paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/facing-the-elephant-in-the-room-visual-prompt
|
Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning?
|
2401.12902
|
https://arxiv.org/abs/2401.12902v1
|
https://arxiv.org/pdf/2401.12902v1.pdf
|
https://github.com/ChengHan111/VPT-or-FT
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/test-time-model-adaptation-with-only-forward
|
Test-Time Model Adaptation with Only Forward Passes
|
2404.01650
|
https://arxiv.org/abs/2404.01650v2
|
https://arxiv.org/pdf/2404.01650v2.pdf
|
https://github.com/mr-eggplant/foa
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cmb-power-spectrum-parameter-degeneracies-in
|
CMB power spectrum parameter degeneracies in the era of precision cosmology
|
1201.3654
|
http://arxiv.org/abs/1201.3654v2
|
http://arxiv.org/pdf/1201.3654v2.pdf
|
https://github.com/raphkou/camb
| false | false | true |
none
|
https://paperswithcode.com/paper/evoagent-towards-automatic-multi-agent
|
EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms
|
2406.14228
|
https://arxiv.org/abs/2406.14228v2
|
https://arxiv.org/pdf/2406.14228v2.pdf
|
https://github.com/siyuyuan/evoagent
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/extending-deep-model-predictive-control-with
|
Safety Augmented Value Estimation from Demonstrations (SAVED): Safe Deep Model-Based RL for Sparse Cost Robotic Tasks
|
1905.13402
|
https://arxiv.org/abs/1905.13402v8
|
https://arxiv.org/pdf/1905.13402v8.pdf
|
https://github.com/harryzhangOG/salved
| false | false | true |
tf
|
https://paperswithcode.com/paper/semi-llie-semi-supervised-contrastive
|
Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement
|
2409.16604
|
https://arxiv.org/abs/2409.16604v1
|
https://arxiv.org/pdf/2409.16604v1.pdf
|
https://github.com/guanguanboy/Semi-LLIE
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/wpmixer-efficient-multi-resolution-mixing-for
|
WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting
|
2412.17176
|
https://arxiv.org/abs/2412.17176v1
|
https://arxiv.org/pdf/2412.17176v1.pdf
|
https://github.com/Secure-and-Intelligent-Systems-Lab/WPMixer
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/finding-large-independent-sets-in-networks
|
Finding Large Independent Sets in Networks Using Competitive Dynamics
|
2409.01336
|
https://arxiv.org/abs/2409.01336v1
|
https://arxiv.org/pdf/2409.01336v1.pdf
|
https://github.com/niekmooij/finding-large-independent-sets-in-networks-using-competitive-dynamics
| true | true | false |
none
|
https://paperswithcode.com/paper/matryoshka-representation-learning-for
|
Matryoshka Representation Learning for Recommendation
|
2406.07432
|
https://arxiv.org/abs/2406.07432v1
|
https://arxiv.org/pdf/2406.07432v1.pdf
|
https://github.com/riwei-heu/mrl
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/distinguishing-neighborhood-representations
|
Mitigating Oversmoothing Through Reverse Process of GNNs for Heterophilic Graphs
|
2403.10543
|
https://arxiv.org/abs/2403.10543v2
|
https://arxiv.org/pdf/2403.10543v2.pdf
|
https://github.com/ml-postech/reverse-gnn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/genie-generative-interactive-environments
|
Genie: Generative Interactive Environments
|
2402.15391
|
https://arxiv.org/abs/2402.15391v1
|
https://arxiv.org/pdf/2402.15391v1.pdf
|
https://github.com/1x-technologies/1xgpt
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-multi-level-attention-model-for-evidence
|
A Multi-Level Attention Model for Evidence-Based Fact Checking
|
2106.00950
|
https://arxiv.org/abs/2106.00950v1
|
https://arxiv.org/pdf/2106.00950v1.pdf
|
https://github.com/ZIZUN/MAFiD
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/lion-linear-group-rnn-for-3d-object-detection
|
LION: Linear Group RNN for 3D Object Detection in Point Clouds
|
2407.18232
|
https://arxiv.org/abs/2407.18232v1
|
https://arxiv.org/pdf/2407.18232v1.pdf
|
https://github.com/happinesslz/LION
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/rustevo-2-an-evolving-benchmark-for-api
|
RustEvo^2: An Evolving Benchmark for API Evolution in LLM-based Rust Code Generation
|
2503.16922
|
https://arxiv.org/abs/2503.16922v1
|
https://arxiv.org/pdf/2503.16922v1.pdf
|
https://github.com/sysuselab/rustevo
| true | true | false |
none
|
https://paperswithcode.com/paper/sparse-vs-contiguous-adversarial-pixel
|
Sparse vs Contiguous Adversarial Pixel Perturbations in Multimodal Models: An Empirical Analysis
|
2407.18251
|
https://arxiv.org/abs/2407.18251v1
|
https://arxiv.org/pdf/2407.18251v1.pdf
|
https://github.com/christianb024/sparsevscontiguityrepo
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bayesian-optimization-for-categorical-and
|
Bayesian Optimization for Categorical and Category-Specific Continuous Inputs
|
1911.12473
|
https://arxiv.org/abs/1911.12473v1
|
https://arxiv.org/pdf/1911.12473v1.pdf
|
https://github.com/nphdang/bandit-bo
| true | false | false |
none
|
https://paperswithcode.com/paper/chatgpt-based-data-augmentation-for-improved
|
ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs
|
2402.11764
|
https://arxiv.org/abs/2402.11764v2
|
https://arxiv.org/pdf/2402.11764v2.pdf
|
https://github.com/barryhpr/syntheticdebiasing
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/search-based-llms-for-code-optimization
|
Search-Based LLMs for Code Optimization
|
2408.12159
|
https://arxiv.org/abs/2408.12159v1
|
https://arxiv.org/pdf/2408.12159v1.pdf
|
https://github.com/shuzhenggao/sbllm
| true | true | false |
none
|
https://paperswithcode.com/paper/sgformer-satellite-ground-fusion-for-3d
|
SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
|
2503.16825
|
https://arxiv.org/abs/2503.16825v2
|
https://arxiv.org/pdf/2503.16825v2.pdf
|
https://github.com/gxytcrc/sgformer
| true | true | true |
none
|
https://paperswithcode.com/paper/scaling-graph-convolutions-for-mobile-vision
|
Scaling Graph Convolutions for Mobile Vision
|
2406.05850
|
https://arxiv.org/abs/2406.05850v1
|
https://arxiv.org/pdf/2406.05850v1.pdf
|
https://github.com/sldgroup/mobilevigv2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/predicting-multi-parametric-dynamics-of-an
|
Predicting multi-parametric dynamics of an externally forced oscillator using reservoir computing and minimal data
| null |
https://link.springer.com/article/10.1007/s11071-024-10720-w
|
https://link.springer.com/content/pdf/10.1007/s11071-024-10720-w.pdf
|
https://github.com/maneesh51/RC_Bif_Prediction
| false | true | false |
none
|
https://paperswithcode.com/paper/a-neural-influence-diffusion-model-for-social
|
A Neural Influence Diffusion Model for Social Recommendation
|
1904.10322
|
http://arxiv.org/abs/1904.10322v1
|
http://arxiv.org/pdf/1904.10322v1.pdf
|
https://github.com/PeiJieSun/diffnet
| true | true | true |
tf
|
https://paperswithcode.com/paper/diffnet-a-neural-influence-and-interest
|
DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation
|
2002.00844
|
https://arxiv.org/abs/2002.00844v4
|
https://arxiv.org/pdf/2002.00844v4.pdf
|
https://github.com/PeiJieSun/diffnet
| false | false | true |
tf
|
https://paperswithcode.com/paper/project-shadow-symbolic-higher-order
|
Project SHADOW: Symbolic Higher-order Associative Deductive reasoning On Wikidata using LM probing
|
2408.14849
|
https://arxiv.org/abs/2408.14849v2
|
https://arxiv.org/pdf/2408.14849v2.pdf
|
https://github.com/hannaabiakl/shadow
| true | true | true |
none
|
https://paperswithcode.com/paper/5-qubit-quantum-error-correction-in-a-charge
|
5-qubit quantum error correction in a charge qubit quantum computer
|
1010.3242
|
https://arxiv.org/abs/1010.3242v1
|
https://arxiv.org/pdf/1010.3242v1.pdf
|
https://github.com/bernwo/five-qubit-code
| false | false | true |
none
|
https://paperswithcode.com/paper/mega-moving-average-equipped-gated-attention
|
Mega: Moving Average Equipped Gated Attention
|
2209.10655
|
https://arxiv.org/abs/2209.10655v3
|
https://arxiv.org/pdf/2209.10655v3.pdf
|
https://github.com/ZIZUN/MAFiD
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/leveraging-passage-retrieval-with-generative
|
Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering
|
2007.01282
|
https://arxiv.org/abs/2007.01282v2
|
https://arxiv.org/pdf/2007.01282v2.pdf
|
https://github.com/ZIZUN/MAFiD
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-ii-the
|
A two-phase model of galaxy formation: II. The size-mass relation of dynamically hot galaxies
|
2311.11713
|
https://arxiv.org/abs/2311.11713v2
|
https://arxiv.org/pdf/2311.11713v2.pdf
|
https://github.com/chenyangyao/two-phase-galaxy-model
| true | true | true |
none
|
https://paperswithcode.com/paper/topical-review-extracting-molecular-frame
|
Topical Review: Extracting Molecular Frame Photoionization Dynamics from Experimental Data
|
2209.04301
|
https://arxiv.org/abs/2209.04301v2
|
https://arxiv.org/pdf/2209.04301v2.pdf
|
https://github.com/phockett/extracting-molecular-frame-photoionization-dynamics-from-experimental-data
| true | true | true |
none
|
https://paperswithcode.com/paper/estimating-probability-densities-with
|
Estimating Probability Densities with Transformer and Denoising Diffusion
|
2407.15703
|
https://arxiv.org/abs/2407.15703v1
|
https://arxiv.org/pdf/2407.15703v1.pdf
|
https://github.com/henrysky/stars_foundation_diffusion
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/error-free-training-for-artificial-neural
|
Error-free Training for Artificial Neural Network
|
2312.16060
|
https://arxiv.org/abs/2312.16060v1
|
https://arxiv.org/pdf/2312.16060v1.pdf
|
https://github.com/bdeng99/Error-free-Training-Code
| false | false | false |
none
|
https://paperswithcode.com/paper/enabling-low-resource-language-retrieval
|
Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO
|
2412.12997
|
https://arxiv.org/abs/2412.12997v3
|
https://arxiv.org/pdf/2412.12997v3.pdf
|
https://github.com/UmerTariq1/Urdu_MsMarco_Translation_Retrieval
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/dataset-growth
|
Dataset Growth
|
2405.18347
|
https://arxiv.org/abs/2405.18347v2
|
https://arxiv.org/pdf/2405.18347v2.pdf
|
https://github.com/nus-hpc-ai-lab/infogrowth
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/equivariant-image-modeling
|
Equivariant Image Modeling
|
2503.18948
|
https://arxiv.org/abs/2503.18948v1
|
https://arxiv.org/pdf/2503.18948v1.pdf
|
https://github.com/drx-code/EquivariantModeling
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unified-perceptual-parsing-for-scene
|
Unified Perceptual Parsing for Scene Understanding
|
1807.10221
|
http://arxiv.org/abs/1807.10221v1
|
http://arxiv.org/pdf/1807.10221v1.pdf
|
https://github.com/MS-P3/code7/tree/main/upernet
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-i-the
|
A two-phase model of galaxy formation: I. The growth of galaxies and supermassive black holes
|
2311.05030
|
https://arxiv.org/abs/2311.05030v3
|
https://arxiv.org/pdf/2311.05030v3.pdf
|
https://github.com/chenyangyao/two-phase-galaxy-model
| true | true | true |
none
|
https://paperswithcode.com/paper/a-two-phase-model-of-galaxy-formation-iii-the
|
A two-phase model of galaxy formation: III. The formation of globular clusters
|
2405.18735
|
https://arxiv.org/abs/2405.18735v3
|
https://arxiv.org/pdf/2405.18735v3.pdf
|
https://github.com/chenyangyao/two-phase-galaxy-model
| true | true | true |
none
|
https://paperswithcode.com/paper/difr3ct-latent-diffusion-for-probabilistic-3d
|
DIFR3CT: Latent Diffusion for Probabilistic 3D CT Reconstruction from Few Planar X-Rays
|
2408.15118
|
https://arxiv.org/abs/2408.15118v1
|
https://arxiv.org/pdf/2408.15118v1.pdf
|
https://github.com/yransun/difr3ct
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/layerwise-proximal-replay-a-proximal-point
|
Layerwise Proximal Replay: A Proximal Point Method for Online Continual Learning
|
2402.09542
|
https://arxiv.org/abs/2402.09542v3
|
https://arxiv.org/pdf/2402.09542v3.pdf
|
https://github.com/plai-group/lpr
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-head-rag-solving-multi-aspect-problems
|
Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
|
2406.05085
|
https://arxiv.org/abs/2406.05085v2
|
https://arxiv.org/pdf/2406.05085v2.pdf
|
https://github.com/spcl/mrag
| true | true | true |
none
|
https://paperswithcode.com/paper/assessing-treatment-effects-in-observational
|
Assessing treatment effects in observational data with missing confounders: A comparative study of practical doubly-robust and traditional missing data methods
|
2412.15012
|
https://arxiv.org/abs/2412.15012v1
|
https://arxiv.org/pdf/2412.15012v1.pdf
|
https://github.com/PamelaShaw/Missing-Confounders-Methods
| true | false | false |
none
|
https://paperswithcode.com/paper/ganetic-loss-for-generative-adversarial
|
GANetic Loss for Generative Adversarial Networks with a Focus on Medical Applications
|
2406.05023
|
https://arxiv.org/abs/2406.05023v1
|
https://arxiv.org/pdf/2406.05023v1.pdf
|
https://github.com/ZKI-PH-ImageAnalysis/GANetic-Loss
| true | false | true |
tf
|
https://paperswithcode.com/paper/multilingual-text-style-transfer-datasets
|
Multilingual Text Style Transfer: Datasets & Models for Indian Languages
|
2405.20805
|
https://arxiv.org/abs/2405.20805v3
|
https://arxiv.org/pdf/2405.20805v3.pdf
|
https://github.com/panlingua/multilingual-tst-datasets
| true | true | true |
none
|
https://paperswithcode.com/paper/efficient-k-nearest-neighbor-machine
|
Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval
|
2406.06073
|
https://arxiv.org/abs/2406.06073v1
|
https://arxiv.org/pdf/2406.06073v1.pdf
|
https://github.com/deeplearnxmu/knn-mt-dr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/coverage-axis-inner-point-selection-for-3d
|
Coverage Axis: Inner Point Selection for 3D Shape Skeletonization
|
2110.00965
|
https://arxiv.org/abs/2110.00965v3
|
https://arxiv.org/pdf/2110.00965v3.pdf
|
https://github.com/frank-zy-dou/coverage_axis
| false | false | true |
none
|
https://paperswithcode.com/paper/ec-kity-evolutionary-computation-tool-kit-in
|
EC-KitY: Evolutionary Computation Tool Kit in Python with Seamless Machine Learning Integration
|
2207.10367
|
https://arxiv.org/abs/2207.10367v2
|
https://arxiv.org/pdf/2207.10367v2.pdf
|
https://github.com/irenamal/ec-kity
| false | false | true |
none
|
https://paperswithcode.com/paper/evolving-assembly-code-in-an-adversarial
|
Evolving Assembly Code in an Adversarial Environment
|
2403.19489
|
https://arxiv.org/abs/2403.19489v2
|
https://arxiv.org/pdf/2403.19489v2.pdf
|
https://github.com/irenamal/ec-kity
| true | true | false |
none
|
https://paperswithcode.com/paper/a-test-suite-of-prompt-injection-attacks-for
|
A test suite of prompt injection attacks for LLM-based machine translation
|
2410.05047
|
https://arxiv.org/abs/2410.05047v1
|
https://arxiv.org/pdf/2410.05047v1.pdf
|
https://github.com/Avmb/adversarial_MT_prompt_injection
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/class-symbolic-regression-gotta-fit-em-all
|
Class Symbolic Regression: Gotta Fit 'Em All
|
2312.01816
|
https://arxiv.org/abs/2312.01816v2
|
https://arxiv.org/pdf/2312.01816v2.pdf
|
https://github.com/wassimtenachi/physo
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/unifying-interpretability-and-explainability
|
Unifying Interpretability and Explainability for Alzheimer's Disease Progression Prediction
|
2406.07777
|
https://arxiv.org/abs/2406.07777v1
|
https://arxiv.org/pdf/2406.07777v1.pdf
|
https://github.com/rfali/xrlad
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mtlora-low-rank-adaptation-approach-for
|
MTLoRA: Low-Rank Adaptation Approach for Efficient Multi-Task Learning
| null |
http://openaccess.thecvf.com//content/CVPR2024/html/Agiza_MTLoRA_Low-Rank_Adaptation_Approach_for_Efficient_Multi-Task_Learning_CVPR_2024_paper.html
|
http://openaccess.thecvf.com//content/CVPR2024/papers/Agiza_MTLoRA_Low-Rank_Adaptation_Approach_for_Efficient_Multi-Task_Learning_CVPR_2024_paper.pdf
|
https://github.com/scale-lab/mtlora
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploration-of-class-center-for-fine-grained
|
Exploration of Class Center for Fine-Grained Visual Classification
|
2407.04243
|
https://arxiv.org/abs/2407.04243v1
|
https://arxiv.org/pdf/2407.04243v1.pdf
|
https://github.com/hyao1/ecc
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-representation-independent-electronic
|
A representation-independent electronic charge density database for crystalline materials
|
2107.03540
|
https://arxiv.org/abs/2107.03540v1
|
https://arxiv.org/pdf/2107.03540v1.pdf
|
https://github.com/seongsukim-ml/gpwno
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/ranni-taming-text-to-image-diffusion-for
|
Ranni: Taming Text-to-Image Diffusion for Accurate Instruction Following
|
2311.17002
|
https://arxiv.org/abs/2311.17002v3
|
https://arxiv.org/pdf/2311.17002v3.pdf
|
https://github.com/lllyasviel/omost
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/leveraging-large-language-models-for-active
|
Leveraging Large Language Models for Active Merchant Non-player Characters
|
2412.11189
|
https://arxiv.org/abs/2412.11189v2
|
https://arxiv.org/pdf/2412.11189v2.pdf
|
https://github.com/elu-lab/mart
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/deepisign-g-generic-watermark-to-stamp-hidden
|
DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking
|
2407.01260
|
https://arxiv.org/abs/2407.01260v1
|
https://arxiv.org/pdf/2407.01260v1.pdf
|
https://github.com/SharifAbuadbba/DeepiSign-G
| true | false | false |
none
|
https://paperswithcode.com/paper/preference-distillation-for-personalized
|
Preference Distillation for Personalized Generative Recommendation
|
2407.05033
|
https://arxiv.org/abs/2407.05033v1
|
https://arxiv.org/pdf/2407.05033v1.pdf
|
https://github.com/jeromeramos70/peapod
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/solving-the-quantum-many-body-problem-with
|
Solving the Quantum Many-Body Problem with Artificial Neural Networks
|
1606.02318
|
https://arxiv.org/abs/1606.02318v1
|
https://arxiv.org/pdf/1606.02318v1.pdf
|
https://github.com/dkkim1005/Neural_Network_Quantum_State
| false | false | true |
none
|
https://paperswithcode.com/paper/mambats-improved-selective-state-space-models
|
MambaTS: Improved Selective State Space Models for Long-term Time Series Forecasting
|
2405.16440
|
https://arxiv.org/abs/2405.16440v1
|
https://arxiv.org/pdf/2405.16440v1.pdf
|
https://github.com/XiudingCai/MambaTS-pytorch
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/deep-learning-based-noninvasive-screening-of
|
Deep Learning-Based Noninvasive Screening of Type 2 Diabetes with Chest X-ray Images and Electronic Health Records
|
2412.10955
|
https://arxiv.org/abs/2412.10955v1
|
https://arxiv.org/pdf/2412.10955v1.pdf
|
https://github.com/san-635/t2dm-cxr-ehr
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/automated-conjecturing-in-mathematics-with
|
Automated conjecturing in mathematics with \emph{TxGraffiti}
|
2409.19379
|
https://arxiv.org/abs/2409.19379v1
|
https://arxiv.org/pdf/2409.19379v1.pdf
|
https://github.com/RandyRDavila/TxGraffiti_APP
| true | false | true |
none
|
https://paperswithcode.com/paper/dinov2-based-self-supervised-learning-for-few
|
DINOv2 based Self Supervised Learning For Few Shot Medical Image Segmentation
|
2403.03273
|
https://arxiv.org/abs/2403.03273v1
|
https://arxiv.org/pdf/2403.03273v1.pdf
|
https://github.com/levayz/protosam
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/a-sparsity-principle-for-partially-observable
|
A Sparsity Principle for Partially Observable Causal Representation Learning
|
2403.08335
|
https://arxiv.org/abs/2403.08335v2
|
https://arxiv.org/pdf/2403.08335v2.pdf
|
https://github.com/danrux/sparsity-crl
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/high-resolution-image-synthesis-with-latent
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
2112.10752
|
https://arxiv.org/abs/2112.10752v2
|
https://arxiv.org/pdf/2112.10752v2.pdf
|
https://github.com/Francis-Rings/MotionFollower
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/negative-preference-optimization-from
|
Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning
|
2404.05868
|
https://arxiv.org/abs/2404.05868v2
|
https://arxiv.org/pdf/2404.05868v2.pdf
|
https://github.com/ucsb-nlp-chang/uld
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/offset-unlearning-for-large-language-models
|
Offset Unlearning for Large Language Models
|
2404.11045
|
https://arxiv.org/abs/2404.11045v1
|
https://arxiv.org/pdf/2404.11045v1.pdf
|
https://github.com/ucsb-nlp-chang/uld
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/fully-few-shot-class-incremental-audio
|
Fully Few-shot Class-incremental Audio Classification Using Expandable Dual-embedding Extractor
|
2406.08122
|
https://arxiv.org/abs/2406.08122v1
|
https://arxiv.org/pdf/2406.08122v1.pdf
|
https://github.com/yongjiesi/ede
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/by-passing-the-kohn-sham-equations-with
|
By-passing the Kohn-Sham equations with machine learning
|
1609.02815
|
http://arxiv.org/abs/1609.02815v3
|
http://arxiv.org/pdf/1609.02815v3.pdf
|
https://github.com/seongsukim-ml/gpwno
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/calculating-pair-correlations-from-random
|
Calculating pair-correlations from random particle configurations
|
2401.09236
|
https://arxiv.org/abs/2401.09236v2
|
https://arxiv.org/pdf/2401.09236v2.pdf
|
https://github.com/arturgower/ParticleCorrelations.jl
| true | false | false |
none
|
https://paperswithcode.com/paper/consistent-document-level-relation-extraction
|
Consistent Document-Level Relation Extraction via Counterfactuals
|
2407.06699
|
https://arxiv.org/abs/2407.06699v2
|
https://arxiv.org/pdf/2407.06699v2.pdf
|
https://github.com/amodaresi/CovEReD
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/transpixar-advancing-text-to-video-generation
|
TransPixeler: Advancing Text-to-Video Generation with Transparency
|
2501.03006
|
https://arxiv.org/abs/2501.03006v2
|
https://arxiv.org/pdf/2501.03006v2.pdf
|
https://github.com/wileewang/TransPixar
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/enhancing-sequential-music-recommendation
|
Enhancing Sequential Music Recommendation with Personalized Popularity Awareness
|
2409.04329
|
https://arxiv.org/abs/2409.04329v1
|
https://arxiv.org/pdf/2409.04329v1.pdf
|
https://github.com/sisinflab/personalized-popularity-awareness
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/large-language-models-are-zero-shot
|
Large Language Models are Zero Shot Hypothesis Proposers
|
2311.05965
|
https://arxiv.org/abs/2311.05965v1
|
https://arxiv.org/pdf/2311.05965v1.pdf
|
https://github.com/tsinghuac3i/llm4biohypogen
| false | false | true |
none
|
https://paperswithcode.com/paper/large-language-models-as-biomedical
|
Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation
|
2407.08940
|
https://arxiv.org/abs/2407.08940v2
|
https://arxiv.org/pdf/2407.08940v2.pdf
|
https://github.com/tsinghuac3i/llm4biohypogen
| true | true | true |
none
|
https://paperswithcode.com/paper/understanding-stereotypes-in-language-models
|
Causally Testing Gender Bias in LLMs: A Case Study on Occupational Bias
|
2212.10678
|
https://arxiv.org/abs/2212.10678v3
|
https://arxiv.org/pdf/2212.10678v3.pdf
|
https://github.com/chenyuen0103/gender-bias
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/generating-holistic-3d-human-motion-from
|
Generating Holistic 3D Human Motion from Speech
|
2212.04420
|
https://arxiv.org/abs/2212.04420v2
|
https://arxiv.org/pdf/2212.04420v2.pdf
|
https://github.com/yhw-yhw/talkshow
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/an-empirical-study-on-developers-shared
|
An Empirical Study on Developers Shared Conversations with ChatGPT in GitHub Pull Requests and Issues
|
2403.10468
|
https://arxiv.org/abs/2403.10468v1
|
https://arxiv.org/pdf/2403.10468v1.pdf
|
https://github.com/riselabqueens/analyzing-shared-conversation
| true | true | true |
none
|
https://paperswithcode.com/paper/efficient-gans-for-document-image
|
Efficient GANs for Document Image Binarization Based on DWT and Normalization
|
2407.04231
|
https://arxiv.org/abs/2407.04231v1
|
https://arxiv.org/pdf/2407.04231v1.pdf
|
https://github.com/ruiyangju/efficient_document_image_binarization
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/me-myself-and-ai-the-situational-awareness
|
Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs
|
2407.04694
|
https://arxiv.org/abs/2407.04694v1
|
https://arxiv.org/pdf/2407.04694v1.pdf
|
https://github.com/lrudl/sad
| true | true | true |
none
|
https://paperswithcode.com/paper/llmeasyquant-an-easy-to-use-toolkit-for-llm
|
LLMEasyQuant: Scalable Quantization for Parallel and Distributed LLM Inference
|
2406.19657
|
https://arxiv.org/abs/2406.19657v4
|
https://arxiv.org/pdf/2406.19657v4.pdf
|
https://github.com/NoakLiu/LLMEasyQuant
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-graph-enhanced-retrieval-augmented
|
Knowledge graph enhanced retrieval-augmented generation for failure mode and effects analysis
|
2406.18114
|
https://arxiv.org/abs/2406.18114v3
|
https://arxiv.org/pdf/2406.18114v3.pdf
|
https://github.com/lukasbahr/kg-rag-fmea
| true | true | true |
none
|
https://paperswithcode.com/paper/adaptive-multi-scale-decomposition-framework
|
Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting
|
2406.03751
|
https://arxiv.org/abs/2406.03751v1
|
https://arxiv.org/pdf/2406.03751v1.pdf
|
https://github.com/troubadour000/amd
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/investigation-of-perceptual-music-similarity
|
Investigation of perceptual music similarity focusing on each instrumental part
|
2502.02138
|
https://arxiv.org/abs/2502.02138v1
|
https://arxiv.org/pdf/2502.02138v1.pdf
|
https://github.com/zume06/inst-sim-abx-dataset
| true | true | true |
none
|
https://paperswithcode.com/paper/concept-drift-visualization-of-svm-with
|
Concept Drift Visualization of SVM with Shifting Window
|
2406.13754
|
https://arxiv.org/abs/2406.13754v1
|
https://arxiv.org/pdf/2406.13754v1.pdf
|
https://github.com/hash2100/aidsvm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/on-the-scalability-of-data-reduction
|
On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective
|
1706.00522
|
https://arxiv.org/abs/1706.00522v1
|
https://arxiv.org/pdf/1706.00522v1.pdf
|
https://github.com/openPMD/openPMD-api
| false | false | true |
none
|
https://paperswithcode.com/paper/the-induced-matching-distance-a-novel
|
The Induced Matching Distance: A Novel Topological Metric with Applications in Robotics
|
2502.02112
|
https://arxiv.org/abs/2502.02112v2
|
https://arxiv.org/pdf/2502.02112v2.pdf
|
https://github.com/cimagroup/induced-matching-distance-navground
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/polis-scaling-deliberation-by-mapping-high
|
Polis: Scaling Deliberation by Mapping High Dimensional Opinion Spaces
| null |
https://www.e-revistes.uji.es/index.php/recerca/article/view/5516
|
https://www.e-revistes.uji.es/index.php/recerca/article/view/5516/6558
|
https://github.com/compdemocracy/polis
| true | false | false |
none
|
https://paperswithcode.com/paper/hostile-counterspeech-drives-users-from-hate
|
Hostile Counterspeech Drives Users From Hate Subreddits
|
2405.18374
|
https://arxiv.org/abs/2405.18374v1
|
https://arxiv.org/pdf/2405.18374v1.pdf
|
https://github.com/dan-hickey1/reddit-counterspeech
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/phendiff-revealing-invisible-phenotypes-with
|
PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images
|
2312.08290
|
https://arxiv.org/abs/2312.08290v2
|
https://arxiv.org/pdf/2312.08290v2.pdf
|
https://github.com/warmongeringbeaver/phendiff
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/stard-a-chinese-statute-retrieval-dataset
|
STARD: A Chinese Statute Retrieval Dataset with Real Queries Issued by Non-professionals
|
2406.15313
|
https://arxiv.org/abs/2406.15313v1
|
https://arxiv.org/pdf/2406.15313v1.pdf
|
https://github.com/oneal2000/stard
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/adatreeformer-few-shot-domain-adaptation-for
|
AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image
|
2402.02956
|
https://arxiv.org/abs/2402.02956v4
|
https://arxiv.org/pdf/2402.02956v4.pdf
|
https://github.com/HAAClassic/AdaTreeFormer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cosign-few-step-guidance-of-consistency-model
|
CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems
|
2407.12676
|
https://arxiv.org/abs/2407.12676v1
|
https://arxiv.org/pdf/2407.12676v1.pdf
|
https://github.com/biomed-ai-lab-u-michgan/cosign
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/pomo-policy-optimization-with-multiple-optima
|
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning
|
2010.16011
|
https://arxiv.org/abs/2010.16011v3
|
https://arxiv.org/pdf/2010.16011v3.pdf
|
https://github.com/kaist-silab/symmetric_replay
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/few-shot-class-incremental-learning-with-1
|
Few-Shot Class Incremental Learning with Attention-Aware Self-Adaptive Prompt
|
2403.09857
|
https://arxiv.org/abs/2403.09857v3
|
https://arxiv.org/pdf/2403.09857v3.pdf
|
https://github.com/dawnliu35/fscil-asp
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/symmetric-exploration-in-combinatorial
|
Symmetric Replay Training: Enhancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization
|
2306.01276
|
https://arxiv.org/abs/2306.01276v4
|
https://arxiv.org/pdf/2306.01276v4.pdf
|
https://github.com/kaist-silab/symmetric_replay
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/radik-scalable-and-optimized-gpu-parallel
|
RadiK: Scalable and Optimized GPU-Parallel Radix Top-K Selection
|
2501.14336
|
https://arxiv.org/abs/2501.14336v1
|
https://arxiv.org/pdf/2501.14336v1.pdf
|
https://github.com/leefige/radik
| true | false | true |
none
|
https://paperswithcode.com/paper/enhancing-scene-graph-generation-with
|
Enhancing Scene Graph Generation with Hierarchical Relationships and Commonsense Knowledge
|
2311.12889
|
https://arxiv.org/abs/2311.12889v2
|
https://arxiv.org/pdf/2311.12889v2.pdf
|
https://github.com/bowen-upenn/scene_graph_commonsense
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/zero-shot-point-cloud-completion-via-2d
|
ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors
|
2404.06814
|
https://arxiv.org/abs/2404.06814v2
|
https://arxiv.org/pdf/2404.06814v2.pdf
|
https://github.com/Tianxinhuang/ComPC
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/algorithms-for-non-linear-and-stochastic
|
Algorithms for Non-Linear and Stochastic Resource Constrained Shortest Paths
|
1504.07880
|
http://arxiv.org/abs/1504.07880v2
|
http://arxiv.org/pdf/1504.07880v2.pdf
|
https://github.com/BatyLeo/ConstrainedShortestPaths.jl
| false | false | true |
none
|
https://paperswithcode.com/paper/multi-granularity-distillation-scheme-towards
|
Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation
|
2208.10169
|
https://arxiv.org/abs/2208.10169v1
|
https://arxiv.org/pdf/2208.10169v1.pdf
|
https://github.com/jayqine/mgd-ssss
| true | true | true |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.