paper_url
stringlengths
36
81
paper_title
stringlengths
1
242
paper_arxiv_id
stringlengths
9
16
paper_url_abs
stringlengths
18
314
paper_url_pdf
stringlengths
21
935
repo_url
stringlengths
26
200
is_official
bool
2 classes
mentioned_in_paper
bool
2 classes
mentioned_in_github
bool
2 classes
framework
stringclasses
9 values
https://paperswithcode.com/paper/facing-the-elephant-in-the-room-visual-prompt
Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning?
2401.12902
https://arxiv.org/abs/2401.12902v1
https://arxiv.org/pdf/2401.12902v1.pdf
https://github.com/ChengHan111/VPT-or-FT
true
false
true
pytorch
https://paperswithcode.com/paper/test-time-model-adaptation-with-only-forward
Test-Time Model Adaptation with Only Forward Passes
2404.01650
https://arxiv.org/abs/2404.01650v2
https://arxiv.org/pdf/2404.01650v2.pdf
https://github.com/mr-eggplant/foa
true
true
true
pytorch
https://paperswithcode.com/paper/cmb-power-spectrum-parameter-degeneracies-in
CMB power spectrum parameter degeneracies in the era of precision cosmology
1201.3654
http://arxiv.org/abs/1201.3654v2
http://arxiv.org/pdf/1201.3654v2.pdf
https://github.com/raphkou/camb
false
false
true
none
https://paperswithcode.com/paper/evoagent-towards-automatic-multi-agent
EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms
2406.14228
https://arxiv.org/abs/2406.14228v2
https://arxiv.org/pdf/2406.14228v2.pdf
https://github.com/siyuyuan/evoagent
true
false
true
pytorch
https://paperswithcode.com/paper/extending-deep-model-predictive-control-with
Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
1905.13402
https://arxiv.org/abs/1905.13402v8
https://arxiv.org/pdf/1905.13402v8.pdf
https://github.com/harryzhangOG/salved
false
false
true
tf
https://paperswithcode.com/paper/semi-llie-semi-supervised-contrastive
Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement
2409.16604
https://arxiv.org/abs/2409.16604v1
https://arxiv.org/pdf/2409.16604v1.pdf
https://github.com/guanguanboy/Semi-LLIE
true
false
false
pytorch
https://paperswithcode.com/paper/wpmixer-efficient-multi-resolution-mixing-for
WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting
2412.17176
https://arxiv.org/abs/2412.17176v1
https://arxiv.org/pdf/2412.17176v1.pdf
https://github.com/Secure-and-Intelligent-Systems-Lab/WPMixer
true
false
true
pytorch
https://paperswithcode.com/paper/finding-large-independent-sets-in-networks
Finding Large Independent Sets in Networks Using Competitive Dynamics
2409.01336
https://arxiv.org/abs/2409.01336v1
https://arxiv.org/pdf/2409.01336v1.pdf
https://github.com/niekmooij/finding-large-independent-sets-in-networks-using-competitive-dynamics
true
true
false
none
https://paperswithcode.com/paper/matryoshka-representation-learning-for
Matryoshka Representation Learning for Recommendation
2406.07432
https://arxiv.org/abs/2406.07432v1
https://arxiv.org/pdf/2406.07432v1.pdf
https://github.com/riwei-heu/mrl
true
true
false
pytorch
https://paperswithcode.com/paper/distinguishing-neighborhood-representations
Mitigating Oversmoothing Through Reverse Process of GNNs for Heterophilic Graphs
2403.10543
https://arxiv.org/abs/2403.10543v2
https://arxiv.org/pdf/2403.10543v2.pdf
https://github.com/ml-postech/reverse-gnn
true
true
true
pytorch
https://paperswithcode.com/paper/genie-generative-interactive-environments
Genie: Generative Interactive Environments
2402.15391
https://arxiv.org/abs/2402.15391v1
https://arxiv.org/pdf/2402.15391v1.pdf
https://github.com/1x-technologies/1xgpt
false
false
true
pytorch
https://paperswithcode.com/paper/a-multi-level-attention-model-for-evidence
A Multi-Level Attention Model for Evidence-Based Fact Checking
2106.00950
https://arxiv.org/abs/2106.00950v1
https://arxiv.org/pdf/2106.00950v1.pdf
https://github.com/ZIZUN/MAFiD
false
false
true
pytorch
https://paperswithcode.com/paper/lion-linear-group-rnn-for-3d-object-detection
LION: Linear Group RNN for 3D Object Detection in Point Clouds
2407.18232
https://arxiv.org/abs/2407.18232v1
https://arxiv.org/pdf/2407.18232v1.pdf
https://github.com/happinesslz/LION
true
false
true
pytorch
https://paperswithcode.com/paper/rustevo-2-an-evolving-benchmark-for-api
RustEvo^2: An Evolving Benchmark for API Evolution in LLM-based Rust Code Generation
2503.16922
https://arxiv.org/abs/2503.16922v1
https://arxiv.org/pdf/2503.16922v1.pdf
https://github.com/sysuselab/rustevo
true
true
false
none
https://paperswithcode.com/paper/sparse-vs-contiguous-adversarial-pixel
Sparse vs Contiguous Adversarial Pixel Perturbations in Multimodal Models: An Empirical Analysis
2407.18251
https://arxiv.org/abs/2407.18251v1
https://arxiv.org/pdf/2407.18251v1.pdf
https://github.com/christianb024/sparsevscontiguityrepo
true
true
false
pytorch
https://paperswithcode.com/paper/bayesian-optimization-for-categorical-and
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs
1911.12473
https://arxiv.org/abs/1911.12473v1
https://arxiv.org/pdf/1911.12473v1.pdf
https://github.com/nphdang/bandit-bo
true
false
false
none
https://paperswithcode.com/paper/chatgpt-based-data-augmentation-for-improved
ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs
2402.11764
https://arxiv.org/abs/2402.11764v2
https://arxiv.org/pdf/2402.11764v2.pdf
https://github.com/barryhpr/syntheticdebiasing
true
true
true
pytorch
https://paperswithcode.com/paper/search-based-llms-for-code-optimization
Search-Based LLMs for Code Optimization
2408.12159
https://arxiv.org/abs/2408.12159v1
https://arxiv.org/pdf/2408.12159v1.pdf
https://github.com/shuzhenggao/sbllm
true
true
false
none
https://paperswithcode.com/paper/sgformer-satellite-ground-fusion-for-3d
SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
2503.16825
https://arxiv.org/abs/2503.16825v2
https://arxiv.org/pdf/2503.16825v2.pdf
https://github.com/gxytcrc/sgformer
true
true
true
none
https://paperswithcode.com/paper/scaling-graph-convolutions-for-mobile-vision
Scaling Graph Convolutions for Mobile Vision
2406.05850
https://arxiv.org/abs/2406.05850v1
https://arxiv.org/pdf/2406.05850v1.pdf
https://github.com/sldgroup/mobilevigv2
true
true
true
pytorch
https://paperswithcode.com/paper/predicting-multi-parametric-dynamics-of-an
Predicting multi-parametric dynamics of an externally forced oscillator using reservoir computing and minimal data
null
https://link.springer.com/article/10.1007/s11071-024-10720-w
https://link.springer.com/content/pdf/10.1007/s11071-024-10720-w.pdf
https://github.com/maneesh51/RC_Bif_Prediction
false
true
false
none
https://paperswithcode.com/paper/a-neural-influence-diffusion-model-for-social
A Neural Influence Diffusion Model for Social Recommendation
1904.10322
http://arxiv.org/abs/1904.10322v1
http://arxiv.org/pdf/1904.10322v1.pdf
https://github.com/PeiJieSun/diffnet
true
true
true
tf
https://paperswithcode.com/paper/diffnet-a-neural-influence-and-interest
DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation
2002.00844
https://arxiv.org/abs/2002.00844v4
https://arxiv.org/pdf/2002.00844v4.pdf
https://github.com/PeiJieSun/diffnet
false
false
true
tf
https://paperswithcode.com/paper/project-shadow-symbolic-higher-order
Project SHADOW: Symbolic Higher-order Associative Deductive reasoning On Wikidata using LM probing
2408.14849
https://arxiv.org/abs/2408.14849v2
https://arxiv.org/pdf/2408.14849v2.pdf
https://github.com/hannaabiakl/shadow
true
true
true
none
https://paperswithcode.com/paper/5-qubit-quantum-error-correction-in-a-charge
5-qubit quantum error correction in a charge qubit quantum computer
1010.3242
https://arxiv.org/abs/1010.3242v1
https://arxiv.org/pdf/1010.3242v1.pdf
https://github.com/bernwo/five-qubit-code
false
false
true
none
https://paperswithcode.com/paper/mega-moving-average-equipped-gated-attention
Mega: Moving Average Equipped Gated Attention
2209.10655
https://arxiv.org/abs/2209.10655v3
https://arxiv.org/pdf/2209.10655v3.pdf
https://github.com/ZIZUN/MAFiD
false
false
true
pytorch
https://paperswithcode.com/paper/leveraging-passage-retrieval-with-generative
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
2007.01282
https://arxiv.org/abs/2007.01282v2
https://arxiv.org/pdf/2007.01282v2.pdf
https://github.com/ZIZUN/MAFiD
false
false
true
pytorch
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-ii-the
A two-phase model of galaxy formation: II. The size-mass relation of dynamically hot galaxies
2311.11713
https://arxiv.org/abs/2311.11713v2
https://arxiv.org/pdf/2311.11713v2.pdf
https://github.com/chenyangyao/two-phase-galaxy-model
true
true
true
none
https://paperswithcode.com/paper/topical-review-extracting-molecular-frame
Topical Review: Extracting Molecular Frame Photoionization Dynamics from Experimental Data
2209.04301
https://arxiv.org/abs/2209.04301v2
https://arxiv.org/pdf/2209.04301v2.pdf
https://github.com/phockett/extracting-molecular-frame-photoionization-dynamics-from-experimental-data
true
true
true
none
https://paperswithcode.com/paper/estimating-probability-densities-with
Estimating Probability Densities with Transformer and Denoising Diffusion
2407.15703
https://arxiv.org/abs/2407.15703v1
https://arxiv.org/pdf/2407.15703v1.pdf
https://github.com/henrysky/stars_foundation_diffusion
true
false
false
pytorch
https://paperswithcode.com/paper/error-free-training-for-artificial-neural
Error-free Training for Artificial Neural Network
2312.16060
https://arxiv.org/abs/2312.16060v1
https://arxiv.org/pdf/2312.16060v1.pdf
https://github.com/bdeng99/Error-free-Training-Code
false
false
false
none
https://paperswithcode.com/paper/enabling-low-resource-language-retrieval
Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO
2412.12997
https://arxiv.org/abs/2412.12997v3
https://arxiv.org/pdf/2412.12997v3.pdf
https://github.com/UmerTariq1/Urdu_MsMarco_Translation_Retrieval
true
true
true
pytorch
https://paperswithcode.com/paper/dataset-growth
Dataset Growth
2405.18347
https://arxiv.org/abs/2405.18347v2
https://arxiv.org/pdf/2405.18347v2.pdf
https://github.com/nus-hpc-ai-lab/infogrowth
true
true
true
pytorch
https://paperswithcode.com/paper/equivariant-image-modeling
Equivariant Image Modeling
2503.18948
https://arxiv.org/abs/2503.18948v1
https://arxiv.org/pdf/2503.18948v1.pdf
https://github.com/drx-code/EquivariantModeling
true
true
true
pytorch
https://paperswithcode.com/paper/unified-perceptual-parsing-for-scene
Unified Perceptual Parsing for Scene Understanding
1807.10221
http://arxiv.org/abs/1807.10221v1
http://arxiv.org/pdf/1807.10221v1.pdf
https://github.com/MS-P3/code7/tree/main/upernet
false
false
false
mindspore
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-i-the
A two-phase model of galaxy formation: I. The growth of galaxies and supermassive black holes
2311.05030
https://arxiv.org/abs/2311.05030v3
https://arxiv.org/pdf/2311.05030v3.pdf
https://github.com/chenyangyao/two-phase-galaxy-model
true
true
true
none
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-iii-the
A two-phase model of galaxy formation: III. The formation of globular clusters
2405.18735
https://arxiv.org/abs/2405.18735v3
https://arxiv.org/pdf/2405.18735v3.pdf
https://github.com/chenyangyao/two-phase-galaxy-model
true
true
true
none
https://paperswithcode.com/paper/difr3ct-latent-diffusion-for-probabilistic-3d
DIFR3CT: Latent Diffusion for Probabilistic 3D CT Reconstruction from Few Planar X-Rays
2408.15118
https://arxiv.org/abs/2408.15118v1
https://arxiv.org/pdf/2408.15118v1.pdf
https://github.com/yransun/difr3ct
true
true
false
pytorch
https://paperswithcode.com/paper/layerwise-proximal-replay-a-proximal-point
Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning
2402.09542
https://arxiv.org/abs/2402.09542v3
https://arxiv.org/pdf/2402.09542v3.pdf
https://github.com/plai-group/lpr
true
true
true
pytorch
https://paperswithcode.com/paper/multi-head-rag-solving-multi-aspect-problems
Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
2406.05085
https://arxiv.org/abs/2406.05085v2
https://arxiv.org/pdf/2406.05085v2.pdf
https://github.com/spcl/mrag
true
true
true
none
https://paperswithcode.com/paper/assessing-treatment-effects-in-observational
Assessing treatment effects in observational data with missing confounders: A comparative study of practical doubly-robust and traditional missing data methods
2412.15012
https://arxiv.org/abs/2412.15012v1
https://arxiv.org/pdf/2412.15012v1.pdf
https://github.com/PamelaShaw/Missing-Confounders-Methods
true
false
false
none
https://paperswithcode.com/paper/ganetic-loss-for-generative-adversarial
GANetic Loss for Generative Adversarial Networks with a Focus on Medical Applications
2406.05023
https://arxiv.org/abs/2406.05023v1
https://arxiv.org/pdf/2406.05023v1.pdf
https://github.com/ZKI-PH-ImageAnalysis/GANetic-Loss
true
false
true
tf
https://paperswithcode.com/paper/multilingual-text-style-transfer-datasets
Multilingual Text Style Transfer: Datasets & Models for Indian Languages
2405.20805
https://arxiv.org/abs/2405.20805v3
https://arxiv.org/pdf/2405.20805v3.pdf
https://github.com/panlingua/multilingual-tst-datasets
true
true
true
none
https://paperswithcode.com/paper/efficient-k-nearest-neighbor-machine
Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval
2406.06073
https://arxiv.org/abs/2406.06073v1
https://arxiv.org/pdf/2406.06073v1.pdf
https://github.com/deeplearnxmu/knn-mt-dr
true
true
false
pytorch
https://paperswithcode.com/paper/coverage-axis-inner-point-selection-for-3d
Coverage Axis: Inner Point Selection for 3D Shape Skeletonization
2110.00965
https://arxiv.org/abs/2110.00965v3
https://arxiv.org/pdf/2110.00965v3.pdf
https://github.com/frank-zy-dou/coverage_axis
false
false
true
none
https://paperswithcode.com/paper/ec-kity-evolutionary-computation-tool-kit-in
EC-KitY: Evolutionary Computation Tool Kit in Python with Seamless Machine Learning Integration
2207.10367
https://arxiv.org/abs/2207.10367v2
https://arxiv.org/pdf/2207.10367v2.pdf
https://github.com/irenamal/ec-kity
false
false
true
none
https://paperswithcode.com/paper/evolving-assembly-code-in-an-adversarial
Evolving Assembly Code in an Adversarial Environment
2403.19489
https://arxiv.org/abs/2403.19489v2
https://arxiv.org/pdf/2403.19489v2.pdf
https://github.com/irenamal/ec-kity
true
true
false
none
https://paperswithcode.com/paper/a-test-suite-of-prompt-injection-attacks-for
A test suite of prompt injection attacks for LLM-based machine translation
2410.05047
https://arxiv.org/abs/2410.05047v1
https://arxiv.org/pdf/2410.05047v1.pdf
https://github.com/Avmb/adversarial_MT_prompt_injection
true
true
false
pytorch
https://paperswithcode.com/paper/class-symbolic-regression-gotta-fit-em-all
Class Symbolic Regression: Gotta Fit 'Em All
2312.01816
https://arxiv.org/abs/2312.01816v2
https://arxiv.org/pdf/2312.01816v2.pdf
https://github.com/wassimtenachi/physo
true
true
true
pytorch
https://paperswithcode.com/paper/unifying-interpretability-and-explainability
Unifying Interpretability and Explainability for Alzheimer's Disease Progression Prediction
2406.07777
https://arxiv.org/abs/2406.07777v1
https://arxiv.org/pdf/2406.07777v1.pdf
https://github.com/rfali/xrlad
true
true
true
pytorch
https://paperswithcode.com/paper/mtlora-low-rank-adaptation-approach-for
MTLoRA: Low-Rank Adaptation Approach for Efficient Multi-Task Learning
null
http://openaccess.thecvf.com//content/CVPR2024/html/Agiza_MTLoRA_Low-Rank_Adaptation_Approach_for_Efficient_Multi-Task_Learning_CVPR_2024_paper.html
http://openaccess.thecvf.com//content/CVPR2024/papers/Agiza_MTLoRA_Low-Rank_Adaptation_Approach_for_Efficient_Multi-Task_Learning_CVPR_2024_paper.pdf
https://github.com/scale-lab/mtlora
true
true
false
pytorch
https://paperswithcode.com/paper/exploration-of-class-center-for-fine-grained
Exploration of Class Center for Fine-Grained Visual Classification
2407.04243
https://arxiv.org/abs/2407.04243v1
https://arxiv.org/pdf/2407.04243v1.pdf
https://github.com/hyao1/ecc
true
true
false
pytorch
https://paperswithcode.com/paper/a-representation-independent-electronic
A representation-independent electronic charge density database for crystalline materials
2107.03540
https://arxiv.org/abs/2107.03540v1
https://arxiv.org/pdf/2107.03540v1.pdf
https://github.com/seongsukim-ml/gpwno
false
false
true
pytorch
https://paperswithcode.com/paper/ranni-taming-text-to-image-diffusion-for
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following
2311.17002
https://arxiv.org/abs/2311.17002v3
https://arxiv.org/pdf/2311.17002v3.pdf
https://github.com/lllyasviel/omost
false
false
true
pytorch
https://paperswithcode.com/paper/leveraging-large-language-models-for-active
Leveraging Large Language Models for Active Merchant Non-player Characters
2412.11189
https://arxiv.org/abs/2412.11189v2
https://arxiv.org/pdf/2412.11189v2.pdf
https://github.com/elu-lab/mart
true
true
true
pytorch
https://paperswithcode.com/paper/deepisign-g-generic-watermark-to-stamp-hidden
DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking
2407.01260
https://arxiv.org/abs/2407.01260v1
https://arxiv.org/pdf/2407.01260v1.pdf
https://github.com/SharifAbuadbba/DeepiSign-G
true
false
false
none
https://paperswithcode.com/paper/preference-distillation-for-personalized
Preference Distillation for Personalized Generative Recommendation
2407.05033
https://arxiv.org/abs/2407.05033v1
https://arxiv.org/pdf/2407.05033v1.pdf
https://github.com/jeromeramos70/peapod
true
false
false
pytorch
https://paperswithcode.com/paper/solving-the-quantum-many-body-problem-with
Solving the Quantum Many-Body Problem with Artificial Neural Networks
1606.02318
https://arxiv.org/abs/1606.02318v1
https://arxiv.org/pdf/1606.02318v1.pdf
https://github.com/dkkim1005/Neural_Network_Quantum_State
false
false
true
none
https://paperswithcode.com/paper/mambats-improved-selective-state-space-models
MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting
2405.16440
https://arxiv.org/abs/2405.16440v1
https://arxiv.org/pdf/2405.16440v1.pdf
https://github.com/XiudingCai/MambaTS-pytorch
true
false
true
pytorch
https://paperswithcode.com/paper/deep-learning-based-noninvasive-screening-of
Deep Learning-Based Noninvasive Screening of Type 2 Diabetes with Chest X-ray Images and Electronic Health Records
2412.10955
https://arxiv.org/abs/2412.10955v1
https://arxiv.org/pdf/2412.10955v1.pdf
https://github.com/san-635/t2dm-cxr-ehr
true
true
false
pytorch
https://paperswithcode.com/paper/automated-conjecturing-in-mathematics-with
Automated conjecturing in mathematics with \emph{TxGraffiti}
2409.19379
https://arxiv.org/abs/2409.19379v1
https://arxiv.org/pdf/2409.19379v1.pdf
https://github.com/RandyRDavila/TxGraffiti_APP
true
false
true
none
https://paperswithcode.com/paper/dinov2-based-self-supervised-learning-for-few
DINOv2 based Self Supervised Learning For Few Shot Medical Image Segmentation
2403.03273
https://arxiv.org/abs/2403.03273v1
https://arxiv.org/pdf/2403.03273v1.pdf
https://github.com/levayz/protosam
false
false
true
pytorch
https://paperswithcode.com/paper/a-sparsity-principle-for-partially-observable
A Sparsity Principle for Partially Observable Causal Representation Learning
2403.08335
https://arxiv.org/abs/2403.08335v2
https://arxiv.org/pdf/2403.08335v2.pdf
https://github.com/danrux/sparsity-crl
true
true
true
pytorch
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
High-Resolution Image Synthesis with Latent Diffusion Models
2112.10752
https://arxiv.org/abs/2112.10752v2
https://arxiv.org/pdf/2112.10752v2.pdf
https://github.com/Francis-Rings/MotionFollower
false
false
true
pytorch
https://paperswithcode.com/paper/negative-preference-optimization-from
Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning
2404.05868
https://arxiv.org/abs/2404.05868v2
https://arxiv.org/pdf/2404.05868v2.pdf
https://github.com/ucsb-nlp-chang/uld
false
false
true
pytorch
https://paperswithcode.com/paper/offset-unlearning-for-large-language-models
Offset Unlearning for Large Language Models
2404.11045
https://arxiv.org/abs/2404.11045v1
https://arxiv.org/pdf/2404.11045v1.pdf
https://github.com/ucsb-nlp-chang/uld
false
false
true
pytorch
https://paperswithcode.com/paper/fully-few-shot-class-incremental-audio
Fully Few-shot Class-incremental Audio Classification Using Expandable Dual-embedding Extractor
2406.08122
https://arxiv.org/abs/2406.08122v1
https://arxiv.org/pdf/2406.08122v1.pdf
https://github.com/yongjiesi/ede
true
true
false
pytorch
https://paperswithcode.com/paper/by-passing-the-kohn-sham-equations-with
By-passing the Kohn-Sham equations with machine learning
1609.02815
http://arxiv.org/abs/1609.02815v3
http://arxiv.org/pdf/1609.02815v3.pdf
https://github.com/seongsukim-ml/gpwno
false
false
true
pytorch
https://paperswithcode.com/paper/calculating-pair-correlations-from-random
Calculating pair-correlations from random particle configurations
2401.09236
https://arxiv.org/abs/2401.09236v2
https://arxiv.org/pdf/2401.09236v2.pdf
https://github.com/arturgower/ParticleCorrelations.jl
true
false
false
none
https://paperswithcode.com/paper/consistent-document-level-relation-extraction
Consistent Document-Level Relation Extraction via Counterfactuals
2407.06699
https://arxiv.org/abs/2407.06699v2
https://arxiv.org/pdf/2407.06699v2.pdf
https://github.com/amodaresi/CovEReD
true
false
true
pytorch
https://paperswithcode.com/paper/transpixar-advancing-text-to-video-generation
TransPixeler: Advancing Text-to-Video Generation with Transparency
2501.03006
https://arxiv.org/abs/2501.03006v2
https://arxiv.org/pdf/2501.03006v2.pdf
https://github.com/wileewang/TransPixar
true
false
true
pytorch
https://paperswithcode.com/paper/enhancing-sequential-music-recommendation
Enhancing Sequential Music Recommendation with Personalized Popularity Awareness
2409.04329
https://arxiv.org/abs/2409.04329v1
https://arxiv.org/pdf/2409.04329v1.pdf
https://github.com/sisinflab/personalized-popularity-awareness
true
true
false
pytorch
https://paperswithcode.com/paper/large-language-models-are-zero-shot
Large Language Models are Zero Shot Hypothesis Proposers
2311.05965
https://arxiv.org/abs/2311.05965v1
https://arxiv.org/pdf/2311.05965v1.pdf
https://github.com/tsinghuac3i/llm4biohypogen
false
false
true
none
https://paperswithcode.com/paper/large-language-models-as-biomedical
Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation
2407.08940
https://arxiv.org/abs/2407.08940v2
https://arxiv.org/pdf/2407.08940v2.pdf
https://github.com/tsinghuac3i/llm4biohypogen
true
true
true
none
https://paperswithcode.com/paper/understanding-stereotypes-in-language-models
Causally Testing Gender Bias in LLMs: A Case Study on Occupational Bias
2212.10678
https://arxiv.org/abs/2212.10678v3
https://arxiv.org/pdf/2212.10678v3.pdf
https://github.com/chenyuen0103/gender-bias
true
true
true
pytorch
https://paperswithcode.com/paper/generating-holistic-3d-human-motion-from
Generating Holistic 3D Human Motion from Speech
2212.04420
https://arxiv.org/abs/2212.04420v2
https://arxiv.org/pdf/2212.04420v2.pdf
https://github.com/yhw-yhw/talkshow
true
false
true
pytorch
https://paperswithcode.com/paper/an-empirical-study-on-developers-shared
An Empirical Study on Developers Shared Conversations with ChatGPT in GitHub Pull Requests and Issues
2403.10468
https://arxiv.org/abs/2403.10468v1
https://arxiv.org/pdf/2403.10468v1.pdf
https://github.com/riselabqueens/analyzing-shared-conversation
true
true
true
none
https://paperswithcode.com/paper/efficient-gans-for-document-image
Efficient GANs for Document Image Binarization Based on DWT and Normalization
2407.04231
https://arxiv.org/abs/2407.04231v1
https://arxiv.org/pdf/2407.04231v1.pdf
https://github.com/ruiyangju/efficient_document_image_binarization
true
true
true
pytorch
https://paperswithcode.com/paper/me-myself-and-ai-the-situational-awareness
Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs
2407.04694
https://arxiv.org/abs/2407.04694v1
https://arxiv.org/pdf/2407.04694v1.pdf
https://github.com/lrudl/sad
true
true
true
none
https://paperswithcode.com/paper/llmeasyquant-an-easy-to-use-toolkit-for-llm
LLMEasyQuant: Scalable Quantization for Parallel and Distributed LLM Inference
2406.19657
https://arxiv.org/abs/2406.19657v4
https://arxiv.org/pdf/2406.19657v4.pdf
https://github.com/NoakLiu/LLMEasyQuant
true
true
true
pytorch
https://paperswithcode.com/paper/knowledge-graph-enhanced-retrieval-augmented
Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis
2406.18114
https://arxiv.org/abs/2406.18114v3
https://arxiv.org/pdf/2406.18114v3.pdf
https://github.com/lukasbahr/kg-rag-fmea
true
true
true
none
https://paperswithcode.com/paper/adaptive-multi-scale-decomposition-framework
Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
2406.03751
https://arxiv.org/abs/2406.03751v1
https://arxiv.org/pdf/2406.03751v1.pdf
https://github.com/troubadour000/amd
true
true
true
pytorch
https://paperswithcode.com/paper/investigation-of-perceptual-music-similarity
Investigation of perceptual music similarity focusing on each instrumental part
2502.02138
https://arxiv.org/abs/2502.02138v1
https://arxiv.org/pdf/2502.02138v1.pdf
https://github.com/zume06/inst-sim-abx-dataset
true
true
true
none
https://paperswithcode.com/paper/concept-drift-visualization-of-svm-with
Concept Drift Visualization of SVM with Shifting Window
2406.13754
https://arxiv.org/abs/2406.13754v1
https://arxiv.org/pdf/2406.13754v1.pdf
https://github.com/hash2100/aidsvm
true
true
false
pytorch
https://paperswithcode.com/paper/on-the-scalability-of-data-reduction
On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective
1706.00522
https://arxiv.org/abs/1706.00522v1
https://arxiv.org/pdf/1706.00522v1.pdf
https://github.com/openPMD/openPMD-api
false
false
true
none
https://paperswithcode.com/paper/the-induced-matching-distance-a-novel
The Induced Matching Distance: A Novel Topological Metric with Applications in Robotics
2502.02112
https://arxiv.org/abs/2502.02112v2
https://arxiv.org/pdf/2502.02112v2.pdf
https://github.com/cimagroup/induced-matching-distance-navground
true
true
false
pytorch
https://paperswithcode.com/paper/polis-scaling-deliberation-by-mapping-high
Polis: Scaling Deliberation by Mapping High Dimensional Opinion Spaces
null
https://www.e-revistes.uji.es/index.php/recerca/article/view/5516
https://www.e-revistes.uji.es/index.php/recerca/article/view/5516/6558
https://github.com/compdemocracy/polis
true
false
false
none
https://paperswithcode.com/paper/hostile-counterspeech-drives-users-from-hate
Hostile Counterspeech Drives Users From Hate Subreddits
2405.18374
https://arxiv.org/abs/2405.18374v1
https://arxiv.org/pdf/2405.18374v1.pdf
https://github.com/dan-hickey1/reddit-counterspeech
true
true
false
pytorch
https://paperswithcode.com/paper/phendiff-revealing-invisible-phenotypes-with
PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images
2312.08290
https://arxiv.org/abs/2312.08290v2
https://arxiv.org/pdf/2312.08290v2.pdf
https://github.com/warmongeringbeaver/phendiff
true
true
true
pytorch
https://paperswithcode.com/paper/stard-a-chinese-statute-retrieval-dataset
STARD: A Chinese Statute Retrieval Dataset with Real Queries Issued by Non-professionals
2406.15313
https://arxiv.org/abs/2406.15313v1
https://arxiv.org/pdf/2406.15313v1.pdf
https://github.com/oneal2000/stard
true
true
false
pytorch
https://paperswithcode.com/paper/adatreeformer-few-shot-domain-adaptation-for
AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
2402.02956
https://arxiv.org/abs/2402.02956v4
https://arxiv.org/pdf/2402.02956v4.pdf
https://github.com/HAAClassic/AdaTreeFormer
true
true
true
pytorch
https://paperswithcode.com/paper/cosign-few-step-guidance-of-consistency-model
CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems
2407.12676
https://arxiv.org/abs/2407.12676v1
https://arxiv.org/pdf/2407.12676v1.pdf
https://github.com/biomed-ai-lab-u-michgan/cosign
true
true
false
pytorch
https://paperswithcode.com/paper/pomo-policy-optimization-with-multiple-optima
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning
2010.16011
https://arxiv.org/abs/2010.16011v3
https://arxiv.org/pdf/2010.16011v3.pdf
https://github.com/kaist-silab/symmetric_replay
false
false
true
pytorch
https://paperswithcode.com/paper/few-shot-class-incremental-learning-with-1
Few-Shot Class Incremental Learning with Attention-Aware Self-Adaptive Prompt
2403.09857
https://arxiv.org/abs/2403.09857v3
https://arxiv.org/pdf/2403.09857v3.pdf
https://github.com/dawnliu35/fscil-asp
true
true
true
pytorch
https://paperswithcode.com/paper/symmetric-exploration-in-combinatorial
Symmetric Replay Training: Enhancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization
2306.01276
https://arxiv.org/abs/2306.01276v4
https://arxiv.org/pdf/2306.01276v4.pdf
https://github.com/kaist-silab/symmetric_replay
true
true
false
pytorch
https://paperswithcode.com/paper/radik-scalable-and-optimized-gpu-parallel
RadiK: Scalable and Optimized GPU-Parallel Radix Top-K Selection
2501.14336
https://arxiv.org/abs/2501.14336v1
https://arxiv.org/pdf/2501.14336v1.pdf
https://github.com/leefige/radik
true
false
true
none
https://paperswithcode.com/paper/enhancing-scene-graph-generation-with
Enhancing Scene Graph Generation with Hierarchical Relationships and Commonsense Knowledge
2311.12889
https://arxiv.org/abs/2311.12889v2
https://arxiv.org/pdf/2311.12889v2.pdf
https://github.com/bowen-upenn/scene_graph_commonsense
true
true
true
pytorch
https://paperswithcode.com/paper/zero-shot-point-cloud-completion-via-2d
ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors
2404.06814
https://arxiv.org/abs/2404.06814v2
https://arxiv.org/pdf/2404.06814v2.pdf
https://github.com/Tianxinhuang/ComPC
true
false
false
pytorch
https://paperswithcode.com/paper/algorithms-for-non-linear-and-stochastic
Algorithms for Non-Linear and Stochastic Resource Constrained Shortest Paths
1504.07880
http://arxiv.org/abs/1504.07880v2
http://arxiv.org/pdf/1504.07880v2.pdf
https://github.com/BatyLeo/ConstrainedShortestPaths.jl
false
false
true
none
https://paperswithcode.com/paper/multi-granularity-distillation-scheme-towards
Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation
2208.10169
https://arxiv.org/abs/2208.10169v1
https://arxiv.org/pdf/2208.10169v1.pdf
https://github.com/jayqine/mgd-ssss
true
true
true
pytorch