as defined in claim 1, wherein the actuator defines a first manually-engagable surface for moving the actuator between the retracted and extended positions, and a second manually-engagable surface for moving the actuator to, in turn, move the catch. 25. A utility knife as defined in claim 24, wherein the first manually-engagable surface is an upper surface of the actuator, and the second manually-engagable surface is a side surface of the actuator. 26. A utility knife as defined in claim 24, wherein the actuator defines a visible marking on the second manually-engagable surface for identifying a location at which force may be applied to move the actuator and, in turn, move the catch from the first toward the second position. 27. A utility knife as defined in claim 1, wherein the housing includes first portion formed of a first material, and a second portion formed of a second material and coupled to the first portion, wherein the second portion defines a blade aperture for receiving a blade therethrough when the blade carrier is located in the extended position, and for removing a blade therethrough when the catch is located in the second position. 28. A utility knife as defined in claim 27, wherein the second material is more wear-resistant than the first material. 29. A utility knife as defined in claim 28, wherein the second material is harder than the first material. 30. A utility knife as defined in claim 27, wherein the housing includes a third portion movable relative to the first portion and coupled thereto, wherein the first, second and third portions cooperate to define an enclosure for the blade carrier and catch. 31. A utility knife as defined in claim 1, further comprising a spare blade holder formed of sheet material and defining a mounting portion connectable to the housing for supporting the spare blade holder thereon, a blade support portion, a first fold located between the mounting and blade support portions, a blade retaining portion overlying the blade support portion and biased toward the blade support portion, and a second fold formed between the blade support and blade retaining portions, wherein a plurality of spare blades are slidably receivable between the blade support and blade retaining portions. 32. A utility knife as defined in claim 31, wherein the blades are substantially planar, and the spare blade holder is oriented in the housing such that a blade located in the spare blade holder is oriented transverse to a blade seated on the blade carrier. 33. A utility knife as defined in claim 32, wherein the spare blade holder is oriented in the housing such that a blade located in the spare blade holder is oriented substantially perpendicular to a blade located on the blade carrier. 34. A utility knife as defined in claim 31, wherein the spare blade holder is formed of spring steel. 35. A utility knife as defined in claim 1, wherein the housing includes two parts defining a cavity receiving the blade carrier, at least one of the parts is movable relative to the other for opening the housing and accessing the blade carrier, and the blade carrier is secured to at least one of the parts to prevent the blade carrier from falling out upon opening the housing. 36. A utility knife as defined in claim 35, further comprising a spare blade holder coupled to one of the parts within the cavity. 37. A utility knife as defined in claim 35, wherein the actuator and catch are coupled to the carrier to prevent them from falling out upon opening the housing. 38. A utility knife comprising: a housing defining a blade aperture; first means for carrying a blade between retracted and extended positions; second means movable between a first position for substantially preventing relative movement of the first means and a blade, and a second position for releasing the blade and permitting removal of the blade through the blade aperture of the housing; and third means mounted on the first means for moving the first means between retracted and extended positions to, in turn, move a blade mounted on the first means between retracted and extended positions, and moving the second means in a direction from the first toward the second position to permit removal of the blade through the blade aperture of the housing. 39. A utility knife as defined in claim 38, wherein the first means is a blade carrier. 40. A utility knife as defined in claim 38, wherein the second means is a catch. 41. A utility knife as defined in claim 38, wherein the third means is an actuator. 42. A utility knife as defined in claim 41, wherein the actuator is at least one of (1) movable laterally for moving the second means between the first and second positions, and (2) rotatable for moving the second means between the first and second positions. 43. A utility knife as defined in claim 41, wherein the actuator is pivotally mounted on the second means. 44. A utility knife as defined in claim 38, wherein the housing defines an elongated slot, and the third means is movable through the slot between the retracted and extended positions. 45. A utility knife as defined in claim 44, wherein the slot defines at least one laterally-expanded portion for receiving therein the third means upon moving the second means. 46. A utility knife as defined in claim 45, wherein the third means is aligned with the laterally-expanded portion of the slot when the first means is located in a fully-extended position. 47. A utility knife as defined in claim 38, further comprising means for visibly marking on the third means a location at which a force may be applied to move the third means and, in turn, move the second means from the first toward the second position. 48. A utility knife as defined in claim 38, wherein the housing includes means for defining the blade aperture and for providing an increased hardness of a surface extending about a periphery of the blade aperture in comparison to the hardness of other surfaces of the housing. 49. A utility knife as defined in claim 48, wherein said means is a nose portion of the housing formed of a first material that is connected to a body portion of the housing formed of a second material, and wherein the first material is harder than the second material. 50. A utility knife as defined in claim 38, further comprising fourth means for holding spare blades. 51. A utility knife as defined in claim 50, wherein the fourth means is formed of sheet material, and includes a fold, a support portion formed on one side of the fold, and a biased retaining portion formed on an opposite side of the fold relative to the support portion and biased toward the support portion, and wherein the biased retaining portion and support portion define a spare blade receiving space therebetween. 52. A utility knife as defined in claim 38, further comprising fifth means for guiding the first means between retracted and extended positions and for connecting the first means to the housing. 53. A utility knife as defined in claim 52, wherein the fifth means is defined by an elongated member fixedly secured to a side wall of the housing and defining an elongated slot therein, and a fastener slidably connecting the first means to the slot. 54. A method of carrying a blade in a utility knife and releasing a blade therefrom, comprising the following steps: providing a utility knife having a housing defining a blade aperture, a blade carrier movably mounted on the housing, a catch movably mounted on the blade carrier, and an actuator mounted on the blade carrier and operable to move the blade carrier and catch; mounting a blade on the blade carrier; moving the actuator between retracted and extended positions to, in turn, move the blade mounted on the blade carrier between retracted and extended positions; and moving the actuator to, in turn, move the catch between a first position substantially preventing relative movement of the blade carrier and blade, and a second position releasing the blade and permitting the blade to be removed through the blade aperture. 55. A method as defined in claim 54, further comprising the following steps: moving the actuator and blade carrier to an extended position; with the blade carrier in the extended position, moving the actuator and, in turn, moving the catch from the first to the second position; and with the catch located in the second position, removing the blade from the blade carrier and through the blade aperture. 56. A method as defined in claim 55, further comprising the step of pivoting the actuator laterally to move the catch from the first to the second position. 57. A method as defined in claim 55, further comprising the step of rotating the actuator to move the catch from the first to the second position. 58. A utility knife as defined in claim 25, wherein the first manually-engagable surface defines a substantially convex surface, and the second manually-engagable surface defines a substantially concave surface. 59. A utility knife as defined in claim 27, wherein at least one of the first and second portions defines a flange, and the other of the first and second portions defines a recess for receiving the flange to couple the first and second portions. 60. A utility knife as defined in claim 59, wherein at least one of the first and second portions defines an aperture, and the other defines a protuberance received within the aperture for further coupling the first and second portions. 61. A utility knife as defined in claim 60, wherein the protuberance is deformable after being received through the aperture to fixedly connect the first and second portions. 62. A utility knife as defined in claim 1, further comprising a utility blade receivable on the blade supporting surface of the blade carrier, and defining along an edge thereof four notches substantially equally spaced relative to each other, including two inner notches and two outer notches, wherein the two inner notches are engageable with the catch for defining a first respective position of the blade on the blade carrier, and each inner notch and an adjacent outer notch is engageable with the catch for defining a second respective position of the blade on the blade carrier, and in the second cutting position a greater portion of the cutting edge of the blade extends outwardly of the housing than in the first cutting position.
CROSS-REFERENCE TO RELATED APPLICATIONS This patent application claims priority on U.S. Provisional Patent Application Ser. No. 60/518,689, entitled “UTILITY KNIFE”, filed on Nov. 10, 2003, and U.S. Provisional Patent Application Ser. No. 60/518,690, entitled “UTILITY KNIFE WITH ACTUATOR FOR MOVING BLADE CARRIER AND FOR RELEASING BLADE THEREFROM, AND RELATED METHOD”, filed on Nov. 10, 2003, each of which is hereby expressly incorporated by reference as part of the present disclosure. This patent application also discloses subject matter similar to that disclosed in the following co-pending patent applications, each of which also is hereby expressly incorporated by reference as part of the present disclosure: U.S. Design application Ser. No. 29/193,538, filed on Nov. 10, 2003, entitled “UTILITY KNIFE”; U.S. Design application Ser. No. 29/193,524, filed on Nov. 10, 2003, entitled “UTILITY KNIFE”; U.S. Design application Ser. No. 29/193,586, filed on Nov. 11, 2003, entitled “UTILITY KNIFE”; and U.S. Design application Ser. No. 29/193,585, filed on Nov. 11, 2003, entitled “UTILITY KNIFE”. FIELD OF THE INVENTION The present invention relates to utility knives, and more particularly, to utility knives that include a blade carrier for selectively moving utility knife blades between retracted and extended positions, and an actuator for moving the blade carrier and for releasing blades from the blade carrier through a blade aperture. BACKGROUND INFORMATION Utility knives generally include a handle and at least one replaceable blade. Because such blades are known to become worn or damaged, utility knife handles generally include provisions to allow a blade to be removed from the handle, so that the blade may be reversed in the handle (in order to provide a new cutting edge for the knife) and/or replaced by another blade. In the case of many utility knives, the removal of a worn or damaged blade requires that the handle first be opened to gain access to the internal cavity inside the handle. However, because it is sometimes inconvenient to open the handle, some utility knives provide mechanisms that allow a blade to be removed without any need for first opening the handle. Such mechanisms often make use of a releasable catch that engages the replaceable blade within the handle, along with a manually operable mechanism for causing the releasable catch to disengage from the blade. Most of these mechanisms allow a worn or damaged blade to be removed through a blade opening at the front end of the handle. These and other types of mechanisms require an additional actuator, such as a button and associated hardware mounted in a side wall of the housing, that is depressed in order to cause the releasable catch to disengage from the blade. Thus, such retractable blade utility knives require at least two actuators, one to move the blade and blade carrier between retracted and extended positions, and another to release the blade when located in an extended position. In addition, notwithstanding the availability of such mechanisms, there are still occasions in which a handle must be opened, for example, in order to retrieve a spare blade that may be stored inside the handle or to perform repair or maintenance inside the handle. Unfortunately, upon opening the handle, many of the above-mentioned mechanisms can fall out and become separated from the handle, thereby rendering the mechanism unusable. As with blades, handles also can become worn or damaged due to demanding operating conditions, such as in the course of regular use in cutting asphalt roof tiles. Consequently, utility knife handles are sometimes formed of metal (e.g., steel) to provide durability. However, even knives with steel handles continue to become worn and/or damaged frequently, on account of such operating conditions. Accordingly, it is an object of the present invention to overcome one or more of the above-described drawbacks or disadvantages of the prior art. SUMMARY OF THE INVENTION In accordance with a first aspect, the present invention is directed to a utility knife comprising a housing, and a blade carrier movably mounted on the housing and including a blade supporting surface for supporting a blade. The blade carrier is movable between a retracted position with at least a substantial portion of the blade retracted in the housing, and at least one extended position with at least a portion of the blade extending outwardly of the housing. A catch is movable between a first position engagable with a blade located on the blade carrier and substantially preventing relative movement of the blade and blade carrier, and a second position spaced away from a blade located on the blade carrier and permitting removal of the blade from the blade carrier. An actuator is mounted on the blade carrier and operable to (1) move the blade carrier between the retracted and extended positions to, in turn, move a blade located on the blade carrier between retracted and extended positions, and (2) move the catch between the first and second positions to release a blade from the blade carrier. In one embodiment of the present invention, the actuator is pivotally mounted on the blade carrier and is movable laterally to move the catch between the first and second positions. In another embodiment of the present invention, the actuator is rotatably mounted on the blade carrier and is rotatable to move the catch between the first and second positions. In some embodiments of the present invention, the housing includes a first portion formed of a first material, and a second portion formed of a second material and coupled to the first portion. The second portion defines a nose, and a blade aperture for receiving a blade therethrough when the blade carrier is located in the extended position, and for removing a blade therethrough when the catch is located in the second position. In one embodiment of the present invention, the second material is more wear-resistant than the first material. In some embodiments of the present invention, the utility knife includes a spare blade holder formed of sheet material, such as spring steel. The sheet material spare blade holder defines a mounting portion connectable to the housing for supporting the spare blade holder thereon, a blade support portion, a first fold located between the mounting and blade support portions, a blade retaining portion overlying the blade support portion and biased toward the blade support portion, and a second fold formed between the blade support and blade retaining portions. A plurality of spare blades are slidably receivable between the blade support and blade retaining portions. In some embodiments of the present invention, the utility knife further comprises an axially-elongated surface defining an axially-elongated slot, and a fastener coupled between the blade carrier and slot for guiding movement of the blade carrier between retracted and extended positions. In one embodiment of the present invention, the axially-elongated surface is defined by a bar fixedly secured to an interior surface of the housing and forming therein the axially-elongated slot. In this embodiment, the blade carrier may define an axially-elongated boss received within the slot for guiding movement of the carrier through the slot. In some embodiments of the present invention, the actuator defines a first manually-engagable surface for moving the actuator between the retracted and extended positions, and a second manually-engagable surface for moving the actuator to, in turn, move the catch. In one embodiment, the first manually-engagable surface is an upper surface of the actuator, and the second manually-engagable surface is a side surface of the actuator. If desired, the actuator may define a visible marking or like means on the second manually-engagable surface for identifying a location at which force may be applied to move the actuator and, in turn, move the catch from the first toward the second position. In accordance with another aspect, the present invention is directed to a utility knife comprising a housing defining a blade aperture, and first means for carrying a blade between retracted and extended positions. The utility knife further includes second means movable between a first position for substantially preventing relative movement of the first means and a blade, and a second position for releasing the blade and permitting removal of the blade through the blade aperture of the housing. The utility knife further includes third means mounted on the first means for (1) moving the first means between retracted and extended positions to, in turn, move a blade mounted on the first means between retracted and extended positions, and (2) moving the second means in a direction from the first toward the second position to permit removal of the blade through the blade aperture of the housing. In one embodiment of the present invention, the first means is a blade carrier, the second means is a catch, and the third means is an actuator. Preferably, the actuator is either (1) movable laterally for moving the second means between the first and second positions, or (2) rotatable for moving the second means between the first and second positions. In accordance with another aspect, the present invention is directed to a method of carrying a blade in a utility knife and releasing a blade therefrom. The method comprises the following steps: (i) providing a utility knife having a housing defining a blade aperture, a blade carrier movably mounted on the housing, a catch movably mounted on the blade carrier, and an actuator mounted on the blade carrier and operable to move the blade carrier and catch; (ii) mounting a blade on the blade carrier; (iii) moving the actuator between retracted and extended positions to, in turn, move the blade mounted on the blade carrier between retracted and extended positions; and (iv) moving the actuator to, in turn, move the catch between a first position substantially preventing relative movement of the blade carrier and blade, and a second position releasing the blade and permitting the blade to be removed through the blade aperture. In one embodiment of the present invention, the method further comprises the steps of: moving the actuator and blade carrier to an extended position; with the blade carrier in the extended position, moving the actuator and, in turn, moving the catch from the first to the second position; and with the catch located in the second position, removing the blade from the blade carrier and through the blade aperture. Preferably, the method further comprises the step of either pivoting the actuator laterally to move the catch from the first to the second position, or rotating the actuator to move the catch from the first to the second position. One advantage of the present invention is that a single actuator can be used to both move the blade carrier and blade between retracted and extended positions, and to move the catch to, in turn, release the blade from the blade carrier. As a result, the utility knives of the present invention may avoid the need for a separate button or like actuator for releasing a blade, and the associated hardware that may be required to secure such extra button or like actuator to a side wall of the housing. Another advantage of one currently preferred embodiment of the present invention is that the nose portion of the housing is formed of a more wear-resistant material than other portions of the housing, thus providing a more durable and long-lasting housing. Yet another advantage of the currently preferred embodiments of the present invention is that the bar or like member defining an elongated slot both guides the blade carrier between the retracted and extended positions, and secures the blade carrier to the housing to thereby prevent the blade carrier and components mounted thereto from falling out upon opening the housing. These and other advantages will become more readily apparent in view of the following detailed description of the currently preferred embodiments of the present invention and accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a rear perspective view of a first embodiment of a utility knife of the present invention. FIG. 2 is a front perspective view of the utility knife of FIG. 1. FIG. 3 is a top plan view of the utility knife if FIG. 1. FIG. 4 is a side elevational view of the utility knife of FIG. 1. FIG. 5 is a front elevational view of the utility knife of FIG. 1. FIG. 6 is another side elevational view of the utility knife opposite the side elevational view of FIG. 4. FIG. 7 is a rear elevational view of the utility knife of FIG. 1. FIG. 8 is a rear, upper perspective view of the utility knife of FIG. 1 shown fully opened and with some parts removed for clarity. FIG. 9 is a front, upper perspective view of the utility knife of FIG. 1 shown fully opened and with some parts removed for clarity. FIG. 10 is a side elevational view of the utility knife of FIG. 1 shown fully opened. FIG. 101A is a side elevational view of a rear housing portion of the utility knife of FIG. 1 prior to attachment of the nose portion thereto. FIG. 10B is a side elevational view of the nose portion of the housing of the utility knife of FIG. 1 prior to attachment to the rear housing portion of FIG. 10A. FIG. 10C is an opposite side elevational view of the nose portion of FIG. 10B. FIG. 11 is a side perspective view of the blade carrier, actuator and catch of the utility knife of FIG. 1. FIG. 12 is an opposite side perspective view of the blade carrier, actuator and catch of the utility knife of FIG. 1. FIG. 13 is a perspective, exploded view of the blade carrier, actuator and catch of the utility knife of FIG. 1. FIG. 14 is a perspective view of the spare blade holder of the utility knife of FIG. 1. FIG. 15 is a perspective view of a second embodiment of a utility knife of the present invention. FIG. 16 is a partial, upper perspective view of the utility knife of FIG. 15 showing one side of the housing and the blade carrier and spare blade holder mounted thereon. FIG. 17 is partial, side perspective view of the housing, blade carrier and spare blade holder of FIG. 16. FIG. 18 is a side perspective view of the blade carrier of the utility knife of FIG. 15. FIG. 19A is an opposite side perspective view of the blade carrier of FIG. 18. FIG. 19B is a somewhat schematic view of the slot formed within the housing of the utility knife of FIG. 15 for allowing both longitudinal and rotatable movement of the actuator within the housing. FIG. 20 is a perspective view of the actuator of the utility knife of FIG. 15. FIG. 21 is a perspective view of the catch of the utility knife of FIG. 15. FIG. 22 is a side elevational view of a utility blade that is usable in the utility knives of the present invention and that includes four notches in the upper edge of the blade to provide two cutting positions on the blade carrier for each side of the cutting edge of the blade. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS In FIG. 1, a utility knife embodying the present invention is indicated generally by the reference numeral 10. The utility knife 10 includes a handle 12, a blade 14 (FIGS. 11-13) and a spare blade holder assembly 16 for storing spare blades 18 (FIGS. 8-10). The handle 12 includes a housing 20 defining a substantially internal cavity 21 (FIGS. 8-10), a mechanism 22 for releasably holding opposing portions of the housing 20 together, and an actuator 24 for moving the blade 14 between retracted and extended positions, and for releasing the blade 14 from the housing 20. As shown in FIGS. 8-13, the blade carrier 26 supports thereon the blade 14 and is movably mounted within the housing 20 to move the blade between a retracted position with the blade received or concealed within the housing, and at least one, and preferably a plurality of, extended positions with the cutting edge of the blade extending outwardly of the housing. As shown in FIG. 12, a catch 28 is movably mounted on the blade carrier 26 between a first position engagable with the blade 14 located on the blade carrier and substantially preventing relative movement of the blade and blade carrier, and a second position spaced away from a blade 14 permitting removal of the blade from the blade carrier 26. The actuator 24 is mounted on the blade carrier 26 and is operable to (1) move the blade carrier between the retracted and extended positions to, in turn, move the blade 14 located on the blade carrier between retracted and extended positions, and (2) move the catch 28 between the first and second positions to release the blade 14 from the blade carrier 26. As shown typically in FIGS. 1 and 2, the housing 20 is formed of two separate portions 30, 32. The first portion 30 is made up of a nose portion 34 and a rear portion 36 disposed rearwardly of the nose portion 34. As shown in FIG. 2, the nose portion 34 defines a blade opening 38 at a first end of the handle 12 to receive therethrough the blade 14. The rear portion 36 is, to some extent, a mirror image of the second housing portion 32 and is pivotably connected thereto by, for example, a fastener (e.g., shown as a pin 40) disposed toward a rear end of the housing 20. In this particular embodiment, the nose and rear portions 34, 36 are formed separately and thereafter fixedly attached to one another, for example, but not limited to, by fastening, welding, bonding, forcing, or gluing the two portions together. It should be understood that the nose and rear portions 34, 36 also may be formed in an integral fashion, for example, as a single piece, or still further, in a build-up fashion, for example, by metal injection molding or over molding, where one portion is formed and concurrently joined to another portion which was previously formed. The second housing portion 32 defines an opening or recess 42 that receives a manually operable button portion 44 of the mechanism 22 for releasably fastening the two portions 30, 32 of the housing 20. The housing portions 30, 32, 34 may be formed in any manner, for example, but not limited to, by casting, machining, welding, and/or combinations thereof, and of any suitable material, for example, but not limited to, metal, plastic, and/or combinations thereof. Moreover, there is no requirement that the portions 30, 32, 34 be made of the same material. For example, if the portions 30, 32, 34 are formed of metal, they may or may not be formed of the same metal. Indeed, in some preferred embodiments, the nose portion 34 is formed of a metal (e.g., stainless steel) that is more wear resistant than the metal(s) forming the second housing portion 32 and the rear portion 36 of the first housing portion 30 (e.g., aluminum), in order to increase the durability of the nose. This has the advantage that selected portion(s) of the housing 20 can be made more wear resistant than other portions, to improve the durability where needed, without the need to make the entire housing more wear resistant. Because higher wear resistant materials are often more expensive than less wear resistant materials, this approach provides an opportunity to improve durability, where needed, at lesser cost than would result from using higher wear resistant materials throughout the entire housing 20. Referring to FIGS. 10-10C, the nose portion 34 of the housing 20 includes a support portion 46 and a generally u-shaped outer portion 48 extending therefrom. The support portion 46 defines a first aperture 50 and two second apertures 52 spaced rearwardly of the first aperture 50. As shown in FIG. 10A, the rear portion 36 of the housing 20 defines on its front end an attachment portion 53 including a first boss 54 that is shaped to be received within the first aperture 50 of the nose 34, and two second bosses 56 that are received within the second apertures 52 of the nose. The boss 54 of the attachment portion 53 defines on its forward end a flange 58 that extends outwardly therefrom. As shown in FIG. 10B, the support portion 46 of the nose 34 defines an outer support surface 60 that is shaped to contact and support thereon a peripheral surface 62 formed on the attachment portion 53 of the rear portion 36 of the housing (FIG. 10A). The outer support surface 60 of the nose 34 is spaced inwardly relative to the adjacent u-shaped portion 48 to thereby define an approximately u-shaped groove 64 therebetween. The forward portion of the groove 64 is dimensioned to receive therein the forward flange 58 of the boss 54 of the attachment portion 53 of the housing (FIG. 10A), and the lateral portions of the groove 64 are dimensioned to receive the peripheral edge 62 of the attachment portion 53 of the housing. In order to attach the nose 34 to the rear portion 36 of the housing, the forward flange 58 is first inserted into the forward edge of the groove 64 of the nose. Then, the remaining portions of the outer support surface 60 of the nose and peripheral surface 62 of the attachment portion 53 are brought into contact with each other such that the second bosses 56 of the attachment portion are received within the corresponding apertures 52 of the nose. The forward flange 58 of the attachment portion 53 mechanically interlocks the nose 34 to the attachment portion of the housing. If desired, the second bosses 56 of the attachment portion 53 may be threaded to receive nuts or other fasteners (not shown), or may define rivets or like deformable portions to deform the ends of the bosses extending through the apertures to, in turn, fixedly secure the nose to the attachment portion. In addition, or alternatively, the nose can be welded, glued, or otherwise fixedly secured to the attachment portion as described above, or in accordance with any of numerous mechanisms and/or methods for attachment that are currently or later become known. In the illustrated embodiment, the nose 34 is formed of a 300 series stainless steel, such as 316 stainless steel, and is formed by metal injection molding (“MIM”). The MIM nose 34 is assembled to the rear portion 36 in the manner described above, i.e., the ends of the second bosses 56 are peened or otherwise deformed laterally over the edges of the corresponding apertures 52, and an adhesive, such as a one-part cyanoacrylate, is applied to the interface of the nose 34 and rear portion 36 adjacent to the second bosses 56 and corresponding apertures 52, to fixedly secure the nose 34 to the rear portion 36. As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, these materials, methods of forming, and methods of assembly are only exemplary, and numerous other materials, methods of forming, and/or methods of assembly, that are currently known, or that later become known, equally may be used. As shown in FIG. 10C, the nose 34 further defines an inner support surface 66 extending about the periphery of the first aperture 50, and as shown in FIG. 10A, the attachment portion 53 defines an underlying recess 68 within the first boss 54. The inner support surface 66 supports the blade carrier 26 when located in a fully extended position. The unshaped outer portion 48 of the nose 34 defines spaced apart opposing surfaces 65, 67 (FIG. 5) that define the blade opening 38 therebetween. The opposing surfaces 65, 67 each may be substantially planar and substantially parallel to one another, although this is not required. The two surfaces 65, 67 are separated by a distance that is selected, for example, to be large enough to allow the blade 14 to pass therebetween, yet small enough that the surfaces 65, 67 provide some lateral stability for the blade 14 during use, e.g., during cutting, sticking, etc. As shown in FIGS. 8-10, the second housing portion 32 defines ribs 69, 71 that extend laterally therefrom along the path of blade movement to provide further lateral stability during use, and the blade carrier 26 defines a substantially planar blade supporting surface 73 that is spaced apart from, and faces the ribs 69, 71 when the blade carrier is located in extended positions. When the housing 20 is in a closed state, the ribs 69,71 are spaced laterally from the blade supporting surface 73 of the blade carrier 26 a distance that is sufficiently wide to allow the blade 14 to fit therebetween, yet sufficiently narrow to prevent lateral movement of the blade 14 away from the blade supporting surface 73. As shown typically in FIG. 11, a peripheral rim 75 extends about three sides of the blade supporting surface 73 and is raised relative thereto for receiving the blade 14. As can be seen, the rim 75 substantially conforms to the peripheral shape of the corresponding surfaces of the blade 14 seated therein to properly seat and orient the blade on the blade carrier. As shown in broken lines in FIG. 10, the blade carrier 26 may include one or more blade-retaining tabs 77 that extend over the rim 75 and are spaced laterally from the blade supporting surface 70 to further prevent movement of the blade off of the blade supporting surface, particularly when the blade is subjected to substantial laterally-directed or other such forces during use. As shown best in FIGS. 11-14, the actuator 24 includes a manually engageable button 70, and a shaft 72 extending downwardly from the button and received within a lug 74 of the blade catch 28 (FIGS. 12 and 13). As shown best in FIGS. 12 and 13, the blade catch 28 is pivotally mounted at one end by a pin 76 received within a first lug 78 formed on the back side of the blade carrier 26, and is pivotally mounted at the other end by a fastener 80 received within a second lug 82 formed on the back side of the blade carrier 26. As shown in FIG. 13, the catch 28 defines an aperture 84 for receiving the end of the fastener 80. The fastener 80 may be threadedly received, press fit, or otherwise fixedly secured within the recess 84. A torsion spring 86 engages a first spring-engaging portion 88 formed on one end of the catch 28, and a second spring-engaging portion 89 formed on the blade carrier 26 to bias the catch inwardly toward the blade carrier. The blade carrier 26 defines a stop 91 to engage the lug 74 of the catch against the bias of the spring 86. The catch 28 defines a pair of blade-engaging bosses 90 that extend through corresponding apertures 92 formed in the blade carrier 26, and are received within respective u-shaped apertures 94 formed in a blade 14 to releasably secure the blade to the blade carrier 26. The blade carrier 26 defines upper and lower bearing surfaces 96 and 98, respectively, and as shown in FIGS. 8-10, the rear portion 36 of the housing defines corresponding upper and lower bearing surfaces 100 and 102, respectively, for slidably contacting the bearing surfaces of the blade carrier upon moving the blade carrier between retracted and extended positions. As shown in FIG. 10, a guide bar 104 is fixedly secured by fasteners 106 (only one shown) to the rear portion 36 of the housing. The guide bar 104 defines an axially elongated slot 108, and the blade carrier 26 is pinned to the slot 108 by a fastener 110 (FIGS. 12 and 13) to secure the blade carrier to the housing 20 and guide the longitudinal movement thereof. As shown in FIG. 13, a coil spring 112 is coupled between the actuator 24 and catch 28 to bias the actuator away from the catch and outwardly of the housing 20. The coil spring 112 is seated within the lug 74 of the catch and received over the actuator shaft 72 between a first boss 114 formed at approximately one end of the shaft 72, and a retaining clip 116 connected to an annular groove 118 formed at the other end of the shaft 72. As shown typically in FIGS. 11 and 12, the coil spring 112 urges the first boss 114 of the actuator 24 away from the catch to, in turn, urge the actuator 24 out of the housing 20. The retaining clip 116 engages the lower end of the lug 74 to secure the actuator 24 to the catch 28 and prevent further outward movement of the actuator relative to the catch. As shown in FIGS. 1 and 2, the housing 20 defines an elongated actuator slot 120 formed between the first and second housing portions 30 and 32, respectively, for receiving the actuator 24 and permitting the actuator to move therethrough between retracted and extended positions. As shown in FIGS. 8-10, the first and second housing portions 30 and 32, respectively, each define a series of approximately rectangular recesses 122 axially spaced relative to each other along the elongated slot 120 for receiving therein a correspondingly shaped second boss 124 formed on the actuator 24 between the first boss 114 and button 70. As shown typically in FIG. 8, the coil spring 112 (FIG. 13) urges the second boss 124 of the actuator upwardly into a respective recess 122 to fix the longitudinal position of the actuator and blade carrier, and thus the longitudinal position of the blade 14 seated on the blade carrier, within the housing. As shown in FIG. 8, the housing 20 defines four recesses 122, and thus four discrete positions of the actuator and blade carrier within the housing. In the illustrated embodiment of the present invention, when the actuator 24 is located in the innermost position, the blade 14 seated on the blade carrier 26 is retracted within the housing. When the actuator 24 is located in any of the other three positions, the cutting edge of the blade 14 is exposed through the blade aperture 38 of the housing. Each of these three positions defines a different degree of exposure of the blade 14 through the blade aperture 38, wherein the innermost position defines the least degree of exposure of the blade, and the outermost position defines the greatest degree of exposure of the blade. The actuator 24 is moved through the slot 20 by engaging the button 70 with a finger to depress the actuator downwardly and, in turn, release the second boss 124 from the respective recess 122 of the housing. Then, with the actuator depressed within the slot 120, the user moves the actuator 24 either backwards or forwards within the slot to the desired position. The user then releases the actuator 24 in the desired position, and the spring 112 urges the second boss 114 into the corresponding recess 122 to secure the blade carrier and blade in place. As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the utility knives of the present invention may define any desired number of different extended and/or retracted positions of the blade. As shown typically in FIGS. 1 and 2, the actuator slot 120 defines a laterally expanded portion formed by a cut-out or laterally extending recess 126 in the first housing portion 30, that is aligned with the actuator 24 when located in the fully-extended position. The cut-out 126 permits the actuator 24 to be pivoted laterally when located in the fully-extended position to, in turn, pivot the catch 28 to release the blade 14. As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, although the pivot point of the actuator 24 is illustrated as being the outermost position of the blade 14, the pivot point may be located at any of numerous other positions of the blade (including both cutting and non-cutting positions of the blade), and/or the knife may define more than one pivot point or actuator location for releasing the blade. The button 70 defines a first manually engagable surface 128 formed on an upper side of the button for moving the actuator 24 axially through the slot 120 between retracted and extended positions. A second manually engagable surface 130 is located on the side wall of the button opposite the cut-out 126 and first body portion 30 of the housing 20 for moving the actuator laterally to, in turn, move the catch 28 to release a blade 14. The actuator 24 further defines a visible marking 132 on the second manually-engagable surface 130 for identifying a location at which force may be applied to laterally pivot the actuator and, in turn, move the catch to release the blade. As can be seen, the first manually-engagable surface 128 defines an inner, substantially convex portion, and outer relatively flat portions located on either side of the inner convex portion. This surface contour facilitates depressing the button 70 with a finger against the force of the spring 112 (FIG. 13) and moving the button backwards and forwards within the slot 120 to, in turn, move the blade carrier 26 and blade 14 between retracted and extended positions. In addition, the second manually-engagable surface 130 defines a substantially concave surface contour to facilitate manually engaging the surface 130 with a finger, and laterally moving the actuator into the cut-out 126 to, in turn, pivotally move the catch 28 to release a blade 14 from the blade carrier 26. As shown in FIGS. 8-10, the spare blade holder assembly 16 includes a mount 134 formed on the first housing portion 30 and extending laterally therefrom. The mount 134 defines an elongated slot 136 and a first protuberance 138 extending laterally into the slot. As shown best in FIG. 14, the spare blade holder assembly 16 further comprises a sheet material spare blade holder 140 defining a mounting portion 142, a blade support portion 144, a first fold 146 formed between the mounting and blade support portions, a blade retaining portion 148 overlying the blade support portion 144 and biased toward the blade support portion, and a second fold 150 formed between the blade support and blade retaining portions. A second protuberance 152 is formed on the opposite side of the mounting portion 142 relative to the blade support portion 144 and projects laterally outwardly therefrom. As shown in FIGS. 8-10, the mounting portion 142 of the sheet material spare blade holder 140 is received within the elongated slot 136 of the mount 134 such that the second protuberance 152 is snapped in place below the first protuberance 138 to secure the sheet material spare blade holder 140 in place. As can be seen, when the mounting portion 142 is received within the mount 134, the mounting portion is oriented substantially perpendicular to the plane of the blade supporting surface 73 of the blade carrier 26 and of a blade 14 seated thereon. As shown typically in FIGS. 8-10, a plurality of spare blades 18 are slidably receivable between the blade support portion 144 and blade retaining portion 148. In the illustrated embodiment, the sheet material spare blade holder 140 is formed of sheet metal, such as a spring steel, and the blade retaining portion 148 is biased inwardly toward the blade support portion 144 to secure the spare blades 18 received therebetween. The spare blade holder 140 is formed by cutting, stamping or otherwise forming a piece of flat sheet material, and then pressing or otherwise folding the flat sheet of material into the illustrated form. However, as my be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the spare blade holder 140 may be made of any of numerous different materials in accordance with any of numerous different methods that are currently or later become known. For example, if desired, the spare blade holder 140 may be formed by molding a suitable plastic into the illustrated shape, or into another desired shape. When the blade carrier 26 is located in the fully-extended position (FIGS. 8-10), the blade 14 may be released by pivoting the second manually-engagable surface 132 of the button 70 away from the blade carrier 26 and within the corresponding cut-out 126 formed in the housing 20. This, in turn, pivotally moves the catch 28 away from the blade carrier 26 and moves the bosses 90 of the catch 28 out of the apertures 94 of the blade. The blade 14 may be removed through the blade aperture 38 in the nose 34 of the housing 20. Then, the same blade 14 may be flipped to present the other side of the cutting edge for use, or a new blade may be installed. In either case, the blade 14 may be inserted through the blade aperture 38 in the nose 34 of the housing 20 and the manually engageable button 70 is simultaneously pivoted to move the bosses 90 of the catch 28 out of the path of the blade. Once the blade 14 is fully inserted, the button 70 is released to allow the torsion spring 86 to bias the bosses 90 of the catch 28 into the corresponding blade apertures 94 to secure the blade 14 to the blade carrier 26. As shown in FIGS. 8-10, the mechanism 22 for releasably fastening the two portions 30, 32 of the housing 20 includes a slidable member 154 that defines the manually operable button 44 and a catch 156 joined thereto. A clip 158 retains the slidable member 154 to the second housing portion 32. A spring (not shown) is coupled to the slidable member 154 to urge the slidable member inwardly (i.e., towards the pivot pin 40 connecting the first and second housing portions 30, 32 together). The mechanism 22 further includes a latch 160 that projects from the first housing portion 30. The latch 160 defines a shape that is substantially complementary to the shape defined by the catch 156. A coil spring 162 is fixedly secured on one end to the second housing portion 32 adjacent to the slidable member 154 and catch 156. A raised protuberance 164 is formed on the first housing portion 30 opposite the spring 162, and an annular seat 166 extends about the periphery of the protuberance. When the housing is in a closed state, the raised protuberance 164 is received within a central aperture of the spring 162, and the outer surface of the spring is seated against the annular seat 166. The operation of the mechanism 22 is as follows. The spring (not shown) biases the slidable member 154 toward an engagement position (e.g., toward the rear of the housing 20) wherein the catch 156 engages the complementary latch 160 to fasten the two portions 30, 32 of the housing together and thereby place the housing in the closed state. The button 44 is manually slidable toward a disengagement position (e.g., toward the front of the housing 20), wherein the catch 156 is disengaged from the latch 160 so that the front ends of the two housing portions 30, 32 may be moved apart from one another to place the housing in an open state. The spring 162 mounted on the second housing portion 32 helps separate the two housing portions 30, 32 upon disengagement. Turning to FIGS. 15-21, another utility knife embodying the present invention is indicated generally by the reference numeral 210. The utility knife 210 is substantially similar to the utility knife 10 described above, and therefore like reference numerals preceded by the numeral “2”, or preceded by the numeral “3” instead of the numeral “1”, are used to indicate like elements. A primary difference of the utility knife 210 in comparison to the utility knife 10 is that the actuator 224 is rotatably mounted on the blade carrier 226, and is rotatable to move the catch 228 out of engagement with a blade 214 to release the blade from the blade carrier. In addition, the housing 220 does not include a nose formed of a different material, and the spare blade holder 216 is different than the spare blade holder described above. As shown in FIGS. 19 and 20, the actuator 224 includes a manually engageable button 270, and a shaft 272 extending downwardly from the button and slidably received within axially spaced lugs 274 formed in the blade carrier 226. A spring 312 is coupled between the shaft 272 of the actuator and the base of the lower lug 274 to bias the actuator outwardly of the housing. The actuator 224 defines a boss 324 that is received within corresponding axially spaced recesses (not shown) formed in the housing 220 under the bias of the spring 312 to prevent relative movement between the blade carrier 226 and housing and thereby fix the longitudinal position of the blade. In order to move the blade between retracted and extended position, the manually engagable button 270 is depressed against the bias of the spring 312 and moved backwards and forwards within the slot 320 of the housing (FIG. 19B). The actuator 224 defines an axially-extending guide portion 325 for guiding movement of the actuator through the housing slot 320. A blade releasing structure 225 extends perpendicularly from the actuator shaft 272. The manually engageable button 270, shaft 272, and blade releasing structure 225 are formed integral with each other as a single molded part. However, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, these portions of the blade releasing structure need not be formed integral with each other, and further, can take any of numerous different forms, and can be formed in any of numerous different ways, that are currently or later become known. The blade releasing structure 225 includes an integral arm 227 extending perpendicularly from the shaft 272, and a blade releasing boss 229 formed at the free end of the arm. The spring-biased catch 228 is fixedly secured at one end to the back side of the blade carrier 226 by a fastener 368, such as a rivet. As shown typically in FIG. 21, the spring-biased catch 228 includes on one end an aperture 370 for receiving therethrough the fastener 368, an integral spring arm portion 372, an actuator boss 374, and a blade-engaging boss 290 spaced axially relative to the actuator boss. As shown in FIG. 18, the actuator boss 374 is received through a first aperture 376 extending through the blade carrier 226, and the blade-engaging boss 290 is received through a second aperture 378 extending through the blade carrier 226 and within a respective u-shaped aperture 294 formed in the blade 214 to releasably secure the blade to the blade carrier. The blade carrier 226 is pinned by a fastener 310 to a longitudinally-extending slot 308 formed in a guide bar 304 mounted to the first portion 230 of the housing 220 to secure the blade carrier to the housing and guide the longitudinal movement thereof. As shown in FIGS. 18 and 19, the blade carrier 226 defines an axially-extending recess 231 for receiving therein an axially-extending guide rib or other guide member (not shown) located on the first housing portion 230 to further guide the longitudinal movement of the blade carrier within the housing. When the blade carrier 226 is located in the fully-extended position, the blade 214 may be released by rotating the manually engageable button 270 slightly (about 3° clockwise when viewed in the direction from the actuator toward the nose of the housing) to, in turn, rotate the guide portion 325 of the actuator within a corresponding cut-out 326 formed in the body (FIG. 19B). This, in turn, causes the boss 229 of the blade release arm 227 to engage the actuator boss 374 of the spring-biased catch 228 and move the catch laterally out of the u-shaped blade aperture 294 to release the blade 214 from the catch. The blade 214 then may be removed through the blade aperture 238 in the nose of the housing 220. Then, the same blade 214 may be flipped to present the other cutting edge for use, or a new blade may be installed. In either case, the blade 214 may be inserted through the blade aperture 238 in the nose of the housing and the manually engageable button 270 is simultaneously pivoted to move the spring-biased catch 228 out of the path of the blade. Once the blade 214 is fully inserted, the button 270 is released to allow the boss 290 of the spring-biased catch 228 to move laterally into the blade aperture 294 and secure the blade 214 to the blade carrier 226. As shown in broken lines in FIG. 19B, the slot 320 may include a portion 320′ extending beyond the cut-out 326 so that the blade is not released in the fully-extended position. However, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the utility knives of the present invention may define any of numerous different blade positions for releasing the blade and/or for cutting. As shown in FIGS. 16 and 17, the spare blade holder 216 includes an approximately rectangular-shaped container defining a closed base 380 fixedly secured to the inner wall of the first housing portion 230, and an open end 382 for receiving therein a plurality of spare blades 318. A leaf spring 320 is seated between a back wall 322 of the spare blade holder and the plurality of blades 318 to bias the blades against a front wall 324 of the holder and thereby secure the blades within the holder. The front wall 324 defines a semi-circular cut-out 326 to facilitate removal of the blades from the holder. As can be seen, the spare blades 318 are oriented substantially perpendicular to the blade 214 mounted on the blade carrier 226, and are contained within the internal cavity 321 when the housing is in a closed state. If desired, the spare blade holder and other components of the utility knives of the present invention may be the same as, or similar to corresponding components described in the commonly assigned U.S. Provisional Patent Application entitled Utility Knife, filed on Nov. 10, 2003, accorded Ser. No. 60/518,690, and incorporated by reference above. In FIG. 22, an alternative utility blade usable with the utility knives of the present invention is indicated generally by the reference numeral 14′. The primary difference of the utility blade 14′ in comparison to the utility blade 14 described above, is that the utility blade 14′ defines in its upper edge two inner notches or u-shaped apertures 94 and two outer notches or u-shaped apertures 95. Accordingly, each side of the blade defines two cutting positions, a first cutting position with the blade-engaging bosses 90 received within the two inner notches 94, and a second cutting position with the blade-engaging bosses 90 received within one inner notch 94 and a respective outer notch 95. In the illustrated embodiment, when the blade 14′ is located in the first cutting position, about 45% of the cutting edge extends outwardly of the blade aperture 38 and is exposed for cutting in the fully-extended position of the carrier. In the second cutting position, on the other hand, a greater portion of the cutting edge extends outwardly of the blade aperture 38 in comparison to the first cutting position. In the illustrated embodiment, in the second cutting position, about 55% of the cutting edge extends outwardly of the blade aperture 38 and is exposed for cutting in the fully-extended position of the carrier. If desired, the blades 14 and 14′ may be any of the different types of composite utility blades disclosed in the following patent and co-pending patent applications, which are assigned to the Assignee of the present invention and are hereby expressly incorporated by reference as part of the present disclosure: U.S. Pat. No. 6,701,627 issued Mar. 9, 2004, entitled “COMPOSITE UTILITY KNIFE BLADE AND METHOD OF MAKING SUCH A BLADE”; U.S. patent application Ser. No. 10/202,703 filed Jul. 24, 2002, entitled “COMPOSITE UTILITY KNIFE BLADE AND METHOD OF MAKING SUCH A BLADE”; and U.S. patent application Ser. No. 10/793,593 filed Mar. 4, 2004, entitled “COMPOSITE UTILITY BLADE AND METHOD OF MAKING SUCH A BLADE”. One advantage of such composite utility blades is that they are bendable and virtually shatter-proof. As a result, such blades are particularly well suited to defining four notches 94, 95, as opposed to only two notches as in conventional utility blades, because when located in the fully extended, second cutting position, such blades can be subjected to relatively high lateral forces and bending without shattering or otherwise breaking. In one or more embodiments of the utility knives of the present invention, the nose 34 may be physical vapor deposition (“PVD”) coated to further improve its durability, wear resistance and corrosion resistance, and if desired, to provide an aesthetically pleasing appearance. In one such embodiment, the nose 34 is PVD coated with titanium nitride (“TiN”) in a manner known to those of ordinary skill in the pertinent art prior to assembling the nose 34 to the rear housing portion 36 as described above. One advantage of the TiN coated nose portion is that it provides greater wear resistance and corrosion resistance in comparison to a nose portion without any such coating. As indicated above, the nose 34 is located adjacent to the blade 14, and therefore frictionally engages during use the work pieces or other surfaces being cut. Accordingly, the nose portions of utility knives tend to wear more rapidly, and/or tend to be subject to more corrosive agents, than other portions of such knives. Accordingly, another advantage of the PVD coated nose portion is that the coating preferably is applied only to the portion or part of the utility knife most subject to wear or corrosion, which in the illustrated embodiment is the nose portion. Preferably, the nose 34 is PVD coated prior to assembling the nose to the rear housing portion 36. As a result, the amount of coating required is minimized, and the coating process is simplified in comparison to coating the nose 34 only after it is assembled to the rear housing portion 36. As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, numerous changes may be made to the above-described and other embodiments of the present invention without departing from the scope of the invention as defined in the appended claims. For example, numerous different types of coatings may be employed to coat the nose or other portions of the utility knife, including carbide coatings, nitride coatings, and combinations thereof. Coatings intended to reduce the rate of wear of the nose portion may comprise, for example, any suitable material(s) including but not limited to titanium nitride (TiN), chrome nitride (CrN), titanium carbide (TiC), ceramic(s), titanium carbonitride (TiCN), Aluminum Titanium Nitride (AlTiN), Aluminum Titanium Carbonitride (AlTiCN), Zirconium Nitride (ZrN), Zirconium Carbonitride (ZrCN), and/or combinations thereof. In one exemplary embodiment, the nose portion is coated with an inner layer of AlTiN and an outer layer of TiN for a gold-colored appearance. The AlTiN coatings are applied to the nose portion in a thickness within the range of about 3 micrometers to about 5 micrometers. In the embodiment employing an inner coating of AlTiN and out outer coating of TiN, the outer coater is thinner than the inner coating. In one such embodiment, the AlTiN coating is applied so as to provide a gradient (linear or otherwise) such that the concentration of aluminum increases from a first lesser concentration at the substrate surface to a second greater concentration at the outer surface of the coating. One advantage of this configuration is that the higher concentration of titanium at the substrate/coating interface facilitates adhesion of the coating to the substrate. As indicated above, the coating(s) may be provided using physical vapor deposition (PVD). Physical vapor deposition may be carried out in any suitable manner including but not limited to using cathodic arc deposition, thermal/electron beam deposition, and/or sputter deposition. However, coatings also may be provided by other methods. Indeed, coatings may be provided using any suitable manner including but not limited to painting, spraying, brushing, dipping, plating (electroplating or electro-less plating), physical and/or chemical vapor deposition, or any combination thereof. Powder coatings and e-coatings, and/or combinations of any of the above, also may be employed. Although the housing is shown having two separate portions that are pivotally connected to one another, this is not a requirement. For example, the housing may be formed of any number of separate portions. Such portions may be connected in any manner, completely separable from one another, and/or combinations thereof. As stated above, there is no requirement for, or against, all portions of the housing being formed of the same type of material. Thus, for example, one portion of the housing may be made of a material that is more wear resistant than another portion, for example, in order to increase the durability of some portion(s). Although shown attached to the blade carrier which is, in turn, attached to the housing, the mechanism for releasably retaining the blade need not be retained to the housing and/or prevented from becoming separated from the housing when the housing is in the opened state. Furthermore, although the blades illustrated herein define a trapezoidal shape, each of the various aspects of the present invention may be used in association with blade(s) of any shape and type, for example, but not limited to, blades that define rectangular or parallelogram shapes, blades with squared, rounded or oblique cutting corners, and combinations thereof. In addition, although the notches in the blades are shown as approximately semi-circular, the notches are not limited to such. For example, a notch may take other shapes and/or configurations in the same or other locations on the blade. In addition, although the blades are shown having two notches, a blade may alternatively have one notch, no notches, or more than two notches. Further, the actuator may be configured in any of numerous different ways, and may move in any of numerous different ways, that are currently or later become known for purposes of moving the blade carrier and blade between retracted and extended positions, and for releasing a blade from the blade carrier. Thus, while there have been shown and described various embodiments, it will be understood by those skilled in the art that the present invention is not limited to such embodiments, which have been presented by way of example only, and that various changes and modifications may be made without departing from the spirit and scope of the invention. Accordingly, the invention is limited only by the appended claims and equivalents thereto.
<SOH> BACKGROUND INFORMATION <EOH>Utility knives generally include a handle and at least one replaceable blade. Because such blades are known to become worn or damaged, utility knife handles generally include provisions to allow a blade to be removed from the handle, so that the blade may be reversed in the handle (in order to provide a new cutting edge for the knife) and/or replaced by another blade. In the case of many utility knives, the removal of a worn or damaged blade requires that the handle first be opened to gain access to the internal cavity inside the handle. However, because it is sometimes inconvenient to open the handle, some utility knives provide mechanisms that allow a blade to be removed without any need for first opening the handle. Such mechanisms often make use of a releasable catch that engages the replaceable blade within the handle, along with a manually operable mechanism for causing the releasable catch to disengage from the blade. Most of these mechanisms allow a worn or damaged blade to be removed through a blade opening at the front end of the handle. These and other types of mechanisms require an additional actuator, such as a button and associated hardware mounted in a side wall of the housing, that is depressed in order to cause the releasable catch to disengage from the blade. Thus, such retractable blade utility knives require at least two actuators, one to move the blade and blade carrier between retracted and extended positions, and another to release the blade when located in an extended position. In addition, notwithstanding the availability of such mechanisms, there are still occasions in which a handle must be opened, for example, in order to retrieve a spare blade that may be stored inside the handle or to perform repair or maintenance inside the handle. Unfortunately, upon opening the handle, many of the above-mentioned mechanisms can fall out and become separated from the handle, thereby rendering the mechanism unusable. As with blades, handles also can become worn or damaged due to demanding operating conditions, such as in the course of regular use in cutting asphalt roof tiles. Consequently, utility knife handles are sometimes formed of metal (e.g., steel) to provide durability. However, even knives with steel handles continue to become worn and/or damaged frequently, on account of such operating conditions. Accordingly, it is an object of the present invention to overcome one or more of the above-described drawbacks or disadvantages of the prior art.
<SOH> SUMMARY OF THE INVENTION <EOH>In accordance with a first aspect, the present invention is directed to a utility knife comprising a housing, and a blade carrier movably mounted on the housing and including a blade supporting surface for supporting a blade. The blade carrier is movable between a retracted position with at least a substantial portion of the blade retracted in the housing, and at least one extended position with at least a portion of the blade extending outwardly of the housing. A catch is movable between a first position engagable with a blade located on the blade carrier and substantially preventing relative movement of the blade and blade carrier, and a second position spaced away from a blade located on the blade carrier and permitting removal of the blade from the blade carrier. An actuator is mounted on the blade carrier and operable to (1) move the blade carrier between the retracted and extended positions to, in turn, move a blade located on the blade carrier between retracted and extended positions, and (2) move the catch between the first and second positions to release a blade from the blade carrier. In one embodiment of the present invention, the actuator is pivotally mounted on the blade carrier and is movable laterally to move the catch between the first and second positions. In another embodiment of the present invention, the actuator is rotatably mounted on the blade carrier and is rotatable to move the catch between the first and second positions. In some embodiments of the present invention, the housing includes a first portion formed of a first material, and a second portion formed of a second material and coupled to the first portion. The second portion defines a nose, and a blade aperture for receiving a blade therethrough when the blade carrier is located in the extended position, and for removing a blade therethrough when the catch is located in the second position. In one embodiment of the present invention, the second material is more wear-resistant than the first material. In some embodiments of the present invention, the utility knife includes a spare blade holder formed of sheet material, such as spring steel. The sheet material spare blade holder defines a mounting portion connectable to the housing for supporting the spare blade holder thereon, a blade support portion, a first fold located between the mounting and blade support portions, a blade retaining portion overlying the blade support portion and biased toward the blade support portion, and a second fold formed between the blade support and blade retaining portions. A plurality of spare blades are slidably receivable between the blade support and blade retaining portions. In some embodiments of the present invention, the utility knife further comprises an axially-elongated surface defining an axially-elongated slot, and a fastener coupled between the blade carrier and slot for guiding movement of the blade carrier between retracted and extended positions. In one embodiment of the present invention, the axially-elongated surface is defined by a bar fixedly secured to an interior surface of the housing and forming therein the axially-elongated slot. In this embodiment, the blade carrier may define an axially-elongated boss received within the slot for guiding movement of the carrier through the slot. In some embodiments of the present invention, the actuator defines a first manually-engagable surface for moving the actuator between the retracted and extended positions, and a second manually-engagable surface for moving the actuator to, in turn, move the catch. In one embodiment, the first manually-engagable surface is an upper surface of the actuator, and the second manually-engagable surface is a side surface of the actuator. If desired, the actuator may define a visible marking or like means on the second manually-engagable surface for identifying a location at which force may be applied to move the actuator and, in turn, move the catch from the first toward the second position. In accordance with another aspect, the present invention is directed to a utility knife comprising a housing defining a blade aperture, and first means for carrying a blade between retracted and extended positions. The utility knife further includes second means movable between a first position for substantially preventing relative movement of the first means and a blade, and a second position for releasing the blade and permitting removal of the blade through the blade aperture of the housing. The utility knife further includes third means mounted on the first means for (1) moving the first means between retracted and extended positions to, in turn, move a blade mounted on the first means between retracted and extended positions, and (2) moving the second means in a direction from the first toward the second position to permit removal of the blade through the blade aperture of the housing. In one embodiment of the present invention, the first means is a blade carrier, the second means is a catch, and the third means is an actuator. Preferably, the actuator is either (1) movable laterally for moving the second means between the first and second positions, or (2) rotatable for moving the second means between the first and second positions. In accordance with another aspect, the present invention is directed to a method of carrying a blade in a utility knife and releasing a blade therefrom. The method comprises the following steps: (i) providing a utility knife having a housing defining a blade aperture, a blade carrier movably mounted on the housing, a catch movably mounted on the blade carrier, and an actuator mounted on the blade carrier and operable to move the blade carrier and catch; (ii) mounting a blade on the blade carrier; (iii) moving the actuator between retracted and extended positions to, in turn, move the blade mounted on the blade carrier between retracted and extended positions; and (iv) moving the actuator to, in turn, move the catch between a first position substantially preventing relative movement of the blade carrier and blade, and a second position releasing the blade and permitting the blade to be removed through the blade aperture. In one embodiment of the present invention, the method further comprises the steps of: moving the actuator and blade carrier to an extended position; with the blade carrier in the extended position, moving the actuator and, in turn, moving the catch from the first to the second position; and with the catch located in the second position, removing the blade from the blade carrier and through the blade aperture. Preferably, the method further comprises the step of either pivoting the actuator laterally to move the catch from the first to the second position, or rotating the actuator to move the catch from the first to the second position. One advantage of the present invention is that a single actuator can be used to both move the blade carrier and blade between retracted and extended positions, and to move the catch to, in turn, release the blade from the blade carrier. As a result, the utility knives of the present invention may avoid the need for a separate button or like actuator for releasing a blade, and the associated hardware that may be required to secure such extra button or like actuator to a side wall of the housing. Another advantage of one currently preferred embodiment of the present invention is that the nose portion of the housing is formed of a more wear-resistant material than other portions of the housing, thus providing a more durable and long-lasting housing. Yet another advantage of the currently preferred embodiments of the present invention is that the bar or like member defining an elongated slot both guides the blade carrier between the retracted and extended positions, and secures the blade carrier to the housing to thereby prevent the blade carrier and components mounted thereto from falling out upon opening the housing. These and other advantages will become more readily apparent in view of the following detailed description of the currently preferred embodiments of the present invention and accompanying drawings.
20041109
20061107
20050901
70277.0
1
PAYER, HWEI-SIU C
UTILITY KNIFE WITH ACTUATOR FOR MOVING BLADE CARRIER AND FOR RELEASING BLADE THEREFROM, AND RELATED METHOD
UNDISCOUNTED
0
ACCEPTED
2,004
10,985,218
ACCEPTED
Longitudinally displaced shifter
The present invention provides a shifter apparatus for a manual transmission. More specifically, a shifter apparatus constructed and arranged for variable longitudinal displacement along the longitudinal centerline of the vehicle. Even more specifically, the instant invention provides a shifter body assembly that is flexibly coupled at a first end to the vehicle body and flexibly coupled at a second end to a portion of the transmission housing via a structural connecting link. The connecting link may include various fixed or adjustable lengths to allow the shifter displacement.
1. In a vehicle drive-line, wherein said drive-line includes a manual transmission and an Original Equipment Manufacturer (OEM) shifter for operator controlled manipulation of said manual transmission, a shifter kit comprising: a shifter assembly for replacing said OEM shifter, said shifter assembly including a shifter body assembly for operator controlled manipulation of said manual transmission and a structural connecting link for displacing said shifter body with respect to said manual transmission substantially along the longitudinal centerline of said vehicle, wherein said shifter body assembly is constructed and arranged for flexible connection to a vehicle body at a first end of said shifter assembly and wherein said connecting link is constructed and arranged for flexible connection to said manual transmission at a second end of said shifter assembly, wherein said shifter body assembly is displaced a predetermined distance with respect to said manual transmission substantially along the longitudinal centerline of said vehicle. 2. The shifter kit as set forth in claim 1 wherein said connecting link is removably and replaceably secured to said shifter body assembly, wherein said connector link has a predetermined length for providing predetermined shifter body displacement with respect to said manual transmission. 3. The shifter kit as set forth in claim 1 wherein said connecting link is removably and replaceably secured to said shifter body assembly, wherein said connector link has an adjustable length for providing adjustable shifter body displacement within a predetermined range with respect to said manual transmission. 4. The shifter kit as set forth in claim 1 wherein said connecting link includes a first end, a center portion and a second end, wherein said first end is constructed and arranged for removable securement to said shifter body assembly, wherein said second end is constructed and arranged for flexible attachment to said manual transmission, wherein said center portion establishes said shifter assembly displacement with respect to said manual transmission. 5. The shifter kit as set forth in claim 4 wherein said second end of said connector link includes a first bore extending substantially transverse with respect to said center portion, said first bore including a resilient bushing constructed and arranged to permit articulation of said shifter assembly with respect to said manual transmission. 6. The shifter kit as set forth in claim 4 wherein said first end of said connector link includes at least one aperture constructed and arranged to receive at least one fastener for attaching said connector link to said shifter body assembly. 7. The shifter kit as set forth in claim 1 wherein said shifter body assembly includes a shifter body, a shift lever and a stop plate, wherein said shifter lever is pivotally mounted and self-centering within said shifter body having a first end portion extending upwardly above said shifter body for operator manipulation of said shifter lever and a second portion extending downwardly below said shifter body for connection to a shifter linkage, wherein said stop plate is constructed and arranged to cooperate with said shift lever to limit pivotal travel of said shift lever. 8. The shifter kit as set forth in claim 7 wherein said first end portion of said shift lever is constructed and arranged to cooperate with a removable and replaceable shift handle, wherein said shift handle may include one or more offsets for ergonomic placement of a shift knob. 9. The shifter kit as set forth in claim 7 wherein said shifter lever includes an integrally formed spherical bearing positioned between said first end and said second end portions of said shift lever, said spherical bearing constructed and arranged to cooperate with said contoured cavity within said shifter body to allow pivotal operator manipulation of said shift lever. 10. The shifter kit as set forth in claim 9 wherein said spherical bearing including a transverse bore for accepting a pin member, wherein said pin member extends outwardly from both sides of said spherical bearing, wherein said outwardly extending portions of said pin member each cooperate with a spring member positioned within said contoured shifter body cavity to center said shift lever. 11. The shifter kit as set forth in claim 9 wherein said second end portion of said shift lever includes a transverse bore for connection to said shifter linkage, wherein said transverse bore includes a centerline axis, wherein said centerline axis is spaced from about 1.8 inches below the center of said spherical bearing to about 2.2 inches below the center of said spherical bearing; whereby said shifter provides high ratio short throw shifting of said manual transmission. 12. The shifter kit as set forth in claim 9 wherein said second end portion of said shift lever includes a transverse bore for connection to said shifter linkage, wherein said transverse bore includes a centerline axis, wherein said centerline axis is positioned about 1.9 inches below the center of said spherical bearing; whereby said shifter provides high ratio short throw shifting of said manual transmission. 13. The shifter kit as set forth in claim 7 wherein said stop plate is constructed and arranged to attach to an upper surface of said shifter body, wherein said stop plate includes a forward motion stop for controlling forward shift lever motion and a rearward motion stop for controlling rearward shift lever motion; whereby said forward motion stop and said rearward motion stop cooperate with said shifter lever to provide positive shifter lever stops during shift lever manipulations to reduce stress on transmission components. 14. The shifter kit as set forth in claim 13 wherein said forward motion stop includes a first stop member, said first stop member including a top surface and a threaded stem, wherein said threaded stem is constructed and arranged to threadably engage said stop plate at a forward portion thereof, wherein said top surface cooperates with said shift lever to control forward shift lever motion, wherein said rearward motion stop includes a second stop member, said second stop member including a top surface and a threaded stem, wherein said threaded stem is constructed and arranged to threadably engage said stop plate at a rearward portion thereof, wherein said top surface cooperates with said shift lever to control rearward shift lever motion. 15. The shifter kit as set forth in claim 1 wherein said shifter body includes at least one outwardly extending tab, wherein said at least one outwardly extending tab is constructed and arranged to include a resilient member for permitting articulation of said shifter assembly with respect to said vehicle body, wherein said resilient member includes a central bore constructed and arranged to receive a fastener for securing said first end of said shifter assembly to said vehicle body. 16. The shifter kit as set forth in claim 15 wherein said resilient member is constructed of rubber. 17. The shifter kit as set forth in claim 15 wherein said resilient member is constructed of urethane. 18. The shifter kit as set forth in claim 15 wherein said resilient member central bore is constructed and arranged to receive a tubular metal sleeve, wherein said tubular metal sleeve includes a central bore constructed and arranged to receive a bolt for securing said metal sleeve within said resilient member, wherein said tubular metal sleeve includes at least one tab rigidly secured thereto, wherein said at least one tab is constructed and arranged for attachment to said vehicle body. 19. The shifter kit as set forth in claim 1 wherein said shifter body and said connecting link are constructed of aluminum. 20. The shifter kit as set forth in claim 4 wherein said second end of said connection link includes an internal threaded bore for cooperation with a spherical bearing, wherein said spherical bearing includes an elongated threaded stem, wherein said spherical bearing is rotatable to adjust the length of said connecting link, whereby placement of said shifter body is adjustable within a predetermined range with respect to said manual transmission.
FIELD OF THE INVENTION The present invention relates to a gear shifter for controlling operation of a manual vehicle transmission, more particularly, the invention relates to a longitudinally displaced gear shifter having a structural connecting link to control shifter displacement with respect to the transmission. BACKGROUND OF THE INVENTION Transmission shifters are conventionally utilized to provide manual actuation for shifting a transmission between different gears to control the driving torque delivered from a vehicle engine to the wheels. Vehicles with multi-speed gear ratio transmissions frequently employ a gear selector system having a pivoting selector lever operatively connected directly, or via linkage, to the transmission and moved by a driver to select a desired operational mode of the transmission. While numerous transmission shifting devices are currently available, the linkage utilized to translate gear selections from the driver to the transmission can be broken into two broad categories, either internal linkage or external linkage. Internal linkage transmissions generally utilize a tower mount and a drop-in type shifter. The transmission housing includes an upward standing tower portion which may be integrally formed or removably mounted to the transmission housing. The drop-in shifter assembly includes a lower plate tranversly oriented with respect to the shifter lever that bolts directly to the top surface of the housing tower to become an integral part of the transmission housing. The shifter lever is pivotally mounted within the central portion of the lower plate with a portion of the lever extending upward above the plate and a portion of the lever extending downward below the plate. The portion of the shift lever extending downward cooperates with the internal transmission linkage and the portion of the lever extending upward is utilized by the driver to manipulate the internal linkage. Currently, drop-in shifters are the most common type of shifting mechanism utilized in automobiles that include manual transmissions. Despite the relatively common use of drop-in shifters, they include several drawbacks that have not been adequately addressed by the prior art. One such drawback relates to shifter positioning. The fixed positioning associated with drop-in shifters often results in a shift handle position that is uncomfortable or awkward for the driver. The fixed handle position is difficult to modify without extensive modification of the vehicle or shifter assembly. Another drawback associated with drop-in type shifters relates to sealing the shifter mechanism to prevent the fluid within the transmission from loss or contamination. Drop-in shift levers must include pivot points to allow the driver to manipulate the shifter and thus the transmission. The pivot points must remain lubricated for proper operation, yet they are difficult to seal and often allow fluid loss or contamination. Contaminated or lost fluid causes premature failure of the transmission components. External linkage transmissions generally include complex mounting methods that are adapted to secure the shifter directly to the side or top of the transmission case. Linkage or cables are utilized to connect the shifter to multiple external levers which extend through the transmission case for manipulating the internal components. The method of mounting external linkage shifters generally includes complex metal stampings and a plurality of spacers. The stampings and spacers are assembled and secured to the transmission case with fasteners, and linkage or cables are thereafter adapted to extend between the shifter and the transmission. External linkage shifters also suffer from numerous drawbacks that have not been adequately addressed by the prior art. One such drawback relates to the method of attaching the shifter to the transmission. The stampings and spacer combinations are complex in nature, resulting in high production costs and difficult installation. Repositioning of the shifter requires custom adapter plates and linkage which further complicates the construction. In addition, the assemblies must be adapted to attach to multiple transmission configurations within multiple vehicle configurations. This often results in a shifter that functions inadequately or unreliably. Another drawback associated with external linkage transmissions relates to utilization of cables to transfer motion from the shifter to the transmission. Cables are prone to breakage and transfer a poor tactile sensation to the driver. The poor tactile sensation makes it difficult for a driver to feel when the shift has been properly executed and may cause unsafe conditions. Other methods of transferring motion from a shifter to a transmission include complex electronic controllers for the operation of solenoids, hydraulics or pneumatics. Solenoids, pneumatics and hydraulics do not transfer any tactile sensations to the driver and are generally unreliable due to their complexity. Accordingly, what is lacking in the art is a longitudinally displaceable shifter for vehicles with manual transmissions. The shifter should achieve objectives such as providing: construction flexibility that allows variable placement along the longitudinal centerline of the vehicle for installation within various vehicle configurations, including retrofitting existing vehicles with minimal modification of the transmission or vehicle. The shifter should include construction that permits reduced shifter lever throw, rigid linkage connection to the transmission, and reliable performance. The shifter should facilitate shifter lever interchangeability to suit particular driver needs. DESCRIPTION OF THE PRIOR ART A number of prior art shifter mechanisms exist for use with manual transmissions. Some of the shifting mechanisms are utilized in conjunction with internal linkage transmissions while others are utilized with external linkage transmissions. Many of the devices include solenoids, pneumatics or hydraulics to assist in the shifting operation; however, none permit adjustable longitudinal displacement of the shifter to suit a particular driver or a particular driving style. U.S. Pat. No. 4,581,951 teaches a transmission shifter for controlling a manual transmission. The shifter includes a pair of independent spring biasers mounted within a housing to bias an operating member of the shifter and respectively control lateral movement of the operating member in opposite lateral directions independently of each other. Each spring biaser preferably includes at least one helical spring for providing the biasing with the lateral bias of one spring biaser greater than that of the other. U.S. Pat. No. 4,515,032 teaches a drop in type shifter for offsetting a shifter to the side of an internal linkage manual transmission. The shifter includes an elongated base, a shift stick mounted in the base for multi-axis movement and a depending gear actuating lever. An elongated rail is supported on the base by spaced bearings for rotational and lateral shifting movements. The elongated base is secured to the side of the transmission housing with a plurality of brace members and the depending gear actuating lever cooperates with the transmission in the same fashion as a drop-in shifter. U.S. Pat. No. 6,722,219 teaches a motor vehicle transmission that is shiftable in a track pattern with a selector track and shift tracks. A shifter element moves along the tracks when the transmission is shifted from one gear ratio to another. The shifts are directed by a control device sending command signals to an actuator device which, in turn, applies an actuating force to the transmission. A main position-detecting device detects the position of the shifter element relative to the selector track and shift tracks, and a redundant position-detecting device performs an additional, redundant determination of the shifter-element position. U.S. Pat. No. 6,718,842 teaches a shift lever unit for transforming the tilting movements of a shift lever into electrical control signals, in particular for controlling a gearbox. The unit includes a shift lever and a rotating element which is rotated by the tilting movements of the shift lever and a sensor for detecting the angular position of the rotating element and transforming it into electrical signals. U.S. Pat. No. 6,349,609 teaches an apparatus and method for converting an internal-linkage type of a transfer case from single lever to dual lever control. The apparatus includes a sleeve that is adapted for placement into a housing of the transfer case. The first and the second control levers are each adapted to cooperate with a member in the transfer case sufficient for the first arm to select either a two or a four wheel drive mode and for the second arm to select either a high or a low gear range when the first and second arms are pivoted about an axis. U.S. Pat. No. 6,569,058 teaches a linearly moveable gear selector system for controlling operation of a vehicle drivetrain component. The gear selector system is coupled to a transmission and/or transfer case unit and is configured to shift the drivetrain component into a desired mode of operation. The gear selector system includes a selector lever that is movable by an operator in a linear direction parallel to a lengthwise axis of the vehicle. The selector system includes a slidable guide shaft that produces a linear motion linked to the drivetrain component that is proportion in magnitude and direction as that of selector lever. U.S. Pat. No. 6,792,821 teaches a shifting device for operating the shift lever of a transmission equipped with a synchronizing mechanism in the direction of shift, which comprises a shift actuator for operating the shift lever in the direction of shift, a shift stroke sensor for detecting the shift stroke position of said shift lever, and a control means for controlling the electric power fed to said shift actuator based on a signal from said shift stroke sensor. The control means controls the electric power fed to the shift actuator in response to the shift stroke position detected by the shift stroke sensor. U.S. Pat. No. 6,761,081 teaches a shifting device for shifting between different operating states of a motor vehicle transmission. A gearshift lever is mounted movably in a bracket for movement along two axis. A signal transmitter is provided for sending a transmitter signal, and three sensors are arranged at spaced locations from the signal transmitter and in the form of a triangle for detecting the transmitter signal. The sensors and the signal transmitter can be moved in relation to one another by the gearshift lever, and electric signals characterizing the particular shift position are sent by the sensors at least indirectly to an evaluating device by which the transmission can be put into different operating states as a function of the electric signals. U.S. Pat. No. 6,739,211 teaches a shift actuator for a transmission, comprising an operation rod that engages with an operation member coupled to the shift lever of the transmission, a magnetic moving means arranged on the outer peripheral surface of said operation rod, a cylindrical fixed yoke surrounding said magnetic moving means, and a pair of coils arranged side by side in the axial direction inside said fixed yoke, wherein magnetic members are arranged on both sides of said pair of coils. U.S. Pat. No. 6,722,218 teaches a motor vehicle transmission shiftable in a track pattern with a selector track and shift tracks. A shifter element moves along the tracks when the transmission is shifted from one gear ratio to another. The shifts are directed by a control device sending command signals to an actuator device which, in turn, applies an actuating force to the transmission. U.S. Pat. No. 6,295,884 teaches an automatic speed-change control apparatus which automatically drives an actuator mechanism in a manual gear transmission. The apparatus includes an operating mechanism for controlling the operation of the actuators, a detecting mechanism for judging a speed-change timing and detecting the degree of accelerator depression, a calculating mechanism for calculating an operating factor corresponding to the degree of accelerator depression detected by the detecting mechanism to set a drive amount to the actuator so that the actuator operates by the calculated operate factor, and a command mechanism for supplying the drive amount to the actuator calculated by the calculating means and giving an operating command to the actuator. U.S. Pat. No. 6,637,281 teaches a shift-assisting device for a transmission. An electric motor operates a shifting mechanism in the same direction as the direction in which a speed-change lever is shifted. The shifting mechanism is coupled to the speed-change lever to actuate a synchronizing mechanism of the transmission. The shift-assisting device for a transmission includes a shift stroke sensor for detecting a shift stroke position of the shifting mechanism and a controller for outputting a control signal corresponding to the shift stroke position to the electric motor based on a signal detected by the shift stroke sensor. U.S. Pat. No. 6,695,745 teaches a gear shift device for a vehicle with a manually operated gearbox and a gear shift device for operating the gearbox. The gear shift device comprises a gear lever, a master cylinder and a slave cylinder, which are connected to the gearbox. A hydraulic line connects the cylinders with each other. The gear shift device also comprises a computer which can receive information concerning an initiated gear shift operation, establish the value of a torque which is exerted on a drive shaft between the vehicle's engine and the gearbox, and control the engine's power. In the hydraulic line there is mounted a shut-off valve and the computer is arranged to transmit impulses for controlling the shut-off valve based on the received information. U.S. Pat. No. 6,705,175 teaches a device for controlling a gearshift which has a first pressure medium chamber and a second pressure medium chamber which are separated from each other by a piston. Pressure chambers are selectively connectable to a pressure medium source or to a pressure medium sink or can be closed off against both as a function of the output signals of an electrical control system. A pressure sensing device is installed between the pressure medium inputs of the two valve systems and the pressure medium outlet of the third valve system by which the pressure in each one of the pressure medium chambers of the gearshift can be measured or by which the pressure of the pressure medium source, i.e. the supply pressure, can be monitored. The electrical control system is designed in such manner that the actuation of at least one of the valve systems can be rendered dependent on at least the signals of the pressure sensing device, so that the gearshifting force and also the gearshifting speed of the gearshift can be controlled as a function of pressure. As disclosed, the above devices fail to teach or suggest a manually operated shifting apparatus capable of variable displaced positioning along the longitudinal centerline of the vehicle. The prior art is also deficient in teaching a shifter apparatus which connects to the transmission housing as well as the vehicle body for increased rigidity and reliable performance. The prior art is also deficient in teaching a displaced shifter capable of high ratio/short throw shift lever motion for high performance and/or racing vehicle applications. The prior art is also deficient in teaching a displaced shifter apparatus which incorporates a removable/replaceable shift handle, wherein the shift handle may be customized for ergonomics and/or specific applications. SUMMARY OF THE INVENTION The present invention provides a shifter apparatus for a manual transmission. More specifically a shifter apparatus constructed and arranged for variable longitudinal displacement along the longitudinal centerline of the vehicle. Even more specifically, the instant invention provides a shifter body assembly that is flexibly coupled at a first end to the vehicle body and flexibly coupled at a second end to a portion of the transmission housing via a structural connecting link. In one embodiment the connecting link is constructed to be removable and replaceable, wherein the length of the connecting link may be manufactured to suit a particular application. In an alternative embodiment the connecting link may be constructed and arranged to be adjustable in length to suit various applications within a predetermined range. The shifter apparatus may be provided as an original equipment manufacturer (OEM) part or may be supplied as a kit that replaces the OEM supplied shifter. The shifter lever includes an integrally formed spherical bearing pivotally mounted and self-centering within the shifter body. The shifter lever includes a portion extending upwardly to cooperate with an interchangeable shift handle and a portion extending downward to cooperate with a rigid linkage that extends to the transmission. The spherical bearing may be positioned along the shifter lever in various positions to cause various shifting ratios but preferably is positioned for short throw shifting. The shifter body assembly includes a stop plate that cooperates with the shifter lever to provide positive shifter lever stops during gear changes to reduce stress on transmission components. The shifter body assembly and the connecting link are preferably constructed from a lightweight material such as aluminum to reduce the overall weight of the vehicle. In addition, the side surfaces of the connecting link are constructed to include contoured inwardly extending cavities which leave a central structural web. This construction provides superior bending and torsional rigidity while further reducing the weight of the shifter apparatus. Accordingly, it is an objective of the present invention to provide a displaced shifter for vehicles with a manual transmission. An additional objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission which reduces shifter lever throw for faster transmission gear changes. It is a further objective of the present invention to provide a displaced shifter for vehicles with a manual transmission that provides positive shifter lever stops to reduce stress on transmission components. A still further objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission that is constructed from billet aluminum to provide a lightweight assembly having additional bending and torsional rigidity when compared to the prior art. Another objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission which is simple to install and which is ideally suited for original equipment or may be supplied as a kit for aftermarket installations. Yet another objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission that is simple and reliable in operation. Still another objective of this invention is to provide a displaced shifter for vehicles with a manual transmission that includes a removable and replaceable connector link for variable shifter displacement. Still yet another objective of the instant invention is to provide a displaced shifter for vehicles with a manual transmission wherein each end of the shifter includes a thru-bore adapted to accept a rubber or urethane bushing for attachment to the transmission and the vehicle body, thereby increasing rigidity and reliability. Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a perspective view illustrating an internal linkage transmission equipped with a tower mount and a drop-in shifter; FIG. 2 is a perspective view illustrating an external linkage transmission equipped with a side mounted shifter; FIG. 3 is a perspective view illustrating the displaced shifter of the instant invention secured to a manual transmission; FIG. 4 is a perspective view illustrating the displaced shifter of the instant invention; FIG. 5 is an exploded view of the instant displaced shifter; FIG. 6 is a partial view illustrating an alternative connecting link embodiment; FIG. 7 is a section view of the connecting link taken along lines 1-1 of FIG. 6; FIG. 8 is a plan view of the preferred shift lever embodiment. DETAILED DESCRIPTION OF THE INVENTION Although the invention is described in terms of a preferred specific embodiment, it will be readily apparent to those skilled in this art that various modifications, rearrangements and substitutions can be made without departing from the spirit of the invention. The scope of the invention is defined by the claims appended hereto. Referring to FIG. 1, a prior art internal linkage transmission 10 utilizing a shifter tower mount 12 and a drop-in type shifter 14 is shown. The transmission housing 16 includes an shifter tower 12 which may be integrally formed or removably mounted to the transmission housing 16. The drop-in shifter 14 includes a lower plate 18 transversely oriented with respect to the shifter lever 20. The shifter lever 20 is pivotally mounted within the central portion of the lower plate 18 with a portion of the lever extending upward above the plate and a portion of the lever extending downward below the plate. The lower plate 18 bolts directly to the top surface 22 of the shifter tower 12 to become an integral part of the transmission housing 16. The portion of the shift lever extending downward cooperates with the internal transmission linkage 24 and the portion of the lever extending upward is utilized by the driver to manipulate the internal linkage. Referring to FIG. 2, a prior art external linkage transmission 24 utilizing an external linkage shifter 26 mounted directly to the side of the transmission case 28 is illustrated. Complex metal stampings 36 and a plurality of spacers 38 are assembled and secured to the transmission case 28 with fasteners 40. Linkage 30 or cables are utilized to connect the shifter 26 to multiple external levers 32 which extend through the transmission case 28 for manipulating the internal components. Referring to FIGS. 3 through 5 perspective and exploded views of the instant shifter assembly 100 are illustrated. The instant invention provides a shifter assembly 100 which may be supplied as original equipment or in the form of a kit which replaces the drop-in shifters 14 and external linkage shifters 26 of the prior art. The shifter assembly 100 comprises a body assembly 102 for operator controlled manipulation of a manual transmission 104 and a structural connecting link 106 for displacing the shifter body 102 with respect to the manual transmission 104. The connecting link 106 allows the shifter body 102 to be positioned along the longitudinal centerline of the vehicle for ergonomic advantage. The first and second ends 156, 154 of the shifter assembly 100 include thru-bores 166, 168 (FIG. 5) constructed to retain rubber or urethane bushings. The bushings control fore and aft shifter deflection and allow for angular articulation of the shifter assembly to minimize linkage 158 bind. Spherical bearings 136 (FIG. 6) may be substituted for the rubber or urethane bushings to further increase rigidity and stability of the assembly. Fasteners 164 extend through either the rubber/urethane bushings or the spherical bearings to allow the shifter assembly to be attached to the transmission housing 160 and the vehicle body 162. Referring to FIG. 5, a connecting link 106 having a fixed length for providing predetermined shifter body 102 displacement is illustrated. In general, the connecting link 106 includes a first end 116, a center portion 118 and a second end 120. The first end 116 is constructed for removable and replaceable securement to the shifter body assembly 102 and the second end is constructed for attachment to the transmission housing 160 (FIG. 3). In the preferred embodiment first end 116 of the connector link 106 includes one or more apertures 126 constructed and arranged to receive one or more fasteners 112 for attaching the connector link 106 to the shifter body 102. It should also be noted that other fastening methods and devices well known in the art that are suitable for attaching structural components together may also be utilized. Such methods and devices may include, but should not be limited to, clamps, dovetails, collets and the like. The center portion 118 of the connecting link includes an outer contoured perimeter defined by a top surface 172, a bottom surface 174 and two side surfaces 176. The contoured perimeter allows the connecting link to articulate while assembled in close proximity to drive-line, body and frame components without interference. The pair of side surfaces 176 are preferably constructed to include at least one contoured cavity 178. The contoured cavity 178 extends inwardly from each side surface 176 to leave a central web 180 (FIG. 7). In this manner weight of the shifter assembly 100 is reduced without sacrificing rigidity or strength of the connecting link 106. The second end 120 of the connecting link 106 includes a first bore 166 extending substantially transverse with respect to the longitudinal centerline of center portion 118. The first bore 166 preferably includes a resilient bushing 124 to control fore and aft movement of the shifter assembly while permitting articulation of the shifter assembly with respect to the manual transmission. The resilient bushing 124 may be constructed of rubber, urethane or suitable combinations thereof. The durometer hardness of the resilient bushing may be increased for rigidity or decreased to allow increased articulation and vibration dampening. In a most preferred embodiment resilient member includes a central bore 126 constructed and arranged to receive a tubular metal sleeve 128. The tubular metal sleeve 128 includes a central bore 130 for receiving a fastener to secure the connecting link 106 to the transmission case 160. Referring to FIG. 7, an alternative embodiment of the connecting link 114 having an adjustable length is illustrated. In this embodiment the second end 134 of the connecting link 106 includes an internal threaded bore for cooperation with a spherical bearing 136. The spherical bearing 136 includes an elongated threaded stem 138 for cooperation with the internal threaded bore. In this manner, the spherical bearing 136 is rotatable to adjust the length of the connecting link 114 for providing adjustable shifter body 102 displacement within a predetermined range with respect to the manual transmission 104. It should also be noted that other adjustable assemblies well known in the art, for allowing the length of a structural member to be adjusted, may be substituted for the spherical bearing and the threaded stem without departing from the scope of the invention. Such assemblies may include, but should not be limited to elongated slots, dovetails, telescoping members and the like. Referring to FIGS. 4 through 8, the shifter body assembly is illustrated. The shifter body assembly 102 includes a shifter body 140, a shift lever 142 and a stop plate 144. In general, the shifter lever 142 is pivotally mounted and self-centering within the shifter body 140 and the stop plate functions to limit the pivotal travel of the shifter lever 142. More specifically, the shifter body 140 includes an upper surface 186, a lower surface 188, two side surfaces 190, a front surface 192 and a rear surface 194. Centrally located within the shifter body is a contoured cavity 182. The contoured cavity cooperates with the spherical bearing 180 on the shift lever 142 for polyaxial shift lever movement. The shifter body also includes spring pockets 196 for retaining the shift lever centering spring members 198. The rear surface 194 of the shifter body includes an outwardly extending tab 200. The outwardly extending tab includes a bore 168 constructed to retain a resilient member 202. The resilient member 202 includes a central bore 204 for attaching the shifter body to the vehicle body. In one embodiment (Not shown) a fastener extends through the central bore 204 of the resilient member to cooperate with the vehicle body. In an alternative embodiment, a tubular metal sleeve 206 including one or more tabs 208 rigidly secured thereto is inserted into the central bore 204. A bolt 210 is used to secure the metal sleeve 206 within the resilient member(s) 202 and fasteners cooperate with tab apertures 209 to attach the shifter assembly 100 to the vehicle body 162 (FIG. 3). The resilient 202 member(s) may be constructed of rubber, urethane or suitable combinations thereof. To provide the pivotal mounting required for operator manipulation of the shift lever, the shifter lever 142 includes an integrally formed spherical bearing 180 positioned between the first end 146 and said second end 148 portions of the shift lever. The spherical bearing 180 is constructed and arranged to cooperate with a contoured cavity 182 (FIG. 5) positioned within the shifter body 140. The spherical bearing preferrably includes a transverse bore 184 for accepting a pin member 212. The pin member includes sufficient length to extend outwardly from both sides of the spherical bearing 180 when assembled. The outwardly extending portions of the pin member each cooperate with the spring members 198 to center the shift lever 142. The shift lever 142 includes a first end portion 146 extending upwardly above the shifter body for operator manipulation of the shifter lever and a second portion 148 extending downwardly below the shifter body 140 for connection to a shifter linkage 158 (FIG. 3). In the preferred embodiment the first end portion of the shift lever 146 is constructed and arranged to cooperate with a removable and replaceable shift handle 152. Alternatively, the first end portion of the shift lever may extend upwardly a suitable distance for attachment of a shift knob 150. In either embodiment the shift handle may include one or more offsets, bends or mounting positions for ergonomic placement of the shift knob 150. In this manner, shift handles 152 and knobs 150 of varying constructions may be secured to the shift lever 142 to suit a particular application. The second end portion 148 of the shift lever includes a transverse bore 214 defining a centerline axis 216 for connection to the shifter linkage 158. The distance between the center of the spherical bearing 218 and the centerline axis 216 of the transverse bore 214 is defined herein as the linear spacing (LS)(FIG. 8). The linear spacing controls the throw or angle through which the shift lever 142 must travel to change gears within a given manual transmission. Increasing the linear spacing reduces shifter throw and decreasing linear spacing increases shifter throw. In the instant invention the preferred linear spacing ranges from about 1.8 inches to about 2.2 inches. In a most preferred embodiment the linear spacing is about 1.9 inches. Referring to FIGS. 4 and 5, the stop plate 144 is illustrated. The stop plate 144 is constructed and arranged to attach to an upper surface 186 of the shifter body 140 and to cooperate with the shift lever 142 to limit pivotal travel of the shift lever. The stop plate 144 includes a forward motion stop member 220 for controlling forward shift lever motion and a rearward motion stop member 222 for controlling rearward shift lever motion. In the preferred embodiment, the first and second stop members 220 and 222 include a top surface 224 and a threaded stem 226. The threaded stem 226 is constructed and arranged to cooperate with threaded apertures 228 located in the stop plate 144 at forward and rearward portions 228, 230 thereof. The stop members may then be adjusted and locked in place with lock nuts 232 so that the top surface 224 cooperates with the shift lever 142 to control the range of forward and rearward shift lever motion. In this manner, stress imposed upon internal transmission components during shift lever manipulations is dramatically reduced. In a preferred and non-limiting embodiment, the connecting link 114 and the shifter body 102 are constructed of billet aluminum 6061 T6 billet aluminum. The connecting link and the shifter body may alternatively be made from other metals which may include, but should not be limited to steel, titanium or suitable combinations thereof. All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification. One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
<SOH> BACKGROUND OF THE INVENTION <EOH>Transmission shifters are conventionally utilized to provide manual actuation for shifting a transmission between different gears to control the driving torque delivered from a vehicle engine to the wheels. Vehicles with multi-speed gear ratio transmissions frequently employ a gear selector system having a pivoting selector lever operatively connected directly, or via linkage, to the transmission and moved by a driver to select a desired operational mode of the transmission. While numerous transmission shifting devices are currently available, the linkage utilized to translate gear selections from the driver to the transmission can be broken into two broad categories, either internal linkage or external linkage. Internal linkage transmissions generally utilize a tower mount and a drop-in type shifter. The transmission housing includes an upward standing tower portion which may be integrally formed or removably mounted to the transmission housing. The drop-in shifter assembly includes a lower plate tranversly oriented with respect to the shifter lever that bolts directly to the top surface of the housing tower to become an integral part of the transmission housing. The shifter lever is pivotally mounted within the central portion of the lower plate with a portion of the lever extending upward above the plate and a portion of the lever extending downward below the plate. The portion of the shift lever extending downward cooperates with the internal transmission linkage and the portion of the lever extending upward is utilized by the driver to manipulate the internal linkage. Currently, drop-in shifters are the most common type of shifting mechanism utilized in automobiles that include manual transmissions. Despite the relatively common use of drop-in shifters, they include several drawbacks that have not been adequately addressed by the prior art. One such drawback relates to shifter positioning. The fixed positioning associated with drop-in shifters often results in a shift handle position that is uncomfortable or awkward for the driver. The fixed handle position is difficult to modify without extensive modification of the vehicle or shifter assembly. Another drawback associated with drop-in type shifters relates to sealing the shifter mechanism to prevent the fluid within the transmission from loss or contamination. Drop-in shift levers must include pivot points to allow the driver to manipulate the shifter and thus the transmission. The pivot points must remain lubricated for proper operation, yet they are difficult to seal and often allow fluid loss or contamination. Contaminated or lost fluid causes premature failure of the transmission components. External linkage transmissions generally include complex mounting methods that are adapted to secure the shifter directly to the side or top of the transmission case. Linkage or cables are utilized to connect the shifter to multiple external levers which extend through the transmission case for manipulating the internal components. The method of mounting external linkage shifters generally includes complex metal stampings and a plurality of spacers. The stampings and spacers are assembled and secured to the transmission case with fasteners, and linkage or cables are thereafter adapted to extend between the shifter and the transmission. External linkage shifters also suffer from numerous drawbacks that have not been adequately addressed by the prior art. One such drawback relates to the method of attaching the shifter to the transmission. The stampings and spacer combinations are complex in nature, resulting in high production costs and difficult installation. Repositioning of the shifter requires custom adapter plates and linkage which further complicates the construction. In addition, the assemblies must be adapted to attach to multiple transmission configurations within multiple vehicle configurations. This often results in a shifter that functions inadequately or unreliably. Another drawback associated with external linkage transmissions relates to utilization of cables to transfer motion from the shifter to the transmission. Cables are prone to breakage and transfer a poor tactile sensation to the driver. The poor tactile sensation makes it difficult for a driver to feel when the shift has been properly executed and may cause unsafe conditions. Other methods of transferring motion from a shifter to a transmission include complex electronic controllers for the operation of solenoids, hydraulics or pneumatics. Solenoids, pneumatics and hydraulics do not transfer any tactile sensations to the driver and are generally unreliable due to their complexity. Accordingly, what is lacking in the art is a longitudinally displaceable shifter for vehicles with manual transmissions. The shifter should achieve objectives such as providing: construction flexibility that allows variable placement along the longitudinal centerline of the vehicle for installation within various vehicle configurations, including retrofitting existing vehicles with minimal modification of the transmission or vehicle. The shifter should include construction that permits reduced shifter lever throw, rigid linkage connection to the transmission, and reliable performance. The shifter should facilitate shifter lever interchangeability to suit particular driver needs.
<SOH> SUMMARY OF THE INVENTION <EOH>The present invention provides a shifter apparatus for a manual transmission. More specifically a shifter apparatus constructed and arranged for variable longitudinal displacement along the longitudinal centerline of the vehicle. Even more specifically, the instant invention provides a shifter body assembly that is flexibly coupled at a first end to the vehicle body and flexibly coupled at a second end to a portion of the transmission housing via a structural connecting link. In one embodiment the connecting link is constructed to be removable and replaceable, wherein the length of the connecting link may be manufactured to suit a particular application. In an alternative embodiment the connecting link may be constructed and arranged to be adjustable in length to suit various applications within a predetermined range. The shifter apparatus may be provided as an original equipment manufacturer (OEM) part or may be supplied as a kit that replaces the OEM supplied shifter. The shifter lever includes an integrally formed spherical bearing pivotally mounted and self-centering within the shifter body. The shifter lever includes a portion extending upwardly to cooperate with an interchangeable shift handle and a portion extending downward to cooperate with a rigid linkage that extends to the transmission. The spherical bearing may be positioned along the shifter lever in various positions to cause various shifting ratios but preferably is positioned for short throw shifting. The shifter body assembly includes a stop plate that cooperates with the shifter lever to provide positive shifter lever stops during gear changes to reduce stress on transmission components. The shifter body assembly and the connecting link are preferably constructed from a lightweight material such as aluminum to reduce the overall weight of the vehicle. In addition, the side surfaces of the connecting link are constructed to include contoured inwardly extending cavities which leave a central structural web. This construction provides superior bending and torsional rigidity while further reducing the weight of the shifter apparatus. Accordingly, it is an objective of the present invention to provide a displaced shifter for vehicles with a manual transmission. An additional objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission which reduces shifter lever throw for faster transmission gear changes. It is a further objective of the present invention to provide a displaced shifter for vehicles with a manual transmission that provides positive shifter lever stops to reduce stress on transmission components. A still further objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission that is constructed from billet aluminum to provide a lightweight assembly having additional bending and torsional rigidity when compared to the prior art. Another objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission which is simple to install and which is ideally suited for original equipment or may be supplied as a kit for aftermarket installations. Yet another objective of the present invention is to provide a displaced shifter for vehicles with a manual transmission that is simple and reliable in operation. Still another objective of this invention is to provide a displaced shifter for vehicles with a manual transmission that includes a removable and replaceable connector link for variable shifter displacement. Still yet another objective of the instant invention is to provide a displaced shifter for vehicles with a manual transmission wherein each end of the shifter includes a thru-bore adapted to accept a rubber or urethane bushing for attachment to the transmission and the vehicle body, thereby increasing rigidity and reliability. Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
20041109
20081216
20060511
67976.0
G05G900
1
FENSTERMACHER, DAVID MORGAN
LONGITUDINALLY DISPLACED SHIFTER
SMALL
0
ACCEPTED
G05G
2,004