paper_url
stringlengths 36
81
| paper_title
stringlengths 1
242
⌀ | paper_arxiv_id
stringlengths 9
16
⌀ | paper_url_abs
stringlengths 18
314
| paper_url_pdf
stringlengths 21
935
⌀ | repo_url
stringlengths 26
200
| is_official
bool 2
classes | mentioned_in_paper
bool 2
classes | mentioned_in_github
bool 2
classes | framework
stringclasses 9
values |
---|---|---|---|---|---|---|---|---|---|
https://paperswithcode.com/paper/fb-occ-3d-occupancy-prediction-based-on
|
FB-OCC: 3D Occupancy Prediction based on Forward-Backward View Transformation
|
2307.01492
|
https://arxiv.org/abs/2307.01492v1
|
https://arxiv.org/pdf/2307.01492v1.pdf
|
https://github.com/nvlabs/fb-bev
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/continual-learning-for-surface-defect
|
Continual learning for surface defect segmentation by subnetwork creation and selection
|
2312.05100
|
https://arxiv.org/abs/2312.05100v1
|
https://arxiv.org/pdf/2312.05100v1.pdf
|
https://github.com/adekhovich/continual_defect_segmentation
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/avid-any-length-video-inpainting-with
|
AVID: Any-Length Video Inpainting with Diffusion Model
|
2312.03816
|
https://arxiv.org/abs/2312.03816v3
|
https://arxiv.org/pdf/2312.03816v3.pdf
|
https://github.com/zhang-zx/AVID
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/re-2-h2o-autonomous-driving-scenario
|
(Re)$^2$H2O: Autonomous Driving Scenario Generation via Reversely Regularized Hybrid Offline-and-Online Reinforcement Learning
|
2302.13726
|
https://arxiv.org/abs/2302.13726v2
|
https://arxiv.org/pdf/2302.13726v2.pdf
|
https://github.com/YizhouXu-THU/CLIC
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/towards-optimal-grammars-for-rna-structures
|
Towards Optimal Grammars for RNA Structures
|
2401.16623
|
https://arxiv.org/abs/2401.16623v1
|
https://arxiv.org/pdf/2401.16623v1.pdf
|
https://github.com/evita35/better-grammars
| true | true | true |
none
|
https://paperswithcode.com/paper/ambient-diffusion-learning-clean
|
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
|
2305.19256
|
https://arxiv.org/abs/2305.19256v1
|
https://arxiv.org/pdf/2305.19256v1.pdf
|
https://github.com/giannisdaras/ambient-tweedie
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/steering-cooperation-adversarial-attacks-on
|
Steering cooperation: Adversarial attacks on prisoner's dilemma in complex networks
|
2406.19692
|
https://arxiv.org/abs/2406.19692v4
|
https://arxiv.org/pdf/2406.19692v4.pdf
|
https://github.com/kztakemoto/advGame
| true | true | true |
none
|
https://paperswithcode.com/paper/on-the-regret-of-online-coded-caching
|
On the Regret of Online Coded Caching
|
2312.05003
|
https://arxiv.org/abs/2312.05003v1
|
https://arxiv.org/pdf/2312.05003v1.pdf
|
https://github.com/sheelfshah/onlinecodedcaching
| true | true | false |
none
|
https://paperswithcode.com/paper/lagrangebench-a-lagrangian-fluid-mechanics-1
|
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
|
2309.16342
|
https://arxiv.org/abs/2309.16342v2
|
https://arxiv.org/pdf/2309.16342v2.pdf
|
https://github.com/tumaer/lagrangebench
| true | true | true |
jax
|
https://paperswithcode.com/paper/tensor-fusion-network-for-multimodal
|
Tensor Fusion Network for Multimodal Sentiment Analysis
|
1707.07250
|
http://arxiv.org/abs/1707.07250v1
|
http://arxiv.org/pdf/1707.07250v1.pdf
|
https://github.com/Avaneesh-S/Tensor-Fusion-Network
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/anomalyllm-few-shot-anomaly-edge-detection
|
AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models
|
2405.07626
|
https://arxiv.org/abs/2405.07626v2
|
https://arxiv.org/pdf/2405.07626v2.pdf
|
https://github.com/anomalyllm/anomalyllm
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/diffkendall-a-novel-approach-for-few-shot
|
DiffKendall: A Novel Approach for Few-Shot Learning with Differentiable Kendall's Rank Correlation
|
2307.15317
|
https://arxiv.org/abs/2307.15317v2
|
https://arxiv.org/pdf/2307.15317v2.pdf
|
https://github.com/kaipengm2/DiffKendall
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/improving-pseudo-labels-for-open-vocabulary
|
Taming Self-Training for Open-Vocabulary Object Detection
|
2308.06412
|
https://arxiv.org/abs/2308.06412v3
|
https://arxiv.org/pdf/2308.06412v3.pdf
|
https://github.com/xiaofeng94/sas-det
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/alleviating-structural-distribution-shift-in
|
Alleviating Structural Distribution Shift in Graph Anomaly Detection
|
2401.14155
|
https://arxiv.org/abs/2401.14155v1
|
https://arxiv.org/pdf/2401.14155v1.pdf
|
https://github.com/blacksingular/wsdm_gdn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/concentration-in-governance-control-across
|
Concentration in Governance Control Across Decentralised Finance Protocols
|
2501.13377
|
https://arxiv.org/abs/2501.13377v2
|
https://arxiv.org/pdf/2501.13377v2.pdf
|
https://github.com/xm3van/reasearch-project-erc20-governance
| true | true | false |
none
|
https://paperswithcode.com/paper/asyco-an-asymmetric-dual-task-co-training
|
AsyCo: An Asymmetric Dual-task Co-training Model for Partial-label Learning
|
2407.15036
|
https://arxiv.org/abs/2407.15036v1
|
https://arxiv.org/pdf/2407.15036v1.pdf
|
https://github.com/libeibeics/asyco
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
|
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
|
1910.10683
|
https://arxiv.org/abs/1910.10683v4
|
https://arxiv.org/pdf/1910.10683v4.pdf
|
https://github.com/google/seqio
| false | false | true |
tf
|
https://paperswithcode.com/paper/restoration-of-the-tully-fisher-relation-by
|
Restoration of the Tully-Fisher Relation by Statistical Rectification
|
2401.13738
|
https://arxiv.org/abs/2401.13738v3
|
https://arxiv.org/pdf/2401.13738v3.pdf
|
https://github.com/fuhaiastro/tfr_lucy
| true | true | false |
none
|
https://paperswithcode.com/paper/structure-aligned-protein-language-model
|
Structure-Aligned Protein Language Model
|
2505.16896
|
https://arxiv.org/abs/2505.16896v1
|
https://arxiv.org/pdf/2505.16896v1.pdf
|
https://github.com/chandar-lab/amplify
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/stressing-out-modern-quantum-hardware
|
Stressing Out Modern Quantum Hardware: Performance Evaluation and Execution Insights
|
2401.13793
|
https://arxiv.org/abs/2401.13793v2
|
https://arxiv.org/pdf/2401.13793v2.pdf
|
https://github.com/kaitlinmgili/qnbm
| true | true | false |
none
|
https://paperswithcode.com/paper/enhancing-task-oriented-dialogues-with
|
Enhancing Task-Oriented Dialogues with Chitchat: a Comparative Study Based on Lexical Diversity and Divergence
|
2311.14067
|
https://arxiv.org/abs/2311.14067v2
|
https://arxiv.org/pdf/2311.14067v2.pdf
|
https://github.com/armandstrickernlp/task-chitchat-entropy
| true | true | true |
none
|
https://paperswithcode.com/paper/mm-ktd-multiple-model-kalman-temporal
|
MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement Learning
|
2006.00195
|
https://arxiv.org/abs/2006.00195v1
|
https://arxiv.org/pdf/2006.00195v1.pdf
|
https://github.com/pmalekzadeh/MM-KTD
| true | false | true |
none
|
https://paperswithcode.com/paper/detecting-and-grounding-important-characters
|
Detecting and Grounding Important Characters in Visual Stories
|
2303.17647
|
https://arxiv.org/abs/2303.17647v1
|
https://arxiv.org/pdf/2303.17647v1.pdf
|
https://github.com/iz2late/VIST-Character
| true | false | true |
none
|
https://paperswithcode.com/paper/knowledgemath-knowledge-intensive-math-word
|
FinanceMath: Knowledge-Intensive Math Reasoning in Finance Domains
|
2311.09797
|
https://arxiv.org/abs/2311.09797v2
|
https://arxiv.org/pdf/2311.09797v2.pdf
|
https://github.com/yale-nlp/knowledgemath
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/multi-agent-vqa-exploring-multi-agent
|
Multi-Agent VQA: Exploring Multi-Agent Foundation Models in Zero-Shot Visual Question Answering
|
2403.14783
|
https://arxiv.org/abs/2403.14783v1
|
https://arxiv.org/pdf/2403.14783v1.pdf
|
https://github.com/bowen-upenn/Multi-Agent-VQA
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/scribbleprompt-fast-and-flexible-interactive
|
ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Biomedical Image
|
2312.07381
|
https://arxiv.org/abs/2312.07381v3
|
https://arxiv.org/pdf/2312.07381v3.pdf
|
https://github.com/halleewong/ScribblePrompt
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/shadow-generation-for-composite-image-using
|
Shadow Generation for Composite Image Using Diffusion model
|
2403.15234
|
https://arxiv.org/abs/2403.15234v1
|
https://arxiv.org/pdf/2403.15234v1.pdf
|
https://github.com/bcmi/object-shadow-generation-dataset-desobav2
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/knowledge-translation-a-new-pathway-for-model
|
Knowledge Translation: A New Pathway for Model Compression
|
2401.05772
|
https://arxiv.org/abs/2401.05772v1
|
https://arxiv.org/pdf/2401.05772v1.pdf
|
https://github.com/zju-swj/kt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/fine-grained-action-analysis-a-multi-modality
|
Fine-grained Action Analysis: A Multi-modality and Multi-task Dataset of Figure Skating
|
2307.02730
|
https://arxiv.org/abs/2307.02730v3
|
https://arxiv.org/pdf/2307.02730v3.pdf
|
https://github.com/dingyn-reno/mmfs
| true | true | true |
none
|
https://paperswithcode.com/paper/alympics-language-agents-meet-game-theory
|
ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic Decision-Making with AI Agents
|
2311.03220
|
https://arxiv.org/abs/2311.03220v4
|
https://arxiv.org/pdf/2311.03220v4.pdf
|
https://github.com/microsoft/alympics
| true | true | true |
none
|
https://paperswithcode.com/paper/personal-llm-agents-insights-and-survey-about
|
Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security
|
2401.05459
|
https://arxiv.org/abs/2401.05459v2
|
https://arxiv.org/pdf/2401.05459v2.pdf
|
https://github.com/mobilellm/personal_llm_agents_survey
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/trustguard-gnn-based-robust-and-explainable
|
TrustGuard: GNN-based Robust and Explainable Trust Evaluation with Dynamicity Support
|
2306.13339
|
https://arxiv.org/abs/2306.13339v4
|
https://arxiv.org/pdf/2306.13339v4.pdf
|
https://github.com/jieerbobo/trustguard
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/divide-and-conquer-for-large-language-models
|
DCR: Divide-and-Conquer Reasoning for Multi-choice Question Answering with LLMs
|
2401.05190
|
https://arxiv.org/abs/2401.05190v2
|
https://arxiv.org/pdf/2401.05190v2.pdf
|
https://github.com/aimijie/divide-and-conquer
| true | true | true |
none
|
https://paperswithcode.com/paper/fast-muon-tracking-with-machine-learning
|
Fast Muon Tracking with Machine Learning Implemented in FPGA
|
2202.04976
|
https://arxiv.org/abs/2202.04976v2
|
https://arxiv.org/pdf/2202.04976v2.pdf
|
https://github.com/calad0i/HGQ
| false | false | true |
tf
|
https://paperswithcode.com/paper/spike-driven-transformer-1
|
Spike-driven Transformer
|
2307.01694
|
https://arxiv.org/abs/2307.01694v1
|
https://arxiv.org/pdf/2307.01694v1.pdf
|
https://github.com/biclab/spike-driven-transformer
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/less-is-more-hop-wise-graph-attention-for
|
Less is More: Hop-Wise Graph Attention for Scalable and Generalizable Learning on Circuits
|
2403.01317
|
https://arxiv.org/abs/2403.01317v4
|
https://arxiv.org/pdf/2403.01317v4.pdf
|
https://github.com/cornell-zhang/hoga
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/federated-domain-generalization-for-image
|
Federated Domain Generalization for Image Recognition via Cross-Client Style Transfer
|
2210.00912
|
https://arxiv.org/abs/2210.00912v1
|
https://arxiv.org/pdf/2210.00912v1.pdf
|
https://github.com/JeremyCJM/CCST
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/selfeeg-a-python-library-for-self-supervised
|
SelfEEG: A Python library for Self-Supervised Learning in Electroencephalography
|
2401.05405
|
https://arxiv.org/abs/2401.05405v1
|
https://arxiv.org/pdf/2401.05405v1.pdf
|
https://github.com/medmaxlab/selfeeg
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/heterogeneous-value-evaluation-for-large
|
Heterogeneous Value Alignment Evaluation for Large Language Models
|
2305.17147
|
https://arxiv.org/abs/2305.17147v3
|
https://arxiv.org/pdf/2305.17147v3.pdf
|
https://github.com/zowiezhang/hvae
| true | true | true |
none
|
https://paperswithcode.com/paper/neural-galerkin-scheme-with-active-learning
|
Neural Galerkin Schemes with Active Learning for High-Dimensional Evolution Equations
|
2203.01360
|
https://arxiv.org/abs/2203.01360v4
|
https://arxiv.org/pdf/2203.01360v4.pdf
|
https://github.com/julesberman/colora
| false | false | true |
jax
|
https://paperswithcode.com/paper/avoiding-barren-plateaus-via-gaussian-mixture
|
Avoiding barren plateaus via Gaussian Mixture Model
|
2402.13501
|
https://arxiv.org/abs/2402.13501v1
|
https://arxiv.org/pdf/2402.13501v1.pdf
|
https://github.com/iwrache/gmm-bp
| true | true | false |
none
|
https://paperswithcode.com/paper/anls-a-universal-document-processing-metric
|
ANLS* -- A Universal Document Processing Metric for Generative Large Language Models
|
2402.03848
|
https://arxiv.org/abs/2402.03848v7
|
https://arxiv.org/pdf/2402.03848v7.pdf
|
https://github.com/deepopinion/anls_star_metric
| true | true | true |
none
|
https://paperswithcode.com/paper/gumbelsoft-diversified-language-model
|
GumbelSoft: Diversified Language Model Watermarking via the GumbelMax-trick
|
2402.12948
|
https://arxiv.org/abs/2402.12948v3
|
https://arxiv.org/pdf/2402.12948v3.pdf
|
https://github.com/poruna-byte/gumbelsoft
| true | true | true |
none
|
https://paperswithcode.com/paper/long-short-term-memory-with-activation-on
|
Long short-term memory with activation on gradient
| null |
https://www.sciencedirect.com/science/article/pii/S0893608023002125
|
https://www.sciencedirect.com/science/article/pii/S0893608023002125
|
https://github.com/2024-MindSpore-1/Code10/tree/main/lstm-gaf
| false | false | false |
mindspore
|
https://paperswithcode.com/paper/tqcompressor-improving-tensor-decomposition
|
TQCompressor: improving tensor decomposition methods in neural networks via permutations
|
2401.16367
|
https://arxiv.org/abs/2401.16367v1
|
https://arxiv.org/pdf/2401.16367v1.pdf
|
https://github.com/terra-quantum-public/tqcompressedgpt2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/unsee-unsupervised-non-contrastive-sentence
|
UNSEE: Unsupervised Non-contrastive Sentence Embeddings
|
2401.15316
|
https://arxiv.org/abs/2401.15316v3
|
https://arxiv.org/pdf/2401.15316v3.pdf
|
https://github.com/asparius/unsee
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/m2-raap-a-multi-modal-recipe-for-advancing
|
M2-RAAP: A Multi-Modal Recipe for Advancing Adaptation-based Pre-training towards Effective and Efficient Zero-shot Video-text Retrieval
|
2401.17797
|
https://arxiv.org/abs/2401.17797v1
|
https://arxiv.org/pdf/2401.17797v1.pdf
|
https://github.com/alipay/Ant-Multi-Modal-Framework
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/snp-s3-shared-network-pre-training-and
|
SNP-S3: Shared Network Pre-training and Significant Semantic Strengthening for Various Video-Text Tasks
|
2401.17773
|
https://arxiv.org/abs/2401.17773v1
|
https://arxiv.org/pdf/2401.17773v1.pdf
|
https://github.com/alipay/Ant-Multi-Modal-Framework
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/a-survey-on-contextualised-semantic-shift
|
A Survey on Contextualised Semantic Shift Detection
|
2304.01666
|
https://arxiv.org/abs/2304.01666v2
|
https://arxiv.org/pdf/2304.01666v2.pdf
|
https://github.com/francescoperiti/cssdetection
| false | false | true |
none
|
https://paperswithcode.com/paper/unlearncanvas-a-stylized-image-dataset-to
|
UnlearnCanvas: Stylized Image Dataset for Enhanced Machine Unlearning Evaluation in Diffusion Models
|
2402.11846
|
https://arxiv.org/abs/2402.11846v4
|
https://arxiv.org/pdf/2402.11846v4.pdf
|
https://github.com/optml-group/unlearncanvas
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/optimization-of-array-encoding-for-ultrasound
|
Optimization of array encoding for ultrasound imaging
|
2403.00289
|
https://arxiv.org/abs/2403.00289v2
|
https://arxiv.org/pdf/2403.00289v2.pdf
|
https://github.com/jcs15c/optimal_ultrasound_encoding
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/non-invasive-medical-digital-twins-using
|
Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning
|
2403.00177
|
https://arxiv.org/abs/2403.00177v3
|
https://arxiv.org/pdf/2403.00177v3.pdf
|
https://github.com/alaalab/cardiopinn
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/lafs-landmark-based-facial-self-supervised
|
LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition
|
2403.08161
|
https://arxiv.org/abs/2403.08161v1
|
https://arxiv.org/pdf/2403.08161v1.pdf
|
https://github.com/szlbiubiubiu/lafs_cvpr2024
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/advancing-spatial-reasoning-in-large-language
|
Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark
|
2401.03991
|
https://arxiv.org/abs/2401.03991v1
|
https://arxiv.org/pdf/2401.03991v1.pdf
|
https://github.com/Fangjun-Li/SpatialLM-StepGame
| true | false | true |
none
|
https://paperswithcode.com/paper/towards-robust-cardiac-segmentation-using
|
Towards Robust Cardiac Segmentation using Graph Convolutional Networks
|
2310.01210
|
https://arxiv.org/abs/2310.01210v5
|
https://arxiv.org/pdf/2310.01210v5.pdf
|
https://github.com/gillesvntnu/gcn_unet_agreement_demo
| true | true | true |
none
|
https://paperswithcode.com/paper/mixed-type-tabular-data-synthesis-with-score
|
Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent Space
|
2310.09656
|
https://arxiv.org/abs/2310.09656v3
|
https://arxiv.org/pdf/2310.09656v3.pdf
|
https://github.com/amazon-science/tabsyn
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/mineru-an-open-source-solution-for-precise
|
MinerU: An Open-Source Solution for Precise Document Content Extraction
|
2409.18839
|
https://arxiv.org/abs/2409.18839v1
|
https://arxiv.org/pdf/2409.18839v1.pdf
|
https://github.com/opendatalab/mineru
| true | true | true |
paddle
|
https://paperswithcode.com/paper/immersive-video-compression-using-implicit
|
Immersive Video Compression using Implicit Neural Representations
|
2402.01596
|
https://arxiv.org/abs/2402.01596v2
|
https://arxiv.org/pdf/2402.01596v2.pdf
|
https://github.com/hmkx/mv-hinerv
| true | true | false |
none
|
https://paperswithcode.com/paper/chain-of-instructions-compositional
|
Chain-of-Instructions: Compositional Instruction Tuning on Large Language Models
|
2402.11532
|
https://arxiv.org/abs/2402.11532v3
|
https://arxiv.org/pdf/2402.11532v3.pdf
|
https://github.com/amazon-science/chain-of-instructions
| true | false | false |
pytorch
|
https://paperswithcode.com/paper/kernel-normalized-convolutional-networks
|
Kernel Normalized Convolutional Networks
|
2205.10089
|
https://arxiv.org/abs/2205.10089v4
|
https://arxiv.org/pdf/2205.10089v4.pdf
|
https://github.com/reza-nasirigerdeh/norm-torch
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/robust-spatiotemporal-fusion-of-satellite
|
Robust Spatiotemporal Fusion of Satellite Images: A Constrained Convex Optimization Approach
|
2308.00500
|
https://arxiv.org/abs/2308.00500v2
|
https://arxiv.org/pdf/2308.00500v2.pdf
|
https://github.com/mdi-tokyotech/rostf
| true | true | true |
none
|
https://paperswithcode.com/paper/dynamic-inter-treatment-information-sharing
|
Dynamic Inter-treatment Information Sharing for Individualized Treatment Effects Estimation
|
2305.15984
|
https://arxiv.org/abs/2305.15984v3
|
https://arxiv.org/pdf/2305.15984v3.pdf
|
https://github.com/jmdvinodjmd/HyperITE
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/ten-words-only-still-help-improving-black-box
|
Ten Words Only Still Help: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling
|
2402.09199
|
https://arxiv.org/abs/2402.09199v1
|
https://arxiv.org/pdf/2402.09199v1.pdf
|
https://github.com/ictmcg/poger
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/learning-to-search-for-job-shop-scheduling
|
Deep Reinforcement Learning Guided Improvement Heuristic for Job Shop Scheduling
|
2211.10936
|
https://arxiv.org/abs/2211.10936v3
|
https://arxiv.org/pdf/2211.10936v3.pdf
|
https://github.com/zcaicaros/l2s
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/bernstein-flows-for-flexible-posteriors-in
|
Bernstein Flows for Flexible Posteriors in Variational Bayes
|
2202.05650
|
https://arxiv.org/abs/2202.05650v2
|
https://arxiv.org/pdf/2202.05650v2.pdf
|
https://github.com/tensorchiefs/bfvi_paper
| true | true | true |
none
|
https://paperswithcode.com/paper/fusechat-knowledge-fusion-of-chat-models
|
Knowledge Fusion of Chat LLMs: A Preliminary Technical Report
|
2402.16107
|
https://arxiv.org/abs/2402.16107v5
|
https://arxiv.org/pdf/2402.16107v5.pdf
|
https://github.com/fanqiwan/fusellm
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/bringing-masked-autoencoders-explicit
|
Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning
|
2407.05862
|
https://arxiv.org/abs/2407.05862v1
|
https://arxiv.org/pdf/2407.05862v1.pdf
|
https://github.com/amazingren/point-cmae
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/cross-resolution-land-cover-classification
|
Cross-Resolution Land Cover Classification Using Outdated Products and Transformers
|
2402.16001
|
https://arxiv.org/abs/2402.16001v2
|
https://arxiv.org/pdf/2402.16001v2.pdf
|
https://github.com/yu-ni1989/anlc-former
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/irconstyle-image-restoration-framework-using
|
IRConStyle: Image Restoration Framework Using Contrastive Learning and Style Transfer
|
2402.15784
|
https://arxiv.org/abs/2402.15784v3
|
https://arxiv.org/pdf/2402.15784v3.pdf
|
https://github.com/dongqi-fan/irconstyle
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/explainable-contrastive-and-cost-sensitive
|
Explainable Contrastive and Cost-Sensitive Learning for Cervical Cancer Classification
|
2402.15905
|
https://arxiv.org/abs/2402.15905v1
|
https://arxiv.org/pdf/2402.15905v1.pdf
|
https://github.com/isha-67/cervicalcancerstudy
| true | true | false |
none
|
https://paperswithcode.com/paper/stabilized-neural-differential-equations-for
|
Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints
|
2306.09739
|
https://arxiv.org/abs/2306.09739v3
|
https://arxiv.org/pdf/2306.09739v3.pdf
|
https://github.com/white-alistair/Stabilized-Neural-Differential-Equations
| true | true | true |
none
|
https://paperswithcode.com/paper/cepgen-a-generic-central-exclusive-processes
|
CepGen -- A generic central exclusive processes event generator for hadron-hadron collisions
|
1808.06059
|
https://arxiv.org/abs/1808.06059v2
|
https://arxiv.org/pdf/1808.06059v2.pdf
|
https://github.com/cepgen/cepgen
| false | false | true |
none
|
https://paperswithcode.com/paper/open-vocabulary-electroencephalography-to
|
Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification
|
2112.02690
|
https://arxiv.org/abs/2112.02690v3
|
https://arxiv.org/pdf/2112.02690v3.pdf
|
https://github.com/mikewangwzhl/eeg-to-text
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/adaptive-interventions-with-user-defined
|
Adaptive Interventions with User-Defined Goals for Health Behavior Change
|
2311.09483
|
https://arxiv.org/abs/2311.09483v4
|
https://arxiv.org/pdf/2311.09483v4.pdf
|
https://github.com/stanfordai4hi/adaptive-interventions-with-goals
| true | true | false |
none
|
https://paperswithcode.com/paper/suppress-and-rebalance-towards-generalized
|
Suppress and Rebalance: Towards Generalized Multi-Modal Face Anti-Spoofing
|
2402.19298
|
https://arxiv.org/abs/2402.19298v2
|
https://arxiv.org/pdf/2402.19298v2.pdf
|
https://github.com/omggggg/mmdg
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/mentor-multi-level-self-supervised-learning
|
MENTOR: Multi-level Self-supervised Learning for Multimodal Recommendation
|
2402.19407
|
https://arxiv.org/abs/2402.19407v1
|
https://arxiv.org/pdf/2402.19407v1.pdf
|
https://github.com/jinfeng-xu/mentor
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/metford-mutation-testing-framework-for
|
METFORD -- Mutation tEsTing Framework fOR anDroid
|
2501.02875
|
https://arxiv.org/abs/2501.02875v2
|
https://arxiv.org/pdf/2501.02875v2.pdf
|
https://github.com/specs-feup/paper-metford
| true | true | false |
none
|
https://paperswithcode.com/paper/towards-harnessing-large-language-models-for
|
Towards Harnessing Large Language Models for Comprehension of Conversational Grounding
|
2406.01749
|
https://arxiv.org/abs/2406.01749v1
|
https://arxiv.org/pdf/2406.01749v1.pdf
|
https://github.com/aistairc/conversational-grounding-llm
| true | true | false |
none
|
https://paperswithcode.com/paper/neural-clustering-based-visual-representation
|
Neural Clustering based Visual Representation Learning
|
2403.17409
|
https://arxiv.org/abs/2403.17409v1
|
https://arxiv.org/pdf/2403.17409v1.pdf
|
https://github.com/guikunchen/fec
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/invariant-test-time-adaptation-for-vision
|
Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model
|
2403.00376
|
https://arxiv.org/abs/2403.00376v3
|
https://arxiv.org/pdf/2403.00376v3.pdf
|
https://github.com/mahuanaaa/intta
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/diffusion-based-negative-sampling-on-graphs
|
Diffusion-based Negative Sampling on Graphs for Link Prediction
|
2403.17259
|
https://arxiv.org/abs/2403.17259v1
|
https://arxiv.org/pdf/2403.17259v1.pdf
|
https://github.com/ntkien1904/dmns
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/afdgcf-adaptive-feature-de-correlation-graph
|
AFDGCF: Adaptive Feature De-correlation Graph Collaborative Filtering for Recommendations
|
2403.17416
|
https://arxiv.org/abs/2403.17416v2
|
https://arxiv.org/pdf/2403.17416v2.pdf
|
https://github.com/u-rara/afdgcf
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/sparse-logistic-regression-with-high-order
|
Sparse Logistic Regression with High-order Features for Automatic Grammar Rule Extraction from Treebanks
|
2403.17534
|
https://arxiv.org/abs/2403.17534v1
|
https://arxiv.org/pdf/2403.17534v1.pdf
|
https://github.com/filippoc/grex-lrec-coling-2024
| true | true | true |
none
|
https://paperswithcode.com/paper/an-image-computable-model-of-speeded-decision
|
An image-computable model of speeded decision-making
|
2403.16382
|
https://arxiv.org/abs/2403.16382v2
|
https://arxiv.org/pdf/2403.16382v2.pdf
|
https://github.com/pauljaffe/vam
| true | true | true |
jax
|
https://paperswithcode.com/paper/xrf-v2-a-dataset-for-action-summarization
|
XRF V2: A Dataset for Action Summarization with Wi-Fi Signals, and IMUs in Phones, Watches, Earbuds, and Glasses
|
2501.19034
|
https://arxiv.org/abs/2501.19034v1
|
https://arxiv.org/pdf/2501.19034v1.pdf
|
https://github.com/aiotgroup/xrfv2
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/elysium-exploring-object-level-perception-in
|
Elysium: Exploring Object-level Perception in Videos via MLLM
|
2403.16558
|
https://arxiv.org/abs/2403.16558v2
|
https://arxiv.org/pdf/2403.16558v2.pdf
|
https://github.com/hon-wong/elysium
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/csprd-a-financial-policy-retrieval-dataset
|
CSPRD: A Financial Policy Retrieval Dataset for Chinese Stock Market
|
2309.04389
|
https://arxiv.org/abs/2309.04389v2
|
https://arxiv.org/pdf/2309.04389v2.pdf
|
https://github.com/noewangjy/csprd_dataset
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/from-river-flow-to-spatial-flow-flow-map-via
|
From river flow to spatial flow: flow map via river flow directions assignment algorithm
|
2110.09395
|
https://arxiv.org/abs/2110.09395v2
|
https://arxiv.org/pdf/2110.09395v2.pdf
|
https://github.com/TrentonWei/FlowMap
| true | true | true |
none
|
https://paperswithcode.com/paper/multi-spectral-image-synthesis-for-crop-weed
|
Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision Farming
|
2009.05750
|
https://arxiv.org/abs/2009.05750v2
|
https://arxiv.org/pdf/2009.05750v2.pdf
|
https://github.com/Mulham91/Multi-Spectral-Image-Synthesis-for-Crop-Weed-Segmentation-in-Precision-Farming
| false | false | true |
tf
|
https://paperswithcode.com/paper/formation-of-super-mercuries-via-giant
|
Formation of super-Mercuries via giant impacts
|
2403.03831
|
https://arxiv.org/abs/2403.03831v1
|
https://arxiv.org/pdf/2403.03831v1.pdf
|
https://github.com/jingyaodou/forming_s_mercuries_2024
| true | true | false |
none
|
https://paperswithcode.com/paper/spockmip-segmentation-of-vessels-in-mras-with
|
SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
|
2407.08655
|
https://arxiv.org/abs/2407.08655v1
|
https://arxiv.org/pdf/2407.08655v1.pdf
|
https://github.com/soumickmj/spockmip
| true | false | true |
pytorch
|
https://paperswithcode.com/paper/ds6-deformation-aware-learning-for-small
|
DS6, Deformation-aware Semi-supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data
|
2006.10802
|
https://arxiv.org/abs/2006.10802v3
|
https://arxiv.org/pdf/2006.10802v3.pdf
|
https://github.com/soumickmj/spockmip
| false | false | true |
pytorch
|
https://paperswithcode.com/paper/link-scheduling-using-graph-neural-networks
|
Link Scheduling using Graph Neural Networks
|
2109.05536
|
https://arxiv.org/abs/2109.05536v3
|
https://arxiv.org/pdf/2109.05536v3.pdf
|
https://github.com/zhongyuanzhao/distgcn
| true | true | true |
tf
|
https://paperswithcode.com/paper/distributed-scheduling-using-graph-neural
|
Distributed Scheduling using Graph Neural Networks
|
2011.09430
|
https://arxiv.org/abs/2011.09430v2
|
https://arxiv.org/pdf/2011.09430v2.pdf
|
https://github.com/zhongyuanzhao/distgcn
| true | true | true |
tf
|
https://paperswithcode.com/paper/spotting-llms-with-binoculars-zero-shot
|
Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
|
2401.12070
|
https://arxiv.org/abs/2401.12070v3
|
https://arxiv.org/pdf/2401.12070v3.pdf
|
https://github.com/ahans30/binoculars
| true | true | true |
none
|
https://paperswithcode.com/paper/mcunet-tiny-deep-learning-on-iot-devices
|
MCUNet: Tiny Deep Learning on IoT Devices
|
2007.10319
|
https://arxiv.org/abs/2007.10319v2
|
https://arxiv.org/pdf/2007.10319v2.pdf
|
https://github.com/mit-han-lab/mcunet
| false | false | true |
tf
|
https://paperswithcode.com/paper/pulling-back-symmetric-riemannian-geometry
|
Pulling back symmetric Riemannian geometry for data analysis
|
2403.06612
|
https://arxiv.org/abs/2403.06612v1
|
https://arxiv.org/pdf/2403.06612v1.pdf
|
https://github.com/wdiepeveen/pulling-back-symmetric-riemannian-geometry-for-data-analysis
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/learning-to-describe-for-predicting-zero-shot
|
Learning to Describe for Predicting Zero-shot Drug-Drug Interactions
|
2403.08377
|
https://arxiv.org/abs/2403.08377v1
|
https://arxiv.org/pdf/2403.08377v1.pdf
|
https://github.com/zhufq00/ddis-prediction
| true | true | false |
pytorch
|
https://paperswithcode.com/paper/consistent-prompting-for-rehearsal-free
|
Consistent Prompting for Rehearsal-Free Continual Learning
|
2403.08568
|
https://arxiv.org/abs/2403.08568v2
|
https://arxiv.org/pdf/2403.08568v2.pdf
|
https://github.com/Zhanxin-Gao/CPrompt
| true | true | true |
pytorch
|
https://paperswithcode.com/paper/slicertms-interactive-real-time-visualization
|
SlicerTMS: Real-Time Visualization of Transcranial Magnetic Stimulation for Mental Health Treatment
|
2305.06459
|
https://arxiv.org/abs/2305.06459v4
|
https://arxiv.org/pdf/2305.06459v4.pdf
|
https://github.com/lorifranke/SlicerTMS
| true | true | false |
pytorch
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.