blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
57e56cb9c9319ad3838147c8f0f1c4d1606b60f3
|
f542bc49c4d04b47d19c88e7c89d5db60922e34e
|
/PresentationFiles_Subjects - Kopie/CONT/LG82ZTE/ATWM1_Working_Memory_MEG_LG82ZTE_Session1/ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run1.sce
|
2902024a11c6c4195293753e551d99414985db55
|
[] |
no_license
|
atwm1/Presentation
|
65c674180f731f050aad33beefffb9ba0caa6688
|
9732a004ca091b184b670c56c55f538ff6600c08
|
refs/heads/master
| 2020-04-15T14:04:41.900640 | 2020-02-14T16:10:11 | 2020-02-14T16:10:11 | 56,771,016 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 49,600 |
sce
|
ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run1.sce
|
# ATWM1 MEG Experiment
scenario = "ATWM1_Working_Memory_MEG_salient_cued_run1";
#scenario_type = fMRI; # Fuer Scanner
#scenario_type = fMRI_emulation; # Zum Testen
scenario_type = trials; # for MEG
#scan_period = 2000; # TR
#pulses_per_scan = 1;
#pulse_code = 1;
pulse_width=6;
default_monitor_sounds = false;
active_buttons = 2;
response_matching = simple_matching;
button_codes = 10, 20;
default_font_size = 28;
default_font = "Arial";
default_background_color = 0 ,0 ,0 ;
write_codes=true; # for MEG only
begin;
#Picture definitions
box { height = 300; width = 300; color = 0, 0, 0;} frame1;
box { height = 290; width = 290; color = 255, 255, 255;} frame2;
box { height = 30; width = 4; color = 0, 0, 0;} fix1;
box { height = 4; width = 30; color = 0, 0, 0;} fix2;
box { height = 30; width = 4; color = 255, 0, 0;} fix3;
box { height = 4; width = 30; color = 255, 0, 0;} fix4;
box { height = 290; width = 290; color = 128, 128, 128;} background;
TEMPLATE "StimuliDeclaration.tem" {};
trial {
sound sound_incorrect;
time = 0;
duration = 1;
} wrong;
trial {
sound sound_correct;
time = 0;
duration = 1;
} right;
trial {
sound sound_no_response;
time = 0;
duration = 1;
} miss;
# Start of experiment (MEG only) - sync with CTF software
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
} expStart;
time = 0;
duration = 1000;
code = "ExpStart";
port_code = 80;
};
# baselinePre (at the beginning of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
}default;
time = 0;
duration = 10000;
#mri_pulse = 1;
code = "BaselinePre";
port_code = 91;
};
TEMPLATE "ATWM1_Working_Memory_MEG.tem" {
trigger_encoding trigger_retrieval cue_time preparation_time encoding_time single_stimulus_presentation_time delay_time retrieval_time intertrial_interval alerting_cross stim_enc1 stim_enc2 stim_enc3 stim_enc4 stim_enc_alt1 stim_enc_alt2 stim_enc_alt3 stim_enc_alt4 trial_code stim_retr1 stim_retr2 stim_retr3 stim_retr4 stim_cue1 stim_cue2 stim_cue3 stim_cue4 fixationcross_cued retr_code the_target_button posX1 posY1 posX2 posY2 posX3 posY3 posX4 posY4;
43 61 292 292 399 125 1842 2992 2192 fixation_cross gabor_148 gabor_063 gabor_088 gabor_034 gabor_148 gabor_063_alt gabor_088_alt gabor_034 "1_1_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2200_gabor_patch_orientation_148_063_088_034_target_position_1_4_retrieval_position_1" gabor_013_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_1_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_013_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2092 2992 2042 fixation_cross gabor_118 gabor_143 gabor_097 gabor_172 gabor_118 gabor_143 gabor_097_alt gabor_172_alt "1_2_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2050_gabor_patch_orientation_118_143_097_172_target_position_1_2_retrieval_position_2" gabor_circ gabor_008_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_2_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_008_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 1942 fixation_cross gabor_121 gabor_040 gabor_055 gabor_097 gabor_121 gabor_040 gabor_055_alt gabor_097_alt "1_3_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_1950_gabor_patch_orientation_121_040_055_097_target_position_1_2_retrieval_position_2" gabor_circ gabor_040_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_3_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_040_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 2242 fixation_cross gabor_108 gabor_155 gabor_078 gabor_050 gabor_108_alt gabor_155_alt gabor_078 gabor_050 "1_4_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2250_gabor_patch_orientation_108_155_078_050_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_078_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_4_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_078_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 2192 2992 2442 fixation_cross gabor_135 gabor_169 gabor_108 gabor_050 gabor_135_alt gabor_169 gabor_108 gabor_050_alt "1_5_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2200_3000_2450_gabor_patch_orientation_135_169_108_050_target_position_2_3_retrieval_position_1" gabor_086_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_5_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_086_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1992 2992 2242 fixation_cross gabor_056 gabor_165 gabor_111 gabor_006 gabor_056 gabor_165_alt gabor_111_alt gabor_006 "1_6_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2000_3000_2250_gabor_patch_orientation_056_165_111_006_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_142_framed blank blank blank blank fixation_cross_target_position_1_4 "1_6_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_142_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2092 2992 2592 fixation_cross gabor_022 gabor_068 gabor_096 gabor_037 gabor_022 gabor_068_alt gabor_096 gabor_037_alt "1_7_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2600_gabor_patch_orientation_022_068_096_037_target_position_1_3_retrieval_position_1" gabor_158_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_7_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_158_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2192 2992 2542 fixation_cross gabor_014 gabor_153 gabor_098 gabor_119 gabor_014 gabor_153_alt gabor_098_alt gabor_119 "1_8_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2550_gabor_patch_orientation_014_153_098_119_target_position_1_4_retrieval_position_1" gabor_064_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_8_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_064_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2242 2992 2192 fixation_cross gabor_124 gabor_062 gabor_036 gabor_008 gabor_124_alt gabor_062 gabor_036_alt gabor_008 "1_9_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2250_3000_2200_gabor_patch_orientation_124_062_036_008_target_position_2_4_retrieval_position_3" gabor_circ gabor_circ gabor_036_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_9_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_036_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2042 2992 1892 fixation_cross gabor_089 gabor_006 gabor_123 gabor_033 gabor_089 gabor_006 gabor_123_alt gabor_033_alt "1_10_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_1900_gabor_patch_orientation_089_006_123_033_target_position_1_2_retrieval_position_1" gabor_139_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_10_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_139_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1892 2992 2342 fixation_cross gabor_043 gabor_079 gabor_101 gabor_017 gabor_043 gabor_079_alt gabor_101_alt gabor_017 "1_11_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2350_gabor_patch_orientation_043_079_101_017_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_153_framed blank blank blank blank fixation_cross_target_position_1_4 "1_11_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_153_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 2342 fixation_cross gabor_162 gabor_090 gabor_119 gabor_008 gabor_162 gabor_090 gabor_119_alt gabor_008_alt "1_12_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2350_gabor_patch_orientation_162_090_119_008_target_position_1_2_retrieval_position_2" gabor_circ gabor_140_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_12_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_140_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1892 2992 2142 fixation_cross gabor_031 gabor_105 gabor_150 gabor_016 gabor_031 gabor_105_alt gabor_150_alt gabor_016 "1_13_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2150_gabor_patch_orientation_031_105_150_016_target_position_1_4_retrieval_position_1" gabor_031_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_13_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_031_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2592 fixation_cross gabor_140 gabor_179 gabor_163 gabor_023 gabor_140_alt gabor_179 gabor_163_alt gabor_023 "1_14_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2600_gabor_patch_orientation_140_179_163_023_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_023_framed blank blank blank blank fixation_cross_target_position_2_4 "1_14_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1942 2992 2592 fixation_cross gabor_117 gabor_031 gabor_048 gabor_156 gabor_117_alt gabor_031_alt gabor_048 gabor_156 "1_15_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2600_gabor_patch_orientation_117_031_048_156_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_048_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_15_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_048_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 1942 fixation_cross gabor_044 gabor_168 gabor_084 gabor_152 gabor_044_alt gabor_168_alt gabor_084 gabor_152 "1_16_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_1950_gabor_patch_orientation_044_168_084_152_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_102_framed blank blank blank blank fixation_cross_target_position_3_4 "1_16_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_102_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1742 2992 2042 fixation_cross gabor_087 gabor_138 gabor_072 gabor_012 gabor_087 gabor_138 gabor_072_alt gabor_012_alt "1_17_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2050_gabor_patch_orientation_087_138_072_012_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_072_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_17_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_072_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1742 2992 2292 fixation_cross gabor_059 gabor_169 gabor_106 gabor_132 gabor_059 gabor_169_alt gabor_106_alt gabor_132 "1_18_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2300_gabor_patch_orientation_059_169_106_132_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_132_framed blank blank blank blank fixation_cross_target_position_1_4 "1_18_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_132_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1892 2992 2192 fixation_cross gabor_002 gabor_171 gabor_109 gabor_141 gabor_002 gabor_171_alt gabor_109 gabor_141_alt "1_19_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2200_gabor_patch_orientation_002_171_109_141_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_059_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_19_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_059_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2042 2992 2292 fixation_cross gabor_167 gabor_002 gabor_029 gabor_112 gabor_167 gabor_002_alt gabor_029_alt gabor_112 "1_20_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2050_3000_2300_gabor_patch_orientation_167_002_029_112_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_029_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_20_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_029_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1792 2992 2342 fixation_cross gabor_093 gabor_012 gabor_070 gabor_046 gabor_093_alt gabor_012 gabor_070 gabor_046_alt "1_21_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2350_gabor_patch_orientation_093_012_070_046_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_070_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_21_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_070_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 2242 fixation_cross gabor_083 gabor_102 gabor_121 gabor_062 gabor_083_alt gabor_102_alt gabor_121 gabor_062 "1_22_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2250_gabor_patch_orientation_083_102_121_062_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_168_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_22_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_168_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1992 2992 2092 fixation_cross gabor_049 gabor_122 gabor_101 gabor_084 gabor_049 gabor_122 gabor_101_alt gabor_084_alt "1_23_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2100_gabor_patch_orientation_049_122_101_084_target_position_1_2_retrieval_position_2" gabor_circ gabor_122_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_23_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_122_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2092 2992 2492 fixation_cross gabor_118 gabor_089 gabor_028 gabor_158 gabor_118 gabor_089_alt gabor_028 gabor_158_alt "1_24_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2500_gabor_patch_orientation_118_089_028_158_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_073_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_24_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_073_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2092 2992 1892 fixation_cross gabor_088 gabor_064 gabor_135 gabor_152 gabor_088 gabor_064_alt gabor_135_alt gabor_152 "1_25_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_1900_gabor_patch_orientation_088_064_135_152_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_152_framed blank blank blank blank fixation_cross_target_position_1_4 "1_25_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_152_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2392 fixation_cross gabor_090 gabor_066 gabor_037 gabor_124 gabor_090 gabor_066_alt gabor_037 gabor_124_alt "1_26_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2400_gabor_patch_orientation_090_066_037_124_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_173_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_26_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_173_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1742 2992 1992 fixation_cross gabor_046 gabor_178 gabor_100 gabor_023 gabor_046_alt gabor_178_alt gabor_100 gabor_023 "1_27_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2000_gabor_patch_orientation_046_178_100_023_target_position_3_4_retrieval_position_2" gabor_circ gabor_178_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_27_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_178_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 1892 fixation_cross gabor_089 gabor_001 gabor_160 gabor_112 gabor_089 gabor_001 gabor_160_alt gabor_112_alt "1_28_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_1900_gabor_patch_orientation_089_001_160_112_target_position_1_2_retrieval_position_1" gabor_044_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_28_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_044_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2042 fixation_cross gabor_136 gabor_008 gabor_088 gabor_168 gabor_136 gabor_008_alt gabor_088_alt gabor_168 "1_29_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2050_gabor_patch_orientation_136_008_088_168_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_119_framed blank blank blank blank fixation_cross_target_position_1_4 "1_29_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_119_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 2392 fixation_cross gabor_135 gabor_062 gabor_001 gabor_106 gabor_135_alt gabor_062 gabor_001_alt gabor_106 "1_30_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2400_gabor_patch_orientation_135_062_001_106_target_position_2_4_retrieval_position_2" gabor_circ gabor_062_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_30_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_062_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1992 2992 2342 fixation_cross gabor_050 gabor_082 gabor_163 gabor_123 gabor_050_alt gabor_082 gabor_163_alt gabor_123 "1_31_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_2350_gabor_patch_orientation_050_082_163_123_target_position_2_4_retrieval_position_1" gabor_099_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_31_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_099_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1792 2992 2092 fixation_cross gabor_008 gabor_088 gabor_029 gabor_063 gabor_008_alt gabor_088 gabor_029 gabor_063_alt "1_32_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2100_gabor_patch_orientation_008_088_029_063_target_position_2_3_retrieval_position_2" gabor_circ gabor_088_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_32_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_088_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2242 2992 2142 fixation_cross gabor_130 gabor_043 gabor_009 gabor_070 gabor_130_alt gabor_043_alt gabor_009 gabor_070 "1_33_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2150_gabor_patch_orientation_130_043_009_070_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_009_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_33_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_009_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1942 2992 2242 fixation_cross gabor_174 gabor_092 gabor_004 gabor_062 gabor_174_alt gabor_092 gabor_004_alt gabor_062 "1_34_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2250_gabor_patch_orientation_174_092_004_062_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_062_framed blank blank blank blank fixation_cross_target_position_2_4 "1_34_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_062_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2092 2992 1892 fixation_cross gabor_061 gabor_144 gabor_117 gabor_033 gabor_061_alt gabor_144 gabor_117_alt gabor_033 "1_35_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_1900_gabor_patch_orientation_061_144_117_033_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_033_framed blank blank blank blank fixation_cross_target_position_2_4 "1_35_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_033_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1792 2992 2292 fixation_cross gabor_100 gabor_180 gabor_120 gabor_063 gabor_100_alt gabor_180_alt gabor_120 gabor_063 "1_36_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2300_gabor_patch_orientation_100_180_120_063_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_063_framed blank blank blank blank fixation_cross_target_position_3_4 "1_36_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_063_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1892 2992 2192 fixation_cross gabor_104 gabor_036 gabor_151 gabor_082 gabor_104 gabor_036_alt gabor_151 gabor_082_alt "1_37_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2200_gabor_patch_orientation_104_036_151_082_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_151_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_37_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_151_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 2142 2992 2292 fixation_cross gabor_125 gabor_005 gabor_049 gabor_160 gabor_125_alt gabor_005 gabor_049 gabor_160_alt "1_38_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2150_3000_2300_gabor_patch_orientation_125_005_049_160_target_position_2_3_retrieval_position_1" gabor_080_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_38_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_080_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1842 2992 1992 fixation_cross gabor_068 gabor_109 gabor_020 gabor_088 gabor_068 gabor_109_alt gabor_020 gabor_088_alt "1_39_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2000_gabor_patch_orientation_068_109_020_088_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_020_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_39_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_020_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 1892 fixation_cross gabor_023 gabor_002 gabor_132 gabor_163 gabor_023 gabor_002_alt gabor_132_alt gabor_163 "1_40_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_1900_gabor_patch_orientation_023_002_132_163_target_position_1_4_retrieval_position_1" gabor_023_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_40_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 1992 2992 2292 fixation_cross gabor_100 gabor_170 gabor_127 gabor_053 gabor_100 gabor_170 gabor_127_alt gabor_053_alt "1_41_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2000_3000_2300_gabor_patch_orientation_100_170_127_053_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_127_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_41_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_127_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2192 2992 2442 fixation_cross gabor_142 gabor_037 gabor_068 gabor_157 gabor_142_alt gabor_037 gabor_068_alt gabor_157 "1_42_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2450_gabor_patch_orientation_142_037_068_157_target_position_2_4_retrieval_position_2" gabor_circ gabor_085_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_42_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_085_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1742 2992 1942 fixation_cross gabor_005 gabor_130 gabor_113 gabor_176 gabor_005 gabor_130_alt gabor_113_alt gabor_176 "1_43_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_1950_gabor_patch_orientation_005_130_113_176_target_position_1_4_retrieval_position_1" gabor_050_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_43_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_050_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1742 2992 2392 fixation_cross gabor_139 gabor_098 gabor_156 gabor_076 gabor_139 gabor_098_alt gabor_156_alt gabor_076 "1_44_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1750_3000_2400_gabor_patch_orientation_139_098_156_076_target_position_1_4_retrieval_position_2" gabor_circ gabor_049_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_44_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_049_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1892 2992 2092 fixation_cross gabor_024 gabor_085 gabor_114 gabor_058 gabor_024_alt gabor_085 gabor_114 gabor_058_alt "1_45_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2100_gabor_patch_orientation_024_085_114_058_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_114_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_45_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_114_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1942 2992 2092 fixation_cross gabor_025 gabor_010 gabor_041 gabor_165 gabor_025_alt gabor_010 gabor_041 gabor_165_alt "1_46_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2100_gabor_patch_orientation_025_010_041_165_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_041_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_46_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_041_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1892 2992 2142 fixation_cross gabor_002 gabor_020 gabor_063 gabor_128 gabor_002 gabor_020_alt gabor_063 gabor_128_alt "1_47_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2150_gabor_patch_orientation_002_020_063_128_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_110_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_47_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_110_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1742 2992 2542 fixation_cross gabor_083 gabor_048 gabor_033 gabor_153 gabor_083 gabor_048 gabor_033_alt gabor_153_alt "1_48_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2550_gabor_patch_orientation_083_048_033_153_target_position_1_2_retrieval_position_2" gabor_circ gabor_003_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_48_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_003_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1742 2992 1992 fixation_cross gabor_137 gabor_053 gabor_179 gabor_110 gabor_137 gabor_053_alt gabor_179 gabor_110_alt "1_49_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2000_gabor_patch_orientation_137_053_179_110_target_position_1_3_retrieval_position_1" gabor_137_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_49_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_137_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2342 fixation_cross gabor_046 gabor_081 gabor_027 gabor_153 gabor_046 gabor_081_alt gabor_027_alt gabor_153 "1_50_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2350_gabor_patch_orientation_046_081_027_153_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_105_framed blank blank blank blank fixation_cross_target_position_1_4 "1_50_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_105_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2092 fixation_cross gabor_121 gabor_152 gabor_104 gabor_063 gabor_121 gabor_152_alt gabor_104_alt gabor_063 "1_51_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2100_gabor_patch_orientation_121_152_104_063_target_position_1_4_retrieval_position_1" gabor_170_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_51_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_170_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 2142 fixation_cross gabor_028 gabor_046 gabor_001 gabor_073 gabor_028_alt gabor_046_alt gabor_001 gabor_073 "1_52_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2150_gabor_patch_orientation_028_046_001_073_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_118_framed blank blank blank blank fixation_cross_target_position_3_4 "1_52_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_118_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1792 2992 2392 fixation_cross gabor_050 gabor_090 gabor_111 gabor_138 gabor_050_alt gabor_090 gabor_111 gabor_138_alt "1_53_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1800_3000_2400_gabor_patch_orientation_050_090_111_138_target_position_2_3_retrieval_position_1" gabor_001_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_53_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_001_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1942 2992 2542 fixation_cross gabor_004 gabor_093 gabor_060 gabor_040 gabor_004 gabor_093_alt gabor_060_alt gabor_040 "1_54_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2550_gabor_patch_orientation_004_093_060_040_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_180_framed blank blank blank blank fixation_cross_target_position_1_4 "1_54_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_180_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1892 2992 2042 fixation_cross gabor_015 gabor_143 gabor_059 gabor_038 gabor_015 gabor_143 gabor_059_alt gabor_038_alt "1_55_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1900_3000_2050_gabor_patch_orientation_015_143_059_038_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_104_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_55_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_104_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2192 2992 2492 fixation_cross gabor_117 gabor_155 gabor_007 gabor_034 gabor_117 gabor_155_alt gabor_007_alt gabor_034 "1_56_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_2500_gabor_patch_orientation_117_155_007_034_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_034_framed blank blank blank blank fixation_cross_target_position_1_4 "1_56_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_034_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 1842 2992 2492 fixation_cross gabor_160 gabor_180 gabor_122 gabor_005 gabor_160_alt gabor_180 gabor_122_alt gabor_005 "1_57_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2500_gabor_patch_orientation_160_180_122_005_target_position_2_4_retrieval_position_2" gabor_circ gabor_180_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_57_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_180_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2042 2992 2192 fixation_cross gabor_143 gabor_092 gabor_124 gabor_164 gabor_143 gabor_092_alt gabor_124 gabor_164_alt "1_58_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2200_gabor_patch_orientation_143_092_124_164_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_124_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_58_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_124_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1792 2992 2142 fixation_cross gabor_137 gabor_109 gabor_166 gabor_092 gabor_137 gabor_109_alt gabor_166_alt gabor_092 "1_59_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2150_gabor_patch_orientation_137_109_166_092_target_position_1_4_retrieval_position_1" gabor_002_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_59_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_002_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2142 2992 2442 fixation_cross gabor_162 gabor_004 gabor_113 gabor_177 gabor_162 gabor_004 gabor_113_alt gabor_177_alt "1_60_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2450_gabor_patch_orientation_162_004_113_177_target_position_1_2_retrieval_position_1" gabor_023_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_60_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2042 2992 2492 fixation_cross gabor_047 gabor_136 gabor_105 gabor_155 gabor_047_alt gabor_136_alt gabor_105 gabor_155 "1_61_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2050_3000_2500_gabor_patch_orientation_047_136_105_155_target_position_3_4_retrieval_position_2" gabor_circ gabor_136_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_61_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_136_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2242 2992 2042 fixation_cross gabor_010 gabor_179 gabor_069 gabor_040 gabor_010_alt gabor_179_alt gabor_069 gabor_040 "1_62_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2050_gabor_patch_orientation_010_179_069_040_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_090_framed blank blank blank blank fixation_cross_target_position_3_4 "1_62_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_090_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 2142 2992 1992 fixation_cross gabor_086 gabor_130 gabor_153 gabor_172 gabor_086 gabor_130_alt gabor_153_alt gabor_172 "1_63_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2000_gabor_patch_orientation_086_130_153_172_target_position_1_4_retrieval_position_1" gabor_040_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_63_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_040_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2242 2992 1992 fixation_cross gabor_048 gabor_178 gabor_090 gabor_023 gabor_048_alt gabor_178 gabor_090_alt gabor_023 "1_64_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2000_gabor_patch_orientation_048_178_090_023_target_position_2_4_retrieval_position_2" gabor_circ gabor_178_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_64_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_178_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 61 292 292 399 125 1842 2992 2442 fixation_cross gabor_004 gabor_063 gabor_093 gabor_027 gabor_004_alt gabor_063_alt gabor_093 gabor_027 "1_65_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2450_gabor_patch_orientation_004_063_093_027_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_140_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_65_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_140_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2192 2992 1942 fixation_cross gabor_093 gabor_067 gabor_177 gabor_150 gabor_093 gabor_067 gabor_177_alt gabor_150_alt "1_66_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_1950_gabor_patch_orientation_093_067_177_150_target_position_1_2_retrieval_position_1" gabor_093_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_66_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_093_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2092 2992 2242 fixation_cross gabor_050 gabor_156 gabor_097 gabor_123 gabor_050_alt gabor_156 gabor_097_alt gabor_123 "1_67_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_2250_gabor_patch_orientation_050_156_097_123_target_position_2_4_retrieval_position_2" gabor_circ gabor_156_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_67_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_156_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 63 292 292 399 125 1992 2992 1942 fixation_cross gabor_097 gabor_128 gabor_008 gabor_041 gabor_097 gabor_128_alt gabor_008_alt gabor_041 "1_68_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_1950_gabor_patch_orientation_097_128_008_041_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_148_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_68_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_148_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 62 292 292 399 125 2142 2992 2592 fixation_cross gabor_167 gabor_119 gabor_137 gabor_081 gabor_167 gabor_119_alt gabor_137_alt gabor_081 "1_69_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2600_gabor_patch_orientation_167_119_137_081_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_081_framed blank blank blank blank fixation_cross_target_position_1_4 "1_69_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_081_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
43 64 292 292 399 125 2192 2992 2542 fixation_cross gabor_025 gabor_072 gabor_159 gabor_132 gabor_025 gabor_072 gabor_159_alt gabor_132_alt "1_70_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2200_3000_2550_gabor_patch_orientation_025_072_159_132_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_132_framed blank blank blank blank fixation_cross_target_position_1_2 "1_70_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_132_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96;
};
# baselinePost (at the end of the session)
trial {
picture {
box frame1; x=0; y=0;
box frame2; x=0; y=0;
box background; x=0; y=0;
bitmap fixation_cross_black; x=0; y=0;
};
time = 0;
duration = 5000;
code = "BaselinePost";
port_code = 92;
};
|
99197087e9846e7edfa2fa15c8e7b82c0ef411e6
|
46e52b7010c1dc6beb86c615f0d59494c00e6554
|
/tp3/src/tests/test12.tst
|
efb0e2ac33f5e07a92feba448b505c7ee4f0e6f9
|
[] |
no_license
|
impronunciable/so2015
|
22bd1cf0831c29d091a3f94bc36342ebb51b7aed
|
8bdabf28dc17ca4c92a264036c0fbe9c31430de3
|
refs/heads/master
| 2020-04-14T12:25:47.123488 | 2015-11-10T22:00:51 | 2015-11-10T22:00:51 | 41,392,542 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 697 |
tst
|
test12.tst
|
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cccccccccccccccccccccccccccccccccccccccc
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cccccccccccccccccccccccccccccccccccccccc
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cccccccccccccccccccccccccccccccccccccccc
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cccccccccccccccccccccccccccccccccccccccc
|
99c3dee9d54a96f889613b500cd0d7fd968d640e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3869/CH1/EX1.47/Ex1_47.sce
|
66f69f4eb72132c8bd586d95df3f6cb30093bd3e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 311 |
sce
|
Ex1_47.sce
|
clear
//
//
//
//Variable declaration
lamda=5000*10**-8 //wavelength(cm)
mew=1.5 //refractive index
beta1=1 //assume
S=6*beta1
//Calculation
t=S*lamda/(beta1*(mew-1)) //least thickness of glass plate(cm)
//Result
printf("\n least thickness of glass plate is %0.0f *10**-4 cm",t*10**4)
|
cccd4bbc9aac2ab1fa382e4446091917d75de7d0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/377/CH4/EX4.10/4_10.sce
|
570dcc96e3e093dcb2531f6cb4148d8fd4132d3b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 168 |
sce
|
4_10.sce
|
disp("∆Ed=13.64*(me/mo)*(1/(Єr^2)) eV");
disp("me = (0.015)*m0");
a=0.015;
c=18; //say Єr=c
d=13.64*(a)*(1/(c^2));
printf('the value of the ∆Ed = %f eV',d);
|
539b40df6184dcd8d384c1d2dc525ba10a70cdc7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2087/CH17/EX17.2/example17_2.sce
|
eedda2d39bdb5731b21552809db2d5e8b8e445ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 556 |
sce
|
example17_2.sce
|
//example 17.2
//design a submerged pipe
clc;funcprot(0);
//given
q=0.04; //discharge through outlet
D=100.0; //F.S.L of distributing canal
wc=99.90; //F.S.L of water course
dep=1.1; //full supply depth distributing canal
C=0.7; //average value of coefficient of discharge
g=9.81; //acceleration due to gravity
H=D-wc; //available head
A=q/(C*(2*g*H)^0.5);
d=(4*A/%pi)^0.5*100;
d=round(d*10)/10;
mprintf("diameter of pipe required=%f cm.",d);
mprintf("\nuse pipe of diameter 25 cm.");
|
f30b21638a7710578087d17359e8798c9609b0b3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2459/CH11/EX11.17/Ex11_17.sce
|
c20aab08720b9c91b57cf548109fc0880079e852
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 161 |
sce
|
Ex11_17.sce
|
//chapter11
//example11.17
//page222
del_Vbe=200 //mV
del_Ib=100 // micro ampere
Ri=del_Vbe/del_Ib
printf("input resistance = %.3f kilo ohm \n",Ri)
|
2ab8731dae9d7c1476a743eee0d35c07526224b1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/647/CH6/EX6.2/Example6_2.sce
|
45b9b5133028c2c5624bb5a797363ae61eee0fed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 823 |
sce
|
Example6_2.sce
|
clear;
clc;
// Example: 6.2
// Page: 205
printf("Example: 6.2 - Page: 205\n\n");
// Solution
// *****Data******//
density_water = 0.998;// [g/cubic cm]
density_ice = 0.9168;// [g/cubic cm]
Hf = 335;// [J/g]
T = 0 + 273;// [K]
//*****************//
V_water = 1/density_water;// [cubic cm/g]
V_ice = 1/density_ice;// [cubic cm/g]
// From Eqn. 6.56:
// dP/dT = deltaS/(V2 - V1) = deltaH/(T*(V2 - V1))
// Substituting these values in Eqn. 6.58
deltaP_By_deltaT = (Hf/(T*(V_water - V_ice)))*10;// [atm/K]
deltaT_By_deltaP = 1/deltaP_By_deltaT;// [K/atm]
if deltaT_By_deltaP > 0
printf("Increase in pressure of 1 atm increases the freezing point by %.4f K",abs(deltaT_By_deltaP));
else
printf("Increase in pressure of 1 atm lowers the freezing point by %.4f K",abs(deltaT_By_deltaP));
end
|
ddcc3a6f08f50faad017d20a3011a359b4160991
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2858/CH4/EX4.3/Ex4_3.sce
|
97c27c353b9d877956b07b0615a7d85b091d5e62
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 444 |
sce
|
Ex4_3.sce
|
//example 4.3
clc; funcprot(0);
k=0;//B/L;
c2=30;
Gamma=17.5;
H=1.5;
Df=1.2;
H=1.5;
B=2.0;
Ks=2.5;
phi=40;
pi=%pi;
qu=(1+0.2*k)*5.14*c2+(1+k)*Gamma*H^2*(1+2*Df/H)*Ks*tan(phi*pi/180)/B+Gamma*H;
Qu=qu*B;
disp(Qu,"bearing capacity in kN/m");
disp("there is slight variation due to rounding off error")
//soil 2
Ny=109.4;
Nq=64.2;
Fqs=1;
Fys=1;
qt=Gamma*Df*Nq*Fqs+1/2*Gamma*Ny*Fys*B;
disp(qt,"bearing capacity in kN/m^2");
|
d4b7f3cb1d9e8d01729ef20e32920eb8e657587b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/548/DEPENDENCIES/4_08data.sci
|
4b72a187bafc5a03a2f8d965fa6765cfa380c931
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 304 |
sci
|
4_08data.sci
|
//The flow conditions are assumed to be isentropic in nature.
P1=20; //pressure of burned gas in combustion chamber in atm unit
T1=3500; //temperature of the burned gas in combustion chamber in degree kelvin
P2=0.5; //pressure of the gas at exit in atm
y=1.15; //specific heat ratio for the gas
|
6776c893b179bfe3859bab5790446e1bd3a69879
|
717ddeb7e700373742c617a95e25a2376565112c
|
/1766/CH9/EX9.24/EX9_24.sce
|
0d582d76c8a60367bd045658297433b1fcf9e2ad
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674 | 2017-09-19T11:51:56 | 2017-09-19T11:51:56 | 92,444,732 | 0 | 0 | null | 2017-05-25T21:09:20 | 2017-05-25T21:09:19 | null |
UTF-8
|
Scilab
| false | false | 1,833 |
sce
|
EX9_24.sce
|
clc;funcprot(0);//Example 9.24
//Initilisation of Variables
A=25;...//Total surface area of furnance in m^2
V=10;...//Volume of furnance in m^3
Tw=500;....//Constant temparature in K
Tg=1250;.....//Gas temparature in K
Pg=2;....//Total pressure in atm
Pco2=0.2*Pg;...//Carbondioxide Pressure containing in furnance
Ph2o=0.1*Pg;....//Water vapoure pressure containing in furnance
R=5.67*10^-8;.....//Stefens boltsman constant
//calculations
L=3.6*(V/A);....//Characterstic length in m
eco2i=0.18;....//Emissivity of carbondioxide from the chart for PL&Tg values
eh2oi=0.19;....//Emissivity of water vapour from the chart for PL&Tg values
Cco2i=1.1;...//Common correction factor of carbondioxide from the chart for PL&Tg values
Ch2oi=1.45;....//Common correction factor of water vapour from the chart for PL&Tg values
P1=(Pco2*L)+(Ph2o*L);...//
P2=((Ph2o/Ph2o)+Pco2);....//
DeltEi=0.045;.....//Common correction factor P1&P2 from the chart
eg=(eco2i*Cco2i)+(eh2oi*Ch2oi)-DeltEi;...//Emissivity of gas at Tg
eco2ii=0.14;....//Emissivity of carbondioxide from the chart for PL&Tw values
eh2oii=0.2;....//Emissivity of water vapour from the chart for PL&Tw values
Cco2ii=1.1;...//Common correction factor of carbondioxide from the chart for PL&Tw values
Ch2oii=1.46;....//Common correction factor of water vapour from the chart for PL&Tw values
DeltEii=0.01;.....//Common correction factor from the chart
Ag=(eco2ii*(Tg/Tw)^0.65)+(eh2oii*(Tg/Tw)^0.45)-DeltEii;....//Emissivity of gas
Q=A*R*((eg*Tg^4)-(Ag*Tw^4));.....//Heat Exchange from the gases to the furnance wall in W
hr=Q/(A*(Tg-Tw));.....//Radiation heat transfer coeff9icient in W/m^2 degrees celcius
disp(Q/1000,"Heat Exchange from the gases to the furnance wall in kW:")
disp(hr,"Radiation heat transfer coeff9icient in W/m^2 degrees celcius:")
|
fedb0f22cb4bedd6b0ea7e37119b3b2854a3d835
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2666/CH10/EX10.5/Ex10_5.sce
|
cc540d0af3f5e635870204ae7414bcfb10291f3f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 476 |
sce
|
Ex10_5.sce
|
clc
//initialisation of variables
clear
V1= 1800 //ft/sec
a= 14 //degrees
p= 0.75 //in
h= 2 //in
e= 0.02 //in
vc= 0.89
v= 650 //ft/sec
l= 9 //in
P= 80 //psia
T= 320 //F
J= 50000
rh1= 7.6 //Btu/ per lb
v1= 5.632 //cu ft per lb
//CALCULATIONS
VR1= sqrt((V1*cosd(a)-v)^2+(V1*sind(a))^2)
VR2= vc*VR1
rh= (VR1^2-VR2^2)/J
E= rh1+rh+VR1
nb= l/p
r= asind((((0.1*P*v1*144/(2*nb*VR2))+e)/0.75))
//RESULTS
printf (' minimum blade exit angle = %.1f degrees',r)
|
4c0301d554061e8cdcb8d97a60888317aa017a73
|
0778f91e335afef58ae45c5a33184587cee76088
|
/CN-Jacobi.sce
|
d8290aa39de32831c3fd528acbe98c7710ed5939
|
[] |
no_license
|
LtavaresII/CN
|
b38e6f5531a3597f8705bdf163f4cec49f49d51e
|
0dcfb182692dee3ecf71d62162f986f816b3d687
|
refs/heads/master
| 2020-03-25T23:35:53.410172 | 2018-12-05T14:17:32 | 2018-12-05T14:17:32 | 144,282,768 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 293 |
sce
|
CN-Jacobi.sce
|
A=[8 -4 2;5 10 2;3 -1 7]
b=[-22;-44;-53]
D=A.*eye(A)
InvD=inv(D)
B=eye(A)-InvD*A
g=InvD*b
x=zeros(b)
xOld=x
x=B*x + g
Er=max(abs(x-xOld))/max(abs(x))
Betas=ones(b)
Bt=abs(B)
Betas(1)=Bt(1,:)*Betas
Betas(2)=Bt(2,:)*Betas
Betas(3)=Bt(3,:)*Betas
Bi=abs(spec(B))//Autovalores de B
|
f926a107ff366a03b660cf91d2c875793998339d
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/PI2.prev.tst
|
5497802b16741824502910cedb7141717c65bc1a
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379 | 2023-08-04T07:48:00 | 2023-08-04T07:48:00 | 30,116,803 | 2 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 35,289 |
tst
|
PI2.prev.tst
|
0 - 42*v - 32*v^2 - 8*v^3 - 16 - 21*v - 16*v^2 - 4*v^3 - 8
1 - 34*v - 32*v^2 - 8*v^3 - 17*v - 16*v^2 - 4*v^3
2 - 26*v - 32*v^2 - 8*v^3 + 24 - 13*v - 16*v^2 - 4*v^3 + 12
3 - 18*v - 32*v^2 - 8*v^3 + 56 - 9*v - 16*v^2 - 4*v^3 + 28
4 - 10*v - 32*v^2 - 8*v^3 + 96 - 5*v - 16*v^2 - 4*v^3 + 48
5 - 2*v - 32*v^2 - 8*v^3 + 144 - v - 16*v^2 - 4*v^3 + 72
6 6*v - 32*v^2 - 8*v^3 + 200 3*v - 16*v^2 - 4*v^3 + 100
7 14*v - 32*v^2 - 8*v^3 + 264 7*v - 16*v^2 - 4*v^3 + 132
8 22*v - 32*v^2 - 8*v^3 + 336 11*v - 16*v^2 - 4*v^3 + 168
9 30*v - 32*v^2 - 8*v^3 + 416 15*v - 16*v^2 - 4*v^3 + 208
10 38*v - 32*v^2 - 8*v^3 + 504 19*v - 16*v^2 - 4*v^3 + 252
11 46*v - 32*v^2 - 8*v^3 + 600 23*v - 16*v^2 - 4*v^3 + 300
12 54*v - 32*v^2 - 8*v^3 + 704 27*v - 16*v^2 - 4*v^3 + 352
13 62*v - 32*v^2 - 8*v^3 + 816 31*v - 16*v^2 - 4*v^3 + 408
14 70*v - 32*v^2 - 8*v^3 + 936 35*v - 16*v^2 - 4*v^3 + 468
15 78*v - 32*v^2 - 8*v^3 + 1064 39*v - 16*v^2 - 4*v^3 + 532
16 86*v - 32*v^2 - 8*v^3 + 1200 43*v - 16*v^2 - 4*v^3 + 600
17 94*v - 32*v^2 - 8*v^3 + 1344 47*v - 16*v^2 - 4*v^3 + 672
18 102*v - 32*v^2 - 8*v^3 + 1496 51*v - 16*v^2 - 4*v^3 + 748
19 110*v - 32*v^2 - 8*v^3 + 1656 55*v - 16*v^2 - 4*v^3 + 828
20 118*v - 32*v^2 - 8*v^3 + 1824 59*v - 16*v^2 - 4*v^3 + 912
21 126*v - 32*v^2 - 8*v^3 + 2000 63*v - 16*v^2 - 4*v^3 + 1000
22 134*v - 32*v^2 - 8*v^3 + 2184 67*v - 16*v^2 - 4*v^3 + 1092
23 142*v - 32*v^2 - 8*v^3 + 2376 71*v - 16*v^2 - 4*v^3 + 1188
24 150*v - 32*v^2 - 8*v^3 + 2576 75*v - 16*v^2 - 4*v^3 + 1288
25 158*v - 32*v^2 - 8*v^3 + 2784 79*v - 16*v^2 - 4*v^3 + 1392
26 166*v - 32*v^2 - 8*v^3 + 3000 83*v - 16*v^2 - 4*v^3 + 1500
27 174*v - 32*v^2 - 8*v^3 + 3224 87*v - 16*v^2 - 4*v^3 + 1612
28 182*v - 32*v^2 - 8*v^3 + 3456 91*v - 16*v^2 - 4*v^3 + 1728
29 190*v - 32*v^2 - 8*v^3 + 3696 95*v - 16*v^2 - 4*v^3 + 1848
30 198*v - 32*v^2 - 8*v^3 + 3944 99*v - 16*v^2 - 4*v^3 + 1972
31 206*v - 32*v^2 - 8*v^3 + 4200 103*v - 16*v^2 - 4*v^3 + 2100
32 214*v - 32*v^2 - 8*v^3 + 4464 107*v - 16*v^2 - 4*v^3 + 2232
33 222*v - 32*v^2 - 8*v^3 + 4736 111*v - 16*v^2 - 4*v^3 + 2368
34 230*v - 32*v^2 - 8*v^3 + 5016 115*v - 16*v^2 - 4*v^3 + 2508
35 238*v - 32*v^2 - 8*v^3 + 5304 119*v - 16*v^2 - 4*v^3 + 2652
36 246*v - 32*v^2 - 8*v^3 + 5600 123*v - 16*v^2 - 4*v^3 + 2800
37 254*v - 32*v^2 - 8*v^3 + 5904 127*v - 16*v^2 - 4*v^3 + 2952
38 262*v - 32*v^2 - 8*v^3 + 6216 131*v - 16*v^2 - 4*v^3 + 3108
39 270*v - 32*v^2 - 8*v^3 + 6536 135*v - 16*v^2 - 4*v^3 + 3268
40 278*v - 32*v^2 - 8*v^3 + 6864 139*v - 16*v^2 - 4*v^3 + 3432
41 286*v - 32*v^2 - 8*v^3 + 7200 143*v - 16*v^2 - 4*v^3 + 3600
42 294*v - 32*v^2 - 8*v^3 + 7544 147*v - 16*v^2 - 4*v^3 + 3772
43 302*v - 32*v^2 - 8*v^3 + 7896 151*v - 16*v^2 - 4*v^3 + 3948
44 310*v - 32*v^2 - 8*v^3 + 8256 155*v - 16*v^2 - 4*v^3 + 4128
45 318*v - 32*v^2 - 8*v^3 + 8624 159*v - 16*v^2 - 4*v^3 + 4312
46 326*v - 32*v^2 - 8*v^3 + 9000 163*v - 16*v^2 - 4*v^3 + 4500
47 334*v - 32*v^2 - 8*v^3 + 9384 167*v - 16*v^2 - 4*v^3 + 4692
48 342*v - 32*v^2 - 8*v^3 + 9776 171*v - 16*v^2 - 4*v^3 + 4888
49 350*v - 32*v^2 - 8*v^3 + 10176 175*v - 16*v^2 - 4*v^3 + 5088
50 358*v - 32*v^2 - 8*v^3 + 10584 179*v - 16*v^2 - 4*v^3 + 5292
51 366*v - 32*v^2 - 8*v^3 + 11000 183*v - 16*v^2 - 4*v^3 + 5500
52 374*v - 32*v^2 - 8*v^3 + 11424 187*v - 16*v^2 - 4*v^3 + 5712
53 382*v - 32*v^2 - 8*v^3 + 11856 191*v - 16*v^2 - 4*v^3 + 5928
54 390*v - 32*v^2 - 8*v^3 + 12296 195*v - 16*v^2 - 4*v^3 + 6148
55 398*v - 32*v^2 - 8*v^3 + 12744 199*v - 16*v^2 - 4*v^3 + 6372
56 406*v - 32*v^2 - 8*v^3 + 13200 203*v - 16*v^2 - 4*v^3 + 6600
57 414*v - 32*v^2 - 8*v^3 + 13664 207*v - 16*v^2 - 4*v^3 + 6832
58 422*v - 32*v^2 - 8*v^3 + 14136 211*v - 16*v^2 - 4*v^3 + 7068
59 430*v - 32*v^2 - 8*v^3 + 14616 215*v - 16*v^2 - 4*v^3 + 7308
60 438*v - 32*v^2 - 8*v^3 + 15104 219*v - 16*v^2 - 4*v^3 + 7552
61 446*v - 32*v^2 - 8*v^3 + 15600 223*v - 16*v^2 - 4*v^3 + 7800
62 454*v - 32*v^2 - 8*v^3 + 16104 227*v - 16*v^2 - 4*v^3 + 8052
63 462*v - 32*v^2 - 8*v^3 + 16616 231*v - 16*v^2 - 4*v^3 + 8308
64 470*v - 32*v^2 - 8*v^3 + 17136 235*v - 16*v^2 - 4*v^3 + 8568
65 478*v - 32*v^2 - 8*v^3 + 17664 239*v - 16*v^2 - 4*v^3 + 8832
66 486*v - 32*v^2 - 8*v^3 + 18200 243*v - 16*v^2 - 4*v^3 + 9100
67 494*v - 32*v^2 - 8*v^3 + 18744 247*v - 16*v^2 - 4*v^3 + 9372
68 502*v - 32*v^2 - 8*v^3 + 19296 251*v - 16*v^2 - 4*v^3 + 9648
69 510*v - 32*v^2 - 8*v^3 + 19856 255*v - 16*v^2 - 4*v^3 + 9928
70 518*v - 32*v^2 - 8*v^3 + 20424 259*v - 16*v^2 - 4*v^3 + 10212
71 526*v - 32*v^2 - 8*v^3 + 21000 263*v - 16*v^2 - 4*v^3 + 10500
72 534*v - 32*v^2 - 8*v^3 + 21584 267*v - 16*v^2 - 4*v^3 + 10792
73 542*v - 32*v^2 - 8*v^3 + 22176 271*v - 16*v^2 - 4*v^3 + 11088
74 550*v - 32*v^2 - 8*v^3 + 22776 275*v - 16*v^2 - 4*v^3 + 11388
75 558*v - 32*v^2 - 8*v^3 + 23384 279*v - 16*v^2 - 4*v^3 + 11692
76 566*v - 32*v^2 - 8*v^3 + 24000 283*v - 16*v^2 - 4*v^3 + 12000
77 574*v - 32*v^2 - 8*v^3 + 24624 287*v - 16*v^2 - 4*v^3 + 12312
78 582*v - 32*v^2 - 8*v^3 + 25256 291*v - 16*v^2 - 4*v^3 + 12628
79 590*v - 32*v^2 - 8*v^3 + 25896 295*v - 16*v^2 - 4*v^3 + 12948
80 598*v - 32*v^2 - 8*v^3 + 26544 299*v - 16*v^2 - 4*v^3 + 13272
81 606*v - 32*v^2 - 8*v^3 + 27200 303*v - 16*v^2 - 4*v^3 + 13600
82 614*v - 32*v^2 - 8*v^3 + 27864 307*v - 16*v^2 - 4*v^3 + 13932
83 622*v - 32*v^2 - 8*v^3 + 28536 311*v - 16*v^2 - 4*v^3 + 14268
84 630*v - 32*v^2 - 8*v^3 + 29216 315*v - 16*v^2 - 4*v^3 + 14608
85 638*v - 32*v^2 - 8*v^3 + 29904 319*v - 16*v^2 - 4*v^3 + 14952
86 646*v - 32*v^2 - 8*v^3 + 30600 323*v - 16*v^2 - 4*v^3 + 15300
87 654*v - 32*v^2 - 8*v^3 + 31304 327*v - 16*v^2 - 4*v^3 + 15652
88 662*v - 32*v^2 - 8*v^3 + 32016 331*v - 16*v^2 - 4*v^3 + 16008
89 670*v - 32*v^2 - 8*v^3 + 32736 335*v - 16*v^2 - 4*v^3 + 16368
90 678*v - 32*v^2 - 8*v^3 + 33464 339*v - 16*v^2 - 4*v^3 + 16732
91 686*v - 32*v^2 - 8*v^3 + 34200 343*v - 16*v^2 - 4*v^3 + 17100
92 694*v - 32*v^2 - 8*v^3 + 34944 347*v - 16*v^2 - 4*v^3 + 17472
93 702*v - 32*v^2 - 8*v^3 + 35696 351*v - 16*v^2 - 4*v^3 + 17848
94 710*v - 32*v^2 - 8*v^3 + 36456 355*v - 16*v^2 - 4*v^3 + 18228
95 718*v - 32*v^2 - 8*v^3 + 37224 359*v - 16*v^2 - 4*v^3 + 18612
96 726*v - 32*v^2 - 8*v^3 + 38000 363*v - 16*v^2 - 4*v^3 + 19000
97 734*v - 32*v^2 - 8*v^3 + 38784 367*v - 16*v^2 - 4*v^3 + 19392
98 742*v - 32*v^2 - 8*v^3 + 39576 371*v - 16*v^2 - 4*v^3 + 19788
99 750*v - 32*v^2 - 8*v^3 + 40376 375*v - 16*v^2 - 4*v^3 + 20188
100 758*v - 32*v^2 - 8*v^3 + 41184 379*v - 16*v^2 - 4*v^3 + 20592
101 766*v - 32*v^2 - 8*v^3 + 42000 383*v - 16*v^2 - 4*v^3 + 21000
102 774*v - 32*v^2 - 8*v^3 + 42824 387*v - 16*v^2 - 4*v^3 + 21412
103 782*v - 32*v^2 - 8*v^3 + 43656 391*v - 16*v^2 - 4*v^3 + 21828
104 790*v - 32*v^2 - 8*v^3 + 44496 395*v - 16*v^2 - 4*v^3 + 22248
105 798*v - 32*v^2 - 8*v^3 + 45344 399*v - 16*v^2 - 4*v^3 + 22672
106 806*v - 32*v^2 - 8*v^3 + 46200 403*v - 16*v^2 - 4*v^3 + 23100
107 814*v - 32*v^2 - 8*v^3 + 47064 407*v - 16*v^2 - 4*v^3 + 23532
108 822*v - 32*v^2 - 8*v^3 + 47936 411*v - 16*v^2 - 4*v^3 + 23968
109 830*v - 32*v^2 - 8*v^3 + 48816 415*v - 16*v^2 - 4*v^3 + 24408
110 838*v - 32*v^2 - 8*v^3 + 49704 419*v - 16*v^2 - 4*v^3 + 24852
111 846*v - 32*v^2 - 8*v^3 + 50600 423*v - 16*v^2 - 4*v^3 + 25300
112 854*v - 32*v^2 - 8*v^3 + 51504 427*v - 16*v^2 - 4*v^3 + 25752
113 862*v - 32*v^2 - 8*v^3 + 52416 431*v - 16*v^2 - 4*v^3 + 26208
114 870*v - 32*v^2 - 8*v^3 + 53336 435*v - 16*v^2 - 4*v^3 + 26668
115 878*v - 32*v^2 - 8*v^3 + 54264 439*v - 16*v^2 - 4*v^3 + 27132
116 886*v - 32*v^2 - 8*v^3 + 55200 443*v - 16*v^2 - 4*v^3 + 27600
117 894*v - 32*v^2 - 8*v^3 + 56144 447*v - 16*v^2 - 4*v^3 + 28072
118 902*v - 32*v^2 - 8*v^3 + 57096 451*v - 16*v^2 - 4*v^3 + 28548
119 910*v - 32*v^2 - 8*v^3 + 58056 455*v - 16*v^2 - 4*v^3 + 29028
120 918*v - 32*v^2 - 8*v^3 + 59024 459*v - 16*v^2 - 4*v^3 + 29512
121 926*v - 32*v^2 - 8*v^3 + 60000 463*v - 16*v^2 - 4*v^3 + 30000
122 934*v - 32*v^2 - 8*v^3 + 60984 467*v - 16*v^2 - 4*v^3 + 30492
123 942*v - 32*v^2 - 8*v^3 + 61976 471*v - 16*v^2 - 4*v^3 + 30988
124 950*v - 32*v^2 - 8*v^3 + 62976 475*v - 16*v^2 - 4*v^3 + 31488
125 958*v - 32*v^2 - 8*v^3 + 63984 479*v - 16*v^2 - 4*v^3 + 31992
126 966*v - 32*v^2 - 8*v^3 + 65000 483*v - 16*v^2 - 4*v^3 + 32500
127 974*v - 32*v^2 - 8*v^3 + 66024 487*v - 16*v^2 - 4*v^3 + 33012
128 982*v - 32*v^2 - 8*v^3 + 67056 491*v - 16*v^2 - 4*v^3 + 33528
129 990*v - 32*v^2 - 8*v^3 + 68096 495*v - 16*v^2 - 4*v^3 + 34048
130 998*v - 32*v^2 - 8*v^3 + 69144 499*v - 16*v^2 - 4*v^3 + 34572
131 1006*v - 32*v^2 - 8*v^3 + 70200 503*v - 16*v^2 - 4*v^3 + 35100
132 1014*v - 32*v^2 - 8*v^3 + 71264 507*v - 16*v^2 - 4*v^3 + 35632
133 1022*v - 32*v^2 - 8*v^3 + 72336 511*v - 16*v^2 - 4*v^3 + 36168
134 1030*v - 32*v^2 - 8*v^3 + 73416 515*v - 16*v^2 - 4*v^3 + 36708
135 1038*v - 32*v^2 - 8*v^3 + 74504 519*v - 16*v^2 - 4*v^3 + 37252
136 1046*v - 32*v^2 - 8*v^3 + 75600 523*v - 16*v^2 - 4*v^3 + 37800
137 1054*v - 32*v^2 - 8*v^3 + 76704 527*v - 16*v^2 - 4*v^3 + 38352
138 1062*v - 32*v^2 - 8*v^3 + 77816 531*v - 16*v^2 - 4*v^3 + 38908
139 1070*v - 32*v^2 - 8*v^3 + 78936 535*v - 16*v^2 - 4*v^3 + 39468
140 1078*v - 32*v^2 - 8*v^3 + 80064 539*v - 16*v^2 - 4*v^3 + 40032
141 1086*v - 32*v^2 - 8*v^3 + 81200 543*v - 16*v^2 - 4*v^3 + 40600
142 1094*v - 32*v^2 - 8*v^3 + 82344 547*v - 16*v^2 - 4*v^3 + 41172
143 1102*v - 32*v^2 - 8*v^3 + 83496 551*v - 16*v^2 - 4*v^3 + 41748
144 1110*v - 32*v^2 - 8*v^3 + 84656 555*v - 16*v^2 - 4*v^3 + 42328
145 1118*v - 32*v^2 - 8*v^3 + 85824 559*v - 16*v^2 - 4*v^3 + 42912
146 1126*v - 32*v^2 - 8*v^3 + 87000 563*v - 16*v^2 - 4*v^3 + 43500
147 1134*v - 32*v^2 - 8*v^3 + 88184 567*v - 16*v^2 - 4*v^3 + 44092
148 1142*v - 32*v^2 - 8*v^3 + 89376 571*v - 16*v^2 - 4*v^3 + 44688
149 1150*v - 32*v^2 - 8*v^3 + 90576 575*v - 16*v^2 - 4*v^3 + 45288
150 1158*v - 32*v^2 - 8*v^3 + 91784 579*v - 16*v^2 - 4*v^3 + 45892
151 1166*v - 32*v^2 - 8*v^3 + 93000 583*v - 16*v^2 - 4*v^3 + 46500
152 1174*v - 32*v^2 - 8*v^3 + 94224 587*v - 16*v^2 - 4*v^3 + 47112
153 1182*v - 32*v^2 - 8*v^3 + 95456 591*v - 16*v^2 - 4*v^3 + 47728
154 1190*v - 32*v^2 - 8*v^3 + 96696 595*v - 16*v^2 - 4*v^3 + 48348
155 1198*v - 32*v^2 - 8*v^3 + 97944 599*v - 16*v^2 - 4*v^3 + 48972
156 1206*v - 32*v^2 - 8*v^3 + 99200 603*v - 16*v^2 - 4*v^3 + 49600
157 1214*v - 32*v^2 - 8*v^3 + 100464 607*v - 16*v^2 - 4*v^3 + 50232
158 1222*v - 32*v^2 - 8*v^3 + 101736 611*v - 16*v^2 - 4*v^3 + 50868
159 1230*v - 32*v^2 - 8*v^3 + 103016 615*v - 16*v^2 - 4*v^3 + 51508
160 1238*v - 32*v^2 - 8*v^3 + 104304 619*v - 16*v^2 - 4*v^3 + 52152
161 1246*v - 32*v^2 - 8*v^3 + 105600 623*v - 16*v^2 - 4*v^3 + 52800
162 1254*v - 32*v^2 - 8*v^3 + 106904 627*v - 16*v^2 - 4*v^3 + 53452
163 1262*v - 32*v^2 - 8*v^3 + 108216 631*v - 16*v^2 - 4*v^3 + 54108
164 1270*v - 32*v^2 - 8*v^3 + 109536 635*v - 16*v^2 - 4*v^3 + 54768
165 1278*v - 32*v^2 - 8*v^3 + 110864 639*v - 16*v^2 - 4*v^3 + 55432
166 1286*v - 32*v^2 - 8*v^3 + 112200 643*v - 16*v^2 - 4*v^3 + 56100
167 1294*v - 32*v^2 - 8*v^3 + 113544 647*v - 16*v^2 - 4*v^3 + 56772
168 1302*v - 32*v^2 - 8*v^3 + 114896 651*v - 16*v^2 - 4*v^3 + 57448
169 1310*v - 32*v^2 - 8*v^3 + 116256 655*v - 16*v^2 - 4*v^3 + 58128
170 1318*v - 32*v^2 - 8*v^3 + 117624 659*v - 16*v^2 - 4*v^3 + 58812
171 1326*v - 32*v^2 - 8*v^3 + 119000 663*v - 16*v^2 - 4*v^3 + 59500
172 1334*v - 32*v^2 - 8*v^3 + 120384 667*v - 16*v^2 - 4*v^3 + 60192
173 1342*v - 32*v^2 - 8*v^3 + 121776 671*v - 16*v^2 - 4*v^3 + 60888
174 1350*v - 32*v^2 - 8*v^3 + 123176 675*v - 16*v^2 - 4*v^3 + 61588
175 1358*v - 32*v^2 - 8*v^3 + 124584 679*v - 16*v^2 - 4*v^3 + 62292
176 1366*v - 32*v^2 - 8*v^3 + 126000 683*v - 16*v^2 - 4*v^3 + 63000
177 1374*v - 32*v^2 - 8*v^3 + 127424 687*v - 16*v^2 - 4*v^3 + 63712
178 1382*v - 32*v^2 - 8*v^3 + 128856 691*v - 16*v^2 - 4*v^3 + 64428
179 1390*v - 32*v^2 - 8*v^3 + 130296 695*v - 16*v^2 - 4*v^3 + 65148
180 1398*v - 32*v^2 - 8*v^3 + 131744 699*v - 16*v^2 - 4*v^3 + 65872
181 1406*v - 32*v^2 - 8*v^3 + 133200 703*v - 16*v^2 - 4*v^3 + 66600
182 1414*v - 32*v^2 - 8*v^3 + 134664 707*v - 16*v^2 - 4*v^3 + 67332
183 1422*v - 32*v^2 - 8*v^3 + 136136 711*v - 16*v^2 - 4*v^3 + 68068
184 1430*v - 32*v^2 - 8*v^3 + 137616 715*v - 16*v^2 - 4*v^3 + 68808
185 1438*v - 32*v^2 - 8*v^3 + 139104 719*v - 16*v^2 - 4*v^3 + 69552
186 1446*v - 32*v^2 - 8*v^3 + 140600 723*v - 16*v^2 - 4*v^3 + 70300
187 1454*v - 32*v^2 - 8*v^3 + 142104 727*v - 16*v^2 - 4*v^3 + 71052
188 1462*v - 32*v^2 - 8*v^3 + 143616 731*v - 16*v^2 - 4*v^3 + 71808
189 1470*v - 32*v^2 - 8*v^3 + 145136 735*v - 16*v^2 - 4*v^3 + 72568
190 1478*v - 32*v^2 - 8*v^3 + 146664 739*v - 16*v^2 - 4*v^3 + 73332
191 1486*v - 32*v^2 - 8*v^3 + 148200 743*v - 16*v^2 - 4*v^3 + 74100
192 1494*v - 32*v^2 - 8*v^3 + 149744 747*v - 16*v^2 - 4*v^3 + 74872
193 1502*v - 32*v^2 - 8*v^3 + 151296 751*v - 16*v^2 - 4*v^3 + 75648
194 1510*v - 32*v^2 - 8*v^3 + 152856 755*v - 16*v^2 - 4*v^3 + 76428
195 1518*v - 32*v^2 - 8*v^3 + 154424 759*v - 16*v^2 - 4*v^3 + 77212
196 1526*v - 32*v^2 - 8*v^3 + 156000 763*v - 16*v^2 - 4*v^3 + 78000
197 1534*v - 32*v^2 - 8*v^3 + 157584 767*v - 16*v^2 - 4*v^3 + 78792
198 1542*v - 32*v^2 - 8*v^3 + 159176 771*v - 16*v^2 - 4*v^3 + 79588
199 1550*v - 32*v^2 - 8*v^3 + 160776 775*v - 16*v^2 - 4*v^3 + 80388
200 1558*v - 32*v^2 - 8*v^3 + 162384 779*v - 16*v^2 - 4*v^3 + 81192
201 1566*v - 32*v^2 - 8*v^3 + 164000 783*v - 16*v^2 - 4*v^3 + 82000
202 1574*v - 32*v^2 - 8*v^3 + 165624 787*v - 16*v^2 - 4*v^3 + 82812
203 1582*v - 32*v^2 - 8*v^3 + 167256 791*v - 16*v^2 - 4*v^3 + 83628
204 1590*v - 32*v^2 - 8*v^3 + 168896 795*v - 16*v^2 - 4*v^3 + 84448
205 1598*v - 32*v^2 - 8*v^3 + 170544 799*v - 16*v^2 - 4*v^3 + 85272
206 1606*v - 32*v^2 - 8*v^3 + 172200 803*v - 16*v^2 - 4*v^3 + 86100
207 1614*v - 32*v^2 - 8*v^3 + 173864 807*v - 16*v^2 - 4*v^3 + 86932
208 1622*v - 32*v^2 - 8*v^3 + 175536 811*v - 16*v^2 - 4*v^3 + 87768
209 1630*v - 32*v^2 - 8*v^3 + 177216 815*v - 16*v^2 - 4*v^3 + 88608
210 1638*v - 32*v^2 - 8*v^3 + 178904 819*v - 16*v^2 - 4*v^3 + 89452
211 1646*v - 32*v^2 - 8*v^3 + 180600 823*v - 16*v^2 - 4*v^3 + 90300
212 1654*v - 32*v^2 - 8*v^3 + 182304 827*v - 16*v^2 - 4*v^3 + 91152
213 1662*v - 32*v^2 - 8*v^3 + 184016 831*v - 16*v^2 - 4*v^3 + 92008
214 1670*v - 32*v^2 - 8*v^3 + 185736 835*v - 16*v^2 - 4*v^3 + 92868
215 1678*v - 32*v^2 - 8*v^3 + 187464 839*v - 16*v^2 - 4*v^3 + 93732
216 1686*v - 32*v^2 - 8*v^3 + 189200 843*v - 16*v^2 - 4*v^3 + 94600
217 1694*v - 32*v^2 - 8*v^3 + 190944 847*v - 16*v^2 - 4*v^3 + 95472
218 1702*v - 32*v^2 - 8*v^3 + 192696 851*v - 16*v^2 - 4*v^3 + 96348
219 1710*v - 32*v^2 - 8*v^3 + 194456 855*v - 16*v^2 - 4*v^3 + 97228
220 1718*v - 32*v^2 - 8*v^3 + 196224 859*v - 16*v^2 - 4*v^3 + 98112
221 1726*v - 32*v^2 - 8*v^3 + 198000 863*v - 16*v^2 - 4*v^3 + 99000
222 1734*v - 32*v^2 - 8*v^3 + 199784 867*v - 16*v^2 - 4*v^3 + 99892
223 1742*v - 32*v^2 - 8*v^3 + 201576 871*v - 16*v^2 - 4*v^3 + 100788
224 1750*v - 32*v^2 - 8*v^3 + 203376 875*v - 16*v^2 - 4*v^3 + 101688
225 1758*v - 32*v^2 - 8*v^3 + 205184 879*v - 16*v^2 - 4*v^3 + 102592
226 1766*v - 32*v^2 - 8*v^3 + 207000 883*v - 16*v^2 - 4*v^3 + 103500
227 1774*v - 32*v^2 - 8*v^3 + 208824 887*v - 16*v^2 - 4*v^3 + 104412
228 1782*v - 32*v^2 - 8*v^3 + 210656 891*v - 16*v^2 - 4*v^3 + 105328
229 1790*v - 32*v^2 - 8*v^3 + 212496 895*v - 16*v^2 - 4*v^3 + 106248
230 1798*v - 32*v^2 - 8*v^3 + 214344 899*v - 16*v^2 - 4*v^3 + 107172
231 1806*v - 32*v^2 - 8*v^3 + 216200 903*v - 16*v^2 - 4*v^3 + 108100
232 1814*v - 32*v^2 - 8*v^3 + 218064 907*v - 16*v^2 - 4*v^3 + 109032
233 1822*v - 32*v^2 - 8*v^3 + 219936 911*v - 16*v^2 - 4*v^3 + 109968
234 1830*v - 32*v^2 - 8*v^3 + 221816 915*v - 16*v^2 - 4*v^3 + 110908
235 1838*v - 32*v^2 - 8*v^3 + 223704 919*v - 16*v^2 - 4*v^3 + 111852
236 1846*v - 32*v^2 - 8*v^3 + 225600 923*v - 16*v^2 - 4*v^3 + 112800
237 1854*v - 32*v^2 - 8*v^3 + 227504 927*v - 16*v^2 - 4*v^3 + 113752
238 1862*v - 32*v^2 - 8*v^3 + 229416 931*v - 16*v^2 - 4*v^3 + 114708
239 1870*v - 32*v^2 - 8*v^3 + 231336 935*v - 16*v^2 - 4*v^3 + 115668
240 1878*v - 32*v^2 - 8*v^3 + 233264 939*v - 16*v^2 - 4*v^3 + 116632
241 1886*v - 32*v^2 - 8*v^3 + 235200 943*v - 16*v^2 - 4*v^3 + 117600
242 1894*v - 32*v^2 - 8*v^3 + 237144 947*v - 16*v^2 - 4*v^3 + 118572
243 1902*v - 32*v^2 - 8*v^3 + 239096 951*v - 16*v^2 - 4*v^3 + 119548
244 1910*v - 32*v^2 - 8*v^3 + 241056 955*v - 16*v^2 - 4*v^3 + 120528
245 1918*v - 32*v^2 - 8*v^3 + 243024 959*v - 16*v^2 - 4*v^3 + 121512
246 1926*v - 32*v^2 - 8*v^3 + 245000 963*v - 16*v^2 - 4*v^3 + 122500
247 1934*v - 32*v^2 - 8*v^3 + 246984 967*v - 16*v^2 - 4*v^3 + 123492
248 1942*v - 32*v^2 - 8*v^3 + 248976 971*v - 16*v^2 - 4*v^3 + 124488
249 1950*v - 32*v^2 - 8*v^3 + 250976 975*v - 16*v^2 - 4*v^3 + 125488
250 1958*v - 32*v^2 - 8*v^3 + 252984 979*v - 16*v^2 - 4*v^3 + 126492
251 1966*v - 32*v^2 - 8*v^3 + 255000 983*v - 16*v^2 - 4*v^3 + 127500
252 1974*v - 32*v^2 - 8*v^3 + 257024 987*v - 16*v^2 - 4*v^3 + 128512
253 1982*v - 32*v^2 - 8*v^3 + 259056 991*v - 16*v^2 - 4*v^3 + 129528
254 1990*v - 32*v^2 - 8*v^3 + 261096 995*v - 16*v^2 - 4*v^3 + 130548
255 1998*v - 32*v^2 - 8*v^3 + 263144 999*v - 16*v^2 - 4*v^3 + 131572
256 2006*v - 32*v^2 - 8*v^3 + 265200 1003*v - 16*v^2 - 4*v^3 + 132600
257 2014*v - 32*v^2 - 8*v^3 + 267264 1007*v - 16*v^2 - 4*v^3 + 133632
258 2022*v - 32*v^2 - 8*v^3 + 269336 1011*v - 16*v^2 - 4*v^3 + 134668
259 2030*v - 32*v^2 - 8*v^3 + 271416 1015*v - 16*v^2 - 4*v^3 + 135708
260 2038*v - 32*v^2 - 8*v^3 + 273504 1019*v - 16*v^2 - 4*v^3 + 136752
261 2046*v - 32*v^2 - 8*v^3 + 275600 1023*v - 16*v^2 - 4*v^3 + 137800
262 2054*v - 32*v^2 - 8*v^3 + 277704 1027*v - 16*v^2 - 4*v^3 + 138852
263 2062*v - 32*v^2 - 8*v^3 + 279816 1031*v - 16*v^2 - 4*v^3 + 139908
264 2070*v - 32*v^2 - 8*v^3 + 281936 1035*v - 16*v^2 - 4*v^3 + 140968
265 2078*v - 32*v^2 - 8*v^3 + 284064 1039*v - 16*v^2 - 4*v^3 + 142032
266 2086*v - 32*v^2 - 8*v^3 + 286200 1043*v - 16*v^2 - 4*v^3 + 143100
267 2094*v - 32*v^2 - 8*v^3 + 288344 1047*v - 16*v^2 - 4*v^3 + 144172
268 2102*v - 32*v^2 - 8*v^3 + 290496 1051*v - 16*v^2 - 4*v^3 + 145248
269 2110*v - 32*v^2 - 8*v^3 + 292656 1055*v - 16*v^2 - 4*v^3 + 146328
270 2118*v - 32*v^2 - 8*v^3 + 294824 1059*v - 16*v^2 - 4*v^3 + 147412
271 2126*v - 32*v^2 - 8*v^3 + 297000 1063*v - 16*v^2 - 4*v^3 + 148500
272 2134*v - 32*v^2 - 8*v^3 + 299184 1067*v - 16*v^2 - 4*v^3 + 149592
273 2142*v - 32*v^2 - 8*v^3 + 301376 1071*v - 16*v^2 - 4*v^3 + 150688
274 2150*v - 32*v^2 - 8*v^3 + 303576 1075*v - 16*v^2 - 4*v^3 + 151788
275 2158*v - 32*v^2 - 8*v^3 + 305784 1079*v - 16*v^2 - 4*v^3 + 152892
276 2166*v - 32*v^2 - 8*v^3 + 308000 1083*v - 16*v^2 - 4*v^3 + 154000
277 2174*v - 32*v^2 - 8*v^3 + 310224 1087*v - 16*v^2 - 4*v^3 + 155112
278 2182*v - 32*v^2 - 8*v^3 + 312456 1091*v - 16*v^2 - 4*v^3 + 156228
279 2190*v - 32*v^2 - 8*v^3 + 314696 1095*v - 16*v^2 - 4*v^3 + 157348
280 2198*v - 32*v^2 - 8*v^3 + 316944 1099*v - 16*v^2 - 4*v^3 + 158472
281 2206*v - 32*v^2 - 8*v^3 + 319200 1103*v - 16*v^2 - 4*v^3 + 159600
282 2214*v - 32*v^2 - 8*v^3 + 321464 1107*v - 16*v^2 - 4*v^3 + 160732
283 2222*v - 32*v^2 - 8*v^3 + 323736 1111*v - 16*v^2 - 4*v^3 + 161868
284 2230*v - 32*v^2 - 8*v^3 + 326016 1115*v - 16*v^2 - 4*v^3 + 163008
285 2238*v - 32*v^2 - 8*v^3 + 328304 1119*v - 16*v^2 - 4*v^3 + 164152
286 2246*v - 32*v^2 - 8*v^3 + 330600 1123*v - 16*v^2 - 4*v^3 + 165300
287 2254*v - 32*v^2 - 8*v^3 + 332904 1127*v - 16*v^2 - 4*v^3 + 166452
288 2262*v - 32*v^2 - 8*v^3 + 335216 1131*v - 16*v^2 - 4*v^3 + 167608
289 2270*v - 32*v^2 - 8*v^3 + 337536 1135*v - 16*v^2 - 4*v^3 + 168768
290 2278*v - 32*v^2 - 8*v^3 + 339864 1139*v - 16*v^2 - 4*v^3 + 169932
291 2286*v - 32*v^2 - 8*v^3 + 342200 1143*v - 16*v^2 - 4*v^3 + 171100
292 2294*v - 32*v^2 - 8*v^3 + 344544 1147*v - 16*v^2 - 4*v^3 + 172272
293 2302*v - 32*v^2 - 8*v^3 + 346896 1151*v - 16*v^2 - 4*v^3 + 173448
294 2310*v - 32*v^2 - 8*v^3 + 349256 1155*v - 16*v^2 - 4*v^3 + 174628
295 2318*v - 32*v^2 - 8*v^3 + 351624 1159*v - 16*v^2 - 4*v^3 + 175812
296 2326*v - 32*v^2 - 8*v^3 + 354000 1163*v - 16*v^2 - 4*v^3 + 177000
297 2334*v - 32*v^2 - 8*v^3 + 356384 1167*v - 16*v^2 - 4*v^3 + 178192
298 2342*v - 32*v^2 - 8*v^3 + 358776 1171*v - 16*v^2 - 4*v^3 + 179388
299 2350*v - 32*v^2 - 8*v^3 + 361176 1175*v - 16*v^2 - 4*v^3 + 180588
300 2358*v - 32*v^2 - 8*v^3 + 363584 1179*v - 16*v^2 - 4*v^3 + 181792
301 2366*v - 32*v^2 - 8*v^3 + 366000 1183*v - 16*v^2 - 4*v^3 + 183000
302 2374*v - 32*v^2 - 8*v^3 + 368424 1187*v - 16*v^2 - 4*v^3 + 184212
303 2382*v - 32*v^2 - 8*v^3 + 370856 1191*v - 16*v^2 - 4*v^3 + 185428
304 2390*v - 32*v^2 - 8*v^3 + 373296 1195*v - 16*v^2 - 4*v^3 + 186648
305 2398*v - 32*v^2 - 8*v^3 + 375744 1199*v - 16*v^2 - 4*v^3 + 187872
306 2406*v - 32*v^2 - 8*v^3 + 378200 1203*v - 16*v^2 - 4*v^3 + 189100
307 2414*v - 32*v^2 - 8*v^3 + 380664 1207*v - 16*v^2 - 4*v^3 + 190332
308 2422*v - 32*v^2 - 8*v^3 + 383136 1211*v - 16*v^2 - 4*v^3 + 191568
309 2430*v - 32*v^2 - 8*v^3 + 385616 1215*v - 16*v^2 - 4*v^3 + 192808
310 2438*v - 32*v^2 - 8*v^3 + 388104 1219*v - 16*v^2 - 4*v^3 + 194052
311 2446*v - 32*v^2 - 8*v^3 + 390600 1223*v - 16*v^2 - 4*v^3 + 195300
312 2454*v - 32*v^2 - 8*v^3 + 393104 1227*v - 16*v^2 - 4*v^3 + 196552
313 2462*v - 32*v^2 - 8*v^3 + 395616 1231*v - 16*v^2 - 4*v^3 + 197808
314 2470*v - 32*v^2 - 8*v^3 + 398136 1235*v - 16*v^2 - 4*v^3 + 199068
315 2478*v - 32*v^2 - 8*v^3 + 400664 1239*v - 16*v^2 - 4*v^3 + 200332
316 2486*v - 32*v^2 - 8*v^3 + 403200 1243*v - 16*v^2 - 4*v^3 + 201600
317 2494*v - 32*v^2 - 8*v^3 + 405744 1247*v - 16*v^2 - 4*v^3 + 202872
318 2502*v - 32*v^2 - 8*v^3 + 408296 1251*v - 16*v^2 - 4*v^3 + 204148
319 2510*v - 32*v^2 - 8*v^3 + 410856 1255*v - 16*v^2 - 4*v^3 + 205428
320 2518*v - 32*v^2 - 8*v^3 + 413424 1259*v - 16*v^2 - 4*v^3 + 206712
321 2526*v - 32*v^2 - 8*v^3 + 416000 1263*v - 16*v^2 - 4*v^3 + 208000
322 2534*v - 32*v^2 - 8*v^3 + 418584 1267*v - 16*v^2 - 4*v^3 + 209292
323 2542*v - 32*v^2 - 8*v^3 + 421176 1271*v - 16*v^2 - 4*v^3 + 210588
324 2550*v - 32*v^2 - 8*v^3 + 423776 1275*v - 16*v^2 - 4*v^3 + 211888
325 2558*v - 32*v^2 - 8*v^3 + 426384 1279*v - 16*v^2 - 4*v^3 + 213192
326 2566*v - 32*v^2 - 8*v^3 + 429000 1283*v - 16*v^2 - 4*v^3 + 214500
327 2574*v - 32*v^2 - 8*v^3 + 431624 1287*v - 16*v^2 - 4*v^3 + 215812
328 2582*v - 32*v^2 - 8*v^3 + 434256 1291*v - 16*v^2 - 4*v^3 + 217128
329 2590*v - 32*v^2 - 8*v^3 + 436896 1295*v - 16*v^2 - 4*v^3 + 218448
330 2598*v - 32*v^2 - 8*v^3 + 439544 1299*v - 16*v^2 - 4*v^3 + 219772
331 2606*v - 32*v^2 - 8*v^3 + 442200 1303*v - 16*v^2 - 4*v^3 + 221100
332 2614*v - 32*v^2 - 8*v^3 + 444864 1307*v - 16*v^2 - 4*v^3 + 222432
333 2622*v - 32*v^2 - 8*v^3 + 447536 1311*v - 16*v^2 - 4*v^3 + 223768
334 2630*v - 32*v^2 - 8*v^3 + 450216 1315*v - 16*v^2 - 4*v^3 + 225108
335 2638*v - 32*v^2 - 8*v^3 + 452904 1319*v - 16*v^2 - 4*v^3 + 226452
336 2646*v - 32*v^2 - 8*v^3 + 455600 1323*v - 16*v^2 - 4*v^3 + 227800
337 2654*v - 32*v^2 - 8*v^3 + 458304 1327*v - 16*v^2 - 4*v^3 + 229152
338 2662*v - 32*v^2 - 8*v^3 + 461016 1331*v - 16*v^2 - 4*v^3 + 230508
339 2670*v - 32*v^2 - 8*v^3 + 463736 1335*v - 16*v^2 - 4*v^3 + 231868
340 2678*v - 32*v^2 - 8*v^3 + 466464 1339*v - 16*v^2 - 4*v^3 + 233232
341 2686*v - 32*v^2 - 8*v^3 + 469200 1343*v - 16*v^2 - 4*v^3 + 234600
342 2694*v - 32*v^2 - 8*v^3 + 471944 1347*v - 16*v^2 - 4*v^3 + 235972
343 2702*v - 32*v^2 - 8*v^3 + 474696 1351*v - 16*v^2 - 4*v^3 + 237348
344 2710*v - 32*v^2 - 8*v^3 + 477456 1355*v - 16*v^2 - 4*v^3 + 238728
345 2718*v - 32*v^2 - 8*v^3 + 480224 1359*v - 16*v^2 - 4*v^3 + 240112
346 2726*v - 32*v^2 - 8*v^3 + 483000 1363*v - 16*v^2 - 4*v^3 + 241500
347 2734*v - 32*v^2 - 8*v^3 + 485784 1367*v - 16*v^2 - 4*v^3 + 242892
348 2742*v - 32*v^2 - 8*v^3 + 488576 1371*v - 16*v^2 - 4*v^3 + 244288
349 2750*v - 32*v^2 - 8*v^3 + 491376 1375*v - 16*v^2 - 4*v^3 + 245688
350 2758*v - 32*v^2 - 8*v^3 + 494184 1379*v - 16*v^2 - 4*v^3 + 247092
351 2766*v - 32*v^2 - 8*v^3 + 497000 1383*v - 16*v^2 - 4*v^3 + 248500
352 2774*v - 32*v^2 - 8*v^3 + 499824 1387*v - 16*v^2 - 4*v^3 + 249912
353 2782*v - 32*v^2 - 8*v^3 + 502656 1391*v - 16*v^2 - 4*v^3 + 251328
354 2790*v - 32*v^2 - 8*v^3 + 505496 1395*v - 16*v^2 - 4*v^3 + 252748
355 2798*v - 32*v^2 - 8*v^3 + 508344 1399*v - 16*v^2 - 4*v^3 + 254172
356 2806*v - 32*v^2 - 8*v^3 + 511200 1403*v - 16*v^2 - 4*v^3 + 255600
357 2814*v - 32*v^2 - 8*v^3 + 514064 1407*v - 16*v^2 - 4*v^3 + 257032
358 2822*v - 32*v^2 - 8*v^3 + 516936 1411*v - 16*v^2 - 4*v^3 + 258468
359 2830*v - 32*v^2 - 8*v^3 + 519816 1415*v - 16*v^2 - 4*v^3 + 259908
360 2838*v - 32*v^2 - 8*v^3 + 522704 1419*v - 16*v^2 - 4*v^3 + 261352
361 2846*v - 32*v^2 - 8*v^3 + 525600 1423*v - 16*v^2 - 4*v^3 + 262800
362 2854*v - 32*v^2 - 8*v^3 + 528504 1427*v - 16*v^2 - 4*v^3 + 264252
363 2862*v - 32*v^2 - 8*v^3 + 531416 1431*v - 16*v^2 - 4*v^3 + 265708
364 2870*v - 32*v^2 - 8*v^3 + 534336 1435*v - 16*v^2 - 4*v^3 + 267168
365 2878*v - 32*v^2 - 8*v^3 + 537264 1439*v - 16*v^2 - 4*v^3 + 268632
366 2886*v - 32*v^2 - 8*v^3 + 540200 1443*v - 16*v^2 - 4*v^3 + 270100
367 2894*v - 32*v^2 - 8*v^3 + 543144 1447*v - 16*v^2 - 4*v^3 + 271572
368 2902*v - 32*v^2 - 8*v^3 + 546096 1451*v - 16*v^2 - 4*v^3 + 273048
369 2910*v - 32*v^2 - 8*v^3 + 549056 1455*v - 16*v^2 - 4*v^3 + 274528
370 2918*v - 32*v^2 - 8*v^3 + 552024 1459*v - 16*v^2 - 4*v^3 + 276012
371 2926*v - 32*v^2 - 8*v^3 + 555000 1463*v - 16*v^2 - 4*v^3 + 277500
372 2934*v - 32*v^2 - 8*v^3 + 557984 1467*v - 16*v^2 - 4*v^3 + 278992
373 2942*v - 32*v^2 - 8*v^3 + 560976 1471*v - 16*v^2 - 4*v^3 + 280488
374 2950*v - 32*v^2 - 8*v^3 + 563976 1475*v - 16*v^2 - 4*v^3 + 281988
375 2958*v - 32*v^2 - 8*v^3 + 566984 1479*v - 16*v^2 - 4*v^3 + 283492
376 2966*v - 32*v^2 - 8*v^3 + 570000 1483*v - 16*v^2 - 4*v^3 + 285000
377 2974*v - 32*v^2 - 8*v^3 + 573024 1487*v - 16*v^2 - 4*v^3 + 286512
378 2982*v - 32*v^2 - 8*v^3 + 576056 1491*v - 16*v^2 - 4*v^3 + 288028
379 2990*v - 32*v^2 - 8*v^3 + 579096 1495*v - 16*v^2 - 4*v^3 + 289548
380 2998*v - 32*v^2 - 8*v^3 + 582144 1499*v - 16*v^2 - 4*v^3 + 291072
381 3006*v - 32*v^2 - 8*v^3 + 585200 1503*v - 16*v^2 - 4*v^3 + 292600
382 3014*v - 32*v^2 - 8*v^3 + 588264 1507*v - 16*v^2 - 4*v^3 + 294132
383 3022*v - 32*v^2 - 8*v^3 + 591336 1511*v - 16*v^2 - 4*v^3 + 295668
384 3030*v - 32*v^2 - 8*v^3 + 594416 1515*v - 16*v^2 - 4*v^3 + 297208
385 3038*v - 32*v^2 - 8*v^3 + 597504 1519*v - 16*v^2 - 4*v^3 + 298752
386 3046*v - 32*v^2 - 8*v^3 + 600600 1523*v - 16*v^2 - 4*v^3 + 300300
387 3054*v - 32*v^2 - 8*v^3 + 603704 1527*v - 16*v^2 - 4*v^3 + 301852
388 3062*v - 32*v^2 - 8*v^3 + 606816 1531*v - 16*v^2 - 4*v^3 + 303408
389 3070*v - 32*v^2 - 8*v^3 + 609936 1535*v - 16*v^2 - 4*v^3 + 304968
390 3078*v - 32*v^2 - 8*v^3 + 613064 1539*v - 16*v^2 - 4*v^3 + 306532
391 3086*v - 32*v^2 - 8*v^3 + 616200 1543*v - 16*v^2 - 4*v^3 + 308100
392 3094*v - 32*v^2 - 8*v^3 + 619344 1547*v - 16*v^2 - 4*v^3 + 309672
393 3102*v - 32*v^2 - 8*v^3 + 622496 1551*v - 16*v^2 - 4*v^3 + 311248
394 3110*v - 32*v^2 - 8*v^3 + 625656 1555*v - 16*v^2 - 4*v^3 + 312828
395 3118*v - 32*v^2 - 8*v^3 + 628824 1559*v - 16*v^2 - 4*v^3 + 314412
396 3126*v - 32*v^2 - 8*v^3 + 632000 1563*v - 16*v^2 - 4*v^3 + 316000
397 3134*v - 32*v^2 - 8*v^3 + 635184 1567*v - 16*v^2 - 4*v^3 + 317592
398 3142*v - 32*v^2 - 8*v^3 + 638376 1571*v - 16*v^2 - 4*v^3 + 319188
399 3150*v - 32*v^2 - 8*v^3 + 641576 1575*v - 16*v^2 - 4*v^3 + 320788
400 3158*v - 32*v^2 - 8*v^3 + 644784 1579*v - 16*v^2 - 4*v^3 + 322392
401 3166*v - 32*v^2 - 8*v^3 + 648000 1583*v - 16*v^2 - 4*v^3 + 324000
402 3174*v - 32*v^2 - 8*v^3 + 651224 1587*v - 16*v^2 - 4*v^3 + 325612
403 3182*v - 32*v^2 - 8*v^3 + 654456 1591*v - 16*v^2 - 4*v^3 + 327228
404 3190*v - 32*v^2 - 8*v^3 + 657696 1595*v - 16*v^2 - 4*v^3 + 328848
405 3198*v - 32*v^2 - 8*v^3 + 660944 1599*v - 16*v^2 - 4*v^3 + 330472
406 3206*v - 32*v^2 - 8*v^3 + 664200 1603*v - 16*v^2 - 4*v^3 + 332100
407 3214*v - 32*v^2 - 8*v^3 + 667464 1607*v - 16*v^2 - 4*v^3 + 333732
408 3222*v - 32*v^2 - 8*v^3 + 670736 1611*v - 16*v^2 - 4*v^3 + 335368
409 3230*v - 32*v^2 - 8*v^3 + 674016 1615*v - 16*v^2 - 4*v^3 + 337008
410 3238*v - 32*v^2 - 8*v^3 + 677304 1619*v - 16*v^2 - 4*v^3 + 338652
411 3246*v - 32*v^2 - 8*v^3 + 680600 1623*v - 16*v^2 - 4*v^3 + 340300
412 3254*v - 32*v^2 - 8*v^3 + 683904 1627*v - 16*v^2 - 4*v^3 + 341952
413 3262*v - 32*v^2 - 8*v^3 + 687216 1631*v - 16*v^2 - 4*v^3 + 343608
414 3270*v - 32*v^2 - 8*v^3 + 690536 1635*v - 16*v^2 - 4*v^3 + 345268
415 3278*v - 32*v^2 - 8*v^3 + 693864 1639*v - 16*v^2 - 4*v^3 + 346932
416 3286*v - 32*v^2 - 8*v^3 + 697200 1643*v - 16*v^2 - 4*v^3 + 348600
417 3294*v - 32*v^2 - 8*v^3 + 700544 1647*v - 16*v^2 - 4*v^3 + 350272
418 3302*v - 32*v^2 - 8*v^3 + 703896 1651*v - 16*v^2 - 4*v^3 + 351948
419 3310*v - 32*v^2 - 8*v^3 + 707256 1655*v - 16*v^2 - 4*v^3 + 353628
420 3318*v - 32*v^2 - 8*v^3 + 710624 1659*v - 16*v^2 - 4*v^3 + 355312
421 3326*v - 32*v^2 - 8*v^3 + 714000 1663*v - 16*v^2 - 4*v^3 + 357000
422 3334*v - 32*v^2 - 8*v^3 + 717384 1667*v - 16*v^2 - 4*v^3 + 358692
423 3342*v - 32*v^2 - 8*v^3 + 720776 1671*v - 16*v^2 - 4*v^3 + 360388
424 3350*v - 32*v^2 - 8*v^3 + 724176 1675*v - 16*v^2 - 4*v^3 + 362088
425 3358*v - 32*v^2 - 8*v^3 + 727584 1679*v - 16*v^2 - 4*v^3 + 363792
426 3366*v - 32*v^2 - 8*v^3 + 731000 1683*v - 16*v^2 - 4*v^3 + 365500
427 3374*v - 32*v^2 - 8*v^3 + 734424 1687*v - 16*v^2 - 4*v^3 + 367212
428 3382*v - 32*v^2 - 8*v^3 + 737856 1691*v - 16*v^2 - 4*v^3 + 368928
429 3390*v - 32*v^2 - 8*v^3 + 741296 1695*v - 16*v^2 - 4*v^3 + 370648
430 3398*v - 32*v^2 - 8*v^3 + 744744 1699*v - 16*v^2 - 4*v^3 + 372372
431 3406*v - 32*v^2 - 8*v^3 + 748200 1703*v - 16*v^2 - 4*v^3 + 374100
432 3414*v - 32*v^2 - 8*v^3 + 751664 1707*v - 16*v^2 - 4*v^3 + 375832
433 3422*v - 32*v^2 - 8*v^3 + 755136 1711*v - 16*v^2 - 4*v^3 + 377568
434 3430*v - 32*v^2 - 8*v^3 + 758616 1715*v - 16*v^2 - 4*v^3 + 379308
435 3438*v - 32*v^2 - 8*v^3 + 762104 1719*v - 16*v^2 - 4*v^3 + 381052
436 3446*v - 32*v^2 - 8*v^3 + 765600 1723*v - 16*v^2 - 4*v^3 + 382800
437 3454*v - 32*v^2 - 8*v^3 + 769104 1727*v - 16*v^2 - 4*v^3 + 384552
438 3462*v - 32*v^2 - 8*v^3 + 772616 1731*v - 16*v^2 - 4*v^3 + 386308
439 3470*v - 32*v^2 - 8*v^3 + 776136 1735*v - 16*v^2 - 4*v^3 + 388068
440 3478*v - 32*v^2 - 8*v^3 + 779664 1739*v - 16*v^2 - 4*v^3 + 389832
441 3486*v - 32*v^2 - 8*v^3 + 783200 1743*v - 16*v^2 - 4*v^3 + 391600
442 3494*v - 32*v^2 - 8*v^3 + 786744 1747*v - 16*v^2 - 4*v^3 + 393372
443 3502*v - 32*v^2 - 8*v^3 + 790296 1751*v - 16*v^2 - 4*v^3 + 395148
444 3510*v - 32*v^2 - 8*v^3 + 793856 1755*v - 16*v^2 - 4*v^3 + 396928
445 3518*v - 32*v^2 - 8*v^3 + 797424 1759*v - 16*v^2 - 4*v^3 + 398712
446 3526*v - 32*v^2 - 8*v^3 + 801000 1763*v - 16*v^2 - 4*v^3 + 400500
447 3534*v - 32*v^2 - 8*v^3 + 804584 1767*v - 16*v^2 - 4*v^3 + 402292
448 3542*v - 32*v^2 - 8*v^3 + 808176 1771*v - 16*v^2 - 4*v^3 + 404088
449 3550*v - 32*v^2 - 8*v^3 + 811776 1775*v - 16*v^2 - 4*v^3 + 405888
450 3558*v - 32*v^2 - 8*v^3 + 815384 1779*v - 16*v^2 - 4*v^3 + 407692
451 3566*v - 32*v^2 - 8*v^3 + 819000 1783*v - 16*v^2 - 4*v^3 + 409500
452 3574*v - 32*v^2 - 8*v^3 + 822624 1787*v - 16*v^2 - 4*v^3 + 411312
453 3582*v - 32*v^2 - 8*v^3 + 826256 1791*v - 16*v^2 - 4*v^3 + 413128
454 3590*v - 32*v^2 - 8*v^3 + 829896 1795*v - 16*v^2 - 4*v^3 + 414948
455 3598*v - 32*v^2 - 8*v^3 + 833544 1799*v - 16*v^2 - 4*v^3 + 416772
456 3606*v - 32*v^2 - 8*v^3 + 837200 1803*v - 16*v^2 - 4*v^3 + 418600
457 3614*v - 32*v^2 - 8*v^3 + 840864 1807*v - 16*v^2 - 4*v^3 + 420432
458 3622*v - 32*v^2 - 8*v^3 + 844536 1811*v - 16*v^2 - 4*v^3 + 422268
459 3630*v - 32*v^2 - 8*v^3 + 848216 1815*v - 16*v^2 - 4*v^3 + 424108
460 3638*v - 32*v^2 - 8*v^3 + 851904 1819*v - 16*v^2 - 4*v^3 + 425952
461 3646*v - 32*v^2 - 8*v^3 + 855600 1823*v - 16*v^2 - 4*v^3 + 427800
462 3654*v - 32*v^2 - 8*v^3 + 859304 1827*v - 16*v^2 - 4*v^3 + 429652
463 3662*v - 32*v^2 - 8*v^3 + 863016 1831*v - 16*v^2 - 4*v^3 + 431508
464 3670*v - 32*v^2 - 8*v^3 + 866736 1835*v - 16*v^2 - 4*v^3 + 433368
465 3678*v - 32*v^2 - 8*v^3 + 870464 1839*v - 16*v^2 - 4*v^3 + 435232
466 3686*v - 32*v^2 - 8*v^3 + 874200 1843*v - 16*v^2 - 4*v^3 + 437100
467 3694*v - 32*v^2 - 8*v^3 + 877944 1847*v - 16*v^2 - 4*v^3 + 438972
468 3702*v - 32*v^2 - 8*v^3 + 881696 1851*v - 16*v^2 - 4*v^3 + 440848
469 3710*v - 32*v^2 - 8*v^3 + 885456 1855*v - 16*v^2 - 4*v^3 + 442728
470 3718*v - 32*v^2 - 8*v^3 + 889224 1859*v - 16*v^2 - 4*v^3 + 444612
471 3726*v - 32*v^2 - 8*v^3 + 893000 1863*v - 16*v^2 - 4*v^3 + 446500
472 3734*v - 32*v^2 - 8*v^3 + 896784 1867*v - 16*v^2 - 4*v^3 + 448392
473 3742*v - 32*v^2 - 8*v^3 + 900576 1871*v - 16*v^2 - 4*v^3 + 450288
474 3750*v - 32*v^2 - 8*v^3 + 904376 1875*v - 16*v^2 - 4*v^3 + 452188
475 3758*v - 32*v^2 - 8*v^3 + 908184 1879*v - 16*v^2 - 4*v^3 + 454092
476 3766*v - 32*v^2 - 8*v^3 + 912000 1883*v - 16*v^2 - 4*v^3 + 456000
477 3774*v - 32*v^2 - 8*v^3 + 915824 1887*v - 16*v^2 - 4*v^3 + 457912
478 3782*v - 32*v^2 - 8*v^3 + 919656 1891*v - 16*v^2 - 4*v^3 + 459828
479 3790*v - 32*v^2 - 8*v^3 + 923496 1895*v - 16*v^2 - 4*v^3 + 461748
480 3798*v - 32*v^2 - 8*v^3 + 927344 1899*v - 16*v^2 - 4*v^3 + 463672
481 3806*v - 32*v^2 - 8*v^3 + 931200 1903*v - 16*v^2 - 4*v^3 + 465600
482 3814*v - 32*v^2 - 8*v^3 + 935064 1907*v - 16*v^2 - 4*v^3 + 467532
483 3822*v - 32*v^2 - 8*v^3 + 938936 1911*v - 16*v^2 - 4*v^3 + 469468
484 3830*v - 32*v^2 - 8*v^3 + 942816 1915*v - 16*v^2 - 4*v^3 + 471408
485 3838*v - 32*v^2 - 8*v^3 + 946704 1919*v - 16*v^2 - 4*v^3 + 473352
486 3846*v - 32*v^2 - 8*v^3 + 950600 1923*v - 16*v^2 - 4*v^3 + 475300
487 3854*v - 32*v^2 - 8*v^3 + 954504 1927*v - 16*v^2 - 4*v^3 + 477252
488 3862*v - 32*v^2 - 8*v^3 + 958416 1931*v - 16*v^2 - 4*v^3 + 479208
489 3870*v - 32*v^2 - 8*v^3 + 962336 1935*v - 16*v^2 - 4*v^3 + 481168
490 3878*v - 32*v^2 - 8*v^3 + 966264 1939*v - 16*v^2 - 4*v^3 + 483132
491 3886*v - 32*v^2 - 8*v^3 + 970200 1943*v - 16*v^2 - 4*v^3 + 485100
492 3894*v - 32*v^2 - 8*v^3 + 974144 1947*v - 16*v^2 - 4*v^3 + 487072
493 3902*v - 32*v^2 - 8*v^3 + 978096 1951*v - 16*v^2 - 4*v^3 + 489048
494 3910*v - 32*v^2 - 8*v^3 + 982056 1955*v - 16*v^2 - 4*v^3 + 491028
495 3918*v - 32*v^2 - 8*v^3 + 986024 1959*v - 16*v^2 - 4*v^3 + 493012
496 3926*v - 32*v^2 - 8*v^3 + 990000 1963*v - 16*v^2 - 4*v^3 + 495000
497 3934*v - 32*v^2 - 8*v^3 + 993984 1967*v - 16*v^2 - 4*v^3 + 496992
498 3942*v - 32*v^2 - 8*v^3 + 997976 1971*v - 16*v^2 - 4*v^3 + 498988
499 3950*v - 32*v^2 - 8*v^3 + 1001976 1975*v - 16*v^2 - 4*v^3 + 500988
500 3958*v - 32*v^2 - 8*v^3 + 1005984 1979*v - 16*v^2 - 4*v^3 + 502992
501 3966*v - 32*v^2 - 8*v^3 + 1010000 1983*v - 16*v^2 - 4*v^3 + 505000
502 3974*v - 32*v^2 - 8*v^3 + 1014024 1987*v - 16*v^2 - 4*v^3 + 507012
503 3982*v - 32*v^2 - 8*v^3 + 1018056 1991*v - 16*v^2 - 4*v^3 + 509028
504 3990*v - 32*v^2 - 8*v^3 + 1022096 1995*v - 16*v^2 - 4*v^3 + 511048
505 3998*v - 32*v^2 - 8*v^3 + 1026144 1999*v - 16*v^2 - 4*v^3 + 513072
506 4006*v - 32*v^2 - 8*v^3 + 1030200 2003*v - 16*v^2 - 4*v^3 + 515100
507 4014*v - 32*v^2 - 8*v^3 + 1034264 2007*v - 16*v^2 - 4*v^3 + 517132
508 4022*v - 32*v^2 - 8*v^3 + 1038336 2011*v - 16*v^2 - 4*v^3 + 519168
509 4030*v - 32*v^2 - 8*v^3 + 1042416 2015*v - 16*v^2 - 4*v^3 + 521208
510 4038*v - 32*v^2 - 8*v^3 + 1046504 2019*v - 16*v^2 - 4*v^3 + 523252
511 4046*v - 32*v^2 - 8*v^3 + 1050600 2023*v - 16*v^2 - 4*v^3 + 525300
|
cca8b5d198e73835dd9a7a597c2bf795c6ae5baf
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set12/s_Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436.zip/Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436/CH4/EX4.6/ex4_6.sce
|
27894f859769a9197999a3842cb1636b91888553
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 172 |
sce
|
ex4_6.sce
|
errcatch(-1,"stop");mode(2);// Example 4.6, page no-211
c0=25
x0=0.5
x1=0.05
c1=c0*x0/(x0-x1)
c2=c0*x0/(x0+x1)
printf("C1=%.2f pF\nC2=%.2f pF",c1,c2)
exit();
|
a5ea099ea95c26c68fd88886e6f6d0e1b699d3fe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1931/CH3/EX3.19/19.sce
|
8186ab2b2baa8578af4e087d1155a7a037c8b658
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 451 |
sce
|
19.sce
|
clc
clear
//INPUT DATA
n=2//no.of atoms in BCC structure
d=7.86*10^6//density of iron of FCC structure in kg/m^3
AW=55.85//atomic weight of Fe
N=6.023*10^23//Avogadro's Number per Kg mol
//CALCULATION
a=(((n*AW)/(d*N))^(1/3))/10^-10//The lattice constant in m
r=((a*sqrt(3))/4)//The atomic radius of Fe which has BCC structure in armstrong*10^-10
//OUTPUT
printf('The atomic radius of Fe which has BCC structure is %3.3f armstrong',r)
|
be4153dc46529cfcc04aaef46dac003d976a667c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1325/CH12/EX12.3/12_3.sce
|
67f54f1ecca4757b9b63c00b9980909e5870d2a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 560 |
sce
|
12_3.sce
|
//Find the torque exerted on the crankshaft
clc
//given
D=9//in
stroke=24//in
d=2//in
l=60//in
CP=l
N=120
theta=40//degrees
x=theta*%pi/180
P1=160//lb/in^2
P2=32//lb/in^2
OC=stroke/2
F=%pi*(D/2)^2*P1-%pi*(D/2)^2*P2+%pi*(d/2)^2*P2
//Ft*Vc=F*Vp; Where Vc and Vp are velocities of crank and pin respectively
//Vp/Vc=IP/IC=OM/OC - From similar triangles ; fig 274
n=CP/OC
OM=OC*(sin(x) + (sin(2*x)/(2*n)))//from 3.11
T=F*OM/12//torque exerted on crankshaft
Torque=floor(T)
printf("The torque exerted on crankshaft= F*OM = %.f lb ft",Torque)
|
4efdf8c3b6f46aa7a66c5e5b2b381eb6c23b1049
|
05ac16985ed247964c257764b2c14776a4cd6771
|
/make-tests/make05.tst
|
53eb66c42e7d4018df060a80905ee4fd3e606420
|
[] |
no_license
|
felixitous/Graphs
|
e7887a194429cdbf073c6e41d0d1b9969e2e8ec7
|
395364c7bac49812d28a72dc8862e41ab39651ca
|
refs/heads/master
| 2021-01-22T10:01:56.943976 | 2014-01-15T22:45:23 | 2014-01-15T22:45:23 | 15,950,368 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 62 |
tst
|
make05.tst
|
java make.Main -f make-tests/make05.mk -D make-tests/file05 C
|
dc6d90f9e25f73c137e91b35245833661f07580f
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/Positive_Negative_test/Netezza-Adv-StringAndUtilityFunctions/FLDLevenshteinDist-NZ-01.tst
|
eb46e27fc565a28265c7606d60408af63ef97819
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332 | 2017-07-12T07:12:25 | 2017-07-12T07:12:25 | 93,021,923 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 4,863 |
tst
|
FLDLevenshteinDist-NZ-01.tst
|
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Teradata
--
-- Copyright (c): 2014 Fuzzy Logix, LLC
--
-- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC.
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
-- Functional Test Specifications:
--
-- Test Category: String Functions
--
-- Test Unit Number: FLDLevenshteinDist-Netezza-01
--
-- Name(s): FLDLevenshteinDist
--
-- Description: Damerau–Levenshtein distance is a measure of the similarity between two strings, String1 and String2. The distance is the number of deletions, insertions, substitutions and transpositions required to transform String1 into String2.
--
-- Applications:
--
-- Signature: FLDLevenshteinDist(String1 VARCHAR(1000), String2 VARCHAR(1000), CaseFlag INTEGER)
--
-- Parameters: See Documentation
--
-- Return value: BIGINT
--
-- Last Updated: 07-04-2017
--
-- Author: Kamlesh Meena
-- BEGIN: TEST SCRIPT
\time
-- .run file=../PulsarLogOn.sql
-- .set width 8000
-- BEGIN: POSITIVE TEST(s)
--Case 1a
SELECT FLDLevenshteinDist('MARTHA','Partha',1) AS DLevenshteinlDist1,
FLDLevenshteinDist('MARTHA','Partha',0) AS DLevenshteinDist2,
FLDLevenshteinDist('MARTHA','Parhta',1) AS DLevenshteinDist3,
FLDLevenshteinDist('MARTHA','Parhta',0) AS DLevenshteinlDist4;
--Case 1b
SELECT FLDLevenshteinDist('1000','1000',1) AS DLevenshteinDist1;
SELECT FLDLevenshteinDist('1000','0100',1) AS DLevenshteinDist1;
--Case 1c
SELECT FLDLevenshteinDist('0','1',1) AS FLDLevenshteinDist;
SELECT FLDLevenshteinDist('1','1',1) AS FLDLevenshteinDist;
SELECT FLDLevenshteinDist('10','01',1) AS FLDLevenshteinDist;
SELECT FLDLevenshteinDist('100','010',1) AS FLDLevenshteinDist;
SELECT FLDLevenshteinDist('1000','0100',1) AS FLDLevenshteinDist;
--Case 1d
SELECT FLDLevenshteinDist('1011101 ','1001001 ',1) AS DLevenshteinDist1;
--Case 1e
SELECT FLDLevenshteinDist('-10 11','100- ',1) AS DLevenshteinDist1;
--Case 1f
SELECT FLDLevenshteinDist(CAST(b.serialval AS VARCHAR(3)),CAST(b.serialval AS VARCHAR(3)),1) AS FLDLevenshteinDist
FROM
(
SELECT *
FROM fzzlserial a
WHERE a.serialval<100
) AS b
LIMIT 20;
--CASE TD-79
-- SELECT FLLevenshteinDist('teusday','tuesday',1) (FORMAT 'ZZZZ9', TITLE 'LDScore: tuesday'),
-- FLLevenshteinDist('teusday','thursday',1) (FORMAT 'ZZZZ9', TITLE 'LDScore: thursday'),
-- FLDLevenshteinDist('teusday','tuesday',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: tuesday'),
-- FLDLevenshteinDist('teusday','thursday',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: thursday'),
-- FLDLevenshteinDist('tuesday','something',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: something'),
-- FLDLevenshteinDist('Helton','Helton',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: Helton'),
-- FLDLevenshteinDist('Helton','HELTON',0) (FORMAT 'ZZZZ9', TITLE 'DLDScore: HELTON');
-- END: POSITIVE TEST(s)
-- BEGIN: NEGATIVE TEST(s)
--Case 1a
--Check if the flag takes valid values
SELECT FLDLevenshteinDist('MARTHA','Partha',-1) AS DLevenshteinDist1;
--Case 1b
--Check if the flag takes valid values
SELECT FLDLevenshteinDist('MARTHA','Partha',10) AS DLevenshteinDist1;
--Case 1c
--Check if the flag takes valid values
SELECT FLDLevenshteinDist('MARTHA','Partha',NULL) AS DLevenshteinDist1;
--Case 2a
--Check if the Arg 1 takes valid values
SELECT FLDLevenshteinDist('','Partha',1) AS DLevenshteinDist1;
--Case 2b
--Check if the Arg 1 takes valid values
SELECT FLDLevenshteinDist(NULL,'Partha',1) AS DLevenshteinDist1;
--Case 2c
--Check if the Arg 1 takes valid values
SELECT FLDLevenshteinDist(martha,'Partha',1) AS DLevenshteinDist1;
--Case 3a
--Check if the 2nd argument takes valid values
SELECT FLDLevenshteinDist('MARTHA','',1) AS DLevenshteinDist1;
--Case 3b
--Check if the 2nd argument takes valid values
SELECT FLDLevenshteinDist('MARTHA',NULL,1) AS DLevenshteinDist1;
--Case 3c
--Check if the 2nd argument takes valid values
SELECT FLDLevenshteinDist('MARTHA',martha,1) AS DLevenshteinDist1;
--Case 4a
--Check if the 1st and 2nd argument takes valid values
SELECT FLDLevenshteinDist('','',1) AS DLevenshteinDist1;
--Case 5a
-- All Nulls
SELECT FLDLevenshteinDist(CAST(b.serialval AS VARCHAR(3)),CAST(b.serialval AS VARCHAR(3)),1) AS FLDLevenshteinDist
FROM
(
SELECT CASE WHEN a.serialval < 100 THEN NULL ELSE a.serialval END AS serialval
FROM fzzlserial a
WHERE a.serialval<100
) AS b;
-- END: NEGATIVE TEST(s)
\time
-- END: TEST SCRIPT
|
e381acd3a85f24baf947d0b45bab2ae020301eb2
|
0ab8e580a87c1665dccb3a89160444447bc1df78
|
/wykresy.sci
|
8e02cf5eb1d12c17052f6cff4c88ec353f194032
|
[] |
no_license
|
montsigur/PAMSI-lab05
|
24b6b3335183e723d4eeef5ef54c5a452dd14fea
|
92e70a03aa498a975eb21db37c910161c2455cfe
|
refs/heads/master
| 2016-09-13T21:08:52.877778 | 2016-05-05T12:44:34 | 2016-05-05T12:44:34 | 57,230,751 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,165 |
sci
|
wykresy.sci
|
clear;
LK25 = fscanfMat("./pomiary/pomiar_LK_25.0%.txt");
LK50 = fscanfMat("./pomiary/pomiar_LK_50.0%.txt");
LK75 = fscanfMat("./pomiary/pomiar_LK_75.0%.txt");
LK100 = fscanfMat("./pomiary/pomiar_LK_100.0%.txt");
LS25 = fscanfMat("./pomiary/pomiar_LS_25.0%.txt");
LS50 = fscanfMat("./pomiary/pomiar_LS_50.0%.txt");
LS75 = fscanfMat("./pomiary/pomiar_LS_75.0%.txt");
LS100 = fscanfMat("./pomiary/pomiar_LS_100.0%.txt");
MS25 = fscanfMat("./pomiary/pomiar_MS_25.0%.txt");
MS50 = fscanfMat("./pomiary/pomiar_MS_50.0%.txt");
MS75 = fscanfMat("./pomiary/pomiar_MS_75.0%.txt");
MS100 = fscanfMat("./pomiary/pomiar_MS_100.0%.txt");
pomiary1 = [LK25, LK50, LS25, LS50, MS25, MS50];
pomiary2 = [LK75, LK100, LS75, LS100, MS75, MS100];
rozmiary = [10, 50, 100, 500, 1000];
for i=1:6
subplot(3, 2, i);
plot(rozmiary, pomiary1(:, 2*i-1, :), 'b.');
plot(rozmiary, pomiary1(:, 2*i , :), 'g.');
xlabel('ilosc wierzcholkow');
ylabel('czas [ms]');
end
figure(1);
for i=1:6
subplot(3, 2, i);
plot(rozmiary, pomiary2(:, 2*i-1, :), 'b.');
plot(rozmiary, pomiary2(:, 2*i , :), 'g.');
xlabel('ilosc wierzcholkow');
ylabel('czas [ms]');
end
|
679eae310f788410cbd944a2a5071c16459de885
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH26/EX26.7/26_7.sce
|
4a8561d0c04c2d43b66f4d44ee5b2b42690abc1c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 261 |
sce
|
26_7.sce
|
clc;
p=0.263*10^5; //Pascal
v=120; //volume in m cube
t=223; //Kelvin
R=8.31; //constant
n=(p*v)/(R*t); //calculating n
disp(n,"n = "); //displaying result
m=n*4; //cal mass of He
disp(m,"Mass of He = "); //displaying result
|
978b7ea78ebb3588926dd9319cbacf6ef0967206
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH3/EX3.11/Chapter3_Example11.sce
|
4e5d99df578914cf0eca7553ed3015b4981495ae
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 516 |
sce
|
Chapter3_Example11.sce
|
clc
clear
//Input data
V=25;//Volume of gasoline consumed by an engine in litres/hour
cv=6*10^6;//The calorific value of gasoline in calories/litre
P=35;//The output of the engine in kilowatts
//Calculations
h=V*cv;//Total heat produced by gasoline in one hour in calories
H=h/3600;//Heat produced per second in cal/s
I=H*4.2;//Heat produced per second in joules/s or watts
E=((P*1000)/I)*100;//The efficiency in percent
//Output
printf('The efficiency of the engine is %3.0f percent ',E)
|
61ed471fa8c17db660f2ab7f1b08e1bbe9215743
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2318/CH4/EX4.5/ex_4_5.sce
|
35eab7fae421ce940ea1ab6d83cb98e3af7d51f7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 188 |
sce
|
ex_4_5.sce
|
//Example 4.5: Resistance
clc;
clear;
close;
//given data :
l=65;// in cm
V=0.1;// in V
V1=5.5;// in V
R=20;// in ohm
E=V*l;
I=V1/R;
Ri=(E-V1)/I;
disp(Ri,"Internal resistance,Ri(ohm) = ")
|
5ce522e404de085edb1487fcbc85a25f0fa3468f
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/cheb1ord.sci
|
713f81262cd856b10a09719166820aab74ffb026
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805 | 2018-07-12T12:35:54 | 2018-07-12T12:35:54 | 140,701,211 | 2 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 4,948 |
sci
|
cheb1ord.sci
|
<<<<<<< HEAD
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/signal/
// Modifieded by:Sonu Sharma, RGIT Mumbai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [n, Wc] = cheb1ord(Wp, Ws, Rp, Rs)
//Minimum filter order of a digital Chebyshev type I filter with the desired response characteristics.
//Calling Sequence
//n = cheb1ord(Wp, Ws, Rp, Rs)
//[n, Wc] = cheb1ord(Wp, Ws, Rp, Rs)
//Parameters
//Wp: scalar or vector of length 2 (passband edge(s) ), all elements must be in the range [0,1]
//Ws: scalar or vector of length 2 (stopband edge(s) ), all elements must be in the range [0,1]
//Rp: passband ripple in dB.
//Rs: stopband attenuation in dB.
//Description
//This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics.
//Stopband frequency ws and passband frequency wp specify the the filter frequency band edges.
//Frequencies are normalized to the Nyquist frequency in the range [0,1].
//Rp is measured in decibels and is the allowable passband ripple and Rs is also measured in decibels and is the minimum attenuation in the stop band.
//If ws>wp then the filter is a low pass filter. If wp>ws, then the filter is a high pass filter.
//If wp and ws are vectors of length 2, then the passband interval is defined by wp and the stopband interval is defined by ws.
//If wp is contained within the lower and upper limits of ws, the filter is a band-pass filter. If ws is contained within the lower and upper limits of wp, the filter is a band-stop or band-reject filter.
//Examples
//[n, w]=cheb1ord([0.25 0.3],[0.24 0.31],3,10)
// w =
//
// 0.25 0.3
// n =
//
// 3.
funcprot(0);
[nargout nargin] = argn();
if nargin ~= 4
error("cheb1ord: invalid number of inputs");
else
validate_filter_bands ("cheb1ord", Wp, Ws);
end
T = 2;
// returned frequency is the same as the input frequency
Wc = Wp;
// warp the target frequencies according to the bilinear transform
Ws = (2/T)*tan(%pi*Ws./T);
Wp = (2/T)*tan(%pi*Wp./T);
if (Wp(1) < Ws(1))
// low pass
if (length(Wp) == 1)
Wa = Ws/Wp;
else
// FIXME: Implement band reject filter type
error ("cheb1ord: band reject is not yet implemented");
end;
else
// if high pass, reverse the sense of the test
if (length(Wp) == 1)
Wa = Wp/Ws;
else
// band pass
Wa=(Ws.^2 - Wp(1)*Wp(2))./(Ws*(Wp(1)-Wp(2)));
end;
end;
Wa = min(abs(Wa));
// compute minimum n which satisfies all band edge conditions
stop_atten = 10^(abs(Rs)/10);
pass_atten = 10^(abs(Rp)/10);
n = ceil(acosh(sqrt((stop_atten-1)/(pass_atten-1)))/acosh(Wa));
=======
function [n, Wc] = cheb1ord(Wp, Ws, Rp, Rs)
//This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics.
//Calling Sequence
//n = cheb1ord(Wp, Ws, Rp, Rs)
//[n, Wc] = cheb1ord(Wp, Ws, Rp, Rs)
//Parameters
//Wp: scalar or vector of length 2, all elements must be in the range [0,1]
//Ws: scalar or vector of length 2, all elements must be in the range [0,1]
//Rp: real value
//Rs: real value
//Description
//This is an Octave function.
//This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics.
//Stopband frequency ws and passband frequency wp specify the the filter frequency band edges.
//Frequencies are normalized to the Nyquist frequency in the range [0,1].
//Rp is measured in decibels and is the allowable passband ripple and Rs is also measured in decibels and is the minimum attenuation in the stop band.
//If ws>wp then the filter is a low pass filter. If wp>ws, then the filter is a high pass filter.
//If wp and ws are vectors of length 2, then the passband interval is defined by wp and the stopband interval is defined by ws.
//If wp is contained within the lower and upper limits of ws, the filter is a band-pass filter. If ws is contained within the lower and upper limits of wp, the filter is a band-stop or band-reject filter.
//Examples
//cheb1ord(0.1,0.2,-0.3,4)
//ans = 2
rhs = argn(2)
lhs = argn(1)
if(rhs~=4)
error("Wrong number of input arguments.")
end
select(lhs)
case 1 then
n = callOctave("cheb1ord",Wp,Ws,Rp,Rs)
case 2 then
[n,Wc] = callOctave("cheb1ord",Wp,Ws,Rp,Rs)
end
>>>>>>> 6bbb00d0f0128381ee95194cf7d008fb6504de7d
endfunction
|
0e5f278009aee827b9d09e45a4f00ebb0551ff45
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/626/CH5/EX5.12/5_12.sce
|
0fc0e5a246653321682c14195b3f515b135f6829
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 431 |
sce
|
5_12.sce
|
clear;
clc;
close;
disp("Example 5.12")
gm=1.1
M0=2.5
g1=[]
z0=[0:0.1:4]
i=2
for gm=1.1:0.1:1.4
gc1=1
for M=0:0.1:4
p0=(1+(gm-1)/2*(M^2))^(gm/(gm-1))
p20=.4*p0-.5*p0
M=3
p42=0.37
NPR=p20*p42
g1(gc1)=p0
gc1=gc1+1
end
plot2d(z0,g1,i)
xgrid
title("Total-to-static pressure ratio")
xlabel("Flight Mach no. (M0)")
ylabel("pt0/p")
legend(["gamma=1.1","gamma=1.2","gamma=1.3","gamma=1.4"])
i=i+1
end
|
8c877d336103cdf6a44a00a84b604e1df610374c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1286/CH8/EX8.21/8_21.sce
|
02eca0373c43e5612cb5b91b9ae26236e3493a51
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 150 |
sce
|
8_21.sce
|
clc
//initialisation of variables
T1=1100//k
T3=200//k
r=0.5
//CALCULATIONS
T=(T1-(T3*r))/(1+r)
//results
printf(' \n value of T= % 1f k',T)
|
8044cb20aff55a636caeeda029da1938f7ea411a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH15/EX9.15.27/Ex9_15_27.sce
|
c82a7ba6a2c0e197bf93635a5bfbc1cdd5fee41b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 292 |
sce
|
Ex9_15_27.sce
|
//Section-9,Example-2,Page no.-E.57
//To find the transport number of copper ion.
clc;
L=0.420 //Loss of Cu in anode compartment{=(Y-X)}
W=1.058 //Total weight of Cu deposited in voltmeter(=Z)
t_no=L/W
disp(t_no,'Transport no. of copper ions')
|
816cf6447dec04845467b28830bc51cd6328d4bb
|
be2d2a8f4f52eaee8321843e3982b31822f8eb00
|
/model_lorenza.sce
|
6779d92c80ae3c3acc6af9a105ee9f894bf92113
|
[] |
no_license
|
betacord/SK
|
dbe99f8e767a225fffac30935084d001a12facbb
|
8ac1f424f85f595285db0f2f47f8a0fb3afa4033
|
refs/heads/master
| 2020-03-31T21:35:18.805098 | 2018-12-13T13:16:13 | 2018-12-13T13:16:13 | 152,585,930 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 501 |
sce
|
model_lorenza.sce
|
// Chaos deterministyczny - modelowanie i prognozowanie rozkladu temperatury
// Model Lorenza - wersja stabilna
//Parametry
sigma = 5;
rho = 20;
betta = 3;
N0 = [1;0;0];
t = [0:0.1:10];
// Definicja modelu
function Ndot = lorenz(t, N)
Ndot = [sigma * (N(2) - N(1));
N(1) * (rho - N(3)) - N(2);
N(1) * N(2) - betta * N(3)];
endfunction
// Rozwiazanie
N = ode(N0, t(1), t, lorenz);
// Wykresy
param3d(N(1,:), N(2, :), N(3, :));
xtitle("Model Lorenza", "x", "y", "z");
|
d5dbdd710021e9e3f360108b4aa7db93cfbb2ba6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/116/CH7/EX7.3/exa7_3.sce
|
d9527962ab3c0ba1dd89982de2efbdc238fd4914
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 477 |
sce
|
exa7_3.sce
|
//Example 7.3
//Page 354
disp("The maximum information rate per channel is determined as")
Imax=[(6.312*288)/1176]
disp('The minimum information rate per channel is determined as')
Imin=[(6.312*287)/1176]
disp('Since there are three possible combinations of two errors in the C bits, the probability of misinterpreting an S bit is')
3*(10^-6)^2
1176/6.312//duration of each master frame
[(3*10^-12)/(186*10^-6)]
//Result
//0.016*10^-6 misframes per second
|
04a38ab7f3fbe96a78d61b8a4358d7bed3434dc2
|
6a3c1facc5f8cd5998cafed28a483e35c08b805a
|
/GLGame/TestScene.sce
|
1591f0a07f738bb49cb0c0cb81602b4246ccc1b2
|
[
"MIT"
] |
permissive
|
PanAMD/GLGame
|
063cad37512712cfb91c306acaacc78fda5a754f
|
17309cd3e8b90fbb4606b2748caacdf7995fba45
|
refs/heads/master
| 2023-06-02T06:54:08.985460 | 2021-06-17T17:24:38 | 2021-06-17T17:24:38 | null | 0 | 0 | null | null | null | null |
ISO-8859-1
|
Scilab
| false | false | 432 |
sce
|
TestScene.sce
|
%GLGAME_SCENE_FILE_V01%BG_!!!!!!!0@@@@@@@@@@@0###########0$$$$$$15Test Background)#¾álÖ®OBJ!!!!!!!0@@@@@@@@@@@0#########448$$$$$$13@#$*#Object_1RIññ»éëOBJ!!!!!!!0@@@@@@@@@320#########320$$$$$$13@#$*#Object_2³¦Û<>OBJ!!!!!!!0@@@@@@@@@448#########576$$$$$$13@#$*#Object_2$^
·GÞOBJ!!!!!!!0@@@@@@@@@@@0#########128$$$$$$13@#$*#Object_1³MÈC»¦OBJ!!!!!!!0@@@@@@@@@512#########128$$$$$$13@#$*#Object_1Z} 8%
|
059a9ef146315e878f7f0e631e42027726f5e945
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/CH3/EX3.24/3_24.sce
|
e6b49559eac5cf679822e1000dfea63704b4e4f6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,488 |
sce
|
3_24.sce
|
pathname=get_absolute_file_path('3_24.sce')
filename=pathname+filesep()+'3_24_data.sci'
exec(filename)
//Efficiency of Otto cycle
notto=1-(1/r^(y-1))
//Heat supplied(in kJ/s)
qs=P/notto
//No of cycles per second
Nc=N/(2*60)
//Net work output per cycle per cylinder(in kJ)
W=P/(k*Nc)
//Mean effective pressure(in N/m^2)
pm=W*1000/Vs
//Temperature at end of compression stroke(in K)
T2=T1*(r)^(y-1)
//Heat supplied per cycle per cylinder(in kJ)
q23=qs/(k*Nc)
//Volume flow of air(in m^3/kg)
v1=(R*T1)/(p1*10^5)
//Volume at start of compression stroke(in m^3)
V1=(Vs*r)/(r-1)
//Mass flow rate(in kg)
m=V1/v1
//Temperature rise resulting from heat addition(in K)
T3=T2+(q23/(m*Cv))
//Now considering diesel cycle
//Temperature rise resulting from heat addition(in K)
T3d=(q23/(m*Cp))+T2
//Cutoff ratio
rc=T3d/T2
//Air standard efficiency
nd=1-(1/(y*r^(y-1))*(((rc^y)-1)/(rc-1)))
//Power output(in kW)
Pd=nd*qs
//Power ouput per cylinder
Pn=Pd/k
//Work done per cycle per cylinder(in kJ)
Wd=Pn/Nc
//Mean effective pressure(in N/m^2)
pmd=Wd*1000/Vs
printf("\n\nRESULTS\n\n")
printf("\nEfficiency of Otto cycle:%f\n",notto*100)
printf("\nHeat supplied:%f\n",qs)
printf("\nMean effective pressure:%f\n",pm)
printf("\nTemperature rise resulting from heat addition:%f\n",T3)
printf("\nTemperature rise resulting from heat addition for diesel cycle:%f\n",T3d)
printf("\nAir standard efficiency:%f\n",nd*100)
printf("\nMean effective pressure:%f\n",pmd)
|
7e79bd9a55164c89afdce172cb46f0c4308ac04d
|
2e676e3b1cebfbb9d20f9b935ceacd507c57d36a
|
/Octave/octave-4.2.1/share/octave/4.2.1/etc/tests/fixed/io.tst
|
9a53dad2d80899bc34854150156808ee426d882f
|
[] |
no_license
|
vohrahul/ML-ang-coursera
|
239469e763b290aa178b7aa8a86eda08e4e7f4be
|
4c24fd2ecfb9f3de7df15e3a9f75627f782f9915
|
refs/heads/master
| 2022-12-28T03:45:54.810173 | 2020-10-16T12:33:25 | 2020-10-16T12:33:25 | 304,620,441 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 80,116 |
tst
|
io.tst
|
## Copyright (C) 2006-2017 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## FIXME: we should skip (or mark as a known bug) the test for
## saving sparse matrices to MAT files when using 64-bit indexing since
## that is not implemented yet.
%!function [ret, files] = testls (input)
%! ## flag a1 global so as to test the storage of global flags
%! global a1;
%!
%! ## Input or output, so as to be able to exchange between versions
%! if (nargin < 1)
%! input = 0;
%! endif
%!
%! ## Setup some variable to be saved or compared to loaded variables
%!
%! ## scalar
%! a1 = 1;
%! ## matrix
%! persistent a2 = hilb (3);
%! ## complex scalar
%! persistent a3 = 1 + 1i;
%! ## complex matrix
%! persistent a4 = hilb (3) + 1i*hilb (3);
%! ## bool
%! persistent a5 = (1 == 1);
%! ## bool matrix
%! persistent a6 = ([ones(1,5), zeros(1,5)] == ones (1,10));
%! ## range
%! persistent a7 = 1:10;
%! ## structure
%! persistent a8 = struct ("a", a1, "b", a3);
%! ## cell array
%! persistent a9 = {a1, a3};
%! ## string
%! persistent a10 = ["test"; "strings"];
%! ## int8 array
%! persistent a11 = int8 (floor (256*rand (2,2)));
%! ## int16 array
%! persistent a12 = int16 (floor (65536*rand (2,2)));
%! ## int32 array
%! persistent a13 = int32 (floor (1e6*rand (2,2)));
%! ## int64 array
%! persistent a14 = int64 (floor (10*rand (2,2)));
%! ## uint8 array
%! persistent a15 = uint8 (floor (256*rand (2,2)));
%! ## uint16 array
%! persistent a16 = uint16 (floor (65536*rand (2,2)));
%! ## int32 array
%! persistent a17 = uint32 (floor (1e6*rand (2,2)));
%! ## uint64 array
%! persistent a18 = uint64 (floor (10*rand (2,2)));
%! ## sparse
%! persistent a19 = sprandn (100,100,0.01);
%! ## complex sparse
%! persistent a20 = sprandn (100,100,0.01) + 1i * sprandn (100,100,0.01);
%!
%! ret = 0;
%!
%! files = cellfun (@fullfile, {P_tmpdir},
%! {"text.mat", "binary.mat", "mat5.mat", "mat7.mat"},
%! "UniformOutput", false);
%! opts = {"-z -text", "-z -binary", "-z -mat", "-v7"};
%! tols = {2*eps, 0, 0, 0};
%!
%! vars = "a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20";
%! if (! input)
%! for i = 1:length (files)
%! eval (sprintf ("save %s %s %s", opts{i}, files{i}, vars));
%! endfor
%! else
%! b1 = a1; b2 = a2; b3 = a3; b4 = a4; b5 = a5;
%! b6 = a6; b7 = a7; b8 = a8; b9 = a9;
%! b10 = a10; b11 = a11; b12 = a12; b13 = a13; b14 = a14; b15 = a15;
%! b16 = a16; b17 = a17; b18 = a18; b19 = a19; b20 = a20;
%!
%! for i = length (files)
%!
%! clear a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a19 a20;
%!
%! file = files{i};
%! tol = tols{i};
%!
%! load (file);
%!
%! assert (a1, b1, tol);
%! assert (a2, b2, tol);
%! assert (a3, b3, tol);
%! assert (a4, b4, tol);
%!
%! if (! isequal (a5, b5))
%! error ("failed: %s boolean", file);
%! endif
%!
%! if (! strcmp (file, "mat5") && ! strcmp (file, "mat7"))
%! if (! isequal (a6, b6))
%! error ("failed: %s boolean matrix", file);
%! endif
%! endif
%!
%! assert ([a7], [b7], tol);
%!
%! if (! isequal (a8, b8))
%! error ("failed: %s struct", file);
%! endif
%!
%! if (! isequal (a9, b9))
%! error ("failed: %s cell", file);
%! endif
%!
%! if (! isequal (a10, b10))
%! error ("failed: %s string", file);
%! endif
%!
%! if (! isequal (a11, b11))
%! error ("failed: %s int8", file);
%! endif
%!
%! if (! isequal (a12, b12))
%! error ("failed: %s int16", file);
%! endif
%!
%! if (! isequal (a13, b13))
%! error ("failed: %s int32", file);
%! endif
%!
%! if (! isequal (a14, b14))
%! error ("failed: %s int64", file);
%! endif
%!
%! if (! isequal (a15, b15))
%! error ("failed: %s uint8", file);
%! endif
%!
%! if (! isequal (a16, b16))
%! error ("failed: %s uint16", file);
%! endif
%!
%! if (! isequal (a17, b17))
%! error ("failed: %s uint32", file);
%! endif
%!
%! if (! isequal (a18, b18))
%! error ("failed: %s uint64", file);
%! endif
%!
%! assert (a19, b19, tol);
%! assert (a20, b20, tol);
%!
%! ## Test for global flags
%! if (! isglobal ("a1") || isglobal ("a2") || isglobal ("a3")
%! || isglobal ("a4") || isglobal ("a5") || isglobal ("a6")
%! || isglobal ("a7") || isglobal ("a8") || isglobal ("a9")
%! || isglobal ("a10") || isglobal ("a11") || isglobal ("a12")
%! || isglobal ("a13") || isglobal ("a14") || isglobal ("a15")
%! || isglobal ("a16") || isglobal ("a17") || isglobal ("a18")
%! || isglobal ("a19") || isglobal ("a20"))
%! error ("failed: %s global test", file);
%! endif
%! endfor
%! endif
%!
%! ret = 1;
%!endfunction
%!testif HAVE_ZLIB
%!
%! [save_status, save_files] = testls (0);
%! [load_status, load_files] = testls (1);
%!
%! for f = [save_files, load_files]
%! unlink (f{1});
%! endfor
%!
%! assert (save_status && load_status);
%!testif HAVE_HDF5
%!
%! s8 = int8 (fix ((2^8 - 1) * (rand (2, 2) - 0.5)));
%! u8 = uint8 (fix ((2^8 - 1) * (rand (2, 2) - 0.5)));
%! s16 = int16 (fix ((2^16 - 1) * (rand (2, 2) - 0.5)));
%! u16 = uint16 (fix ((2^16 - 1) * (rand (2, 2) - 0.5)));
%! s32 = int32 (fix ((2^32 - 1) * (rand (2, 2) - 0.5)));
%! u32 = uint32 (fix ((2^32 - 1) * (rand (2, 2) - 0.5)));
%! s64 = int64 (fix ((2^64 - 1) * (rand (2, 2) - 0.5)));
%! u64 = uint64 (fix ((2^64 - 1) * (rand (2, 2) - 0.5)));
%! s8t = s8; u8t = u8; s16t = s16; u16t = u16; s32t = s32; u32t = u32;
%! s64t = s64; u64t = u64;
%! h5file = tempname ();
%! unwind_protect
%! eval (sprintf ("save -hdf5 %s %s", h5file, "s8 u8 s16 u16 s32 u32 s64 u64"));
%! clear s8 u8 s16 u16 s32 u32 s64 u64;
%! load (h5file);
%! assert (s8, s8t);
%! assert (u8, u8t);
%! assert (s16, s16t);
%! assert (u16, u16t);
%! assert (s32, s32t);
%! assert (u32, u32t);
%! assert (s64, s64t);
%! assert (u64, u64t);
%! unwind_protect_cleanup
%! unlink (h5file);
%! end_unwind_protect
%!test
%!
%! STR.scalar_fld = 1;
%! STR.matrix_fld = [1.1,2;3,4];
%! STR.string_fld = "Octave";
%! STR.struct_fld.x = 0;
%! STR.struct_fld.y = 1;
%!
%! struct_dat = fullfile (P_tmpdir, "struct.dat");
%! save (struct_dat, "-struct", "STR");
%! STR = load (struct_dat);
%!
%! assert (STR.scalar_fld == 1 && ...
%! STR.matrix_fld == [1.1,2;3,4] && ...
%! STR.string_fld == "Octave" && ...
%! STR.struct_fld.x == 0 && ...
%! STR.struct_fld.y == 1 );
%!
%!
%! save ("-binary", struct_dat,
%! "-struct", "STR", "matrix_fld", "str*_fld");
%! STR = load (struct_dat);
%!
%! assert (!isfield (STR,"scalar_fld") && ...
%! STR.matrix_fld == [1.1,2;3,4] && ...
%! STR.string_fld == "Octave" && ...
%! STR.struct_fld.x == 0 && ...
%! STR.struct_fld.y == 1);
%!
%! delete (struct_dat);
%!test
%! matrix1 = rand (100, 2);
%! matrix_ascii = fullfile (P_tmpdir, "matrix.ascii");
%! save ("-ascii", matrix_ascii, "matrix1");
%! matrix2 = load (matrix_ascii);
%! assert (matrix1, matrix2, 1e-9);
%!
%! delete (matrix_ascii);
%!error <unable to find file> load ("")
%% FIXME: This test is disabled as it writes to stdout and there is no easy
%% way to recover output. Need to spawn new octave process and pipe stdout
%% somewhere to treat this case.
%!#test
%! puts ("foo\n");
%!assert (puts (1),-1)
%!error <Invalid call to puts> puts ()
%!error <Invalid call to puts> puts (1, 2)
%!assert (sscanf ('123456', '%10c'), '123456')
%!assert (sscanf ('123456', '%10s'), '123456')
%!assert (sscanf (['ab'; 'cd'], '%s'), 'acbd')
%!assert (sscanf ('02:08:30', '%i:%i:%i'), [2; 0])
%!assert (sscanf ('02:08:30', '%d:%d:%d'), [2; 8; 30])
%!assert (sscanf ('0177 08', '%i'), [127; 0; 8])
%!assert (sscanf ('0177 08', '%d'), [177; 8])
## bug #47741
%!assert (sscanf ('2147483647', '%d'), 2147483647)
%!assert (sscanf ('2147483647', '%i'), 2147483647)
%!assert (sscanf ('4294967295', '%u'), 4294967295)
%!assert (sscanf ('37777777777', '%o'), 4294967295)
%!assert (sscanf ('ffffffff', '%x'), 4294967295)
## FIXME: scanf should return int64/uint64 if all conversions are %l[dioux].
## Until then only test values that are within precision range of a double.
%!assert (sscanf ('281474976710655', '%ld'), 281474976710655)
%!assert (sscanf ('281474976710655', '%li'), 281474976710655)
%!assert (sscanf ('281474976710655', '%lu'), 281474976710655)
%!assert (sscanf ('7777777777777777', '%lo'), 281474976710655)
%!assert (sscanf ('ffffffffffff', '%lx'), 281474976710655)
## bug #47759
%!assert (sscanf ('999999999999999', '%d'), double (intmax ("int32")))
%!assert (sscanf ('999999999999999', '%i'), double (intmax ("int32")))
%!assert (sscanf ('999999999999999', '%u'), double (intmax ("uint32")))
%!assert (sscanf ('777777777777777', '%o'), double (intmax ("uint32")))
%!assert (sscanf ('fffffffffffffff', '%x'), double (intmax ("uint32")))
## FIXME: scanf should return int64/uint64 if all conversions are %l[dioux].
## Until then cast to a double (and lose precision) for comparison.
%!assert (sscanf ('9999999999999999999999', '%ld'), double (intmax ("int64")))
%!assert (sscanf ('9999999999999999999999', '%li'), double (intmax ("int64")))
%!assert (sscanf ('9999999999999999999999', '%lu'), double (intmax ("uint64")))
%!assert (sscanf ('7777777777777777777777', '%lo'), double (intmax ("uint64")))
%!assert (sscanf ('ffffffffffffffffffffff', '%lx'), double (intmax ("uint64")))
%!test
%! [val, count, msg, pos] = sscanf ("3I2", "%f");
%! assert (val, 3);
%! assert (count, 1);
%! assert (msg, "");
%! assert (pos, 2);
%!test
%! [val, count, msg, pos] = sscanf ("3In2", "%f");
%! assert (val, 3);
%! assert (count, 1);
%! assert (msg, "");
%! assert (pos, 2);
%!test
%! [val, count, msg, pos] = sscanf ("3Inf2", "%f");
%! assert (val, [3; Inf; 2]);
%! assert (count, 3);
%! assert (msg, "");
%! assert (pos, 6);
%!test
%! [a, b, c] = sscanf ("1.2 3 foo", "%f%d%s", "C");
%! [v1, c1, m1] = sscanf ("1 2 3 4 5 6", "%d");
%! [v2, c2, m2] = sscanf ("1 2 bar 3 4 5 6", "%d");
%!
%! assert ((a == 1.2 && b == 3 && c == "foo"
%! && v1 == [1; 2; 3; 4; 5; 6] && c1 == 6 && ischar (m1)
%! && v2 == [1; 2] && c2 == 2 && ischar (m2)));
%!error <Invalid call to sscanf> sscanf ()
%!error sscanf (1, 2)
%!error <Invalid call to sscanf> sscanf ("foo", "bar", "C", 1)
%!test
%! [x, n] = sscanf (" 0.024000 0.200 0.200 2.000 1987 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 5 1 2 2 5 5 8 2 8 12 6 15 18 28 26 47 88 118 162 192 130 88 56 27 23 14 9 6 3 4 1 0 2 3 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.026000 0.250 0.250 2.100 3115 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 3 2 0 5 15 25 44 66 145 179 193 172 104 57 17 11 12 2 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.028000 0.300 0.300 2.200 4929 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 2 2 3 2 3 14 21 49 80 148 184 218 159 124 63 37 13 12 3 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.030000 0.350 0.350 2.300 7051 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 2 0 0 0 1 5 6 14 28 51 88 154 177 208 169 124 65 39 15 5 3 3 2 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.032000 0.400 0.400 2.400 9113 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 2 0 1 0 0 1 1 0 2 3 5 3 17 30 60 117 156 189 209 129 102 64 56 16 11 4 2 2 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.034000 0.450 0.450 2.500 11811 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 5 5 15 21 57 99 149 190 195 159 130 69 41 16 10 2 5 3 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.036000 0.500 0.500 2.600 14985 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 2 6 10 34 60 95 126 177 194 155 99 71 44 17 6 7 2 0 0 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.038000 0.550 0.550 2.700 18391 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 1 1 0 1 2 1 0 0 0 1 0 1 3 6 19 27 52 95 161 154 169 134 94 64 37 19 9 6 0 2 1 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.040000 0.600 0.600 2.800 22933 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 2 0 3 4 7 18 27 47 82 134 163 133 138 101 58 34 26 10 5 2 1 2 1 1 0 2 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.042000 0.650 0.650 2.900 27719 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 8 16 37 51 87 128 153 146 123 105 62 35 24 8 3 5 0 1 2 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.044000 0.700 0.700 3.000 32922 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 4 3 5 5 15 35 54 88 132 168 149 105 92 62 30 16 17 4 5 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.046000 0.750 0.750 3.100 38973 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 4 3 5 20 37 56 94 110 135 149 124 84 58 36 17 14 7 1 0 2 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.048000 0.800 0.800 3.200 45376 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 2 1 1 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 3 18 34 55 82 104 135 116 99 79 60 51 29 10 4 3 1 1 1 0 0 1 0 0 0 1 0 0 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.050000 0.850 0.850 3.300 52060 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 2 1 3 12 24 40 39 107 121 127 138 100 86 68 44 23 15 7 3 1 1 0 1 1 0 0 2 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.052000 0.900 0.900 3.400 59454 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 2 0 2 1 0 0 0 1 0 0 1 0 0 0 0 0 3 3 6 21 32 68 90 132 111 122 107 73 57 47 24 11 7 4 2 2 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 0 1 1 0 0 1 0 0 0 0 0 3 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.054000 0.950 0.950 3.500 67013 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 2 4 3 7 9 28 31 71 94 115 96 108 78 82 60 38 17 12 11 4 3 1 1 0 2 1 0 0 0 2 1 3 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 1 0 2 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.056000 1.000 1.000 3.600 75475 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 3 0 0 1 1 2 0 1 4 0 1 8 6 7 17 41 56 71 109 113 84 103 72 54 35 22 6 9 1 7 5 4 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.058000 1.050 1.050 3.700 83558 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 2 0 0 1 0 3 2 3 6 15 27 41 77 73 94 94 92 76 61 56 42 23 13 11 6 2 1 2 0 1 2 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.060000 1.100 1.100 3.800 93087 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 2 2 0 0 0 1 0 1 1 0 0 0 1 1 0 4 0 0 1 2 0 3 1 3 5 13 33 31 65 75 77 96 97 80 59 45 36 32 18 2 5 0 1 0 0 1 0 0 3 0 0 0 0 1 0 0 0 0 0 1 0 0 1 2 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 2 0 0 2 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.062000 1.150 1.150 3.900 102829 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 2 0 2 1 2 0 0 2 4 3 5 11 9 23 43 53 68 65 87 83 77 59 49 34 18 15 9 4 2 3 2 0 0 0 4 0 1 1 0 0 2 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 2 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.064000 1.200 1.200 4.000 113442 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 2 0 0 0 2 0 4 5 11 13 29 39 61 68 61 75 76 74 73 44 37 29 19 6 3 3 2 0 1 2 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 2 0 2 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.066000 1.250 1.250 4.100 126668 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 2 3 0 2 1 2 0 1 0 3 0 0 0 1 0 1 1 3 0 0 1 3 0 2 4 3 12 12 30 48 56 66 77 78 71 82 52 31 32 19 20 16 8 2 1 3 0 0 2 1 0 1 0 1 0 0 0 1 3 1 0 1 0 1 1 1 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 2 0 3 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.068000 1.300 1.300 4.200 138042 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 3 0 0 1 0 0 1 2 0 0 0 3 0 1 0 0 3 0 1 0 1 1 3 1 4 7 11 14 27 36 44 68 72 70 71 45 44 46 29 13 16 11 5 2 0 3 0 0 0 0 1 1 2 0 0 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.070000 1.350 1.350 4.300 152335 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 2 0 0 0 0 0 2 0 1 7 14 19 34 35 54 72 68 72 68 58 48 36 37 27 25 17 1 4 1 0 0 0 1 2 2 0 0 1 1 1 2 1 0 3 1 0 1 0 2 1 0 0 0 1 1 1 2 0 0 0 0 1 1 0 1 1 0 2 1 1 1 1 0 0 0 1 1 0 0 2 0 0 1 0 0 0 1 1 0 2 1 1 0 0 0 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.072000 1.400 1.400 4.400 166280 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 3 4 2 2 0 0 0 0 0 1 1 3 1 0 3 2 2 1 2 2 0 2 2 1 8 14 26 24 29 47 47 68 65 63 55 42 41 26 29 17 8 4 4 1 0 1 2 0 0 0 1 1 2 0 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 2 1 2 1 0 0 0 0 0 1 1 2 0 2 2 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.074000 1.450 1.450 4.500 179484 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 1 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 2 0 0 1 1 2 1 0 1 1 2 2 0 1 5 6 10 20 43 50 57 62 53 62 66 45 42 33 27 26 23 14 3 0 2 0 1 0 0 1 1 0 0 2 1 1 0 0 3 0 1 1 1 0 1 1 0 1 0 1 2 1 0 0 1 2 0 2 0 0 0 0 1 1 3 1 0 0 2 1 1 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 1 1 0 2 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.076000 1.500 1.500 4.600 197657 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 2 1 1 0 1 1 0 1 1 3 2 1 1 2 1 0 1 0 0 0 0 0 1 1 1 0 5 3 7 12 24 38 32 41 48 54 66 71 49 46 31 38 25 15 8 6 6 5 0 1 3 0 1 1 1 1 1 0 1 2 0 1 0 0 0 1 0 2 1 2 0 0 0 0 1 3 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 4 1 1 1 0 3 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0.078000 1.550 1.550 4.700 212054 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 1 0 0 1 0 1 1 0 1 3 1 0 0 1 2 0 0 0 1 0 0 0 0 0 2 1 2 1 1 1 0 0 1 5 1 1 2 3 5 7 9 11 22 31 37 48 50 52 54 57 37 38 38 33 24 11 19 11 3 1 2 0 3 3 2 1 0 1 3 0 1 1 1 1 1 2 0 0 0 1 1 2 0 1 1 3 0 1 1 0 0 1 0 2 0 1 0 0 1 3 0 2 0 1 0 1 2 0 1 1 1 1 1 0 3 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0.080000 1.600 1.600 4.800 231971 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 1 0 1 1 1 0 1 0 0 1 0 1 3 0 0 0 1 0 0 0 1 1 1 0 0 4 1 1 0 2 0 1 1 1 2 0 0 0 1 0 1 2 1 2 3 2 0 1 0 4 3 1 1 1 1 3 1 0 0 0 2 1 0 2 7 17 13 29 47 58 59 52 38 51 51 38 34 35 21 14 13 4 1 0 1 1 1 0 2 2 4 1 0 1 1 4 0 0 0 2 0 2 2 2 0 0 1 3 2 1 1 2 2 2 2 1 0 3 0 2 1 2 1 2 2 0 0 1 1 0 2 0 2 2 0 1 0 2 2 3 1 2 3 1 1 0 1 0 2 0 1 2 1 2 0 2 1 0 0 3 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0.082000 1.650 1.650 4.900 252503 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 2 2 2 1 0 2 0 1 0 1 1 2 2 0 3 0 0 4 1 0 0 3 0 0 1 2 0 1 1 1 3 0 1 0 2 9 11 25 27 34 53 41 49 43 47 36 31 38 22 30 22 18 9 5 9 2 2 1 2 2 3 1 4 1 1 0 0 1 2 0 2 1 0 0 1 3 2 2 1 0 0 0 1 2 1 0 0 0 2 1 1 0 2 0 0 1 0 0 2 1 3 1 1 1 0 2 1 1 0 2 1 0 1 3 0 0 0 0 2 0 0 1 0 0 0 0 0 1 2 1 1 1 0 2 1 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0.084000 1.700 1.700 5.000 267889 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 3 0 1 1 1 0 1 2 1 0 2 0 2 4 0 1 0 0 0 1 1 0 1 3 2 0 2 0 4 0 0 2 0 1 4 2 4 3 3 6 10 14 28 37 54 36 40 52 40 50 46 40 32 26 29 12 18 5 2 0 2 4 1 2 1 0 2 1 2 2 1 0 1 0 2 1 2 4 1 1 5 1 0 2 0 1 2 3 2 2 1 2 1 0 2 1 2 1 1 4 1 2 1 4 0 2 2 0 0 3 1 0 2 0 0 1 1 1 0 0 2 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.086000 1.750 1.750 5.100 290294 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 2 1 0 1 0 1 0 0 2 2 0 1 2 2 0 2 0 2 0 1 0 0 1 1 1 3 1 1 1 1 3 4 1 1 2 2 2 1 0 3 0 0 0 2 4 5 6 16 18 20 31 40 54 55 46 41 52 35 27 21 28 27 20 15 8 6 7 1 0 0 3 0 0 2 2 0 3 1 3 1 1 2 0 0 1 2 1 3 2 0 1 2 1 3 1 1 1 1 1 2 0 2 1 0 1 1 1 3 1 1 2 0 1 0 1 0 2 1 1 0 0 1 2 0 3 1 1 0 0 0 1 3 1 1 1 0 0 1 2 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 2 1 0 2 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0.088000 1.800 1.800 5.200 312476 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 1 0 1 0 0 0 0 0 0 2 1 0 0 1 0 0 1 1 1 1 4 2 0 1 0 0 3 0 0 0 0 0 1 1 4 0 0 0 0 1 1 2 1 0 3 0 0 2 2 4 0 3 1 6 9 10 13 21 24 32 43 33 41 43 49 50 32 26 31 27 12 16 17 3 3 3 5 0 3 0 2 1 3 3 2 1 2 3 1 2 1 1 1 2 0 1 1 0 2 0 3 0 0 2 0 0 0 0 1 0 1 1 3 3 0 1 1 1 1 1 1 2 2 2 0 3 1 0 2 2 2 0 0 0 0 3 1 2 5 1 1 2 0 0 3 3 0 2 2 0 0 0 0 1 2 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.090000 1.850 1.850 5.300 337348 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 2 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1 3 2 0 0 2 2 3 3 2 2 2 0 0 1 1 3 1 3 0 0 0 0 0 0 1 2 1 2 1 2 2 2 0 1 1 0 4 2 2 7 6 15 22 21 39 37 50 31 51 30 33 34 34 26 21 14 13 10 9 4 3 3 4 2 2 0 1 2 3 3 0 1 3 2 5 3 2 2 4 0 2 3 0 4 2 1 2 2 2 4 2 1 3 1 3 2 1 3 1 2 4 1 1 1 1 2 4 1 3 3 3 1 0 4 1 0 1 1 1 1 2 3 0 3 0 0 4 1 1 1 0 2 2 2 1 2 2 0 1 1 0 0 0 2 0 1 0 1 0 0 1 0 0 0 1 3 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0.092000 1.900 1.900 5.400 357303 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 3 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 2 2 0 0 2 2 1 1 1 1 1 1 0 1 0 0 1 1 1 3 1 1 1 1 1 0 1 4 0 1 1 1 3 0 1 1 2 2 2 0 2 3 2 2 2 2 1 2 1 3 8 22 14 32 36 46 39 42 39 29 36 38 26 24 26 18 16 19 10 9 3 6 5 0 3 2 1 1 1 2 0 2 1 1 0 1 1 3 1 0 2 4 2 2 1 4 1 2 2 1 1 0 1 2 0 2 2 2 4 2 1 1 0 2 1 3 1 2 3 4 2 3 2 3 0 1 2 1 0 0 0 4 1 1 1 2 1 3 1 0 5 1 0 0 0 0 0 0 1 0 2 0 1 2 1 0 1 0 0 0 0 0 1 1 0 1 0 1 4 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0.094000 1.950 1.950 5.500 383138 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 2 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 2 1 1 1 1 2 1 0 2 0 1 0 3 2 1 3 0 1 3 1 1 0 5 0 1 0 1 2 0 0 1 1 2 0 0 6 1 0 3 2 2 3 4 5 0 4 2 1 5 4 11 15 22 27 28 57 38 38 40 38 39 38 27 26 30 18 14 10 10 4 4 4 3 3 2 2 2 2 1 1 1 1 2 2 3 4 1 2 3 1 2 1 2 2 2 1 3 2 1 5 0 1 1 1 3 2 2 2 1 3 1 1 0 3 2 2 0 0 2 2 2 0 0 0 2 0 1 3 1 2 3 2 1 1 0 1 1 1 0 3 2 2 1 0 0 1 3 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 3 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0.096000 2.000 2.000 5.600 409868 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 1 0 0 2 0 2 0 0 0 0 1 0 0 2 1 2 2 2 1 2 1 1 1 1 1 2 0 0 1 1 0 1 0 2 1 2 0 2 0 3 1 2 1 3 1 5 0 2 2 1 2 4 1 2 0 3 1 4 7 5 9 13 22 19 31 27 28 41 34 39 37 22 23 21 22 17 23 15 8 9 3 8 0 3 1 2 2 2 3 1 0 4 2 4 2 2 2 2 4 2 1 1 0 2 0 3 0 3 2 2 1 2 2 1 4 1 2 2 1 1 5 2 1 2 1 2 2 1 0 2 4 3 2 1 2 2 3 2 3 1 2 1 1 1 1 2 1 1 2 2 1 2 3 2 1 1 0 2 2 4 0 1 1 1 1 1 0 0 1 1 3 0 0 0 0 0 1 0 0 2 0 1 2 0 1 1 1 0 1 0 1 0 0 0.098000 2.050 2.050 5.700 439102 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 2 0 0 1 1 1 1 2 0 1 1 0 0 0 0 1 1 1 0 4 0 0 0 2 1 1 0 3 4 0 1 2 2 1 0 3 0 3 2 0 0 2 0 1 0 0 1 0 1 3 1 3 5 0 2 2 3 5 2 2 2 0 3 2 3 6 5 16 21 19 23 28 29 35 42 42 44 39 33 23 30 18 25 24 15 13 5 4 2 2 0 3 3 0 0 1 3 0 1 1 3 2 4 3 4 2 1 1 1 3 1 0 0 2 2 4 2 2 1 4 2 4 2 2 2 1 2 2 1 2 0 4 2 2 3 1 2 1 1 2 2 1 2 4 2 1 4 1 2 2 2 2 0 2 0 3 0 1 0 2 1 0 4 2 1 3 2 1 0 2 1 1 1 1 0 1 1 2 1 1 1 2 0 1 0 2 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0.100000 2.100 2.100 5.800 467340 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 0 1 2 0 0 0 0 0 1 0 2 0 0 2 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 2 0 2 2 4 1 0 1 1 2 3 4 1 4 1 5 1 2 1 0 2 2 2 1 5 4 1 5 4 0 1 2 4 2 2 0 2 1 2 5 4 1 1 1 2 5 7 9 16 23 31 15 22 36 36 44 42 29 31 28 28 18 35 12 10 13 8 4 3 2 2 5 1 2 3 3 1 3 3 5 2 0 3 4 1 2 2 3 0 0 5 2 3 6 2 1 2 5 3 4 3 1 1 1 1 2 2 4 0 2 3 1 2 1 2 4 5 4 3 5 2 1 2 0 5 0 2 2 4 1 0 4 1 0 2 1 2 0 0 1 3 2 4 3 0 2 3 3 3 4 2 2 0 0 0 0 1 1 0 3 2 0 1 2 0 4 2 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0.102000 2.150 2.150 5.900 497495 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 2 1 0 0 0 0 1 0 1 0 0 0 0 1 2 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 2 0 0 1 0 0 0 1 0 2 2 1 0 0 0 2 0 2 1 1 1 6 3 2 0 3 2 2 2 1 1 3 4 1 0 1 2 4 2 3 3 1 1 1 1 3 3 1 4 1 3 4 3 2 3 1 2 2 5 11 11 14 26 27 28 28 28 36 39 42 29 33 24 20 29 18 13 17 13 6 10 4 3 3 6 1 0 1 0 2 1 3 2 3 1 2 3 1 2 1 2 0 2 2 3 1 3 1 1 2 4 4 1 4 3 2 2 3 5 5 3 0 2 5 3 5 1 4 1 1 3 4 2 2 2 2 1 3 0 1 1 2 2 4 2 1 3 2 0 1 2 1 0 2 3 1 2 0 0 0 2 0 0 1 3 0 0 1 2 0 3 1 0 3 1 2 2 1 1 2 0 0 0 0 2 0 0 1 0 0 0 0 0 0.104000 2.200 2.200 6.000 529288 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 3 0 2 0 2 0 0 3 2 2 0 4 0 3 2 2 1 3 1 7 3 1 1 0 4 3 2 1 0 0 3 2 3 5 2 1 4 1 5 1 0 3 2 3 0 1 2 4 7 3 7 8 12 15 20 24 34 39 34 35 27 36 34 23 22 26 15 24 12 12 14 5 3 0 7 1 1 3 5 1 2 2 2 4 3 1 2 5 2 2 3 1 1 4 2 1 3 0 4 5 4 6 4 5 3 3 3 3 1 1 5 0 6 1 2 4 2 3 2 1 3 2 0 0 0 1 3 3 0 1 4 0 3 2 3 0 3 3 0 2 3 4 3 1 1 1 2 5 3 1 2 1 1 2 4 1 0 2 4 1 3 0 0 3 0 1 3 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0.106000 2.250 2.250 6.100 560628 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 2 0 0 0 0 2 0 3 1 1 0 0 2 2 2 0 5 2 1 1 1 1 3 1 2 3 0 1 0 0 0 0 1 0 2 2 1 2 1 0 4 3 2 1 2 1 0 4 2 2 0 2 1 1 2 3 1 2 1 2 4 4 11 12 17 19 19 29 30 24 30 35 51 32 36 34 31 19 22 17 11 19 11 7 6 6 3 4 0 3 3 2 0 2 2 2 3 1 5 3 2 3 5 1 0 2 2 5 4 2 3 2 0 1 6 1 2 2 2 2 1 1 2 2 1 4 3 2 2 1 2 5 2 0 2 0 2 5 4 5 2 1 3 6 1 3 4 4 0 0 6 0 2 6 1 2 2 2 0 1 3 1 3 4 2 1 4 2 1 2 3 3 0 3 1 0 2 0 2 1 0 2 1 2 0 0 1 1 0 2 0 0 0 0 0 0 0 0.108000 2.300 2.300 6.200 593293 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 2 2 1 0 0 2 0 1 0 1 0 0 1 2 2 1 0 0 1 0 2 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 2 2 1 0 1 1 0 1 5 0 2 4 1 0 1 4 2 1 3 2 2 3 2 3 2 0 0 3 4 3 1 3 2 2 0 3 0 2 4 0 3 2 5 1 2 1 4 6 1 2 4 0 3 6 1 7 6 4 5 4 10 16 24 22 20 40 37 44 34 29 21 28 36 36 27 23 24 14 10 4 5 2 5 3 6 2 3 3 1 4 2 1 5 1 3 5 3 2 1 2 2 6 2 3 1 1 0 5 3 3 3 4 5 2 2 3 3 5 5 1 6 2 3 2 6 0 5 2 4 3 5 1 2 2 5 1 2 3 1 2 2 2 4 2 5 5 2 2 2 5 0 1 2 5 2 3 2 3 1 1 2 4 0 2 1 4 2 1 1 1 0 1 2 0 0 1 3 1 0 2 1 1 3 3 2 0 0 0 1 2 0 0 0 0 0.110000 2.350 2.350 6.300 636559 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 1 1 2 0 0 1 0 0 0 0 0 0 0 1 2 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 2 0 1 0 1 0 1 0 0 1 1 3 0 1 2 2 0 2 1 1 1 1 0 1 0 1 3 0 3 2 3 4 3 3 4 3 3 2 6 3 1 1 1 2 4 2 3 1 5 1 3 1 4 5 3 3 2 1 3 7 4 3 10 19 17 19 23 27 28 33 39 36 23 23 32 32 16 19 35 23 12 11 12 8 4 5 7 1 2 2 1 2 3 5 4 2 3 2 6 4 4 2 4 1 2 2 1 2 3 0 4 2 1 2 6 2 2 1 3 3 1 6 4 8 5 2 3 5 2 3 0 3 2 3 1 2 2 3 4 3 8 6 2 1 4 6 3 1 2 0 2 0 2 5 0 3 3 3 3 1 3 3 2 5 4 2 1 4 2 2 4 4 1 3 2 5 2 3 1 2 0 4 0 1 0 6 3 1 2 0 2 0 1 0 0 0 0 0.112000 2.400 2.400 6.400 670484 3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0 1 1 1 3 0 0 0 2 1 3 0 1 1 1 0 1 1 1 0 0 1 2 0 1 3 1 5 2 3 0 4 0 2 0 0 1 2 1 0 1 0 0 1 0 2 2 3 2 3 2 2 2 3 4 4 2 3 5 3 3 2 3 3 4 2 4 0 3 2 4 4 1 3 1 3 4 2 2 5 2 8 6 12 17 14 22 27 26 29 39 30 24 36 22 22 20 9 19 15 5 12 16 4 7 5 7 5 5 1 4 5 5 4 4 1 4 4 3 3 3 4 2 2 4 2 4 4 4 4 0 2 3 2 1 4 3 6 1 3 3 3 4 5 4 2 2 2 5 3 0 2 5 4 2 5 3 5 1 1 3 1 1 3 6 6 2 3 2 0 3 2 4 3 4 1 2 2 6 2 0 3 2 2 5 3 3 5 2 1 0 3 1 1 2 2 0 1 1 3 2 3 2 1 1 1 1 3 2 1 0 0 0 0 0 0 0 0.114000 2.450 2.450 6.500 711783 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 1 0 2 1 2 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 2 0 1 1 0 0 0 2 1 1 1 1 1 2 1 2 3 3 1 1 1 2 3 1 3 2 2 1 0 1 1 4 4 4 1 0 4 0 0 1 1 2 1 3 2 0 3 4 1 1 1 1 3 2 0 1 3 2 1 2 1 0 3 3 2 5 4 2 5 3 4 2 2 5 3 3 3 3 5 5 8 7 14 12 28 22 24 23 36 33 26 32 27 26 18 30 24 15 13 19 15 17 6 5 7 5 4 3 5 3 1 4 4 9 5 3 1 4 0 0 6 2 5 3 3 3 1 2 3 2 4 1 5 5 3 8 2 1 1 4 1 7 5 6 6 4 4 3 2 6 3 3 3 3 1 3 4 5 4 3 4 3 1 2 3 1 2 1 2 2 6 5 2 2 2 4 2 2 0 2 3 3 2 7 4 4 1 4 2 0 3 1 1 2 1 2 3 1 3 2 2 4 3 1 4 0 0 4 2 2 2 1 0 0 0 0 0.116000 2.500 2.500 6.600 745364 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 2 1 1 2 1 1 1 0 1 0 2 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 2 3 0 1 4 4 0 4 0 1 0 1 3 3 0 2 1 2 3 2 1 1 1 2 0 4 0 0 4 5 2 5 4 1 3 5 5 4 0 4 4 2 3 2 3 5 2 2 4 2 3 4 2 3 3 3 3 3 2 4 12 10 13 14 19 22 23 24 36 19 32 25 25 36 24 18 20 21 14 18 13 8 6 9 2 9 5 2 5 3 4 4 3 3 0 4 3 2 5 3 4 2 2 6 3 4 0 2 4 1 3 4 7 4 5 3 2 4 5 5 3 4 4 4 2 3 2 4 4 2 1 5 7 1 5 2 4 1 5 5 3 4 4 3 2 4 2 4 0 6 2 3 4 1 2 2 2 4 1 4 2 2 2 5 6 5 1 4 4 2 3 3 3 1 4 3 4 2 6 2 5 3 2 2 1 3 2 2 5 1 1 0 0 1 0 0 0 0.118000 2.550 2.550 6.700 791846 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 4 1 2 3 0 3 1 0 1 1 1 0 3 1 2 1 1 1 0 0 1 1 1 3 1 3 2 3 1 2 2 1 3 2 4 1 4 0 2 4 1 4 3 2 1 1 2 1 3 2 3 3 2 1 1 5 3 3 3 3 2 3 4 3 5 3 1 1 2 2 3 5 1 2 1 1 4 4 6 9 6 6 13 17 21 20 24 22 25 20 29 23 28 30 26 27 18 20 17 16 17 12 10 8 5 6 6 6 4 3 1 2 4 6 9 2 2 3 5 7 6 2 3 8 5 4 5 6 4 6 5 3 5 3 2 5 3 2 8 3 5 4 5 3 5 4 3 4 8 4 3 8 3 3 3 1 1 2 2 5 4 7 3 2 3 3 2 2 3 6 3 2 2 1 1 5 2 5 6 3 5 3 4 1 3 1 2 1 0 4 1 4 2 2 2 3 1 1 1 1 3 2 0 1 6 1 1 0 2 1 0 1 0 0 0 0 0.120000 2.600 2.600 6.800 833394 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 1 1 1 2 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 2 1 0 0 0 0 0 2 2 0 3 1 0 0 2 1 1 1 1 0 1 2 1 5 0 1 0 2 2 1 2 0 4 2 1 4 3 4 2 2 1 2 1 5 2 3 1 3 0 2 2 2 2 3 4 0 4 2 3 3 4 5 2 2 6 3 4 5 5 5 3 4 6 5 1 3 0 5 4 5 1 3 2 2 6 18 13 17 27 27 21 28 28 24 26 27 29 23 21 16 17 19 22 14 11 9 5 14 7 7 6 4 4 12 3 6 4 5 4 6 4 2 0 1 8 1 6 8 5 2 3 4 5 6 4 2 5 8 3 1 1 6 3 7 8 4 1 6 5 2 8 11 5 6 5 6 2 4 5 1 2 7 2 2 5 5 6 3 3 2 3 8 5 1 9 3 3 2 3 6 3 5 3 2 4 6 3 1 3 5 4 4 4 6 3 3 5 0 2 2 5 1 3 2 2 1 4 2 0 2 2 2 2 4 1 2 1 2 1 1 0 0.122000 2.650 2.650 6.900 876007 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 1 1 1 2 2 1 0 0 1 0 0 0 1 1 0 0 0 2 0 0 4 1 0 2 1 2 0 1 2 0 1 3 2 1 0 1 1 0 1 2 1 0 2 3 3 5 3 3 3 0 1 4 0 1 5 3 4 3 1 2 2 2 4 1 3 3 3 2 3 2 3 2 1 4 4 2 2 5 5 3 4 1 2 1 2 4 2 4 7 2 4 4 2 7 3 5 7 5 3 6 8 10 10 18 21 22 24 14 25 27 29 31 22 25 24 21 27 20 19 22 19 14 13 14 10 5 7 3 4 5 5 3 1 4 3 8 4 5 4 0 3 4 3 4 1 7 6 1 1 3 4 4 3 4 3 6 4 3 4 2 4 4 3 5 6 5 1 1 6 2 6 6 3 5 5 3 2 6 5 4 3 4 6 4 3 5 5 6 5 6 2 4 2 1 2 2 4 2 7 6 2 1 3 1 5 2 1 2 4 3 3 3 2 5 2 4 1 4 3 2 2 5 5 1 1 3 3 2 2 2 2 1 0 0 0 0 0 0.124000 2.700 2.700 7.000 925764 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 1 3 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 2 0 0 3 2 0 1 2 1 1 2 0 2 1 2 2 0 0 2 3 2 3 2 2 3 2 2 4 0 2 0 5 1 3 2 3 1 2 3 2 0 6 4 3 6 2 5 0 5 2 1 4 4 5 7 4 2 3 5 2 0 2 5 2 4 7 4 4 4 8 5 3 1 7 2 2 1 5 5 5 14 19 16 22 18 30 29 25 36 23 23 22 25 25 27 26 23 14 20 16 16 10 6 6 6 4 2 6 6 6 6 6 4 6 1 0 3 4 4 5 2 4 3 2 4 4 5 5 5 6 10 6 3 6 8 5 5 8 7 4 6 4 3 4 8 5 5 7 4 6 3 5 8 4 3 4 4 3 4 3 1 3 3 7 2 4 8 3 6 4 3 3 2 5 4 4 3 7 4 5 4 4 3 4 7 2 3 3 4 3 0 2 2 4 3 4 2 4 2 2 6 4 4 6 6 1 5 1 1 2 1 0 0 0 0 0 0.126000 2.750 2.750 7.100 969560 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 0 1 2 0 2 0 2 2 0 1 1 1 0 0 1 0 1 1 1 1 2 0 1 2 2 1 2 0 0 1 0 1 0 2 1 0 1 0 1 1 2 0 3 0 3 4 3 1 3 2 0 4 0 1 2 0 3 1 1 2 3 2 2 2 5 1 7 1 5 1 5 4 2 0 0 1 2 1 3 2 3 3 5 4 10 10 2 5 11 4 1 2 1 7 3 5 4 4 1 5 10 8 7 9 9 20 20 21 33 21 28 20 27 32 21 29 22 20 24 15 13 27 14 13 15 10 9 3 11 6 7 5 3 6 8 5 4 4 1 3 3 5 2 7 3 6 6 1 6 4 6 5 3 4 2 4 3 3 9 4 5 4 4 5 2 3 10 4 3 2 6 10 6 3 6 5 5 5 4 8 8 5 4 3 6 4 4 2 4 4 4 5 7 4 4 4 4 5 2 2 3 4 5 2 1 3 2 6 2 7 7 1 6 4 4 6 5 5 4 0 2 2 3 2 7 5 0 4 1 1 4 6 1 0 3 2 0 0 1 0.128000 2.800 2.800 7.200 1022713 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 2 1 0 0 4 0 0 1 2 3 1 1 0 1 0 1 0 3 1 1 1 2 2 1 1 1 3 1 0 2 4 2 1 2 1 2 0 3 1 3 2 1 5 2 1 3 1 2 1 5 3 2 1 2 5 3 8 2 3 2 5 5 4 3 6 4 4 4 3 2 3 8 4 3 4 5 4 5 4 7 6 5 3 3 3 5 2 9 10 7 9 12 11 13 17 15 22 19 33 24 28 30 26 21 24 22 27 20 26 16 10 10 9 20 10 7 4 5 7 7 2 7 5 3 5 1 6 1 5 7 5 6 3 1 5 1 1 3 4 8 6 3 9 5 5 3 6 7 4 6 7 6 4 2 4 6 2 3 6 5 6 7 6 4 4 9 6 8 6 9 7 1 2 6 2 7 5 4 4 4 4 5 5 4 4 3 6 3 5 3 6 4 3 6 6 2 5 2 8 4 5 3 6 5 4 5 8 4 3 5 6 5 5 2 8 1 2 2 5 4 1 3 0 0 0 0 0 0.130000 2.850 2.850 7.300 1081669 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 5 0 0 2 2 0 0 1 0 0 0 1 1 0 2 0 2 2 2 1 0 1 0 2 2 3 1 1 0 2 0 1 0 2 1 1 2 2 0 1 4 3 0 2 1 1 0 2 5 2 1 0 1 3 2 5 2 1 2 5 2 3 4 3 6 6 6 4 6 6 3 1 3 2 3 4 7 5 2 9 7 4 1 4 4 3 2 2 2 7 4 8 4 7 4 6 8 5 1 8 6 10 18 21 18 15 21 24 21 26 22 30 28 27 23 22 21 17 25 20 17 13 17 9 12 7 8 5 4 4 5 5 2 4 1 1 2 5 7 6 4 9 7 7 5 5 5 5 5 2 4 5 3 6 8 2 4 9 4 10 5 1 4 5 5 5 10 3 2 8 6 5 7 3 13 3 3 6 5 1 4 5 9 5 2 7 4 5 6 3 5 6 5 4 5 9 6 4 3 4 4 4 5 8 5 5 0 3 6 3 4 3 7 5 6 4 3 3 6 8 4 1 3 1 2 7 3 4 6 6 1 3 4 1 0 1 0 0 0.132000 2.900 2.900 7.400 1131887 3 0 0 0 0 0 0 0 0 0 1 0 0 1 2 1 1 0 0 0 1 2 2 1 1 0 2 1 1 0 1 1 1 0 2 2 3 1 0 1 0 1 0 2 0 2 0 1 4 0 1 2 2 0 0 0 2 3 0 1 2 3 0 1 2 3 5 6 2 2 3 1 4 4 8 4 3 3 3 7 2 2 5 7 4 1 2 4 8 1 5 2 7 3 4 2 9 6 5 5 6 2 2 3 6 2 5 6 7 7 2 8 3 3 3 3 6 6 5 3 10 15 15 17 19 13 29 20 23 22 34 28 28 33 20 20 22 17 22 18 15 19 14 11 9 13 6 6 13 4 2 9 8 8 7 6 5 6 4 4 9 6 2 8 9 7 2 6 3 7 3 6 3 7 4 4 5 4 5 6 4 7 5 4 10 2 6 6 8 3 6 6 9 5 8 8 7 6 4 8 5 7 5 5 7 3 5 5 5 10 7 3 8 7 5 7 2 4 4 6 4 10 7 6 4 4 4 4 3 2 4 2 6 5 9 7 3 2 6 2 5 1 5 6 2 2 1 9 2 5 2 5 1 0 0 0 1 1 0.134000 2.950 2.950 7.500 1185706 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 2 1 0 1 1 0 0 0 0 0 1 0 1 1 2 0 1 0 1 2 0 0 0 1 1 0 1 1 1 0 2 2 0 1 3 3 2 3 0 0 2 2 3 2 1 1 3 0 0 1 1 3 4 3 1 1 9 1 4 0 1 3 4 1 3 2 6 4 7 7 3 2 8 5 2 5 2 4 6 7 3 7 7 8 4 7 2 4 7 7 9 9 2 5 5 8 3 5 7 3 6 10 6 10 15 10 13 14 29 21 23 37 26 20 28 20 16 24 25 16 19 21 20 20 17 11 10 12 8 7 7 5 5 5 4 5 6 7 3 6 5 7 5 11 9 6 8 11 6 4 6 8 8 7 7 7 4 5 4 8 5 4 3 4 8 10 7 9 4 7 6 8 9 7 3 5 7 7 6 2 6 4 7 3 9 8 12 7 6 6 6 4 5 7 2 4 7 3 2 4 4 7 1 4 5 0 4 6 3 10 8 5 4 3 4 5 7 5 7 5 7 3 5 2 5 6 4 5 2 4 1 6 6 2 4 2 0 0 1 0 0.136000 3.000 3.000 7.600 1238426 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 4 0 2 0 2 2 0 1 1 1 0 2 1 1 2 1 0 1 1 0 3 1 0 0 1 0 1 0 0 2 1 1 0 4 0 2 6 3 3 4 0 3 1 2 4 0 4 4 0 1 5 2 2 5 1 3 4 3 3 5 2 4 4 6 2 5 3 4 5 4 5 6 7 5 6 2 8 3 4 7 2 4 4 3 7 6 5 1 4 8 3 7 10 3 3 6 1 5 3 8 11 5 7 15 11 15 17 21 23 21 24 28 16 21 29 15 22 27 28 20 13 19 13 7 15 10 11 9 6 8 8 4 7 5 4 6 5 10 6 7 8 9 3 5 5 9 5 9 4 4 4 3 5 7 4 10 6 8 4 9 8 4 6 7 9 11 6 8 3 5 8 12 3 6 9 7 11 9 6 7 4 7 7 7 2 5 4 5 0 2 9 5 5 5 10 7 5 6 3 9 4 4 13 2 7 5 7 4 7 2 0 4 5 4 4 6 8 1 2 5 6 4 7 3 11 4 3 3 5 5 4 4 3 1 4 2 2 1 1 0 0.138000 3.050 3.050 7.700 1299809 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 2 1 1 0 0 1 0 0 2 0 1 2 0 0 3 0 0 1 3 1 2 0 2 0 1 1 2 1 2 3 2 1 2 5 2 2 2 4 3 2 5 3 0 3 2 4 5 4 3 0 5 4 1 4 3 8 6 4 4 7 4 5 4 3 6 5 6 10 3 6 6 2 6 3 4 4 3 6 7 6 8 3 4 7 5 4 9 2 4 8 5 9 8 3 7 5 7 7 13 7 11 15 17 16 18 18 18 20 17 26 25 19 20 26 31 22 18 20 18 14 11 16 4 7 11 10 8 9 9 6 3 8 8 7 5 6 10 3 5 6 6 3 12 7 8 8 2 10 4 13 9 9 12 4 5 9 7 9 5 7 4 8 9 6 7 8 10 8 7 5 7 11 6 4 4 4 6 4 9 4 5 9 10 7 4 12 7 4 9 5 10 10 6 8 4 7 2 4 7 2 6 8 4 11 3 3 9 7 6 7 3 8 7 4 8 5 3 7 4 5 5 7 4 6 7 5 5 3 5 2 5 4 1 2 0 0 1 0.140000 3.100 3.100 7.800 1361810 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 1 0 0 0 1 1 1 2 0 0 0 0 1 0 2 2 2 1 0 0 3 3 0 2 0 6 2 3 1 0 3 3 1 2 2 5 3 5 3 3 2 2 7 3 2 2 3 4 2 3 4 4 1 3 7 4 5 4 2 3 5 4 2 1 3 6 3 4 3 8 7 6 5 3 5 11 5 5 3 3 7 3 6 4 4 2 4 4 4 1 5 5 9 6 6 9 3 10 8 6 8 3 10 8 16 16 13 18 23 29 25 19 19 20 27 19 22 27 24 21 15 18 11 20 21 17 12 5 18 6 12 7 9 11 7 12 11 4 8 8 4 8 7 7 2 6 4 4 9 6 9 3 4 7 7 7 4 10 4 11 5 8 8 8 5 4 4 8 6 4 9 8 12 12 8 5 8 3 10 8 7 5 3 5 6 8 5 6 10 7 2 11 2 5 5 6 8 10 2 7 5 5 14 2 7 3 9 3 5 2 8 2 3 4 4 7 9 5 4 7 6 7 5 6 3 5 4 7 6 7 7 9 3 0 2 1 1 1 0 0 0.142000 3.150 3.150 7.900 1429499 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 2 1 1 0 0 0 3 0 2 2 1 0 3 0 2 1 3 0 0 1 1 3 1 2 4 1 5 3 5 1 0 7 1 3 2 3 2 2 2 3 0 0 1 3 6 3 2 2 4 4 4 6 4 3 6 4 10 3 7 2 5 4 7 4 5 8 4 7 4 1 7 11 5 2 10 2 11 3 7 8 10 9 6 3 5 3 6 3 10 11 5 5 9 7 10 8 9 5 15 11 9 18 18 15 24 17 23 17 19 25 17 24 18 37 16 17 21 17 14 20 17 15 15 9 4 11 7 3 8 10 8 8 6 8 3 4 5 8 4 6 3 9 9 6 2 10 4 4 3 8 4 9 1 7 5 9 7 10 9 10 4 6 5 8 6 6 10 10 6 5 7 6 6 10 5 7 8 8 8 7 7 11 12 8 3 10 6 9 13 11 4 6 7 6 3 10 5 8 4 7 7 7 5 8 4 9 5 5 7 6 6 7 11 11 7 8 5 3 5 7 7 10 3 3 6 5 7 9 2 3 7 1 0 0 0 0 1 0.144000 3.200 3.200 8.000 1493946 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 3 0 0 1 2 1 1 1 4 1 0 1 0 1 2 1 3 1 1 1 1 2 1 1 3 2 6 0 4 0 1 4 2 4 5 2 1 3 0 2 2 4 2 3 2 4 3 5 4 4 4 1 5 1 3 4 5 6 4 7 2 8 8 8 5 3 6 0 7 3 2 2 5 7 5 7 5 8 9 6 4 3 6 8 6 10 2 5 6 3 3 6 6 6 6 17 5 10 6 6 11 11 13 12 21 26 18 24 21 24 23 30 18 22 20 24 19 13 17 25 22 17 15 8 13 7 10 8 9 6 7 9 8 7 8 9 7 7 6 12 5 9 9 12 9 12 6 9 7 10 7 7 4 9 7 4 2 7 4 5 8 8 9 7 6 7 5 9 4 8 13 6 5 4 7 9 6 7 7 9 4 4 5 8 10 9 10 6 6 7 9 12 11 8 8 9 11 5 8 7 5 5 8 5 9 10 5 5 11 11 6 8 8 4 8 5 5 5 4 7 4 5 6 5 6 6 7 7 4 2 6 3 2 1 0 0 0 0 0 0.146000 3.250 3.250 8.100 1562352 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 1 2 1 1 0 0 1 0 1 2 0 0 0 3 1 2 0 4 4 2 0 0 2 3 2 0 1 3 3 4 0 1 4 3 3 4 5 5 4 2 1 4 2 5 3 2 7 6 3 5 6 5 5 5 1 5 2 7 4 8 7 4 6 5 7 5 3 5 8 1 6 4 6 8 7 6 7 6 3 4 6 3 5 8 4 10 3 3 11 6 5 3 9 6 4 3 17 9 11 11 24 13 15 14 25 26 26 21 17 32 32 22 18 25 29 29 27 24 21 12 23 14 12 11 9 17 7 9 11 3 7 6 5 5 12 3 6 8 7 4 7 11 10 8 9 5 8 2 10 9 8 10 10 7 7 4 7 5 7 7 9 10 8 7 7 16 6 8 10 5 6 6 12 12 7 11 11 8 9 7 8 12 10 7 8 7 11 8 9 7 7 4 9 4 7 14 9 8 8 13 9 8 7 13 5 9 5 7 4 9 5 7 8 7 8 7 3 10 9 3 4 4 4 5 2 6 6 3 5 10 4 4 2 3 0 1 0 0 0.148000 3.300 3.300 8.200 1630559 3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 4 2 1 1 1 2 1 2 0 2 1 5 0 1 1 4 0 2 1 4 5 3 0 1 1 1 2 1 3 3 3 1 1 1 1 1 3 4 6 6 8 8 4 3 2 7 2 2 1 7 4 4 5 1 10 6 4 4 4 3 3 3 6 11 6 4 5 4 8 5 5 9 4 5 5 7 6 4 13 12 3 6 7 5 2 7 9 7 8 8 4 7 6 4 10 6 8 9 9 9 13 15 17 23 25 13 16 24 22 26 21 27 24 24 21 21 21 15 17 22 25 21 22 17 14 11 8 12 5 9 7 8 5 11 10 6 6 5 9 13 10 9 8 8 8 6 4 9 10 9 9 7 8 7 5 7 8 14 13 5 14 5 12 11 8 9 6 5 4 9 13 7 10 13 11 11 8 5 9 10 8 7 6 7 13 3 13 8 7 13 17 5 8 5 10 7 12 7 6 6 9 7 8 8 11 8 11 9 11 11 8 5 6 10 4 9 3 10 8 7 10 8 7 8 10 10 7 4 11 5 7 8 2 4 3 0 0 1 0 1 0.150000 3.350 3.350 8.300 1707576 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 2 1 0 2 0 2 3 1 3 2 2 2 2 0 2 1 4 3 2 2 3 1 2 1 0 2 2 4 2 5 3 3 5 2 8 4 5 4 2 3 6 7 6 1 0 7 4 7 7 6 5 4 3 4 6 6 7 6 2 7 4 4 2 5 5 6 9 3 3 3 6 6 5 3 5 7 8 8 6 8 8 6 8 3 9 6 6 8 8 6 4 8 6 6 10 4 11 6 11 15 23 16 8 17 20 21 19 24 15 14 19 21 30 25 21 15 19 16 18 21 21 15 14 12 16 8 10 12 7 10 9 8 10 10 7 9 8 10 12 6 6 9 11 6 5 9 12 6 7 12 7 5 6 8 5 9 4 11 9 8 8 10 7 6 10 7 11 13 7 4 13 11 8 11 9 16 6 12 11 10 10 19 2 9 11 8 7 8 8 6 13 6 10 12 12 9 12 9 9 8 7 7 9 6 12 8 4 9 9 8 5 7 8 9 5 12 5 7 5 9 10 9 10 3 6 6 8 7 11 3 5 5 4 2 0 0 0 0 0.152000 3.400 3.400 8.400 1777231 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 3 1 0 3 4 2 3 3 3 3 3 2 1 1 1 1 3 3 0 1 8 0 0 5 3 7 4 4 4 4 4 3 5 2 2 5 3 6 1 7 6 1 2 2 5 2 1 6 6 8 7 7 5 10 4 1 6 9 3 4 5 3 5 8 4 9 8 11 8 3 2 7 7 9 10 9 10 8 6 8 6 8 7 10 8 7 3 8 4 10 7 6 8 9 6 5 16 9 19 24 23 17 23 24 22 30 21 15 23 27 20 20 20 18 20 23 18 17 15 19 17 18 13 9 4 4 7 12 7 10 4 8 6 10 5 6 13 2 3 8 7 8 7 3 11 8 7 9 7 19 7 8 9 6 14 8 8 11 10 11 13 14 10 16 8 9 13 8 9 9 12 7 12 11 6 9 15 5 9 9 9 11 11 13 6 10 6 4 12 9 9 12 11 8 6 9 16 10 10 10 8 10 10 6 7 4 1 15 6 8 4 9 13 11 8 10 11 9 8 3 3 6 6 7 9 4 6 8 7 4 2 1 2 2 1 0 0.154000 3.450 3.450 8.500 1849489 6 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 1 2 2 0 1 4 1 1 0 1 0 2 1 0 0 1 1 1 1 6 3 6 1 3 1 3 3 0 6 0 4 2 7 4 6 4 4 3 7 4 5 7 5 5 2 3 9 9 2 5 5 3 9 4 2 7 6 2 8 2 5 7 12 6 5 4 5 10 4 12 10 6 4 14 7 9 10 11 7 7 7 7 3 9 7 4 3 8 7 5 7 9 6 8 9 6 8 8 12 6 5 11 12 13 11 13 21 26 19 23 25 18 23 22 23 23 18 27 20 15 20 25 24 19 18 12 14 13 15 8 15 10 11 7 9 13 11 12 13 11 11 7 11 13 6 5 10 6 6 10 8 14 5 14 11 8 5 9 7 10 10 8 7 15 13 3 13 12 18 15 7 10 9 10 8 15 9 6 8 9 10 10 9 5 7 7 5 10 11 13 12 12 12 10 6 17 10 11 9 4 8 7 6 6 9 12 8 16 18 7 5 10 8 12 10 15 6 13 11 6 10 16 10 11 16 8 9 5 11 10 14 11 5 2 5 7 3 1 1 0 1 0 0.156000 3.500 3.500 8.600 1920727 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 2 1 2 0 3 0 1 1 0 1 0 3 0 4 4 1 3 1 2 3 3 4 3 1 2 3 9 5 2 3 7 3 3 6 5 2 6 1 4 3 2 3 6 5 1 8 3 8 5 3 7 6 13 11 9 5 8 7 7 5 8 7 4 8 6 4 10 4 6 5 6 9 9 12 6 7 10 9 9 8 8 3 8 9 8 8 2 12 11 13 8 13 7 8 6 6 9 6 8 16 13 14 16 16 22 20 21 21 17 20 18 19 22 20 11 20 22 21 14 19 15 23 17 15 12 14 19 16 10 11 14 11 9 11 9 12 8 16 14 9 6 18 10 11 7 10 11 17 10 13 8 10 12 9 12 7 7 10 10 11 11 9 8 8 14 10 10 9 14 9 14 13 9 19 16 17 4 11 8 12 11 10 21 6 10 8 9 12 9 7 7 12 7 16 14 10 13 6 13 8 9 10 6 10 8 7 10 4 6 11 19 12 6 7 5 8 11 10 12 13 9 6 10 5 11 11 4 14 10 7 2 6 5 1 2 5 1 1 0 0 0.158000 3.550 3.550 8.700 1999833 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 2 2 2 1 2 3 0 1 0 1 3 2 0 0 3 2 3 2 5 7 0 3 4 1 10 7 7 4 5 2 3 4 3 8 3 6 4 4 4 8 2 3 4 5 5 7 1 6 7 8 1 6 8 1 4 4 11 9 4 7 11 9 10 5 6 8 4 3 9 7 9 11 5 5 8 8 4 8 7 8 11 9 12 6 4 13 4 12 10 6 9 11 10 11 10 11 11 11 14 15 14 23 18 17 29 16 26 23 15 19 14 18 19 22 31 13 21 20 12 16 15 14 18 17 15 8 12 14 13 10 10 10 10 10 13 11 6 8 11 8 14 8 10 11 11 8 10 13 5 14 7 12 9 10 10 12 15 18 8 6 9 9 12 8 9 20 14 16 10 11 14 5 5 13 6 11 9 11 15 6 9 13 11 7 8 7 10 8 16 12 11 8 10 14 11 17 11 8 16 13 9 10 5 10 17 13 14 16 8 10 9 11 5 10 9 10 12 8 11 12 11 8 6 7 12 15 13 12 7 13 5 0 3 2 0 0 0 0 0.160000 3.600 3.600 8.800 2073149 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 2 1 2 2 1 0 2 2 1 0 3 6 4 5 5 2 2 2 5 5 3 6 4 6 4 5 2 4 4 3 2 4 6 3 3 6 5 7 4 5 7 5 3 5 6 13 5 3 10 5 9 7 4 5 6 5 10 6 5 5 6 6 4 14 7 6 11 6 9 10 9 8 5 3 8 10 10 6 6 8 9 5 6 14 7 11 10 9 9 11 13 8 4 5 10 12 6 16 8 8 7 19 20 23 10 16 27 25 23 19 26 21 16 20 21 24 18 25 8 11 13 16 18 13 22 18 9 16 4 16 10 12 13 9 7 9 8 17 11 10 13 10 14 4 9 12 16 8 9 16 17 13 11 14 8 8 13 9 11 15 10 11 14 8 6 4 9 11 18 9 9 8 9 15 11 11 11 9 6 13 13 10 7 8 10 15 14 9 7 4 10 12 17 10 14 13 10 10 12 20 9 7 6 11 15 11 10 8 9 6 10 13 17 6 8 9 6 13 13 16 10 15 5 11 14 11 12 6 5 12 9 4 9 2 4 1 1 0 0 0 0.162000 3.650 3.650 8.900 2156456 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2 0 1 1 3 2 3 4 3 3 2 1 3 6 5 2 3 4 4 3 6 2 3 4 4 5 5 3 4 1 4 5 9 3 3 4 3 3 8 5 6 12 2 10 3 4 6 8 9 8 8 2 2 7 5 8 2 8 9 7 2 6 8 6 5 8 2 7 5 6 13 5 6 8 11 6 10 5 6 3 8 10 11 10 10 14 10 11 8 11 8 12 6 12 5 15 12 13 10 13 13 18 23 12 21 18 21 23 20 30 20 23 26 24 24 21 21 29 19 21 16 23 20 13 19 13 16 11 15 13 13 11 8 11 14 14 13 4 16 15 18 13 9 19 8 11 6 9 14 8 13 12 13 10 13 10 14 11 13 11 8 10 13 11 11 14 11 8 14 11 10 9 14 12 14 18 8 12 7 13 12 10 14 14 8 12 17 11 13 9 12 12 15 7 9 13 17 11 11 11 12 17 12 11 16 15 8 9 12 7 13 15 11 16 7 10 7 14 5 18 10 10 8 8 6 6 13 14 6 9 11 9 9 3 5 1 1 3 0 0 0.164000 3.700 3.700 9.000 2234753 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 1 4 2 1 3 1 1 3 2 3 3 1 3 6 2 4 4 3 3 3 6 5 2 6 4 1 3 3 7 1 4 4 6 12 4 5 2 6 4 9 3 1 8 11 5 2 7 6 3 8 4 7 3 8 3 9 6 7 8 9 2 7 6 9 6 15 6 9 5 9 4 9 17 15 10 2 10 6 8 12 12 11 12 10 9 7 11 8 7 5 11 10 14 16 7 7 7 13 15 10 16 17 21 19 14 18 24 19 27 27 24 20 22 24 21 20 14 24 17 17 18 32 15 12 13 15 12 8 14 11 11 19 11 14 15 18 10 5 12 11 11 9 15 9 7 9 16 12 9 12 10 15 9 18 7 11 12 14 7 20 8 10 13 14 11 6 6 9 11 8 10 16 8 17 13 17 9 16 11 10 9 13 20 17 14 12 10 13 11 9 9 17 20 10 16 8 14 13 14 18 15 15 8 10 12 11 22 12 13 9 12 9 11 14 19 12 12 8 8 12 11 19 11 11 12 15 11 15 13 9 9 10 9 4 9 4 2 1 0 0 0.166000 3.750 3.750 9.100 2327990 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 1 2 2 1 1 0 0 3 1 4 2 6 4 2 4 3 2 5 5 2 3 1 3 1 2 10 2 7 4 3 4 3 3 4 3 10 6 9 6 3 8 5 5 3 4 4 6 8 4 4 7 5 5 11 14 5 3 6 8 8 7 10 11 7 17 7 11 10 8 7 8 12 13 11 12 6 13 9 7 7 6 5 8 13 10 10 14 11 11 8 12 15 14 9 13 10 9 18 13 18 12 23 14 17 24 15 23 25 31 19 17 29 19 19 19 26 25 19 17 22 19 19 19 11 11 12 22 21 8 10 18 10 14 19 17 13 14 10 6 9 10 15 11 5 13 13 11 11 17 16 9 7 14 7 19 6 10 13 7 12 18 14 7 12 15 13 13 9 13 13 13 12 12 14 12 19 10 16 18 18 12 8 10 10 9 7 14 9 11 13 12 8 15 12 11 10 12 11 17 15 19 14 14 12 7 7 12 11 15 16 12 11 12 10 19 19 12 14 12 15 11 20 13 7 18 9 15 19 16 11 5 9 8 6 2 4 0 2 0 1 0.168000 3.800 3.800 9.200 2406866 3 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 2 3 2 3 1 2 1 2 2 5 2 1 2 3 2 2 2 5 3 5 3 3 1 3 6 8 6 1 3 9 6 3 6 10 5 5 7 4 5 7 12 9 5 7 5 6 6 8 3 5 4 7 8 5 6 5 8 13 4 10 2 10 9 7 7 16 9 10 9 13 8 12 9 13 15 9 15 9 10 11 6 6 6 7 7 6 8 15 9 8 9 6 12 12 11 14 12 11 13 8 17 18 18 11 14 19 14 25 21 15 10 15 19 27 23 22 24 17 19 18 12 16 22 21 25 9 25 15 19 15 21 15 8 11 13 12 10 12 7 13 11 17 11 13 10 16 19 14 23 11 8 12 13 10 9 17 4 14 10 7 10 17 14 11 11 20 18 13 8 12 6 8 13 12 23 15 14 15 16 9 14 9 13 14 17 11 17 11 10 15 17 11 6 12 12 14 15 17 12 16 16 8 17 15 15 10 15 11 10 15 12 13 9 12 9 12 15 12 6 18 7 15 14 12 21 18 11 10 18 11 19 11 7 11 3 2 5 4 0 1 1 0.170000 3.850 3.850 9.300 2508471 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 2 1 4 3 3 1 2 7 0 3 2 2 2 2 5 2 3 2 3 3 4 3 7 3 5 3 4 4 6 2 3 10 4 11 3 13 7 7 5 6 3 8 10 6 6 4 10 11 4 12 7 8 9 7 7 8 4 6 7 9 9 5 9 11 5 14 9 10 7 9 8 8 5 6 11 13 14 10 10 10 10 8 9 9 9 9 14 14 13 11 8 18 9 10 9 16 12 13 15 13 10 17 16 20 14 22 20 26 29 29 27 24 20 37 21 24 13 18 13 28 24 22 25 21 13 14 15 9 11 18 8 16 17 16 13 12 16 11 11 17 15 11 15 10 11 12 13 12 12 20 15 14 15 16 12 17 15 15 12 10 14 14 17 15 19 15 13 13 11 12 16 14 17 16 8 16 12 8 14 13 13 10 10 9 12 11 19 20 13 11 4 15 11 14 11 20 18 18 13 20 12 20 21 15 15 12 13 18 18 11 16 9 14 9 18 11 10 11 20 11 13 17 13 13 12 14 16 10 12 12 23 12 11 12 8 8 1 0 1 2 0 0.172000 3.900 3.900 9.400 2591210 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 4 4 3 2 1 3 3 2 3 0 3 6 1 3 1 5 5 4 3 9 9 0 4 7 5 3 5 5 8 7 3 3 5 5 8 5 11 10 8 10 3 6 6 6 7 7 8 8 12 9 6 10 8 7 10 8 8 10 4 6 12 20 4 6 11 7 9 10 7 5 10 6 12 11 7 13 13 16 12 6 8 14 13 9 7 5 14 17 17 10 12 11 6 13 11 17 3 23 13 21 12 21 28 11 23 30 28 23 24 26 26 17 21 15 27 23 33 16 22 25 11 20 22 23 21 20 7 21 13 16 12 16 16 13 18 18 9 13 16 15 9 20 13 19 15 8 9 11 14 13 10 9 10 16 15 14 17 15 19 16 12 14 12 14 14 16 19 19 4 24 8 12 15 16 11 15 14 20 14 13 13 14 16 19 14 13 19 14 18 23 15 15 4 14 17 14 8 10 15 20 11 15 19 12 9 13 12 11 16 12 16 13 14 16 13 16 16 19 19 12 11 10 19 15 15 14 12 5 11 18 17 10 13 12 9 6 2 0 0 1 0 0.174000 3.950 3.950 9.500 2675515 3 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 2 1 2 3 3 1 3 1 3 7 5 3 6 4 3 9 4 5 2 5 3 3 3 6 9 5 5 2 6 8 5 8 4 8 5 6 5 6 4 6 3 7 11 6 9 9 3 6 6 7 6 8 7 9 12 18 6 9 8 11 11 8 14 15 15 11 15 13 9 19 10 15 14 9 4 18 5 8 10 8 10 13 9 12 11 8 8 12 6 15 8 9 9 18 7 17 21 9 13 18 14 21 24 18 22 17 26 15 21 23 25 19 26 23 20 27 17 27 20 26 15 22 15 19 15 16 24 12 15 24 13 13 17 11 7 10 21 15 15 16 13 20 22 12 16 12 16 15 14 18 11 12 14 14 24 10 13 16 19 8 11 18 19 15 15 23 16 16 11 12 18 11 13 14 16 10 14 13 18 12 15 15 14 8 11 17 12 22 13 12 14 15 10 11 15 19 15 12 17 8 21 23 13 19 11 8 12 15 11 14 15 19 15 10 17 9 16 14 18 14 16 14 14 23 14 14 13 16 12 14 15 14 9 14 7 5 2 3 1 1 1 0.176000 4.000 4.000 9.600 2779386 5 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 0 1 3 0 6 2 6 3 1 5 0 4 1 6 5 1 6 3 6 5 6 2 5 4 5 3 9 8 5 7 5 8 4 12 8 12 6 8 5 7 5 7 10 5 5 6 7 9 7 10 7 10 10 8 12 10 6 13 10 11 12 11 10 10 16 9 6 12 9 11 17 10 11 10 14 11 16 7 11 13 12 10 17 14 11 13 12 10 13 16 16 17 17 15 14 11 8 15 13 27 22 14 19 17 22 22 27 18 28 19 27 32 24 33 21 17 23 12 27 25 20 20 17 22 14 15 22 21 14 9 16 12 19 16 17 16 16 20 14 18 15 14 18 10 12 9 16 12 12 10 13 19 12 12 15 14 15 22 12 11 15 18 19 18 10 6 11 14 10 23 17 14 16 19 10 10 16 19 17 23 16 18 19 18 16 12 14 14 14 13 11 10 24 21 22 26 18 18 18 14 17 5 13 17 11 13 16 14 18 16 9 15 15 18 16 14 21 13 22 17 9 8 16 17 16 16 19 7 20 19 18 16 10 6 10 6 3 5 1 0 0 2 0.178000 4.050 4.050 9.700 2869617 3 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 1 4 1 3 2 2 1 2 3 2 2 4 4 7 5 6 5 3 6 6 5 7 8 1 5 2 3 5 5 8 10 7 6 10 9 6 8 9 7 8 10 15 4 10 5 8 8 6 11 8 8 11 7 5 8 14 5 11 7 13 10 9 7 8 9 14 12 10 9 11 6 14 15 14 13 11 9 18 18 10 14 14 10 12 16 12 9 8 14 15 6 11 11 12 10 14 12 11 18 13 13 27 16 23 23 20 21 32 20 18 25 22 24 32 25 34 19 23 21 25 22 25 19 23 19 21 16 19 16 18 9 18 6 13 12 13 18 12 8 19 14 14 11 16 13 15 14 21 11 14 14 13 11 20 14 14 26 10 22 16 18 15 20 24 18 19 19 16 14 14 14 21 13 19 18 20 13 17 11 17 14 22 17 15 15 20 8 21 15 16 16 23 17 13 19 21 20 12 15 18 15 19 15 18 17 20 15 13 14 24 18 15 15 14 18 20 19 17 19 20 21 21 15 19 19 17 11 16 16 11 23 10 20 13 10 5 10 2 3 1 1 0 0.180000 4.100 4.100 9.800 2975040 3 0 0 0 0 0 0 0 0 0 1 0 0 1 2 2 4 4 2 4 4 1 2 5 0 3 3 5 2 5 5 4 9 2 7 8 4 8 3 11 6 10 4 7 8 6 6 5 8 8 7 11 4 4 11 12 7 11 7 10 11 7 11 11 10 9 7 13 12 18 8 14 12 14 12 8 8 16 10 10 14 16 10 6 8 15 15 15 22 13 19 18 12 6 11 10 7 12 12 24 15 17 9 17 21 10 17 18 14 14 14 9 22 11 23 17 15 23 32 20 11 12 20 15 23 30 20 25 19 26 29 19 27 23 15 19 11 30 16 21 24 18 18 14 8 6 25 13 21 13 13 19 13 21 25 23 18 14 14 13 20 12 14 8 10 25 14 15 20 15 10 15 16 21 8 15 20 21 20 13 16 15 20 11 18 17 17 9 12 24 19 13 18 17 20 14 15 20 10 23 19 25 8 7 13 14 11 15 18 13 10 12 10 17 11 24 16 17 11 12 13 16 20 14 26 12 17 13 14 16 16 6 20 16 23 22 11 17 16 14 25 19 17 21 22 19 13 19 16 18 10 11 7 4 6 0 0 2 0.182000 4.150 4.150 9.900 3083416 6 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 1 3 4 3 5 6 2 1 4 2 3 5 6 6 7 2 4 1 11 7 5 2 6 6 8 9 8 12 7 11 9 6 12 7 8 9 6 6 8 11 6 6 8 11 8 11 12 11 13 9 10 7 9 6 11 9 13 12 12 8 14 15 8 9 8 8 11 22 16 6 11 16 15 9 13 12 12 13 11 15 9 9 16 14 14 12 21 12 12 12 16 19 10 15 18 8 16 14 16 16 21 30 22 9 25 19 19 26 23 33 25 22 21 19 21 20 20 21 20 26 20 29 27 25 25 21 20 25 21 21 18 14 19 15 6 20 18 16 20 16 13 13 15 15 15 15 22 16 15 15 11 21 19 11 19 13 14 15 17 21 12 18 12 22 18 21 18 13 23 15 18 9 21 11 14 23 18 21 25 18 22 15 21 23 15 15 16 19 21 18 19 21 17 13 24 23 22 19 14 20 22 15 14 14 20 20 23 13 18 15 18 20 20 24 9 12 17 21 21 12 16 17 16 16 21 26 19 15 21 22 24 15 11 13 13 6 8 1 4 0 1 0 0.184000 4.200 4.200 10.00 3174897 3 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 0 5 4 3 3 0 7 3 2 4 2 8 6 4 5 9 3 8 6 4 2 7 6 8 7 9 3 5 8 5 9 7 7 6 11 14 7 12 9 9 5 15 12 14 15 12 9 11 5 8 13 11 12 10 9 17 12 11 8 17 11 19 11 15 9 11 7 15 14 16 16 16 7 12 10 14 13 13 16 16 11 15 13 14 12 16 11 12 13 17 10 13 19 11 17 11 13 14 13 10 19 19 23 24 22 24 24 31 19 23 22 28 21 25 29 17 23 17 21 30 22 19 25 27 27 22 23 23 17 25 17 20 17 12 23 21 9 17 20 16 19 16 17 20 9 16 11 22 16 15 12 15 17 23 24 16 16 18 26 11 16 20 18 10 14 17 26 19 17 15 17 19 12 21 20 24 17 27 13 16 18 19 23 14 19 14 10 11 18 19 6 15 21 23 25 17 17 18 21 27 20 17 18 20 25 22 20 18 22 18 17 15 24 16 15 22 18 22 14 20 20 22 18 22 25 19 26 12 19 19 13 12 16 19 14 9 7 5 4 2 0 2 0.186000 4.250 4.250 10.10 3283256 3 0 0 0 0 0 0 0 0 1 0 0 1 1 4 1 5 2 5 5 3 4 6 3 2 4 7 8 2 6 6 4 10 7 8 7 5 4 4 9 8 18 10 7 6 6 13 12 10 13 10 7 15 4 7 10 13 12 8 8 13 5 14 6 9 14 9 10 16 12 13 11 8 12 11 10 13 9 11 15 17 23 18 13 10 12 11 12 14 14 14 10 12 12 16 13 15 13 13 14 18 10 13 17 14 14 14 12 12 8 18 14 23 20 16 19 16 16 16 27 18 21 19 20 19 37 22 21 22 28 24 26 18 21 28 21 22 21 21 22 16 15 13 22 22 27 22 11 13 20 10 17 16 19 20 30 18 25 8 7 22 18 17 14 23 16 17 11 16 24 19 18 22 15 15 23 16 13 15 22 14 8 12 18 13 15 22 17 15 15 17 27 21 19 21 24 17 10 12 14 19 17 22 18 19 17 28 19 15 14 16 28 17 20 15 11 22 18 19 16 21 17 24 19 22 22 20 10 20 18 18 18 21 18 23 18 32 26 21 21 22 20 22 16 17 20 22 21 17 13 13 11 9 5 0 1 1 1 0.188000 4.300 4.300 10.20 3396610 5 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 2 5 5 4 3 3 5 1 2 3 6 9 3 3 3 8 7 2 9 5 7 5 11 8 9 7 6 9 6 4 5 8 6 10 9 14 10 15 6 7 13 15 10 13 7 15 10 10 11 14 14 6 7 17 13 19 3 13 9 6 13 13 14 10 11 12 16 17 13 10 15 15 19 19 11 11 15 11 13 9 13 20 8 18 14 18 23 23 23 15 19 20 14 11 7 18 16 15 22 28 20 24 22 25 17 20 39 24 26 25 25 33 25 25 25 33 15 29 18 29 18 12 18 23 17 24 28 22 16 20 33 23 18 23 26 23 15 24 16 16 16 16 17 15 15 16 14 11 9 23 17 13 13 18 12 19 20 30 20 20 15 21 19 16 18 20 23 19 15 10 11 15 19 13 22 22 18 19 16 19 23 16 10 25 23 20 21 20 31 19 19 18 15 22 18 14 13 21 18 19 22 19 16 17 21 14 20 26 18 26 22 19 26 19 20 22 15 13 24 23 15 21 21 21 27 18 22 19 24 17 22 16 18 23 10 12 3 5 3 3 0 0 0.190000 4.350 4.350 10.30 3502025 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 2 3 4 4 3 4 5 10 7 6 6 4 5 12 10 6 6 13 10 6 7 14 9 6 13 10 12 16 3 9 9 7 5 6 13 11 10 8 11 19 12 14 13 16 13 14 9 12 14 13 14 16 10 14 7 16 18 16 9 15 11 20 15 10 14 14 11 14 17 10 6 16 10 15 12 17 17 20 15 7 12 23 15 8 13 12 8 16 15 20 16 16 20 14 11 20 24 23 20 16 18 27 25 31 27 27 25 21 31 27 20 23 24 32 17 21 34 27 17 19 19 25 30 27 21 24 28 30 19 26 21 14 16 21 23 27 8 17 21 17 11 23 15 22 15 18 10 17 20 23 18 18 17 19 22 15 22 21 19 23 18 18 26 17 18 26 18 24 15 22 23 23 19 23 25 23 24 26 10 21 16 32 23 18 19 24 21 28 26 22 19 19 14 30 21 24 23 22 21 13 27 20 27 24 15 20 22 22 13 25 14 19 32 21 18 18 23 22 22 14 18 20 24 14 19 20 18 17 24 29 27 20 12 18 17 11 9 2 3 2 1 0 0.192000 4.400 4.400 10.40 3593938 3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2 3 4 7 8 1 5 6 8 3 7 5 4 9 8 8 7 7 9 7 9 9 15 5 7 8 15 14 9 9 13 8 8 15 10 7 10 9 10 14 7 8 18 16 17 11 14 15 13 8 15 8 15 18 16 16 22 12 8 16 13 10 13 13 10 21 11 10 16 16 13 13 17 16 20 23 13 22 16 14 15 22 19 22 15 22 24 16 16 16 19 12 15 16 17 20 18 19 26 17 23 18 32 20 28 36 22 25 30 29 31 36 24 24 21 29 24 32 29 30 23 34 19 33 34 25 20 31 27 24 16 14 21 20 13 24 17 28 13 24 16 26 15 26 21 11 15 20 13 20 18 25 23 18 24 26 22 16 22 14 13 16 20 24 25 19 29 20 15 20 16 25 26 21 22 17 24 22 21 17 23 23 15 19 30 23 17 21 19 18 21 26 14 29 24 20 33 19 15 20 23 28 19 23 25 15 19 17 31 23 18 29 26 25 14 24 25 18 19 19 24 35 31 23 23 14 15 19 11 20 19 24 17 16 9 10 12 3 2 2 0 1 0.194000 4.450 4.450 10.50 3712573 7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 5 3 5 4 3 11 3 10 4 6 7 8 5 5 5 8 9 12 7 7 11 8 6 7 9 10 13 10 6 13 9 9 9 11 14 14 12 13 10 6 13 13 15 12 13 19 8 14 13 16 11 13 14 15 9 15 16 13 16 17 17 17 23 18 16 19 10 13 18 16 10 9 21 11 22 14 20 14 18 13 15 12 13 14 16 14 15 20 29 17 14 18 8 15 21 15 19 15 22 20 17 15 23 26 16 26 24 23 23 23 23 30 24 29 28 26 35 33 31 22 23 22 20 37 22 27 33 26 27 26 17 16 18 27 22 21 24 18 18 18 17 15 18 14 19 24 22 15 20 21 15 19 25 15 16 26 19 22 29 20 16 13 15 16 32 24 23 13 33 17 22 18 18 23 24 22 21 20 26 21 16 22 18 18 16 15 26 26 17 22 21 13 25 24 13 23 18 18 25 32 20 24 21 17 19 24 24 23 33 19 19 21 32 18 22 23 19 23 32 18 31 22 25 23 23 31 29 21 16 20 20 15 22 14 12 5 10 9 2 1 0 1 0.196000 4.500 4.500 10.60 3829518 3 0 0 0 0 0 0 0 0 0 0 1 2 2 1 6 2 6 5 9 3 5 6 8 6 3 8 10 7 11 9 4 8 9 5 11 10 13 9 16 13 10 9 5 12 9 15 10 13 9 12 18 14 19 9 13 14 12 13 21 17 17 18 16 13 12 16 14 18 10 15 15 16 11 15 22 17 19 17 11 12 26 12 17 19 18 21 20 27 17 18 19 21 14 19 16 12 16 21 20 18 8 17 17 13 13 18 15 19 15 19 20 28 21 29 27 27 34 24 26 31 25 24 16 17 23 23 30 28 18 28 32 28 37 18 26 18 16 33 21 31 21 20 22 19 20 25 18 18 20 11 17 20 22 23 14 14 17 18 20 25 20 19 20 22 19 16 33 25 21 21 24 18 16 22 29 22 16 27 26 28 21 20 22 17 25 23 20 23 18 16 19 26 22 21 22 23 15 20 19 17 23 19 20 15 22 18 22 26 23 23 31 17 29 18 13 15 19 18 24 22 28 22 17 23 24 26 21 23 25 24 29 26 18 41 24 29 22 27 23 28 16 30 24 18 23 19 17 18 21 17 14 8 2 5 2 0 0 0.198000 4.550 4.550 10.70 3950740 3 0 0 0 0 0 0 0 0 0 1 1 1 2 1 3 7 5 6 7 7 7 4 5 6 4 1 8 9 10 9 8 10 8 12 6 10 8 10 8 11 9 10 15 7 11 8 13 11 13 15 15 17 12 10 8 17 12 9 14 12 14 11 14 21 14 15 20 18 16 8 15 22 24 14 10 18 14 15 16 12 10 16 21 16 25 17 20 17 17 20 15 24 15 17 22 25 17 13 22 18 20 19 11 21 22 21 16 21 24 16 22 17 21 17 24 22 24 35 27 24 28 24 32 37 34 25 24 29 37 37 25 28 21 23 24 22 21 20 25 22 32 19 21 22 24 20 21 20 22 18 27 17 14 20 22 22 22 14 19 20 20 21 23 22 14 20 21 23 20 18 23 20 25 31 24 18 22 14 23 22 21 23 27 27 20 21 18 22 23 24 23 21 18 22 17 22 21 35 15 24 24 12 27 30 27 28 22 31 24 24 19 27 24 28 23 25 26 35 27 22 29 21 24 18 19 26 33 29 31 23 25 19 24 26 21 10 23 24 26 28 20 27 26 17 29 22 18 14 22 8 10 11 4 4 1 2 0 0.200000 4.600 4.600 10.80 4068161 5 0 0 0 0 0 0 0 0 0 0 1 1 0 1 5 5 2 9 3 11 6 9 8 7 7 8 3 3 13 10 8 7 5 8 13 8 7 14 12 10 7 15 13 13 11 12 12 14 12 13 12 10 15 11 14 7 16 15 8 15 13 15 13 18 13 17 21 15 12 13 13 17 18 18 18 16 19 20 17 14 17 24 13 12 18 19 19 13 21 18 26 21 23 16 14 18 19 13 33 13 19 20 14 20 23 14 26 19 22 21 21 16 27 30 25 28 22 32 21 30 27 31 21 30 22 27 27 31 27 21 17 38 41 17 21 20 19 30 24 27 20 20 21 30 20 19 19 31 25 24 13 21 23 19 24 33 24 17 20 17 12 25 23 18 24 11 24 25 22 33 20 11 22 31 21 20 26 27 21 26 24 14 23 23 20 20 26 28 10 20 27 24 22 17 27 28 20 23 23 33 20 24 26 32 33 29 21 25 24 17 18 19 27 26 20 24 26 24 24 26 21 19 24 21 36 32 18 33 33 20 23 25 33 19 27 25 27 24 27 21 21 23 28 18 27 25 19 24 15 17 12 15 7 2 1 0 0 ", "%f ", Inf);
%! assert (rows (x) == n);
%% Note use fprintf so output not sent to stdout
%!test
%! nm = tempname ();
%! fid1 = fopen (nm,"w");
%! x = fprintf (fid1, "%s: %d\n", "test", 1);
%! fclose (fid1);
%! fid2 = fopen (nm,"r");
%! str = fscanf (fid2,"%s");
%! fclose (fid2);
%! unlink (nm);
%! assert (x, 8);
%! assert (str, "test:1");
%!error printf (1)
%!error <Invalid call to printf> printf ()
%!test
%! [s, msg, status] = sprintf ("%s: %d\n", "test", 1);
%! assert (s == "test: 1\n" && ischar (msg) && status == 8);
%!assert (sprintf ("%-+6.2f", Inf), "+Inf ")
%!assert (sprintf ("%-6.2f", Inf), "Inf ")
%!assert (sprintf ("%-+6.2f", nan), "+NaN ") # lowercase nan is part of test
%!assert (sprintf ("%-6.2f", nan), "NaN ")
%!assert (sprintf ("%-+6.2f", NA), "+NA ")
%!assert (sprintf ("%-6.2f", NA), "NA ")
%!error <Invalid call to sprintf> sprintf ()
%!error <format TEMPLATE must be a string> sprintf (1)
%!test
%! arch_list = {"native"; "ieee-le"; "ieee-be"};
%! warning ("off", "Octave:fopen-mode");
%! status = 1;
%!
%! for i = 1:3
%! arch = arch_list{i};
%! for j = 1:4
%! if (j == 1)
%! mode_list = {"w"; "r"; "a"};
%! elseif (j == 2)
%! mode_list = {"w+"; "r+"; "a+"};
%! elseif (j == 3)
%! mode_list = {"W"; "R"; "A"};
%! elseif (j == 4)
%! mode_list = {"W+"; "R+"; "A+"};
%! endif
%! nm = tempname ();
%! for k = 1:3
%! mode = mode_list{k};
%! [id, err] = fopen (nm, mode, arch);
%! if (id < 0)
%! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, mode, arch, err);
%! status = 0;
%! break;
%! else
%! fclose (id);
%! endif
%! tmp_mode = [mode, "b"];
%! [id, err] = fopen (nm, tmp_mode, arch);
%! if (id < 0)
%! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, tmp_mode, arch, err);
%! status = 0;
%! break;
%! else
%! fclose (id);
%! endif
%! tmp_mode = [mode, "t"];
%! [id, err] = fopen (nm, tmp_mode, arch);
%! if (id < 0)
%! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, tmp_mode, arch, err);
%! status = 0;
%! break;
%! else
%! fclose (id);
%! endif
%! endfor
%! unlink (nm);
%! if (status == 0)
%! break;
%! endif
%! endfor
%! if (status == 0)
%! break;
%! endif
%! endfor
%!
%! assert (status == 1);
%!test
%! s.a = 1;
%! fail ("fopen (s)");
%!error fopen ("foo", "x")
%! fopen ("foo", "wb", "noodle");
%! assert (__prog_output_assert__ ("error:"));
%!error <Invalid call to fopen> fopen ()
%!error <Invalid call to fopen> fopen ("foo", "wb", "native", 1)
%!error fclose (0)
%!error <Invalid call to fclose> fclose (1, 2)
%!assert (ischar (tempname ()))
%!error <DIR must be a string> tempname (1)
%!error <PREFIX must be a string> tempname ("foo", 1)
%!error <Invalid call to tempname> tempname (1, 2, 3)
%!test
%! type_list = ["char"; "char*1"; "integer*1"; "int8";
%! "schar"; "signed char"; "uchar"; "unsigned char";
%! "short"; "ushort"; "unsigned short"; "int";
%! "uint"; "unsigned int"; "long"; "ulong"; "unsigned long";
%! "float"; "float32"; "real*4"; "double"; "float64";
%! "real*8"; "int16"; "integer*2"; "int32"; "integer*4"];
%!
%! n = rows (type_list);
%! nm = tempname ();
%! id = fopen (nm, "wb");
%! if (id > 0)
%! for i = 1:n
%! fwrite (id, i, deblank (type_list(i,:)));
%! endfor
%!
%! fclose (id);
%!
%! id = fopen (nm, "rb");
%! if (id > 0)
%! x = zeros (1, n);
%! for i = 1:n
%! x(i) = fread (id, [1, 1], deblank (type_list(i,:)));
%! endfor
%!
%! if (x == 1:n)
%! __printf_assert__ ("ok\n");
%! endif
%! endif
%! endif
%!
%! unlink (nm);
%! assert (__prog_output_assert__ ("ok"));
%!test
%! x = char (128:255)';
%! nm = tempname ();
%! id = fopen (nm, "wb");
%! fwrite (id, x);
%! fclose (id);
%! id = fopen (nm, "rb");
%! y = fread (id, Inf, "uchar=>char");
%! fclose (id);
%! unlink (nm);
%! assert (x, y);
%!test
%! nm = tempname ();
%! id = fopen (nm, "wb");
%! if (id > 0)
%! fprintf (id, "%d\n", 1:100);
%! fclose (id);
%! id = fopen (nm, "rb");
%! if (id > 0)
%! for i = 1:101
%! fgets (id);
%! endfor
%! if (feof (id))
%! fclose (id);
%! id = fopen (nm, "rb");
%! pos_one = ftell (id);
%! s_one = fgets (id);
%! for i = 1:48
%! s = fgets (id);
%! endfor
%! pos_fifty = ftell (id);
%! s_fifty = fgets (id);
%! fseek (id, pos_one, SEEK_SET);
%! s_one_x = fgets (id);
%! fseek (id, pos_fifty, SEEK_SET);
%! s_fifty_x = fgets (id);
%! if (s_one == s_one_x && s_fifty == s_fifty_x)
%! frewind (id);
%! s_one_x = fgets (id);
%! if (s_one != s_one_x)
%! error ("bombed!!");
%! endif
%! endif
%! endif
%! endif
%! endif
%! unlink (nm);
%!assert (fputs (1, 1),-1)
%!error <Invalid call to fputs> fputs ()
%!error <Invalid call to fputs> fputs (1, "foo", 1)
%!error fgetl ("foo", 1)
%!error <Invalid call to fgetl> fgetl ()
%!error <Invalid call to fgetl> fgetl (1, 2, 3)
%!error fgets ("foo", 1)
%!error <Invalid call to fgets> fgets ()
%!error <Invalid call to fgets> fgets (1, 2, 3)
%!test
%! s.a = 1;
%! fail ("fprintf (s)", "Invalid call to fprintf");
%!error <Invalid call to fprintf> fprintf ()
%!error <Invalid call to fprintf> fprintf (1)
%!error fprintf (1, 1)
%!error fprintf (-1, "foo")
%!error fscanf ("foo", "bar")
%!error <Invalid call to fscanf> fscanf ()
%!error <Invalid call to fscanf> fscanf (1)
%!error <Invalid call to fread> fread ()
%!error <Invalid call to fread> fread (1, 2, "char", 1, "native", 2)
%!error fread ("foo")
%!error <Invalid call to fwrite> fwrite ()
%!error <Invalid call to fwrite> fwrite (1, rand (10), "char", 1, "native", 2)
%!error fwrite ("foo", 1)
%!error <Invalid call to feof> feof ()
%!error <Invalid call to feof> feof (1, 2)
%!error feof ("foo")
%!error <Invalid call to ferror> ferror ()
%!error <Invalid call to ferror> ferror (1, 'clear', 2)
%!error ferror ("foo")
%!error <Invalid call to ftell> ftell ()
%!error <Invalid call to ftell> ftell (1, 2)
%!error ftell ("foo")
%!error <Invalid call to fseek> fseek ()
%!error <Invalid call to fseek> fseek (1, 0, SEEK_SET, 1)
%!error fseek ("foo", 0, SEEK_SET)
%!error <Invalid call to frewind> frewind ()
%!error <Invalid call to frewind> frewind (1, 2)
%!error frewind ("foo")
%!test
%! id = tmpfile ();
%! ## FIXME: better test for endianness?
%! big_endian = (bitunpack (uint16 (1))(1) == 0);
%! fwrite (id, "abcdefg");
%! frewind (id);
%! [data, count] = fread (id);
%! assert (data, [97; 98; 99; 100; 101; 102; 103]);
%! assert (count, 7);
%! frewind (id);
%! [data, count] = fread (id, 'int16');
%! expected = [25185; 25699; 26213];
%! if (big_endian)
%! expected = double (swapbytes (int16 (expected)));
%! endif
%! assert (data, expected);
%! assert (count, 3);
%! frewind (id);
%! [data, count] = fread (id, [10, 2], 'int16');
%! assert (data, expected);
%! assert (count, 3);
%! frewind (id);
%! [data, count] = fread (id, [2, 10], 'int16');
%! expected = [25185, 26213; 25699, 0];
%! if (big_endian)
%! expected = double (swapbytes (int16 (expected)));
%! endif
%! assert (data, expected);
%! assert (count, 3);
%! fclose (id);
%!test
%! id = tmpfile ();
%! fwrite (id, char (0:15));
%! frewind (id);
%! [data, count] = fread (id, inf, "2*uint8", 2);
%! assert (data, [0; 1; 4; 5; 8; 9; 12; 13]);
%! assert (count, 8);
%! fclose (id);
%!test
%! id = tmpfile ();
%! fwrite (id, char (0:15));
%! frewind (id);
%! [data, count] = fread (id, 3, "2*uint8", 3);
%! assert (data, [0; 1; 5]);
%! assert (count, 3);
%! [data, count] = fread (id, 3, "2*uint8", 3);
%! assert (data, [6; 7; 11]);
%! assert (count, 3);
%! [data, count] = fread (id, 3, "2*uint8", 3);
%! assert (data, [12; 13]);
%! assert (count, 2);
%! [data, count] = fread (id, 3, "2*uint8", 3);
%! assert (data, []);
%! assert (count, 0);
%! fclose (id);
%!test
%! id = tmpfile ();
%! ## FIXME: better test for endianness?
%! big_endian = (bitunpack (uint16 (1))(1) == 0);
%! fwrite (id, char (0:15));
%! frewind (id);
%! [data, count] = fread (id, [1, Inf], "4*uint16", 3);
%! expected = [256, 770, 1284, 1798, 3083, 3597];
%! if (big_endian)
%! expected = double (swapbytes (uint16 (expected)));
%! endif
%! assert (data, expected);
%! assert (count, 6);
%! fclose (id);
%!test
%! id = tmpfile ();
%! ## FIXME: better test for endianness?
%! big_endian = (bitunpack (uint16 (1))(1) == 0);
%! fwrite (id, char (0:15));
%! frewind (id);
%! [data, count] = fread (id, [3, Inf], "4*uint16", 3);
%! expected = [256, 1798; 770, 3083; 1284, 3597];
%! if (big_endian)
%! expected = double (swapbytes (uint16 (expected)));
%! endif
%! assert (data, expected);
%! assert (count, 6);
%! fclose (id);
%!test
%! id = tmpfile ();
%! fwrite (id, "abcd");
%! frewind (id);
%! [data, count] = fread (id, [2, 3], "char");
%! assert (data, [97, 99; 98, 100]);
%! assert (count, 4);
%! fclose (id);
%!assert (sprintf ("%1s", "foo"), "foo")
%!assert (sprintf ("%.s", "foo"), char (zeros (1, 0)))
%!assert (sprintf ("%1.s", "foo"), " ")
%!assert (sprintf ("%.1s", "foo"), "f")
%!assert (sprintf ("%1.1s", "foo"), "f")
%!assert (sprintf ("|%4s|", "foo"), "| foo|")
%!assert (sprintf ("|%-4s|", "foo"), "|foo |")
%!assert (sprintf ("|%4.1s|", "foo"), "| f|")
%!assert (sprintf ("|%-4.1s|", "foo"), "|f |")
%!assert (sprintf ("%c ", "foo"), "f o o ")
%!assert (sprintf ("%s ", "foo"), "foo ")
%!assert (sprintf ("|%d|", "foo"), "|102||111||111|")
%!assert (sprintf ("|%s|", [102, 111, 111]), "|foo|")
%!assert (sprintf ("%s %d ", [102, 1e5, 111, 1e5, 111]), "f 100000 o 100000 o ")
%!assert (sprintf ("%c,%c,%c,%c", "abcd"), "a,b,c,d")
%!assert (sprintf ("%s,%s,%s,%s", "abcd"), "abcd,")
%!assert (sprintf ("|%x|", "Octave"), "|4f||63||74||61||76||65|")
%!assert (sprintf ("|%X|", "Octave"), "|4F||63||74||61||76||65|")
%!assert (sprintf ("|%o|", "Octave"), "|117||143||164||141||166||145|")
## bug #47192
%!assert (sprintf ("%s", repmat ("blah", 2, 1)), "bbllaahh")
%!assert (sprintf ("%c", repmat ("blah", 2, 1)), "bbllaahh")
%!assert (sprintf ("%c %c %s", repmat ("blah", 2, 1)), "b b llaahh")
|
bced716e54ea104ecb7092ab7143ae3463b3f5b8
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Linear_Integrated_Circuits_J._B._Gupta_1850.zip/Linear_Integrated_Circuits_J._B._Gupta_1850/CH2/EX2.6/exa_2_6.sce
|
0fbe94dd21b180017f4b7e699538cadf3d830f9b
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 175 |
sce
|
exa_2_6.sce
|
errcatch(-1,"stop");mode(2);// Exa 2.6
;
;
// Given data
Ad= 100;
Acm= 0.01;
CMRR= Ad/Acm;
CMRR_desh= 20*log10(CMRR);// in dB
disp(CMRR_desh,"CMRR in dB")
exit();
|
059cbbba0fc8224ecc9b0417ae7ad69fa8ce4268
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3543/CH2/EX2.1/Ex2_1.sce
|
898f7df1cb4473274026e9ba54206b1a3249206c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 563 |
sce
|
Ex2_1.sce
|
// Example 2.1
// Calculation of core diameter
// Page no 31
clc;
clear;
close;
// Given data
n1=1.5; // Refractive index of core
n2=1.48; // Refractive index of cladding
N=1000; // No of modes
lambda=1.3; // Light wavelength
V=sqrt(2*N); // Mode parameter
//core diameter
d=(lambda*V)/(2*%pi*sqrt(n1^2-n2^2));
//Display result on command window
printf("\n Mode parameter = %0.2f ",V);
printf("\n Core diameter(micrometer)= %0.0f ",d);
// Answer is wrong in the book.
|
bbe1cb56ef24c871b8808cf49740660b5f2fc5d3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1898/CH8/EX8.4/Ex8_4.sce
|
3219b328215abe6cc3cb93814899ccf6ebcd6c83
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 991 |
sce
|
Ex8_4.sce
|
clear all; clc;
disp("Scilab Code Ex 8.4 : ")
//Given:
y_c = 125/1000; //m
x_c = 1.5; //m
y_b = 1.5; //m
x_b = 6; //m
udl = 50; //kN/m
l_udl = 2.5; //m
l = 250/1000; //m
width = 50/1000; //m
//Internal Loadings:
N = 16.45; //kN
V = 21.93; //kN
M = 32.89; //kNm
//Stress Components:
//Normal Force:
A = l*width;
sigma1 = N/(A*1000);
//Shear Force:
tou_c = 0;
//Bending Moment:
c = y_c;
I = (1/12)*(width*l^3);
sigma2 = (M*c)/(I*1000);
//Superposition:
sigmaC = sigma1+sigma2;
//Display:
printf('\n\nThe stress due to normal force at C = %1.2f MPa',sigma1);
printf('\nThe stress due to shear force at C = %1.2f MPa',tou_c);
printf('\nThe stress due to bending moment at C = %1.2f MPa',sigma2);
printf('\nThe resultant stress at C = %1.1f MPa',sigmaC);
//----------------------------------------------------------------------END--------------------------------------------------------------------------------
|
33cb89ffcf6c3d048a11e4d8ec1340be79fee9da
|
04ebc1029c20752e734a1d83b49a31329d5283fd
|
/trust_game_2/frame7.sce
|
e5ab107013dc4467790e4a4e40467d822ae44e95
|
[] |
no_license
|
jangwoopark/presentation-trust
|
a1293e481da417c914534a30b1969f092f08e115
|
31621ef8b534bca19d4b9d4a5d57792ff8bb058d
|
refs/heads/master
| 2020-06-27T14:50:42.294466 | 2017-09-12T01:51:08 | 2017-09-12T01:51:08 | 97,063,115 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,636 |
sce
|
frame7.sce
|
scenario = "frame";
scenario_type = fMRI_emulation;
#scenario_type = fMRI;
scan_period = 3000;
response_matching = simple_matching;
no_logfile = false;
sequence_interrupt=false; #default
active_buttons = 2;
button_codes=0,1;
default_font="arial";
default_font_size=30;
default_text_color=255,255,255;
default_background_color=0,0,0;
pcl_file = "frame7.pcl";
begin;
picture {} default;
text { caption = "+"; font_size = 12; } cross;
text { caption = "SELECT
AMOUNT
FROM"; } select;
text { caption = "10"; } dollar;
text { caption = "SENDING:"; } sending;
text { caption = "KEEPING:"; } keeping;
text { caption = "_"; } dollar_2;
text { caption = "_"; } dollar_3;
box { height = 486; width = 2; color = 255,255,255; } vert;
box { height = 2; width = 142; color = 255,255,255; } horiz;
box { height = 2; width = 4; color = 255,255,255; } divide;
box { height = 42; width = 140; color = 0,0,0; } zero;
array { LOOP $i 10; $k = '$i+1'; box {height = 42; width = 140; color = 0,0,0;} "red10_$k"; ENDLOOP; } rex;
picture { text cross; x = 0; y = 0;
LOOP $i 10; $k = '$i+1';
box "red10_$k" ; x=0; y='-198+$i*44';
ENDLOOP;
text select; x = -250; y = 0;
text dollar; x = -250; y = -100;
text sending; x = 250; y = 23;
text dollar_2; x = 400; y = 23;
text keeping; x = 250; y = -23;
text dollar_3; x = 400; y = -23;
box zero; x=0; y=-242;
box vert; x=70; y=-22;
box vert; x=-70; y=-22;
box horiz; x=0; y=220;
box horiz; x=0; y=-264;
LOOP $i 11;
box divide; x=68; y='220-$i*44';
box divide; x=-68; y='220-$i*44';
ENDLOOP;
} cursor10;
trial { stimulus_event { picture cursor10; } coding; } codes;
|
f76efe60ad18823be3629dc4dd10709a642e866e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3363/CH15/EX15.7/Ex15_7.sce
|
9e7311f614516b879b2fe1e214e4a95c1aa2627c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 24 |
sce
|
Ex15_7.sce
|
//Example 15.7, page 547
|
af4dfc75b4b0d7fcbdbf8494a8eb94782efab834
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH19/EX19.19/Ex19_19.sce
|
33b016880a7e9e043a1967148cac6afaf2c3e230
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 124 |
sce
|
Ex19_19.sce
|
clear
//Given
M=-20
R=-120
//Calculation
f0=R/2.0
fe=f0/M
//Result
printf("\n Focal length of eyepiece is %0.3f cm", fe)
|
8f18a1831adea6bc578441e6bd75860fd4c363f2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/68/CH1/EX1.3/ex3.sce
|
d4cd1d46a7f3b90ab1aed9f233b737d0f7bd1529
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,037 |
sce
|
ex3.sce
|
// Example 1.3 : Overall voltage gain of cthree-stage amplifier
gainloss_in=10^6/(1*10^6+100*10^3); // fraction of input signal is obtained using voltage divider rule , gainloss_in= v_i1/v_s
A_v1=10*100000/(100000+1000); // A_v1 = v_i2/v_i1 is the voltage gain at first stage
A_v2=100*10000/(10000+1000); // A_v2 = v_i3/v_i2 is the voltage gain at second stage
A_v3=100/(100+10); // A_v3 = v_L/v_i3 is the voltage gain at the output stage
A_v=A_v1*A_v2*A_v3; // A_v is the total voltage gain
disp(A_v,"The overall voltage gain (V/V) =")
disp(20*log10(A_v),"The overall voltage gain (dB) =")
gain_src_ld=A_v*gainloss_in;
disp(gain_src_ld,"The voltage gain from source to gain (V/V) =")
disp(20*log10(gain_src_ld),"The voltage gain from source to load (dB) =")
A_i=10^4*A_v; // A_i=i_o/i_i=(v_L/100)/(v_i1/10^6)
disp(A_i,"The current gain (A/A)=")
disp(20*log10(A_i),"The current gain (dB) =")
A_p=818*818*10^4; // A_p=P_L/P_I=v_L*i_o/v_i1*i_i
disp(A_p,"The power gain (W/W) =")
disp(10*log10(A_p),"The power gain (dB) =")
|
8e43db14378b77ec2b99c898df2f35802ac1bde7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH5/EX5.12/5_12.sce
|
4f431998d61c436e8c6939c57f4b782667b8a077
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 889 |
sce
|
5_12.sce
|
// To determine all day efficiency
clc;
clear;
p=15*(10^3);
t1=12;
t2=6;
t3=6;
pf1=0.5;
pf2=0.8;
pf3=0.9;
x=poly([0 1],'x','c');
nm=0.98; // Max Efficiency
y=(nm*(p+(2*x)))-p;
x=roots(y); // To find the iron loss or copper loss at unity p.f for maximum efficiency
Pil=x; // Iron loss
Pc=x; // Copper Loss at unity p.f for maximum efficiency
deff('a=culoss(b,c)','a=b*Pc*((c/(p/1000))^2)');
Pc1=culoss(12,(2/pf1)); // Total Copper Loss for 12hrs - 2 kW at p.f 0.5
Pc2=culoss(6,(12/pf2)); // Total Copper Loss for 6hrs - 12 kW at p.f 0.8
Pc3=culoss(6,(18/pf3)); // Total Copper Loss for 6hrs - 18 kW at p.f 0.9
Po=((12*2)+(6*12)+(6*18))*(10^3);// Power Output
eff=Po*100/(Po+(Pc1+Pc2+Pc3)+(24*Pil));
// Note the iron loss has to be considered to calculate the Efficiency, Text Error
printf('The all day effciency = %f percent \n',eff)
|
aa8d37f7852423dea982adffe19c73e02bea2a1d
|
eb7eeb04a23a477e06f3c0e3d099889caee468b4
|
/src/examples/course/scilab/basics_whileandfor/twhile1.sci
|
706d65c3138b0029aaa314b93677c442eaf618ff
|
[] |
no_license
|
mikeg64/iome
|
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
|
cc1c94433133e32776dcf16704ec4ec337b1b4a0
|
refs/heads/master
| 2020-03-30T15:57:33.056341 | 2016-04-13T09:24:27 | 2016-04-13T09:24:27 | 151,387,236 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 314 |
sci
|
twhile1.sci
|
% example while loop with a break
%
try1 = 1;
while try1
n = input( ' Enter a number: ' ) ;
if n < 0.5
disp 'Too small !'
elseif n > 100
disp ' Too big !'
else
disp ' It will do.'
% break
% the below line will also work for terminating the loop
try1 = 0;
end
end
|
2434508f920623d5308fe720865bbe29dc47038c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1106/CH6/EX6.10/ex6_10.sce
|
59a3d222ce3c694c0c5c0217a4a683fc96915767
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 304 |
sce
|
ex6_10.sce
|
// Example 6.10, Page No-286
clear
clc
fh=2500
fL=250
B=fh-fL
printf('Bandwdth B= %d Hz', B)
fr=sqrt(fh*fL)
printf('\nResonant Frequency fr= %.2f Hz', fr)
fc=(fL+fh)/2
printf('\nCenter Frequency fr= %d Hz', fc)
printf('\nHence, resonant frequency is always less than center frequency')
|
632d13ece72dcd2a07ebc9a1f5c04c4c6d9caca7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/964/CH25/EX25.4/25_4.sce
|
e2ef29404032fe4a3bd2fc27a8b9dcd0d086f7d6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 357 |
sce
|
25_4.sce
|
clc;
clear;
m=68.1;
g=9.8;
c=12.5;
a=8.3;
b=2.2;
vmax=46;
function yp=f(t,v)
yp=g-c*v/m;
endfunction
v0=0;
t=0:15;
x=ode(v0,0,t,f);
disp(x)
plot(t,x,'.-')
function yp=f1(t,v)
yp=g-(c/m)*(v+a*(v/vmax)^b)
endfunction
x1=ode(v0,0,t,f1);
plot(t,x1)
xtitle("velocity vs time","t (s)","v (m/s)")
h1=legend(["Linear";"Nonlinear"])
|
3fa807793e3196acc8286a48c06e915ed20c5510
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/779/CH4/EX4.6/4_6.sce
|
d9d99cae848fd3bebffc3de6b1377ba0b6cde98a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 334 |
sce
|
4_6.sce
|
// Process 1-2
Q12 = 235; // in KJ/Kg
W12 = 0 ;
U12 = Q12-W12;
// Process 2-3
Q23 = 0;
U23 = -70 ;
W23 = Q23-U23;
// Process 3-1
Q31 = - 200;
U31 = -U12-U23;
W31 = Q31-U31;
//
W = W12 + W23 + W31;
Q = Q12 + Q23 + Q31;
disp("KJ/Kg",Q,"Heat trasfer in the cycle is")
disp("KJ/Kg",W,"Work done during the the cycle is")
|
63127c785cfd54d3780dd16558d72c28dd9129ea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1904/CH10/EX10.1/10_1.sce
|
d5ee25a1b86825549d7f20ccbf0ecd8eccb4d879
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,158 |
sce
|
10_1.sce
|
//To Determine the necessary realy and recloser coordination
//Page 542
clc;
clear;
//For Recloser
InstT=0.03; //From Curve A //Instaneous Time
TimeD=0.17; //From Curve B //Time Delay
//For Relay
PickU=0.42; //From Curve C //Pick Up
Reset=(1/10)*60; //Assuming a 60 s reset time for the relay with number 10 time dial setting
RecloserOT=1; //Assumed Recloser Open Time
RelayCTI=InstT/PickU; //Relay Closing Travel during instantaneous operation
RelayRTI=(-1)*RecloserOT/Reset; //Relay Reset Travel during instantaneuos
RelayCTD=TimeD/PickU;
RelayRTD=(-1)*RecloserOT/Reset; //Relay Reset Travel during trip
NetRelayTravel=RelayCTD-RelayRTD;
printf('\nDuring Instantaneous Operation\n')
printf('|Relay Closing Travel| < |Relay Rest Travel|\n')
printf('|%g percent| < |%g percent|\n',RelayCTI*100,RelayRTI*100)
printf('\nDuring the Delayed Tripping Operations\n')
printf('Total Relay Travel is from:\n')
printf('%g percent to %g percent to %g percent\n',RelayCTD*100,RelayRTD*100,RelayCTD*100)
printf('Since this Net Total Relay Travel is less than 100 percent, \nthe desired recloser to relay coordination is accomplished\n')
|
e7037b94f592439f6209599a0b2fcc0b3b32f616
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH7/EX7.15/7_15.sce
|
8b8eab0a30e5db110a8fd1efe27e6bd640ac3dca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 574 |
sce
|
7_15.sce
|
//Chapter 7, Problem 15, Figure 7.6
clc;
u0=4*%pi*10^-7;
ur=1;
B=0.80; //flux density
H=750; //field intensity from B-H curve
l1=25*10^-2; //length of cast steel core
l2=1*10^-3; //air gap
A=2*10^-4; //cross-sectional area
N=5000; //no of turns
//for cast steel core
S1=(l1*H)/(B*A);
//For the air gap:
S2=l2/(u0*ur*A);
//Total reluctance
S=S1+S2;
phi=B*A;
I=(S*phi)/N;
printf("Current in the coil to produce a flux density of 0.80T = %f A",I);
|
ac4ef803c11c25c97c48cabaa9b60c5133f06444
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1301/CH14/EX14.10/ex14_10.sce
|
81569e23c76e649c001a5de2793b99c2baee269b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 303 |
sce
|
ex14_10.sce
|
clc;
K=2*10^-7; //constant in N/A square
I=8; //current in Ampere
s=5*10^-2; //distance in m
B=(K*I)/s; //calculating magnitude of field
disp(B,"Magnitude of field in Tesla = "); //displaying result
disp(2*B,"Total field in Tesla = "); //displaying result
|
a2f0d8bc9ef0be554f32f3d844a30b4d183756b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2789/CH9/EX9.10/Ex9_10.sce
|
b443c691c1bb0ceabcebafed47ae046e36deb4e7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 304 |
sce
|
Ex9_10.sce
|
clear;
clc;
//page no. 305
Q = 90;//gpm
d = 3;//in
l = 3000;//ft
V = Q/(60*7.48*0.25*%pi*(d/12)^2);
R_h = (d/12)/4;
C_hw = 140;
S = (V/(1.318*140*R_h^0.63))^(1/0.54);
h_L = S*l;
printf('The loss of head = %.1f ft of water',h_L);
//there is a minute error in the answer given in textbook
|
fb3c4a642e181cf1a4d17855c36937dfffe2a21a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/69/CH5/EX5.29/5_29.sce
|
7a860acdf673711e9c3b9c46d9006223e4969d57
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 194 |
sce
|
5_29.sce
|
clear; clc; close;
Vee = 20;
Vbe = 0.7;
R1 = 5.1*(10^(3));
R2 = R1;
Re = 2.2*(10^(3));
Vb = (R1/(R1+R2))*(-Vee);
Ve = Vb - Vbe;
Ie = (Ve-(-Vee))/Re;
disp(Ie,"Constant current :");
|
118c2a04593a77a0cc968cab4e362426b2deefdc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/911/CH1/EX1.7.b/ex_1_7_b.sce
|
30eaf0661a8d9e97c76e28b4508b3b898f7511f2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 375 |
sce
|
ex_1_7_b.sce
|
// example 1.7(b) //
//conversion of binary to hexadecimal //
clc
//clears the screen //
clear
//clears already existing variables //
x= bin2dec ('1011001110' )
// binary to decimal conversion //
a= dec2hex (x)
//decimal to hexadecimal conversion //
disp ('conversion of given binary number to its hexadecimal form is : ')
disp (a)
// answer in hexadecimal form//
|
f946dd6a07dd86e38753a22d6a0b0a10007dbd11
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1997/CH2/EX2.6/example6.sce
|
89793b6ad75bbf9b79e6e7a4feb79bc4f493a780
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 455 |
sce
|
example6.sce
|
//Chapter-2 example 2.6
//=============================================================================
clc;
clear;
PW = 2*10^-6; //pulse width in sec
PRF=800; //pulse repetition frequency in KHz
V0=3*10^8; //velocity in m/s
//Calculations
Ru=V0/(2*PRF); //unambigious range in mts
RR=(V0*PW)/2; //Range resolution in m
//output
mprintf('unambigious range is %g Km\n Range resolution is %g m',Ru/1000,RR);
|
65485e053eae3f0792343326be09440d3a939d32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1073/CH3/EX3.1/3_1.sce
|
12e938423d1d4a52fd0764b75e1aaa6722a9c81f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 784 |
sce
|
3_1.sce
|
clc;
clear;
//Example 3.1
mu=10^-3 //N.s/m^2
//At distance y from surface
//ux=a+by+cy^2+dy^3
//At y=0,ux=0 therefore a=0
//i.e tao=0
//At edge of boundary layer,ie y=del
//ux=u_inf
//At y=o,c=0
//At y=del,ux=b*del+d*del^3
//Therefore, b=-3*d*del^3
//d=-u_inf/(2*del^2)
//b=3*u_inf/(2*del)
//For velocity profile,we have:
//del/x=4.64*(Nre_x)^(-1/2)
//Evaluate N re_x
x=75; //[mm]
x=x/1000; //[m]
u_inf=3; //[m/s]
rho=1000 //[kg/m^3] for air
Nre_x=u_inf*rho*x/mu //Reynold number
//Substituting the value,we get
del=x*4.64*(Nre_x^(-1/2)) //[m]
printf("\nBoundary layer thickness is del=%f m or %f mm",del,del*1000);
printf("\nWrong units in answer of book,m and mm are wrongly interchanged");
|
3316238eb6fd4e329653edf49d48da1c751d099c
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/blur.sci
|
4b3bcd038b8dd8676fc9a3cfa1274456b78abf16
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957 | 2017-01-15T21:26:17 | 2017-01-15T21:26:17 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 320 |
sci
|
blur.sci
|
function [out]=blur(input_image ,ksize_width,ksize_height,anchorX,anchorY)
input_image1=mattolist(input_image);
a=opencv_blur(input_image1, ksize_width,ksize_height,anchorX,anchorY);
dimension=size(a)
for i = 1:dimension
out(:,:,i)=a(i);
end
endfunction;
|
da5d1af0a617c4954feac936591ea04abb5d38b4
|
1573c4954e822b3538692bce853eb35e55f1bb3b
|
/DSP Functions/allpasslp2bs/test_4.sce
|
3182dd59fdc1e608a6d41d62d8eeee16a49727c1
|
[] |
no_license
|
shreniknambiar/FOSSEE-DSP-Toolbox
|
1f498499c1bb18b626b77ff037905e51eee9b601
|
aec8e1cea8d49e75686743bb5b7d814d3ca38801
|
refs/heads/master
| 2020-12-10T03:28:37.484363 | 2017-06-27T17:47:15 | 2017-06-27T17:47:15 | 95,582,974 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 315 |
sce
|
test_4.sce
|
// Test # 4 : When either Input Argument #1 or #2 is of complex type
exec('./allpasslp2bs.sci',-1);
[n,d]=allpasslp2bs(0.3,[0.4,0.2*%i]);
//!--error 10000
//Wt must be real and numeric and must contain only 2 elements
//at line 43 of function allpasslp2bs called by :
//[n,d]=allpasslp2bs(0.3,[0.4,0.2*%i]);
|
78c31739b9f886d1414a6505ba646500fa6478a8
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3.1/Unix-Windows/scilab-2.3/macros/util/readc_.sci
|
540a955298a53627611692e6f68f7258910c3ff8
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 319 |
sci
|
readc_.sci
|
function [c]=readc_(unit)
//Syntaxes : c=readc_(unit)
// c=readc_()
//
//readc_ reads a character string
//This macro allows one to interrupt an exec file without pause;
//the exec file stops until carrige return is made.
//!
//
[lhs,rhs]=argn(0);
if rhs<=0 then unit=%io(1); end;
c=read(unit,1,1,'(a)');
|
a95484eeb6df98f876b3928ce53a3197b24db6a1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2318/CH3/EX3.7/ex_3_7.sce
|
2a678b7c98d77baff8a30d1251d451de4d24404f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 238 |
sce
|
ex_3_7.sce
|
//Example 3.7: Unknown resistance
clc;
clear;
close;
//given data :
s=0.5;//Mega ohms
g=10;//killo ohms
d1=41;//divisions
d2=51;//divisions
r=(((s*10^6)+(g*10^3))*(d1/d2))-(g*10^3);//ohms
disp(r*10^-6,"unknown resistance is,(Mega-ohm)=")
|
17710015aeccd66e68a51f791d2dc7c9a904265d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH20/EX20.10/Ex20_10.sce
|
f3e62de5fe73eda49eab31446776ffc3759bb414
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 543 |
sce
|
Ex20_10.sce
|
//Example 20.10
P_ave=100*10^6;//Average power (W)
V_rms=200*10^3;//Rms voltage (V)
I_rms=P_ave/V_rms;//Rms current (A)
printf('a.Current required = %0.1f A',I_rms)
R=1;//Resistance (ohm)
P_ave_b=I_rms^2*R;//Power dissipated (W)
printf('\nb.Power dissipated by transmission lines = %0.1f kW',P_ave_b/1000)
percent_loss=P_ave_b/P_ave*100;
printf('\nc.Percentage of power lost = %0.3f%%',percent_loss)
//Answer varies due to round off error
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
d38f954708255ce4234322443b00db0c129c297d
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/rc2ac/rc2ac1.sce
|
fa5df4f208897d83a2e3dd86d462ba9ba228f2cc
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 232 |
sce
|
rc2ac1.sce
|
//check o/p for vector i/p
k = [0.3090 0.9800 0.0031 0.0082 -0.0082];
r0 = 0.1;
a = rc2ac(k,r0);
disp(a);
//output
//
// 0.1
// - 0.0309
// - 0.0790948
// 0.0786627
// 0.0293629
// - 0.0950000
//
//
|
89633521f6cbc3867fa8f4cc842d7774dfc81908
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH13/EX13.39/Ex13_39.sce
|
67e398a5193e03ce46e9908393a320189093d647
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 250 |
sce
|
Ex13_39.sce
|
//EX13_39 Pg-21
clc
clear
printf("8''s complement (346)_8 is : ")
x=['346'];
y=oct2dec(x);//octal to decimal conversion//
z=bitcmp(y,9);//one's complement of the number//
z=z+1;
z2=dec2oct(z)//8's complement of the number//
printf("%s",z2)
|
2fa8ef36929a10030e01f13d14b76a0cbb1b94b9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1949/CH2/EX2.27/2_27.sce
|
8085a8bcaad22ffc2981fd794aa8f97059dce325
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 586 |
sce
|
2_27.sce
|
//Chapter-2,Example 2_27,Page 2-49
clc()
//Given Data:
m=2 //order
lam1=5.77*10^-7 //Wavelength of light
lam2=5.791*10^-7 //Wavelength of light
GE=1/6000*10^-2 //GE=(a+b) grating element
//Calculations:
//We know, (a+b)*sin(theta)=m*lam
theta1=asin(m*lam1/GE)*180/%pi //angular position in first minima
theta2=asin(m*lam2/GE)*180/%pi //angular position in second minima
as=(theta2-theta1)*60 //Angular separation in minutes
printf('Angular separation is = %.0f minutes \n \n',as)
|
b528825f465cb5ff4113a760f7c1d3b175be7464
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/572/CH6/EX6.9/c6_9.sce
|
c163410a032bd693f71d5a4ea0d117fc5eb0a65c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 980 |
sce
|
c6_9.sce
|
// (6.9) Air undergoes an isentropic process from p1 = 1 bar, T1= 300K to a final state where the temperature is T2= 650K.,Employing the ideal gas model, determine the final pressure p2, in atm. Solve using (a) pr data from Table A-22 (b) Interactive Thermodynamics: IT, and (c) a constant specific heat ratio k evaluated at the mean temperature, 475K, from Table A-20.
//solution
//variable initialization
P1 = 1 //initial pressure in bar
T1 = 300 //initial temperature in kelvin
T2 = 650 //final temperature in kelvin
//part(a)
//from table A-22
pr2 = 21.86
pr1 = 1.3860
p2 = P1*(pr2/pr1)
printf('part(a) P2 in bar = %f ',p2)
//part(b)
printf('\n part(b) IT software problem')
//part(c)
k = 1.39 //from table A-20
p2a = P1*((T2/T1)^(k/(k-1)))
printf('\n part(c) P2a in bar = %f',p2a)
|
93f81ca5e5ca9edfb7af6de6c3efd902b6209d69
|
20253970b7dd99e615215029609de822e2bf855d
|
/judge/tests/52063/39.tst
|
f598857380f471301cfd1012ded1bd3104f651db
|
[] |
no_license
|
B-Rich/CATS
|
d26d6c85cfc1dbdc78fa16f691adbfccc615df03
|
d299e328f9e7498ecd9f58f64069fcd57536db00
|
refs/heads/master
| 2021-01-01T06:10:11.322262 | 2011-06-21T15:06:06 | 2011-06-21T15:06:06 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,196 |
tst
|
39.tst
|
1000 1000
100
51 50 49
51 148 49
51 246 49
51 344 49
51 442 49
51 540 48
51 638 49
51 736 49
51 834 48
51 932 48
149 50 46
149 148 48
149 246 47
149 344 46
149 442 47
149 540 48
149 638 47
149 736 47
149 834 48
149 932 46
247 50 46
247 148 47
247 246 46
247 344 46
247 442 46
247 540 47
247 638 47
247 736 49
247 834 47
247 932 46
345 50 48
345 148 46
345 246 48
345 344 48
345 442 49
345 540 47
345 638 46
345 736 49
345 834 46
345 932 49
443 50 48
443 148 49
443 246 49
443 344 46
443 442 48
443 540 49
443 638 46
443 736 49
443 834 46
443 932 49
541 50 49
541 148 46
541 246 48
541 344 49
541 442 46
541 540 47
541 638 47
541 736 48
541 834 47
541 932 46
639 50 46
639 148 47
639 246 49
639 344 49
639 442 46
639 540 47
639 638 49
639 736 47
639 834 48
639 932 47
737 50 47
737 148 48
737 246 46
737 344 47
737 442 49
737 540 46
737 638 46
737 736 47
737 834 48
737 932 47
835 50 46
835 148 47
835 246 47
835 344 47
835 442 48
835 540 46
835 638 46
835 736 48
835 834 46
835 932 46
933 50 46
933 148 49
933 246 46
933 344 46
933 442 47
933 540 49
933 638 48
933 736 48
933 834 46
933 932 49
|
8cda37f346d80ef5b3d52fb52c01d236a9c55c9a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/788/CH14/EX14.10.a/14_10_data.sci
|
2c2fbeb24ed40c5874fa14de827d88c5f2d76d6c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 411 |
sci
|
14_10_data.sci
|
// Aim:Refer Example 14-7 for Problem Description
// Given:
// diamter of hydraulic cylinder:
D=152; //mm
// cylinder extension:
L=2.54; //m
// duration of cylinder extension:
t=10; //s
// time between crushing stroke:
t_crush=5; //min
// gas precharge pressure:
p1=84; //bars abs
// gas charge pressure when pump is turned on:
p2=210; //bars abs
// minimum pressure required to actuate load:
p3=126; //bars abs
|
fc7174e97c311e672bfc08cd3a968771e02bd422
|
a32457bc76e1a5fe9898d7f84b937381d3bcb80d
|
/experiment6.sce
|
f321661cb6cd46732602b9021616b11e0da186e5
|
[] |
no_license
|
kunalsparkx10/signal-and-systems
|
90d80c4b279b3c44ddd328fbf088ddbbc1ca9b5f
|
97164f97bd59b1d8b302efeab6a7f6a2640c0a57
|
refs/heads/main
| 2023-01-14T10:44:22.315838 | 2020-11-25T18:24:57 | 2020-11-25T18:24:57 | 316,021,693 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 320 |
sce
|
experiment6.sce
|
clc;
figure;
n=0:2:100;
fs=0.002;
fm=5
A=1;
x=A*cos((2*%pi*fm*(n/fs)));
subplot(2,2,1)
plot2d3(n,x);
//figure;
n=0:2:100;
fs=0.04;
fm=45
A=1;
x=A*cos((2*%pi*fm*(n/fs)));
subplot(2,2,2)
plot2d3(n,x);
//figure
n=0:2:100;
fs=0.4;
fm=55
A=1;
x=A*cos((2*%pi*fm*(n/fs)));
subplot(2,2,3)
plot2d3(n,x);
|
0d1652307dd88c1a397a1338888ea8979f9c4ff9
|
349b0dbeaccc8b9113434c7bce7b9166f4ad51de
|
/src/eco/ramsey.sci
|
16008101fb48806086223e23be8cf601c3a4d018
|
[] |
no_license
|
jbailhache/log
|
94a89342bb2ac64018e5aa0cf84c19ef40aa84b4
|
2780adfe3df18f9e40653296aae9c56a31369d47
|
refs/heads/master
| 2021-01-10T08:55:43.044934 | 2020-01-09T02:57:38 | 2020-01-09T02:57:38 | 54,238,064 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,343 |
sci
|
ramsey.sci
|
A=8.0
alpha=0.3
rho=0
mu=0.1
psi=0.05
function r=cobbdouglas(x)
r=A*x^alpha;
endfunction
function r=ces(x)
r=A*(alpha*x^(-rho)+1-alpha)^(-1/rho);
endfunction
eps=0.00001
function r=dcobbdouglas(x)
r=(cobbdouglas(x+eps)-cobbdouglas(x))/eps;
endfunction
function r=dces(x)
r=(ces(x+eps)-ces(x))/eps;
endfunction
function eqst
// (A,alpha,rho,mu,sigma,psi)
kstar = fzero ('euler', [1 100], 0.0001)
if rho == 0
ystar = cobbdouglas (kstar)
rstar = dcobbdouglas (kstar)
else
ystar = ces (kstar)
rstar = dces (kstar)
end
cstar = ystar - mu*kstar
wstar = ystar - rstar*kstar
endfunction
function y=euler(x)
if rho == 0
y = dcobbdouglas(x) - mu - psi
else
y = dces(x) - mu - psi
end
endfunction
function [tr,yr]=ode45 (f, t, y)
yr=ode (y, t(1), t(2), f);
tr=0
endfunction
function evolcoe(k0,c0,tf)
// k0 c0 tf
tspan = [0 tf];
z0 = [k0;c0];
[t,z] = ode45 ('edcoe', tspan, z0);
x = z(:,1);
y = z(:,2);
plot(t,x,t,y)
xlabel('temps'), ylabel('k et c')
// title('Evolution temporelle')
// pause
// figure(2)
plot(x,y)
if rho==0
y2 = cobbdouglas(x)-mu*x
else
y2 = ces(x)-mu*x
end
line(x,y2)
xlabel('capital')
ylabel('consommation')
// title('Evolution c(k)')
endfunction
function test
evolcoe(100,10,20)
endfunction
|
f8c6850f50f370b38ba3c2f2031c8ebe4fac8db0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/46/CH16/EX16.2/Example16_2.sce
|
5dcd03dbb92bfb1512a196efe83f0524e7a8342d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 291 |
sce
|
Example16_2.sce
|
//Example 16.2
clc
syms tau s zeta w;
j=%i;
n=1;
d=tau^2*s^2+2*zeta*tau*s+1;
G=n/d
s=j*w;
G=1/(2*s*tau*zeta+s^2*tau^2+1)
[num den]=numden(G)
d=abs(den)
cof_a_0=coeffs(den,'%i',0)
cof_a_1=coeffs(den,'%i',1)
AR=1/d
theta=AR*atan(-cof_a_1/cof_a_0);
disp(theta,'Phase angle=')
|
9a749228f7472f02a94306986260e3ed7f17752f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/905/CH1/EX1.13/1_13.sce
|
6a9c5db4e3a78957b26486ffe538f7c5a1128ecd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,779 |
sce
|
1_13.sce
|
clear;
clc;
// Illustration 1.13
// Page: 36
printf('Illustration 1.13 - Page:36 \n\n');
// Solution
//*****Data*****
// acetic acid-1 water-2 ethyl alcohol-3
T = 298; // [K]
// The data required data for water at 298 K
u_2 = 0.894; // [cP]
V_c1 = 171; // [cubic cm/mole]
// From equation 1.48
V_b1 = 62.4; // [cubic cm/mole]
// Substituting in equation (1.53)
// the infinite dilution diffusion coefficient of acetic acid in water at 298 K
E = (9.58/V_b1)-1.12;
D_abo12 = (1.25*10^-8)*(((V_b1)^-.19)-0.292)*(T^1.52)*(u_2^E); // [square cm/s]
// Data for acetic acid
T_b1 = 390.4; // [K]
T_c1 = 594.8; // [K]
P_c1 = 57.9; // [bar]
V_c1 = 171; // [cubic cm/mole]
M_1 = 60; // [gram/mole]
// Data for ethanol
T_b3 = 351.4; // [K]
T_c3 = 513.9; // [K]
P_c3 = 61.4; // [bar]
V_c3 = 167; // [cubic cm/mole]
M_3 = 46; // [gram/mole]
u_3 = 1.043; // [cP]
// Using the Hayduk and Minhas correlation for nonaqueous solutions
// According to restriction 3 mentioned above, the molar volume of the acetic acid to be used in equation (1.54) should be
V_b1 = V_b1*2; // [cubic cm/mole]
// The molar volume of ethanol is calculated from equation (1.48)
V_b3 = 60.9; // [cubic cm/mole]
// For acetic acid (1)
T_br1 = T_b1/T_c1; // [K]
// Using equation 1.55
alpha_c1 = 0.9076*(1+((T_br1)*log(P_c1/1.013))/(1-T_br1));
sigma_c1 = (P_c1^(2/3))*(T_c1^(1/3))*(0.132*alpha_c1-0.278)*(1-T_br1)^(11/9); // [dyn/cm]
// For ethanol (3)
T_br3 = T_b3/T_c3; // [K]
// Using equation 1.55
alpha_c3 = 0.9076*(1+((T_br3*log(P_c3/1.013))/(1-T_br3)));
sigma_c3 = (P_c3^(2/3))*(T_c3^(1/3))*(0.132*alpha_c3-0.278)*(1-T_br3)^(11/9); // [dyn/cm]
// Substituting in equation 1.54
D_abo13 = (1.55*10^-8)*(V_b3^0.27)*(T^1.29)*(sigma_c3^0.125)/((V_b1^0.42)*(u_3^0.92)*(sigma_c1^0.105));
// The viscosity of a 40 wt% aqueous ethanol solution at 298 K is u_mix = 2.35 cP
u_mix = 2.35; // [cP]
// The solution composition must be changed from mass to molar fractions following a procedure similar to that illustrated in Example 1.2
// Accordingly, a 40 wt% aqueous ethanol solution converts to 20.7 mol%.
// Therefore mole fraction of ethanol (x_3) and water (x_2)
x_3 = 0.207;
x_2 = 1-x_3;
// Using equation 1.62
D_1eff = ((x_2*D_abo12*(u_2^0.8))+(x_3*D_abo13*(u_3^0.8)))/(u_mix^0.8);
printf("The diffusion coefficient of acetic acid at very low concentrations diffusing into a mixed solvent containing 40.0 wt percent ethyl alcohol in water at a temperature of 298 K is %e square cm/s\n\n",D_1eff);
// The experimental value reported by Perkins and Geankoplis (1969) is
D_1exp = 5.71*10^-6; // [square cm/s]
percent_error = ((D_1eff-D_1exp)/D_1exp)*100; // [%]
printf("The error of the estimate is %f\n",percent_error);
|
4b0fd05ae78670b40332efc2a8ffb59d7d549e81
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2459/CH25/EX25.9/Ex25_9.sce
|
18d87afe444b01ad224b21b2eeaaa0ab8524adfb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 370 |
sce
|
Ex25_9.sce
|
//chapter25
//example25.9
//page556
fh=1000 // Hz
// case (i) :- ratio of fv to fh = 1:1
fv1=1*fh
// case (ii) :- ratio = 2:1
fv2=2*fh
// case (iii) :- ratio = 6:1
fv3=6*fh
printf("for case1 i.e. fv/fh = 1/1, fv = %.3f Hz \n",fv1)
printf("for case2 i.e. fv/fh = 2/1, fv = %.3f Hz \n",fv2)
printf("for case3 i.e. fv/fh = 6/1, fv = %.3f Hz \n",fv3)
|
ec7776c94077d54c1132355ff50fd3edec645c14
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1439/CH23/EX23.5/23_5.sce
|
38834594c49b3065126f4dc2f567438ed32519ea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 372 |
sce
|
23_5.sce
|
clc
//initialisation of variables
h= 6.625*10^-27 //ergs/mole
f= 2.65*10^-5 //sec^-1
c= 3*10^10 //cm/sec
t= 2
N= 6*10^23 //molecules
M= 382 //gms
E1= 750 //ergs
//CALCULATIONS
E= h*c/f
n1= E1/E
m= n1/(t*7)
G= m*M/N
//RESULTS
printf ('number of quanta = %.2e ',n1)
printf ('\n number of quanta = %.2e molecules',m)
printf ('\n grams per day= %.2e gms',G)
|
fe62178a78657adfb0b74d4b4b60b612c1047d80
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/323/CH2/EX2.24/ex2_24.sci
|
00fab4501f03244bf03dab60cc0eef4d4533dc02
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 300 |
sci
|
ex2_24.sci
|
//Chapter 2,Example 2.24,Pg 2.30
clc;
disp("Refer to the diagram shown in the figure")
A=[4 -2 -1;-50 71 -20;-5 -4 10]
B=[-24;0;180]
V=A\B
printf("\n Va=%.2f V\n",V(1))
printf("\n Vb=%.2f V\n",V(2))
printf("\n Vc=%.2f \n",V(3))
printf("\n Voltage across 5 ohms resistor=%.2f \n",V(3)-V(2))
|
e9087afc396b9727d47614c8323637dd14a181d0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH6/EX6.7/6_07.sce
|
3476ba64a4956e8afd96e190e64c99b144b80db4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 449 |
sce
|
6_07.sce
|
//Chapter 6, Problem 7
clc;
Q=1.2*10^-6; //Charge
A=4*10^-4; //Area of plates
d=0.1*10^-3; //Distance between plates
e0=8.85*10^-12;
er=100;
C=(e0*er*A)/d; //Calculating capacitance
V=Q/C; //Calculating potential difference
disp("(a)");
printf("Capacitance = %f pF\n\n\n",C*10^12);
disp("(b)");
printf("p.d. between the plates = %f V",V);
|
fe1803ef4bc8bb1e1f78ecc2dd5e330324818338
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3487/CH6/EX6.5/Ex6_5.sce
|
03462f8f82e44722766dbc33b82feb42780f1b88
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 362 |
sce
|
Ex6_5.sce
|
//Chapter 6,Example 6.5 Page 200
clc
clear
Ca = 50 // pF
C = 190 // pF
loss = 0.0085 // loss angle of electrodes
Er = C/Ca
tang = 0.0085
Er1 = Er*tang
E0 = 8.854*10^-1
E1 = E0*Er
jE1 = E0*Er1
printf (" The dielectric constant = %f \n ",Er)
printf (" tan δ = %f \n ",tang)
printf (" E = (%f - j %f ) * 10^-11 F/m \n ",E1,jE1)
//Answer may vary due to round off
|
3e716cdba9dd6dd414c7be7ddefbf018a012594e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3281/CH4/EX4.8/ex4_8.sce
|
f32a729c2724e642918ad56f95d6f7fa191286ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 717 |
sce
|
ex4_8.sce
|
//Page Number: 198
//Example 4.8
clc;
//Given
a=5;//cm
a1=a/100;//m
b=4;//cm
b1=b/100;//m
c=10;//cm
c1=c/100;//m
sig=5.8D+7;
u0=4D-7*%pi;
er=3;
eet=377;
ur=1;
spl=3D+8;
tandel=2.5D-4;
//TE101 mode
m=1;
n=0;
p=1;
fr=(spl/(2*sqrt(er*ur)))*sqrt((m/a1)^2+(n/b1)^2+(p/c1)^2);//hz
disp('Ghz',fr/10^9,'Resonant frequency:');
w=2*%pi*fr;
rs=sqrt((w*u0)/(2*sig));//ohm
lamr=spl/(fr*sqrt(er));
x=(((a1*b1)/(c1^2))+((c1^2+a1^2)/(2*c1*a1))+((b1*c1)/a1^2));
qw=(2*%pi*(eet/sqrt(er))*a1*b1*c1)/(rs*(lamr^3)*x);
disp(qw,'Q for TE101 mode:');
qd=1/tandel;
q=(qw*qd)/(qw+qd);
disp(q,'Q for lossy dielectric:');
//Value of qw is calculated wrong in book as lamr comes to be 0.08 not 0.89 m
|
220d3ed59e58a1408bf60d38a43b12186e9c8fe7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3035/CH14/EX14.4/Ex14_4.sce
|
44249d9387694cebfe6784a639b8beda3d082847
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 651 |
sce
|
Ex14_4.sce
|
// Variable Declaration
kv = 11.0 //Voltage rating(kV)
MVA = 5.0 //MVA rating
R = 10.0 //Resistance(ohm)
per_a = 0.15 //Armature winding reactance
per_trip = 0.3 //Relay trip for out-of-balance
// Calculation Section
x_p = per_a*kv**2/MVA //Winding Reactance(ohm)
V = kv/3**0.5*1000 //Phase voltage(V)
I = per_trip*MVA*1000/(3**0.5*kv) //Out of balance current(A)
p = (((R*I)**2/(V**2-(x_p*I)**2))**0.5)*100 //Percentage of winding remains unsupported
// Result Section
printf('Percentage of winding that remains unprotected , p = %.1f percentage' ,p)
|
a629f09cc8cd53549ac07582304a3b295fce9327
|
4af7d26a4959553d9a2cee1a78878ee960599382
|
/test_cases/test1.tst
|
41cb231955c58b66c7ce52667b2916ae5ba2cf02
|
[] |
no_license
|
CJ8664/chord_protocol
|
f61168ceea224e47785e56a3263eda89da7dc3df
|
30b57463cfd190e9dd5f057629b69ffbb6edb7b2
|
refs/heads/master
| 2020-04-11T06:07:46.875416 | 2018-11-02T03:06:34 | 2018-11-02T03:06:34 | 161,571,340 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 224 |
tst
|
test1.tst
|
# Just adding and joining nodes but no explicit stabilize or fix
# predecessor is None and successor is valid and finger table is stale
add 0
add 1
add 2
add 3
join 1 0
join 2 0
join 3 0
list
show 0
show 1
show 2
show 3
end
|
2fa43e924d9942acbbea61e841f080d86db9af51
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1370/CH2/EX2.6/example2_6.sce
|
76bc848a6e8163c3ae543363c6ee7796681265ee
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 719 |
sce
|
example2_6.sce
|
//example2.6
clc
disp("Consider a short shunt generator as shown in the fig 2.32")
disp("R_a=0.04 ohm, R_sh=90 ohm, R_se=0.02 ohm")
disp("V_t=225 V , I_L=75 A")
disp("I_a = I_L + I_sh")
disp("Now, E=(V_t)+[(I_a)*(R_a)]+[(I_L)*(R_se)]")
disp("and drop across armature terminals is,")
disp("E-[(I_a)*(R_a)]=(V_t)+[(I_t)*(R_se)]")
e=225+(75*0.02)
disp(e,"Therefore, E-[(I_a)*(R_a)]=")
disp("Therefore, I_sh=[E-(I_a)(R_a)]/(R_sh)=[(V_t)+(I_L)(R_se)]/(R_sh)")
i=226.5/90
format(7)
disp(i,"Therefore, I_sh(in A)=")
i=75+2.5167
disp(i,"Therefore, I_a=I_L+I_sh=")
disp("Therefore, E=V_t+[(I_a)*(I_sh)]+[(I_L)*(R_se)]")
e=225+(77.5167*0.04)+(75*0.02)
format(6)
disp(e,"E(in V)=")
|
33cc912499af5b78a4a4b9fa76ee626d78787fad
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2465/CH5/EX5.1/Example_1.sce
|
aa4ffc6d99930f720def5887c27cf4243e315cb5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 413 |
sce
|
Example_1.sce
|
//Chapter-5,Example 1,Page 121
clc();
close();
//for 1st order reaction
//k = (1/t)*log(a/(a-x))
a= 46.1 //time value
//time intervals
t=[ 5 10 20 30 50]
x=[ 37.1 29.8 19.6 12.3 5.0]
k = (1 ./t).*log(a./(x))
printf('value of k are ' )
disp(k)
printf('since k values are fairly constant by putting in 1nd order rate equation. \nHence decomposition of H2O2 is of 1st order.')
|
56b7830cd93759db3949bd1e5dd2df8a00da504f
|
22ebb77444925f738e01f4ceeae89fac1b2ca711
|
/Single-phase transformer/PermeanciasSecundario220R.sce
|
15b3e67e557f5c7382ea06b92f0bd53a317d7a81
|
[] |
no_license
|
jacometoss/Transformer
|
4e4b4d39f370b162afd6364a229efc81a5c4ea8d
|
d9bd077b3fbc45dca52dd3367f40a4289b812e54
|
refs/heads/master
| 2021-06-21T14:57:12.644937 | 2020-12-03T19:23:20 | 2020-12-03T19:23:20 | 146,820,465 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,204 |
sce
|
PermeanciasSecundario220R.sce
|
//****************************************************************//
// .Rutina: Permeancia Devanado Primario 127V ...//
// .Autor: Marco Polo Jacome Toss ...//
// .Version : 1.0 ...//
// .Plataforma : Scilab (https://www.scilab.org) 6.0 ...//
// .Fecha : 2018.06.10 ...//
// .Nota : Apendice A - Dimensiones en Devanados ...//
// ... Capitulo 2 - Permeancia de Fuga ...//
// .... ..... ..... .... .... .... .... .... .... .... .... ... ..//
// .PW1CorteAA : Permeancia interior (Sólo una ventana) ...//
// .PW1CorteBB : Permeancia Adyacente al nucleo (Sólo un lado) ...//
// .PW1CorteCC : Permeancia En rel Radio (Un radio) ...//
// ...... ..... .... .... .... .... .... .... .... .... .... .....//
// .PW1_Total_CorteAA : Permeancia Total en las dos ventanas ...//
// .PW1_Total_CorteBB : Permeancia Total adyacentes (izq. y der.).//
// .... ..... ..... .... .... .... .... .... .... .... .... ......//
uo=4*%pi*1e-7;
d1=5.3/100;
d2=0.2/100;
d3=0.05/100; //Distancia influye mucho, unidades metros.
d4=0.4/100;
d5=0.425/100;
//-----------------------------------------//
la=0.638/100;
lb=5.5/100;
lc=5/100;
ld=4.2/100;
lrm=2.278/100;
//----------------------------------------//
k1=abs(d1-d4);
k2=min(d1,d4);
//Permeancnia del Devanado de 127V
PW1CorteAA=((uo*lc)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1))));
PW1CorteBB=((uo*ld)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1))));
PW1CorteCC=((uo*lrm)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1))));
//disp (PWinding1);
//Permeancia Horizontal En Aire Devanado 127V
Pw1ahCorteAA=((uo*lc)/((2*d4+d3+d5)/(2*d2)))
Pw1ahCorteBB=((uo*ld)/((2*d4+d3+d5)/(2*d2)))
Pw1ahCorteCC=((uo*lrm)/((2*d4+d3+d5)/(2*d2)))
//disp (Pw1ah);
//Permeancia VErtical En Aire Devanado 127V
Pw1avCorteAA=((uo*lc)/((d1+d2)/(d1)))
Pw1avCorteBB=((uo*ld)/((d1+d2)/(d1)))
Pw1avCorteCC=((uo*lrm)/((d1+d2)/(d1)))
//disp (Pw1av);
//Permeancia Total Devanado Primario 127 V Aire
PW1AirCorteAA=(2*((1/Pw1ahCorteAA)+(1/Pw1avCorteAA)))^-1;
PW1AirCorteBB=(2*((1/Pw1ahCorteBB)+(1/Pw1avCorteBB)))^-1;
PW1AirCorteCC=(2*((1/Pw1ahCorteCC)+(1/Pw1avCorteCC)))^-1;
//Permeancia Total (Aire y Devanado)
PW1CorteAA=PW1AirCorteAA+PW1CorteAA;
PW1CorteBB=PW1AirCorteBB+PW1CorteBB;
PW1CorteCC=PW1AirCorteCC+PW1CorteCC;
disp('****** Permeancia Devanado Primario 127V Corte A-A Lado Izquierdo********')
disp (PW1CorteAA);
disp('****** Permeancia Devanado Primario 127V Exterior Corte B-B Lado Izquierdo********')
disp (PW1CorteBB);
disp('****** Permeancia Devanado Primario 127V Exterior Corte C-C Un Radio********')
disp (PW1CorteCC);
disp('****** Permeancia Total Vista Corte A-A********')
PW1_Total_CorteAA=2*PW1CorteAA+2*PW1CorteCC;;
disp(PW1_Total_CorteAA)
disp('****** Permeancia Total Vista Corte B-B********')
PW1_Total_CorteBB=2*PW1CorteBB+2*PW1CorteCC;
disp(PW1_Total_CorteBB)
|
35e6691ce898fca8bd478a143f250c267f32df05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1061/CH3/EX3.27/Ex3_27.sce
|
28da83a33aadbdee73fababe89cddb5b920cf1da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 449 |
sce
|
Ex3_27.sce
|
//Ex:3.27
clc;
clear;
close;
n1=1.47;// core refractive index
n2=1.46;// cladding refractive index
y=1.3;// wavelength in um
dl=(n1-n2)/n1;// fractional refractive index diff
NA=sqrt(n1^2-n2^2);
v=2.405;
a=(v*y)/(2*3.14*(sqrt(n1^2-n2^2)));// largest core radius in micrometer
n_eff=n1-(NA/(2*3.14*(a/y)));// fractional refractive index
printf("The largest core radius =%f um", a);
printf("\n The fractional refractive index=%f",n_eff);
|
d773eb6669ba4b77558361c529ccad7b18b25754
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/genfac3d.man.tst
|
f9cd4675dc4e16c344ab6a2523525e8e7e8675f6
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 97 |
tst
|
genfac3d.man.tst
|
clear;lines(0);
t=[0:0.3:2*%pi]'; z=sin(t)*cos(t');
[xx,yy,zz]=genfac3d(t,t,z);
plot3d(xx,yy,zz)
|
543fb84d5401dc08af82b20c824a25085506464c
|
c206e3f57b0a6f75bd1feefefecd29398746c358
|
/scripts/mediana.sci
|
39acc3c8ca1188b0495acf407cda5709556ca729
|
[] |
no_license
|
danielfcollier/scilab-image-processing-scripts
|
e092a7c1a6a0ade906c020218a9571290245e40f
|
43d78cb06dc6c27ab8663f351e4c172d038280ce
|
refs/heads/main
| 2023-04-12T20:05:52.840157 | 2021-04-27T18:56:06 | 2021-04-27T18:56:06 | 362,219,761 | 0 | 0 | null | null | null | null |
ISO-8859-1
|
Scilab
| false | false | 747 |
sci
|
mediana.sci
|
function M = mediana(M, v)
// MEDIANA_
// M: imagem em tons de cinza
// v: vizinhança do tipo v x v, 3 ou 5
//
// Uso:
// I = imread('figura.jpg');
// M = mediana(I, 3);
// imshow(M)
//
[m n] = size(M);
// análise do tamanho da vizinhança
if (v==3)
d = 1;
elseif (v==5)
d = 2;
end
//
m1 = m + 2*d;
n1 = n + 2*d;
p0 = 1 + d;
X = -ones(m1,n1);
X(p0:(m1-d),p0:(n1-d)) = M;
//
for i=p0:(m1-d)
for j=p0:(n1-d)
N = X(i-d:i+d,j-d:j+d);
if ( max(1*mtlb_any(N==-1)) )
p = sum(1*((-ones(v,v))==(N)));
s = N(:);
M(i-d,j-d) = median(s(1:(v^2-p)));
else
M(i-d,j-d) = median(N(:));
end
end
end
//
M = round(M);
M = M - min(M);
M = M / max(M);
endfunction
|
22a465e0e3526ef2c16221e2204f9a9b0551fc21
|
bbdc72de6d7eef74128eaf52b1f040053943de38
|
/Code/TP7/TP7.sce
|
a4bc00100d84814e64d8eac5e649deee6c452958
|
[] |
no_license
|
Abdel-BHPC/Numerical-analysis
|
46bb4dbcd26e00d6c4f405fe59a1ba433b8b72e0
|
2bcdb80d9ab8890d036eac3cce92b595abb88784
|
refs/heads/main
| 2023-03-02T14:11:06.939206 | 2021-02-08T08:40:07 | 2021-02-08T08:40:07 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 344 |
sce
|
TP7.sce
|
/*
Créateur: Jinshan GUO et Anais Debureaux
*/
exec(fullpath(pwd() + '\TP7.sci'),-1);
a = [2;-2];
t0 = 0;
T = 15;
Nptmil = 100;
Neul = 100;
Node = 100;
Nrk4 = 100;
tracevdp(a, t0, T, Neul, Nptmil, Node, Nrk4);
//tracevdp(a, t0, T, 1000, 1000, 1000, 1000);
//===========Exo5 ===========
T = 10;
[TV, TE] = compar(a, t0, T);
|
5f05661f8015935db66ae3776aee902eabea10a9
|
67a252961f6616fc6db89eb11c1c83abf4d41468
|
/CS4110Design3/CS16B032Register8.tst
|
c327e155e7a4bae0fef9f2a5bf335660a17fe966
|
[] |
no_license
|
ramyavelaga9/CS4110
|
5a45497cd7ef28d4472a57a257dad8e5f4a3d17b
|
4a3cd82916820e4f7a4930a0efce14def8268dfc
|
refs/heads/master
| 2020-07-17T23:41:12.196500 | 2019-11-20T04:24:32 | 2019-11-20T04:24:32 | 203,223,619 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 583 |
tst
|
CS16B032Register8.tst
|
load CS16B032Register8.hdl,
output-file CS16B032Register8.out,
compare-to CS16B032Register8.cmp,
output-list time%S1.4.1 in%D1.6.1 load%B2.1.2 out%D1.6.1;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 1,
tick,
output;
tock,
output;
set in 120,
set load 0,
tick,
output;
tock,
output;
set in 111,
set load 0,
tick,
output;
tock,
output;
set in 13,
set load 1,
tick,
output;
tock,
output;
set in 123,
set load 1,
tick,
output;
tock,
output;
set in 0,
set load 0,
tick,
output;
tock,
output;
set in 0,
set load 1,
tick,
output;
tock,
output;
|
47ac9743021769794b7faf8b0e4167c67e5a18ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/CH17/EX17.9/17_9.sce
|
dd7a335368e6a5a2f12cc49e7d41b669135f4578
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 470 |
sce
|
17_9.sce
|
pathname=get_absolute_file_path('17_9.sce')
filename=pathname+filesep()+'17_9_data.sci'
exec(filename)
//Brake specific energy consumption(Power remains same as in the previous problem)
bsec=(mf/bp)*CV*10^-3
//Indicated specific energy consumption(mechanical efficiency remains same as in previous problem)
isec=bsec*nm
printf("\n\nRESULTS\n\n")
printf("\nBrake specific energy consumption:%f\n",bsec)
printf("\nIndicated specific energy consumption:%f\n",isec)
|
5718178bb276bf7ec837ef342b3a24cd5fc70db6
|
31cc146b7597c1571ad100fc4dd888898b1b4eb0
|
/io/read_off.sce
|
7682812f7d8efd47912cd0d442126b7c671aac6e
|
[] |
no_license
|
rigid1980/gpp_scilab
|
a525ae046722e7ba52ebea6003ce712b51631ff6
|
fadb75dea26cf341e6dc60874efd88c016df4f3b
|
refs/heads/master
| 2016-09-11T08:37:44.538715 | 2014-03-26T08:37:35 | 2014-03-26T08:37:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,670 |
sce
|
read_off.sce
|
//// read_off
// Read mesh data from OFF file
//
//// Syntax
// [face,vertex] = read_off(filename)
// [face,vertex,color] = read_off(filename)
//
//// Description
// filename : string, file to read.
//
// face : double array, nf x 3 array specifying the connectivity of the mesh.
// vertex : double array, nv x 3 array specifying the position of the vertices.
// color : double array, nv x 3 or nf x 3 array specifying the color of the vertices or faces.
//
//// Example
// [face,vertex] = read_off('torus.off');
// [face,vertex,color] = read_off('torus.off');
//
//// Contribution
// Author: Meng Bin
// Created: 2014/03/05
// Revised: 2014/03/07 by Meng Bin, block write to enhance writing speed
// Revised: 2014/03/14 by Wen, modify doc and code format
//
// Copyright 2014 Computational Geometry Group
// Department of Mathematics, CUHK
// http://www.lokminglui.com
function [face,vertex,color] = read_off(filename)
fid = fopen(filename,'r');
if( fid==-1 )
error('Can''t open the file.');
end
// read header
[tline] = skip_comment_blank_line(fid,0);
if ~strcmpi(tline(1:3), 'OFF')
error('The file is not a valid OFF one.');
end
// read number of verteics and faces
[tline] = skip_comment_blank_line(fid,0);
[a,tline] = strtok(tline); nvert = str2num(a);
[a,tline] = strtok(tline); nface = str2num(a);
color = [];
// read vertex info
tot_cnt = 0;
A = [];
tline = '';
while (~feof(fid) && (isempty(tline) || tline(1) == '#'))
pos = ftell(fid);
tline = strtrim(fgets(fid));
end
C = regexp(tline,'\s+','split');
// read columns of vertex line
cols = size(C,2);
// rewind to starting of the line
fseek(fid, pos,-1);
// vertex and color line format string
format = strcat(repmat('//f ', [1, cols]), '\n');
// start reading vertex
while (~feof(fid) && tot_cnt < cols*nvert)
[A_,cnt] = fscanf(fid,format, cols*nvert-tot_cnt);
tot_cnt = tot_cnt + cnt;
A = [A;A_];
skip_comment_blank_line(fid,1);
end
if tot_cnt~=cols*nvert
warning('Problem in reading vertices. number of vertices does not match header.');
end
A = reshape(A, cols, tot_cnt/cols);
vertex = A(1:3,:)';
// extract vertex color
if cols == 6
color = A(4:6,:)';
elseif cols > 6
color = A(4:7,:)';
end
// read face info
tot_cnt = 0;
A = [];
tline = '';
while (~feof(fid) && (isempty(tline) || tline(1) == '#'))
pos = ftell(fid);
tline = strtrim(fgets(fid));
end
C = regexp(tline,'\s+','split');
// read columns of face line
nvert_f = str2num(C{1});
cols = nvert_f+1;
if isempty(color)
cols = size(C,2);
end
// rewind to starting of the line
fseek(fid, pos,-1);
// face and color line format string
format = strcat(repmat('//d ', [1, nvert_f+1]), repmat('//f ', [1, cols-nvert_f-1]));
format = strcat(format, '\n');
// start reading face
while (~feof(fid) && tot_cnt < cols*nface)
[A_,cnt] = fscanf(fid,format, cols*nface-tot_cnt);
tot_cnt = tot_cnt + cnt;
A = [A;A_];
skip_comment_blank_line(fid,1);
end
if tot_cnt~=cols*nface
error('Problem in reading faces. Number of faces does not match header.');
end
A = reshape(A, cols, tot_cnt/cols);
face = A(2:nvert_f+1,:)'+1;
// extract face color
if cols > nvert_f+1
color = A(nvert_f+2:cols,:)';
end
fclose(fid);
function [tline] = skip_comment_blank_line(fid,rewind)
// skip empty and comment lines
// get next content line
// if rewind==1, then rewind to the starting of the content line
tline = '';
if rewind==1
pos = ftell(fid);
end
while (~feof(fid) && (isempty(tline) || tline(1) == '#'))
if rewind==1
pos = ftell(fid);
end
tline = strtrim(fgets(fid));
end
if rewind==1
fseek(fid, pos,-1);
end
|
0ba36335e85cc8b122a0b73f46d6024523eb5423
|
6227c5ef4e1c5d72cdebd6eac81f82161dda7e17
|
/digi_dc_dc/Scilab/test_functions/test_buck_subsampling_dual.sci
|
037179cd18776eda838770926bb05bfefa6ae22b
|
[] |
no_license
|
maxsimmonds1337/Scilab
|
b4e8a03a9fbeda4d8f6e51e07d205bcf51addce8
|
b413659e2b697565c24ad440d158f5bd28203570
|
refs/heads/master
| 2022-11-04T23:17:50.045864 | 2020-06-13T20:35:24 | 2020-06-13T20:35:24 | 272,081,285 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 707 |
sci
|
test_buck_subsampling_dual.sci
|
//Test the functions for the Buck
//REactive elements and switching frequency
L=1e-6;
rl=5e-3;
rc=10e-3; //Parasitic element values are needed, but not very important
C=200e-6;
f_switch=1e6;
tctrl=400*1e-9;
Po=9;
Vo=1.8;
Io=Po/Vo; //The model requires the output current
Rl=Vo/Io;
Vin=5; //Input voltage range
// Worst case in terms of delay will be having the minimum voltage, the longest
//Duty
Dmax=Vo/min(Vin);
Dmin=Vo/max(Vin);
n_sub=[1 2 3 4];
magGvuz=[];
phaseGvuz=[];
magGiuz=[];
phaseGiuz=[];
legenda=[];
//New function
for(i=1:length(n_sub))
[Gvuz_new,Gvus_new,Giuz_new,Gius_new]=ConverterModels.Buck_ss_model_dual(L,rl,C,rc,max(Vin),Dmin,Vo,0*Io,Rl,tctrl,f_switch,n_sub(i),3);
end
|
a990208afbee2495d309c3cbc1ce936ccb2a6a9f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3760/CH1/EX1.18/Ex1_18.sce
|
4dcbbda5dac60e87ae5853cb6a2c82ecdf8eb843
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,222 |
sce
|
Ex1_18.sce
|
clc;
P=20000; // rated power of transformer
E1=2500; // primary side voltage
E2=500; // secondary side voltage
r1=8; // primary resistance in ohm
x1=17; // primary leakage reactance in ohm
r2=0.3; // secondary resistance in ohm
x2=0.7; // secondary leakage reactane in ohm
k=E2/E1; // turns ratio
re2=r2+r1*k^2; // equivalent resistance referred to secondary winding
xe2=x2+x1*k^2; // equivalent leakage reactance referred to secondary winding
Il=P/E2; // full load secondary current
disp('case a');
pf=0.8; // lagging power factor
vd=Il*(re2*pf+xe2*sqrt(1-pf^2)); // Voltage drop in impedance in volts
vt=E2-vd; // secondary terminal voltage
printf('secondary terminal voltage for a lagging power factor is %f v\n',vt);
vr=((E2-vt)/E2)*100; // voltage regulation
printf('voltage regulation for a lagging power factor is %f percent\n',vr);
disp('case b');
pf=0.8; // leading power factor
vd=Il*(re2*pf-xe2*sqrt(1-pf^2)); // Voltage drop in impedance in volts
vt=E2-vd; // secondary terminal voltage
printf('secondary terminal voltage for a leading power factor is %f v\n',vt);
vr=((E2-vt)/E2)*100; // voltage regulation
printf('voltage regulation for a leading power factor is %f percent\n',vr);
|
22203f4d0739860542de4f522902c9f65921c5f3
|
46881586c922b14b8f940ebc1696d0f1703ba9fb
|
/monte-carlo-method.sci
|
7a958cdc19bf7ca776b7510197f76b4ac6295c81
|
[
"MIT"
] |
permissive
|
louisfisch/monte-carlo-method
|
9519f1e48da334bb6131caecf999bd8ca66eb0f8
|
c52b46d242610017646a0a69f32b5bbdbb5c9b46
|
refs/heads/master
| 2019-08-09T09:56:17.239346 | 2018-01-20T16:10:07 | 2018-01-20T16:44:40 | 118,258,484 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,428 |
sci
|
monte-carlo-method.sci
|
// Clear already defined variables
clear;
// funcprot(0) prevents from getting a warning message about already defined/loaded functions
funcprot(0);
function new_graphic_window()
AllCurrentFiguresId = get('figures_id');
if isempty(AllCurrentFiguresId) then
NewFigureId = 0;
else
CurrentFigure = get('current_figure');
CurrentFigureId = CurrentFigure.figure_id;
NewFigureId = CurrentFigureId + 1;
end
scf(NewFigureId);
clf(NewFigureId);
endfunction
function I = MonteCarloMethod(fct, a, b, c, d, N)
// Generate N x N random numbers
X = a + (b - a) * rand(1, N);
Y = c + (d - c) * rand(1, N);
Z = [X; Y];
SuccessPointCount = 0; FailPointCount = 0;
for i = 1:N
if Z(2, i) > 0 & Z(2, i) <= fct(Z(1, i)) then
SuccessPointCount = SuccessPointCount + 1;
elseif Z(2, i) < 0 & Z(2, i) >= fct(Z(1, i)) then
FailPointCount = FailPointCount + 1;
else
SuccessPointCount = SuccessPointCount;
FailPointCount = FailPointCount;
end
end
I = (b - a) * (d - c) * ((SuccessPointCount - FailPointCount) / N);
new_graphic_window();
// Draw the curve
v = linspace(a, b, 100); plot(v, fct);
mod_axes = get('current_axes');
// Determine the axes' size
mod_axes.data_bounds = [a, c; b, d];
// Force float writing
mod_axes.ticks_format = ['%3.1f', '%3.1f'];
// Force the axes' size to what was defined through data_bounds
mod_axes.tight_limits = 'on';
xgrid;
// Compute the vector fct(Z(1,i)) for i = 1, ..., N
FctX = feval(Z(1, :), fct);
// Look for the "success" and "fail" points
SuccessPointsLocations = find((Z(2, :) <= FctX & Z(2, :) >= 0) | (Z(2, :) >= FctX & Z(2, :) < 0));
FailPointsLocations = find((Z(2, :) > FctX & Z(2, :) >= 0) | (Z(2, :) < FctX & Z(2, :) < 0));
// Draw "success" and "fail" points
plot(Z(1, SuccessPointsLocations), Z(2, SuccessPointsLocations), '+g');
plot(Z(1, FailPointsLocations), Z(2, FailPointsLocations), '+r');
// Display a figure's key (-1 is for +, 3 and 5 are for green and red in this order)
legends(['Success points', 'Fail points'], [-1, -1; 3, 5], 1);
// Display the approximate value of I
disp(I);
endfunction
// Define function(s)
deff('[y]=f0(x)', 'y=sqrt(1-x^2e)');
// Call MonteCarloMethod()
I = MonteCarloMethod(f0, 0, 1, 0, 1, 100000);
|
af329e5548ffc2eaa3f50f4f22c5748a5197e1bb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH13/EX13.16/example13_16.sce
|
ed406a82a6cffc01e2b3c6e90b1840db422136c8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 627 |
sce
|
example13_16.sce
|
clc
// Given that
lambda = 1.4 // wavelength of x-ray in angstrom
x1 = 1 // coordinate on x axis of plane
y1 = 1 // coordinate on y axis of plane
z1 = 1 // coordinate on z axis of plane
a = 5 // lattice parameter of of crystal in angstrom
// Sample Problem 16 on page no. 13.30
printf("\n # PROBLEM 16 # \n")
printf(" Standard formula used \n")
printf(" d = a / (x1^2 + y1^2 + z1^2)^1/2 \n")
n = 1 // for first order
d = a / sqrt(x1^2 + y1^2 + z1^2)
theta = asind((n * lambda) / (2 * d))
printf("\n Angle of incidence of x-ray on the plane is %f degree.",theta)
|
e22f9162fd42f987ea0a10204156cf0fd18920c6
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Área 1/Aula 5/Questao_7.sce
|
78ecf7154852ef850d72b1d07ba93e37df27ae02
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321 | 2021-05-11T17:17:09 | 2021-05-11T17:17:09 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 642 |
sce
|
Questao_7.sce
|
n = 405
A = eye(n,n)
for j = 1:n
for i = 1:n
if(abs(i - j) > 1)
A(i,j) = 0
else
A(i,j) = 1
end
end
end
function [L,A,C] = fatoraLU(A)
n = size(A,1)
L = eye(n,n)
C = 0
for j = 1:n-1
for i = j+1:n
L(i,j) = A(i,j)/A(j,j)
C = C + 1
for z = j+1:n
if(A(j,z) ~= 0 && L(i,j) ~= 0)
A(i,z) = A(i,z) - L(i,j)*A(j,z)
C = C + 2
end
end
A(i,j) = 0 /*Para evitar erro de arredondamento*/
end
end
endfunction
[L,U,C] = fatoraLU(A)
|
c19b0f14968c5d5456d1140612a72fede64957fa
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.5_3.tst
|
ba200e0ff863a9146c74bbc8791d032b46594b6d
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840 | 2013-07-31T06:53:59 | 2013-07-31T06:53:59 | 6,534,406 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 37,222 |
tst
|
bow.5_3.tst
|
5 5:0.5 6:0.11764705882352941 15:0.2222222222222222 24:1.0 34:0.3 37:0.3333333333333333 42:0.2 56:0.3333333333333333 64:0.5 73:1.0 82:0.16666666666666666 97:0.5 140:0.5 173:2.0 191:0.3333333333333333 261:0.019230769230769232 320:2.0 373:0.3333333333333333 399:1.0 488:1.0 489:2.0 583:1.0 587:1.5 671:1.0 775:2.0 908:1.0 1104:0.5 1152:1.0 1160:1.0 1569:0.3333333333333333 1750:1.0 2033:1.0 2292:1.0 2355:1.0 3515:0.015384615384615385 3743:1.0 3970:1.0 4054:1.0 4210:1.0 4348:1.0 4408:0.2 4863:1.0 5100:0.5 5122:2.0 5560:1.0 5807:1.0 7278:1.0 7379:1.0
5 1:0.3333333333333333 5:1.0 6:0.058823529411764705 34:0.1 56:0.3333333333333333 82:0.3333333333333333 97:0.5 105:0.5 131:0.5 143:0.25 151:1.0 190:1.0 191:0.16666666666666666 222:0.5 268:1.0 275:0.5 320:1.0 441:0.3333333333333333 488:1.0 863:1.0 1210:0.3333333333333333 1569:0.3333333333333333 3267:1.0 3375:1.0 3515:0.015384615384615385 4418:1.0 5100:2.0 5135:1.0 5146:1.0 5206:0.5 5732:1.0 5984:1.0 7379:1.0
5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 64:0.25 82:0.16666666666666666 131:0.5 191:0.5 220:1.0 261:0.019230769230769232 367:1.0 1058:1.0 1661:1.0 4210:1.0 4316:1.0 4980:1.0 5100:1.0 5206:0.5 5884:1.0
5 15:0.16666666666666666 73:1.0 97:0.5 155:0.09090909090909091 160:1.0 191:0.3333333333333333 206:1.0 222:0.5 238:0.14285714285714285 320:1.0 367:1.0 488:1.0 613:1.0 730:2.0 795:1.0 911:1.0 938:2.0 1313:1.0 1661:1.0 2457:1.0 3515:0.015384615384615385 4155:1.0 4210:4.0 4547:1.0 5100:0.5 5122:1.0 7379:1.0
5 6:0.17647058823529413 15:0.1111111111111111 53:1.0 64:0.5 106:1.0 107:0.5 135:0.2 150:0.023255813953488372 185:1.0 191:0.16666666666666666 319:0.058823529411764705 320:1.0 327:0.16666666666666666 424:1.0 462:1.0 561:0.5 622:1.0 870:0.5 977:1.0 1021:1.0 1354:0.3333333333333333 1704:1.0 2819:1.0 3101:0.5 3515:0.007692307692307693 4210:2.0 5100:0.5 5122:2.0 6965:1.0 7145:1.0
5 5:2.0 6:0.058823529411764705 34:0.1 56:0.3333333333333333 63:1.0 132:1.0 147:0.5 150:0.023255813953488372 176:1.0 191:0.16666666666666666 215:0.1 226:0.5 308:1.0 320:1.0 350:0.125 427:0.1 443:1.0 473:0.5 533:0.25 561:1.0 722:1.0 866:1.0 918:0.3333333333333333 923:1.0 1354:0.3333333333333333 1384:1.0 2415:1.0 2591:0.3333333333333333 3515:0.007692307692307693 3595:0.5 4210:3.0 4371:1.0 5122:3.0 5215:1.0 6015:1.0 6996:1.0 7198:1.0
5 5:0.5 6:0.058823529411764705 15:0.1111111111111111 17:0.25 23:0.3076923076923077 37:1.0 45:1.0 73:1.0 97:0.5 98:0.5 101:1.0 131:0.5 150:0.023255813953488372 155:0.18181818181818182 165:0.2857142857142857 191:0.16666666666666666 215:0.1 223:1.0 275:0.5 320:1.0 359:0.5 367:1.0 380:1.0 878:1.0 908:1.0 1275:1.0 1391:1.0 1416:1.0 1484:1.0 1580:1.0 1998:3.0 2312:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4210:4.0 4481:1.0 5100:3.0 5122:1.0 5127:0.5 5168:1.0 5206:0.5 7391:1.0
5 5:0.5 6:0.058823529411764705 42:0.2 56:0.3333333333333333 64:1.0 75:0.14285714285714285 82:0.16666666666666666 97:1.0 128:0.5 150:0.023255813953488372 160:1.0 192:1.0 215:0.1 219:0.3333333333333333 232:1.0 319:0.058823529411764705 320:1.0 336:0.5 380:1.0 427:0.1 534:0.25 561:0.5 786:1.0 809:1.0 816:0.5 866:3.0 1109:1.0 1162:1.0 1202:1.0 1569:0.3333333333333333 1885:1.0 1998:1.0 2312:1.0 2462:1.0 3515:0.007692307692307693 3628:1.0 4210:1.0 4256:1.0 4498:1.0 5100:2.0 6086:1.0 6382:1.0 7168:1.0
5 5:0.5 23:0.07692307692307693 56:0.3333333333333333 64:0.25 75:0.14285714285714285 97:0.5 150:0.023255813953488372 191:0.16666666666666666 373:0.6666666666666666 399:0.5 427:0.1 742:0.5 2263:0.5 2722:1.0 2892:1.0 3080:1.0 5100:2.5 5215:1.0 5549:1.0 5662:1.0
5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 34:0.1 54:2.0 56:0.6666666666666666 97:0.5 105:0.5 135:0.2 143:0.25 190:1.0 191:0.16666666666666666 206:2.0 222:0.5 286:1.0 289:1.0 320:1.0 373:0.3333333333333333 543:0.5 644:0.5 829:1.0 866:1.0 908:1.0 1162:1.0 1210:0.3333333333333333 1345:0.5 1661:1.0 2052:1.0 2312:1.0 2683:0.14285714285714285 2892:1.0 3249:1.0 3515:0.007692307692307693 4210:1.0 5100:1.0 5122:1.0 6602:1.0
5 1:0.16666666666666666 15:0.16666666666666666 23:0.23076923076923078 42:0.2 56:0.6666666666666666 64:0.25 96:0.14285714285714285 135:0.2 147:1.0 150:0.023255813953488372 181:0.25 185:1.0 320:1.0 359:1.0 407:1.0 566:1.0 700:1.0 737:1.0 923:1.0 938:1.0 1105:1.0 1210:0.3333333333333333 1345:1.0 1354:0.3333333333333333 1847:1.0 2078:1.0 2249:1.0 2263:0.5 2312:1.0 2683:0.14285714285714285 2892:1.0 3515:0.007692307692307693 4210:5.0 5100:1.5 5170:1.0 5753:1.0 5760:1.0
5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 42:0.2 45:1.0 82:0.16666666666666666 97:1.5 155:0.09090909090909091 191:0.3333333333333333 261:0.019230769230769232 275:0.5 284:1.0 320:1.0 473:0.5 743:1.0 761:1.0 791:0.5 1154:1.0 1651:1.0 2235:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4210:3.0 4568:1.0 4625:1.0 5100:0.5 5135:1.0
5 1:0.16666666666666666 6:0.11764705882352941 34:0.2 56:0.3333333333333333 64:0.25 97:1.0 106:1.0 131:0.5 135:0.6 150:0.06976744186046512 160:1.0 191:0.16666666666666666 194:1.0 220:2.0 261:0.019230769230769232 275:0.5 320:1.0 327:0.16666666666666666 538:1.0 542:0.5 768:0.5 830:1.0 866:3.0 1258:0.3333333333333333 1354:0.3333333333333333 1492:1.0 2052:1.0 3515:0.007692307692307693 4210:4.0 4498:1.0 5122:1.0 5164:0.5 5354:1.0 6530:1.0
5 4:1.0 25:0.5 42:0.2 96:0.14285714285714285 97:0.5 131:0.5 135:0.2 191:0.16666666666666666 1363:1.0 1376:1.0 1586:0.16666666666666666 2113:1.0 3812:1.0 4210:1.0 5100:2.0 5124:1.0 5328:1.0 5861:1.0 6095:1.0 6683:1.0 6869:1.0
5 5:0.5 6:0.11764705882352941 15:0.1111111111111111 24:1.0 34:0.1 42:0.4 56:0.6666666666666666 63:1.0 82:0.16666666666666666 106:1.0 131:0.5 132:1.0 135:0.4 145:1.0 150:0.023255813953488372 155:0.09090909090909091 181:0.25 191:0.16666666666666666 261:0.019230769230769232 327:0.16666666666666666 367:1.0 642:1.0 695:1.0 768:0.5 794:1.0 908:1.0 977:1.0 1345:1.0 1537:1.0 2683:0.14285714285714285 2807:1.0 3567:0.5 4054:1.0 4210:2.0 4475:1.0 5100:1.5 5121:0.5 5318:1.0 5980:1.0 6448:1.0 6607:1.0 7301:1.0
5 97:0.5 117:0.05 150:0.023255813953488372 273:0.3333333333333333 373:0.3333333333333333 1241:0.09090909090909091 2791:0.3333333333333333 4210:1.0 5100:1.5
5 5:0.5 15:0.1111111111111111 191:0.3333333333333333 251:0.5 261:0.019230769230769232 350:0.125 1448:0.3333333333333333 1661:1.0 3563:0.5 3567:0.5 3794:1.0 5100:1.5 5124:1.0 6530:1.0
5 6:0.11764705882352941 17:0.25 42:0.2 56:0.3333333333333333 64:0.25 97:0.5 98:0.5 147:0.5 155:0.09090909090909091 191:0.16666666666666666 215:0.1 261:0.019230769230769232 359:0.5 583:1.0 957:1.0 1083:1.0 1354:0.3333333333333333 1382:0.3333333333333333 1403:1.0 1661:1.0 2302:1.0 2683:0.14285714285714285 2716:1.0 4210:4.0 4262:1.0 5100:1.0 5308:1.0
5 23:0.07692307692307693 82:0.16666666666666666 97:0.5 117:0.05 160:1.0 1241:0.09090909090909091 1484:1.0 2683:0.14285714285714285 3590:1.0 4210:1.0 5100:0.5 5328:1.0 6095:1.0 6384:0.5
5 5:0.5 15:0.05555555555555555 17:0.25 23:0.07692307692307693 96:0.14285714285714285 97:0.5 98:1.0 140:0.5 143:0.25 150:0.023255813953488372 167:1.0 176:1.0 191:0.3333333333333333 215:0.1 222:0.5 261:0.038461538461538464 320:1.0 367:1.0 399:0.5 908:1.0 1063:1.0 1354:0.3333333333333333 1704:1.0 1890:1.0 2530:1.0 3515:0.007692307692307693 5100:1.5 7164:1.0
5 1:0.3333333333333333 5:1.0 11:0.3333333333333333 15:0.16666666666666666 56:0.3333333333333333 197:0.5 226:0.5 240:1.0 320:2.0 350:0.125 795:1.0 953:1.0 1210:0.3333333333333333 1885:2.0 2761:1.0 2875:1.0 3042:1.0 3515:0.015384615384615385 4071:1.0 4210:4.0 4221:1.0 4707:1.0 5100:1.5 5697:1.0 5986:1.0 6430:1.0 6432:1.0 7158:1.0 7177:1.0 7343:1.0 7344:1.0
5 5:0.5 6:0.058823529411764705 15:0.2222222222222222 34:0.2 42:0.2 45:1.0 56:0.6666666666666666 73:2.0 82:0.3333333333333333 97:0.5 177:0.5 191:0.16666666666666666 319:0.058823529411764705 320:1.0 534:0.25 681:0.2 695:1.0 866:2.0 926:1.0 1569:0.3333333333333333 1757:1.0 2054:1.0 2295:1.0 3515:0.015384615384615385 4077:1.0 4210:2.0 4988:1.0 5100:1.0 5522:1.0 5546:1.0 5956:1.0 6238:1.0 6291:1.0 7057:2.0
5 1:0.16666666666666666 5:1.0 6:0.11764705882352941 15:0.05555555555555555 23:0.07692307692307693 34:0.2 51:0.25 56:0.6666666666666666 63:1.0 64:0.5 97:0.5 106:1.0 107:0.5 135:0.2 150:0.023255813953488372 153:0.3333333333333333 191:0.16666666666666666 246:1.0 287:1.0 305:1.0 320:2.0 350:0.125 367:1.0 482:1.0 506:0.3333333333333333 586:1.0 866:1.0 988:0.5 1219:1.0 1266:1.0 1354:0.6666666666666666 1389:0.5 1398:1.0 1492:1.0 1685:1.0 1885:1.0 1992:3.0 2143:1.0 2685:1.0 3515:0.015384615384615385 3522:1.0 3590:1.0 4210:2.0 5100:1.0 5122:1.0 5271:1.0 5524:1.0
5 1:0.16666666666666666 4:1.0 5:1.0 6:0.23529411764705882 15:0.1111111111111111 17:0.25 34:0.2 44:1.0 51:0.25 56:0.3333333333333333 64:0.5 75:0.14285714285714285 97:0.5 320:1.0 473:0.5 488:1.0 530:1.0 531:0.5 534:0.25 866:1.0 988:0.5 1389:0.5 1661:1.0 1759:1.0 3515:0.015384615384615385 4054:1.0 4180:1.0 4210:2.0 4418:1.0 5100:1.5 5122:2.0 5125:1.0 5212:1.0 5222:1.0 6087:1.0 6318:1.0 6537:2.0
5 5:0.5 6:0.17647058823529413 23:0.07692307692307693 56:0.3333333333333333 64:0.25 143:0.25 150:0.023255813953488372 151:1.0 190:1.0 215:0.1 284:1.0 319:0.058823529411764705 320:2.0 350:0.25 368:1.0 373:0.3333333333333333 461:1.0 527:1.0 672:1.0 798:1.0 1432:1.0 2297:1.0 2927:1.0 3515:0.015384615384615385 4210:2.0 4262:1.0 5100:2.5 5122:1.0 5354:1.0 5441:1.0 5641:1.0 6055:1.0 6391:1.0
5 5:0.5 6:0.29411764705882354 15:0.1111111111111111 31:1.0 34:0.2 42:1.4 56:0.3333333333333333 75:0.14285714285714285 82:0.16666666666666666 96:0.14285714285714285 97:0.5 105:0.5 117:0.05 143:0.25 147:0.5 169:1.0 180:1.0 320:3.0 367:1.0 839:1.0 866:1.0 908:1.0 988:0.5 1036:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1355:1.0 1544:1.0 2009:1.0 2295:1.0 3498:1.0 3515:0.015384615384615385 4210:3.0 4498:1.0 5100:1.0 5122:1.0 5124:1.0 5153:0.3333333333333333 5242:1.0 5284:1.0 5687:1.0
5 1:0.16666666666666666 6:0.058823529411764705 15:0.1111111111111111 17:0.25 51:0.25 97:0.5 145:1.0 157:1.0 190:3.0 320:2.0 376:1.0 427:0.1 908:1.0 1210:0.3333333333333333 1674:1.0 1790:1.0 1953:1.0 2083:1.0 2312:1.0 2597:1.0 2598:1.0 3098:1.0 3515:0.015384615384615385 5100:1.5 5119:1.0 5122:2.0 6123:1.0 7210:1.0
5 1:0.16666666666666666 5:0.5 15:0.1111111111111111 17:0.25 42:0.2 45:1.0 56:0.3333333333333333 64:0.25 73:1.0 82:0.3333333333333333 135:0.2 146:0.3333333333333333 176:1.0 182:0.1 191:0.16666666666666666 261:0.019230769230769232 273:0.3333333333333333 275:0.5 320:1.0 339:0.5 402:1.0 483:1.0 594:1.0 1032:1.0 1432:2.0 1448:0.3333333333333333 1661:1.0 1671:1.0 2312:1.0 3098:1.0 3244:1.0 3344:1.0 3515:0.007692307692307693 4210:3.0 5100:1.0 5129:1.0 5745:1.0 7210:1.0
5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 37:0.3333333333333333 51:0.25 143:0.25 150:0.023255813953488372 181:0.25 191:0.3333333333333333 206:1.0 215:0.2 226:0.5 261:0.019230769230769232 320:1.0 427:0.1 561:0.5 617:1.0 681:0.4 768:0.5 795:1.0 995:0.25 1058:1.0 1180:1.0 1265:1.0 1586:0.16666666666666666 1928:1.0 2721:1.0 3401:1.0 3515:0.007692307692307693 4210:1.0 4262:1.0 5100:1.5 6720:1.0 7157:1.0
5 5:1.5 6:0.11764705882352941 15:0.16666666666666666 17:0.25 25:0.5 34:0.1 45:1.0 51:0.25 56:0.6666666666666666 96:0.2857142857142857 97:0.5 98:0.5 128:0.5 191:0.16666666666666666 261:0.019230769230769232 320:2.0 399:0.5 574:0.25 681:0.2 852:1.0 993:1.0 1011:1.0 1258:0.3333333333333333 1403:1.0 1484:1.0 2312:1.0 3344:1.0 3515:0.015384615384615385 4210:1.0 5100:2.0 5153:0.6666666666666666 5291:1.0
5 5:0.5 15:0.1111111111111111 30:0.5 56:0.3333333333333333 96:0.14285714285714285 97:1.0 108:0.5 128:0.5 135:0.2 191:0.16666666666666666 261:0.019230769230769232 275:0.5 320:1.0 327:0.16666666666666666 595:1.0 660:1.0 1349:1.0 3515:0.007692307692307693 3567:0.5 4054:1.0 4210:1.0 5112:1.0 5122:1.0 5124:1.0 5153:0.3333333333333333 5618:1.0 6711:1.0 7164:1.0
5 5:1.5 6:0.058823529411764705 15:0.16666666666666666 17:0.25 23:0.07692307692307693 42:0.4 56:0.3333333333333333 96:0.14285714285714285 97:1.0 143:0.25 150:0.046511627906976744 251:0.5 320:1.0 367:1.0 427:0.1 613:1.0 615:1.0 648:1.0 737:1.0 768:0.5 1210:0.3333333333333333 1281:1.0 1675:1.0 1993:1.0 2268:1.0 2557:1.0 2849:1.0 3515:0.007692307692307693 3575:1.0 3590:1.0 4210:3.0 5100:1.0 5291:1.0 6949:1.0
5 23:0.07692307692307693 56:0.3333333333333333 191:0.16666666666666666 197:1.0 261:0.019230769230769232 368:1.0 647:1.0 908:1.0 1202:1.0 1354:0.6666666666666666 2097:1.0 4210:1.0 5100:1.0
5 5:1.5 15:0.05555555555555555 17:0.25 23:0.07692307692307693 54:1.0 56:0.3333333333333333 73:1.0 131:0.5 143:0.25 185:1.0 191:0.16666666666666666 215:0.1 220:1.0 261:0.019230769230769232 275:0.5 319:0.058823529411764705 320:1.0 561:0.5 566:1.0 654:0.14285714285714285 768:0.5 791:0.5 816:0.5 850:1.0 878:1.0 930:1.0 1210:0.3333333333333333 1421:1.0 1432:1.0 1580:3.0 1923:1.0 2045:1.0 3515:0.007692307692307693 4210:2.0 4480:1.0 5100:1.0 5146:1.0 5614:1.0
5 5:0.5 6:0.17647058823529413 17:0.5 23:0.15384615384615385 25:0.5 34:0.2 42:0.6 54:1.0 56:0.6666666666666666 97:0.5 107:0.5 108:0.5 135:0.2 143:0.5 157:1.0 192:1.0 223:1.0 320:2.0 339:0.5 397:1.0 399:0.5 587:0.5 595:1.0 1036:1.0 1044:1.0 1185:1.0 1354:0.3333333333333333 2033:1.0 2249:1.0 2263:0.5 2942:1.0 3204:1.0 3248:1.0 3249:1.0 3515:0.015384615384615385 4210:5.0 4402:1.0 5100:1.0 5122:1.0 5284:1.0 5317:1.0 5396:1.0 5399:1.0 5730:1.0 6110:1.0 6239:1.0
5 1:0.16666666666666666 5:0.5 6:0.058823529411764705 15:0.05555555555555555 25:0.5 31:1.0 42:0.2 56:0.3333333333333333 150:0.023255813953488372 191:0.5 261:0.019230769230769232 319:0.058823529411764705 320:2.0 339:1.0 423:0.5 424:1.0 427:0.1 488:1.0 717:1.0 742:0.5 768:0.5 1258:0.3333333333333333 2683:0.14285714285714285 2927:1.0 3515:0.007692307692307693 4210:1.0 5100:1.5 5122:2.0 5216:1.0 5317:1.0
5 5:0.5 6:0.11764705882352941 17:0.5 34:0.1 42:0.2 45:1.0 56:0.3333333333333333 64:0.25 97:0.5 147:0.5 150:0.023255813953488372 181:0.25 191:0.16666666666666666 215:0.1 261:0.019230769230769232 275:0.5 320:1.0 511:0.5 561:0.5 681:0.2 999:1.0 1044:1.0 1210:0.3333333333333333 1394:1.0 1432:1.0 2068:1.0 2585:1.0 2683:0.14285714285714285 3515:0.007692307692307693 3829:1.0 4185:1.0 4210:2.0 5100:2.0 5122:1.0 5129:1.0 5391:1.0 5555:1.0 5775:1.0 5776:1.0 6092:1.0 6430:1.0 6955:1.0
5 5:0.5 6:0.11764705882352941 11:0.3333333333333333 56:0.3333333333333333 60:1.0 64:0.25 115:1.0 194:1.0 320:1.0 350:0.125 427:0.2 441:0.3333333333333333 473:0.5 866:1.0 1210:0.3333333333333333 1445:0.5 1586:0.16666666666666666 1998:1.0 2263:0.5 2265:1.0 3515:0.007692307692307693 3628:1.0 4262:1.0 5100:1.5 5775:1.0 6043:1.0 6309:1.0 6347:1.0 7261:1.0
5 5:0.5 23:0.15384615384615385 34:0.1 64:0.25 66:1.0 82:0.16666666666666666 95:1.0 97:1.0 108:0.5 146:0.6666666666666666 160:1.0 185:1.0 191:0.3333333333333333 238:0.14285714285714285 261:0.019230769230769232 275:0.5 320:1.0 443:1.0 499:1.0 506:0.3333333333333333 566:1.0 696:0.5 908:1.0 927:1.0 1354:0.3333333333333333 1484:1.0 3515:0.007692307692307693 4210:4.0 5100:0.5 5122:1.0 5126:1.0 5127:0.5 5146:1.0 5308:1.0 6472:1.0
5 4:1.0 5:0.5 6:0.058823529411764705 17:0.25 56:0.6666666666666666 146:0.3333333333333333 155:0.09090909090909091 185:1.0 191:0.16666666666666666 238:0.14285714285714285 320:1.0 383:1.0 399:0.5 613:1.0 695:1.0 696:0.5 717:1.0 735:1.0 840:1.0 1345:0.5 1661:1.0 1692:0.3333333333333333 2069:1.0 2688:1.0 3515:0.007692307692307693 4210:2.0 5100:2.0 5122:1.0 5142:0.2 5317:1.0 5737:1.0
5 1:0.16666666666666666 15:0.16666666666666666 34:0.1 37:0.3333333333333333 42:0.2 54:1.0 97:0.5 131:0.5 135:0.2 150:0.023255813953488372 155:0.09090909090909091 215:0.1 423:0.5 506:0.3333333333333333 1354:0.3333333333333333 1471:1.0 1602:1.0 1674:1.0 2639:1.0 4210:2.0 5100:2.5 5124:1.0 5738:1.0 5792:1.0 6071:2.0 6348:1.0
5 6:0.058823529411764705 131:0.5 135:0.4 146:0.3333333333333333 147:0.5 150:0.023255813953488372 191:0.3333333333333333 261:0.019230769230769232 350:0.125 368:1.0 423:0.5 816:0.5 2097:1.0 4210:2.0 5100:0.5 5216:1.0
5 5:1.0 15:0.05555555555555555 23:0.07692307692307693 31:1.0 56:0.3333333333333333 63:1.0 64:0.25 96:0.14285714285714285 97:1.0 150:0.046511627906976744 155:0.09090909090909091 191:0.16666666666666666 220:1.0 223:1.0 275:0.5 405:1.0 427:0.1 506:0.3333333333333333 561:0.5 1759:1.0 3002:1.0 4210:2.0 4481:1.0 5100:1.5 5639:1.0 5989:1.0 5990:1.0
5 5:1.0 6:0.058823529411764705 23:0.07692307692307693 54:1.0 95:1.0 106:1.0 191:0.16666666666666666 251:0.5 319:0.058823529411764705 350:0.25 373:0.3333333333333333 409:1.0 424:1.0 427:0.1 583:1.0 1452:1.0 1740:1.0 2683:0.14285714285714285 4210:2.0 5100:1.0
5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 34:0.1 42:0.2 56:0.3333333333333333 63:1.0 64:0.5 73:2.0 167:1.0 191:0.16666666666666666 215:0.1 235:1.0 273:0.3333333333333333 319:0.058823529411764705 320:1.0 350:0.125 402:1.0 445:1.0 506:0.3333333333333333 742:0.5 1123:1.0 1865:1.0 2263:0.5 2266:1.0 2331:1.0 3235:1.0 3271:1.0 3515:0.007692307692307693 4210:1.0 5100:2.5 5122:1.0 5376:1.0 5528:1.0 7297:1.0
5 1:0.16666666666666666 5:2.0 6:0.17647058823529413 15:0.1111111111111111 17:0.25 23:0.07692307692307693 30:0.5 34:0.2 42:0.2 56:0.6666666666666666 95:1.0 96:0.2857142857142857 105:0.5 135:0.2 150:0.023255813953488372 165:0.2857142857142857 191:0.5 220:1.0 320:1.0 373:0.3333333333333333 399:0.5 473:0.5 531:0.5 542:0.5 583:1.0 717:1.0 1044:1.0 1123:1.0 1580:1.0 1872:1.0 1896:1.0 2317:1.0 2721:1.0 2821:1.0 2849:1.0 2921:1.0 3515:0.007692307692307693 3892:1.0 4210:3.0 4408:0.2 5100:1.5 5122:1.0 5768:1.0 6210:1.0 6528:1.0
5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 82:0.3333333333333333 143:0.25 181:0.25 191:0.16666666666666666 226:0.5 261:0.019230769230769232 320:1.0 386:0.5 424:1.0 515:1.0 866:1.0 1107:1.0 1210:0.3333333333333333 1215:1.0 1544:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4054:1.0 4128:1.0 5100:1.0 5249:1.0 5382:0.5 6053:1.0 6210:1.0 6233:1.0 6236:1.0
5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 42:0.4 146:0.3333333333333333 150:0.023255813953488372 176:1.0 191:0.16666666666666666 302:1.0 441:0.3333333333333333 488:1.0 561:0.5 866:1.0 1091:1.0 1154:1.0 1484:1.0 1785:1.0 2331:1.0 2683:0.14285714285714285 2889:0.5 3515:0.007692307692307693 4210:1.0 5100:1.5 5124:1.0 5516:1.0 7145:1.0
5 5:0.5 51:0.25 56:0.3333333333333333 64:0.25 97:0.5 106:1.0 128:0.5 143:0.25 150:0.09302325581395349 165:0.14285714285714285 191:0.5 220:1.0 238:0.14285714285714285 261:0.019230769230769232 320:1.0 339:0.5 473:0.5 499:1.0 587:0.5 866:2.0 1058:1.0 1104:0.5 1161:1.0 1354:1.0 1382:0.3333333333333333 1561:1.0 1743:1.0 1992:1.0 2059:1.0 2132:1.0 2321:1.0 2639:1.0 2721:1.0 2980:1.0 3515:0.007692307692307693 4210:2.0 5100:0.5 5168:1.0 5570:1.0 5738:1.0 6727:1.0
5 5:0.5 42:0.2 51:0.25 96:0.14285714285714285 128:0.5 143:0.25 174:1.0 215:0.1 226:0.5 273:0.3333333333333333 308:1.0 320:1.0 327:0.16666666666666666 336:0.5 506:0.3333333333333333 908:1.0 1349:1.0 1363:1.0 1943:1.0 1998:1.0 3004:2.0 3515:0.007692307692307693 4210:2.0 4408:0.2 5100:0.5 5122:2.0 5124:1.0 5168:1.0 5309:1.0 5350:1.0 5688:1.0 5830:1.0 6136:1.0
5 15:0.05555555555555555 23:0.07692307692307693 37:0.3333333333333333 75:0.2857142857142857 107:0.5 150:0.023255813953488372 191:0.16666666666666666 261:0.019230769230769232 373:0.3333333333333333 427:0.1 528:2.0 654:0.14285714285714285 1492:1.0 4210:2.0 5100:1.5 5133:1.0 5143:1.0
5 5:1.0 147:0.5 150:0.046511627906976744 191:0.16666666666666666 350:0.125 427:0.1 506:0.3333333333333333 561:0.5 918:0.5 1354:0.6666666666666666 4210:3.0 5100:0.5 5112:1.0 5133:1.0
5 1:0.16666666666666666 5:1.0 15:0.05555555555555555 191:0.16666666666666666 312:1.0 427:0.1 918:0.3333333333333333 1123:1.0 1474:1.0 1661:1.0 4210:1.0 5100:0.5 5108:1.0 5109:1.0 5274:1.0 6777:1.0
5 5:0.5 117:0.05 191:0.5 261:0.019230769230769232 427:0.2 1241:0.09090909090909091 1661:1.0 4087:1.0 4210:1.0 5100:1.0
5 6:0.058823529411764705 135:0.2 155:0.09090909090909091 191:0.16666666666666666 261:0.019230769230769232 427:0.1 647:1.0 1154:1.0 1448:0.3333333333333333 2683:0.14285714285714285 5100:1.5 5191:1.0
5 1:0.16666666666666666 5:0.5 150:0.023255813953488372 191:0.5 261:0.038461538461538464 327:0.16666666666666666 427:0.1 587:0.5 3887:1.0 4210:2.0 5100:0.5 5144:0.5 5146:1.0 5721:0.5
5 1:0.16666666666666666 11:0.3333333333333333 82:0.16666666666666666 150:0.046511627906976744 191:0.16666666666666666 215:0.1 261:0.019230769230769232 483:2.0 561:0.5 2538:1.0 2683:0.14285714285714285 4210:4.0 4403:1.0 4908:1.0 5100:1.0 5107:1.0 5692:1.0
5 56:0.3333333333333333 73:1.0 135:0.2 151:1.0 191:0.16666666666666666 261:0.019230769230769232 918:0.3333333333333333 1162:1.0 1354:0.3333333333333333 1466:1.0 1992:1.0 4210:1.0 4221:1.0 5100:1.5 5291:1.0 5298:1.0 5721:0.5
5 101:1.0 191:0.3333333333333333 261:0.019230769230769232 287:1.0 380:1.0 441:0.3333333333333333 488:1.0 561:0.5 995:0.5 1075:1.0 1564:1.0 2683:0.14285714285714285 3567:0.5 4210:1.0 5100:1.5 5124:1.0 5153:0.3333333333333333 6071:1.0
5 5:0.5 11:0.3333333333333333 75:0.14285714285714285 106:1.0 131:0.5 215:0.1 268:1.0 367:1.0 561:0.5 982:1.0 1586:0.16666666666666666 2683:0.14285714285714285 4210:1.0 4924:1.0 5100:1.0 5328:1.0 5956:1.0
5 75:0.14285714285714285 82:0.16666666666666666 106:1.0 191:0.16666666666666666 261:0.019230769230769232 388:1.0 1651:1.0 4210:1.0 4262:1.0 5100:1.0 5121:0.5 5738:1.0
5 17:0.25 23:0.15384615384615385 75:0.2857142857142857 350:0.125 359:0.5 423:0.5 1162:1.0 2069:1.0 3467:1.0 4184:1.0 4908:1.0 5100:1.5 5216:1.0 5328:1.0 5890:1.0 5979:1.0 6954:1.0
5 1:0.16666666666666666 6:0.058823529411764705 56:0.3333333333333333 64:0.25 97:1.5 135:0.2 150:0.023255813953488372 155:0.09090909090909091 191:0.16666666666666666 319:0.058823529411764705 320:1.0 325:1.0 327:0.16666666666666666 587:0.5 742:0.5 908:1.0 995:0.25 2312:1.0 2791:0.3333333333333333 3515:0.007692307692307693 4210:1.0 5100:1.0 5122:1.0 5410:1.0
5 4:1.0 5:0.5 15:0.05555555555555555 23:0.07692307692307693 34:0.2 73:1.0 82:0.16666666666666666 106:1.0 117:0.05 143:0.25 155:0.09090909090909091 185:1.0 191:0.16666666666666666 251:0.5 320:1.0 427:0.2 534:0.25 981:1.0 1241:0.09090909090909091 1596:1.0 2927:1.0 3515:0.007692307692307693 4210:3.0 4498:1.0 5100:1.0 5206:0.5 5222:1.0 5271:1.0 5302:1.0 5308:1.0 5391:1.0 5778:1.0 5781:1.0 7212:1.0
5 5:0.5 15:0.05555555555555555 17:0.25 45:1.0 128:0.5 135:0.2 143:0.25 147:0.5 169:1.0 191:0.16666666666666666 215:0.1 240:1.0 319:0.058823529411764705 320:1.0 389:1.0 654:0.14285714285714285 995:0.25 1661:1.0 1692:0.3333333333333333 2804:1.0 3515:0.007692307692307693 3567:0.5 4210:2.0 4924:1.0 5100:1.5 5122:1.0 5291:1.0 5328:1.0 5614:1.0 6431:1.0 7116:1.0
5 5:0.5 64:0.25 73:1.0 97:0.5 150:0.023255813953488372 169:1.0 191:0.16666666666666666 261:0.019230769230769232 319:0.058823529411764705 327:0.16666666666666666 350:0.125 367:1.0 995:0.25 1154:1.0 1941:1.0 2132:1.0 2295:1.0 2618:1.0 2791:0.3333333333333333 3515:0.007692307692307693 5100:1.0 5122:1.0
5 1:0.16666666666666666 15:0.1111111111111111 23:0.07692307692307693 34:0.1 42:0.2 49:1.0 56:0.6666666666666666 64:0.5 147:0.5 191:0.16666666666666666 215:0.1 320:1.0 359:0.5 443:1.0 511:0.5 569:1.0 1058:1.0 1105:1.0 1275:1.0 1586:0.16666666666666666 1998:1.0 2312:1.0 2394:1.0 3515:0.007692307692307693 4210:1.0 4402:1.0 5100:1.0 5112:1.0 5350:1.0 5614:1.0 5951:1.0 6740:1.0 7081:1.0
5 5:0.5 15:0.05555555555555555 23:0.07692307692307693 42:0.4 82:0.3333333333333333 94:1.0 123:1.0 147:0.5 191:0.6666666666666666 201:1.0 215:0.1 219:0.3333333333333333 238:0.14285714285714285 261:0.019230769230769232 273:0.3333333333333333 281:1.0 320:1.0 350:0.125 353:1.0 359:0.5 388:1.0 427:0.1 484:1.0 488:1.0 672:1.0 908:1.0 995:0.25 1354:0.3333333333333333 1377:1.0 1717:1.0 1719:1.0 2068:1.0 2298:1.0 2325:1.0 2791:0.3333333333333333 3515:0.007692307692307693 4210:3.0 4262:1.0 5093:1.0 5100:1.0 5342:1.0 5357:1.0 6213:1.0 7145:1.0
5 1:0.16666666666666666 5:2.0 15:0.1111111111111111 31:1.0 42:0.2 56:0.3333333333333333 64:0.25 73:1.0 96:0.14285714285714285 97:0.5 105:0.5 106:1.0 110:0.5 123:1.0 150:0.023255813953488372 164:1.0 215:0.1 223:1.0 320:2.0 373:0.3333333333333333 411:1.0 531:1.0 613:1.0 618:1.0 747:0.5 908:1.0 1123:1.0 1160:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1275:1.0 1355:1.0 1389:0.5 1398:1.0 1596:1.0 1872:1.0 2003:1.0 2312:1.0 2993:0.5 3344:1.0 3515:0.015384615384615385 3742:1.0 3837:1.0 4054:1.0 4210:2.0 5100:2.5 5153:0.3333333333333333 5830:1.0
5 5:0.5 6:0.058823529411764705 11:0.3333333333333333 15:0.1111111111111111 23:0.07692307692307693 64:0.25 82:0.16666666666666666 97:0.5 107:0.5 147:0.5 150:0.046511627906976744 169:2.0 181:0.25 185:1.0 191:0.16666666666666666 261:0.019230769230769232 320:2.0 373:0.3333333333333333 399:0.5 613:1.0 866:1.0 908:1.0 1139:0.5 1201:1.0 1215:1.0 1281:1.0 1354:0.6666666666666666 1872:1.0 2003:1.0 2847:1.0 2892:1.0 3276:1.0 3515:0.015384615384615385 4054:2.0 4210:3.0 4747:1.0 4910:1.0 5100:1.0 5173:1.0 5357:1.0 5437:1.0 6404:1.0
5 1:0.16666666666666666 6:0.23529411764705882 15:0.16666666666666666 17:0.25 23:0.07692307692307693 37:0.3333333333333333 56:1.6666666666666667 64:0.25 73:2.0 97:0.5 98:0.5 105:0.5 109:1.0 139:1.0 147:0.5 206:1.0 320:2.0 474:1.0 569:1.0 735:1.0 881:0.5 1210:0.3333333333333333 1354:0.3333333333333333 1421:1.0 1569:0.3333333333333333 1580:2.0 2374:1.0 2737:1.0 2966:1.0 3326:1.0 3515:0.023076923076923078 3653:1.0 4210:5.0 5100:0.5 5122:2.0 5141:1.0 5509:1.0 6044:1.0 6050:1.0 6051:1.0 6071:1.0 7142:1.0 7343:1.0
5 5:1.0 6:0.11764705882352941 15:0.1111111111111111 17:0.75 23:0.15384615384615385 42:0.2 56:0.6666666666666666 64:0.25 75:0.14285714285714285 96:0.14285714285714285 106:1.0 128:0.5 143:0.25 146:0.6666666666666666 147:1.0 160:1.0 176:1.0 191:0.16666666666666666 215:0.3 223:1.0 246:1.0 251:0.5 266:1.0 320:2.0 488:1.0 534:0.25 695:1.0 768:0.5 836:1.0 840:1.0 866:1.0 1036:1.0 1210:0.3333333333333333 1349:1.0 1354:0.6666666666666666 1740:1.0 1756:1.0 2055:1.0 2266:1.0 2571:1.0 3344:1.0 3515:0.015384615384615385 4210:4.0 5057:1.0 5100:1.5 5122:1.0 5205:1.0 5726:1.0 7240:1.0
5 5:1.0 6:0.23529411764705882 15:0.16666666666666666 17:0.25 34:0.1 37:0.3333333333333333 42:0.2 49:1.0 64:0.25 73:2.0 96:0.14285714285714285 97:0.5 123:1.0 143:0.25 147:0.5 150:0.046511627906976744 188:1.0 191:0.16666666666666666 215:0.1 320:2.0 327:0.16666666666666666 427:0.1 488:1.0 566:1.0 789:1.0 1354:0.3333333333333333 1445:0.5 1692:0.3333333333333333 2209:1.0 2305:1.0 2403:1.0 2980:1.0 3042:1.0 3515:0.015384615384615385 3808:1.0 4210:5.0 5100:0.5 5122:1.0 5135:1.0 5730:1.0 5925:1.0 5981:1.0 6228:1.0 6732:1.0 7055:1.0 7208:1.0 7343:1.0
5 5:0.5 6:0.17647058823529413 15:0.05555555555555555 17:0.25 23:0.07692307692307693 25:0.5 37:0.3333333333333333 45:1.0 56:0.3333333333333333 63:1.0 64:0.25 105:0.5 107:0.5 143:0.25 150:0.06976744186046512 165:0.14285714285714285 169:1.0 174:1.0 197:0.5 206:1.0 215:0.1 219:0.3333333333333333 222:0.5 320:3.0 350:0.125 373:0.3333333333333333 561:0.5 866:1.0 911:1.0 1202:1.0 1258:0.3333333333333333 1445:0.5 1569:0.3333333333333333 1651:1.0 2263:0.5 2678:1.0 2759:0.5 3002:1.0 3344:1.0 3515:0.023076923076923078 4054:1.0 4210:5.0 5100:1.5 5122:3.0 5135:1.0 5144:0.5 5168:1.0 5202:1.0 5212:1.0 5268:1.0 6346:1.0 6349:1.0
5 1:0.16666666666666666 4:1.0 5:1.5 6:0.17647058823529413 15:0.05555555555555555 17:0.25 34:0.2 56:0.6666666666666666 64:0.25 82:0.16666666666666666 97:0.5 135:0.2 146:0.3333333333333333 147:0.5 150:0.023255813953488372 191:0.3333333333333333 197:0.5 215:0.1 238:0.14285714285714285 261:0.019230769230769232 275:0.5 284:1.0 320:3.0 359:0.5 427:0.1 647:1.0 908:1.0 1202:1.0 1210:0.3333333333333333 1447:1.0 1484:1.0 1569:0.3333333333333333 1669:1.0 1717:1.0 2585:1.0 2678:1.0 2722:1.0 3515:0.023076923076923078 3683:1.0 3730:1.0 4210:3.0 4316:1.0 4743:1.0 5100:1.0 5122:1.0 5212:1.0 5300:1.0 5302:1.0 5308:1.0 5812:1.0 7301:1.0
5 5:1.0 6:0.11764705882352941 15:0.16666666666666666 17:0.5 23:0.15384615384615385 34:0.2 56:0.3333333333333333 63:1.0 68:1.0 73:1.0 97:0.5 108:0.5 128:0.5 135:0.2 145:1.0 150:0.06976744186046512 165:0.14285714285714285 191:0.3333333333333333 261:0.019230769230769232 320:3.0 327:0.16666666666666666 427:0.1 483:1.0 615:1.0 681:0.2 866:2.0 1104:0.5 1160:1.0 1210:0.3333333333333333 1270:1.0 1432:1.0 2033:1.0 2052:1.0 2252:1.0 2473:1.0 3002:1.0 3062:1.0 3515:0.023076923076923078 4210:5.0 4848:1.0 5100:1.5 5122:2.0 5182:1.0 5202:1.0 5212:1.0 5223:1.0 5806:1.0 6074:1.0 6346:1.0 6532:1.0 6580:1.0 6720:1.0 7114:1.0 7203:1.0 7204:1.0
5 6:0.35294117647058826 15:0.16666666666666666 34:0.4 42:0.2 56:0.3333333333333333 82:0.16666666666666666 123:1.0 135:0.2 169:1.0 275:0.5 320:3.0 350:0.125 383:1.0 587:0.5 737:1.0 1036:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1373:1.0 1414:1.0 1580:1.0 1719:1.0 2227:0.5 2268:1.0 2402:1.0 3050:1.0 3091:1.0 3515:0.023076923076923078 4210:4.0 4262:1.0 4850:1.0 5070:1.0 5100:1.0 5122:2.0 5141:1.0 5382:0.5 5681:1.0 5933:1.0 7077:1.0 7223:1.0
5 5:1.0 6:0.29411764705882354 15:0.05555555555555555 23:0.07692307692307693 24:1.0 42:0.6 56:0.3333333333333333 64:0.25 135:0.2 157:1.0 191:0.16666666666666666 238:0.14285714285714285 320:3.0 350:0.125 441:0.3333333333333333 473:0.5 485:1.0 574:0.25 587:0.5 768:0.5 787:1.0 866:1.0 1028:1.0 1036:1.0 1210:0.3333333333333333 1354:0.3333333333333333 1669:1.0 1671:1.0 1953:1.0 3515:0.023076923076923078 3699:1.0 4042:1.0 4210:6.0 4316:2.0 4730:1.0 5100:0.5 5122:2.0 5153:0.3333333333333333 5282:1.0 5618:1.0 5961:1.0 6669:1.0 6743:1.0 7064:1.0
5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 42:0.2 56:0.3333333333333333 64:0.25 97:1.0 108:0.5 132:1.0 143:0.25 146:0.3333333333333333 147:0.5 153:0.3333333333333333 165:0.14285714285714285 167:1.0 176:1.0 191:0.3333333333333333 263:1.0 318:1.0 320:3.0 353:1.0 707:1.0 768:0.5 1210:0.3333333333333333 1317:2.0 1710:1.0 2801:1.0 2942:1.0 3267:1.0 3515:0.023076923076923078 4210:5.0 4499:1.0 5100:1.0 5122:2.0 6333:1.0 6379:1.0 6530:1.0 7219:1.0 7221:1.0
5 6:0.17647058823529413 15:0.1111111111111111 17:0.25 42:0.2 45:1.0 56:1.0 63:1.0 64:0.5 82:0.3333333333333333 107:0.5 135:0.4 143:0.25 146:0.3333333333333333 150:0.023255813953488372 155:0.09090909090909091 191:0.16666666666666666 215:0.1 245:0.5 320:3.0 359:0.5 373:0.3333333333333333 405:1.0 424:1.0 427:0.1 461:1.0 473:0.5 483:1.0 613:1.0 629:1.0 816:0.5 1162:1.0 1354:0.3333333333333333 1410:1.0 1445:1.0 1569:0.3333333333333333 1586:0.16666666666666666 1661:1.0 1775:1.0 1997:1.0 2069:1.0 2370:1.0 3000:1.0 3515:0.023076923076923078 3590:1.0 3694:1.0 4210:6.0 4316:1.0 5100:2.5 5212:1.0 5501:1.0 5614:1.0 7082:1.0 7233:1.0
5 11:0.3333333333333333 15:0.05555555555555555 34:0.1 63:1.0 64:0.25 73:1.0 75:0.14285714285714285 82:0.16666666666666666 108:0.5 155:0.09090909090909091 272:0.3333333333333333 320:2.0 350:0.125 359:1.0 427:0.1 583:1.0 866:1.0 918:0.6666666666666666 1345:0.5 1692:0.3333333333333333 1786:1.0 2052:1.0 3183:1.0 3515:0.015384615384615385 3829:1.0 4210:2.0 5100:1.0 5153:0.6666666666666666 5193:1.0 5552:2.0 5553:3.0 5775:1.0
5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.07692307692307693 56:0.3333333333333333 97:0.5 123:1.0 131:0.5 143:0.25 146:0.3333333333333333 226:0.5 320:2.0 336:0.5 852:1.0 897:1.0 953:1.0 1210:0.3333333333333333 1258:0.3333333333333333 1586:0.16666666666666666 1841:1.0 2297:1.0 2989:1.0 2993:0.5 3098:1.0 3515:0.015384615384615385 4210:5.0 5122:2.0 5153:0.6666666666666666 5219:1.0 5236:1.0 5551:2.0 5552:1.0 5555:1.0 6009:1.0 6055:1.0
5 6:0.17647058823529413 15:0.05555555555555555 37:0.3333333333333333 42:0.2 75:0.14285714285714285 131:0.5 169:1.0 192:1.0 320:3.0 325:1.0 461:1.0 494:1.0 613:1.0 1564:1.0 2052:1.0 2118:1.0 2989:2.0 3515:0.023076923076923078 3808:1.0 4054:1.0 4210:3.0 4316:1.0 5100:1.0 5135:1.0 5153:0.6666666666666666 5164:0.5 5219:1.0 5236:1.0 5284:1.0 5550:1.0 5551:1.5 5552:1.0 5553:1.0 6107:1.0 7029:1.0
5 5:0.5 6:0.17647058823529413 15:0.2222222222222222 34:0.1 42:0.2 49:1.0 56:0.3333333333333333 64:0.25 73:1.0 82:0.3333333333333333 98:0.5 123:1.0 131:0.5 169:1.0 305:1.0 320:2.0 359:0.5 388:1.0 689:1.0 791:0.5 1281:1.0 1433:1.0 1841:1.0 1956:1.0 2004:1.0 2054:1.0 2989:2.0 3098:1.0 3515:0.015384615384615385 4054:2.0 4210:2.0 4238:1.0 4262:1.0 4316:1.0 4555:1.0 4708:1.0 4709:1.0 5100:2.5 5122:1.0 5153:0.3333333333333333 5196:1.0 5212:1.0 5219:1.0 5236:1.0 5308:1.0 5551:2.0 5552:2.0 5553:1.0 5555:1.0 5693:1.0 5752:1.0 6410:1.0 6439:1.0 7103:1.0
5 30:0.5 34:0.2 42:0.4 73:1.0 88:1.0 96:0.14285714285714285 98:1.0 106:1.0 135:0.2 143:0.25 150:0.023255813953488372 157:1.0 169:2.0 175:1.0 191:0.3333333333333333 201:1.0 206:1.0 215:0.1 219:0.3333333333333333 251:0.5 261:0.019230769230769232 275:0.5 320:3.0 336:0.5 427:0.1 527:1.0 534:0.5 561:0.5 613:1.0 689:1.0 743:1.0 866:2.0 1354:0.3333333333333333 1432:1.0 2263:0.5 2750:1.0 2934:1.0 3515:0.023076923076923078 3660:1.0 3970:1.0 4210:3.0 5100:1.0 5113:1.0 5122:1.0 5168:1.0 5219:1.0 5309:1.0 5789:1.0 6048:1.0 6530:1.0
5 5:0.5 6:0.11764705882352941 15:0.1111111111111111 17:0.25 23:0.07692307692307693 97:1.0 135:0.2 191:0.3333333333333333 272:0.3333333333333333 320:2.0 336:0.5 350:0.125 427:0.2 542:0.5 561:0.5 863:1.0 866:1.0 1210:0.6666666666666666 1468:1.0 1661:1.0 2539:1.0 2791:0.3333333333333333 3515:0.015384615384615385 4210:1.0 4555:1.0 5100:2.5 5141:1.0 5219:1.0 5377:1.0 6262:1.0 6615:1.0
5 5:1.0 6:0.058823529411764705 15:0.1111111111111111 17:0.25 42:0.2 98:0.5 128:0.5 169:1.0 235:2.0 302:1.0 320:2.0 373:0.3333333333333333 427:0.2 574:0.25 587:0.5 710:1.0 768:0.5 1123:1.0 1349:1.0 1494:1.0 2791:0.3333333333333333 3515:0.015384615384615385 4210:2.0 4555:1.0 4639:1.0 5077:1.0 5100:1.5 5168:1.0 5219:1.0 5602:0.5 6476:1.0 7298:1.0
5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 31:1.0 34:0.1 42:0.4 55:1.0 56:0.3333333333333333 64:0.25 105:0.5 185:1.0 191:0.3333333333333333 201:1.0 320:1.0 350:0.125 427:0.2 473:0.5 664:1.0 1210:0.3333333333333333 1354:0.3333333333333333 1953:1.0 2662:1.0 2942:1.0 3515:0.007692307692307693 3759:1.0 4210:1.0 5024:1.0 5100:1.5 5133:1.0 5219:1.0 7081:1.0
5 15:0.05555555555555555 51:0.25 98:0.5 125:0.5 150:0.023255813953488372 167:1.0 320:1.0 327:0.16666666666666666 488:1.0 1097:1.0 1586:0.16666666666666666 2791:0.3333333333333333 3515:0.007692307692307693 4555:1.0 5100:2.5 5219:1.0 5382:0.5
5 5:1.0 6:0.058823529411764705 56:0.3333333333333333 117:0.05 191:0.5 201:1.0 261:0.019230769230769232 320:1.0 350:0.125 427:0.1 543:0.5 2683:0.14285714285714285 3515:0.007692307692307693 4210:1.0 5100:1.0 5141:1.0 5219:1.0 5469:1.0
5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 34:0.1 37:0.3333333333333333 42:0.2 56:0.6666666666666666 82:0.16666666666666666 150:0.023255813953488372 191:0.16666666666666666 201:1.0 204:1.0 219:0.3333333333333333 251:0.5 261:0.019230769230769232 273:0.3333333333333333 320:1.0 399:0.5 427:0.2 613:1.0 622:1.0 878:1.0 1258:0.3333333333333333 1445:0.5 2798:1.0 3515:0.007692307692307693 4210:2.0 4555:1.0 5100:1.5 5122:1.0 5219:1.0 5242:1.0 5245:1.0 5248:1.0 5512:1.0 5528:1.0 6028:1.0 7233:1.0
5 5:0.5 6:0.11764705882352941 23:0.07692307692307693 37:0.3333333333333333 42:0.2 56:0.6666666666666666 64:0.25 75:0.14285714285714285 82:0.16666666666666666 106:1.0 115:1.0 128:0.5 147:0.5 150:0.023255813953488372 320:1.0 327:0.16666666666666666 427:0.1 473:0.5 488:1.0 561:0.5 648:1.0 1349:1.0 1389:0.5 2279:1.0 2530:1.0 3515:0.007692307692307693 4210:3.0 4523:1.0 4555:1.0 5100:0.5 5153:0.3333333333333333 5174:1.0 5219:1.0 5246:1.0 5247:1.0 5248:1.0
5 15:0.05555555555555555 25:0.5 42:0.2 82:0.16666666666666666 117:0.05 222:0.5 566:1.0 816:0.5 918:0.5 1072:1.0 1241:0.09090909090909091 1661:1.0 1694:1.0 4210:2.0 5100:1.5 5125:1.0 5168:1.0 5614:1.0
5 96:0.14285714285714285 97:0.5 143:0.25 146:0.3333333333333333 215:0.2 272:0.3333333333333333 654:0.14285714285714285 918:0.5 2266:1.0 4210:1.0 5003:1.0 5100:1.0 5124:1.0 5141:1.0 5142:0.2 5164:0.5
5 5:0.5 23:0.07692307692307693 34:0.1 106:1.0 191:0.5 261:0.019230769230769232 305:1.0 423:0.5 427:0.1 615:1.0 681:0.2 2538:1.0 3394:1.0 4210:1.0 5100:1.5 5186:1.0 6586:1.0
5 191:0.3333333333333333 261:0.038461538461538464 2683:0.14285714285714285 2791:0.3333333333333333 4210:1.0 5100:1.0 5171:1.0 6545:1.0
5 5:1.0 6:0.058823529411764705 15:0.05555555555555555 23:0.07692307692307693 34:0.1 185:1.0 191:0.3333333333333333 192:1.0 235:1.0 350:0.125 427:0.1 488:1.0 717:1.0 843:1.0 908:1.0 1953:1.0 2454:1.0 2683:0.14285714285714285 4054:1.0 4210:1.0 5100:1.0 5122:1.0 5206:0.5 5890:1.0 5958:1.0
5 5:1.0 15:0.1111111111111111 34:0.1 37:0.3333333333333333 56:0.6666666666666666 143:0.25 145:1.0 147:1.0 150:0.023255813953488372 175:1.0 204:1.0 275:0.5 320:1.0 329:0.5 742:0.5 839:1.0 878:1.0 1036:1.0 1409:1.0 1433:1.0 2263:0.5 2683:0.14285714285714285 3515:0.007692307692307693 4077:1.0 4210:3.0 4376:1.0 4568:1.0 5100:0.5 5113:1.0 5122:1.0 5125:1.0 5279:1.0 6537:2.0
5 5:1.0 6:0.11764705882352941 15:0.16666666666666666 23:0.15384615384615385 37:0.3333333333333333 71:1.0 82:0.16666666666666666 95:1.0 191:0.3333333333333333 261:0.019230769230769232 319:0.058823529411764705 320:1.0 534:0.25 543:0.5 643:0.5 1409:1.0 1661:1.0 2934:1.0 3515:0.007692307692307693 4210:2.0 5100:0.5 5113:1.0 5248:1.0
5 1:0.16666666666666666 5:0.5 15:0.05555555555555555 17:0.25 34:0.2 147:0.5 150:0.023255813953488372 185:1.0 191:0.16666666666666666 240:1.0 350:0.125 561:0.5 648:1.0 737:1.0 1044:1.0 1095:1.0 1661:1.0 2254:1.0 4210:2.0
|
8ad1bdc00a763a92a125619164a209a630d6f24c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1538/CH16/EX16.1/Ex16_1.sce
|
7b56d47d4788ef65c11545ec172e5bbae5136445
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 651 |
sce
|
Ex16_1.sce
|
//example-16.1
//page no- 484
//given
//atomic radiii of gamma-iron having FCC lattice
rFCC=1.26 //A
//atomic radius of alpha-iron having BCC lattica
rBCC=1.24 //A
//as we know that FCC and BCC has effective no of atoms 4 and 2 resp
//so
aBCC=4/sqrt(3)*rBCC //A
aFCC=2*sqrt(2)*rFCC //A
//volume of lattice for FCC and BCC
VFCC=(aFCC)^3 //A^3
VBCC=(aBCC)^3 //A^3
//percentage change in volume during phase transformation of gamma-iron to alpha-iron is given by
percent_vol_change=(VFCC/4-VBCC/2)/(VFCC/4)*100
printf("the percentage volume change during phase transformation of gamma-iron to alpha-iron is %f",percent_vol_change)
|
2bf4b882db6ea823f3ddab47e4f8af44b73d9652
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3841/CH5/EX5.9/Ex5_9.sce
|
f5419fd5c16d0bfbcf5c1c36163b0e717f701e2f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 186 |
sce
|
Ex5_9.sce
|
clear
//
//find the total weight and airfuel ratio
//given data
O2=409.9
lb=0.231
w=409.9
W=w/lb
AFR=W/120.
printf("\n \n total weight %.2f ",W)
printf("\n \n air fuel ratio %.2f ",AFR)
|
122ca233c1714df563cbbddc3ffd133372cc3898
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH12/EX12.7/C12P7.sce
|
741ebc0276fc752d43bb2178d1d532a036137199
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 413 |
sce
|
C12P7.sce
|
clear
clc
//to find speed of ball
// GIVEN:
//refer to problem 9-10
//mass of disk
M = 2.5//in kg
//distance of fall
y = 0.56//in meters
//mass of block
m = 1.2//in kg
//acceleration due to gravity
g = 9.8//in m/s^2
// SOLUTION:
//applying conservation of mechanocal energy principle
//speed of block
v = sqrt((4*m*g*y)/(M+2*m))//in m/s
printf ("\n\n Speed of ball v = \n\n %.1f m/s",v)
|
5b055ed978b658207cf3a019cf52b9c442661436
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH7/EX7.4.b/solution7_4.sce
|
d9a2ee3c36cefa4c2d1e9f53f46d1b1805e2acab
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,010 |
sce
|
solution7_4.sce
|
//Function to standardise the given bolt-size
function[v] = standard(w)
v = ceil(w)
rem = pmodulo(v,10)
if (rem ~= 0) then
v = v + (10 - rem)
end
endfunction
//Obtain path of solution file
path = get_absolute_file_path('solution7_4.sce')
//Obtain path of data file
datapath = path + filesep() + 'data7_4.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate the permissible shear stress tau (N/mm2)
tau = ((50/100)*Syt)/fs
//Calculate the primary shear force on bolt3 Pshear (N)
Pshear = (P * 1000)/N
//Calculate the secondary shear force on bolt3 Sshear (N)
Sshear = (P * 1000 * e * r1)/((r1^2) + (r3^2))
//Calculate the resultant force on bolt3 P3 (N)
P3 = Pshear + Sshear
//Calculate the core diameter of the bolt dc (mm)
dc = ((4 * P3)/(%pi * tau))^(1/2)
//Calculate the nominal diameter of the bolt d (mm)
d = dc/0.8
//Standardise the bolt size
d = standard(d)
//Print results
printf('\nThe standard size of the bolts is M%d\n',d)
|
ec1d511d0a671b9608771faf6827ced6547e2105
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3875/CH6/EX6.2/Ex6_2.sce
|
7ec6d54ff0e4798f412aeee6a965204916e7eb7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 230 |
sce
|
Ex6_2.sce
|
clc;
clear;
lambda=6000*10^-10 //wavelength in m
myu_0=1.554 //refractive index
myu_e=1.544 //refractive index
//calculation
d=lambda/(4*(myu_0-myu_e))
mprintf("The thickness of the quarter wave plate is = %1.1e m",d)
|
6c124e644c4818615eae871ff726546f0927779a
|
93640402789b9a9d07c82958f433765f1e2a8397
|
/part 1/ALUcore.tst
|
98acb2e1b7f505655f62aef480f5165b8e67d921
|
[] |
no_license
|
Slayingripper/Z80-CPU
|
7a6b71f9e59850c3d4492a7f1867f4e81be278ba
|
451873966cf071f8088407300629994a8d33f13c
|
refs/heads/master
| 2020-05-04T02:42:27.419333 | 2019-04-01T19:27:22 | 2019-04-01T19:27:22 | 178,932,396 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,710 |
tst
|
ALUcore.tst
|
// This file is adapted from part of www.nand2tetris.org
// and the book "The Elements of Computag Systems"
// by Nisan and Schocken, MIT Press.
load ALUcore.hdl,
output-file ALUcore.out,
compare-to ALUcore.cmp,
output-list a%B1.4.1 b%B1.4.1 carryIn%B3.1.3 sums%B3.1.3 ands%B3.1.3 xors%B3.1.3 ors%B3.1.3 out%B1.4.1 carryOut%B3.1.3;
// Initial test
set a %B0000,
set b %B0000,
set carryIn %B0,
set sums %B0,
set ands %B0,
set xors %B0,
eval,
output;
set a %B0001,
set b %B0001,
set carryIn %B0,
set sums %B0,
set ands %B0,
set xors %B0,
eval,
output;
set a %B0000,
set b %B0000,
set carryIn %B1,
set sums %B0,
set ands %B0,
set xors %B0,
eval,
output;
set a %B0001,
set b %B0001,
set carryIn %B1,
set sums %B0,
set ands %B0,
set xors %B0,
eval,
output;
// Test Add
set sums %B1,
set carryIn %B0,
set a %B0000,
set b %B0000,
eval,
output;
set a %B0000,
set b %B1111,
eval,
output;
set a %B1111,
set b %B1111,
eval,
output;
set a %B1010,
set b %B0101,
eval,
output;
set a %B0110,
set b %B0011,
eval,
output;
set a %B0110,
set b %B1110,
eval,
output;
set a %B1000,
set b %B0111,
eval,
output;
set a %B1000,
set b %B1000,
eval,
output;
set carryIn %B1,
set a %B0000,
set b %B0000,
eval,
output;
set a %B0000,
set b %B1111,
eval,
output;
set a %B1111,
set b %B1111,
eval,
output;
set a %B1010,
set b %B0101,
eval,
output;
set a %B0110,
set b %B0011,
eval,
output;
set a %B0110,
set b %B1110,
eval,
output;
set a %B1000,
set b %B0111,
eval,
output;
set a %B1000,
set b %B1000,
eval,
output;
// Test and
set carryIn %B0,
set sums %B0,
set ands %B1,
set a %B0000,
set b %B0000,
eval,
output;
set a %B0000,
set b %B1111,
eval,
output;
set a %B1111,
set b %B1111,
eval,
output;
set a %B1010,
set b %B0101,
eval,
output;
set a %B0110,
set b %B0011,
eval,
output;
set a %B0110,
set b %B1110,
eval,
output;
// Test XOR
set carryIn %B0,
set sums %B0,
set ands %B0,
set xors %B1,
set a %B0000,
set b %B0000,
eval,
output;
set a %B0000,
set b %B1111,
eval,
output;
set a %B1111,
set b %B1111,
eval,
output;
set a %B1010,
set b %B0101,
eval,
output;
set a %B0110,
set b %B0011,
eval,
output;
set a %B0100,
set b %B0100,
eval,
output;
set a %B1001,
set b %B1100,
eval,
output;
set a %B0110,
set b %B1110,
eval,
output;
// Test OR
set carryIn %B0,
set sums %B0,
set xors %B0,
set ors %B1,
set a %B0000,
set b %B0000,
eval,
output;
set a %B0000,
set b %B1111,
eval,
output;
set a %B1111,
set b %B1111,
eval,
output;
set a %B1010,
set b %B0101,
eval,
output;
set a %B0110,
set b %B0011,
eval,
output;
set a %B0100,
set b %B0100,
eval,
output;
set a %B1001,
set b %B0110,
eval,
output;
|
bfac6e478a776beede232232da106c2d5e5a6ff9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3866/CH10/EX10.2/Ex10_2.sce
|
fa676b449862a0022e53e402423f785aec2fb77f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 818 |
sce
|
Ex10_2.sce
|
clc; clear; close;
Ceff=1;//in fF/um
Cint=0.2;//in fF/um
Cg=2;//in fF/um
Wn=0.8;//in um
Wp=0.4;//in um
Lwire=20;//in um
reff=12.5/2;//in kiloohm
rsq=0.054;//in ohm
Cfan=4*Cg*(Wn+Wp);
disp(Cfan,'Fanout Capacitance(in fermifarads)=');
Cself=Ceff*(Wn+Wp);
disp(Cself,'Self Capacitance(in fermifarads)=');
Cwire=Cint*Lwire;
disp(Cwire,'Wire Capacitance(in fermifarads)=');
Ctot=Cfan+Cself+Cwire;
disp(Ctot,'Total Capacitance(in fermifarads)=');
Tdriver=reff*Ctot;
disp(Tdriver,'total delay without wire resistance(in picoseconds)=');
Rwire=(rsq*(Lwire/0.2))/1000;
Tdriver1=reff*(Cself+Cg)+(reff+Rwire)*(Cfan+Cg);
disp(Rwire,'wire resistance (in kiloohms)=');
disp(Tdriver1,'total delay with wire resistance(in picoseconds)=');
disp('Inclusion of wire resistance made no appreciable difference');
|
565e650142d8d82d4e2ccffbfd46058151409b8c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1991/CH8/EX8.15/15.sce
|
2f0573645fdcefb19b3732c3f2fd7d19f5907676
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 171 |
sce
|
15.sce
|
clc
clear
//input
v=14 //voltage
//calculation
v0=v*sqrt(2)//rms value
//output
printf("rms value of ac is 14 V")
printf("\n the peak value of ac is %3.3f V",v0)
|
a86de30943d1fcf8d031c5875dd84ca4cd7aef50
|
527c41bcbfe7e4743e0e8897b058eaaf206558c7
|
/Positive_Negative_test/Netezza-Base-TimeSeries/FLARIMAUdt-NZ-01.tst
|
368701a61eb3779ffd97cadeb53461582a999efb
|
[] |
no_license
|
kamleshm/intern_fuzzy
|
c2dd079bf08bede6bca79af898036d7a538ab4e2
|
aaef3c9dc9edf3759ef0b981597746d411d05d34
|
refs/heads/master
| 2021-01-23T06:25:46.162332 | 2017-07-12T07:12:25 | 2017-07-12T07:12:25 | 93,021,923 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 15,191 |
tst
|
FLARIMAUdt-NZ-01.tst
|
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Teradata
--
-- Copyright (c): 2014 Fuzzy Logix, LLC
--
-- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC.
-- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC.
-- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade
-- secret or copyright law. Dissemination of this information or reproduction of this material is
-- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC.
--
--
-- Functional Test Specifications:
--
-- Test Category: Time Series Functions
--
-- Test Unit Number: FLARIMAUdt-TD-01
--
-- Name(s): FLARIMAUdt
--
-- Description: Calculates the coefficients of the autoregressive integrated moving average (ARIMA) model.
--
-- Applications:
--
-- Signature: FLARIMAUdt (Group_ID BIGINT,
-- Obs_ID BIGINT,
-- Num_Val DOUBLE PRECISION,
-- P INTEGER,
-- D INTEGER,
-- Q INTEGER)
--
-- Parameters: See Documentation
--
-- Return value: Table
--
-- Last Updated: 04-26-2017
--
-- Author: <Shuai.Yang@fuzzyl.com>
-- Author: <Diptesh.Nath@fuzzylogix.com>
-- BEGIN: TEST SCRIPT
-- .run file=../PulsarLogOn.sql
---- Table used for ARIMAUdt
DROP TABLE tblTimeSeriesAll;
DROP TABLE tblTimeSeriesTest;
DROP TABLE tblARIMATest;
CREATE TABLE tblARIMATest
AS
(
SELECT *
FROM tblARIMA
);
CREATE TABLE tblTimeSeriesAll (
GroupID BIGINT,
ObsID BIGINT,
NumVal DOUBLE PRECISION,
P INTEGER,
D INTEGER,
Q INTEGER)
DISTRIBUTE ON (GroupID);
CREATE TABLE tblTimeSeriesTest(
GroupID BIGINT,
ObsID BIGINT,
NumVal DOUBLE PRECISION,
P INTEGER,
D INTEGER,
Q INTEGER)
DISTRIBUTE ON (GroupID);
INSERT INTO tblTimeSeriesAll
SELECT 1, ObsID, Num_Val, 1, 0, 0 FROM tblTimeSeriesW1
UNION
SELECT 2, ObsID, SQRT(Num_Val), 2, 0, 0 FROM tblTimeSeriesW2
UNION
SELECT 3, ObsID, Num_Val, 1, 0, 0 FROM tblTimeSeriesW3
UNION
SELECT 4, ObsID, Num_Val, 0, 1, 2 FROM tblTimeSeriesW4
UNION
SELECT 5, ObsID, Num_Val, 1, 1, 0 FROM tblTimeSeriesW5
UNION
SELECT 6, ObsID, LN(Num_Val), 0, 1, 1 FROM tblTimeSeriesW6
UNION
SELECT 7, ObsID, LN(Num_Val), 2, 0, 1 FROM tblTimeSeriesW7;
SELECT a.GroupID,
COUNT(*)
FROM tblTimeSeriesAll a
GROUP BY a.GroupID
ORDER BY 1;
---- BEGIN: NEGATIVE TEST(s)
-- Case 1 Invalid parameters
---- Case 1a Arg#3 < 0
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1 as GroupID, ObsID, Num_Val, -1, 0, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 1b Arg#4 < 0
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1 as GroupID,ObsID,Num_Val, 0, -1, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 1c Arg#5 < 0
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1 as GroupID, ObsID, Num_Val, 1, 0, -1 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Case 2 Extreme parameter values
---- Case 2a Arg#3 >= Num Of Observations
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT GroupID, ObsID, Num_Val, COUNT(ObsID) OVER (PARTITION BY groupid), 0, 0
FROM( SELECT 1 AS groupid, ObsID, Num_Val
FROM tblTimeSeriesW1 ) AS a )
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 2b Arg#4 >= Num Of Observations
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT GroupID, ObsID, Num_Val, 1, COUNT(ObsID) OVER (PARTITION BY groupid), 0
FROM( SELECT 1 AS groupid, ObsID, Num_Val
FROM tblTimeSeriesW1 ) AS a )
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 2c Arg#5 >= Num Of Observations
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT GroupID, ObsID, Num_Val, 1, 0, COUNT(ObsID) OVER (PARTITION BY groupid)
FROM( SELECT 1 AS groupid, ObsID, Num_Val
FROM tblTimeSeriesW1 ) AS a )
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
/*
---- Case 2d Arg#3 + Arg#4 + Arg#5 >= Num Of Observations
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT GroupID, ObsID, Num_Val, COUNT(ObsID) OVER (PARTITION BY groupid)/3 + 1, COUNT(ObsID) OVER (PARTITION BY groupid)/3, COUNT(ObsID) OVER (PARTITION BY groupid)/3
FROM( SELECT 1 AS groupid, ObsID, Num_Val
FROM tblTimeSeriesW1 ) AS a )
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
*/
-- Case 3 NULL checks
---- Case 3a Mixed NULL Arg#2
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1, ObsID, CASE WHEN OBSID mod 2 = 0 THEN NULL ELSE NUM_VAL END, 1, 0, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 3b NULL Arg#2
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1, ObsID, NULL, 1, 0, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 3c NULL Arg#1
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT NULL, ObsID, NUM_VAL, 1, 0, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 3d NULL Arg#3
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1, ObsID, NUM_VAL, NULL, 0, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 3e NULL Arg#4
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1, ObsID, NUM_VAL, 1, NULL, 0 FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- Case 3f NULL Arg#5
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT 1, ObsID, NUM_VAL, 1, 0, NULL FROM tblTimeSeriesW1)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---- END: NEGATIVE TEST(s)
---- BEGIN: POSITIVE TEST(s)
-- Test with normal and extreme values
-- Case 1 Query example in user manual
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Case 2
-- Test AR(1)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 0 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test MA(1)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 0 AS P, 0 AS D, 1 AS Q
--FROM tblARIMA a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test ARIMA(1,0,1)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 1 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test ARIMA(1,1,1)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 1 AS D, 1 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test ARIMA(2,0,0)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 2 AS P, 0 AS D, 0 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test ARIMA(0,0,2)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 0 AS P, 0 AS D, 2 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Test ARIMA(1,0,2)
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 2 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Case 3 Empty table
DELETE FROM tblARIMATest;
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 2 AS Q
--FROM tblARIMATest a)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
-- Case 4 Constant Arg#2
DELETE FROM tblTimeSeriesTest;
INSERT INTO tblTimeSeriesTest
SELECT 1, ObsID, 1.0, 1, 0, 0 FROM tblTimeSeriesW1;
--WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
--SELECT * FROM tblTimeSeriesTest)
--SELECT a.*
WITH z (GroupID, ObsID, NumVal, P, D, Q) AS (
SELECT * FROM tblTimeSeriesAll)
SELECT a.*
FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q,
NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag,
NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag
FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a;
---DROP the test table
DROP TABLE tblTimeSeriesAll;
DROP TABLE tblTimeSeriesTest;
DROP TABLE tblARIMATest;
-- END: POSITIIVE TEST(s)
-- END: TEST SCRIPT
|
cbed5c6f650a9ca9dfa921935d4ebea818407cb9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH2/EX2.3/2_3.sce
|
ebe340860a8861e6aa77b6fac0793f33ec8ed8bd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,094 |
sce
|
2_3.sce
|
clear;
clc;
printf("\t\t\tExample Number 2.3\n\n\n");
// heat transfer through a composite wall
// illustration2.3
// solution
// 1. heat transfer through studs for unit depth
l = 0.0413;// [m] length of wood studs
b = 1.0;// [m] unit depth
A = l*b;// [square meter] area of studs for unit depth
hi = 7.5;// [W/square meter per degree celsius] convectional heat transfer coefficient
ho = 15;// [W/square meter per degree celsius] convectional heat transfer coefficient
Kb = 0.69;// [W/m per degree celsius] heat transfer coefficient of brick
Kgi = 0.96;// [W/m per degree celsius] heat transfer coefficient of gypsum inner sheath
Ki = 0.04;// [W/m per degree celsius] heat transfer coefficient of insulation
Kws = 0.1;// [W/m per degree celsius] heat transfer coefficient of wood stud
Kgo = 0.48;// [W/m per degree celsius] heat transfer coefficient of gypsum outer sheath
Rair = 1/(ho*A);// [degree celsius /W] convection resistance outside of brick
dx_b = 0.08;// [m] thickness of brick
dx_os = 0.019;//[m] thickness of outer sheet
dx_ws = 0.0921;// [m] thickness of wood stud
dx_is = 0.019;// [m] thickness of inner sheet
Rb = dx_b/(Kb*A);// [degree celsius /W] conduction resistance in brick
Ros = dx_os/(Kgi*A);// [degree celsius /W] conduction resistance through outer sheet
Rws = dx_ws/(Kws*A);// [degree celsius /W] conduction resistance through wood stud
Ris = dx_is/(Kgo*A);// [degree celsius /W] conduction resistance through inner sheet
Ri = 1/(hi*A);// [degree celsius /W] convection resistance on inside
Rt = Rair+Rb+Ros+Rws+Ris+Ri;// [degree celsius /W] total thermal resistance through the wood stud section
printf("total thermal resistance through the wood stud section is %f degree celsius /W",Rt);
// 2. heat transfer through insulation section
A1 = 0.406-A;// [square meter] area of insulation section for unit depth
dx_ins = 0.0921;// [m] thickness of insulation
Rins = dx_ins/(Ki*A1);// [degree celsius /W] conduction resistance through insulation section
// five of the materials are same but resistance involve different area
// i.e. (40.6-4.13) cm instead of 4.13 cm
// so that each of the previous must be multiplied by a factor of (4.13/(40.6-4.13)) = 0.113
Rt_ins = (Rair+Rb+Ros+Ris+Ri)*0.113+Rins;// [degree celsius /W] total resistance through insulation section
printf("\n total thermal resistance through the insulation section is %f degree celsius /W",Rt_ins);
R_overall = 1/((1/Rt)+(1/Rt_ins));// [degree celsius /W] overall resistance for the section
// the value is related to overall heat transfer coefficient by
// Q = U*A*dt = dt/R_overall
// where A is area of total section
A_ = 0.406;// [square meter] area of total section
U = 1/(R_overall*A_);// [W/square meter degree celsius] overall heat transfer coefficient
// R value is somewhat different from thermal resistance and is given by
R_value = 1/U;// [degree celsius square meter/W] R value of system
printf("\n overall heat transfer coefficient is %f W/square meter per degree celsius",U);
printf("\n R value is %f square meter/W",R_value);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.