blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
4
214
content_id
stringlengths
40
40
detected_licenses
listlengths
0
50
license_type
stringclasses
2 values
repo_name
stringlengths
6
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
21 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
141k
586M
star_events_count
int64
0
30.4k
fork_events_count
int64
0
9.67k
gha_license_id
stringclasses
8 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
50 values
src_encoding
stringclasses
23 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
5
10.4M
extension
stringclasses
29 values
filename
stringlengths
2
96
content
stringlengths
5
10.4M
57e56cb9c9319ad3838147c8f0f1c4d1606b60f3
f542bc49c4d04b47d19c88e7c89d5db60922e34e
/PresentationFiles_Subjects - Kopie/CONT/LG82ZTE/ATWM1_Working_Memory_MEG_LG82ZTE_Session1/ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run1.sce
2902024a11c6c4195293753e551d99414985db55
[]
no_license
atwm1/Presentation
65c674180f731f050aad33beefffb9ba0caa6688
9732a004ca091b184b670c56c55f538ff6600c08
refs/heads/master
2020-04-15T14:04:41.900640
2020-02-14T16:10:11
2020-02-14T16:10:11
56,771,016
0
1
null
null
null
null
UTF-8
Scilab
false
false
49,600
sce
ATWM1_Working_Memory_MEG_Nonsalient_Cued_Run1.sce
# ATWM1 MEG Experiment scenario = "ATWM1_Working_Memory_MEG_salient_cued_run1"; #scenario_type = fMRI; # Fuer Scanner #scenario_type = fMRI_emulation; # Zum Testen scenario_type = trials; # for MEG #scan_period = 2000; # TR #pulses_per_scan = 1; #pulse_code = 1; pulse_width=6; default_monitor_sounds = false; active_buttons = 2; response_matching = simple_matching; button_codes = 10, 20; default_font_size = 28; default_font = "Arial"; default_background_color = 0 ,0 ,0 ; write_codes=true; # for MEG only begin; #Picture definitions box { height = 300; width = 300; color = 0, 0, 0;} frame1; box { height = 290; width = 290; color = 255, 255, 255;} frame2; box { height = 30; width = 4; color = 0, 0, 0;} fix1; box { height = 4; width = 30; color = 0, 0, 0;} fix2; box { height = 30; width = 4; color = 255, 0, 0;} fix3; box { height = 4; width = 30; color = 255, 0, 0;} fix4; box { height = 290; width = 290; color = 128, 128, 128;} background; TEMPLATE "StimuliDeclaration.tem" {}; trial { sound sound_incorrect; time = 0; duration = 1; } wrong; trial { sound sound_correct; time = 0; duration = 1; } right; trial { sound sound_no_response; time = 0; duration = 1; } miss; # Start of experiment (MEG only) - sync with CTF software trial { picture { box frame1; x=0; y=0; box frame2; x=0; y=0; box background; x=0; y=0; bitmap fixation_cross_black; x=0; y=0; } expStart; time = 0; duration = 1000; code = "ExpStart"; port_code = 80; }; # baselinePre (at the beginning of the session) trial { picture { box frame1; x=0; y=0; box frame2; x=0; y=0; box background; x=0; y=0; bitmap fixation_cross_black; x=0; y=0; }default; time = 0; duration = 10000; #mri_pulse = 1; code = "BaselinePre"; port_code = 91; }; TEMPLATE "ATWM1_Working_Memory_MEG.tem" { trigger_encoding trigger_retrieval cue_time preparation_time encoding_time single_stimulus_presentation_time delay_time retrieval_time intertrial_interval alerting_cross stim_enc1 stim_enc2 stim_enc3 stim_enc4 stim_enc_alt1 stim_enc_alt2 stim_enc_alt3 stim_enc_alt4 trial_code stim_retr1 stim_retr2 stim_retr3 stim_retr4 stim_cue1 stim_cue2 stim_cue3 stim_cue4 fixationcross_cued retr_code the_target_button posX1 posY1 posX2 posY2 posX3 posY3 posX4 posY4; 43 61 292 292 399 125 1842 2992 2192 fixation_cross gabor_148 gabor_063 gabor_088 gabor_034 gabor_148 gabor_063_alt gabor_088_alt gabor_034 "1_1_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2200_gabor_patch_orientation_148_063_088_034_target_position_1_4_retrieval_position_1" gabor_013_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_1_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_013_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2092 2992 2042 fixation_cross gabor_118 gabor_143 gabor_097 gabor_172 gabor_118 gabor_143 gabor_097_alt gabor_172_alt "1_2_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2050_gabor_patch_orientation_118_143_097_172_target_position_1_2_retrieval_position_2" gabor_circ gabor_008_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_2_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_008_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2142 2992 1942 fixation_cross gabor_121 gabor_040 gabor_055 gabor_097 gabor_121 gabor_040 gabor_055_alt gabor_097_alt "1_3_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_1950_gabor_patch_orientation_121_040_055_097_target_position_1_2_retrieval_position_2" gabor_circ gabor_040_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_3_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_040_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2042 2992 2242 fixation_cross gabor_108 gabor_155 gabor_078 gabor_050 gabor_108_alt gabor_155_alt gabor_078 gabor_050 "1_4_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2250_gabor_patch_orientation_108_155_078_050_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_078_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_4_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_078_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 2192 2992 2442 fixation_cross gabor_135 gabor_169 gabor_108 gabor_050 gabor_135_alt gabor_169 gabor_108 gabor_050_alt "1_5_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2200_3000_2450_gabor_patch_orientation_135_169_108_050_target_position_2_3_retrieval_position_1" gabor_086_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_5_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_086_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1992 2992 2242 fixation_cross gabor_056 gabor_165 gabor_111 gabor_006 gabor_056 gabor_165_alt gabor_111_alt gabor_006 "1_6_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2000_3000_2250_gabor_patch_orientation_056_165_111_006_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_142_framed blank blank blank blank fixation_cross_target_position_1_4 "1_6_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_142_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2092 2992 2592 fixation_cross gabor_022 gabor_068 gabor_096 gabor_037 gabor_022 gabor_068_alt gabor_096 gabor_037_alt "1_7_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2600_gabor_patch_orientation_022_068_096_037_target_position_1_3_retrieval_position_1" gabor_158_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_7_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_158_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2192 2992 2542 fixation_cross gabor_014 gabor_153 gabor_098 gabor_119 gabor_014 gabor_153_alt gabor_098_alt gabor_119 "1_8_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2550_gabor_patch_orientation_014_153_098_119_target_position_1_4_retrieval_position_1" gabor_064_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_8_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_064_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 2242 2992 2192 fixation_cross gabor_124 gabor_062 gabor_036 gabor_008 gabor_124_alt gabor_062 gabor_036_alt gabor_008 "1_9_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2250_3000_2200_gabor_patch_orientation_124_062_036_008_target_position_2_4_retrieval_position_3" gabor_circ gabor_circ gabor_036_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_9_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_036_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2042 2992 1892 fixation_cross gabor_089 gabor_006 gabor_123 gabor_033 gabor_089 gabor_006 gabor_123_alt gabor_033_alt "1_10_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2050_3000_1900_gabor_patch_orientation_089_006_123_033_target_position_1_2_retrieval_position_1" gabor_139_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_10_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_139_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1892 2992 2342 fixation_cross gabor_043 gabor_079 gabor_101 gabor_017 gabor_043 gabor_079_alt gabor_101_alt gabor_017 "1_11_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2350_gabor_patch_orientation_043_079_101_017_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_153_framed blank blank blank blank fixation_cross_target_position_1_4 "1_11_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_153_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2242 2992 2342 fixation_cross gabor_162 gabor_090 gabor_119 gabor_008 gabor_162 gabor_090 gabor_119_alt gabor_008_alt "1_12_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2350_gabor_patch_orientation_162_090_119_008_target_position_1_2_retrieval_position_2" gabor_circ gabor_140_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_12_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_140_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1892 2992 2142 fixation_cross gabor_031 gabor_105 gabor_150 gabor_016 gabor_031 gabor_105_alt gabor_150_alt gabor_016 "1_13_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2150_gabor_patch_orientation_031_105_150_016_target_position_1_4_retrieval_position_1" gabor_031_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_13_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_031_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1992 2992 2592 fixation_cross gabor_140 gabor_179 gabor_163 gabor_023 gabor_140_alt gabor_179 gabor_163_alt gabor_023 "1_14_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2600_gabor_patch_orientation_140_179_163_023_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_023_framed blank blank blank blank fixation_cross_target_position_2_4 "1_14_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1942 2992 2592 fixation_cross gabor_117 gabor_031 gabor_048 gabor_156 gabor_117_alt gabor_031_alt gabor_048 gabor_156 "1_15_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2600_gabor_patch_orientation_117_031_048_156_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_048_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_15_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_048_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1842 2992 1942 fixation_cross gabor_044 gabor_168 gabor_084 gabor_152 gabor_044_alt gabor_168_alt gabor_084 gabor_152 "1_16_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_1950_gabor_patch_orientation_044_168_084_152_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_102_framed blank blank blank blank fixation_cross_target_position_3_4 "1_16_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_102_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 1742 2992 2042 fixation_cross gabor_087 gabor_138 gabor_072 gabor_012 gabor_087 gabor_138 gabor_072_alt gabor_012_alt "1_17_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2050_gabor_patch_orientation_087_138_072_012_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_072_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_17_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_072_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1742 2992 2292 fixation_cross gabor_059 gabor_169 gabor_106 gabor_132 gabor_059 gabor_169_alt gabor_106_alt gabor_132 "1_18_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2300_gabor_patch_orientation_059_169_106_132_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_132_framed blank blank blank blank fixation_cross_target_position_1_4 "1_18_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_132_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1892 2992 2192 fixation_cross gabor_002 gabor_171 gabor_109 gabor_141 gabor_002 gabor_171_alt gabor_109 gabor_141_alt "1_19_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2200_gabor_patch_orientation_002_171_109_141_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_059_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_19_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_059_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 2042 2992 2292 fixation_cross gabor_167 gabor_002 gabor_029 gabor_112 gabor_167 gabor_002_alt gabor_029_alt gabor_112 "1_20_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2050_3000_2300_gabor_patch_orientation_167_002_029_112_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_029_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_20_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_029_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1792 2992 2342 fixation_cross gabor_093 gabor_012 gabor_070 gabor_046 gabor_093_alt gabor_012 gabor_070 gabor_046_alt "1_21_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2350_gabor_patch_orientation_093_012_070_046_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_070_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_21_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_070_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1842 2992 2242 fixation_cross gabor_083 gabor_102 gabor_121 gabor_062 gabor_083_alt gabor_102_alt gabor_121 gabor_062 "1_22_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2250_gabor_patch_orientation_083_102_121_062_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_168_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_22_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_168_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1992 2992 2092 fixation_cross gabor_049 gabor_122 gabor_101 gabor_084 gabor_049 gabor_122 gabor_101_alt gabor_084_alt "1_23_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2000_3000_2100_gabor_patch_orientation_049_122_101_084_target_position_1_2_retrieval_position_2" gabor_circ gabor_122_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_23_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_122_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2092 2992 2492 fixation_cross gabor_118 gabor_089 gabor_028 gabor_158 gabor_118 gabor_089_alt gabor_028 gabor_158_alt "1_24_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2100_3000_2500_gabor_patch_orientation_118_089_028_158_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_073_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_24_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_073_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2092 2992 1892 fixation_cross gabor_088 gabor_064 gabor_135 gabor_152 gabor_088 gabor_064_alt gabor_135_alt gabor_152 "1_25_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_1900_gabor_patch_orientation_088_064_135_152_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_152_framed blank blank blank blank fixation_cross_target_position_1_4 "1_25_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_152_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1792 2992 2392 fixation_cross gabor_090 gabor_066 gabor_037 gabor_124 gabor_090 gabor_066_alt gabor_037 gabor_124_alt "1_26_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2400_gabor_patch_orientation_090_066_037_124_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_173_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_26_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_173_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 1742 2992 1992 fixation_cross gabor_046 gabor_178 gabor_100 gabor_023 gabor_046_alt gabor_178_alt gabor_100 gabor_023 "1_27_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_1750_3000_2000_gabor_patch_orientation_046_178_100_023_target_position_3_4_retrieval_position_2" gabor_circ gabor_178_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_27_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_178_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2242 2992 1892 fixation_cross gabor_089 gabor_001 gabor_160 gabor_112 gabor_089 gabor_001 gabor_160_alt gabor_112_alt "1_28_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_1900_gabor_patch_orientation_089_001_160_112_target_position_1_2_retrieval_position_1" gabor_044_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_28_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_044_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1942 2992 2042 fixation_cross gabor_136 gabor_008 gabor_088 gabor_168 gabor_136 gabor_008_alt gabor_088_alt gabor_168 "1_29_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2050_gabor_patch_orientation_136_008_088_168_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_119_framed blank blank blank blank fixation_cross_target_position_1_4 "1_29_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_119_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2142 2992 2392 fixation_cross gabor_135 gabor_062 gabor_001 gabor_106 gabor_135_alt gabor_062 gabor_001_alt gabor_106 "1_30_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2400_gabor_patch_orientation_135_062_001_106_target_position_2_4_retrieval_position_2" gabor_circ gabor_062_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_30_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_062_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 1992 2992 2342 fixation_cross gabor_050 gabor_082 gabor_163 gabor_123 gabor_050_alt gabor_082 gabor_163_alt gabor_123 "1_31_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_2350_gabor_patch_orientation_050_082_163_123_target_position_2_4_retrieval_position_1" gabor_099_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_31_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_099_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1792 2992 2092 fixation_cross gabor_008 gabor_088 gabor_029 gabor_063 gabor_008_alt gabor_088 gabor_029 gabor_063_alt "1_32_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2100_gabor_patch_orientation_008_088_029_063_target_position_2_3_retrieval_position_2" gabor_circ gabor_088_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_32_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_088_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2242 2992 2142 fixation_cross gabor_130 gabor_043 gabor_009 gabor_070 gabor_130_alt gabor_043_alt gabor_009 gabor_070 "1_33_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2150_gabor_patch_orientation_130_043_009_070_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_009_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_33_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_009_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1942 2992 2242 fixation_cross gabor_174 gabor_092 gabor_004 gabor_062 gabor_174_alt gabor_092 gabor_004_alt gabor_062 "1_34_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2250_gabor_patch_orientation_174_092_004_062_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_062_framed blank blank blank blank fixation_cross_target_position_2_4 "1_34_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_062_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2092 2992 1892 fixation_cross gabor_061 gabor_144 gabor_117 gabor_033 gabor_061_alt gabor_144 gabor_117_alt gabor_033 "1_35_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_1900_gabor_patch_orientation_061_144_117_033_target_position_2_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_033_framed blank blank blank blank fixation_cross_target_position_2_4 "1_35_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_033_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1792 2992 2292 fixation_cross gabor_100 gabor_180 gabor_120 gabor_063 gabor_100_alt gabor_180_alt gabor_120 gabor_063 "1_36_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1800_3000_2300_gabor_patch_orientation_100_180_120_063_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_063_framed blank blank blank blank fixation_cross_target_position_3_4 "1_36_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_063_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1892 2992 2192 fixation_cross gabor_104 gabor_036 gabor_151 gabor_082 gabor_104 gabor_036_alt gabor_151 gabor_082_alt "1_37_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2200_gabor_patch_orientation_104_036_151_082_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_151_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_37_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_151_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 2142 2992 2292 fixation_cross gabor_125 gabor_005 gabor_049 gabor_160 gabor_125_alt gabor_005 gabor_049 gabor_160_alt "1_38_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2150_3000_2300_gabor_patch_orientation_125_005_049_160_target_position_2_3_retrieval_position_1" gabor_080_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_38_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_080_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1842 2992 1992 fixation_cross gabor_068 gabor_109 gabor_020 gabor_088 gabor_068 gabor_109_alt gabor_020 gabor_088_alt "1_39_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2000_gabor_patch_orientation_068_109_020_088_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_020_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_39_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_020_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2042 2992 1892 fixation_cross gabor_023 gabor_002 gabor_132 gabor_163 gabor_023 gabor_002_alt gabor_132_alt gabor_163 "1_40_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_1900_gabor_patch_orientation_023_002_132_163_target_position_1_4_retrieval_position_1" gabor_023_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_40_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 1992 2992 2292 fixation_cross gabor_100 gabor_170 gabor_127 gabor_053 gabor_100 gabor_170 gabor_127_alt gabor_053_alt "1_41_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2000_3000_2300_gabor_patch_orientation_100_170_127_053_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_127_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_41_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_127_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2192 2992 2442 fixation_cross gabor_142 gabor_037 gabor_068 gabor_157 gabor_142_alt gabor_037 gabor_068_alt gabor_157 "1_42_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2200_3000_2450_gabor_patch_orientation_142_037_068_157_target_position_2_4_retrieval_position_2" gabor_circ gabor_085_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_42_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_085_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1742 2992 1942 fixation_cross gabor_005 gabor_130 gabor_113 gabor_176 gabor_005 gabor_130_alt gabor_113_alt gabor_176 "1_43_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_1950_gabor_patch_orientation_005_130_113_176_target_position_1_4_retrieval_position_1" gabor_050_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_43_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_050_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 1742 2992 2392 fixation_cross gabor_139 gabor_098 gabor_156 gabor_076 gabor_139 gabor_098_alt gabor_156_alt gabor_076 "1_44_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1750_3000_2400_gabor_patch_orientation_139_098_156_076_target_position_1_4_retrieval_position_2" gabor_circ gabor_049_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_44_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_049_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1892 2992 2092 fixation_cross gabor_024 gabor_085 gabor_114 gabor_058 gabor_024_alt gabor_085 gabor_114 gabor_058_alt "1_45_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1900_3000_2100_gabor_patch_orientation_024_085_114_058_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_114_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_45_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_114_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1942 2992 2092 fixation_cross gabor_025 gabor_010 gabor_041 gabor_165 gabor_025_alt gabor_010 gabor_041 gabor_165_alt "1_46_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1950_3000_2100_gabor_patch_orientation_025_010_041_165_target_position_2_3_retrieval_position_3" gabor_circ gabor_circ gabor_041_framed gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_46_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_041_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1892 2992 2142 fixation_cross gabor_002 gabor_020 gabor_063 gabor_128 gabor_002 gabor_020_alt gabor_063 gabor_128_alt "1_47_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1900_3000_2150_gabor_patch_orientation_002_020_063_128_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_110_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_47_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_110_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1742 2992 2542 fixation_cross gabor_083 gabor_048 gabor_033 gabor_153 gabor_083 gabor_048 gabor_033_alt gabor_153_alt "1_48_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1750_3000_2550_gabor_patch_orientation_083_048_033_153_target_position_1_2_retrieval_position_2" gabor_circ gabor_003_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_48_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_003_retrieval_position_2" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1742 2992 1992 fixation_cross gabor_137 gabor_053 gabor_179 gabor_110 gabor_137 gabor_053_alt gabor_179 gabor_110_alt "1_49_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1750_3000_2000_gabor_patch_orientation_137_053_179_110_target_position_1_3_retrieval_position_1" gabor_137_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_49_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_137_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1792 2992 2342 fixation_cross gabor_046 gabor_081 gabor_027 gabor_153 gabor_046 gabor_081_alt gabor_027_alt gabor_153 "1_50_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2350_gabor_patch_orientation_046_081_027_153_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_105_framed blank blank blank blank fixation_cross_target_position_1_4 "1_50_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_105_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1942 2992 2092 fixation_cross gabor_121 gabor_152 gabor_104 gabor_063 gabor_121 gabor_152_alt gabor_104_alt gabor_063 "1_51_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2100_gabor_patch_orientation_121_152_104_063_target_position_1_4_retrieval_position_1" gabor_170_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_51_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_170_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1842 2992 2142 fixation_cross gabor_028 gabor_046 gabor_001 gabor_073 gabor_028_alt gabor_046_alt gabor_001 gabor_073 "1_52_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2150_gabor_patch_orientation_028_046_001_073_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_118_framed blank blank blank blank fixation_cross_target_position_3_4 "1_52_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_118_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 1792 2992 2392 fixation_cross gabor_050 gabor_090 gabor_111 gabor_138 gabor_050_alt gabor_090 gabor_111 gabor_138_alt "1_53_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1800_3000_2400_gabor_patch_orientation_050_090_111_138_target_position_2_3_retrieval_position_1" gabor_001_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_3 "1_53_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_001_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1942 2992 2542 fixation_cross gabor_004 gabor_093 gabor_060 gabor_040 gabor_004 gabor_093_alt gabor_060_alt gabor_040 "1_54_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1950_3000_2550_gabor_patch_orientation_004_093_060_040_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_180_framed blank blank blank blank fixation_cross_target_position_1_4 "1_54_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_180_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 1892 2992 2042 fixation_cross gabor_015 gabor_143 gabor_059 gabor_038 gabor_015 gabor_143 gabor_059_alt gabor_038_alt "1_55_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_1900_3000_2050_gabor_patch_orientation_015_143_059_038_target_position_1_2_retrieval_position_3" gabor_circ gabor_circ gabor_104_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_55_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_104_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2192 2992 2492 fixation_cross gabor_117 gabor_155 gabor_007 gabor_034 gabor_117 gabor_155_alt gabor_007_alt gabor_034 "1_56_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_2500_gabor_patch_orientation_117_155_007_034_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_034_framed blank blank blank blank fixation_cross_target_position_1_4 "1_56_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_034_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 1842 2992 2492 fixation_cross gabor_160 gabor_180 gabor_122 gabor_005 gabor_160_alt gabor_180 gabor_122_alt gabor_005 "1_57_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_1850_3000_2500_gabor_patch_orientation_160_180_122_005_target_position_2_4_retrieval_position_2" gabor_circ gabor_180_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_57_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_180_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2042 2992 2192 fixation_cross gabor_143 gabor_092 gabor_124 gabor_164 gabor_143 gabor_092_alt gabor_124 gabor_164_alt "1_58_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2050_3000_2200_gabor_patch_orientation_143_092_124_164_target_position_1_3_retrieval_position_3" gabor_circ gabor_circ gabor_124_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_3 "1_58_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_124_retrieval_position_3" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1792 2992 2142 fixation_cross gabor_137 gabor_109 gabor_166 gabor_092 gabor_137 gabor_109_alt gabor_166_alt gabor_092 "1_59_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1800_3000_2150_gabor_patch_orientation_137_109_166_092_target_position_1_4_retrieval_position_1" gabor_002_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_59_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_002_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2142 2992 2442 fixation_cross gabor_162 gabor_004 gabor_113 gabor_177 gabor_162 gabor_004 gabor_113_alt gabor_177_alt "1_60_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2450_gabor_patch_orientation_162_004_113_177_target_position_1_2_retrieval_position_1" gabor_023_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_60_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_023_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 2042 2992 2492 fixation_cross gabor_047 gabor_136 gabor_105 gabor_155 gabor_047_alt gabor_136_alt gabor_105 gabor_155 "1_61_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2050_3000_2500_gabor_patch_orientation_047_136_105_155_target_position_3_4_retrieval_position_2" gabor_circ gabor_136_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_61_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_136_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2242 2992 2042 fixation_cross gabor_010 gabor_179 gabor_069 gabor_040 gabor_010_alt gabor_179_alt gabor_069 gabor_040 "1_62_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2250_3000_2050_gabor_patch_orientation_010_179_069_040_target_position_3_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_090_framed blank blank blank blank fixation_cross_target_position_3_4 "1_62_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_090_retrieval_position_4" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 2142 2992 1992 fixation_cross gabor_086 gabor_130 gabor_153 gabor_172 gabor_086 gabor_130_alt gabor_153_alt gabor_172 "1_63_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_2150_3000_2000_gabor_patch_orientation_086_130_153_172_target_position_1_4_retrieval_position_1" gabor_040_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_63_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_040_retrieval_position_1" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2242 2992 1992 fixation_cross gabor_048 gabor_178 gabor_090 gabor_023 gabor_048_alt gabor_178 gabor_090_alt gabor_023 "1_64_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2250_3000_2000_gabor_patch_orientation_048_178_090_023_target_position_2_4_retrieval_position_2" gabor_circ gabor_178_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_64_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_178_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 61 292 292 399 125 1842 2992 2442 fixation_cross gabor_004 gabor_063 gabor_093 gabor_027 gabor_004_alt gabor_063_alt gabor_093 gabor_027 "1_65_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_300_300_399_1850_3000_2450_gabor_patch_orientation_004_063_093_027_target_position_3_4_retrieval_position_3" gabor_circ gabor_circ gabor_140_framed gabor_circ blank blank blank blank fixation_cross_target_position_3_4 "1_65_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_CuedRetrieval_retrieval_patch_orientation_140_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2192 2992 1942 fixation_cross gabor_093 gabor_067 gabor_177 gabor_150 gabor_093 gabor_067 gabor_177_alt gabor_150_alt "1_66_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2200_3000_1950_gabor_patch_orientation_093_067_177_150_target_position_1_2_retrieval_position_1" gabor_093_framed gabor_circ gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_1_2 "1_66_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_093_retrieval_position_1" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2092 2992 2242 fixation_cross gabor_050 gabor_156 gabor_097 gabor_123 gabor_050_alt gabor_156 gabor_097_alt gabor_123 "1_67_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2100_3000_2250_gabor_patch_orientation_050_156_097_123_target_position_2_4_retrieval_position_2" gabor_circ gabor_156_framed gabor_circ gabor_circ blank blank blank blank fixation_cross_target_position_2_4 "1_67_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_156_retrieval_position_2" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 63 292 292 399 125 1992 2992 1942 fixation_cross gabor_097 gabor_128 gabor_008 gabor_041 gabor_097 gabor_128_alt gabor_008_alt gabor_041 "1_68_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_300_300_399_2000_3000_1950_gabor_patch_orientation_097_128_008_041_target_position_1_4_retrieval_position_3" gabor_circ gabor_circ gabor_148_framed gabor_circ blank blank blank blank fixation_cross_target_position_1_4 "1_68_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_DoChange_UncuedRetriev_retrieval_patch_orientation_148_retrieval_position_3" 2 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 62 292 292 399 125 2142 2992 2592 fixation_cross gabor_167 gabor_119 gabor_137 gabor_081 gabor_167 gabor_119_alt gabor_137_alt gabor_081 "1_69_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_300_300_399_2150_3000_2600_gabor_patch_orientation_167_119_137_081_target_position_1_4_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_081_framed blank blank blank blank fixation_cross_target_position_1_4 "1_69_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_CuedRetrieval_retrieval_patch_orientation_081_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; 43 64 292 292 399 125 2192 2992 2542 fixation_cross gabor_025 gabor_072 gabor_159 gabor_132 gabor_025 gabor_072 gabor_159_alt gabor_132_alt "1_70_Encoding_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_300_300_399_2200_3000_2550_gabor_patch_orientation_025_072_159_132_target_position_1_2_retrieval_position_4" gabor_circ gabor_circ gabor_circ gabor_132_framed blank blank blank blank fixation_cross_target_position_1_2 "1_70_Retrieval_Working_Memory_MEG_P2_LR_Nonsalient_NoChange_UncuedRetriev_retrieval_patch_orientation_132_retrieval_position_4" 1 45.96 45.96 -45.96 45.96 -45.96 -45.96 45.96 -45.96; }; # baselinePost (at the end of the session) trial { picture { box frame1; x=0; y=0; box frame2; x=0; y=0; box background; x=0; y=0; bitmap fixation_cross_black; x=0; y=0; }; time = 0; duration = 5000; code = "BaselinePost"; port_code = 92; };
99197087e9846e7edfa2fa15c8e7b82c0ef411e6
46e52b7010c1dc6beb86c615f0d59494c00e6554
/tp3/src/tests/test12.tst
efb0e2ac33f5e07a92feba448b505c7ee4f0e6f9
[]
no_license
impronunciable/so2015
22bd1cf0831c29d091a3f94bc36342ebb51b7aed
8bdabf28dc17ca4c92a264036c0fbe9c31430de3
refs/heads/master
2020-04-14T12:25:47.123488
2015-11-10T22:00:51
2015-11-10T22:00:51
41,392,542
0
0
null
null
null
null
UTF-8
Scilab
false
false
697
tst
test12.tst
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa cccccccccccccccccccccccccccccccccccccccc bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa cccccccccccccccccccccccccccccccccccccccc aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa cccccccccccccccccccccccccccccccccccccccc aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa cccccccccccccccccccccccccccccccccccccccc
99c3dee9d54a96f889613b500cd0d7fd968d640e
449d555969bfd7befe906877abab098c6e63a0e8
/3869/CH1/EX1.47/Ex1_47.sce
66f69f4eb72132c8bd586d95df3f6cb30093bd3e
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
311
sce
Ex1_47.sce
clear // // // //Variable declaration lamda=5000*10**-8 //wavelength(cm) mew=1.5 //refractive index beta1=1 //assume S=6*beta1 //Calculation t=S*lamda/(beta1*(mew-1)) //least thickness of glass plate(cm) //Result printf("\n least thickness of glass plate is %0.0f *10**-4 cm",t*10**4)
cccd4bbc9aac2ab1fa382e4446091917d75de7d0
449d555969bfd7befe906877abab098c6e63a0e8
/377/CH4/EX4.10/4_10.sce
570dcc96e3e093dcb2531f6cb4148d8fd4132d3b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
168
sce
4_10.sce
disp("∆Ed=13.64*(me/mo)*(1/(Єr^2)) eV"); disp("me = (0.015)*m0"); a=0.015; c=18; //say Єr=c d=13.64*(a)*(1/(c^2)); printf('the value of the ∆Ed = %f eV',d);
539b40df6184dcd8d384c1d2dc525ba10a70cdc7
449d555969bfd7befe906877abab098c6e63a0e8
/2087/CH17/EX17.2/example17_2.sce
eedda2d39bdb5731b21552809db2d5e8b8e445ac
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
556
sce
example17_2.sce
//example 17.2 //design a submerged pipe clc;funcprot(0); //given q=0.04; //discharge through outlet D=100.0; //F.S.L of distributing canal wc=99.90; //F.S.L of water course dep=1.1; //full supply depth distributing canal C=0.7; //average value of coefficient of discharge g=9.81; //acceleration due to gravity H=D-wc; //available head A=q/(C*(2*g*H)^0.5); d=(4*A/%pi)^0.5*100; d=round(d*10)/10; mprintf("diameter of pipe required=%f cm.",d); mprintf("\nuse pipe of diameter 25 cm.");
f30b21638a7710578087d17359e8798c9609b0b3
449d555969bfd7befe906877abab098c6e63a0e8
/2459/CH11/EX11.17/Ex11_17.sce
c20aab08720b9c91b57cf548109fc0880079e852
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
161
sce
Ex11_17.sce
//chapter11 //example11.17 //page222 del_Vbe=200 //mV del_Ib=100 // micro ampere Ri=del_Vbe/del_Ib printf("input resistance = %.3f kilo ohm \n",Ri)
2ab8731dae9d7c1476a743eee0d35c07526224b1
449d555969bfd7befe906877abab098c6e63a0e8
/647/CH6/EX6.2/Example6_2.sce
45b9b5133028c2c5624bb5a797363ae61eee0fed
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
823
sce
Example6_2.sce
clear; clc; // Example: 6.2 // Page: 205 printf("Example: 6.2 - Page: 205\n\n"); // Solution // *****Data******// density_water = 0.998;// [g/cubic cm] density_ice = 0.9168;// [g/cubic cm] Hf = 335;// [J/g] T = 0 + 273;// [K] //*****************// V_water = 1/density_water;// [cubic cm/g] V_ice = 1/density_ice;// [cubic cm/g] // From Eqn. 6.56: // dP/dT = deltaS/(V2 - V1) = deltaH/(T*(V2 - V1)) // Substituting these values in Eqn. 6.58 deltaP_By_deltaT = (Hf/(T*(V_water - V_ice)))*10;// [atm/K] deltaT_By_deltaP = 1/deltaP_By_deltaT;// [K/atm] if deltaT_By_deltaP > 0 printf("Increase in pressure of 1 atm increases the freezing point by %.4f K",abs(deltaT_By_deltaP)); else printf("Increase in pressure of 1 atm lowers the freezing point by %.4f K",abs(deltaT_By_deltaP)); end
ddcc3a6f08f50faad017d20a3011a359b4160991
449d555969bfd7befe906877abab098c6e63a0e8
/2858/CH4/EX4.3/Ex4_3.sce
97c27c353b9d877956b07b0615a7d85b091d5e62
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
444
sce
Ex4_3.sce
//example 4.3 clc; funcprot(0); k=0;//B/L; c2=30; Gamma=17.5; H=1.5; Df=1.2; H=1.5; B=2.0; Ks=2.5; phi=40; pi=%pi; qu=(1+0.2*k)*5.14*c2+(1+k)*Gamma*H^2*(1+2*Df/H)*Ks*tan(phi*pi/180)/B+Gamma*H; Qu=qu*B; disp(Qu,"bearing capacity in kN/m"); disp("there is slight variation due to rounding off error") //soil 2 Ny=109.4; Nq=64.2; Fqs=1; Fys=1; qt=Gamma*Df*Nq*Fqs+1/2*Gamma*Ny*Fys*B; disp(qt,"bearing capacity in kN/m^2");
d4b7f3cb1d9e8d01729ef20e32920eb8e657587b
449d555969bfd7befe906877abab098c6e63a0e8
/548/DEPENDENCIES/4_08data.sci
4b72a187bafc5a03a2f8d965fa6765cfa380c931
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
304
sci
4_08data.sci
//The flow conditions are assumed to be isentropic in nature. P1=20; //pressure of burned gas in combustion chamber in atm unit T1=3500; //temperature of the burned gas in combustion chamber in degree kelvin P2=0.5; //pressure of the gas at exit in atm y=1.15; //specific heat ratio for the gas
6776c893b179bfe3859bab5790446e1bd3a69879
717ddeb7e700373742c617a95e25a2376565112c
/1766/CH9/EX9.24/EX9_24.sce
0d582d76c8a60367bd045658297433b1fcf9e2ad
[]
no_license
appucrossroads/Scilab-TBC-Uploads
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
refs/heads/master
2021-01-22T04:15:15.512674
2017-09-19T11:51:56
2017-09-19T11:51:56
92,444,732
0
0
null
2017-05-25T21:09:20
2017-05-25T21:09:19
null
UTF-8
Scilab
false
false
1,833
sce
EX9_24.sce
clc;funcprot(0);//Example 9.24 //Initilisation of Variables A=25;...//Total surface area of furnance in m^2 V=10;...//Volume of furnance in m^3 Tw=500;....//Constant temparature in K Tg=1250;.....//Gas temparature in K Pg=2;....//Total pressure in atm Pco2=0.2*Pg;...//Carbondioxide Pressure containing in furnance Ph2o=0.1*Pg;....//Water vapoure pressure containing in furnance R=5.67*10^-8;.....//Stefens boltsman constant //calculations L=3.6*(V/A);....//Characterstic length in m eco2i=0.18;....//Emissivity of carbondioxide from the chart for PL&Tg values eh2oi=0.19;....//Emissivity of water vapour from the chart for PL&Tg values Cco2i=1.1;...//Common correction factor of carbondioxide from the chart for PL&Tg values Ch2oi=1.45;....//Common correction factor of water vapour from the chart for PL&Tg values P1=(Pco2*L)+(Ph2o*L);...// P2=((Ph2o/Ph2o)+Pco2);....// DeltEi=0.045;.....//Common correction factor P1&P2 from the chart eg=(eco2i*Cco2i)+(eh2oi*Ch2oi)-DeltEi;...//Emissivity of gas at Tg eco2ii=0.14;....//Emissivity of carbondioxide from the chart for PL&Tw values eh2oii=0.2;....//Emissivity of water vapour from the chart for PL&Tw values Cco2ii=1.1;...//Common correction factor of carbondioxide from the chart for PL&Tw values Ch2oii=1.46;....//Common correction factor of water vapour from the chart for PL&Tw values DeltEii=0.01;.....//Common correction factor from the chart Ag=(eco2ii*(Tg/Tw)^0.65)+(eh2oii*(Tg/Tw)^0.45)-DeltEii;....//Emissivity of gas Q=A*R*((eg*Tg^4)-(Ag*Tw^4));.....//Heat Exchange from the gases to the furnance wall in W hr=Q/(A*(Tg-Tw));.....//Radiation heat transfer coeff9icient in W/m^2 degrees celcius disp(Q/1000,"Heat Exchange from the gases to the furnance wall in kW:") disp(hr,"Radiation heat transfer coeff9icient in W/m^2 degrees celcius:")
fedb0f22cb4bedd6b0ea7e37119b3b2854a3d835
449d555969bfd7befe906877abab098c6e63a0e8
/2666/CH10/EX10.5/Ex10_5.sce
cc540d0af3f5e635870204ae7414bcfb10291f3f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
476
sce
Ex10_5.sce
clc //initialisation of variables clear V1= 1800 //ft/sec a= 14 //degrees p= 0.75 //in h= 2 //in e= 0.02 //in vc= 0.89 v= 650 //ft/sec l= 9 //in P= 80 //psia T= 320 //F J= 50000 rh1= 7.6 //Btu/ per lb v1= 5.632 //cu ft per lb //CALCULATIONS VR1= sqrt((V1*cosd(a)-v)^2+(V1*sind(a))^2) VR2= vc*VR1 rh= (VR1^2-VR2^2)/J E= rh1+rh+VR1 nb= l/p r= asind((((0.1*P*v1*144/(2*nb*VR2))+e)/0.75)) //RESULTS printf (' minimum blade exit angle = %.1f degrees',r)
4c0301d554061e8cdcb8d97a60888317aa017a73
0778f91e335afef58ae45c5a33184587cee76088
/CN-Jacobi.sce
d8290aa39de32831c3fd528acbe98c7710ed5939
[]
no_license
LtavaresII/CN
b38e6f5531a3597f8705bdf163f4cec49f49d51e
0dcfb182692dee3ecf71d62162f986f816b3d687
refs/heads/master
2020-03-25T23:35:53.410172
2018-12-05T14:17:32
2018-12-05T14:17:32
144,282,768
0
0
null
null
null
null
UTF-8
Scilab
false
false
293
sce
CN-Jacobi.sce
A=[8 -4 2;5 10 2;3 -1 7] b=[-22;-44;-53] D=A.*eye(A) InvD=inv(D) B=eye(A)-InvD*A g=InvD*b x=zeros(b) xOld=x x=B*x + g Er=max(abs(x-xOld))/max(abs(x)) Betas=ones(b) Bt=abs(B) Betas(1)=Bt(1,:)*Betas Betas(2)=Bt(2,:)*Betas Betas(3)=Bt(3,:)*Betas Bi=abs(spec(B))//Autovalores de B
f926a107ff366a03b660cf91d2c875793998339d
1bb72df9a084fe4f8c0ec39f778282eb52750801
/test/PI2.prev.tst
5497802b16741824502910cedb7141717c65bc1a
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
gfis/ramath
498adfc7a6d353d4775b33020fdf992628e3fbff
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
refs/heads/master
2023-08-17T00:10:37.092379
2023-08-04T07:48:00
2023-08-04T07:48:00
30,116,803
2
0
null
null
null
null
UTF-8
Scilab
false
false
35,289
tst
PI2.prev.tst
0 - 42*v - 32*v^2 - 8*v^3 - 16 - 21*v - 16*v^2 - 4*v^3 - 8 1 - 34*v - 32*v^2 - 8*v^3 - 17*v - 16*v^2 - 4*v^3 2 - 26*v - 32*v^2 - 8*v^3 + 24 - 13*v - 16*v^2 - 4*v^3 + 12 3 - 18*v - 32*v^2 - 8*v^3 + 56 - 9*v - 16*v^2 - 4*v^3 + 28 4 - 10*v - 32*v^2 - 8*v^3 + 96 - 5*v - 16*v^2 - 4*v^3 + 48 5 - 2*v - 32*v^2 - 8*v^3 + 144 - v - 16*v^2 - 4*v^3 + 72 6 6*v - 32*v^2 - 8*v^3 + 200 3*v - 16*v^2 - 4*v^3 + 100 7 14*v - 32*v^2 - 8*v^3 + 264 7*v - 16*v^2 - 4*v^3 + 132 8 22*v - 32*v^2 - 8*v^3 + 336 11*v - 16*v^2 - 4*v^3 + 168 9 30*v - 32*v^2 - 8*v^3 + 416 15*v - 16*v^2 - 4*v^3 + 208 10 38*v - 32*v^2 - 8*v^3 + 504 19*v - 16*v^2 - 4*v^3 + 252 11 46*v - 32*v^2 - 8*v^3 + 600 23*v - 16*v^2 - 4*v^3 + 300 12 54*v - 32*v^2 - 8*v^3 + 704 27*v - 16*v^2 - 4*v^3 + 352 13 62*v - 32*v^2 - 8*v^3 + 816 31*v - 16*v^2 - 4*v^3 + 408 14 70*v - 32*v^2 - 8*v^3 + 936 35*v - 16*v^2 - 4*v^3 + 468 15 78*v - 32*v^2 - 8*v^3 + 1064 39*v - 16*v^2 - 4*v^3 + 532 16 86*v - 32*v^2 - 8*v^3 + 1200 43*v - 16*v^2 - 4*v^3 + 600 17 94*v - 32*v^2 - 8*v^3 + 1344 47*v - 16*v^2 - 4*v^3 + 672 18 102*v - 32*v^2 - 8*v^3 + 1496 51*v - 16*v^2 - 4*v^3 + 748 19 110*v - 32*v^2 - 8*v^3 + 1656 55*v - 16*v^2 - 4*v^3 + 828 20 118*v - 32*v^2 - 8*v^3 + 1824 59*v - 16*v^2 - 4*v^3 + 912 21 126*v - 32*v^2 - 8*v^3 + 2000 63*v - 16*v^2 - 4*v^3 + 1000 22 134*v - 32*v^2 - 8*v^3 + 2184 67*v - 16*v^2 - 4*v^3 + 1092 23 142*v - 32*v^2 - 8*v^3 + 2376 71*v - 16*v^2 - 4*v^3 + 1188 24 150*v - 32*v^2 - 8*v^3 + 2576 75*v - 16*v^2 - 4*v^3 + 1288 25 158*v - 32*v^2 - 8*v^3 + 2784 79*v - 16*v^2 - 4*v^3 + 1392 26 166*v - 32*v^2 - 8*v^3 + 3000 83*v - 16*v^2 - 4*v^3 + 1500 27 174*v - 32*v^2 - 8*v^3 + 3224 87*v - 16*v^2 - 4*v^3 + 1612 28 182*v - 32*v^2 - 8*v^3 + 3456 91*v - 16*v^2 - 4*v^3 + 1728 29 190*v - 32*v^2 - 8*v^3 + 3696 95*v - 16*v^2 - 4*v^3 + 1848 30 198*v - 32*v^2 - 8*v^3 + 3944 99*v - 16*v^2 - 4*v^3 + 1972 31 206*v - 32*v^2 - 8*v^3 + 4200 103*v - 16*v^2 - 4*v^3 + 2100 32 214*v - 32*v^2 - 8*v^3 + 4464 107*v - 16*v^2 - 4*v^3 + 2232 33 222*v - 32*v^2 - 8*v^3 + 4736 111*v - 16*v^2 - 4*v^3 + 2368 34 230*v - 32*v^2 - 8*v^3 + 5016 115*v - 16*v^2 - 4*v^3 + 2508 35 238*v - 32*v^2 - 8*v^3 + 5304 119*v - 16*v^2 - 4*v^3 + 2652 36 246*v - 32*v^2 - 8*v^3 + 5600 123*v - 16*v^2 - 4*v^3 + 2800 37 254*v - 32*v^2 - 8*v^3 + 5904 127*v - 16*v^2 - 4*v^3 + 2952 38 262*v - 32*v^2 - 8*v^3 + 6216 131*v - 16*v^2 - 4*v^3 + 3108 39 270*v - 32*v^2 - 8*v^3 + 6536 135*v - 16*v^2 - 4*v^3 + 3268 40 278*v - 32*v^2 - 8*v^3 + 6864 139*v - 16*v^2 - 4*v^3 + 3432 41 286*v - 32*v^2 - 8*v^3 + 7200 143*v - 16*v^2 - 4*v^3 + 3600 42 294*v - 32*v^2 - 8*v^3 + 7544 147*v - 16*v^2 - 4*v^3 + 3772 43 302*v - 32*v^2 - 8*v^3 + 7896 151*v - 16*v^2 - 4*v^3 + 3948 44 310*v - 32*v^2 - 8*v^3 + 8256 155*v - 16*v^2 - 4*v^3 + 4128 45 318*v - 32*v^2 - 8*v^3 + 8624 159*v - 16*v^2 - 4*v^3 + 4312 46 326*v - 32*v^2 - 8*v^3 + 9000 163*v - 16*v^2 - 4*v^3 + 4500 47 334*v - 32*v^2 - 8*v^3 + 9384 167*v - 16*v^2 - 4*v^3 + 4692 48 342*v - 32*v^2 - 8*v^3 + 9776 171*v - 16*v^2 - 4*v^3 + 4888 49 350*v - 32*v^2 - 8*v^3 + 10176 175*v - 16*v^2 - 4*v^3 + 5088 50 358*v - 32*v^2 - 8*v^3 + 10584 179*v - 16*v^2 - 4*v^3 + 5292 51 366*v - 32*v^2 - 8*v^3 + 11000 183*v - 16*v^2 - 4*v^3 + 5500 52 374*v - 32*v^2 - 8*v^3 + 11424 187*v - 16*v^2 - 4*v^3 + 5712 53 382*v - 32*v^2 - 8*v^3 + 11856 191*v - 16*v^2 - 4*v^3 + 5928 54 390*v - 32*v^2 - 8*v^3 + 12296 195*v - 16*v^2 - 4*v^3 + 6148 55 398*v - 32*v^2 - 8*v^3 + 12744 199*v - 16*v^2 - 4*v^3 + 6372 56 406*v - 32*v^2 - 8*v^3 + 13200 203*v - 16*v^2 - 4*v^3 + 6600 57 414*v - 32*v^2 - 8*v^3 + 13664 207*v - 16*v^2 - 4*v^3 + 6832 58 422*v - 32*v^2 - 8*v^3 + 14136 211*v - 16*v^2 - 4*v^3 + 7068 59 430*v - 32*v^2 - 8*v^3 + 14616 215*v - 16*v^2 - 4*v^3 + 7308 60 438*v - 32*v^2 - 8*v^3 + 15104 219*v - 16*v^2 - 4*v^3 + 7552 61 446*v - 32*v^2 - 8*v^3 + 15600 223*v - 16*v^2 - 4*v^3 + 7800 62 454*v - 32*v^2 - 8*v^3 + 16104 227*v - 16*v^2 - 4*v^3 + 8052 63 462*v - 32*v^2 - 8*v^3 + 16616 231*v - 16*v^2 - 4*v^3 + 8308 64 470*v - 32*v^2 - 8*v^3 + 17136 235*v - 16*v^2 - 4*v^3 + 8568 65 478*v - 32*v^2 - 8*v^3 + 17664 239*v - 16*v^2 - 4*v^3 + 8832 66 486*v - 32*v^2 - 8*v^3 + 18200 243*v - 16*v^2 - 4*v^3 + 9100 67 494*v - 32*v^2 - 8*v^3 + 18744 247*v - 16*v^2 - 4*v^3 + 9372 68 502*v - 32*v^2 - 8*v^3 + 19296 251*v - 16*v^2 - 4*v^3 + 9648 69 510*v - 32*v^2 - 8*v^3 + 19856 255*v - 16*v^2 - 4*v^3 + 9928 70 518*v - 32*v^2 - 8*v^3 + 20424 259*v - 16*v^2 - 4*v^3 + 10212 71 526*v - 32*v^2 - 8*v^3 + 21000 263*v - 16*v^2 - 4*v^3 + 10500 72 534*v - 32*v^2 - 8*v^3 + 21584 267*v - 16*v^2 - 4*v^3 + 10792 73 542*v - 32*v^2 - 8*v^3 + 22176 271*v - 16*v^2 - 4*v^3 + 11088 74 550*v - 32*v^2 - 8*v^3 + 22776 275*v - 16*v^2 - 4*v^3 + 11388 75 558*v - 32*v^2 - 8*v^3 + 23384 279*v - 16*v^2 - 4*v^3 + 11692 76 566*v - 32*v^2 - 8*v^3 + 24000 283*v - 16*v^2 - 4*v^3 + 12000 77 574*v - 32*v^2 - 8*v^3 + 24624 287*v - 16*v^2 - 4*v^3 + 12312 78 582*v - 32*v^2 - 8*v^3 + 25256 291*v - 16*v^2 - 4*v^3 + 12628 79 590*v - 32*v^2 - 8*v^3 + 25896 295*v - 16*v^2 - 4*v^3 + 12948 80 598*v - 32*v^2 - 8*v^3 + 26544 299*v - 16*v^2 - 4*v^3 + 13272 81 606*v - 32*v^2 - 8*v^3 + 27200 303*v - 16*v^2 - 4*v^3 + 13600 82 614*v - 32*v^2 - 8*v^3 + 27864 307*v - 16*v^2 - 4*v^3 + 13932 83 622*v - 32*v^2 - 8*v^3 + 28536 311*v - 16*v^2 - 4*v^3 + 14268 84 630*v - 32*v^2 - 8*v^3 + 29216 315*v - 16*v^2 - 4*v^3 + 14608 85 638*v - 32*v^2 - 8*v^3 + 29904 319*v - 16*v^2 - 4*v^3 + 14952 86 646*v - 32*v^2 - 8*v^3 + 30600 323*v - 16*v^2 - 4*v^3 + 15300 87 654*v - 32*v^2 - 8*v^3 + 31304 327*v - 16*v^2 - 4*v^3 + 15652 88 662*v - 32*v^2 - 8*v^3 + 32016 331*v - 16*v^2 - 4*v^3 + 16008 89 670*v - 32*v^2 - 8*v^3 + 32736 335*v - 16*v^2 - 4*v^3 + 16368 90 678*v - 32*v^2 - 8*v^3 + 33464 339*v - 16*v^2 - 4*v^3 + 16732 91 686*v - 32*v^2 - 8*v^3 + 34200 343*v - 16*v^2 - 4*v^3 + 17100 92 694*v - 32*v^2 - 8*v^3 + 34944 347*v - 16*v^2 - 4*v^3 + 17472 93 702*v - 32*v^2 - 8*v^3 + 35696 351*v - 16*v^2 - 4*v^3 + 17848 94 710*v - 32*v^2 - 8*v^3 + 36456 355*v - 16*v^2 - 4*v^3 + 18228 95 718*v - 32*v^2 - 8*v^3 + 37224 359*v - 16*v^2 - 4*v^3 + 18612 96 726*v - 32*v^2 - 8*v^3 + 38000 363*v - 16*v^2 - 4*v^3 + 19000 97 734*v - 32*v^2 - 8*v^3 + 38784 367*v - 16*v^2 - 4*v^3 + 19392 98 742*v - 32*v^2 - 8*v^3 + 39576 371*v - 16*v^2 - 4*v^3 + 19788 99 750*v - 32*v^2 - 8*v^3 + 40376 375*v - 16*v^2 - 4*v^3 + 20188 100 758*v - 32*v^2 - 8*v^3 + 41184 379*v - 16*v^2 - 4*v^3 + 20592 101 766*v - 32*v^2 - 8*v^3 + 42000 383*v - 16*v^2 - 4*v^3 + 21000 102 774*v - 32*v^2 - 8*v^3 + 42824 387*v - 16*v^2 - 4*v^3 + 21412 103 782*v - 32*v^2 - 8*v^3 + 43656 391*v - 16*v^2 - 4*v^3 + 21828 104 790*v - 32*v^2 - 8*v^3 + 44496 395*v - 16*v^2 - 4*v^3 + 22248 105 798*v - 32*v^2 - 8*v^3 + 45344 399*v - 16*v^2 - 4*v^3 + 22672 106 806*v - 32*v^2 - 8*v^3 + 46200 403*v - 16*v^2 - 4*v^3 + 23100 107 814*v - 32*v^2 - 8*v^3 + 47064 407*v - 16*v^2 - 4*v^3 + 23532 108 822*v - 32*v^2 - 8*v^3 + 47936 411*v - 16*v^2 - 4*v^3 + 23968 109 830*v - 32*v^2 - 8*v^3 + 48816 415*v - 16*v^2 - 4*v^3 + 24408 110 838*v - 32*v^2 - 8*v^3 + 49704 419*v - 16*v^2 - 4*v^3 + 24852 111 846*v - 32*v^2 - 8*v^3 + 50600 423*v - 16*v^2 - 4*v^3 + 25300 112 854*v - 32*v^2 - 8*v^3 + 51504 427*v - 16*v^2 - 4*v^3 + 25752 113 862*v - 32*v^2 - 8*v^3 + 52416 431*v - 16*v^2 - 4*v^3 + 26208 114 870*v - 32*v^2 - 8*v^3 + 53336 435*v - 16*v^2 - 4*v^3 + 26668 115 878*v - 32*v^2 - 8*v^3 + 54264 439*v - 16*v^2 - 4*v^3 + 27132 116 886*v - 32*v^2 - 8*v^3 + 55200 443*v - 16*v^2 - 4*v^3 + 27600 117 894*v - 32*v^2 - 8*v^3 + 56144 447*v - 16*v^2 - 4*v^3 + 28072 118 902*v - 32*v^2 - 8*v^3 + 57096 451*v - 16*v^2 - 4*v^3 + 28548 119 910*v - 32*v^2 - 8*v^3 + 58056 455*v - 16*v^2 - 4*v^3 + 29028 120 918*v - 32*v^2 - 8*v^3 + 59024 459*v - 16*v^2 - 4*v^3 + 29512 121 926*v - 32*v^2 - 8*v^3 + 60000 463*v - 16*v^2 - 4*v^3 + 30000 122 934*v - 32*v^2 - 8*v^3 + 60984 467*v - 16*v^2 - 4*v^3 + 30492 123 942*v - 32*v^2 - 8*v^3 + 61976 471*v - 16*v^2 - 4*v^3 + 30988 124 950*v - 32*v^2 - 8*v^3 + 62976 475*v - 16*v^2 - 4*v^3 + 31488 125 958*v - 32*v^2 - 8*v^3 + 63984 479*v - 16*v^2 - 4*v^3 + 31992 126 966*v - 32*v^2 - 8*v^3 + 65000 483*v - 16*v^2 - 4*v^3 + 32500 127 974*v - 32*v^2 - 8*v^3 + 66024 487*v - 16*v^2 - 4*v^3 + 33012 128 982*v - 32*v^2 - 8*v^3 + 67056 491*v - 16*v^2 - 4*v^3 + 33528 129 990*v - 32*v^2 - 8*v^3 + 68096 495*v - 16*v^2 - 4*v^3 + 34048 130 998*v - 32*v^2 - 8*v^3 + 69144 499*v - 16*v^2 - 4*v^3 + 34572 131 1006*v - 32*v^2 - 8*v^3 + 70200 503*v - 16*v^2 - 4*v^3 + 35100 132 1014*v - 32*v^2 - 8*v^3 + 71264 507*v - 16*v^2 - 4*v^3 + 35632 133 1022*v - 32*v^2 - 8*v^3 + 72336 511*v - 16*v^2 - 4*v^3 + 36168 134 1030*v - 32*v^2 - 8*v^3 + 73416 515*v - 16*v^2 - 4*v^3 + 36708 135 1038*v - 32*v^2 - 8*v^3 + 74504 519*v - 16*v^2 - 4*v^3 + 37252 136 1046*v - 32*v^2 - 8*v^3 + 75600 523*v - 16*v^2 - 4*v^3 + 37800 137 1054*v - 32*v^2 - 8*v^3 + 76704 527*v - 16*v^2 - 4*v^3 + 38352 138 1062*v - 32*v^2 - 8*v^3 + 77816 531*v - 16*v^2 - 4*v^3 + 38908 139 1070*v - 32*v^2 - 8*v^3 + 78936 535*v - 16*v^2 - 4*v^3 + 39468 140 1078*v - 32*v^2 - 8*v^3 + 80064 539*v - 16*v^2 - 4*v^3 + 40032 141 1086*v - 32*v^2 - 8*v^3 + 81200 543*v - 16*v^2 - 4*v^3 + 40600 142 1094*v - 32*v^2 - 8*v^3 + 82344 547*v - 16*v^2 - 4*v^3 + 41172 143 1102*v - 32*v^2 - 8*v^3 + 83496 551*v - 16*v^2 - 4*v^3 + 41748 144 1110*v - 32*v^2 - 8*v^3 + 84656 555*v - 16*v^2 - 4*v^3 + 42328 145 1118*v - 32*v^2 - 8*v^3 + 85824 559*v - 16*v^2 - 4*v^3 + 42912 146 1126*v - 32*v^2 - 8*v^3 + 87000 563*v - 16*v^2 - 4*v^3 + 43500 147 1134*v - 32*v^2 - 8*v^3 + 88184 567*v - 16*v^2 - 4*v^3 + 44092 148 1142*v - 32*v^2 - 8*v^3 + 89376 571*v - 16*v^2 - 4*v^3 + 44688 149 1150*v - 32*v^2 - 8*v^3 + 90576 575*v - 16*v^2 - 4*v^3 + 45288 150 1158*v - 32*v^2 - 8*v^3 + 91784 579*v - 16*v^2 - 4*v^3 + 45892 151 1166*v - 32*v^2 - 8*v^3 + 93000 583*v - 16*v^2 - 4*v^3 + 46500 152 1174*v - 32*v^2 - 8*v^3 + 94224 587*v - 16*v^2 - 4*v^3 + 47112 153 1182*v - 32*v^2 - 8*v^3 + 95456 591*v - 16*v^2 - 4*v^3 + 47728 154 1190*v - 32*v^2 - 8*v^3 + 96696 595*v - 16*v^2 - 4*v^3 + 48348 155 1198*v - 32*v^2 - 8*v^3 + 97944 599*v - 16*v^2 - 4*v^3 + 48972 156 1206*v - 32*v^2 - 8*v^3 + 99200 603*v - 16*v^2 - 4*v^3 + 49600 157 1214*v - 32*v^2 - 8*v^3 + 100464 607*v - 16*v^2 - 4*v^3 + 50232 158 1222*v - 32*v^2 - 8*v^3 + 101736 611*v - 16*v^2 - 4*v^3 + 50868 159 1230*v - 32*v^2 - 8*v^3 + 103016 615*v - 16*v^2 - 4*v^3 + 51508 160 1238*v - 32*v^2 - 8*v^3 + 104304 619*v - 16*v^2 - 4*v^3 + 52152 161 1246*v - 32*v^2 - 8*v^3 + 105600 623*v - 16*v^2 - 4*v^3 + 52800 162 1254*v - 32*v^2 - 8*v^3 + 106904 627*v - 16*v^2 - 4*v^3 + 53452 163 1262*v - 32*v^2 - 8*v^3 + 108216 631*v - 16*v^2 - 4*v^3 + 54108 164 1270*v - 32*v^2 - 8*v^3 + 109536 635*v - 16*v^2 - 4*v^3 + 54768 165 1278*v - 32*v^2 - 8*v^3 + 110864 639*v - 16*v^2 - 4*v^3 + 55432 166 1286*v - 32*v^2 - 8*v^3 + 112200 643*v - 16*v^2 - 4*v^3 + 56100 167 1294*v - 32*v^2 - 8*v^3 + 113544 647*v - 16*v^2 - 4*v^3 + 56772 168 1302*v - 32*v^2 - 8*v^3 + 114896 651*v - 16*v^2 - 4*v^3 + 57448 169 1310*v - 32*v^2 - 8*v^3 + 116256 655*v - 16*v^2 - 4*v^3 + 58128 170 1318*v - 32*v^2 - 8*v^3 + 117624 659*v - 16*v^2 - 4*v^3 + 58812 171 1326*v - 32*v^2 - 8*v^3 + 119000 663*v - 16*v^2 - 4*v^3 + 59500 172 1334*v - 32*v^2 - 8*v^3 + 120384 667*v - 16*v^2 - 4*v^3 + 60192 173 1342*v - 32*v^2 - 8*v^3 + 121776 671*v - 16*v^2 - 4*v^3 + 60888 174 1350*v - 32*v^2 - 8*v^3 + 123176 675*v - 16*v^2 - 4*v^3 + 61588 175 1358*v - 32*v^2 - 8*v^3 + 124584 679*v - 16*v^2 - 4*v^3 + 62292 176 1366*v - 32*v^2 - 8*v^3 + 126000 683*v - 16*v^2 - 4*v^3 + 63000 177 1374*v - 32*v^2 - 8*v^3 + 127424 687*v - 16*v^2 - 4*v^3 + 63712 178 1382*v - 32*v^2 - 8*v^3 + 128856 691*v - 16*v^2 - 4*v^3 + 64428 179 1390*v - 32*v^2 - 8*v^3 + 130296 695*v - 16*v^2 - 4*v^3 + 65148 180 1398*v - 32*v^2 - 8*v^3 + 131744 699*v - 16*v^2 - 4*v^3 + 65872 181 1406*v - 32*v^2 - 8*v^3 + 133200 703*v - 16*v^2 - 4*v^3 + 66600 182 1414*v - 32*v^2 - 8*v^3 + 134664 707*v - 16*v^2 - 4*v^3 + 67332 183 1422*v - 32*v^2 - 8*v^3 + 136136 711*v - 16*v^2 - 4*v^3 + 68068 184 1430*v - 32*v^2 - 8*v^3 + 137616 715*v - 16*v^2 - 4*v^3 + 68808 185 1438*v - 32*v^2 - 8*v^3 + 139104 719*v - 16*v^2 - 4*v^3 + 69552 186 1446*v - 32*v^2 - 8*v^3 + 140600 723*v - 16*v^2 - 4*v^3 + 70300 187 1454*v - 32*v^2 - 8*v^3 + 142104 727*v - 16*v^2 - 4*v^3 + 71052 188 1462*v - 32*v^2 - 8*v^3 + 143616 731*v - 16*v^2 - 4*v^3 + 71808 189 1470*v - 32*v^2 - 8*v^3 + 145136 735*v - 16*v^2 - 4*v^3 + 72568 190 1478*v - 32*v^2 - 8*v^3 + 146664 739*v - 16*v^2 - 4*v^3 + 73332 191 1486*v - 32*v^2 - 8*v^3 + 148200 743*v - 16*v^2 - 4*v^3 + 74100 192 1494*v - 32*v^2 - 8*v^3 + 149744 747*v - 16*v^2 - 4*v^3 + 74872 193 1502*v - 32*v^2 - 8*v^3 + 151296 751*v - 16*v^2 - 4*v^3 + 75648 194 1510*v - 32*v^2 - 8*v^3 + 152856 755*v - 16*v^2 - 4*v^3 + 76428 195 1518*v - 32*v^2 - 8*v^3 + 154424 759*v - 16*v^2 - 4*v^3 + 77212 196 1526*v - 32*v^2 - 8*v^3 + 156000 763*v - 16*v^2 - 4*v^3 + 78000 197 1534*v - 32*v^2 - 8*v^3 + 157584 767*v - 16*v^2 - 4*v^3 + 78792 198 1542*v - 32*v^2 - 8*v^3 + 159176 771*v - 16*v^2 - 4*v^3 + 79588 199 1550*v - 32*v^2 - 8*v^3 + 160776 775*v - 16*v^2 - 4*v^3 + 80388 200 1558*v - 32*v^2 - 8*v^3 + 162384 779*v - 16*v^2 - 4*v^3 + 81192 201 1566*v - 32*v^2 - 8*v^3 + 164000 783*v - 16*v^2 - 4*v^3 + 82000 202 1574*v - 32*v^2 - 8*v^3 + 165624 787*v - 16*v^2 - 4*v^3 + 82812 203 1582*v - 32*v^2 - 8*v^3 + 167256 791*v - 16*v^2 - 4*v^3 + 83628 204 1590*v - 32*v^2 - 8*v^3 + 168896 795*v - 16*v^2 - 4*v^3 + 84448 205 1598*v - 32*v^2 - 8*v^3 + 170544 799*v - 16*v^2 - 4*v^3 + 85272 206 1606*v - 32*v^2 - 8*v^3 + 172200 803*v - 16*v^2 - 4*v^3 + 86100 207 1614*v - 32*v^2 - 8*v^3 + 173864 807*v - 16*v^2 - 4*v^3 + 86932 208 1622*v - 32*v^2 - 8*v^3 + 175536 811*v - 16*v^2 - 4*v^3 + 87768 209 1630*v - 32*v^2 - 8*v^3 + 177216 815*v - 16*v^2 - 4*v^3 + 88608 210 1638*v - 32*v^2 - 8*v^3 + 178904 819*v - 16*v^2 - 4*v^3 + 89452 211 1646*v - 32*v^2 - 8*v^3 + 180600 823*v - 16*v^2 - 4*v^3 + 90300 212 1654*v - 32*v^2 - 8*v^3 + 182304 827*v - 16*v^2 - 4*v^3 + 91152 213 1662*v - 32*v^2 - 8*v^3 + 184016 831*v - 16*v^2 - 4*v^3 + 92008 214 1670*v - 32*v^2 - 8*v^3 + 185736 835*v - 16*v^2 - 4*v^3 + 92868 215 1678*v - 32*v^2 - 8*v^3 + 187464 839*v - 16*v^2 - 4*v^3 + 93732 216 1686*v - 32*v^2 - 8*v^3 + 189200 843*v - 16*v^2 - 4*v^3 + 94600 217 1694*v - 32*v^2 - 8*v^3 + 190944 847*v - 16*v^2 - 4*v^3 + 95472 218 1702*v - 32*v^2 - 8*v^3 + 192696 851*v - 16*v^2 - 4*v^3 + 96348 219 1710*v - 32*v^2 - 8*v^3 + 194456 855*v - 16*v^2 - 4*v^3 + 97228 220 1718*v - 32*v^2 - 8*v^3 + 196224 859*v - 16*v^2 - 4*v^3 + 98112 221 1726*v - 32*v^2 - 8*v^3 + 198000 863*v - 16*v^2 - 4*v^3 + 99000 222 1734*v - 32*v^2 - 8*v^3 + 199784 867*v - 16*v^2 - 4*v^3 + 99892 223 1742*v - 32*v^2 - 8*v^3 + 201576 871*v - 16*v^2 - 4*v^3 + 100788 224 1750*v - 32*v^2 - 8*v^3 + 203376 875*v - 16*v^2 - 4*v^3 + 101688 225 1758*v - 32*v^2 - 8*v^3 + 205184 879*v - 16*v^2 - 4*v^3 + 102592 226 1766*v - 32*v^2 - 8*v^3 + 207000 883*v - 16*v^2 - 4*v^3 + 103500 227 1774*v - 32*v^2 - 8*v^3 + 208824 887*v - 16*v^2 - 4*v^3 + 104412 228 1782*v - 32*v^2 - 8*v^3 + 210656 891*v - 16*v^2 - 4*v^3 + 105328 229 1790*v - 32*v^2 - 8*v^3 + 212496 895*v - 16*v^2 - 4*v^3 + 106248 230 1798*v - 32*v^2 - 8*v^3 + 214344 899*v - 16*v^2 - 4*v^3 + 107172 231 1806*v - 32*v^2 - 8*v^3 + 216200 903*v - 16*v^2 - 4*v^3 + 108100 232 1814*v - 32*v^2 - 8*v^3 + 218064 907*v - 16*v^2 - 4*v^3 + 109032 233 1822*v - 32*v^2 - 8*v^3 + 219936 911*v - 16*v^2 - 4*v^3 + 109968 234 1830*v - 32*v^2 - 8*v^3 + 221816 915*v - 16*v^2 - 4*v^3 + 110908 235 1838*v - 32*v^2 - 8*v^3 + 223704 919*v - 16*v^2 - 4*v^3 + 111852 236 1846*v - 32*v^2 - 8*v^3 + 225600 923*v - 16*v^2 - 4*v^3 + 112800 237 1854*v - 32*v^2 - 8*v^3 + 227504 927*v - 16*v^2 - 4*v^3 + 113752 238 1862*v - 32*v^2 - 8*v^3 + 229416 931*v - 16*v^2 - 4*v^3 + 114708 239 1870*v - 32*v^2 - 8*v^3 + 231336 935*v - 16*v^2 - 4*v^3 + 115668 240 1878*v - 32*v^2 - 8*v^3 + 233264 939*v - 16*v^2 - 4*v^3 + 116632 241 1886*v - 32*v^2 - 8*v^3 + 235200 943*v - 16*v^2 - 4*v^3 + 117600 242 1894*v - 32*v^2 - 8*v^3 + 237144 947*v - 16*v^2 - 4*v^3 + 118572 243 1902*v - 32*v^2 - 8*v^3 + 239096 951*v - 16*v^2 - 4*v^3 + 119548 244 1910*v - 32*v^2 - 8*v^3 + 241056 955*v - 16*v^2 - 4*v^3 + 120528 245 1918*v - 32*v^2 - 8*v^3 + 243024 959*v - 16*v^2 - 4*v^3 + 121512 246 1926*v - 32*v^2 - 8*v^3 + 245000 963*v - 16*v^2 - 4*v^3 + 122500 247 1934*v - 32*v^2 - 8*v^3 + 246984 967*v - 16*v^2 - 4*v^3 + 123492 248 1942*v - 32*v^2 - 8*v^3 + 248976 971*v - 16*v^2 - 4*v^3 + 124488 249 1950*v - 32*v^2 - 8*v^3 + 250976 975*v - 16*v^2 - 4*v^3 + 125488 250 1958*v - 32*v^2 - 8*v^3 + 252984 979*v - 16*v^2 - 4*v^3 + 126492 251 1966*v - 32*v^2 - 8*v^3 + 255000 983*v - 16*v^2 - 4*v^3 + 127500 252 1974*v - 32*v^2 - 8*v^3 + 257024 987*v - 16*v^2 - 4*v^3 + 128512 253 1982*v - 32*v^2 - 8*v^3 + 259056 991*v - 16*v^2 - 4*v^3 + 129528 254 1990*v - 32*v^2 - 8*v^3 + 261096 995*v - 16*v^2 - 4*v^3 + 130548 255 1998*v - 32*v^2 - 8*v^3 + 263144 999*v - 16*v^2 - 4*v^3 + 131572 256 2006*v - 32*v^2 - 8*v^3 + 265200 1003*v - 16*v^2 - 4*v^3 + 132600 257 2014*v - 32*v^2 - 8*v^3 + 267264 1007*v - 16*v^2 - 4*v^3 + 133632 258 2022*v - 32*v^2 - 8*v^3 + 269336 1011*v - 16*v^2 - 4*v^3 + 134668 259 2030*v - 32*v^2 - 8*v^3 + 271416 1015*v - 16*v^2 - 4*v^3 + 135708 260 2038*v - 32*v^2 - 8*v^3 + 273504 1019*v - 16*v^2 - 4*v^3 + 136752 261 2046*v - 32*v^2 - 8*v^3 + 275600 1023*v - 16*v^2 - 4*v^3 + 137800 262 2054*v - 32*v^2 - 8*v^3 + 277704 1027*v - 16*v^2 - 4*v^3 + 138852 263 2062*v - 32*v^2 - 8*v^3 + 279816 1031*v - 16*v^2 - 4*v^3 + 139908 264 2070*v - 32*v^2 - 8*v^3 + 281936 1035*v - 16*v^2 - 4*v^3 + 140968 265 2078*v - 32*v^2 - 8*v^3 + 284064 1039*v - 16*v^2 - 4*v^3 + 142032 266 2086*v - 32*v^2 - 8*v^3 + 286200 1043*v - 16*v^2 - 4*v^3 + 143100 267 2094*v - 32*v^2 - 8*v^3 + 288344 1047*v - 16*v^2 - 4*v^3 + 144172 268 2102*v - 32*v^2 - 8*v^3 + 290496 1051*v - 16*v^2 - 4*v^3 + 145248 269 2110*v - 32*v^2 - 8*v^3 + 292656 1055*v - 16*v^2 - 4*v^3 + 146328 270 2118*v - 32*v^2 - 8*v^3 + 294824 1059*v - 16*v^2 - 4*v^3 + 147412 271 2126*v - 32*v^2 - 8*v^3 + 297000 1063*v - 16*v^2 - 4*v^3 + 148500 272 2134*v - 32*v^2 - 8*v^3 + 299184 1067*v - 16*v^2 - 4*v^3 + 149592 273 2142*v - 32*v^2 - 8*v^3 + 301376 1071*v - 16*v^2 - 4*v^3 + 150688 274 2150*v - 32*v^2 - 8*v^3 + 303576 1075*v - 16*v^2 - 4*v^3 + 151788 275 2158*v - 32*v^2 - 8*v^3 + 305784 1079*v - 16*v^2 - 4*v^3 + 152892 276 2166*v - 32*v^2 - 8*v^3 + 308000 1083*v - 16*v^2 - 4*v^3 + 154000 277 2174*v - 32*v^2 - 8*v^3 + 310224 1087*v - 16*v^2 - 4*v^3 + 155112 278 2182*v - 32*v^2 - 8*v^3 + 312456 1091*v - 16*v^2 - 4*v^3 + 156228 279 2190*v - 32*v^2 - 8*v^3 + 314696 1095*v - 16*v^2 - 4*v^3 + 157348 280 2198*v - 32*v^2 - 8*v^3 + 316944 1099*v - 16*v^2 - 4*v^3 + 158472 281 2206*v - 32*v^2 - 8*v^3 + 319200 1103*v - 16*v^2 - 4*v^3 + 159600 282 2214*v - 32*v^2 - 8*v^3 + 321464 1107*v - 16*v^2 - 4*v^3 + 160732 283 2222*v - 32*v^2 - 8*v^3 + 323736 1111*v - 16*v^2 - 4*v^3 + 161868 284 2230*v - 32*v^2 - 8*v^3 + 326016 1115*v - 16*v^2 - 4*v^3 + 163008 285 2238*v - 32*v^2 - 8*v^3 + 328304 1119*v - 16*v^2 - 4*v^3 + 164152 286 2246*v - 32*v^2 - 8*v^3 + 330600 1123*v - 16*v^2 - 4*v^3 + 165300 287 2254*v - 32*v^2 - 8*v^3 + 332904 1127*v - 16*v^2 - 4*v^3 + 166452 288 2262*v - 32*v^2 - 8*v^3 + 335216 1131*v - 16*v^2 - 4*v^3 + 167608 289 2270*v - 32*v^2 - 8*v^3 + 337536 1135*v - 16*v^2 - 4*v^3 + 168768 290 2278*v - 32*v^2 - 8*v^3 + 339864 1139*v - 16*v^2 - 4*v^3 + 169932 291 2286*v - 32*v^2 - 8*v^3 + 342200 1143*v - 16*v^2 - 4*v^3 + 171100 292 2294*v - 32*v^2 - 8*v^3 + 344544 1147*v - 16*v^2 - 4*v^3 + 172272 293 2302*v - 32*v^2 - 8*v^3 + 346896 1151*v - 16*v^2 - 4*v^3 + 173448 294 2310*v - 32*v^2 - 8*v^3 + 349256 1155*v - 16*v^2 - 4*v^3 + 174628 295 2318*v - 32*v^2 - 8*v^3 + 351624 1159*v - 16*v^2 - 4*v^3 + 175812 296 2326*v - 32*v^2 - 8*v^3 + 354000 1163*v - 16*v^2 - 4*v^3 + 177000 297 2334*v - 32*v^2 - 8*v^3 + 356384 1167*v - 16*v^2 - 4*v^3 + 178192 298 2342*v - 32*v^2 - 8*v^3 + 358776 1171*v - 16*v^2 - 4*v^3 + 179388 299 2350*v - 32*v^2 - 8*v^3 + 361176 1175*v - 16*v^2 - 4*v^3 + 180588 300 2358*v - 32*v^2 - 8*v^3 + 363584 1179*v - 16*v^2 - 4*v^3 + 181792 301 2366*v - 32*v^2 - 8*v^3 + 366000 1183*v - 16*v^2 - 4*v^3 + 183000 302 2374*v - 32*v^2 - 8*v^3 + 368424 1187*v - 16*v^2 - 4*v^3 + 184212 303 2382*v - 32*v^2 - 8*v^3 + 370856 1191*v - 16*v^2 - 4*v^3 + 185428 304 2390*v - 32*v^2 - 8*v^3 + 373296 1195*v - 16*v^2 - 4*v^3 + 186648 305 2398*v - 32*v^2 - 8*v^3 + 375744 1199*v - 16*v^2 - 4*v^3 + 187872 306 2406*v - 32*v^2 - 8*v^3 + 378200 1203*v - 16*v^2 - 4*v^3 + 189100 307 2414*v - 32*v^2 - 8*v^3 + 380664 1207*v - 16*v^2 - 4*v^3 + 190332 308 2422*v - 32*v^2 - 8*v^3 + 383136 1211*v - 16*v^2 - 4*v^3 + 191568 309 2430*v - 32*v^2 - 8*v^3 + 385616 1215*v - 16*v^2 - 4*v^3 + 192808 310 2438*v - 32*v^2 - 8*v^3 + 388104 1219*v - 16*v^2 - 4*v^3 + 194052 311 2446*v - 32*v^2 - 8*v^3 + 390600 1223*v - 16*v^2 - 4*v^3 + 195300 312 2454*v - 32*v^2 - 8*v^3 + 393104 1227*v - 16*v^2 - 4*v^3 + 196552 313 2462*v - 32*v^2 - 8*v^3 + 395616 1231*v - 16*v^2 - 4*v^3 + 197808 314 2470*v - 32*v^2 - 8*v^3 + 398136 1235*v - 16*v^2 - 4*v^3 + 199068 315 2478*v - 32*v^2 - 8*v^3 + 400664 1239*v - 16*v^2 - 4*v^3 + 200332 316 2486*v - 32*v^2 - 8*v^3 + 403200 1243*v - 16*v^2 - 4*v^3 + 201600 317 2494*v - 32*v^2 - 8*v^3 + 405744 1247*v - 16*v^2 - 4*v^3 + 202872 318 2502*v - 32*v^2 - 8*v^3 + 408296 1251*v - 16*v^2 - 4*v^3 + 204148 319 2510*v - 32*v^2 - 8*v^3 + 410856 1255*v - 16*v^2 - 4*v^3 + 205428 320 2518*v - 32*v^2 - 8*v^3 + 413424 1259*v - 16*v^2 - 4*v^3 + 206712 321 2526*v - 32*v^2 - 8*v^3 + 416000 1263*v - 16*v^2 - 4*v^3 + 208000 322 2534*v - 32*v^2 - 8*v^3 + 418584 1267*v - 16*v^2 - 4*v^3 + 209292 323 2542*v - 32*v^2 - 8*v^3 + 421176 1271*v - 16*v^2 - 4*v^3 + 210588 324 2550*v - 32*v^2 - 8*v^3 + 423776 1275*v - 16*v^2 - 4*v^3 + 211888 325 2558*v - 32*v^2 - 8*v^3 + 426384 1279*v - 16*v^2 - 4*v^3 + 213192 326 2566*v - 32*v^2 - 8*v^3 + 429000 1283*v - 16*v^2 - 4*v^3 + 214500 327 2574*v - 32*v^2 - 8*v^3 + 431624 1287*v - 16*v^2 - 4*v^3 + 215812 328 2582*v - 32*v^2 - 8*v^3 + 434256 1291*v - 16*v^2 - 4*v^3 + 217128 329 2590*v - 32*v^2 - 8*v^3 + 436896 1295*v - 16*v^2 - 4*v^3 + 218448 330 2598*v - 32*v^2 - 8*v^3 + 439544 1299*v - 16*v^2 - 4*v^3 + 219772 331 2606*v - 32*v^2 - 8*v^3 + 442200 1303*v - 16*v^2 - 4*v^3 + 221100 332 2614*v - 32*v^2 - 8*v^3 + 444864 1307*v - 16*v^2 - 4*v^3 + 222432 333 2622*v - 32*v^2 - 8*v^3 + 447536 1311*v - 16*v^2 - 4*v^3 + 223768 334 2630*v - 32*v^2 - 8*v^3 + 450216 1315*v - 16*v^2 - 4*v^3 + 225108 335 2638*v - 32*v^2 - 8*v^3 + 452904 1319*v - 16*v^2 - 4*v^3 + 226452 336 2646*v - 32*v^2 - 8*v^3 + 455600 1323*v - 16*v^2 - 4*v^3 + 227800 337 2654*v - 32*v^2 - 8*v^3 + 458304 1327*v - 16*v^2 - 4*v^3 + 229152 338 2662*v - 32*v^2 - 8*v^3 + 461016 1331*v - 16*v^2 - 4*v^3 + 230508 339 2670*v - 32*v^2 - 8*v^3 + 463736 1335*v - 16*v^2 - 4*v^3 + 231868 340 2678*v - 32*v^2 - 8*v^3 + 466464 1339*v - 16*v^2 - 4*v^3 + 233232 341 2686*v - 32*v^2 - 8*v^3 + 469200 1343*v - 16*v^2 - 4*v^3 + 234600 342 2694*v - 32*v^2 - 8*v^3 + 471944 1347*v - 16*v^2 - 4*v^3 + 235972 343 2702*v - 32*v^2 - 8*v^3 + 474696 1351*v - 16*v^2 - 4*v^3 + 237348 344 2710*v - 32*v^2 - 8*v^3 + 477456 1355*v - 16*v^2 - 4*v^3 + 238728 345 2718*v - 32*v^2 - 8*v^3 + 480224 1359*v - 16*v^2 - 4*v^3 + 240112 346 2726*v - 32*v^2 - 8*v^3 + 483000 1363*v - 16*v^2 - 4*v^3 + 241500 347 2734*v - 32*v^2 - 8*v^3 + 485784 1367*v - 16*v^2 - 4*v^3 + 242892 348 2742*v - 32*v^2 - 8*v^3 + 488576 1371*v - 16*v^2 - 4*v^3 + 244288 349 2750*v - 32*v^2 - 8*v^3 + 491376 1375*v - 16*v^2 - 4*v^3 + 245688 350 2758*v - 32*v^2 - 8*v^3 + 494184 1379*v - 16*v^2 - 4*v^3 + 247092 351 2766*v - 32*v^2 - 8*v^3 + 497000 1383*v - 16*v^2 - 4*v^3 + 248500 352 2774*v - 32*v^2 - 8*v^3 + 499824 1387*v - 16*v^2 - 4*v^3 + 249912 353 2782*v - 32*v^2 - 8*v^3 + 502656 1391*v - 16*v^2 - 4*v^3 + 251328 354 2790*v - 32*v^2 - 8*v^3 + 505496 1395*v - 16*v^2 - 4*v^3 + 252748 355 2798*v - 32*v^2 - 8*v^3 + 508344 1399*v - 16*v^2 - 4*v^3 + 254172 356 2806*v - 32*v^2 - 8*v^3 + 511200 1403*v - 16*v^2 - 4*v^3 + 255600 357 2814*v - 32*v^2 - 8*v^3 + 514064 1407*v - 16*v^2 - 4*v^3 + 257032 358 2822*v - 32*v^2 - 8*v^3 + 516936 1411*v - 16*v^2 - 4*v^3 + 258468 359 2830*v - 32*v^2 - 8*v^3 + 519816 1415*v - 16*v^2 - 4*v^3 + 259908 360 2838*v - 32*v^2 - 8*v^3 + 522704 1419*v - 16*v^2 - 4*v^3 + 261352 361 2846*v - 32*v^2 - 8*v^3 + 525600 1423*v - 16*v^2 - 4*v^3 + 262800 362 2854*v - 32*v^2 - 8*v^3 + 528504 1427*v - 16*v^2 - 4*v^3 + 264252 363 2862*v - 32*v^2 - 8*v^3 + 531416 1431*v - 16*v^2 - 4*v^3 + 265708 364 2870*v - 32*v^2 - 8*v^3 + 534336 1435*v - 16*v^2 - 4*v^3 + 267168 365 2878*v - 32*v^2 - 8*v^3 + 537264 1439*v - 16*v^2 - 4*v^3 + 268632 366 2886*v - 32*v^2 - 8*v^3 + 540200 1443*v - 16*v^2 - 4*v^3 + 270100 367 2894*v - 32*v^2 - 8*v^3 + 543144 1447*v - 16*v^2 - 4*v^3 + 271572 368 2902*v - 32*v^2 - 8*v^3 + 546096 1451*v - 16*v^2 - 4*v^3 + 273048 369 2910*v - 32*v^2 - 8*v^3 + 549056 1455*v - 16*v^2 - 4*v^3 + 274528 370 2918*v - 32*v^2 - 8*v^3 + 552024 1459*v - 16*v^2 - 4*v^3 + 276012 371 2926*v - 32*v^2 - 8*v^3 + 555000 1463*v - 16*v^2 - 4*v^3 + 277500 372 2934*v - 32*v^2 - 8*v^3 + 557984 1467*v - 16*v^2 - 4*v^3 + 278992 373 2942*v - 32*v^2 - 8*v^3 + 560976 1471*v - 16*v^2 - 4*v^3 + 280488 374 2950*v - 32*v^2 - 8*v^3 + 563976 1475*v - 16*v^2 - 4*v^3 + 281988 375 2958*v - 32*v^2 - 8*v^3 + 566984 1479*v - 16*v^2 - 4*v^3 + 283492 376 2966*v - 32*v^2 - 8*v^3 + 570000 1483*v - 16*v^2 - 4*v^3 + 285000 377 2974*v - 32*v^2 - 8*v^3 + 573024 1487*v - 16*v^2 - 4*v^3 + 286512 378 2982*v - 32*v^2 - 8*v^3 + 576056 1491*v - 16*v^2 - 4*v^3 + 288028 379 2990*v - 32*v^2 - 8*v^3 + 579096 1495*v - 16*v^2 - 4*v^3 + 289548 380 2998*v - 32*v^2 - 8*v^3 + 582144 1499*v - 16*v^2 - 4*v^3 + 291072 381 3006*v - 32*v^2 - 8*v^3 + 585200 1503*v - 16*v^2 - 4*v^3 + 292600 382 3014*v - 32*v^2 - 8*v^3 + 588264 1507*v - 16*v^2 - 4*v^3 + 294132 383 3022*v - 32*v^2 - 8*v^3 + 591336 1511*v - 16*v^2 - 4*v^3 + 295668 384 3030*v - 32*v^2 - 8*v^3 + 594416 1515*v - 16*v^2 - 4*v^3 + 297208 385 3038*v - 32*v^2 - 8*v^3 + 597504 1519*v - 16*v^2 - 4*v^3 + 298752 386 3046*v - 32*v^2 - 8*v^3 + 600600 1523*v - 16*v^2 - 4*v^3 + 300300 387 3054*v - 32*v^2 - 8*v^3 + 603704 1527*v - 16*v^2 - 4*v^3 + 301852 388 3062*v - 32*v^2 - 8*v^3 + 606816 1531*v - 16*v^2 - 4*v^3 + 303408 389 3070*v - 32*v^2 - 8*v^3 + 609936 1535*v - 16*v^2 - 4*v^3 + 304968 390 3078*v - 32*v^2 - 8*v^3 + 613064 1539*v - 16*v^2 - 4*v^3 + 306532 391 3086*v - 32*v^2 - 8*v^3 + 616200 1543*v - 16*v^2 - 4*v^3 + 308100 392 3094*v - 32*v^2 - 8*v^3 + 619344 1547*v - 16*v^2 - 4*v^3 + 309672 393 3102*v - 32*v^2 - 8*v^3 + 622496 1551*v - 16*v^2 - 4*v^3 + 311248 394 3110*v - 32*v^2 - 8*v^3 + 625656 1555*v - 16*v^2 - 4*v^3 + 312828 395 3118*v - 32*v^2 - 8*v^3 + 628824 1559*v - 16*v^2 - 4*v^3 + 314412 396 3126*v - 32*v^2 - 8*v^3 + 632000 1563*v - 16*v^2 - 4*v^3 + 316000 397 3134*v - 32*v^2 - 8*v^3 + 635184 1567*v - 16*v^2 - 4*v^3 + 317592 398 3142*v - 32*v^2 - 8*v^3 + 638376 1571*v - 16*v^2 - 4*v^3 + 319188 399 3150*v - 32*v^2 - 8*v^3 + 641576 1575*v - 16*v^2 - 4*v^3 + 320788 400 3158*v - 32*v^2 - 8*v^3 + 644784 1579*v - 16*v^2 - 4*v^3 + 322392 401 3166*v - 32*v^2 - 8*v^3 + 648000 1583*v - 16*v^2 - 4*v^3 + 324000 402 3174*v - 32*v^2 - 8*v^3 + 651224 1587*v - 16*v^2 - 4*v^3 + 325612 403 3182*v - 32*v^2 - 8*v^3 + 654456 1591*v - 16*v^2 - 4*v^3 + 327228 404 3190*v - 32*v^2 - 8*v^3 + 657696 1595*v - 16*v^2 - 4*v^3 + 328848 405 3198*v - 32*v^2 - 8*v^3 + 660944 1599*v - 16*v^2 - 4*v^3 + 330472 406 3206*v - 32*v^2 - 8*v^3 + 664200 1603*v - 16*v^2 - 4*v^3 + 332100 407 3214*v - 32*v^2 - 8*v^3 + 667464 1607*v - 16*v^2 - 4*v^3 + 333732 408 3222*v - 32*v^2 - 8*v^3 + 670736 1611*v - 16*v^2 - 4*v^3 + 335368 409 3230*v - 32*v^2 - 8*v^3 + 674016 1615*v - 16*v^2 - 4*v^3 + 337008 410 3238*v - 32*v^2 - 8*v^3 + 677304 1619*v - 16*v^2 - 4*v^3 + 338652 411 3246*v - 32*v^2 - 8*v^3 + 680600 1623*v - 16*v^2 - 4*v^3 + 340300 412 3254*v - 32*v^2 - 8*v^3 + 683904 1627*v - 16*v^2 - 4*v^3 + 341952 413 3262*v - 32*v^2 - 8*v^3 + 687216 1631*v - 16*v^2 - 4*v^3 + 343608 414 3270*v - 32*v^2 - 8*v^3 + 690536 1635*v - 16*v^2 - 4*v^3 + 345268 415 3278*v - 32*v^2 - 8*v^3 + 693864 1639*v - 16*v^2 - 4*v^3 + 346932 416 3286*v - 32*v^2 - 8*v^3 + 697200 1643*v - 16*v^2 - 4*v^3 + 348600 417 3294*v - 32*v^2 - 8*v^3 + 700544 1647*v - 16*v^2 - 4*v^3 + 350272 418 3302*v - 32*v^2 - 8*v^3 + 703896 1651*v - 16*v^2 - 4*v^3 + 351948 419 3310*v - 32*v^2 - 8*v^3 + 707256 1655*v - 16*v^2 - 4*v^3 + 353628 420 3318*v - 32*v^2 - 8*v^3 + 710624 1659*v - 16*v^2 - 4*v^3 + 355312 421 3326*v - 32*v^2 - 8*v^3 + 714000 1663*v - 16*v^2 - 4*v^3 + 357000 422 3334*v - 32*v^2 - 8*v^3 + 717384 1667*v - 16*v^2 - 4*v^3 + 358692 423 3342*v - 32*v^2 - 8*v^3 + 720776 1671*v - 16*v^2 - 4*v^3 + 360388 424 3350*v - 32*v^2 - 8*v^3 + 724176 1675*v - 16*v^2 - 4*v^3 + 362088 425 3358*v - 32*v^2 - 8*v^3 + 727584 1679*v - 16*v^2 - 4*v^3 + 363792 426 3366*v - 32*v^2 - 8*v^3 + 731000 1683*v - 16*v^2 - 4*v^3 + 365500 427 3374*v - 32*v^2 - 8*v^3 + 734424 1687*v - 16*v^2 - 4*v^3 + 367212 428 3382*v - 32*v^2 - 8*v^3 + 737856 1691*v - 16*v^2 - 4*v^3 + 368928 429 3390*v - 32*v^2 - 8*v^3 + 741296 1695*v - 16*v^2 - 4*v^3 + 370648 430 3398*v - 32*v^2 - 8*v^3 + 744744 1699*v - 16*v^2 - 4*v^3 + 372372 431 3406*v - 32*v^2 - 8*v^3 + 748200 1703*v - 16*v^2 - 4*v^3 + 374100 432 3414*v - 32*v^2 - 8*v^3 + 751664 1707*v - 16*v^2 - 4*v^3 + 375832 433 3422*v - 32*v^2 - 8*v^3 + 755136 1711*v - 16*v^2 - 4*v^3 + 377568 434 3430*v - 32*v^2 - 8*v^3 + 758616 1715*v - 16*v^2 - 4*v^3 + 379308 435 3438*v - 32*v^2 - 8*v^3 + 762104 1719*v - 16*v^2 - 4*v^3 + 381052 436 3446*v - 32*v^2 - 8*v^3 + 765600 1723*v - 16*v^2 - 4*v^3 + 382800 437 3454*v - 32*v^2 - 8*v^3 + 769104 1727*v - 16*v^2 - 4*v^3 + 384552 438 3462*v - 32*v^2 - 8*v^3 + 772616 1731*v - 16*v^2 - 4*v^3 + 386308 439 3470*v - 32*v^2 - 8*v^3 + 776136 1735*v - 16*v^2 - 4*v^3 + 388068 440 3478*v - 32*v^2 - 8*v^3 + 779664 1739*v - 16*v^2 - 4*v^3 + 389832 441 3486*v - 32*v^2 - 8*v^3 + 783200 1743*v - 16*v^2 - 4*v^3 + 391600 442 3494*v - 32*v^2 - 8*v^3 + 786744 1747*v - 16*v^2 - 4*v^3 + 393372 443 3502*v - 32*v^2 - 8*v^3 + 790296 1751*v - 16*v^2 - 4*v^3 + 395148 444 3510*v - 32*v^2 - 8*v^3 + 793856 1755*v - 16*v^2 - 4*v^3 + 396928 445 3518*v - 32*v^2 - 8*v^3 + 797424 1759*v - 16*v^2 - 4*v^3 + 398712 446 3526*v - 32*v^2 - 8*v^3 + 801000 1763*v - 16*v^2 - 4*v^3 + 400500 447 3534*v - 32*v^2 - 8*v^3 + 804584 1767*v - 16*v^2 - 4*v^3 + 402292 448 3542*v - 32*v^2 - 8*v^3 + 808176 1771*v - 16*v^2 - 4*v^3 + 404088 449 3550*v - 32*v^2 - 8*v^3 + 811776 1775*v - 16*v^2 - 4*v^3 + 405888 450 3558*v - 32*v^2 - 8*v^3 + 815384 1779*v - 16*v^2 - 4*v^3 + 407692 451 3566*v - 32*v^2 - 8*v^3 + 819000 1783*v - 16*v^2 - 4*v^3 + 409500 452 3574*v - 32*v^2 - 8*v^3 + 822624 1787*v - 16*v^2 - 4*v^3 + 411312 453 3582*v - 32*v^2 - 8*v^3 + 826256 1791*v - 16*v^2 - 4*v^3 + 413128 454 3590*v - 32*v^2 - 8*v^3 + 829896 1795*v - 16*v^2 - 4*v^3 + 414948 455 3598*v - 32*v^2 - 8*v^3 + 833544 1799*v - 16*v^2 - 4*v^3 + 416772 456 3606*v - 32*v^2 - 8*v^3 + 837200 1803*v - 16*v^2 - 4*v^3 + 418600 457 3614*v - 32*v^2 - 8*v^3 + 840864 1807*v - 16*v^2 - 4*v^3 + 420432 458 3622*v - 32*v^2 - 8*v^3 + 844536 1811*v - 16*v^2 - 4*v^3 + 422268 459 3630*v - 32*v^2 - 8*v^3 + 848216 1815*v - 16*v^2 - 4*v^3 + 424108 460 3638*v - 32*v^2 - 8*v^3 + 851904 1819*v - 16*v^2 - 4*v^3 + 425952 461 3646*v - 32*v^2 - 8*v^3 + 855600 1823*v - 16*v^2 - 4*v^3 + 427800 462 3654*v - 32*v^2 - 8*v^3 + 859304 1827*v - 16*v^2 - 4*v^3 + 429652 463 3662*v - 32*v^2 - 8*v^3 + 863016 1831*v - 16*v^2 - 4*v^3 + 431508 464 3670*v - 32*v^2 - 8*v^3 + 866736 1835*v - 16*v^2 - 4*v^3 + 433368 465 3678*v - 32*v^2 - 8*v^3 + 870464 1839*v - 16*v^2 - 4*v^3 + 435232 466 3686*v - 32*v^2 - 8*v^3 + 874200 1843*v - 16*v^2 - 4*v^3 + 437100 467 3694*v - 32*v^2 - 8*v^3 + 877944 1847*v - 16*v^2 - 4*v^3 + 438972 468 3702*v - 32*v^2 - 8*v^3 + 881696 1851*v - 16*v^2 - 4*v^3 + 440848 469 3710*v - 32*v^2 - 8*v^3 + 885456 1855*v - 16*v^2 - 4*v^3 + 442728 470 3718*v - 32*v^2 - 8*v^3 + 889224 1859*v - 16*v^2 - 4*v^3 + 444612 471 3726*v - 32*v^2 - 8*v^3 + 893000 1863*v - 16*v^2 - 4*v^3 + 446500 472 3734*v - 32*v^2 - 8*v^3 + 896784 1867*v - 16*v^2 - 4*v^3 + 448392 473 3742*v - 32*v^2 - 8*v^3 + 900576 1871*v - 16*v^2 - 4*v^3 + 450288 474 3750*v - 32*v^2 - 8*v^3 + 904376 1875*v - 16*v^2 - 4*v^3 + 452188 475 3758*v - 32*v^2 - 8*v^3 + 908184 1879*v - 16*v^2 - 4*v^3 + 454092 476 3766*v - 32*v^2 - 8*v^3 + 912000 1883*v - 16*v^2 - 4*v^3 + 456000 477 3774*v - 32*v^2 - 8*v^3 + 915824 1887*v - 16*v^2 - 4*v^3 + 457912 478 3782*v - 32*v^2 - 8*v^3 + 919656 1891*v - 16*v^2 - 4*v^3 + 459828 479 3790*v - 32*v^2 - 8*v^3 + 923496 1895*v - 16*v^2 - 4*v^3 + 461748 480 3798*v - 32*v^2 - 8*v^3 + 927344 1899*v - 16*v^2 - 4*v^3 + 463672 481 3806*v - 32*v^2 - 8*v^3 + 931200 1903*v - 16*v^2 - 4*v^3 + 465600 482 3814*v - 32*v^2 - 8*v^3 + 935064 1907*v - 16*v^2 - 4*v^3 + 467532 483 3822*v - 32*v^2 - 8*v^3 + 938936 1911*v - 16*v^2 - 4*v^3 + 469468 484 3830*v - 32*v^2 - 8*v^3 + 942816 1915*v - 16*v^2 - 4*v^3 + 471408 485 3838*v - 32*v^2 - 8*v^3 + 946704 1919*v - 16*v^2 - 4*v^3 + 473352 486 3846*v - 32*v^2 - 8*v^3 + 950600 1923*v - 16*v^2 - 4*v^3 + 475300 487 3854*v - 32*v^2 - 8*v^3 + 954504 1927*v - 16*v^2 - 4*v^3 + 477252 488 3862*v - 32*v^2 - 8*v^3 + 958416 1931*v - 16*v^2 - 4*v^3 + 479208 489 3870*v - 32*v^2 - 8*v^3 + 962336 1935*v - 16*v^2 - 4*v^3 + 481168 490 3878*v - 32*v^2 - 8*v^3 + 966264 1939*v - 16*v^2 - 4*v^3 + 483132 491 3886*v - 32*v^2 - 8*v^3 + 970200 1943*v - 16*v^2 - 4*v^3 + 485100 492 3894*v - 32*v^2 - 8*v^3 + 974144 1947*v - 16*v^2 - 4*v^3 + 487072 493 3902*v - 32*v^2 - 8*v^3 + 978096 1951*v - 16*v^2 - 4*v^3 + 489048 494 3910*v - 32*v^2 - 8*v^3 + 982056 1955*v - 16*v^2 - 4*v^3 + 491028 495 3918*v - 32*v^2 - 8*v^3 + 986024 1959*v - 16*v^2 - 4*v^3 + 493012 496 3926*v - 32*v^2 - 8*v^3 + 990000 1963*v - 16*v^2 - 4*v^3 + 495000 497 3934*v - 32*v^2 - 8*v^3 + 993984 1967*v - 16*v^2 - 4*v^3 + 496992 498 3942*v - 32*v^2 - 8*v^3 + 997976 1971*v - 16*v^2 - 4*v^3 + 498988 499 3950*v - 32*v^2 - 8*v^3 + 1001976 1975*v - 16*v^2 - 4*v^3 + 500988 500 3958*v - 32*v^2 - 8*v^3 + 1005984 1979*v - 16*v^2 - 4*v^3 + 502992 501 3966*v - 32*v^2 - 8*v^3 + 1010000 1983*v - 16*v^2 - 4*v^3 + 505000 502 3974*v - 32*v^2 - 8*v^3 + 1014024 1987*v - 16*v^2 - 4*v^3 + 507012 503 3982*v - 32*v^2 - 8*v^3 + 1018056 1991*v - 16*v^2 - 4*v^3 + 509028 504 3990*v - 32*v^2 - 8*v^3 + 1022096 1995*v - 16*v^2 - 4*v^3 + 511048 505 3998*v - 32*v^2 - 8*v^3 + 1026144 1999*v - 16*v^2 - 4*v^3 + 513072 506 4006*v - 32*v^2 - 8*v^3 + 1030200 2003*v - 16*v^2 - 4*v^3 + 515100 507 4014*v - 32*v^2 - 8*v^3 + 1034264 2007*v - 16*v^2 - 4*v^3 + 517132 508 4022*v - 32*v^2 - 8*v^3 + 1038336 2011*v - 16*v^2 - 4*v^3 + 519168 509 4030*v - 32*v^2 - 8*v^3 + 1042416 2015*v - 16*v^2 - 4*v^3 + 521208 510 4038*v - 32*v^2 - 8*v^3 + 1046504 2019*v - 16*v^2 - 4*v^3 + 523252 511 4046*v - 32*v^2 - 8*v^3 + 1050600 2023*v - 16*v^2 - 4*v^3 + 525300
cca8b5d198e73835dd9a7a597c2bf795c6ae5baf
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set12/s_Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436.zip/Industrial_Instrumentation_K._Krishnaswamy_And_S._Vijayachitra_1436/CH4/EX4.6/ex4_6.sce
27894f859769a9197999a3842cb1636b91888553
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
172
sce
ex4_6.sce
errcatch(-1,"stop");mode(2);// Example 4.6, page no-211 c0=25 x0=0.5 x1=0.05 c1=c0*x0/(x0-x1) c2=c0*x0/(x0+x1) printf("C1=%.2f pF\nC2=%.2f pF",c1,c2) exit();
a5ea099ea95c26c68fd88886e6f6d0e1b699d3fe
449d555969bfd7befe906877abab098c6e63a0e8
/1931/CH3/EX3.19/19.sce
8186ab2b2baa8578af4e087d1155a7a037c8b658
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
451
sce
19.sce
clc clear //INPUT DATA n=2//no.of atoms in BCC structure d=7.86*10^6//density of iron of FCC structure in kg/m^3 AW=55.85//atomic weight of Fe N=6.023*10^23//Avogadro's Number per Kg mol //CALCULATION a=(((n*AW)/(d*N))^(1/3))/10^-10//The lattice constant in m r=((a*sqrt(3))/4)//The atomic radius of Fe which has BCC structure in armstrong*10^-10 //OUTPUT printf('The atomic radius of Fe which has BCC structure is %3.3f armstrong',r)
be4153dc46529cfcc04aaef46dac003d976a667c
449d555969bfd7befe906877abab098c6e63a0e8
/1325/CH12/EX12.3/12_3.sce
67f54f1ecca4757b9b63c00b9980909e5870d2a1
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
560
sce
12_3.sce
//Find the torque exerted on the crankshaft clc //given D=9//in stroke=24//in d=2//in l=60//in CP=l N=120 theta=40//degrees x=theta*%pi/180 P1=160//lb/in^2 P2=32//lb/in^2 OC=stroke/2 F=%pi*(D/2)^2*P1-%pi*(D/2)^2*P2+%pi*(d/2)^2*P2 //Ft*Vc=F*Vp; Where Vc and Vp are velocities of crank and pin respectively //Vp/Vc=IP/IC=OM/OC - From similar triangles ; fig 274 n=CP/OC OM=OC*(sin(x) + (sin(2*x)/(2*n)))//from 3.11 T=F*OM/12//torque exerted on crankshaft Torque=floor(T) printf("The torque exerted on crankshaft= F*OM = %.f lb ft",Torque)
4efdf8c3b6f46aa7a66c5e5b2b381eb6c23b1049
05ac16985ed247964c257764b2c14776a4cd6771
/make-tests/make05.tst
53eb66c42e7d4018df060a80905ee4fd3e606420
[]
no_license
felixitous/Graphs
e7887a194429cdbf073c6e41d0d1b9969e2e8ec7
395364c7bac49812d28a72dc8862e41ab39651ca
refs/heads/master
2021-01-22T10:01:56.943976
2014-01-15T22:45:23
2014-01-15T22:45:23
15,950,368
0
0
null
null
null
null
UTF-8
Scilab
false
false
62
tst
make05.tst
java make.Main -f make-tests/make05.mk -D make-tests/file05 C
dc6d90f9e25f73c137e91b35245833661f07580f
527c41bcbfe7e4743e0e8897b058eaaf206558c7
/Positive_Negative_test/Netezza-Adv-StringAndUtilityFunctions/FLDLevenshteinDist-NZ-01.tst
eb46e27fc565a28265c7606d60408af63ef97819
[]
no_license
kamleshm/intern_fuzzy
c2dd079bf08bede6bca79af898036d7a538ab4e2
aaef3c9dc9edf3759ef0b981597746d411d05d34
refs/heads/master
2021-01-23T06:25:46.162332
2017-07-12T07:12:25
2017-07-12T07:12:25
93,021,923
0
0
null
null
null
null
UTF-8
Scilab
false
false
4,863
tst
FLDLevenshteinDist-NZ-01.tst
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Teradata -- -- Copyright (c): 2014 Fuzzy Logix, LLC -- -- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC. -- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC. -- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade -- secret or copyright law. Dissemination of this information or reproduction of this material is -- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC. -- Functional Test Specifications: -- -- Test Category: String Functions -- -- Test Unit Number: FLDLevenshteinDist-Netezza-01 -- -- Name(s): FLDLevenshteinDist -- -- Description: Damerau–Levenshtein distance is a measure of the similarity between two strings, String1 and String2. The distance is the number of deletions, insertions, substitutions and transpositions required to transform String1 into String2. -- -- Applications: -- -- Signature: FLDLevenshteinDist(String1 VARCHAR(1000), String2 VARCHAR(1000), CaseFlag INTEGER) -- -- Parameters: See Documentation -- -- Return value: BIGINT -- -- Last Updated: 07-04-2017 -- -- Author: Kamlesh Meena -- BEGIN: TEST SCRIPT \time -- .run file=../PulsarLogOn.sql -- .set width 8000 -- BEGIN: POSITIVE TEST(s) --Case 1a SELECT FLDLevenshteinDist('MARTHA','Partha',1) AS DLevenshteinlDist1, FLDLevenshteinDist('MARTHA','Partha',0) AS DLevenshteinDist2, FLDLevenshteinDist('MARTHA','Parhta',1) AS DLevenshteinDist3, FLDLevenshteinDist('MARTHA','Parhta',0) AS DLevenshteinlDist4; --Case 1b SELECT FLDLevenshteinDist('1000','1000',1) AS DLevenshteinDist1; SELECT FLDLevenshteinDist('1000','0100',1) AS DLevenshteinDist1; --Case 1c SELECT FLDLevenshteinDist('0','1',1) AS FLDLevenshteinDist; SELECT FLDLevenshteinDist('1','1',1) AS FLDLevenshteinDist; SELECT FLDLevenshteinDist('10','01',1) AS FLDLevenshteinDist; SELECT FLDLevenshteinDist('100','010',1) AS FLDLevenshteinDist; SELECT FLDLevenshteinDist('1000','0100',1) AS FLDLevenshteinDist; --Case 1d SELECT FLDLevenshteinDist('1011101 ','1001001 ',1) AS DLevenshteinDist1; --Case 1e SELECT FLDLevenshteinDist('-10 11','100- ',1) AS DLevenshteinDist1; --Case 1f SELECT FLDLevenshteinDist(CAST(b.serialval AS VARCHAR(3)),CAST(b.serialval AS VARCHAR(3)),1) AS FLDLevenshteinDist FROM ( SELECT * FROM fzzlserial a WHERE a.serialval<100 ) AS b LIMIT 20; --CASE TD-79 -- SELECT FLLevenshteinDist('teusday','tuesday',1) (FORMAT 'ZZZZ9', TITLE 'LDScore: tuesday'), -- FLLevenshteinDist('teusday','thursday',1) (FORMAT 'ZZZZ9', TITLE 'LDScore: thursday'), -- FLDLevenshteinDist('teusday','tuesday',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: tuesday'), -- FLDLevenshteinDist('teusday','thursday',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: thursday'), -- FLDLevenshteinDist('tuesday','something',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: something'), -- FLDLevenshteinDist('Helton','Helton',1) (FORMAT 'ZZZZ9', TITLE 'DLDScore: Helton'), -- FLDLevenshteinDist('Helton','HELTON',0) (FORMAT 'ZZZZ9', TITLE 'DLDScore: HELTON'); -- END: POSITIVE TEST(s) -- BEGIN: NEGATIVE TEST(s) --Case 1a --Check if the flag takes valid values SELECT FLDLevenshteinDist('MARTHA','Partha',-1) AS DLevenshteinDist1; --Case 1b --Check if the flag takes valid values SELECT FLDLevenshteinDist('MARTHA','Partha',10) AS DLevenshteinDist1; --Case 1c --Check if the flag takes valid values SELECT FLDLevenshteinDist('MARTHA','Partha',NULL) AS DLevenshteinDist1; --Case 2a --Check if the Arg 1 takes valid values SELECT FLDLevenshteinDist('','Partha',1) AS DLevenshteinDist1; --Case 2b --Check if the Arg 1 takes valid values SELECT FLDLevenshteinDist(NULL,'Partha',1) AS DLevenshteinDist1; --Case 2c --Check if the Arg 1 takes valid values SELECT FLDLevenshteinDist(martha,'Partha',1) AS DLevenshteinDist1; --Case 3a --Check if the 2nd argument takes valid values SELECT FLDLevenshteinDist('MARTHA','',1) AS DLevenshteinDist1; --Case 3b --Check if the 2nd argument takes valid values SELECT FLDLevenshteinDist('MARTHA',NULL,1) AS DLevenshteinDist1; --Case 3c --Check if the 2nd argument takes valid values SELECT FLDLevenshteinDist('MARTHA',martha,1) AS DLevenshteinDist1; --Case 4a --Check if the 1st and 2nd argument takes valid values SELECT FLDLevenshteinDist('','',1) AS DLevenshteinDist1; --Case 5a -- All Nulls SELECT FLDLevenshteinDist(CAST(b.serialval AS VARCHAR(3)),CAST(b.serialval AS VARCHAR(3)),1) AS FLDLevenshteinDist FROM ( SELECT CASE WHEN a.serialval < 100 THEN NULL ELSE a.serialval END AS serialval FROM fzzlserial a WHERE a.serialval<100 ) AS b; -- END: NEGATIVE TEST(s) \time -- END: TEST SCRIPT
e381acd3a85f24baf947d0b45bab2ae020301eb2
0ab8e580a87c1665dccb3a89160444447bc1df78
/wykresy.sci
8e02cf5eb1d12c17052f6cff4c88ec353f194032
[]
no_license
montsigur/PAMSI-lab05
24b6b3335183e723d4eeef5ef54c5a452dd14fea
92e70a03aa498a975eb21db37c910161c2455cfe
refs/heads/master
2016-09-13T21:08:52.877778
2016-05-05T12:44:34
2016-05-05T12:44:34
57,230,751
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,165
sci
wykresy.sci
clear; LK25 = fscanfMat("./pomiary/pomiar_LK_25.0%.txt"); LK50 = fscanfMat("./pomiary/pomiar_LK_50.0%.txt"); LK75 = fscanfMat("./pomiary/pomiar_LK_75.0%.txt"); LK100 = fscanfMat("./pomiary/pomiar_LK_100.0%.txt"); LS25 = fscanfMat("./pomiary/pomiar_LS_25.0%.txt"); LS50 = fscanfMat("./pomiary/pomiar_LS_50.0%.txt"); LS75 = fscanfMat("./pomiary/pomiar_LS_75.0%.txt"); LS100 = fscanfMat("./pomiary/pomiar_LS_100.0%.txt"); MS25 = fscanfMat("./pomiary/pomiar_MS_25.0%.txt"); MS50 = fscanfMat("./pomiary/pomiar_MS_50.0%.txt"); MS75 = fscanfMat("./pomiary/pomiar_MS_75.0%.txt"); MS100 = fscanfMat("./pomiary/pomiar_MS_100.0%.txt"); pomiary1 = [LK25, LK50, LS25, LS50, MS25, MS50]; pomiary2 = [LK75, LK100, LS75, LS100, MS75, MS100]; rozmiary = [10, 50, 100, 500, 1000]; for i=1:6 subplot(3, 2, i); plot(rozmiary, pomiary1(:, 2*i-1, :), 'b.'); plot(rozmiary, pomiary1(:, 2*i , :), 'g.'); xlabel('ilosc wierzcholkow'); ylabel('czas [ms]'); end figure(1); for i=1:6 subplot(3, 2, i); plot(rozmiary, pomiary2(:, 2*i-1, :), 'b.'); plot(rozmiary, pomiary2(:, 2*i , :), 'g.'); xlabel('ilosc wierzcholkow'); ylabel('czas [ms]'); end
679eae310f788410cbd944a2a5071c16459de885
449d555969bfd7befe906877abab098c6e63a0e8
/1301/CH26/EX26.7/26_7.sce
4a8561d0c04c2d43b66f4d44ee5b2b42690abc1c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
261
sce
26_7.sce
clc; p=0.263*10^5; //Pascal v=120; //volume in m cube t=223; //Kelvin R=8.31; //constant n=(p*v)/(R*t); //calculating n disp(n,"n = "); //displaying result m=n*4; //cal mass of He disp(m,"Mass of He = "); //displaying result
978b7ea78ebb3588926dd9319cbacf6ef0967206
449d555969bfd7befe906877abab098c6e63a0e8
/2741/CH3/EX3.11/Chapter3_Example11.sce
4e5d99df578914cf0eca7553ed3015b4981495ae
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
516
sce
Chapter3_Example11.sce
clc clear //Input data V=25;//Volume of gasoline consumed by an engine in litres/hour cv=6*10^6;//The calorific value of gasoline in calories/litre P=35;//The output of the engine in kilowatts //Calculations h=V*cv;//Total heat produced by gasoline in one hour in calories H=h/3600;//Heat produced per second in cal/s I=H*4.2;//Heat produced per second in joules/s or watts E=((P*1000)/I)*100;//The efficiency in percent //Output printf('The efficiency of the engine is %3.0f percent ',E)
61ed471fa8c17db660f2ab7f1b08e1bbe9215743
449d555969bfd7befe906877abab098c6e63a0e8
/2318/CH4/EX4.5/ex_4_5.sce
35eab7fae421ce940ea1ab6d83cb98e3af7d51f7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
188
sce
ex_4_5.sce
//Example 4.5: Resistance clc; clear; close; //given data : l=65;// in cm V=0.1;// in V V1=5.5;// in V R=20;// in ohm E=V*l; I=V1/R; Ri=(E-V1)/I; disp(Ri,"Internal resistance,Ri(ohm) = ")
5ce522e404de085edb1487fcbc85a25f0fa3468f
1db0a7f58e484c067efa384b541cecee64d190ab
/macros/cheb1ord.sci
713f81262cd856b10a09719166820aab74ffb026
[]
no_license
sonusharma55/Signal-Toolbox
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
refs/heads/master
2020-03-22T21:37:22.593805
2018-07-12T12:35:54
2018-07-12T12:35:54
140,701,211
2
0
null
null
null
null
UTF-8
Scilab
false
false
4,948
sci
cheb1ord.sci
<<<<<<< HEAD // Copyright (C) 2018 - IIT Bombay - FOSSEE // // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Original Source : https://octave.sourceforge.io/signal/ // Modifieded by:Sonu Sharma, RGIT Mumbai // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in function [n, Wc] = cheb1ord(Wp, Ws, Rp, Rs) //Minimum filter order of a digital Chebyshev type I filter with the desired response characteristics. //Calling Sequence //n = cheb1ord(Wp, Ws, Rp, Rs) //[n, Wc] = cheb1ord(Wp, Ws, Rp, Rs) //Parameters //Wp: scalar or vector of length 2 (passband edge(s) ), all elements must be in the range [0,1] //Ws: scalar or vector of length 2 (stopband edge(s) ), all elements must be in the range [0,1] //Rp: passband ripple in dB. //Rs: stopband attenuation in dB. //Description //This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics. //Stopband frequency ws and passband frequency wp specify the the filter frequency band edges. //Frequencies are normalized to the Nyquist frequency in the range [0,1]. //Rp is measured in decibels and is the allowable passband ripple and Rs is also measured in decibels and is the minimum attenuation in the stop band. //If ws>wp then the filter is a low pass filter. If wp>ws, then the filter is a high pass filter. //If wp and ws are vectors of length 2, then the passband interval is defined by wp and the stopband interval is defined by ws. //If wp is contained within the lower and upper limits of ws, the filter is a band-pass filter. If ws is contained within the lower and upper limits of wp, the filter is a band-stop or band-reject filter. //Examples //[n, w]=cheb1ord([0.25 0.3],[0.24 0.31],3,10) // w = // // 0.25 0.3 // n = // // 3. funcprot(0); [nargout nargin] = argn(); if nargin ~= 4 error("cheb1ord: invalid number of inputs"); else validate_filter_bands ("cheb1ord", Wp, Ws); end T = 2; // returned frequency is the same as the input frequency Wc = Wp; // warp the target frequencies according to the bilinear transform Ws = (2/T)*tan(%pi*Ws./T); Wp = (2/T)*tan(%pi*Wp./T); if (Wp(1) < Ws(1)) // low pass if (length(Wp) == 1) Wa = Ws/Wp; else // FIXME: Implement band reject filter type error ("cheb1ord: band reject is not yet implemented"); end; else // if high pass, reverse the sense of the test if (length(Wp) == 1) Wa = Wp/Ws; else // band pass Wa=(Ws.^2 - Wp(1)*Wp(2))./(Ws*(Wp(1)-Wp(2))); end; end; Wa = min(abs(Wa)); // compute minimum n which satisfies all band edge conditions stop_atten = 10^(abs(Rs)/10); pass_atten = 10^(abs(Rp)/10); n = ceil(acosh(sqrt((stop_atten-1)/(pass_atten-1)))/acosh(Wa)); ======= function [n, Wc] = cheb1ord(Wp, Ws, Rp, Rs) //This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics. //Calling Sequence //n = cheb1ord(Wp, Ws, Rp, Rs) //[n, Wc] = cheb1ord(Wp, Ws, Rp, Rs) //Parameters //Wp: scalar or vector of length 2, all elements must be in the range [0,1] //Ws: scalar or vector of length 2, all elements must be in the range [0,1] //Rp: real value //Rs: real value //Description //This is an Octave function. //This function computes the minimum filter order of a Chebyshev type I filter with the desired response characteristics. //Stopband frequency ws and passband frequency wp specify the the filter frequency band edges. //Frequencies are normalized to the Nyquist frequency in the range [0,1]. //Rp is measured in decibels and is the allowable passband ripple and Rs is also measured in decibels and is the minimum attenuation in the stop band. //If ws>wp then the filter is a low pass filter. If wp>ws, then the filter is a high pass filter. //If wp and ws are vectors of length 2, then the passband interval is defined by wp and the stopband interval is defined by ws. //If wp is contained within the lower and upper limits of ws, the filter is a band-pass filter. If ws is contained within the lower and upper limits of wp, the filter is a band-stop or band-reject filter. //Examples //cheb1ord(0.1,0.2,-0.3,4) //ans = 2 rhs = argn(2) lhs = argn(1) if(rhs~=4) error("Wrong number of input arguments.") end select(lhs) case 1 then n = callOctave("cheb1ord",Wp,Ws,Rp,Rs) case 2 then [n,Wc] = callOctave("cheb1ord",Wp,Ws,Rp,Rs) end >>>>>>> 6bbb00d0f0128381ee95194cf7d008fb6504de7d endfunction
0e5f278009aee827b9d09e45a4f00ebb0551ff45
449d555969bfd7befe906877abab098c6e63a0e8
/626/CH5/EX5.12/5_12.sce
0fc0e5a246653321682c14195b3f515b135f6829
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
431
sce
5_12.sce
clear; clc; close; disp("Example 5.12") gm=1.1 M0=2.5 g1=[] z0=[0:0.1:4] i=2 for gm=1.1:0.1:1.4 gc1=1 for M=0:0.1:4 p0=(1+(gm-1)/2*(M^2))^(gm/(gm-1)) p20=.4*p0-.5*p0 M=3 p42=0.37 NPR=p20*p42 g1(gc1)=p0 gc1=gc1+1 end plot2d(z0,g1,i) xgrid title("Total-to-static pressure ratio") xlabel("Flight Mach no. (M0)") ylabel("pt0/p") legend(["gamma=1.1","gamma=1.2","gamma=1.3","gamma=1.4"]) i=i+1 end
8c877d336103cdf6a44a00a84b604e1df610374c
449d555969bfd7befe906877abab098c6e63a0e8
/1286/CH8/EX8.21/8_21.sce
02eca0373c43e5612cb5b91b9ae26236e3493a51
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
150
sce
8_21.sce
clc //initialisation of variables T1=1100//k T3=200//k r=0.5 //CALCULATIONS T=(T1-(T3*r))/(1+r) //results printf(' \n value of T= % 1f k',T)
8044cb20aff55a636caeeda029da1938f7ea411a
449d555969bfd7befe906877abab098c6e63a0e8
/3428/CH15/EX9.15.27/Ex9_15_27.sce
c82a7ba6a2c0e197bf93635a5bfbc1cdd5fee41b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
292
sce
Ex9_15_27.sce
//Section-9,Example-2,Page no.-E.57 //To find the transport number of copper ion. clc; L=0.420 //Loss of Cu in anode compartment{=(Y-X)} W=1.058 //Total weight of Cu deposited in voltmeter(=Z) t_no=L/W disp(t_no,'Transport no. of copper ions')
816cf6447dec04845467b28830bc51cd6328d4bb
be2d2a8f4f52eaee8321843e3982b31822f8eb00
/model_lorenza.sce
6779d92c80ae3c3acc6af9a105ee9f894bf92113
[]
no_license
betacord/SK
dbe99f8e767a225fffac30935084d001a12facbb
8ac1f424f85f595285db0f2f47f8a0fb3afa4033
refs/heads/master
2020-03-31T21:35:18.805098
2018-12-13T13:16:13
2018-12-13T13:16:13
152,585,930
0
0
null
null
null
null
UTF-8
Scilab
false
false
501
sce
model_lorenza.sce
// Chaos deterministyczny - modelowanie i prognozowanie rozkladu temperatury // Model Lorenza - wersja stabilna //Parametry sigma = 5; rho = 20; betta = 3; N0 = [1;0;0]; t = [0:0.1:10]; // Definicja modelu function Ndot = lorenz(t, N) Ndot = [sigma * (N(2) - N(1)); N(1) * (rho - N(3)) - N(2); N(1) * N(2) - betta * N(3)]; endfunction // Rozwiazanie N = ode(N0, t(1), t, lorenz); // Wykresy param3d(N(1,:), N(2, :), N(3, :)); xtitle("Model Lorenza", "x", "y", "z");
d5dbdd710021e9e3f360108b4aa7db93cfbb2ba6
449d555969bfd7befe906877abab098c6e63a0e8
/116/CH7/EX7.3/exa7_3.sce
d9527962ab3c0ba1dd89982de2efbdc238fd4914
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
477
sce
exa7_3.sce
//Example 7.3 //Page 354 disp("The maximum information rate per channel is determined as") Imax=[(6.312*288)/1176] disp('The minimum information rate per channel is determined as') Imin=[(6.312*287)/1176] disp('Since there are three possible combinations of two errors in the C bits, the probability of misinterpreting an S bit is') 3*(10^-6)^2 1176/6.312//duration of each master frame [(3*10^-12)/(186*10^-6)] //Result //0.016*10^-6 misframes per second
04a38ab7f3fbe96a78d61b8a4358d7bed3434dc2
6a3c1facc5f8cd5998cafed28a483e35c08b805a
/GLGame/TestScene.sce
1591f0a07f738bb49cb0c0cb81602b4246ccc1b2
[ "MIT" ]
permissive
PanAMD/GLGame
063cad37512712cfb91c306acaacc78fda5a754f
17309cd3e8b90fbb4606b2748caacdf7995fba45
refs/heads/master
2023-06-02T06:54:08.985460
2021-06-17T17:24:38
2021-06-17T17:24:38
null
0
0
null
null
null
null
ISO-8859-1
Scilab
false
false
432
sce
TestScene.sce
%GLGAME_SCENE_FILE_V01%BG_!!!!!!!0@@@@@@@@@@@0###########0$$$$$$15Test Background)#¾„álÖ®OBJ!!!!!!!0@@@@@@@@@@@0#########448$$$$$$13@#$*#Object_1RIññ»éëOBJ!!!!!!!0@@@@@@@@@320#########320$$$$$$13@#$*#Object_2³¦Û<‡ >™OBJ!!!!!!!0@@@@@@@@@448#########576$$$$$$13@#$*#Object_2$^ ·GÞOBJ!!!!!!!0@@@@@@@@@@@0#########128$$$$$$13@#$*#Object_1³MÈC»‹¦OBJ!!!!!!!0@@@@@@@@@512#########128$$$$$$13@#$*#Object_1Z} 8%
059a9ef146315e878f7f0e631e42027726f5e945
449d555969bfd7befe906877abab098c6e63a0e8
/443/CH3/EX3.24/3_24.sce
e6b49559eac5cf679822e1000dfea63704b4e4f6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,488
sce
3_24.sce
pathname=get_absolute_file_path('3_24.sce') filename=pathname+filesep()+'3_24_data.sci' exec(filename) //Efficiency of Otto cycle notto=1-(1/r^(y-1)) //Heat supplied(in kJ/s) qs=P/notto //No of cycles per second Nc=N/(2*60) //Net work output per cycle per cylinder(in kJ) W=P/(k*Nc) //Mean effective pressure(in N/m^2) pm=W*1000/Vs //Temperature at end of compression stroke(in K) T2=T1*(r)^(y-1) //Heat supplied per cycle per cylinder(in kJ) q23=qs/(k*Nc) //Volume flow of air(in m^3/kg) v1=(R*T1)/(p1*10^5) //Volume at start of compression stroke(in m^3) V1=(Vs*r)/(r-1) //Mass flow rate(in kg) m=V1/v1 //Temperature rise resulting from heat addition(in K) T3=T2+(q23/(m*Cv)) //Now considering diesel cycle //Temperature rise resulting from heat addition(in K) T3d=(q23/(m*Cp))+T2 //Cutoff ratio rc=T3d/T2 //Air standard efficiency nd=1-(1/(y*r^(y-1))*(((rc^y)-1)/(rc-1))) //Power output(in kW) Pd=nd*qs //Power ouput per cylinder Pn=Pd/k //Work done per cycle per cylinder(in kJ) Wd=Pn/Nc //Mean effective pressure(in N/m^2) pmd=Wd*1000/Vs printf("\n\nRESULTS\n\n") printf("\nEfficiency of Otto cycle:%f\n",notto*100) printf("\nHeat supplied:%f\n",qs) printf("\nMean effective pressure:%f\n",pm) printf("\nTemperature rise resulting from heat addition:%f\n",T3) printf("\nTemperature rise resulting from heat addition for diesel cycle:%f\n",T3d) printf("\nAir standard efficiency:%f\n",nd*100) printf("\nMean effective pressure:%f\n",pmd)
7e79bd9a55164c89afdce172cb46f0c4308ac04d
2e676e3b1cebfbb9d20f9b935ceacd507c57d36a
/Octave/octave-4.2.1/share/octave/4.2.1/etc/tests/fixed/io.tst
9a53dad2d80899bc34854150156808ee426d882f
[]
no_license
vohrahul/ML-ang-coursera
239469e763b290aa178b7aa8a86eda08e4e7f4be
4c24fd2ecfb9f3de7df15e3a9f75627f782f9915
refs/heads/master
2022-12-28T03:45:54.810173
2020-10-16T12:33:25
2020-10-16T12:33:25
304,620,441
1
0
null
null
null
null
UTF-8
Scilab
false
false
80,116
tst
io.tst
## Copyright (C) 2006-2017 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## FIXME: we should skip (or mark as a known bug) the test for ## saving sparse matrices to MAT files when using 64-bit indexing since ## that is not implemented yet. %!function [ret, files] = testls (input) %! ## flag a1 global so as to test the storage of global flags %! global a1; %! %! ## Input or output, so as to be able to exchange between versions %! if (nargin < 1) %! input = 0; %! endif %! %! ## Setup some variable to be saved or compared to loaded variables %! %! ## scalar %! a1 = 1; %! ## matrix %! persistent a2 = hilb (3); %! ## complex scalar %! persistent a3 = 1 + 1i; %! ## complex matrix %! persistent a4 = hilb (3) + 1i*hilb (3); %! ## bool %! persistent a5 = (1 == 1); %! ## bool matrix %! persistent a6 = ([ones(1,5), zeros(1,5)] == ones (1,10)); %! ## range %! persistent a7 = 1:10; %! ## structure %! persistent a8 = struct ("a", a1, "b", a3); %! ## cell array %! persistent a9 = {a1, a3}; %! ## string %! persistent a10 = ["test"; "strings"]; %! ## int8 array %! persistent a11 = int8 (floor (256*rand (2,2))); %! ## int16 array %! persistent a12 = int16 (floor (65536*rand (2,2))); %! ## int32 array %! persistent a13 = int32 (floor (1e6*rand (2,2))); %! ## int64 array %! persistent a14 = int64 (floor (10*rand (2,2))); %! ## uint8 array %! persistent a15 = uint8 (floor (256*rand (2,2))); %! ## uint16 array %! persistent a16 = uint16 (floor (65536*rand (2,2))); %! ## int32 array %! persistent a17 = uint32 (floor (1e6*rand (2,2))); %! ## uint64 array %! persistent a18 = uint64 (floor (10*rand (2,2))); %! ## sparse %! persistent a19 = sprandn (100,100,0.01); %! ## complex sparse %! persistent a20 = sprandn (100,100,0.01) + 1i * sprandn (100,100,0.01); %! %! ret = 0; %! %! files = cellfun (@fullfile, {P_tmpdir}, %! {"text.mat", "binary.mat", "mat5.mat", "mat7.mat"}, %! "UniformOutput", false); %! opts = {"-z -text", "-z -binary", "-z -mat", "-v7"}; %! tols = {2*eps, 0, 0, 0}; %! %! vars = "a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20"; %! if (! input) %! for i = 1:length (files) %! eval (sprintf ("save %s %s %s", opts{i}, files{i}, vars)); %! endfor %! else %! b1 = a1; b2 = a2; b3 = a3; b4 = a4; b5 = a5; %! b6 = a6; b7 = a7; b8 = a8; b9 = a9; %! b10 = a10; b11 = a11; b12 = a12; b13 = a13; b14 = a14; b15 = a15; %! b16 = a16; b17 = a17; b18 = a18; b19 = a19; b20 = a20; %! %! for i = length (files) %! %! clear a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a19 a20; %! %! file = files{i}; %! tol = tols{i}; %! %! load (file); %! %! assert (a1, b1, tol); %! assert (a2, b2, tol); %! assert (a3, b3, tol); %! assert (a4, b4, tol); %! %! if (! isequal (a5, b5)) %! error ("failed: %s boolean", file); %! endif %! %! if (! strcmp (file, "mat5") && ! strcmp (file, "mat7")) %! if (! isequal (a6, b6)) %! error ("failed: %s boolean matrix", file); %! endif %! endif %! %! assert ([a7], [b7], tol); %! %! if (! isequal (a8, b8)) %! error ("failed: %s struct", file); %! endif %! %! if (! isequal (a9, b9)) %! error ("failed: %s cell", file); %! endif %! %! if (! isequal (a10, b10)) %! error ("failed: %s string", file); %! endif %! %! if (! isequal (a11, b11)) %! error ("failed: %s int8", file); %! endif %! %! if (! isequal (a12, b12)) %! error ("failed: %s int16", file); %! endif %! %! if (! isequal (a13, b13)) %! error ("failed: %s int32", file); %! endif %! %! if (! isequal (a14, b14)) %! error ("failed: %s int64", file); %! endif %! %! if (! isequal (a15, b15)) %! error ("failed: %s uint8", file); %! endif %! %! if (! isequal (a16, b16)) %! error ("failed: %s uint16", file); %! endif %! %! if (! isequal (a17, b17)) %! error ("failed: %s uint32", file); %! endif %! %! if (! isequal (a18, b18)) %! error ("failed: %s uint64", file); %! endif %! %! assert (a19, b19, tol); %! assert (a20, b20, tol); %! %! ## Test for global flags %! if (! isglobal ("a1") || isglobal ("a2") || isglobal ("a3") %! || isglobal ("a4") || isglobal ("a5") || isglobal ("a6") %! || isglobal ("a7") || isglobal ("a8") || isglobal ("a9") %! || isglobal ("a10") || isglobal ("a11") || isglobal ("a12") %! || isglobal ("a13") || isglobal ("a14") || isglobal ("a15") %! || isglobal ("a16") || isglobal ("a17") || isglobal ("a18") %! || isglobal ("a19") || isglobal ("a20")) %! error ("failed: %s global test", file); %! endif %! endfor %! endif %! %! ret = 1; %!endfunction %!testif HAVE_ZLIB %! %! [save_status, save_files] = testls (0); %! [load_status, load_files] = testls (1); %! %! for f = [save_files, load_files] %! unlink (f{1}); %! endfor %! %! assert (save_status && load_status); %!testif HAVE_HDF5 %! %! s8 = int8 (fix ((2^8 - 1) * (rand (2, 2) - 0.5))); %! u8 = uint8 (fix ((2^8 - 1) * (rand (2, 2) - 0.5))); %! s16 = int16 (fix ((2^16 - 1) * (rand (2, 2) - 0.5))); %! u16 = uint16 (fix ((2^16 - 1) * (rand (2, 2) - 0.5))); %! s32 = int32 (fix ((2^32 - 1) * (rand (2, 2) - 0.5))); %! u32 = uint32 (fix ((2^32 - 1) * (rand (2, 2) - 0.5))); %! s64 = int64 (fix ((2^64 - 1) * (rand (2, 2) - 0.5))); %! u64 = uint64 (fix ((2^64 - 1) * (rand (2, 2) - 0.5))); %! s8t = s8; u8t = u8; s16t = s16; u16t = u16; s32t = s32; u32t = u32; %! s64t = s64; u64t = u64; %! h5file = tempname (); %! unwind_protect %! eval (sprintf ("save -hdf5 %s %s", h5file, "s8 u8 s16 u16 s32 u32 s64 u64")); %! clear s8 u8 s16 u16 s32 u32 s64 u64; %! load (h5file); %! assert (s8, s8t); %! assert (u8, u8t); %! assert (s16, s16t); %! assert (u16, u16t); %! assert (s32, s32t); %! assert (u32, u32t); %! assert (s64, s64t); %! assert (u64, u64t); %! unwind_protect_cleanup %! unlink (h5file); %! end_unwind_protect %!test %! %! STR.scalar_fld = 1; %! STR.matrix_fld = [1.1,2;3,4]; %! STR.string_fld = "Octave"; %! STR.struct_fld.x = 0; %! STR.struct_fld.y = 1; %! %! struct_dat = fullfile (P_tmpdir, "struct.dat"); %! save (struct_dat, "-struct", "STR"); %! STR = load (struct_dat); %! %! assert (STR.scalar_fld == 1 && ... %! STR.matrix_fld == [1.1,2;3,4] && ... %! STR.string_fld == "Octave" && ... %! STR.struct_fld.x == 0 && ... %! STR.struct_fld.y == 1 ); %! %! %! save ("-binary", struct_dat, %! "-struct", "STR", "matrix_fld", "str*_fld"); %! STR = load (struct_dat); %! %! assert (!isfield (STR,"scalar_fld") && ... %! STR.matrix_fld == [1.1,2;3,4] && ... %! STR.string_fld == "Octave" && ... %! STR.struct_fld.x == 0 && ... %! STR.struct_fld.y == 1); %! %! delete (struct_dat); %!test %! matrix1 = rand (100, 2); %! matrix_ascii = fullfile (P_tmpdir, "matrix.ascii"); %! save ("-ascii", matrix_ascii, "matrix1"); %! matrix2 = load (matrix_ascii); %! assert (matrix1, matrix2, 1e-9); %! %! delete (matrix_ascii); %!error <unable to find file> load ("") %% FIXME: This test is disabled as it writes to stdout and there is no easy %% way to recover output. Need to spawn new octave process and pipe stdout %% somewhere to treat this case. %!#test %! puts ("foo\n"); %!assert (puts (1),-1) %!error <Invalid call to puts> puts () %!error <Invalid call to puts> puts (1, 2) %!assert (sscanf ('123456', '%10c'), '123456') %!assert (sscanf ('123456', '%10s'), '123456') %!assert (sscanf (['ab'; 'cd'], '%s'), 'acbd') %!assert (sscanf ('02:08:30', '%i:%i:%i'), [2; 0]) %!assert (sscanf ('02:08:30', '%d:%d:%d'), [2; 8; 30]) %!assert (sscanf ('0177 08', '%i'), [127; 0; 8]) %!assert (sscanf ('0177 08', '%d'), [177; 8]) ## bug #47741 %!assert (sscanf ('2147483647', '%d'), 2147483647) %!assert (sscanf ('2147483647', '%i'), 2147483647) %!assert (sscanf ('4294967295', '%u'), 4294967295) %!assert (sscanf ('37777777777', '%o'), 4294967295) %!assert (sscanf ('ffffffff', '%x'), 4294967295) ## FIXME: scanf should return int64/uint64 if all conversions are %l[dioux]. ## Until then only test values that are within precision range of a double. %!assert (sscanf ('281474976710655', '%ld'), 281474976710655) %!assert (sscanf ('281474976710655', '%li'), 281474976710655) %!assert (sscanf ('281474976710655', '%lu'), 281474976710655) %!assert (sscanf ('7777777777777777', '%lo'), 281474976710655) %!assert (sscanf ('ffffffffffff', '%lx'), 281474976710655) ## bug #47759 %!assert (sscanf ('999999999999999', '%d'), double (intmax ("int32"))) %!assert (sscanf ('999999999999999', '%i'), double (intmax ("int32"))) %!assert (sscanf ('999999999999999', '%u'), double (intmax ("uint32"))) %!assert (sscanf ('777777777777777', '%o'), double (intmax ("uint32"))) %!assert (sscanf ('fffffffffffffff', '%x'), double (intmax ("uint32"))) ## FIXME: scanf should return int64/uint64 if all conversions are %l[dioux]. ## Until then cast to a double (and lose precision) for comparison. %!assert (sscanf ('9999999999999999999999', '%ld'), double (intmax ("int64"))) %!assert (sscanf ('9999999999999999999999', '%li'), double (intmax ("int64"))) %!assert (sscanf ('9999999999999999999999', '%lu'), double (intmax ("uint64"))) %!assert (sscanf ('7777777777777777777777', '%lo'), double (intmax ("uint64"))) %!assert (sscanf ('ffffffffffffffffffffff', '%lx'), double (intmax ("uint64"))) %!test %! [val, count, msg, pos] = sscanf ("3I2", "%f"); %! assert (val, 3); %! assert (count, 1); %! assert (msg, ""); %! assert (pos, 2); %!test %! [val, count, msg, pos] = sscanf ("3In2", "%f"); %! assert (val, 3); %! assert (count, 1); %! assert (msg, ""); %! assert (pos, 2); %!test %! [val, count, msg, pos] = sscanf ("3Inf2", "%f"); %! assert (val, [3; Inf; 2]); %! assert (count, 3); %! assert (msg, ""); %! assert (pos, 6); %!test %! [a, b, c] = sscanf ("1.2 3 foo", "%f%d%s", "C"); %! [v1, c1, m1] = sscanf ("1 2 3 4 5 6", "%d"); %! [v2, c2, m2] = sscanf ("1 2 bar 3 4 5 6", "%d"); %! %! assert ((a == 1.2 && b == 3 && c == "foo" %! && v1 == [1; 2; 3; 4; 5; 6] && c1 == 6 && ischar (m1) %! && v2 == [1; 2] && c2 == 2 && ischar (m2))); %!error <Invalid call to sscanf> sscanf () %!error sscanf (1, 2) %!error <Invalid call to sscanf> sscanf ("foo", "bar", "C", 1) %!test %! [x, n] = sscanf (" 0.024000 0.200 0.200 2.000 1987 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 5 1 2 2 5 5 8 2 8 12 6 15 18 28 26 47 88 118 162 192 130 88 56 27 23 14 9 6 3 4 1 0 2 3 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.026000 0.250 0.250 2.100 3115 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 3 2 0 5 15 25 44 66 145 179 193 172 104 57 17 11 12 2 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.028000 0.300 0.300 2.200 4929 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 2 2 3 2 3 14 21 49 80 148 184 218 159 124 63 37 13 12 3 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.030000 0.350 0.350 2.300 7051 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 2 0 0 0 1 5 6 14 28 51 88 154 177 208 169 124 65 39 15 5 3 3 2 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.032000 0.400 0.400 2.400 9113 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 2 0 1 0 0 1 1 0 2 3 5 3 17 30 60 117 156 189 209 129 102 64 56 16 11 4 2 2 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.034000 0.450 0.450 2.500 11811 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 5 5 15 21 57 99 149 190 195 159 130 69 41 16 10 2 5 3 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.036000 0.500 0.500 2.600 14985 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 2 6 10 34 60 95 126 177 194 155 99 71 44 17 6 7 2 0 0 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.038000 0.550 0.550 2.700 18391 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 1 1 0 1 2 1 0 0 0 1 0 1 3 6 19 27 52 95 161 154 169 134 94 64 37 19 9 6 0 2 1 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.040000 0.600 0.600 2.800 22933 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 2 0 3 4 7 18 27 47 82 134 163 133 138 101 58 34 26 10 5 2 1 2 1 1 0 2 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.042000 0.650 0.650 2.900 27719 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 2 8 16 37 51 87 128 153 146 123 105 62 35 24 8 3 5 0 1 2 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.044000 0.700 0.700 3.000 32922 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 4 3 5 5 15 35 54 88 132 168 149 105 92 62 30 16 17 4 5 1 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.046000 0.750 0.750 3.100 38973 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 4 3 5 20 37 56 94 110 135 149 124 84 58 36 17 14 7 1 0 2 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.048000 0.800 0.800 3.200 45376 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 2 1 1 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 3 18 34 55 82 104 135 116 99 79 60 51 29 10 4 3 1 1 1 0 0 1 0 0 0 1 0 0 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.050000 0.850 0.850 3.300 52060 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 2 1 3 12 24 40 39 107 121 127 138 100 86 68 44 23 15 7 3 1 1 0 1 1 0 0 2 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.052000 0.900 0.900 3.400 59454 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 2 0 2 1 0 0 0 1 0 0 1 0 0 0 0 0 3 3 6 21 32 68 90 132 111 122 107 73 57 47 24 11 7 4 2 2 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 0 1 1 0 0 1 0 0 0 0 0 3 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.054000 0.950 0.950 3.500 67013 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 2 4 3 7 9 28 31 71 94 115 96 108 78 82 60 38 17 12 11 4 3 1 1 0 2 1 0 0 0 2 1 3 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 1 0 2 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.056000 1.000 1.000 3.600 75475 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 3 0 0 1 1 2 0 1 4 0 1 8 6 7 17 41 56 71 109 113 84 103 72 54 35 22 6 9 1 7 5 4 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 1 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.058000 1.050 1.050 3.700 83558 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 2 0 0 1 0 3 2 3 6 15 27 41 77 73 94 94 92 76 61 56 42 23 13 11 6 2 1 2 0 1 2 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.060000 1.100 1.100 3.800 93087 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 2 2 0 0 0 1 0 1 1 0 0 0 1 1 0 4 0 0 1 2 0 3 1 3 5 13 33 31 65 75 77 96 97 80 59 45 36 32 18 2 5 0 1 0 0 1 0 0 3 0 0 0 0 1 0 0 0 0 0 1 0 0 1 2 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 2 0 0 2 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.062000 1.150 1.150 3.900 102829 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 2 0 2 1 2 0 0 2 4 3 5 11 9 23 43 53 68 65 87 83 77 59 49 34 18 15 9 4 2 3 2 0 0 0 4 0 1 1 0 0 2 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 2 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.064000 1.200 1.200 4.000 113442 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 2 0 0 0 2 0 4 5 11 13 29 39 61 68 61 75 76 74 73 44 37 29 19 6 3 3 2 0 1 2 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 2 0 2 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.066000 1.250 1.250 4.100 126668 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 2 3 0 2 1 2 0 1 0 3 0 0 0 1 0 1 1 3 0 0 1 3 0 2 4 3 12 12 30 48 56 66 77 78 71 82 52 31 32 19 20 16 8 2 1 3 0 0 2 1 0 1 0 1 0 0 0 1 3 1 0 1 0 1 1 1 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 2 0 3 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.068000 1.300 1.300 4.200 138042 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 3 0 0 1 0 0 1 2 0 0 0 3 0 1 0 0 3 0 1 0 1 1 3 1 4 7 11 14 27 36 44 68 72 70 71 45 44 46 29 13 16 11 5 2 0 3 0 0 0 0 1 1 2 0 0 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 2 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.070000 1.350 1.350 4.300 152335 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 2 0 0 0 0 0 2 0 1 7 14 19 34 35 54 72 68 72 68 58 48 36 37 27 25 17 1 4 1 0 0 0 1 2 2 0 0 1 1 1 2 1 0 3 1 0 1 0 2 1 0 0 0 1 1 1 2 0 0 0 0 1 1 0 1 1 0 2 1 1 1 1 0 0 0 1 1 0 0 2 0 0 1 0 0 0 1 1 0 2 1 1 0 0 0 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.072000 1.400 1.400 4.400 166280 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 3 4 2 2 0 0 0 0 0 1 1 3 1 0 3 2 2 1 2 2 0 2 2 1 8 14 26 24 29 47 47 68 65 63 55 42 41 26 29 17 8 4 4 1 0 1 2 0 0 0 1 1 2 0 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 2 1 2 1 0 0 0 0 0 1 1 2 0 2 2 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.074000 1.450 1.450 4.500 179484 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 1 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 2 0 0 1 1 2 1 0 1 1 2 2 0 1 5 6 10 20 43 50 57 62 53 62 66 45 42 33 27 26 23 14 3 0 2 0 1 0 0 1 1 0 0 2 1 1 0 0 3 0 1 1 1 0 1 1 0 1 0 1 2 1 0 0 1 2 0 2 0 0 0 0 1 1 3 1 0 0 2 1 1 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 1 1 0 2 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.076000 1.500 1.500 4.600 197657 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 2 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 2 1 1 0 1 1 0 1 1 3 2 1 1 2 1 0 1 0 0 0 0 0 1 1 1 0 5 3 7 12 24 38 32 41 48 54 66 71 49 46 31 38 25 15 8 6 6 5 0 1 3 0 1 1 1 1 1 0 1 2 0 1 0 0 0 1 0 2 1 2 0 0 0 0 1 3 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 4 1 1 1 0 3 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0.078000 1.550 1.550 4.700 212054 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 1 0 0 1 0 1 1 0 1 3 1 0 0 1 2 0 0 0 1 0 0 0 0 0 2 1 2 1 1 1 0 0 1 5 1 1 2 3 5 7 9 11 22 31 37 48 50 52 54 57 37 38 38 33 24 11 19 11 3 1 2 0 3 3 2 1 0 1 3 0 1 1 1 1 1 2 0 0 0 1 1 2 0 1 1 3 0 1 1 0 0 1 0 2 0 1 0 0 1 3 0 2 0 1 0 1 2 0 1 1 1 1 1 0 3 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0.080000 1.600 1.600 4.800 231971 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 1 0 1 1 1 0 1 0 0 1 0 1 3 0 0 0 1 0 0 0 1 1 1 0 0 4 1 1 0 2 0 1 1 1 2 0 0 0 1 0 1 2 1 2 3 2 0 1 0 4 3 1 1 1 1 3 1 0 0 0 2 1 0 2 7 17 13 29 47 58 59 52 38 51 51 38 34 35 21 14 13 4 1 0 1 1 1 0 2 2 4 1 0 1 1 4 0 0 0 2 0 2 2 2 0 0 1 3 2 1 1 2 2 2 2 1 0 3 0 2 1 2 1 2 2 0 0 1 1 0 2 0 2 2 0 1 0 2 2 3 1 2 3 1 1 0 1 0 2 0 1 2 1 2 0 2 1 0 0 3 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0.082000 1.650 1.650 4.900 252503 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 2 2 2 1 0 2 0 1 0 1 1 2 2 0 3 0 0 4 1 0 0 3 0 0 1 2 0 1 1 1 3 0 1 0 2 9 11 25 27 34 53 41 49 43 47 36 31 38 22 30 22 18 9 5 9 2 2 1 2 2 3 1 4 1 1 0 0 1 2 0 2 1 0 0 1 3 2 2 1 0 0 0 1 2 1 0 0 0 2 1 1 0 2 0 0 1 0 0 2 1 3 1 1 1 0 2 1 1 0 2 1 0 1 3 0 0 0 0 2 0 0 1 0 0 0 0 0 1 2 1 1 1 0 2 1 0 0 0 2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0.084000 1.700 1.700 5.000 267889 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 3 0 1 1 1 0 1 2 1 0 2 0 2 4 0 1 0 0 0 1 1 0 1 3 2 0 2 0 4 0 0 2 0 1 4 2 4 3 3 6 10 14 28 37 54 36 40 52 40 50 46 40 32 26 29 12 18 5 2 0 2 4 1 2 1 0 2 1 2 2 1 0 1 0 2 1 2 4 1 1 5 1 0 2 0 1 2 3 2 2 1 2 1 0 2 1 2 1 1 4 1 2 1 4 0 2 2 0 0 3 1 0 2 0 0 1 1 1 0 0 2 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.086000 1.750 1.750 5.100 290294 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 2 1 0 1 0 1 0 0 2 2 0 1 2 2 0 2 0 2 0 1 0 0 1 1 1 3 1 1 1 1 3 4 1 1 2 2 2 1 0 3 0 0 0 2 4 5 6 16 18 20 31 40 54 55 46 41 52 35 27 21 28 27 20 15 8 6 7 1 0 0 3 0 0 2 2 0 3 1 3 1 1 2 0 0 1 2 1 3 2 0 1 2 1 3 1 1 1 1 1 2 0 2 1 0 1 1 1 3 1 1 2 0 1 0 1 0 2 1 1 0 0 1 2 0 3 1 1 0 0 0 1 3 1 1 1 0 0 1 2 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 2 1 0 2 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0.088000 1.800 1.800 5.200 312476 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 1 0 1 0 0 0 0 0 0 2 1 0 0 1 0 0 1 1 1 1 4 2 0 1 0 0 3 0 0 0 0 0 1 1 4 0 0 0 0 1 1 2 1 0 3 0 0 2 2 4 0 3 1 6 9 10 13 21 24 32 43 33 41 43 49 50 32 26 31 27 12 16 17 3 3 3 5 0 3 0 2 1 3 3 2 1 2 3 1 2 1 1 1 2 0 1 1 0 2 0 3 0 0 2 0 0 0 0 1 0 1 1 3 3 0 1 1 1 1 1 1 2 2 2 0 3 1 0 2 2 2 0 0 0 0 3 1 2 5 1 1 2 0 0 3 3 0 2 2 0 0 0 0 1 2 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.090000 1.850 1.850 5.300 337348 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 2 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1 3 2 0 0 2 2 3 3 2 2 2 0 0 1 1 3 1 3 0 0 0 0 0 0 1 2 1 2 1 2 2 2 0 1 1 0 4 2 2 7 6 15 22 21 39 37 50 31 51 30 33 34 34 26 21 14 13 10 9 4 3 3 4 2 2 0 1 2 3 3 0 1 3 2 5 3 2 2 4 0 2 3 0 4 2 1 2 2 2 4 2 1 3 1 3 2 1 3 1 2 4 1 1 1 1 2 4 1 3 3 3 1 0 4 1 0 1 1 1 1 2 3 0 3 0 0 4 1 1 1 0 2 2 2 1 2 2 0 1 1 0 0 0 2 0 1 0 1 0 0 1 0 0 0 1 3 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0.092000 1.900 1.900 5.400 357303 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 3 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 2 2 0 0 2 2 1 1 1 1 1 1 0 1 0 0 1 1 1 3 1 1 1 1 1 0 1 4 0 1 1 1 3 0 1 1 2 2 2 0 2 3 2 2 2 2 1 2 1 3 8 22 14 32 36 46 39 42 39 29 36 38 26 24 26 18 16 19 10 9 3 6 5 0 3 2 1 1 1 2 0 2 1 1 0 1 1 3 1 0 2 4 2 2 1 4 1 2 2 1 1 0 1 2 0 2 2 2 4 2 1 1 0 2 1 3 1 2 3 4 2 3 2 3 0 1 2 1 0 0 0 4 1 1 1 2 1 3 1 0 5 1 0 0 0 0 0 0 1 0 2 0 1 2 1 0 1 0 0 0 0 0 1 1 0 1 0 1 4 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0.094000 1.950 1.950 5.500 383138 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 2 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 2 1 1 1 1 2 1 0 2 0 1 0 3 2 1 3 0 1 3 1 1 0 5 0 1 0 1 2 0 0 1 1 2 0 0 6 1 0 3 2 2 3 4 5 0 4 2 1 5 4 11 15 22 27 28 57 38 38 40 38 39 38 27 26 30 18 14 10 10 4 4 4 3 3 2 2 2 2 1 1 1 1 2 2 3 4 1 2 3 1 2 1 2 2 2 1 3 2 1 5 0 1 1 1 3 2 2 2 1 3 1 1 0 3 2 2 0 0 2 2 2 0 0 0 2 0 1 3 1 2 3 2 1 1 0 1 1 1 0 3 2 2 1 0 0 1 3 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 3 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0.096000 2.000 2.000 5.600 409868 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 1 0 0 2 0 2 0 0 0 0 1 0 0 2 1 2 2 2 1 2 1 1 1 1 1 2 0 0 1 1 0 1 0 2 1 2 0 2 0 3 1 2 1 3 1 5 0 2 2 1 2 4 1 2 0 3 1 4 7 5 9 13 22 19 31 27 28 41 34 39 37 22 23 21 22 17 23 15 8 9 3 8 0 3 1 2 2 2 3 1 0 4 2 4 2 2 2 2 4 2 1 1 0 2 0 3 0 3 2 2 1 2 2 1 4 1 2 2 1 1 5 2 1 2 1 2 2 1 0 2 4 3 2 1 2 2 3 2 3 1 2 1 1 1 1 2 1 1 2 2 1 2 3 2 1 1 0 2 2 4 0 1 1 1 1 1 0 0 1 1 3 0 0 0 0 0 1 0 0 2 0 1 2 0 1 1 1 0 1 0 1 0 0 0.098000 2.050 2.050 5.700 439102 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 2 0 0 1 1 1 1 2 0 1 1 0 0 0 0 1 1 1 0 4 0 0 0 2 1 1 0 3 4 0 1 2 2 1 0 3 0 3 2 0 0 2 0 1 0 0 1 0 1 3 1 3 5 0 2 2 3 5 2 2 2 0 3 2 3 6 5 16 21 19 23 28 29 35 42 42 44 39 33 23 30 18 25 24 15 13 5 4 2 2 0 3 3 0 0 1 3 0 1 1 3 2 4 3 4 2 1 1 1 3 1 0 0 2 2 4 2 2 1 4 2 4 2 2 2 1 2 2 1 2 0 4 2 2 3 1 2 1 1 2 2 1 2 4 2 1 4 1 2 2 2 2 0 2 0 3 0 1 0 2 1 0 4 2 1 3 2 1 0 2 1 1 1 1 0 1 1 2 1 1 1 2 0 1 0 2 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0.100000 2.100 2.100 5.800 467340 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 0 1 2 0 0 0 0 0 1 0 2 0 0 2 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 2 0 2 2 4 1 0 1 1 2 3 4 1 4 1 5 1 2 1 0 2 2 2 1 5 4 1 5 4 0 1 2 4 2 2 0 2 1 2 5 4 1 1 1 2 5 7 9 16 23 31 15 22 36 36 44 42 29 31 28 28 18 35 12 10 13 8 4 3 2 2 5 1 2 3 3 1 3 3 5 2 0 3 4 1 2 2 3 0 0 5 2 3 6 2 1 2 5 3 4 3 1 1 1 1 2 2 4 0 2 3 1 2 1 2 4 5 4 3 5 2 1 2 0 5 0 2 2 4 1 0 4 1 0 2 1 2 0 0 1 3 2 4 3 0 2 3 3 3 4 2 2 0 0 0 0 1 1 0 3 2 0 1 2 0 4 2 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0.102000 2.150 2.150 5.900 497495 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 2 1 0 0 0 0 1 0 1 0 0 0 0 1 2 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 2 0 0 1 0 0 0 1 0 2 2 1 0 0 0 2 0 2 1 1 1 6 3 2 0 3 2 2 2 1 1 3 4 1 0 1 2 4 2 3 3 1 1 1 1 3 3 1 4 1 3 4 3 2 3 1 2 2 5 11 11 14 26 27 28 28 28 36 39 42 29 33 24 20 29 18 13 17 13 6 10 4 3 3 6 1 0 1 0 2 1 3 2 3 1 2 3 1 2 1 2 0 2 2 3 1 3 1 1 2 4 4 1 4 3 2 2 3 5 5 3 0 2 5 3 5 1 4 1 1 3 4 2 2 2 2 1 3 0 1 1 2 2 4 2 1 3 2 0 1 2 1 0 2 3 1 2 0 0 0 2 0 0 1 3 0 0 1 2 0 3 1 0 3 1 2 2 1 1 2 0 0 0 0 2 0 0 1 0 0 0 0 0 0.104000 2.200 2.200 6.000 529288 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 3 0 2 0 2 0 0 3 2 2 0 4 0 3 2 2 1 3 1 7 3 1 1 0 4 3 2 1 0 0 3 2 3 5 2 1 4 1 5 1 0 3 2 3 0 1 2 4 7 3 7 8 12 15 20 24 34 39 34 35 27 36 34 23 22 26 15 24 12 12 14 5 3 0 7 1 1 3 5 1 2 2 2 4 3 1 2 5 2 2 3 1 1 4 2 1 3 0 4 5 4 6 4 5 3 3 3 3 1 1 5 0 6 1 2 4 2 3 2 1 3 2 0 0 0 1 3 3 0 1 4 0 3 2 3 0 3 3 0 2 3 4 3 1 1 1 2 5 3 1 2 1 1 2 4 1 0 2 4 1 3 0 0 3 0 1 3 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0.106000 2.250 2.250 6.100 560628 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 2 0 0 0 0 2 0 3 1 1 0 0 2 2 2 0 5 2 1 1 1 1 3 1 2 3 0 1 0 0 0 0 1 0 2 2 1 2 1 0 4 3 2 1 2 1 0 4 2 2 0 2 1 1 2 3 1 2 1 2 4 4 11 12 17 19 19 29 30 24 30 35 51 32 36 34 31 19 22 17 11 19 11 7 6 6 3 4 0 3 3 2 0 2 2 2 3 1 5 3 2 3 5 1 0 2 2 5 4 2 3 2 0 1 6 1 2 2 2 2 1 1 2 2 1 4 3 2 2 1 2 5 2 0 2 0 2 5 4 5 2 1 3 6 1 3 4 4 0 0 6 0 2 6 1 2 2 2 0 1 3 1 3 4 2 1 4 2 1 2 3 3 0 3 1 0 2 0 2 1 0 2 1 2 0 0 1 1 0 2 0 0 0 0 0 0 0 0.108000 2.300 2.300 6.200 593293 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 2 2 1 0 0 2 0 1 0 1 0 0 1 2 2 1 0 0 1 0 2 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 2 2 1 0 1 1 0 1 5 0 2 4 1 0 1 4 2 1 3 2 2 3 2 3 2 0 0 3 4 3 1 3 2 2 0 3 0 2 4 0 3 2 5 1 2 1 4 6 1 2 4 0 3 6 1 7 6 4 5 4 10 16 24 22 20 40 37 44 34 29 21 28 36 36 27 23 24 14 10 4 5 2 5 3 6 2 3 3 1 4 2 1 5 1 3 5 3 2 1 2 2 6 2 3 1 1 0 5 3 3 3 4 5 2 2 3 3 5 5 1 6 2 3 2 6 0 5 2 4 3 5 1 2 2 5 1 2 3 1 2 2 2 4 2 5 5 2 2 2 5 0 1 2 5 2 3 2 3 1 1 2 4 0 2 1 4 2 1 1 1 0 1 2 0 0 1 3 1 0 2 1 1 3 3 2 0 0 0 1 2 0 0 0 0 0.110000 2.350 2.350 6.300 636559 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 1 1 2 0 0 1 0 0 0 0 0 0 0 1 2 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 2 0 1 0 1 0 1 0 0 1 1 3 0 1 2 2 0 2 1 1 1 1 0 1 0 1 3 0 3 2 3 4 3 3 4 3 3 2 6 3 1 1 1 2 4 2 3 1 5 1 3 1 4 5 3 3 2 1 3 7 4 3 10 19 17 19 23 27 28 33 39 36 23 23 32 32 16 19 35 23 12 11 12 8 4 5 7 1 2 2 1 2 3 5 4 2 3 2 6 4 4 2 4 1 2 2 1 2 3 0 4 2 1 2 6 2 2 1 3 3 1 6 4 8 5 2 3 5 2 3 0 3 2 3 1 2 2 3 4 3 8 6 2 1 4 6 3 1 2 0 2 0 2 5 0 3 3 3 3 1 3 3 2 5 4 2 1 4 2 2 4 4 1 3 2 5 2 3 1 2 0 4 0 1 0 6 3 1 2 0 2 0 1 0 0 0 0 0.112000 2.400 2.400 6.400 670484 3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2 0 1 1 1 3 0 0 0 2 1 3 0 1 1 1 0 1 1 1 0 0 1 2 0 1 3 1 5 2 3 0 4 0 2 0 0 1 2 1 0 1 0 0 1 0 2 2 3 2 3 2 2 2 3 4 4 2 3 5 3 3 2 3 3 4 2 4 0 3 2 4 4 1 3 1 3 4 2 2 5 2 8 6 12 17 14 22 27 26 29 39 30 24 36 22 22 20 9 19 15 5 12 16 4 7 5 7 5 5 1 4 5 5 4 4 1 4 4 3 3 3 4 2 2 4 2 4 4 4 4 0 2 3 2 1 4 3 6 1 3 3 3 4 5 4 2 2 2 5 3 0 2 5 4 2 5 3 5 1 1 3 1 1 3 6 6 2 3 2 0 3 2 4 3 4 1 2 2 6 2 0 3 2 2 5 3 3 5 2 1 0 3 1 1 2 2 0 1 1 3 2 3 2 1 1 1 1 3 2 1 0 0 0 0 0 0 0 0.114000 2.450 2.450 6.500 711783 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 1 0 2 1 2 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 2 0 1 1 0 0 0 2 1 1 1 1 1 2 1 2 3 3 1 1 1 2 3 1 3 2 2 1 0 1 1 4 4 4 1 0 4 0 0 1 1 2 1 3 2 0 3 4 1 1 1 1 3 2 0 1 3 2 1 2 1 0 3 3 2 5 4 2 5 3 4 2 2 5 3 3 3 3 5 5 8 7 14 12 28 22 24 23 36 33 26 32 27 26 18 30 24 15 13 19 15 17 6 5 7 5 4 3 5 3 1 4 4 9 5 3 1 4 0 0 6 2 5 3 3 3 1 2 3 2 4 1 5 5 3 8 2 1 1 4 1 7 5 6 6 4 4 3 2 6 3 3 3 3 1 3 4 5 4 3 4 3 1 2 3 1 2 1 2 2 6 5 2 2 2 4 2 2 0 2 3 3 2 7 4 4 1 4 2 0 3 1 1 2 1 2 3 1 3 2 2 4 3 1 4 0 0 4 2 2 2 1 0 0 0 0 0.116000 2.500 2.500 6.600 745364 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 2 1 1 2 1 1 1 0 1 0 2 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 2 3 0 1 4 4 0 4 0 1 0 1 3 3 0 2 1 2 3 2 1 1 1 2 0 4 0 0 4 5 2 5 4 1 3 5 5 4 0 4 4 2 3 2 3 5 2 2 4 2 3 4 2 3 3 3 3 3 2 4 12 10 13 14 19 22 23 24 36 19 32 25 25 36 24 18 20 21 14 18 13 8 6 9 2 9 5 2 5 3 4 4 3 3 0 4 3 2 5 3 4 2 2 6 3 4 0 2 4 1 3 4 7 4 5 3 2 4 5 5 3 4 4 4 2 3 2 4 4 2 1 5 7 1 5 2 4 1 5 5 3 4 4 3 2 4 2 4 0 6 2 3 4 1 2 2 2 4 1 4 2 2 2 5 6 5 1 4 4 2 3 3 3 1 4 3 4 2 6 2 5 3 2 2 1 3 2 2 5 1 1 0 0 1 0 0 0 0.118000 2.550 2.550 6.700 791846 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 4 1 2 3 0 3 1 0 1 1 1 0 3 1 2 1 1 1 0 0 1 1 1 3 1 3 2 3 1 2 2 1 3 2 4 1 4 0 2 4 1 4 3 2 1 1 2 1 3 2 3 3 2 1 1 5 3 3 3 3 2 3 4 3 5 3 1 1 2 2 3 5 1 2 1 1 4 4 6 9 6 6 13 17 21 20 24 22 25 20 29 23 28 30 26 27 18 20 17 16 17 12 10 8 5 6 6 6 4 3 1 2 4 6 9 2 2 3 5 7 6 2 3 8 5 4 5 6 4 6 5 3 5 3 2 5 3 2 8 3 5 4 5 3 5 4 3 4 8 4 3 8 3 3 3 1 1 2 2 5 4 7 3 2 3 3 2 2 3 6 3 2 2 1 1 5 2 5 6 3 5 3 4 1 3 1 2 1 0 4 1 4 2 2 2 3 1 1 1 1 3 2 0 1 6 1 1 0 2 1 0 1 0 0 0 0 0.120000 2.600 2.600 6.800 833394 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 1 1 1 2 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 2 1 0 0 0 0 0 2 2 0 3 1 0 0 2 1 1 1 1 0 1 2 1 5 0 1 0 2 2 1 2 0 4 2 1 4 3 4 2 2 1 2 1 5 2 3 1 3 0 2 2 2 2 3 4 0 4 2 3 3 4 5 2 2 6 3 4 5 5 5 3 4 6 5 1 3 0 5 4 5 1 3 2 2 6 18 13 17 27 27 21 28 28 24 26 27 29 23 21 16 17 19 22 14 11 9 5 14 7 7 6 4 4 12 3 6 4 5 4 6 4 2 0 1 8 1 6 8 5 2 3 4 5 6 4 2 5 8 3 1 1 6 3 7 8 4 1 6 5 2 8 11 5 6 5 6 2 4 5 1 2 7 2 2 5 5 6 3 3 2 3 8 5 1 9 3 3 2 3 6 3 5 3 2 4 6 3 1 3 5 4 4 4 6 3 3 5 0 2 2 5 1 3 2 2 1 4 2 0 2 2 2 2 4 1 2 1 2 1 1 0 0.122000 2.650 2.650 6.900 876007 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 1 1 1 2 2 1 0 0 1 0 0 0 1 1 0 0 0 2 0 0 4 1 0 2 1 2 0 1 2 0 1 3 2 1 0 1 1 0 1 2 1 0 2 3 3 5 3 3 3 0 1 4 0 1 5 3 4 3 1 2 2 2 4 1 3 3 3 2 3 2 3 2 1 4 4 2 2 5 5 3 4 1 2 1 2 4 2 4 7 2 4 4 2 7 3 5 7 5 3 6 8 10 10 18 21 22 24 14 25 27 29 31 22 25 24 21 27 20 19 22 19 14 13 14 10 5 7 3 4 5 5 3 1 4 3 8 4 5 4 0 3 4 3 4 1 7 6 1 1 3 4 4 3 4 3 6 4 3 4 2 4 4 3 5 6 5 1 1 6 2 6 6 3 5 5 3 2 6 5 4 3 4 6 4 3 5 5 6 5 6 2 4 2 1 2 2 4 2 7 6 2 1 3 1 5 2 1 2 4 3 3 3 2 5 2 4 1 4 3 2 2 5 5 1 1 3 3 2 2 2 2 1 0 0 0 0 0 0.124000 2.700 2.700 7.000 925764 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 1 3 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 2 0 0 3 2 0 1 2 1 1 2 0 2 1 2 2 0 0 2 3 2 3 2 2 3 2 2 4 0 2 0 5 1 3 2 3 1 2 3 2 0 6 4 3 6 2 5 0 5 2 1 4 4 5 7 4 2 3 5 2 0 2 5 2 4 7 4 4 4 8 5 3 1 7 2 2 1 5 5 5 14 19 16 22 18 30 29 25 36 23 23 22 25 25 27 26 23 14 20 16 16 10 6 6 6 4 2 6 6 6 6 6 4 6 1 0 3 4 4 5 2 4 3 2 4 4 5 5 5 6 10 6 3 6 8 5 5 8 7 4 6 4 3 4 8 5 5 7 4 6 3 5 8 4 3 4 4 3 4 3 1 3 3 7 2 4 8 3 6 4 3 3 2 5 4 4 3 7 4 5 4 4 3 4 7 2 3 3 4 3 0 2 2 4 3 4 2 4 2 2 6 4 4 6 6 1 5 1 1 2 1 0 0 0 0 0 0.126000 2.750 2.750 7.100 969560 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 0 1 2 0 2 0 2 2 0 1 1 1 0 0 1 0 1 1 1 1 2 0 1 2 2 1 2 0 0 1 0 1 0 2 1 0 1 0 1 1 2 0 3 0 3 4 3 1 3 2 0 4 0 1 2 0 3 1 1 2 3 2 2 2 5 1 7 1 5 1 5 4 2 0 0 1 2 1 3 2 3 3 5 4 10 10 2 5 11 4 1 2 1 7 3 5 4 4 1 5 10 8 7 9 9 20 20 21 33 21 28 20 27 32 21 29 22 20 24 15 13 27 14 13 15 10 9 3 11 6 7 5 3 6 8 5 4 4 1 3 3 5 2 7 3 6 6 1 6 4 6 5 3 4 2 4 3 3 9 4 5 4 4 5 2 3 10 4 3 2 6 10 6 3 6 5 5 5 4 8 8 5 4 3 6 4 4 2 4 4 4 5 7 4 4 4 4 5 2 2 3 4 5 2 1 3 2 6 2 7 7 1 6 4 4 6 5 5 4 0 2 2 3 2 7 5 0 4 1 1 4 6 1 0 3 2 0 0 1 0.128000 2.800 2.800 7.200 1022713 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 2 1 0 0 4 0 0 1 2 3 1 1 0 1 0 1 0 3 1 1 1 2 2 1 1 1 3 1 0 2 4 2 1 2 1 2 0 3 1 3 2 1 5 2 1 3 1 2 1 5 3 2 1 2 5 3 8 2 3 2 5 5 4 3 6 4 4 4 3 2 3 8 4 3 4 5 4 5 4 7 6 5 3 3 3 5 2 9 10 7 9 12 11 13 17 15 22 19 33 24 28 30 26 21 24 22 27 20 26 16 10 10 9 20 10 7 4 5 7 7 2 7 5 3 5 1 6 1 5 7 5 6 3 1 5 1 1 3 4 8 6 3 9 5 5 3 6 7 4 6 7 6 4 2 4 6 2 3 6 5 6 7 6 4 4 9 6 8 6 9 7 1 2 6 2 7 5 4 4 4 4 5 5 4 4 3 6 3 5 3 6 4 3 6 6 2 5 2 8 4 5 3 6 5 4 5 8 4 3 5 6 5 5 2 8 1 2 2 5 4 1 3 0 0 0 0 0 0.130000 2.850 2.850 7.300 1081669 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 5 0 0 2 2 0 0 1 0 0 0 1 1 0 2 0 2 2 2 1 0 1 0 2 2 3 1 1 0 2 0 1 0 2 1 1 2 2 0 1 4 3 0 2 1 1 0 2 5 2 1 0 1 3 2 5 2 1 2 5 2 3 4 3 6 6 6 4 6 6 3 1 3 2 3 4 7 5 2 9 7 4 1 4 4 3 2 2 2 7 4 8 4 7 4 6 8 5 1 8 6 10 18 21 18 15 21 24 21 26 22 30 28 27 23 22 21 17 25 20 17 13 17 9 12 7 8 5 4 4 5 5 2 4 1 1 2 5 7 6 4 9 7 7 5 5 5 5 5 2 4 5 3 6 8 2 4 9 4 10 5 1 4 5 5 5 10 3 2 8 6 5 7 3 13 3 3 6 5 1 4 5 9 5 2 7 4 5 6 3 5 6 5 4 5 9 6 4 3 4 4 4 5 8 5 5 0 3 6 3 4 3 7 5 6 4 3 3 6 8 4 1 3 1 2 7 3 4 6 6 1 3 4 1 0 1 0 0 0.132000 2.900 2.900 7.400 1131887 3 0 0 0 0 0 0 0 0 0 1 0 0 1 2 1 1 0 0 0 1 2 2 1 1 0 2 1 1 0 1 1 1 0 2 2 3 1 0 1 0 1 0 2 0 2 0 1 4 0 1 2 2 0 0 0 2 3 0 1 2 3 0 1 2 3 5 6 2 2 3 1 4 4 8 4 3 3 3 7 2 2 5 7 4 1 2 4 8 1 5 2 7 3 4 2 9 6 5 5 6 2 2 3 6 2 5 6 7 7 2 8 3 3 3 3 6 6 5 3 10 15 15 17 19 13 29 20 23 22 34 28 28 33 20 20 22 17 22 18 15 19 14 11 9 13 6 6 13 4 2 9 8 8 7 6 5 6 4 4 9 6 2 8 9 7 2 6 3 7 3 6 3 7 4 4 5 4 5 6 4 7 5 4 10 2 6 6 8 3 6 6 9 5 8 8 7 6 4 8 5 7 5 5 7 3 5 5 5 10 7 3 8 7 5 7 2 4 4 6 4 10 7 6 4 4 4 4 3 2 4 2 6 5 9 7 3 2 6 2 5 1 5 6 2 2 1 9 2 5 2 5 1 0 0 0 1 1 0.134000 2.950 2.950 7.500 1185706 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 2 1 0 1 1 0 0 0 0 0 1 0 1 1 2 0 1 0 1 2 0 0 0 1 1 0 1 1 1 0 2 2 0 1 3 3 2 3 0 0 2 2 3 2 1 1 3 0 0 1 1 3 4 3 1 1 9 1 4 0 1 3 4 1 3 2 6 4 7 7 3 2 8 5 2 5 2 4 6 7 3 7 7 8 4 7 2 4 7 7 9 9 2 5 5 8 3 5 7 3 6 10 6 10 15 10 13 14 29 21 23 37 26 20 28 20 16 24 25 16 19 21 20 20 17 11 10 12 8 7 7 5 5 5 4 5 6 7 3 6 5 7 5 11 9 6 8 11 6 4 6 8 8 7 7 7 4 5 4 8 5 4 3 4 8 10 7 9 4 7 6 8 9 7 3 5 7 7 6 2 6 4 7 3 9 8 12 7 6 6 6 4 5 7 2 4 7 3 2 4 4 7 1 4 5 0 4 6 3 10 8 5 4 3 4 5 7 5 7 5 7 3 5 2 5 6 4 5 2 4 1 6 6 2 4 2 0 0 1 0 0.136000 3.000 3.000 7.600 1238426 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 4 0 2 0 2 2 0 1 1 1 0 2 1 1 2 1 0 1 1 0 3 1 0 0 1 0 1 0 0 2 1 1 0 4 0 2 6 3 3 4 0 3 1 2 4 0 4 4 0 1 5 2 2 5 1 3 4 3 3 5 2 4 4 6 2 5 3 4 5 4 5 6 7 5 6 2 8 3 4 7 2 4 4 3 7 6 5 1 4 8 3 7 10 3 3 6 1 5 3 8 11 5 7 15 11 15 17 21 23 21 24 28 16 21 29 15 22 27 28 20 13 19 13 7 15 10 11 9 6 8 8 4 7 5 4 6 5 10 6 7 8 9 3 5 5 9 5 9 4 4 4 3 5 7 4 10 6 8 4 9 8 4 6 7 9 11 6 8 3 5 8 12 3 6 9 7 11 9 6 7 4 7 7 7 2 5 4 5 0 2 9 5 5 5 10 7 5 6 3 9 4 4 13 2 7 5 7 4 7 2 0 4 5 4 4 6 8 1 2 5 6 4 7 3 11 4 3 3 5 5 4 4 3 1 4 2 2 1 1 0 0.138000 3.050 3.050 7.700 1299809 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 2 1 1 0 0 1 0 0 2 0 1 2 0 0 3 0 0 1 3 1 2 0 2 0 1 1 2 1 2 3 2 1 2 5 2 2 2 4 3 2 5 3 0 3 2 4 5 4 3 0 5 4 1 4 3 8 6 4 4 7 4 5 4 3 6 5 6 10 3 6 6 2 6 3 4 4 3 6 7 6 8 3 4 7 5 4 9 2 4 8 5 9 8 3 7 5 7 7 13 7 11 15 17 16 18 18 18 20 17 26 25 19 20 26 31 22 18 20 18 14 11 16 4 7 11 10 8 9 9 6 3 8 8 7 5 6 10 3 5 6 6 3 12 7 8 8 2 10 4 13 9 9 12 4 5 9 7 9 5 7 4 8 9 6 7 8 10 8 7 5 7 11 6 4 4 4 6 4 9 4 5 9 10 7 4 12 7 4 9 5 10 10 6 8 4 7 2 4 7 2 6 8 4 11 3 3 9 7 6 7 3 8 7 4 8 5 3 7 4 5 5 7 4 6 7 5 5 3 5 2 5 4 1 2 0 0 1 0.140000 3.100 3.100 7.800 1361810 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 1 0 0 0 1 1 1 2 0 0 0 0 1 0 2 2 2 1 0 0 3 3 0 2 0 6 2 3 1 0 3 3 1 2 2 5 3 5 3 3 2 2 7 3 2 2 3 4 2 3 4 4 1 3 7 4 5 4 2 3 5 4 2 1 3 6 3 4 3 8 7 6 5 3 5 11 5 5 3 3 7 3 6 4 4 2 4 4 4 1 5 5 9 6 6 9 3 10 8 6 8 3 10 8 16 16 13 18 23 29 25 19 19 20 27 19 22 27 24 21 15 18 11 20 21 17 12 5 18 6 12 7 9 11 7 12 11 4 8 8 4 8 7 7 2 6 4 4 9 6 9 3 4 7 7 7 4 10 4 11 5 8 8 8 5 4 4 8 6 4 9 8 12 12 8 5 8 3 10 8 7 5 3 5 6 8 5 6 10 7 2 11 2 5 5 6 8 10 2 7 5 5 14 2 7 3 9 3 5 2 8 2 3 4 4 7 9 5 4 7 6 7 5 6 3 5 4 7 6 7 7 9 3 0 2 1 1 1 0 0 0.142000 3.150 3.150 7.900 1429499 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 2 1 1 0 0 0 3 0 2 2 1 0 3 0 2 1 3 0 0 1 1 3 1 2 4 1 5 3 5 1 0 7 1 3 2 3 2 2 2 3 0 0 1 3 6 3 2 2 4 4 4 6 4 3 6 4 10 3 7 2 5 4 7 4 5 8 4 7 4 1 7 11 5 2 10 2 11 3 7 8 10 9 6 3 5 3 6 3 10 11 5 5 9 7 10 8 9 5 15 11 9 18 18 15 24 17 23 17 19 25 17 24 18 37 16 17 21 17 14 20 17 15 15 9 4 11 7 3 8 10 8 8 6 8 3 4 5 8 4 6 3 9 9 6 2 10 4 4 3 8 4 9 1 7 5 9 7 10 9 10 4 6 5 8 6 6 10 10 6 5 7 6 6 10 5 7 8 8 8 7 7 11 12 8 3 10 6 9 13 11 4 6 7 6 3 10 5 8 4 7 7 7 5 8 4 9 5 5 7 6 6 7 11 11 7 8 5 3 5 7 7 10 3 3 6 5 7 9 2 3 7 1 0 0 0 0 1 0.144000 3.200 3.200 8.000 1493946 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 3 0 0 1 2 1 1 1 4 1 0 1 0 1 2 1 3 1 1 1 1 2 1 1 3 2 6 0 4 0 1 4 2 4 5 2 1 3 0 2 2 4 2 3 2 4 3 5 4 4 4 1 5 1 3 4 5 6 4 7 2 8 8 8 5 3 6 0 7 3 2 2 5 7 5 7 5 8 9 6 4 3 6 8 6 10 2 5 6 3 3 6 6 6 6 17 5 10 6 6 11 11 13 12 21 26 18 24 21 24 23 30 18 22 20 24 19 13 17 25 22 17 15 8 13 7 10 8 9 6 7 9 8 7 8 9 7 7 6 12 5 9 9 12 9 12 6 9 7 10 7 7 4 9 7 4 2 7 4 5 8 8 9 7 6 7 5 9 4 8 13 6 5 4 7 9 6 7 7 9 4 4 5 8 10 9 10 6 6 7 9 12 11 8 8 9 11 5 8 7 5 5 8 5 9 10 5 5 11 11 6 8 8 4 8 5 5 5 4 7 4 5 6 5 6 6 7 7 4 2 6 3 2 1 0 0 0 0 0 0.146000 3.250 3.250 8.100 1562352 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 1 2 1 1 0 0 1 0 1 2 0 0 0 3 1 2 0 4 4 2 0 0 2 3 2 0 1 3 3 4 0 1 4 3 3 4 5 5 4 2 1 4 2 5 3 2 7 6 3 5 6 5 5 5 1 5 2 7 4 8 7 4 6 5 7 5 3 5 8 1 6 4 6 8 7 6 7 6 3 4 6 3 5 8 4 10 3 3 11 6 5 3 9 6 4 3 17 9 11 11 24 13 15 14 25 26 26 21 17 32 32 22 18 25 29 29 27 24 21 12 23 14 12 11 9 17 7 9 11 3 7 6 5 5 12 3 6 8 7 4 7 11 10 8 9 5 8 2 10 9 8 10 10 7 7 4 7 5 7 7 9 10 8 7 7 16 6 8 10 5 6 6 12 12 7 11 11 8 9 7 8 12 10 7 8 7 11 8 9 7 7 4 9 4 7 14 9 8 8 13 9 8 7 13 5 9 5 7 4 9 5 7 8 7 8 7 3 10 9 3 4 4 4 5 2 6 6 3 5 10 4 4 2 3 0 1 0 0 0.148000 3.300 3.300 8.200 1630559 3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 4 2 1 1 1 2 1 2 0 2 1 5 0 1 1 4 0 2 1 4 5 3 0 1 1 1 2 1 3 3 3 1 1 1 1 1 3 4 6 6 8 8 4 3 2 7 2 2 1 7 4 4 5 1 10 6 4 4 4 3 3 3 6 11 6 4 5 4 8 5 5 9 4 5 5 7 6 4 13 12 3 6 7 5 2 7 9 7 8 8 4 7 6 4 10 6 8 9 9 9 13 15 17 23 25 13 16 24 22 26 21 27 24 24 21 21 21 15 17 22 25 21 22 17 14 11 8 12 5 9 7 8 5 11 10 6 6 5 9 13 10 9 8 8 8 6 4 9 10 9 9 7 8 7 5 7 8 14 13 5 14 5 12 11 8 9 6 5 4 9 13 7 10 13 11 11 8 5 9 10 8 7 6 7 13 3 13 8 7 13 17 5 8 5 10 7 12 7 6 6 9 7 8 8 11 8 11 9 11 11 8 5 6 10 4 9 3 10 8 7 10 8 7 8 10 10 7 4 11 5 7 8 2 4 3 0 0 1 0 1 0.150000 3.350 3.350 8.300 1707576 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 1 2 1 0 2 0 2 3 1 3 2 2 2 2 0 2 1 4 3 2 2 3 1 2 1 0 2 2 4 2 5 3 3 5 2 8 4 5 4 2 3 6 7 6 1 0 7 4 7 7 6 5 4 3 4 6 6 7 6 2 7 4 4 2 5 5 6 9 3 3 3 6 6 5 3 5 7 8 8 6 8 8 6 8 3 9 6 6 8 8 6 4 8 6 6 10 4 11 6 11 15 23 16 8 17 20 21 19 24 15 14 19 21 30 25 21 15 19 16 18 21 21 15 14 12 16 8 10 12 7 10 9 8 10 10 7 9 8 10 12 6 6 9 11 6 5 9 12 6 7 12 7 5 6 8 5 9 4 11 9 8 8 10 7 6 10 7 11 13 7 4 13 11 8 11 9 16 6 12 11 10 10 19 2 9 11 8 7 8 8 6 13 6 10 12 12 9 12 9 9 8 7 7 9 6 12 8 4 9 9 8 5 7 8 9 5 12 5 7 5 9 10 9 10 3 6 6 8 7 11 3 5 5 4 2 0 0 0 0 0.152000 3.400 3.400 8.400 1777231 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 3 1 0 3 4 2 3 3 3 3 3 2 1 1 1 1 3 3 0 1 8 0 0 5 3 7 4 4 4 4 4 3 5 2 2 5 3 6 1 7 6 1 2 2 5 2 1 6 6 8 7 7 5 10 4 1 6 9 3 4 5 3 5 8 4 9 8 11 8 3 2 7 7 9 10 9 10 8 6 8 6 8 7 10 8 7 3 8 4 10 7 6 8 9 6 5 16 9 19 24 23 17 23 24 22 30 21 15 23 27 20 20 20 18 20 23 18 17 15 19 17 18 13 9 4 4 7 12 7 10 4 8 6 10 5 6 13 2 3 8 7 8 7 3 11 8 7 9 7 19 7 8 9 6 14 8 8 11 10 11 13 14 10 16 8 9 13 8 9 9 12 7 12 11 6 9 15 5 9 9 9 11 11 13 6 10 6 4 12 9 9 12 11 8 6 9 16 10 10 10 8 10 10 6 7 4 1 15 6 8 4 9 13 11 8 10 11 9 8 3 3 6 6 7 9 4 6 8 7 4 2 1 2 2 1 0 0.154000 3.450 3.450 8.500 1849489 6 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 1 2 2 0 1 4 1 1 0 1 0 2 1 0 0 1 1 1 1 6 3 6 1 3 1 3 3 0 6 0 4 2 7 4 6 4 4 3 7 4 5 7 5 5 2 3 9 9 2 5 5 3 9 4 2 7 6 2 8 2 5 7 12 6 5 4 5 10 4 12 10 6 4 14 7 9 10 11 7 7 7 7 3 9 7 4 3 8 7 5 7 9 6 8 9 6 8 8 12 6 5 11 12 13 11 13 21 26 19 23 25 18 23 22 23 23 18 27 20 15 20 25 24 19 18 12 14 13 15 8 15 10 11 7 9 13 11 12 13 11 11 7 11 13 6 5 10 6 6 10 8 14 5 14 11 8 5 9 7 10 10 8 7 15 13 3 13 12 18 15 7 10 9 10 8 15 9 6 8 9 10 10 9 5 7 7 5 10 11 13 12 12 12 10 6 17 10 11 9 4 8 7 6 6 9 12 8 16 18 7 5 10 8 12 10 15 6 13 11 6 10 16 10 11 16 8 9 5 11 10 14 11 5 2 5 7 3 1 1 0 1 0 0.156000 3.500 3.500 8.600 1920727 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 2 1 2 0 3 0 1 1 0 1 0 3 0 4 4 1 3 1 2 3 3 4 3 1 2 3 9 5 2 3 7 3 3 6 5 2 6 1 4 3 2 3 6 5 1 8 3 8 5 3 7 6 13 11 9 5 8 7 7 5 8 7 4 8 6 4 10 4 6 5 6 9 9 12 6 7 10 9 9 8 8 3 8 9 8 8 2 12 11 13 8 13 7 8 6 6 9 6 8 16 13 14 16 16 22 20 21 21 17 20 18 19 22 20 11 20 22 21 14 19 15 23 17 15 12 14 19 16 10 11 14 11 9 11 9 12 8 16 14 9 6 18 10 11 7 10 11 17 10 13 8 10 12 9 12 7 7 10 10 11 11 9 8 8 14 10 10 9 14 9 14 13 9 19 16 17 4 11 8 12 11 10 21 6 10 8 9 12 9 7 7 12 7 16 14 10 13 6 13 8 9 10 6 10 8 7 10 4 6 11 19 12 6 7 5 8 11 10 12 13 9 6 10 5 11 11 4 14 10 7 2 6 5 1 2 5 1 1 0 0 0.158000 3.550 3.550 8.700 1999833 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 2 2 2 1 2 3 0 1 0 1 3 2 0 0 3 2 3 2 5 7 0 3 4 1 10 7 7 4 5 2 3 4 3 8 3 6 4 4 4 8 2 3 4 5 5 7 1 6 7 8 1 6 8 1 4 4 11 9 4 7 11 9 10 5 6 8 4 3 9 7 9 11 5 5 8 8 4 8 7 8 11 9 12 6 4 13 4 12 10 6 9 11 10 11 10 11 11 11 14 15 14 23 18 17 29 16 26 23 15 19 14 18 19 22 31 13 21 20 12 16 15 14 18 17 15 8 12 14 13 10 10 10 10 10 13 11 6 8 11 8 14 8 10 11 11 8 10 13 5 14 7 12 9 10 10 12 15 18 8 6 9 9 12 8 9 20 14 16 10 11 14 5 5 13 6 11 9 11 15 6 9 13 11 7 8 7 10 8 16 12 11 8 10 14 11 17 11 8 16 13 9 10 5 10 17 13 14 16 8 10 9 11 5 10 9 10 12 8 11 12 11 8 6 7 12 15 13 12 7 13 5 0 3 2 0 0 0 0 0.160000 3.600 3.600 8.800 2073149 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 2 1 2 2 1 0 2 2 1 0 3 6 4 5 5 2 2 2 5 5 3 6 4 6 4 5 2 4 4 3 2 4 6 3 3 6 5 7 4 5 7 5 3 5 6 13 5 3 10 5 9 7 4 5 6 5 10 6 5 5 6 6 4 14 7 6 11 6 9 10 9 8 5 3 8 10 10 6 6 8 9 5 6 14 7 11 10 9 9 11 13 8 4 5 10 12 6 16 8 8 7 19 20 23 10 16 27 25 23 19 26 21 16 20 21 24 18 25 8 11 13 16 18 13 22 18 9 16 4 16 10 12 13 9 7 9 8 17 11 10 13 10 14 4 9 12 16 8 9 16 17 13 11 14 8 8 13 9 11 15 10 11 14 8 6 4 9 11 18 9 9 8 9 15 11 11 11 9 6 13 13 10 7 8 10 15 14 9 7 4 10 12 17 10 14 13 10 10 12 20 9 7 6 11 15 11 10 8 9 6 10 13 17 6 8 9 6 13 13 16 10 15 5 11 14 11 12 6 5 12 9 4 9 2 4 1 1 0 0 0 0.162000 3.650 3.650 8.900 2156456 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 2 0 1 1 3 2 3 4 3 3 2 1 3 6 5 2 3 4 4 3 6 2 3 4 4 5 5 3 4 1 4 5 9 3 3 4 3 3 8 5 6 12 2 10 3 4 6 8 9 8 8 2 2 7 5 8 2 8 9 7 2 6 8 6 5 8 2 7 5 6 13 5 6 8 11 6 10 5 6 3 8 10 11 10 10 14 10 11 8 11 8 12 6 12 5 15 12 13 10 13 13 18 23 12 21 18 21 23 20 30 20 23 26 24 24 21 21 29 19 21 16 23 20 13 19 13 16 11 15 13 13 11 8 11 14 14 13 4 16 15 18 13 9 19 8 11 6 9 14 8 13 12 13 10 13 10 14 11 13 11 8 10 13 11 11 14 11 8 14 11 10 9 14 12 14 18 8 12 7 13 12 10 14 14 8 12 17 11 13 9 12 12 15 7 9 13 17 11 11 11 12 17 12 11 16 15 8 9 12 7 13 15 11 16 7 10 7 14 5 18 10 10 8 8 6 6 13 14 6 9 11 9 9 3 5 1 1 3 0 0 0.164000 3.700 3.700 9.000 2234753 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 1 4 2 1 3 1 1 3 2 3 3 1 3 6 2 4 4 3 3 3 6 5 2 6 4 1 3 3 7 1 4 4 6 12 4 5 2 6 4 9 3 1 8 11 5 2 7 6 3 8 4 7 3 8 3 9 6 7 8 9 2 7 6 9 6 15 6 9 5 9 4 9 17 15 10 2 10 6 8 12 12 11 12 10 9 7 11 8 7 5 11 10 14 16 7 7 7 13 15 10 16 17 21 19 14 18 24 19 27 27 24 20 22 24 21 20 14 24 17 17 18 32 15 12 13 15 12 8 14 11 11 19 11 14 15 18 10 5 12 11 11 9 15 9 7 9 16 12 9 12 10 15 9 18 7 11 12 14 7 20 8 10 13 14 11 6 6 9 11 8 10 16 8 17 13 17 9 16 11 10 9 13 20 17 14 12 10 13 11 9 9 17 20 10 16 8 14 13 14 18 15 15 8 10 12 11 22 12 13 9 12 9 11 14 19 12 12 8 8 12 11 19 11 11 12 15 11 15 13 9 9 10 9 4 9 4 2 1 0 0 0.166000 3.750 3.750 9.100 2327990 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 1 2 2 1 1 0 0 3 1 4 2 6 4 2 4 3 2 5 5 2 3 1 3 1 2 10 2 7 4 3 4 3 3 4 3 10 6 9 6 3 8 5 5 3 4 4 6 8 4 4 7 5 5 11 14 5 3 6 8 8 7 10 11 7 17 7 11 10 8 7 8 12 13 11 12 6 13 9 7 7 6 5 8 13 10 10 14 11 11 8 12 15 14 9 13 10 9 18 13 18 12 23 14 17 24 15 23 25 31 19 17 29 19 19 19 26 25 19 17 22 19 19 19 11 11 12 22 21 8 10 18 10 14 19 17 13 14 10 6 9 10 15 11 5 13 13 11 11 17 16 9 7 14 7 19 6 10 13 7 12 18 14 7 12 15 13 13 9 13 13 13 12 12 14 12 19 10 16 18 18 12 8 10 10 9 7 14 9 11 13 12 8 15 12 11 10 12 11 17 15 19 14 14 12 7 7 12 11 15 16 12 11 12 10 19 19 12 14 12 15 11 20 13 7 18 9 15 19 16 11 5 9 8 6 2 4 0 2 0 1 0.168000 3.800 3.800 9.200 2406866 3 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 2 3 2 3 1 2 1 2 2 5 2 1 2 3 2 2 2 5 3 5 3 3 1 3 6 8 6 1 3 9 6 3 6 10 5 5 7 4 5 7 12 9 5 7 5 6 6 8 3 5 4 7 8 5 6 5 8 13 4 10 2 10 9 7 7 16 9 10 9 13 8 12 9 13 15 9 15 9 10 11 6 6 6 7 7 6 8 15 9 8 9 6 12 12 11 14 12 11 13 8 17 18 18 11 14 19 14 25 21 15 10 15 19 27 23 22 24 17 19 18 12 16 22 21 25 9 25 15 19 15 21 15 8 11 13 12 10 12 7 13 11 17 11 13 10 16 19 14 23 11 8 12 13 10 9 17 4 14 10 7 10 17 14 11 11 20 18 13 8 12 6 8 13 12 23 15 14 15 16 9 14 9 13 14 17 11 17 11 10 15 17 11 6 12 12 14 15 17 12 16 16 8 17 15 15 10 15 11 10 15 12 13 9 12 9 12 15 12 6 18 7 15 14 12 21 18 11 10 18 11 19 11 7 11 3 2 5 4 0 1 1 0.170000 3.850 3.850 9.300 2508471 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 2 1 4 3 3 1 2 7 0 3 2 2 2 2 5 2 3 2 3 3 4 3 7 3 5 3 4 4 6 2 3 10 4 11 3 13 7 7 5 6 3 8 10 6 6 4 10 11 4 12 7 8 9 7 7 8 4 6 7 9 9 5 9 11 5 14 9 10 7 9 8 8 5 6 11 13 14 10 10 10 10 8 9 9 9 9 14 14 13 11 8 18 9 10 9 16 12 13 15 13 10 17 16 20 14 22 20 26 29 29 27 24 20 37 21 24 13 18 13 28 24 22 25 21 13 14 15 9 11 18 8 16 17 16 13 12 16 11 11 17 15 11 15 10 11 12 13 12 12 20 15 14 15 16 12 17 15 15 12 10 14 14 17 15 19 15 13 13 11 12 16 14 17 16 8 16 12 8 14 13 13 10 10 9 12 11 19 20 13 11 4 15 11 14 11 20 18 18 13 20 12 20 21 15 15 12 13 18 18 11 16 9 14 9 18 11 10 11 20 11 13 17 13 13 12 14 16 10 12 12 23 12 11 12 8 8 1 0 1 2 0 0.172000 3.900 3.900 9.400 2591210 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 4 4 3 2 1 3 3 2 3 0 3 6 1 3 1 5 5 4 3 9 9 0 4 7 5 3 5 5 8 7 3 3 5 5 8 5 11 10 8 10 3 6 6 6 7 7 8 8 12 9 6 10 8 7 10 8 8 10 4 6 12 20 4 6 11 7 9 10 7 5 10 6 12 11 7 13 13 16 12 6 8 14 13 9 7 5 14 17 17 10 12 11 6 13 11 17 3 23 13 21 12 21 28 11 23 30 28 23 24 26 26 17 21 15 27 23 33 16 22 25 11 20 22 23 21 20 7 21 13 16 12 16 16 13 18 18 9 13 16 15 9 20 13 19 15 8 9 11 14 13 10 9 10 16 15 14 17 15 19 16 12 14 12 14 14 16 19 19 4 24 8 12 15 16 11 15 14 20 14 13 13 14 16 19 14 13 19 14 18 23 15 15 4 14 17 14 8 10 15 20 11 15 19 12 9 13 12 11 16 12 16 13 14 16 13 16 16 19 19 12 11 10 19 15 15 14 12 5 11 18 17 10 13 12 9 6 2 0 0 1 0 0.174000 3.950 3.950 9.500 2675515 3 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 2 1 2 3 3 1 3 1 3 7 5 3 6 4 3 9 4 5 2 5 3 3 3 6 9 5 5 2 6 8 5 8 4 8 5 6 5 6 4 6 3 7 11 6 9 9 3 6 6 7 6 8 7 9 12 18 6 9 8 11 11 8 14 15 15 11 15 13 9 19 10 15 14 9 4 18 5 8 10 8 10 13 9 12 11 8 8 12 6 15 8 9 9 18 7 17 21 9 13 18 14 21 24 18 22 17 26 15 21 23 25 19 26 23 20 27 17 27 20 26 15 22 15 19 15 16 24 12 15 24 13 13 17 11 7 10 21 15 15 16 13 20 22 12 16 12 16 15 14 18 11 12 14 14 24 10 13 16 19 8 11 18 19 15 15 23 16 16 11 12 18 11 13 14 16 10 14 13 18 12 15 15 14 8 11 17 12 22 13 12 14 15 10 11 15 19 15 12 17 8 21 23 13 19 11 8 12 15 11 14 15 19 15 10 17 9 16 14 18 14 16 14 14 23 14 14 13 16 12 14 15 14 9 14 7 5 2 3 1 1 1 0.176000 4.000 4.000 9.600 2779386 5 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 0 1 3 0 6 2 6 3 1 5 0 4 1 6 5 1 6 3 6 5 6 2 5 4 5 3 9 8 5 7 5 8 4 12 8 12 6 8 5 7 5 7 10 5 5 6 7 9 7 10 7 10 10 8 12 10 6 13 10 11 12 11 10 10 16 9 6 12 9 11 17 10 11 10 14 11 16 7 11 13 12 10 17 14 11 13 12 10 13 16 16 17 17 15 14 11 8 15 13 27 22 14 19 17 22 22 27 18 28 19 27 32 24 33 21 17 23 12 27 25 20 20 17 22 14 15 22 21 14 9 16 12 19 16 17 16 16 20 14 18 15 14 18 10 12 9 16 12 12 10 13 19 12 12 15 14 15 22 12 11 15 18 19 18 10 6 11 14 10 23 17 14 16 19 10 10 16 19 17 23 16 18 19 18 16 12 14 14 14 13 11 10 24 21 22 26 18 18 18 14 17 5 13 17 11 13 16 14 18 16 9 15 15 18 16 14 21 13 22 17 9 8 16 17 16 16 19 7 20 19 18 16 10 6 10 6 3 5 1 0 0 2 0.178000 4.050 4.050 9.700 2869617 3 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 1 4 1 3 2 2 1 2 3 2 2 4 4 7 5 6 5 3 6 6 5 7 8 1 5 2 3 5 5 8 10 7 6 10 9 6 8 9 7 8 10 15 4 10 5 8 8 6 11 8 8 11 7 5 8 14 5 11 7 13 10 9 7 8 9 14 12 10 9 11 6 14 15 14 13 11 9 18 18 10 14 14 10 12 16 12 9 8 14 15 6 11 11 12 10 14 12 11 18 13 13 27 16 23 23 20 21 32 20 18 25 22 24 32 25 34 19 23 21 25 22 25 19 23 19 21 16 19 16 18 9 18 6 13 12 13 18 12 8 19 14 14 11 16 13 15 14 21 11 14 14 13 11 20 14 14 26 10 22 16 18 15 20 24 18 19 19 16 14 14 14 21 13 19 18 20 13 17 11 17 14 22 17 15 15 20 8 21 15 16 16 23 17 13 19 21 20 12 15 18 15 19 15 18 17 20 15 13 14 24 18 15 15 14 18 20 19 17 19 20 21 21 15 19 19 17 11 16 16 11 23 10 20 13 10 5 10 2 3 1 1 0 0.180000 4.100 4.100 9.800 2975040 3 0 0 0 0 0 0 0 0 0 1 0 0 1 2 2 4 4 2 4 4 1 2 5 0 3 3 5 2 5 5 4 9 2 7 8 4 8 3 11 6 10 4 7 8 6 6 5 8 8 7 11 4 4 11 12 7 11 7 10 11 7 11 11 10 9 7 13 12 18 8 14 12 14 12 8 8 16 10 10 14 16 10 6 8 15 15 15 22 13 19 18 12 6 11 10 7 12 12 24 15 17 9 17 21 10 17 18 14 14 14 9 22 11 23 17 15 23 32 20 11 12 20 15 23 30 20 25 19 26 29 19 27 23 15 19 11 30 16 21 24 18 18 14 8 6 25 13 21 13 13 19 13 21 25 23 18 14 14 13 20 12 14 8 10 25 14 15 20 15 10 15 16 21 8 15 20 21 20 13 16 15 20 11 18 17 17 9 12 24 19 13 18 17 20 14 15 20 10 23 19 25 8 7 13 14 11 15 18 13 10 12 10 17 11 24 16 17 11 12 13 16 20 14 26 12 17 13 14 16 16 6 20 16 23 22 11 17 16 14 25 19 17 21 22 19 13 19 16 18 10 11 7 4 6 0 0 2 0.182000 4.150 4.150 9.900 3083416 6 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 1 3 4 3 5 6 2 1 4 2 3 5 6 6 7 2 4 1 11 7 5 2 6 6 8 9 8 12 7 11 9 6 12 7 8 9 6 6 8 11 6 6 8 11 8 11 12 11 13 9 10 7 9 6 11 9 13 12 12 8 14 15 8 9 8 8 11 22 16 6 11 16 15 9 13 12 12 13 11 15 9 9 16 14 14 12 21 12 12 12 16 19 10 15 18 8 16 14 16 16 21 30 22 9 25 19 19 26 23 33 25 22 21 19 21 20 20 21 20 26 20 29 27 25 25 21 20 25 21 21 18 14 19 15 6 20 18 16 20 16 13 13 15 15 15 15 22 16 15 15 11 21 19 11 19 13 14 15 17 21 12 18 12 22 18 21 18 13 23 15 18 9 21 11 14 23 18 21 25 18 22 15 21 23 15 15 16 19 21 18 19 21 17 13 24 23 22 19 14 20 22 15 14 14 20 20 23 13 18 15 18 20 20 24 9 12 17 21 21 12 16 17 16 16 21 26 19 15 21 22 24 15 11 13 13 6 8 1 4 0 1 0 0.184000 4.200 4.200 10.00 3174897 3 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 0 5 4 3 3 0 7 3 2 4 2 8 6 4 5 9 3 8 6 4 2 7 6 8 7 9 3 5 8 5 9 7 7 6 11 14 7 12 9 9 5 15 12 14 15 12 9 11 5 8 13 11 12 10 9 17 12 11 8 17 11 19 11 15 9 11 7 15 14 16 16 16 7 12 10 14 13 13 16 16 11 15 13 14 12 16 11 12 13 17 10 13 19 11 17 11 13 14 13 10 19 19 23 24 22 24 24 31 19 23 22 28 21 25 29 17 23 17 21 30 22 19 25 27 27 22 23 23 17 25 17 20 17 12 23 21 9 17 20 16 19 16 17 20 9 16 11 22 16 15 12 15 17 23 24 16 16 18 26 11 16 20 18 10 14 17 26 19 17 15 17 19 12 21 20 24 17 27 13 16 18 19 23 14 19 14 10 11 18 19 6 15 21 23 25 17 17 18 21 27 20 17 18 20 25 22 20 18 22 18 17 15 24 16 15 22 18 22 14 20 20 22 18 22 25 19 26 12 19 19 13 12 16 19 14 9 7 5 4 2 0 2 0.186000 4.250 4.250 10.10 3283256 3 0 0 0 0 0 0 0 0 1 0 0 1 1 4 1 5 2 5 5 3 4 6 3 2 4 7 8 2 6 6 4 10 7 8 7 5 4 4 9 8 18 10 7 6 6 13 12 10 13 10 7 15 4 7 10 13 12 8 8 13 5 14 6 9 14 9 10 16 12 13 11 8 12 11 10 13 9 11 15 17 23 18 13 10 12 11 12 14 14 14 10 12 12 16 13 15 13 13 14 18 10 13 17 14 14 14 12 12 8 18 14 23 20 16 19 16 16 16 27 18 21 19 20 19 37 22 21 22 28 24 26 18 21 28 21 22 21 21 22 16 15 13 22 22 27 22 11 13 20 10 17 16 19 20 30 18 25 8 7 22 18 17 14 23 16 17 11 16 24 19 18 22 15 15 23 16 13 15 22 14 8 12 18 13 15 22 17 15 15 17 27 21 19 21 24 17 10 12 14 19 17 22 18 19 17 28 19 15 14 16 28 17 20 15 11 22 18 19 16 21 17 24 19 22 22 20 10 20 18 18 18 21 18 23 18 32 26 21 21 22 20 22 16 17 20 22 21 17 13 13 11 9 5 0 1 1 1 0.188000 4.300 4.300 10.20 3396610 5 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 2 5 5 4 3 3 5 1 2 3 6 9 3 3 3 8 7 2 9 5 7 5 11 8 9 7 6 9 6 4 5 8 6 10 9 14 10 15 6 7 13 15 10 13 7 15 10 10 11 14 14 6 7 17 13 19 3 13 9 6 13 13 14 10 11 12 16 17 13 10 15 15 19 19 11 11 15 11 13 9 13 20 8 18 14 18 23 23 23 15 19 20 14 11 7 18 16 15 22 28 20 24 22 25 17 20 39 24 26 25 25 33 25 25 25 33 15 29 18 29 18 12 18 23 17 24 28 22 16 20 33 23 18 23 26 23 15 24 16 16 16 16 17 15 15 16 14 11 9 23 17 13 13 18 12 19 20 30 20 20 15 21 19 16 18 20 23 19 15 10 11 15 19 13 22 22 18 19 16 19 23 16 10 25 23 20 21 20 31 19 19 18 15 22 18 14 13 21 18 19 22 19 16 17 21 14 20 26 18 26 22 19 26 19 20 22 15 13 24 23 15 21 21 21 27 18 22 19 24 17 22 16 18 23 10 12 3 5 3 3 0 0 0.190000 4.350 4.350 10.30 3502025 3 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 2 3 4 4 3 4 5 10 7 6 6 4 5 12 10 6 6 13 10 6 7 14 9 6 13 10 12 16 3 9 9 7 5 6 13 11 10 8 11 19 12 14 13 16 13 14 9 12 14 13 14 16 10 14 7 16 18 16 9 15 11 20 15 10 14 14 11 14 17 10 6 16 10 15 12 17 17 20 15 7 12 23 15 8 13 12 8 16 15 20 16 16 20 14 11 20 24 23 20 16 18 27 25 31 27 27 25 21 31 27 20 23 24 32 17 21 34 27 17 19 19 25 30 27 21 24 28 30 19 26 21 14 16 21 23 27 8 17 21 17 11 23 15 22 15 18 10 17 20 23 18 18 17 19 22 15 22 21 19 23 18 18 26 17 18 26 18 24 15 22 23 23 19 23 25 23 24 26 10 21 16 32 23 18 19 24 21 28 26 22 19 19 14 30 21 24 23 22 21 13 27 20 27 24 15 20 22 22 13 25 14 19 32 21 18 18 23 22 22 14 18 20 24 14 19 20 18 17 24 29 27 20 12 18 17 11 9 2 3 2 1 0 0.192000 4.400 4.400 10.40 3593938 3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2 3 4 7 8 1 5 6 8 3 7 5 4 9 8 8 7 7 9 7 9 9 15 5 7 8 15 14 9 9 13 8 8 15 10 7 10 9 10 14 7 8 18 16 17 11 14 15 13 8 15 8 15 18 16 16 22 12 8 16 13 10 13 13 10 21 11 10 16 16 13 13 17 16 20 23 13 22 16 14 15 22 19 22 15 22 24 16 16 16 19 12 15 16 17 20 18 19 26 17 23 18 32 20 28 36 22 25 30 29 31 36 24 24 21 29 24 32 29 30 23 34 19 33 34 25 20 31 27 24 16 14 21 20 13 24 17 28 13 24 16 26 15 26 21 11 15 20 13 20 18 25 23 18 24 26 22 16 22 14 13 16 20 24 25 19 29 20 15 20 16 25 26 21 22 17 24 22 21 17 23 23 15 19 30 23 17 21 19 18 21 26 14 29 24 20 33 19 15 20 23 28 19 23 25 15 19 17 31 23 18 29 26 25 14 24 25 18 19 19 24 35 31 23 23 14 15 19 11 20 19 24 17 16 9 10 12 3 2 2 0 1 0.194000 4.450 4.450 10.50 3712573 7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 5 3 5 4 3 11 3 10 4 6 7 8 5 5 5 8 9 12 7 7 11 8 6 7 9 10 13 10 6 13 9 9 9 11 14 14 12 13 10 6 13 13 15 12 13 19 8 14 13 16 11 13 14 15 9 15 16 13 16 17 17 17 23 18 16 19 10 13 18 16 10 9 21 11 22 14 20 14 18 13 15 12 13 14 16 14 15 20 29 17 14 18 8 15 21 15 19 15 22 20 17 15 23 26 16 26 24 23 23 23 23 30 24 29 28 26 35 33 31 22 23 22 20 37 22 27 33 26 27 26 17 16 18 27 22 21 24 18 18 18 17 15 18 14 19 24 22 15 20 21 15 19 25 15 16 26 19 22 29 20 16 13 15 16 32 24 23 13 33 17 22 18 18 23 24 22 21 20 26 21 16 22 18 18 16 15 26 26 17 22 21 13 25 24 13 23 18 18 25 32 20 24 21 17 19 24 24 23 33 19 19 21 32 18 22 23 19 23 32 18 31 22 25 23 23 31 29 21 16 20 20 15 22 14 12 5 10 9 2 1 0 1 0.196000 4.500 4.500 10.60 3829518 3 0 0 0 0 0 0 0 0 0 0 1 2 2 1 6 2 6 5 9 3 5 6 8 6 3 8 10 7 11 9 4 8 9 5 11 10 13 9 16 13 10 9 5 12 9 15 10 13 9 12 18 14 19 9 13 14 12 13 21 17 17 18 16 13 12 16 14 18 10 15 15 16 11 15 22 17 19 17 11 12 26 12 17 19 18 21 20 27 17 18 19 21 14 19 16 12 16 21 20 18 8 17 17 13 13 18 15 19 15 19 20 28 21 29 27 27 34 24 26 31 25 24 16 17 23 23 30 28 18 28 32 28 37 18 26 18 16 33 21 31 21 20 22 19 20 25 18 18 20 11 17 20 22 23 14 14 17 18 20 25 20 19 20 22 19 16 33 25 21 21 24 18 16 22 29 22 16 27 26 28 21 20 22 17 25 23 20 23 18 16 19 26 22 21 22 23 15 20 19 17 23 19 20 15 22 18 22 26 23 23 31 17 29 18 13 15 19 18 24 22 28 22 17 23 24 26 21 23 25 24 29 26 18 41 24 29 22 27 23 28 16 30 24 18 23 19 17 18 21 17 14 8 2 5 2 0 0 0.198000 4.550 4.550 10.70 3950740 3 0 0 0 0 0 0 0 0 0 1 1 1 2 1 3 7 5 6 7 7 7 4 5 6 4 1 8 9 10 9 8 10 8 12 6 10 8 10 8 11 9 10 15 7 11 8 13 11 13 15 15 17 12 10 8 17 12 9 14 12 14 11 14 21 14 15 20 18 16 8 15 22 24 14 10 18 14 15 16 12 10 16 21 16 25 17 20 17 17 20 15 24 15 17 22 25 17 13 22 18 20 19 11 21 22 21 16 21 24 16 22 17 21 17 24 22 24 35 27 24 28 24 32 37 34 25 24 29 37 37 25 28 21 23 24 22 21 20 25 22 32 19 21 22 24 20 21 20 22 18 27 17 14 20 22 22 22 14 19 20 20 21 23 22 14 20 21 23 20 18 23 20 25 31 24 18 22 14 23 22 21 23 27 27 20 21 18 22 23 24 23 21 18 22 17 22 21 35 15 24 24 12 27 30 27 28 22 31 24 24 19 27 24 28 23 25 26 35 27 22 29 21 24 18 19 26 33 29 31 23 25 19 24 26 21 10 23 24 26 28 20 27 26 17 29 22 18 14 22 8 10 11 4 4 1 2 0 0.200000 4.600 4.600 10.80 4068161 5 0 0 0 0 0 0 0 0 0 0 1 1 0 1 5 5 2 9 3 11 6 9 8 7 7 8 3 3 13 10 8 7 5 8 13 8 7 14 12 10 7 15 13 13 11 12 12 14 12 13 12 10 15 11 14 7 16 15 8 15 13 15 13 18 13 17 21 15 12 13 13 17 18 18 18 16 19 20 17 14 17 24 13 12 18 19 19 13 21 18 26 21 23 16 14 18 19 13 33 13 19 20 14 20 23 14 26 19 22 21 21 16 27 30 25 28 22 32 21 30 27 31 21 30 22 27 27 31 27 21 17 38 41 17 21 20 19 30 24 27 20 20 21 30 20 19 19 31 25 24 13 21 23 19 24 33 24 17 20 17 12 25 23 18 24 11 24 25 22 33 20 11 22 31 21 20 26 27 21 26 24 14 23 23 20 20 26 28 10 20 27 24 22 17 27 28 20 23 23 33 20 24 26 32 33 29 21 25 24 17 18 19 27 26 20 24 26 24 24 26 21 19 24 21 36 32 18 33 33 20 23 25 33 19 27 25 27 24 27 21 21 23 28 18 27 25 19 24 15 17 12 15 7 2 1 0 0 ", "%f ", Inf); %! assert (rows (x) == n); %% Note use fprintf so output not sent to stdout %!test %! nm = tempname (); %! fid1 = fopen (nm,"w"); %! x = fprintf (fid1, "%s: %d\n", "test", 1); %! fclose (fid1); %! fid2 = fopen (nm,"r"); %! str = fscanf (fid2,"%s"); %! fclose (fid2); %! unlink (nm); %! assert (x, 8); %! assert (str, "test:1"); %!error printf (1) %!error <Invalid call to printf> printf () %!test %! [s, msg, status] = sprintf ("%s: %d\n", "test", 1); %! assert (s == "test: 1\n" && ischar (msg) && status == 8); %!assert (sprintf ("%-+6.2f", Inf), "+Inf ") %!assert (sprintf ("%-6.2f", Inf), "Inf ") %!assert (sprintf ("%-+6.2f", nan), "+NaN ") # lowercase nan is part of test %!assert (sprintf ("%-6.2f", nan), "NaN ") %!assert (sprintf ("%-+6.2f", NA), "+NA ") %!assert (sprintf ("%-6.2f", NA), "NA ") %!error <Invalid call to sprintf> sprintf () %!error <format TEMPLATE must be a string> sprintf (1) %!test %! arch_list = {"native"; "ieee-le"; "ieee-be"}; %! warning ("off", "Octave:fopen-mode"); %! status = 1; %! %! for i = 1:3 %! arch = arch_list{i}; %! for j = 1:4 %! if (j == 1) %! mode_list = {"w"; "r"; "a"}; %! elseif (j == 2) %! mode_list = {"w+"; "r+"; "a+"}; %! elseif (j == 3) %! mode_list = {"W"; "R"; "A"}; %! elseif (j == 4) %! mode_list = {"W+"; "R+"; "A+"}; %! endif %! nm = tempname (); %! for k = 1:3 %! mode = mode_list{k}; %! [id, err] = fopen (nm, mode, arch); %! if (id < 0) %! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, mode, arch, err); %! status = 0; %! break; %! else %! fclose (id); %! endif %! tmp_mode = [mode, "b"]; %! [id, err] = fopen (nm, tmp_mode, arch); %! if (id < 0) %! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, tmp_mode, arch, err); %! status = 0; %! break; %! else %! fclose (id); %! endif %! tmp_mode = [mode, "t"]; %! [id, err] = fopen (nm, tmp_mode, arch); %! if (id < 0) %! __printf_assert__ ("open failed: %s (%s, %s): %s\n", nm, tmp_mode, arch, err); %! status = 0; %! break; %! else %! fclose (id); %! endif %! endfor %! unlink (nm); %! if (status == 0) %! break; %! endif %! endfor %! if (status == 0) %! break; %! endif %! endfor %! %! assert (status == 1); %!test %! s.a = 1; %! fail ("fopen (s)"); %!error fopen ("foo", "x") %! fopen ("foo", "wb", "noodle"); %! assert (__prog_output_assert__ ("error:")); %!error <Invalid call to fopen> fopen () %!error <Invalid call to fopen> fopen ("foo", "wb", "native", 1) %!error fclose (0) %!error <Invalid call to fclose> fclose (1, 2) %!assert (ischar (tempname ())) %!error <DIR must be a string> tempname (1) %!error <PREFIX must be a string> tempname ("foo", 1) %!error <Invalid call to tempname> tempname (1, 2, 3) %!test %! type_list = ["char"; "char*1"; "integer*1"; "int8"; %! "schar"; "signed char"; "uchar"; "unsigned char"; %! "short"; "ushort"; "unsigned short"; "int"; %! "uint"; "unsigned int"; "long"; "ulong"; "unsigned long"; %! "float"; "float32"; "real*4"; "double"; "float64"; %! "real*8"; "int16"; "integer*2"; "int32"; "integer*4"]; %! %! n = rows (type_list); %! nm = tempname (); %! id = fopen (nm, "wb"); %! if (id > 0) %! for i = 1:n %! fwrite (id, i, deblank (type_list(i,:))); %! endfor %! %! fclose (id); %! %! id = fopen (nm, "rb"); %! if (id > 0) %! x = zeros (1, n); %! for i = 1:n %! x(i) = fread (id, [1, 1], deblank (type_list(i,:))); %! endfor %! %! if (x == 1:n) %! __printf_assert__ ("ok\n"); %! endif %! endif %! endif %! %! unlink (nm); %! assert (__prog_output_assert__ ("ok")); %!test %! x = char (128:255)'; %! nm = tempname (); %! id = fopen (nm, "wb"); %! fwrite (id, x); %! fclose (id); %! id = fopen (nm, "rb"); %! y = fread (id, Inf, "uchar=>char"); %! fclose (id); %! unlink (nm); %! assert (x, y); %!test %! nm = tempname (); %! id = fopen (nm, "wb"); %! if (id > 0) %! fprintf (id, "%d\n", 1:100); %! fclose (id); %! id = fopen (nm, "rb"); %! if (id > 0) %! for i = 1:101 %! fgets (id); %! endfor %! if (feof (id)) %! fclose (id); %! id = fopen (nm, "rb"); %! pos_one = ftell (id); %! s_one = fgets (id); %! for i = 1:48 %! s = fgets (id); %! endfor %! pos_fifty = ftell (id); %! s_fifty = fgets (id); %! fseek (id, pos_one, SEEK_SET); %! s_one_x = fgets (id); %! fseek (id, pos_fifty, SEEK_SET); %! s_fifty_x = fgets (id); %! if (s_one == s_one_x && s_fifty == s_fifty_x) %! frewind (id); %! s_one_x = fgets (id); %! if (s_one != s_one_x) %! error ("bombed!!"); %! endif %! endif %! endif %! endif %! endif %! unlink (nm); %!assert (fputs (1, 1),-1) %!error <Invalid call to fputs> fputs () %!error <Invalid call to fputs> fputs (1, "foo", 1) %!error fgetl ("foo", 1) %!error <Invalid call to fgetl> fgetl () %!error <Invalid call to fgetl> fgetl (1, 2, 3) %!error fgets ("foo", 1) %!error <Invalid call to fgets> fgets () %!error <Invalid call to fgets> fgets (1, 2, 3) %!test %! s.a = 1; %! fail ("fprintf (s)", "Invalid call to fprintf"); %!error <Invalid call to fprintf> fprintf () %!error <Invalid call to fprintf> fprintf (1) %!error fprintf (1, 1) %!error fprintf (-1, "foo") %!error fscanf ("foo", "bar") %!error <Invalid call to fscanf> fscanf () %!error <Invalid call to fscanf> fscanf (1) %!error <Invalid call to fread> fread () %!error <Invalid call to fread> fread (1, 2, "char", 1, "native", 2) %!error fread ("foo") %!error <Invalid call to fwrite> fwrite () %!error <Invalid call to fwrite> fwrite (1, rand (10), "char", 1, "native", 2) %!error fwrite ("foo", 1) %!error <Invalid call to feof> feof () %!error <Invalid call to feof> feof (1, 2) %!error feof ("foo") %!error <Invalid call to ferror> ferror () %!error <Invalid call to ferror> ferror (1, 'clear', 2) %!error ferror ("foo") %!error <Invalid call to ftell> ftell () %!error <Invalid call to ftell> ftell (1, 2) %!error ftell ("foo") %!error <Invalid call to fseek> fseek () %!error <Invalid call to fseek> fseek (1, 0, SEEK_SET, 1) %!error fseek ("foo", 0, SEEK_SET) %!error <Invalid call to frewind> frewind () %!error <Invalid call to frewind> frewind (1, 2) %!error frewind ("foo") %!test %! id = tmpfile (); %! ## FIXME: better test for endianness? %! big_endian = (bitunpack (uint16 (1))(1) == 0); %! fwrite (id, "abcdefg"); %! frewind (id); %! [data, count] = fread (id); %! assert (data, [97; 98; 99; 100; 101; 102; 103]); %! assert (count, 7); %! frewind (id); %! [data, count] = fread (id, 'int16'); %! expected = [25185; 25699; 26213]; %! if (big_endian) %! expected = double (swapbytes (int16 (expected))); %! endif %! assert (data, expected); %! assert (count, 3); %! frewind (id); %! [data, count] = fread (id, [10, 2], 'int16'); %! assert (data, expected); %! assert (count, 3); %! frewind (id); %! [data, count] = fread (id, [2, 10], 'int16'); %! expected = [25185, 26213; 25699, 0]; %! if (big_endian) %! expected = double (swapbytes (int16 (expected))); %! endif %! assert (data, expected); %! assert (count, 3); %! fclose (id); %!test %! id = tmpfile (); %! fwrite (id, char (0:15)); %! frewind (id); %! [data, count] = fread (id, inf, "2*uint8", 2); %! assert (data, [0; 1; 4; 5; 8; 9; 12; 13]); %! assert (count, 8); %! fclose (id); %!test %! id = tmpfile (); %! fwrite (id, char (0:15)); %! frewind (id); %! [data, count] = fread (id, 3, "2*uint8", 3); %! assert (data, [0; 1; 5]); %! assert (count, 3); %! [data, count] = fread (id, 3, "2*uint8", 3); %! assert (data, [6; 7; 11]); %! assert (count, 3); %! [data, count] = fread (id, 3, "2*uint8", 3); %! assert (data, [12; 13]); %! assert (count, 2); %! [data, count] = fread (id, 3, "2*uint8", 3); %! assert (data, []); %! assert (count, 0); %! fclose (id); %!test %! id = tmpfile (); %! ## FIXME: better test for endianness? %! big_endian = (bitunpack (uint16 (1))(1) == 0); %! fwrite (id, char (0:15)); %! frewind (id); %! [data, count] = fread (id, [1, Inf], "4*uint16", 3); %! expected = [256, 770, 1284, 1798, 3083, 3597]; %! if (big_endian) %! expected = double (swapbytes (uint16 (expected))); %! endif %! assert (data, expected); %! assert (count, 6); %! fclose (id); %!test %! id = tmpfile (); %! ## FIXME: better test for endianness? %! big_endian = (bitunpack (uint16 (1))(1) == 0); %! fwrite (id, char (0:15)); %! frewind (id); %! [data, count] = fread (id, [3, Inf], "4*uint16", 3); %! expected = [256, 1798; 770, 3083; 1284, 3597]; %! if (big_endian) %! expected = double (swapbytes (uint16 (expected))); %! endif %! assert (data, expected); %! assert (count, 6); %! fclose (id); %!test %! id = tmpfile (); %! fwrite (id, "abcd"); %! frewind (id); %! [data, count] = fread (id, [2, 3], "char"); %! assert (data, [97, 99; 98, 100]); %! assert (count, 4); %! fclose (id); %!assert (sprintf ("%1s", "foo"), "foo") %!assert (sprintf ("%.s", "foo"), char (zeros (1, 0))) %!assert (sprintf ("%1.s", "foo"), " ") %!assert (sprintf ("%.1s", "foo"), "f") %!assert (sprintf ("%1.1s", "foo"), "f") %!assert (sprintf ("|%4s|", "foo"), "| foo|") %!assert (sprintf ("|%-4s|", "foo"), "|foo |") %!assert (sprintf ("|%4.1s|", "foo"), "| f|") %!assert (sprintf ("|%-4.1s|", "foo"), "|f |") %!assert (sprintf ("%c ", "foo"), "f o o ") %!assert (sprintf ("%s ", "foo"), "foo ") %!assert (sprintf ("|%d|", "foo"), "|102||111||111|") %!assert (sprintf ("|%s|", [102, 111, 111]), "|foo|") %!assert (sprintf ("%s %d ", [102, 1e5, 111, 1e5, 111]), "f 100000 o 100000 o ") %!assert (sprintf ("%c,%c,%c,%c", "abcd"), "a,b,c,d") %!assert (sprintf ("%s,%s,%s,%s", "abcd"), "abcd,") %!assert (sprintf ("|%x|", "Octave"), "|4f||63||74||61||76||65|") %!assert (sprintf ("|%X|", "Octave"), "|4F||63||74||61||76||65|") %!assert (sprintf ("|%o|", "Octave"), "|117||143||164||141||166||145|") ## bug #47192 %!assert (sprintf ("%s", repmat ("blah", 2, 1)), "bbllaahh") %!assert (sprintf ("%c", repmat ("blah", 2, 1)), "bbllaahh") %!assert (sprintf ("%c %c %s", repmat ("blah", 2, 1)), "b b llaahh")
bced716e54ea104ecb7092ab7143ae3463b3f5b8
a62e0da056102916ac0fe63d8475e3c4114f86b1
/set14/s_Linear_Integrated_Circuits_J._B._Gupta_1850.zip/Linear_Integrated_Circuits_J._B._Gupta_1850/CH2/EX2.6/exa_2_6.sce
0fbe94dd21b180017f4b7e699538cadf3d830f9b
[]
no_license
hohiroki/Scilab_TBC
cb11e171e47a6cf15dad6594726c14443b23d512
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
refs/heads/master
2021-01-18T02:07:29.200029
2016-04-29T07:01:39
2016-04-29T07:01:39
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
175
sce
exa_2_6.sce
errcatch(-1,"stop");mode(2);// Exa 2.6 ; ; // Given data Ad= 100; Acm= 0.01; CMRR= Ad/Acm; CMRR_desh= 20*log10(CMRR);// in dB disp(CMRR_desh,"CMRR in dB") exit();
059cbbba0fc8224ecc9b0417ae7ad69fa8ce4268
449d555969bfd7befe906877abab098c6e63a0e8
/3543/CH2/EX2.1/Ex2_1.sce
898f7df1cb4473274026e9ba54206b1a3249206c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
563
sce
Ex2_1.sce
// Example 2.1 // Calculation of core diameter // Page no 31 clc; clear; close; // Given data n1=1.5; // Refractive index of core n2=1.48; // Refractive index of cladding N=1000; // No of modes lambda=1.3; // Light wavelength V=sqrt(2*N); // Mode parameter //core diameter d=(lambda*V)/(2*%pi*sqrt(n1^2-n2^2)); //Display result on command window printf("\n Mode parameter = %0.2f ",V); printf("\n Core diameter(micrometer)= %0.0f ",d); // Answer is wrong in the book.
bbe1cb56ef24c871b8808cf49740660b5f2fc5d3
449d555969bfd7befe906877abab098c6e63a0e8
/1898/CH8/EX8.4/Ex8_4.sce
3219b328215abe6cc3cb93814899ccf6ebcd6c83
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
991
sce
Ex8_4.sce
clear all; clc; disp("Scilab Code Ex 8.4 : ") //Given: y_c = 125/1000; //m x_c = 1.5; //m y_b = 1.5; //m x_b = 6; //m udl = 50; //kN/m l_udl = 2.5; //m l = 250/1000; //m width = 50/1000; //m //Internal Loadings: N = 16.45; //kN V = 21.93; //kN M = 32.89; //kNm //Stress Components: //Normal Force: A = l*width; sigma1 = N/(A*1000); //Shear Force: tou_c = 0; //Bending Moment: c = y_c; I = (1/12)*(width*l^3); sigma2 = (M*c)/(I*1000); //Superposition: sigmaC = sigma1+sigma2; //Display: printf('\n\nThe stress due to normal force at C = %1.2f MPa',sigma1); printf('\nThe stress due to shear force at C = %1.2f MPa',tou_c); printf('\nThe stress due to bending moment at C = %1.2f MPa',sigma2); printf('\nThe resultant stress at C = %1.1f MPa',sigmaC); //----------------------------------------------------------------------END--------------------------------------------------------------------------------
33cb89ffcf6c3d048a11e4d8ec1340be79fee9da
04ebc1029c20752e734a1d83b49a31329d5283fd
/trust_game_2/frame7.sce
e5ab107013dc4467790e4a4e40467d822ae44e95
[]
no_license
jangwoopark/presentation-trust
a1293e481da417c914534a30b1969f092f08e115
31621ef8b534bca19d4b9d4a5d57792ff8bb058d
refs/heads/master
2020-06-27T14:50:42.294466
2017-09-12T01:51:08
2017-09-12T01:51:08
97,063,115
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,636
sce
frame7.sce
scenario = "frame"; scenario_type = fMRI_emulation; #scenario_type = fMRI; scan_period = 3000; response_matching = simple_matching; no_logfile = false; sequence_interrupt=false; #default active_buttons = 2; button_codes=0,1; default_font="arial"; default_font_size=30; default_text_color=255,255,255; default_background_color=0,0,0; pcl_file = "frame7.pcl"; begin; picture {} default; text { caption = "+"; font_size = 12; } cross; text { caption = "SELECT AMOUNT FROM"; } select; text { caption = "10"; } dollar; text { caption = "SENDING:"; } sending; text { caption = "KEEPING:"; } keeping; text { caption = "_"; } dollar_2; text { caption = "_"; } dollar_3; box { height = 486; width = 2; color = 255,255,255; } vert; box { height = 2; width = 142; color = 255,255,255; } horiz; box { height = 2; width = 4; color = 255,255,255; } divide; box { height = 42; width = 140; color = 0,0,0; } zero; array { LOOP $i 10; $k = '$i+1'; box {height = 42; width = 140; color = 0,0,0;} "red10_$k"; ENDLOOP; } rex; picture { text cross; x = 0; y = 0; LOOP $i 10; $k = '$i+1'; box "red10_$k" ; x=0; y='-198+$i*44'; ENDLOOP; text select; x = -250; y = 0; text dollar; x = -250; y = -100; text sending; x = 250; y = 23; text dollar_2; x = 400; y = 23; text keeping; x = 250; y = -23; text dollar_3; x = 400; y = -23; box zero; x=0; y=-242; box vert; x=70; y=-22; box vert; x=-70; y=-22; box horiz; x=0; y=220; box horiz; x=0; y=-264; LOOP $i 11; box divide; x=68; y='220-$i*44'; box divide; x=-68; y='220-$i*44'; ENDLOOP; } cursor10; trial { stimulus_event { picture cursor10; } coding; } codes;
f76efe60ad18823be3629dc4dd10709a642e866e
449d555969bfd7befe906877abab098c6e63a0e8
/3363/CH15/EX15.7/Ex15_7.sce
9e7311f614516b879b2fe1e214e4a95c1aa2627c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
24
sce
Ex15_7.sce
//Example 15.7, page 547
af4dfc75b4b0d7fcbdbf8494a8eb94782efab834
449d555969bfd7befe906877abab098c6e63a0e8
/3769/CH19/EX19.19/Ex19_19.sce
33b016880a7e9e043a1967148cac6afaf2c3e230
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
124
sce
Ex19_19.sce
clear //Given M=-20 R=-120 //Calculation f0=R/2.0 fe=f0/M //Result printf("\n Focal length of eyepiece is %0.3f cm", fe)
8f18a1831adea6bc578441e6bd75860fd4c363f2
449d555969bfd7befe906877abab098c6e63a0e8
/68/CH1/EX1.3/ex3.sce
d4cd1d46a7f3b90ab1aed9f233b737d0f7bd1529
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,037
sce
ex3.sce
// Example 1.3 : Overall voltage gain of cthree-stage amplifier gainloss_in=10^6/(1*10^6+100*10^3); // fraction of input signal is obtained using voltage divider rule , gainloss_in= v_i1/v_s A_v1=10*100000/(100000+1000); // A_v1 = v_i2/v_i1 is the voltage gain at first stage A_v2=100*10000/(10000+1000); // A_v2 = v_i3/v_i2 is the voltage gain at second stage A_v3=100/(100+10); // A_v3 = v_L/v_i3 is the voltage gain at the output stage A_v=A_v1*A_v2*A_v3; // A_v is the total voltage gain disp(A_v,"The overall voltage gain (V/V) =") disp(20*log10(A_v),"The overall voltage gain (dB) =") gain_src_ld=A_v*gainloss_in; disp(gain_src_ld,"The voltage gain from source to gain (V/V) =") disp(20*log10(gain_src_ld),"The voltage gain from source to load (dB) =") A_i=10^4*A_v; // A_i=i_o/i_i=(v_L/100)/(v_i1/10^6) disp(A_i,"The current gain (A/A)=") disp(20*log10(A_i),"The current gain (dB) =") A_p=818*818*10^4; // A_p=P_L/P_I=v_L*i_o/v_i1*i_i disp(A_p,"The power gain (W/W) =") disp(10*log10(A_p),"The power gain (dB) =")
8e43db14378b77ec2b99c898df2f35802ac1bde7
449d555969bfd7befe906877abab098c6e63a0e8
/1319/CH5/EX5.12/5_12.sce
4f431998d61c436e8c6939c57f4b782667b8a077
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
889
sce
5_12.sce
// To determine all day efficiency clc; clear; p=15*(10^3); t1=12; t2=6; t3=6; pf1=0.5; pf2=0.8; pf3=0.9; x=poly([0 1],'x','c'); nm=0.98; // Max Efficiency y=(nm*(p+(2*x)))-p; x=roots(y); // To find the iron loss or copper loss at unity p.f for maximum efficiency Pil=x; // Iron loss Pc=x; // Copper Loss at unity p.f for maximum efficiency deff('a=culoss(b,c)','a=b*Pc*((c/(p/1000))^2)'); Pc1=culoss(12,(2/pf1)); // Total Copper Loss for 12hrs - 2 kW at p.f 0.5 Pc2=culoss(6,(12/pf2)); // Total Copper Loss for 6hrs - 12 kW at p.f 0.8 Pc3=culoss(6,(18/pf3)); // Total Copper Loss for 6hrs - 18 kW at p.f 0.9 Po=((12*2)+(6*12)+(6*18))*(10^3);// Power Output eff=Po*100/(Po+(Pc1+Pc2+Pc3)+(24*Pil)); // Note the iron loss has to be considered to calculate the Efficiency, Text Error printf('The all day effciency = %f percent \n',eff)
aa8d37f7852423dea982adffe19c73e02bea2a1d
eb7eeb04a23a477e06f3c0e3d099889caee468b4
/src/examples/course/scilab/basics_whileandfor/twhile1.sci
706d65c3138b0029aaa314b93677c442eaf618ff
[]
no_license
mikeg64/iome
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
cc1c94433133e32776dcf16704ec4ec337b1b4a0
refs/heads/master
2020-03-30T15:57:33.056341
2016-04-13T09:24:27
2016-04-13T09:24:27
151,387,236
0
0
null
null
null
null
UTF-8
Scilab
false
false
314
sci
twhile1.sci
% example while loop with a break % try1 = 1; while try1 n = input( ' Enter a number: ' ) ; if n < 0.5 disp 'Too small !' elseif n > 100 disp ' Too big !' else disp ' It will do.' % break % the below line will also work for terminating the loop try1 = 0; end end
2434508f920623d5308fe720865bbe29dc47038c
449d555969bfd7befe906877abab098c6e63a0e8
/1106/CH6/EX6.10/ex6_10.sce
59a3d222ce3c694c0c5c0217a4a683fc96915767
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
304
sce
ex6_10.sce
// Example 6.10, Page No-286 clear clc fh=2500 fL=250 B=fh-fL printf('Bandwdth B= %d Hz', B) fr=sqrt(fh*fL) printf('\nResonant Frequency fr= %.2f Hz', fr) fc=(fL+fh)/2 printf('\nCenter Frequency fr= %d Hz', fc) printf('\nHence, resonant frequency is always less than center frequency')
632d13ece72dcd2a07ebc9a1f5c04c4c6d9caca7
449d555969bfd7befe906877abab098c6e63a0e8
/964/CH25/EX25.4/25_4.sce
e2ef29404032fe4a3bd2fc27a8b9dcd0d086f7d6
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
357
sce
25_4.sce
clc; clear; m=68.1; g=9.8; c=12.5; a=8.3; b=2.2; vmax=46; function yp=f(t,v) yp=g-c*v/m; endfunction v0=0; t=0:15; x=ode(v0,0,t,f); disp(x) plot(t,x,'.-') function yp=f1(t,v) yp=g-(c/m)*(v+a*(v/vmax)^b) endfunction x1=ode(v0,0,t,f1); plot(t,x1) xtitle("velocity vs time","t (s)","v (m/s)") h1=legend(["Linear";"Nonlinear"])
3fa807793e3196acc8286a48c06e915ed20c5510
449d555969bfd7befe906877abab098c6e63a0e8
/779/CH4/EX4.6/4_6.sce
d9d99cae848fd3bebffc3de6b1377ba0b6cde98a
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
334
sce
4_6.sce
// Process 1-2 Q12 = 235; // in KJ/Kg W12 = 0 ; U12 = Q12-W12; // Process 2-3 Q23 = 0; U23 = -70 ; W23 = Q23-U23; // Process 3-1 Q31 = - 200; U31 = -U12-U23; W31 = Q31-U31; // W = W12 + W23 + W31; Q = Q12 + Q23 + Q31; disp("KJ/Kg",Q,"Heat trasfer in the cycle is") disp("KJ/Kg",W,"Work done during the the cycle is")
63127c785cfd54d3780dd16558d72c28dd9129ea
449d555969bfd7befe906877abab098c6e63a0e8
/1904/CH10/EX10.1/10_1.sce
d5ee25a1b86825549d7f20ccbf0ecd8eccb4d879
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,158
sce
10_1.sce
//To Determine the necessary realy and recloser coordination //Page 542 clc; clear; //For Recloser InstT=0.03; //From Curve A //Instaneous Time TimeD=0.17; //From Curve B //Time Delay //For Relay PickU=0.42; //From Curve C //Pick Up Reset=(1/10)*60; //Assuming a 60 s reset time for the relay with number 10 time dial setting RecloserOT=1; //Assumed Recloser Open Time RelayCTI=InstT/PickU; //Relay Closing Travel during instantaneous operation RelayRTI=(-1)*RecloserOT/Reset; //Relay Reset Travel during instantaneuos RelayCTD=TimeD/PickU; RelayRTD=(-1)*RecloserOT/Reset; //Relay Reset Travel during trip NetRelayTravel=RelayCTD-RelayRTD; printf('\nDuring Instantaneous Operation\n') printf('|Relay Closing Travel| < |Relay Rest Travel|\n') printf('|%g percent| < |%g percent|\n',RelayCTI*100,RelayRTI*100) printf('\nDuring the Delayed Tripping Operations\n') printf('Total Relay Travel is from:\n') printf('%g percent to %g percent to %g percent\n',RelayCTD*100,RelayRTD*100,RelayCTD*100) printf('Since this Net Total Relay Travel is less than 100 percent, \nthe desired recloser to relay coordination is accomplished\n')
e7037b94f592439f6209599a0b2fcc0b3b32f616
449d555969bfd7befe906877abab098c6e63a0e8
/1529/CH7/EX7.15/7_15.sce
8b8eab0a30e5db110a8fd1efe27e6bd640ac3dca
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
574
sce
7_15.sce
//Chapter 7, Problem 15, Figure 7.6 clc; u0=4*%pi*10^-7; ur=1; B=0.80; //flux density H=750; //field intensity from B-H curve l1=25*10^-2; //length of cast steel core l2=1*10^-3; //air gap A=2*10^-4; //cross-sectional area N=5000; //no of turns //for cast steel core S1=(l1*H)/(B*A); //For the air gap: S2=l2/(u0*ur*A); //Total reluctance S=S1+S2; phi=B*A; I=(S*phi)/N; printf("Current in the coil to produce a flux density of 0.80T = %f A",I);
ac4ef803c11c25c97c48cabaa9b60c5133f06444
449d555969bfd7befe906877abab098c6e63a0e8
/1301/CH14/EX14.10/ex14_10.sce
81569e23c76e649c001a5de2793b99c2baee269b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
303
sce
ex14_10.sce
clc; K=2*10^-7; //constant in N/A square I=8; //current in Ampere s=5*10^-2; //distance in m B=(K*I)/s; //calculating magnitude of field disp(B,"Magnitude of field in Tesla = "); //displaying result disp(2*B,"Total field in Tesla = "); //displaying result
a2f0d8bc9ef0be554f32f3d844a30b4d183756b0
449d555969bfd7befe906877abab098c6e63a0e8
/2789/CH9/EX9.10/Ex9_10.sce
b443c691c1bb0ceabcebafed47ae046e36deb4e7
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
304
sce
Ex9_10.sce
clear; clc; //page no. 305 Q = 90;//gpm d = 3;//in l = 3000;//ft V = Q/(60*7.48*0.25*%pi*(d/12)^2); R_h = (d/12)/4; C_hw = 140; S = (V/(1.318*140*R_h^0.63))^(1/0.54); h_L = S*l; printf('The loss of head = %.1f ft of water',h_L); //there is a minute error in the answer given in textbook
fb3c4a642e181cf1a4d17855c36937dfffe2a21a
449d555969bfd7befe906877abab098c6e63a0e8
/69/CH5/EX5.29/5_29.sce
7a860acdf673711e9c3b9c46d9006223e4969d57
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
194
sce
5_29.sce
clear; clc; close; Vee = 20; Vbe = 0.7; R1 = 5.1*(10^(3)); R2 = R1; Re = 2.2*(10^(3)); Vb = (R1/(R1+R2))*(-Vee); Ve = Vb - Vbe; Ie = (Ve-(-Vee))/Re; disp(Ie,"Constant current :");
118c2a04593a77a0cc968cab4e362426b2deefdc
449d555969bfd7befe906877abab098c6e63a0e8
/911/CH1/EX1.7.b/ex_1_7_b.sce
30eaf0661a8d9e97c76e28b4508b3b898f7511f2
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
375
sce
ex_1_7_b.sce
// example 1.7(b) // //conversion of binary to hexadecimal // clc //clears the screen // clear //clears already existing variables // x= bin2dec ('1011001110' ) // binary to decimal conversion // a= dec2hex (x) //decimal to hexadecimal conversion // disp ('conversion of given binary number to its hexadecimal form is : ') disp (a) // answer in hexadecimal form//
f946dd6a07dd86e38753a22d6a0b0a10007dbd11
449d555969bfd7befe906877abab098c6e63a0e8
/1997/CH2/EX2.6/example6.sce
89793b6ad75bbf9b79e6e7a4feb79bc4f493a780
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
455
sce
example6.sce
//Chapter-2 example 2.6 //============================================================================= clc; clear; PW = 2*10^-6; //pulse width in sec PRF=800; //pulse repetition frequency in KHz V0=3*10^8; //velocity in m/s //Calculations Ru=V0/(2*PRF); //unambigious range in mts RR=(V0*PW)/2; //Range resolution in m //output mprintf('unambigious range is %g Km\n Range resolution is %g m',Ru/1000,RR);
65485e053eae3f0792343326be09440d3a939d32
449d555969bfd7befe906877abab098c6e63a0e8
/1073/CH3/EX3.1/3_1.sce
12e938423d1d4a52fd0764b75e1aaa6722a9c81f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
784
sce
3_1.sce
clc; clear; //Example 3.1 mu=10^-3 //N.s/m^2 //At distance y from surface //ux=a+by+cy^2+dy^3 //At y=0,ux=0 therefore a=0 //i.e tao=0 //At edge of boundary layer,ie y=del //ux=u_inf //At y=o,c=0 //At y=del,ux=b*del+d*del^3 //Therefore, b=-3*d*del^3 //d=-u_inf/(2*del^2) //b=3*u_inf/(2*del) //For velocity profile,we have: //del/x=4.64*(Nre_x)^(-1/2) //Evaluate N re_x x=75; //[mm] x=x/1000; //[m] u_inf=3; //[m/s] rho=1000 //[kg/m^3] for air Nre_x=u_inf*rho*x/mu //Reynold number //Substituting the value,we get del=x*4.64*(Nre_x^(-1/2)) //[m] printf("\nBoundary layer thickness is del=%f m or %f mm",del,del*1000); printf("\nWrong units in answer of book,m and mm are wrongly interchanged");
3316238eb6fd4e329653edf49d48da1c751d099c
e806e966b06a53388fb300d89534354b222c2cad
/macros/blur.sci
4b3bcd038b8dd8676fc9a3cfa1274456b78abf16
[]
no_license
gursimarsingh/FOSSEE_Image_Processing_Toolbox
76c9d524193ade302c48efe11936fe640f4de200
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
refs/heads/master
2021-01-22T02:08:45.870957
2017-01-15T21:26:17
2017-01-15T21:26:17
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
320
sci
blur.sci
function [out]=blur(input_image ,ksize_width,ksize_height,anchorX,anchorY) input_image1=mattolist(input_image); a=opencv_blur(input_image1, ksize_width,ksize_height,anchorX,anchorY); dimension=size(a) for i = 1:dimension out(:,:,i)=a(i); end endfunction;
da5d1af0a617c4954feac936591ea04abb5d38b4
1573c4954e822b3538692bce853eb35e55f1bb3b
/DSP Functions/allpasslp2bs/test_4.sce
3182dd59fdc1e608a6d41d62d8eeee16a49727c1
[]
no_license
shreniknambiar/FOSSEE-DSP-Toolbox
1f498499c1bb18b626b77ff037905e51eee9b601
aec8e1cea8d49e75686743bb5b7d814d3ca38801
refs/heads/master
2020-12-10T03:28:37.484363
2017-06-27T17:47:15
2017-06-27T17:47:15
95,582,974
1
0
null
null
null
null
UTF-8
Scilab
false
false
315
sce
test_4.sce
// Test # 4 : When either Input Argument #1 or #2 is of complex type exec('./allpasslp2bs.sci',-1); [n,d]=allpasslp2bs(0.3,[0.4,0.2*%i]); //!--error 10000 //Wt must be real and numeric and must contain only 2 elements //at line 43 of function allpasslp2bs called by : //[n,d]=allpasslp2bs(0.3,[0.4,0.2*%i]);
78c31739b9f886d1414a6505ba646500fa6478a8
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.3.1/Unix-Windows/scilab-2.3/macros/util/readc_.sci
540a955298a53627611692e6f68f7258910c3ff8
[ "MIT", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
319
sci
readc_.sci
function [c]=readc_(unit) //Syntaxes : c=readc_(unit) // c=readc_() // //readc_ reads a character string //This macro allows one to interrupt an exec file without pause; //the exec file stops until carrige return is made. //! // [lhs,rhs]=argn(0); if rhs<=0 then unit=%io(1); end; c=read(unit,1,1,'(a)');
a95484eeb6df98f876b3928ce53a3197b24db6a1
449d555969bfd7befe906877abab098c6e63a0e8
/2318/CH3/EX3.7/ex_3_7.sce
2a678b7c98d77baff8a30d1251d451de4d24404f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
238
sce
ex_3_7.sce
//Example 3.7: Unknown resistance clc; clear; close; //given data : s=0.5;//Mega ohms g=10;//killo ohms d1=41;//divisions d2=51;//divisions r=(((s*10^6)+(g*10^3))*(d1/d2))-(g*10^3);//ohms disp(r*10^-6,"unknown resistance is,(Mega-ohm)=")
17710015aeccd66e68a51f791d2dc7c9a904265d
449d555969bfd7befe906877abab098c6e63a0e8
/3845/CH20/EX20.10/Ex20_10.sce
f3e62de5fe73eda49eab31446776ffc3759bb414
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
543
sce
Ex20_10.sce
//Example 20.10 P_ave=100*10^6;//Average power (W) V_rms=200*10^3;//Rms voltage (V) I_rms=P_ave/V_rms;//Rms current (A) printf('a.Current required = %0.1f A',I_rms) R=1;//Resistance (ohm) P_ave_b=I_rms^2*R;//Power dissipated (W) printf('\nb.Power dissipated by transmission lines = %0.1f kW',P_ave_b/1000) percent_loss=P_ave_b/P_ave*100; printf('\nc.Percentage of power lost = %0.3f%%',percent_loss) //Answer varies due to round off error //Openstax - College Physics //Download for free at http://cnx.org/content/col11406/latest
d38f954708255ce4234322443b00db0c129c297d
99b4e2e61348ee847a78faf6eee6d345fde36028
/Toolbox Test/rc2ac/rc2ac1.sce
fa5df4f208897d83a2e3dd86d462ba9ba228f2cc
[]
no_license
deecube/fosseetesting
ce66f691121021fa2f3474497397cded9d57658c
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
refs/heads/master
2021-01-20T11:34:43.535019
2016-09-27T05:12:48
2016-09-27T05:12:48
59,456,386
0
0
null
null
null
null
UTF-8
Scilab
false
false
232
sce
rc2ac1.sce
//check o/p for vector i/p k = [0.3090 0.9800 0.0031 0.0082 -0.0082]; r0 = 0.1; a = rc2ac(k,r0); disp(a); //output // // 0.1 // - 0.0309 // - 0.0790948 // 0.0786627 // 0.0293629 // - 0.0950000 // //
89633521f6cbc3867fa8f4cc842d7774dfc81908
449d555969bfd7befe906877abab098c6e63a0e8
/2699/CH13/EX13.39/Ex13_39.sce
67e398a5193e03ce46e9908393a320189093d647
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
250
sce
Ex13_39.sce
//EX13_39 Pg-21 clc clear printf("8''s complement (346)_8 is : ") x=['346']; y=oct2dec(x);//octal to decimal conversion// z=bitcmp(y,9);//one's complement of the number// z=z+1; z2=dec2oct(z)//8's complement of the number// printf("%s",z2)
2fa8ef36929a10030e01f13d14b76a0cbb1b94b9
449d555969bfd7befe906877abab098c6e63a0e8
/1949/CH2/EX2.27/2_27.sce
8085a8bcaad22ffc2981fd794aa8f97059dce325
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
586
sce
2_27.sce
//Chapter-2,Example 2_27,Page 2-49 clc() //Given Data: m=2 //order lam1=5.77*10^-7 //Wavelength of light lam2=5.791*10^-7 //Wavelength of light GE=1/6000*10^-2 //GE=(a+b) grating element //Calculations: //We know, (a+b)*sin(theta)=m*lam theta1=asin(m*lam1/GE)*180/%pi //angular position in first minima theta2=asin(m*lam2/GE)*180/%pi //angular position in second minima as=(theta2-theta1)*60 //Angular separation in minutes printf('Angular separation is = %.0f minutes \n \n',as)
b528825f465cb5ff4113a760f7c1d3b175be7464
449d555969bfd7befe906877abab098c6e63a0e8
/572/CH6/EX6.9/c6_9.sce
c163410a032bd693f71d5a4ea0d117fc5eb0a65c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
980
sce
c6_9.sce
// (6.9) Air undergoes an isentropic process from p1 = 1 bar, T1=  300K to a final state where the temperature is T2=  650K.,Employing the ideal gas model, determine the final pressure p2, in atm. Solve using (a) pr data from Table A-22 (b) Interactive Thermodynamics: IT, and (c) a constant specific heat ratio k evaluated at the mean temperature, 475K, from Table A-20. //solution //variable initialization P1 = 1 //initial pressure in bar T1 = 300 //initial temperature in kelvin T2 = 650 //final temperature in kelvin //part(a) //from table A-22 pr2 = 21.86 pr1 = 1.3860 p2 = P1*(pr2/pr1) printf('part(a) P2 in bar = %f ',p2) //part(b) printf('\n part(b) IT software problem') //part(c) k = 1.39 //from table A-20 p2a = P1*((T2/T1)^(k/(k-1))) printf('\n part(c) P2a in bar = %f',p2a)
93f81ca5e5ca9edfb7af6de6c3efd902b6209d69
20253970b7dd99e615215029609de822e2bf855d
/judge/tests/52063/39.tst
f598857380f471301cfd1012ded1bd3104f651db
[]
no_license
B-Rich/CATS
d26d6c85cfc1dbdc78fa16f691adbfccc615df03
d299e328f9e7498ecd9f58f64069fcd57536db00
refs/heads/master
2021-01-01T06:10:11.322262
2011-06-21T15:06:06
2011-06-21T15:06:06
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,196
tst
39.tst
1000 1000 100 51 50 49 51 148 49 51 246 49 51 344 49 51 442 49 51 540 48 51 638 49 51 736 49 51 834 48 51 932 48 149 50 46 149 148 48 149 246 47 149 344 46 149 442 47 149 540 48 149 638 47 149 736 47 149 834 48 149 932 46 247 50 46 247 148 47 247 246 46 247 344 46 247 442 46 247 540 47 247 638 47 247 736 49 247 834 47 247 932 46 345 50 48 345 148 46 345 246 48 345 344 48 345 442 49 345 540 47 345 638 46 345 736 49 345 834 46 345 932 49 443 50 48 443 148 49 443 246 49 443 344 46 443 442 48 443 540 49 443 638 46 443 736 49 443 834 46 443 932 49 541 50 49 541 148 46 541 246 48 541 344 49 541 442 46 541 540 47 541 638 47 541 736 48 541 834 47 541 932 46 639 50 46 639 148 47 639 246 49 639 344 49 639 442 46 639 540 47 639 638 49 639 736 47 639 834 48 639 932 47 737 50 47 737 148 48 737 246 46 737 344 47 737 442 49 737 540 46 737 638 46 737 736 47 737 834 48 737 932 47 835 50 46 835 148 47 835 246 47 835 344 47 835 442 48 835 540 46 835 638 46 835 736 48 835 834 46 835 932 46 933 50 46 933 148 49 933 246 46 933 344 46 933 442 47 933 540 49 933 638 48 933 736 48 933 834 46 933 932 49
8cda37f346d80ef5b3d52fb52c01d236a9c55c9a
449d555969bfd7befe906877abab098c6e63a0e8
/788/CH14/EX14.10.a/14_10_data.sci
2c2fbeb24ed40c5874fa14de827d88c5f2d76d6c
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
411
sci
14_10_data.sci
// Aim:Refer Example 14-7 for Problem Description // Given: // diamter of hydraulic cylinder: D=152; //mm // cylinder extension: L=2.54; //m // duration of cylinder extension: t=10; //s // time between crushing stroke: t_crush=5; //min // gas precharge pressure: p1=84; //bars abs // gas charge pressure when pump is turned on: p2=210; //bars abs // minimum pressure required to actuate load: p3=126; //bars abs
fc7174e97c311e672bfc08cd3a968771e02bd422
a32457bc76e1a5fe9898d7f84b937381d3bcb80d
/experiment6.sce
f321661cb6cd46732602b9021616b11e0da186e5
[]
no_license
kunalsparkx10/signal-and-systems
90d80c4b279b3c44ddd328fbf088ddbbc1ca9b5f
97164f97bd59b1d8b302efeab6a7f6a2640c0a57
refs/heads/main
2023-01-14T10:44:22.315838
2020-11-25T18:24:57
2020-11-25T18:24:57
316,021,693
0
0
null
null
null
null
UTF-8
Scilab
false
false
320
sce
experiment6.sce
clc; figure; n=0:2:100; fs=0.002; fm=5 A=1; x=A*cos((2*%pi*fm*(n/fs))); subplot(2,2,1) plot2d3(n,x); //figure; n=0:2:100; fs=0.04; fm=45 A=1; x=A*cos((2*%pi*fm*(n/fs))); subplot(2,2,2) plot2d3(n,x); //figure n=0:2:100; fs=0.4; fm=55 A=1; x=A*cos((2*%pi*fm*(n/fs))); subplot(2,2,3) plot2d3(n,x);
0d1652307dd88c1a397a1338888ea8979f9c4ff9
349b0dbeaccc8b9113434c7bce7b9166f4ad51de
/src/eco/ramsey.sci
16008101fb48806086223e23be8cf601c3a4d018
[]
no_license
jbailhache/log
94a89342bb2ac64018e5aa0cf84c19ef40aa84b4
2780adfe3df18f9e40653296aae9c56a31369d47
refs/heads/master
2021-01-10T08:55:43.044934
2020-01-09T02:57:38
2020-01-09T02:57:38
54,238,064
0
0
null
null
null
null
UTF-8
Scilab
false
false
1,343
sci
ramsey.sci
A=8.0 alpha=0.3 rho=0 mu=0.1 psi=0.05 function r=cobbdouglas(x) r=A*x^alpha; endfunction function r=ces(x) r=A*(alpha*x^(-rho)+1-alpha)^(-1/rho); endfunction eps=0.00001 function r=dcobbdouglas(x) r=(cobbdouglas(x+eps)-cobbdouglas(x))/eps; endfunction function r=dces(x) r=(ces(x+eps)-ces(x))/eps; endfunction function eqst // (A,alpha,rho,mu,sigma,psi) kstar = fzero ('euler', [1 100], 0.0001) if rho == 0 ystar = cobbdouglas (kstar) rstar = dcobbdouglas (kstar) else ystar = ces (kstar) rstar = dces (kstar) end cstar = ystar - mu*kstar wstar = ystar - rstar*kstar endfunction function y=euler(x) if rho == 0 y = dcobbdouglas(x) - mu - psi else y = dces(x) - mu - psi end endfunction function [tr,yr]=ode45 (f, t, y) yr=ode (y, t(1), t(2), f); tr=0 endfunction function evolcoe(k0,c0,tf) // k0 c0 tf tspan = [0 tf]; z0 = [k0;c0]; [t,z] = ode45 ('edcoe', tspan, z0); x = z(:,1); y = z(:,2); plot(t,x,t,y) xlabel('temps'), ylabel('k et c') // title('Evolution temporelle') // pause // figure(2) plot(x,y) if rho==0 y2 = cobbdouglas(x)-mu*x else y2 = ces(x)-mu*x end line(x,y2) xlabel('capital') ylabel('consommation') // title('Evolution c(k)') endfunction function test evolcoe(100,10,20) endfunction
f8c6850f50f370b38ba3c2f2031c8ebe4fac8db0
449d555969bfd7befe906877abab098c6e63a0e8
/46/CH16/EX16.2/Example16_2.sce
5dcd03dbb92bfb1512a196efe83f0524e7a8342d
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
291
sce
Example16_2.sce
//Example 16.2 clc syms tau s zeta w; j=%i; n=1; d=tau^2*s^2+2*zeta*tau*s+1; G=n/d s=j*w; G=1/(2*s*tau*zeta+s^2*tau^2+1) [num den]=numden(G) d=abs(den) cof_a_0=coeffs(den,'%i',0) cof_a_1=coeffs(den,'%i',1) AR=1/d theta=AR*atan(-cof_a_1/cof_a_0); disp(theta,'Phase angle=')
9a749228f7472f02a94306986260e3ed7f17752f
449d555969bfd7befe906877abab098c6e63a0e8
/905/CH1/EX1.13/1_13.sce
6a9c5db4e3a78957b26486ffe538f7c5a1128ecd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
2,779
sce
1_13.sce
clear; clc; // Illustration 1.13 // Page: 36 printf('Illustration 1.13 - Page:36 \n\n'); // Solution //*****Data***** // acetic acid-1 water-2 ethyl alcohol-3 T = 298; // [K] // The data required data for water at 298 K u_2 = 0.894; // [cP] V_c1 = 171; // [cubic cm/mole] // From equation 1.48 V_b1 = 62.4; // [cubic cm/mole] // Substituting in equation (1.53) // the infinite dilution diffusion coefficient of acetic acid in water at 298 K E = (9.58/V_b1)-1.12; D_abo12 = (1.25*10^-8)*(((V_b1)^-.19)-0.292)*(T^1.52)*(u_2^E); // [square cm/s] // Data for acetic acid T_b1 = 390.4; // [K] T_c1 = 594.8; // [K] P_c1 = 57.9; // [bar] V_c1 = 171; // [cubic cm/mole] M_1 = 60; // [gram/mole] // Data for ethanol T_b3 = 351.4; // [K] T_c3 = 513.9; // [K] P_c3 = 61.4; // [bar] V_c3 = 167; // [cubic cm/mole] M_3 = 46; // [gram/mole] u_3 = 1.043; // [cP] // Using the Hayduk and Minhas correlation for nonaqueous solutions // According to restriction 3 mentioned above, the molar volume of the acetic acid to be used in equation (1.54) should be V_b1 = V_b1*2; // [cubic cm/mole] // The molar volume of ethanol is calculated from equation (1.48) V_b3 = 60.9; // [cubic cm/mole] // For acetic acid (1) T_br1 = T_b1/T_c1; // [K] // Using equation 1.55 alpha_c1 = 0.9076*(1+((T_br1)*log(P_c1/1.013))/(1-T_br1)); sigma_c1 = (P_c1^(2/3))*(T_c1^(1/3))*(0.132*alpha_c1-0.278)*(1-T_br1)^(11/9); // [dyn/cm] // For ethanol (3) T_br3 = T_b3/T_c3; // [K] // Using equation 1.55 alpha_c3 = 0.9076*(1+((T_br3*log(P_c3/1.013))/(1-T_br3))); sigma_c3 = (P_c3^(2/3))*(T_c3^(1/3))*(0.132*alpha_c3-0.278)*(1-T_br3)^(11/9); // [dyn/cm] // Substituting in equation 1.54 D_abo13 = (1.55*10^-8)*(V_b3^0.27)*(T^1.29)*(sigma_c3^0.125)/((V_b1^0.42)*(u_3^0.92)*(sigma_c1^0.105)); // The viscosity of a 40 wt% aqueous ethanol solution at 298 K is u_mix = 2.35 cP u_mix = 2.35; // [cP] // The solution composition must be changed from mass to molar fractions following a procedure similar to that illustrated in Example 1.2 // Accordingly, a 40 wt% aqueous ethanol solution converts to 20.7 mol%. // Therefore mole fraction of ethanol (x_3) and water (x_2) x_3 = 0.207; x_2 = 1-x_3; // Using equation 1.62 D_1eff = ((x_2*D_abo12*(u_2^0.8))+(x_3*D_abo13*(u_3^0.8)))/(u_mix^0.8); printf("The diffusion coefficient of acetic acid at very low concentrations diffusing into a mixed solvent containing 40.0 wt percent ethyl alcohol in water at a temperature of 298 K is %e square cm/s\n\n",D_1eff); // The experimental value reported by Perkins and Geankoplis (1969) is D_1exp = 5.71*10^-6; // [square cm/s] percent_error = ((D_1eff-D_1exp)/D_1exp)*100; // [%] printf("The error of the estimate is %f\n",percent_error);
4b0fd05ae78670b40332efc2a8ffb59d7d549e81
449d555969bfd7befe906877abab098c6e63a0e8
/2459/CH25/EX25.9/Ex25_9.sce
18d87afe444b01ad224b21b2eeaaa0ab8524adfb
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
370
sce
Ex25_9.sce
//chapter25 //example25.9 //page556 fh=1000 // Hz // case (i) :- ratio of fv to fh = 1:1 fv1=1*fh // case (ii) :- ratio = 2:1 fv2=2*fh // case (iii) :- ratio = 6:1 fv3=6*fh printf("for case1 i.e. fv/fh = 1/1, fv = %.3f Hz \n",fv1) printf("for case2 i.e. fv/fh = 2/1, fv = %.3f Hz \n",fv2) printf("for case3 i.e. fv/fh = 6/1, fv = %.3f Hz \n",fv3)
ec7776c94077d54c1132355ff50fd3edec645c14
449d555969bfd7befe906877abab098c6e63a0e8
/1439/CH23/EX23.5/23_5.sce
38834594c49b3065126f4dc2f567438ed32519ea
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
372
sce
23_5.sce
clc //initialisation of variables h= 6.625*10^-27 //ergs/mole f= 2.65*10^-5 //sec^-1 c= 3*10^10 //cm/sec t= 2 N= 6*10^23 //molecules M= 382 //gms E1= 750 //ergs //CALCULATIONS E= h*c/f n1= E1/E m= n1/(t*7) G= m*M/N //RESULTS printf ('number of quanta = %.2e ',n1) printf ('\n number of quanta = %.2e molecules',m) printf ('\n grams per day= %.2e gms',G)
fe62178a78657adfb0b74d4b4b60b612c1047d80
449d555969bfd7befe906877abab098c6e63a0e8
/323/CH2/EX2.24/ex2_24.sci
00fab4501f03244bf03dab60cc0eef4d4533dc02
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
300
sci
ex2_24.sci
//Chapter 2,Example 2.24,Pg 2.30 clc; disp("Refer to the diagram shown in the figure") A=[4 -2 -1;-50 71 -20;-5 -4 10] B=[-24;0;180] V=A\B printf("\n Va=%.2f V\n",V(1)) printf("\n Vb=%.2f V\n",V(2)) printf("\n Vc=%.2f \n",V(3)) printf("\n Voltage across 5 ohms resistor=%.2f \n",V(3)-V(2))
e9087afc396b9727d47614c8323637dd14a181d0
449d555969bfd7befe906877abab098c6e63a0e8
/1529/CH6/EX6.7/6_07.sce
3476ba64a4956e8afd96e190e64c99b144b80db4
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
449
sce
6_07.sce
//Chapter 6, Problem 7 clc; Q=1.2*10^-6; //Charge A=4*10^-4; //Area of plates d=0.1*10^-3; //Distance between plates e0=8.85*10^-12; er=100; C=(e0*er*A)/d; //Calculating capacitance V=Q/C; //Calculating potential difference disp("(a)"); printf("Capacitance = %f pF\n\n\n",C*10^12); disp("(b)"); printf("p.d. between the plates = %f V",V);
fe1803ef4bc8bb1e1f78ecc2dd5e330324818338
449d555969bfd7befe906877abab098c6e63a0e8
/3487/CH6/EX6.5/Ex6_5.sce
03462f8f82e44722766dbc33b82feb42780f1b88
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
362
sce
Ex6_5.sce
//Chapter 6,Example 6.5 Page 200 clc clear Ca = 50 // pF C = 190 // pF loss = 0.0085 // loss angle of electrodes Er = C/Ca tang = 0.0085 Er1 = Er*tang E0 = 8.854*10^-1 E1 = E0*Er jE1 = E0*Er1 printf (" The dielectric constant = %f \n ",Er) printf (" tan δ = %f \n ",tang) printf (" E = (%f - j %f ) * 10^-11 F/m \n ",E1,jE1) //Answer may vary due to round off
3e716cdba9dd6dd414c7be7ddefbf018a012594e
449d555969bfd7befe906877abab098c6e63a0e8
/3281/CH4/EX4.8/ex4_8.sce
f32a729c2724e642918ad56f95d6f7fa191286ac
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
717
sce
ex4_8.sce
//Page Number: 198 //Example 4.8 clc; //Given a=5;//cm a1=a/100;//m b=4;//cm b1=b/100;//m c=10;//cm c1=c/100;//m sig=5.8D+7; u0=4D-7*%pi; er=3; eet=377; ur=1; spl=3D+8; tandel=2.5D-4; //TE101 mode m=1; n=0; p=1; fr=(spl/(2*sqrt(er*ur)))*sqrt((m/a1)^2+(n/b1)^2+(p/c1)^2);//hz disp('Ghz',fr/10^9,'Resonant frequency:'); w=2*%pi*fr; rs=sqrt((w*u0)/(2*sig));//ohm lamr=spl/(fr*sqrt(er)); x=(((a1*b1)/(c1^2))+((c1^2+a1^2)/(2*c1*a1))+((b1*c1)/a1^2)); qw=(2*%pi*(eet/sqrt(er))*a1*b1*c1)/(rs*(lamr^3)*x); disp(qw,'Q for TE101 mode:'); qd=1/tandel; q=(qw*qd)/(qw+qd); disp(q,'Q for lossy dielectric:'); //Value of qw is calculated wrong in book as lamr comes to be 0.08 not 0.89 m
220d3ed59e58a1408bf60d38a43b12186e9c8fe7
449d555969bfd7befe906877abab098c6e63a0e8
/3035/CH14/EX14.4/Ex14_4.sce
44249d9387694cebfe6784a639b8beda3d082847
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
651
sce
Ex14_4.sce
// Variable Declaration kv = 11.0 //Voltage rating(kV) MVA = 5.0 //MVA rating R = 10.0 //Resistance(ohm) per_a = 0.15 //Armature winding reactance per_trip = 0.3 //Relay trip for out-of-balance // Calculation Section x_p = per_a*kv**2/MVA //Winding Reactance(ohm) V = kv/3**0.5*1000 //Phase voltage(V) I = per_trip*MVA*1000/(3**0.5*kv) //Out of balance current(A) p = (((R*I)**2/(V**2-(x_p*I)**2))**0.5)*100 //Percentage of winding remains unsupported // Result Section printf('Percentage of winding that remains unprotected , p = %.1f percentage' ,p)
a629f09cc8cd53549ac07582304a3b295fce9327
4af7d26a4959553d9a2cee1a78878ee960599382
/test_cases/test1.tst
41cb231955c58b66c7ce52667b2916ae5ba2cf02
[]
no_license
CJ8664/chord_protocol
f61168ceea224e47785e56a3263eda89da7dc3df
30b57463cfd190e9dd5f057629b69ffbb6edb7b2
refs/heads/master
2020-04-11T06:07:46.875416
2018-11-02T03:06:34
2018-11-02T03:06:34
161,571,340
0
0
null
null
null
null
UTF-8
Scilab
false
false
224
tst
test1.tst
# Just adding and joining nodes but no explicit stabilize or fix # predecessor is None and successor is valid and finger table is stale add 0 add 1 add 2 add 3 join 1 0 join 2 0 join 3 0 list show 0 show 1 show 2 show 3 end
2fa43e924d9942acbbea61e841f080d86db9af51
449d555969bfd7befe906877abab098c6e63a0e8
/1370/CH2/EX2.6/example2_6.sce
76bc848a6e8163c3ae543363c6ee7796681265ee
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
719
sce
example2_6.sce
//example2.6 clc disp("Consider a short shunt generator as shown in the fig 2.32") disp("R_a=0.04 ohm, R_sh=90 ohm, R_se=0.02 ohm") disp("V_t=225 V , I_L=75 A") disp("I_a = I_L + I_sh") disp("Now, E=(V_t)+[(I_a)*(R_a)]+[(I_L)*(R_se)]") disp("and drop across armature terminals is,") disp("E-[(I_a)*(R_a)]=(V_t)+[(I_t)*(R_se)]") e=225+(75*0.02) disp(e,"Therefore, E-[(I_a)*(R_a)]=") disp("Therefore, I_sh=[E-(I_a)(R_a)]/(R_sh)=[(V_t)+(I_L)(R_se)]/(R_sh)") i=226.5/90 format(7) disp(i,"Therefore, I_sh(in A)=") i=75+2.5167 disp(i,"Therefore, I_a=I_L+I_sh=") disp("Therefore, E=V_t+[(I_a)*(I_sh)]+[(I_L)*(R_se)]") e=225+(77.5167*0.04)+(75*0.02) format(6) disp(e,"E(in V)=")
33cc912499af5b78a4a4b9fa76ee626d78787fad
449d555969bfd7befe906877abab098c6e63a0e8
/2465/CH5/EX5.1/Example_1.sce
aa4ffc6d99930f720def5887c27cf4243e315cb5
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
413
sce
Example_1.sce
//Chapter-5,Example 1,Page 121 clc(); close(); //for 1st order reaction //k = (1/t)*log(a/(a-x)) a= 46.1 //time value //time intervals t=[ 5 10 20 30 50] x=[ 37.1 29.8 19.6 12.3 5.0] k = (1 ./t).*log(a./(x)) printf('value of k are ' ) disp(k) printf('since k values are fairly constant by putting in 1nd order rate equation. \nHence decomposition of H2O2 is of 1st order.')
56b7830cd93759db3949bd1e5dd2df8a00da504f
22ebb77444925f738e01f4ceeae89fac1b2ca711
/Single-phase transformer/PermeanciasSecundario220R.sce
15b3e67e557f5c7382ea06b92f0bd53a317d7a81
[]
no_license
jacometoss/Transformer
4e4b4d39f370b162afd6364a229efc81a5c4ea8d
d9bd077b3fbc45dca52dd3367f40a4289b812e54
refs/heads/master
2021-06-21T14:57:12.644937
2020-12-03T19:23:20
2020-12-03T19:23:20
146,820,465
1
0
null
null
null
null
UTF-8
Scilab
false
false
3,204
sce
PermeanciasSecundario220R.sce
//****************************************************************// // .Rutina: Permeancia Devanado Primario 127V ...// // .Autor: Marco Polo Jacome Toss ...// // .Version : 1.0 ...// // .Plataforma : Scilab (https://www.scilab.org) 6.0 ...// // .Fecha : 2018.06.10 ...// // .Nota : Apendice A - Dimensiones en Devanados ...// // ... Capitulo 2 - Permeancia de Fuga ...// // .... ..... ..... .... .... .... .... .... .... .... .... ... ..// // .PW1CorteAA : Permeancia interior (Sólo una ventana) ...// // .PW1CorteBB : Permeancia Adyacente al nucleo (Sólo un lado) ...// // .PW1CorteCC : Permeancia En rel Radio (Un radio) ...// // ...... ..... .... .... .... .... .... .... .... .... .... .....// // .PW1_Total_CorteAA : Permeancia Total en las dos ventanas ...// // .PW1_Total_CorteBB : Permeancia Total adyacentes (izq. y der.).// // .... ..... ..... .... .... .... .... .... .... .... .... ......// uo=4*%pi*1e-7; d1=5.3/100; d2=0.2/100; d3=0.05/100; //Distancia influye mucho, unidades metros. d4=0.4/100; d5=0.425/100; //-----------------------------------------// la=0.638/100; lb=5.5/100; lc=5/100; ld=4.2/100; lrm=2.278/100; //----------------------------------------// k1=abs(d1-d4); k2=min(d1,d4); //Permeancnia del Devanado de 127V PW1CorteAA=((uo*lc)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1)))); PW1CorteBB=((uo*ld)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1)))); PW1CorteCC=((uo*lrm)/(128*(d4^2)*(d1^2)))*((4*k2^4)+(8*k1*k2^3)+(2*k1^2*k2^2)-(2*k1^3*k2)+(k1^4*log((2*k2/k1+1)))); //disp (PWinding1); //Permeancia Horizontal En Aire Devanado 127V Pw1ahCorteAA=((uo*lc)/((2*d4+d3+d5)/(2*d2))) Pw1ahCorteBB=((uo*ld)/((2*d4+d3+d5)/(2*d2))) Pw1ahCorteCC=((uo*lrm)/((2*d4+d3+d5)/(2*d2))) //disp (Pw1ah); //Permeancia VErtical En Aire Devanado 127V Pw1avCorteAA=((uo*lc)/((d1+d2)/(d1))) Pw1avCorteBB=((uo*ld)/((d1+d2)/(d1))) Pw1avCorteCC=((uo*lrm)/((d1+d2)/(d1))) //disp (Pw1av); //Permeancia Total Devanado Primario 127 V Aire PW1AirCorteAA=(2*((1/Pw1ahCorteAA)+(1/Pw1avCorteAA)))^-1; PW1AirCorteBB=(2*((1/Pw1ahCorteBB)+(1/Pw1avCorteBB)))^-1; PW1AirCorteCC=(2*((1/Pw1ahCorteCC)+(1/Pw1avCorteCC)))^-1; //Permeancia Total (Aire y Devanado) PW1CorteAA=PW1AirCorteAA+PW1CorteAA; PW1CorteBB=PW1AirCorteBB+PW1CorteBB; PW1CorteCC=PW1AirCorteCC+PW1CorteCC; disp('****** Permeancia Devanado Primario 127V Corte A-A Lado Izquierdo********') disp (PW1CorteAA); disp('****** Permeancia Devanado Primario 127V Exterior Corte B-B Lado Izquierdo********') disp (PW1CorteBB); disp('****** Permeancia Devanado Primario 127V Exterior Corte C-C Un Radio********') disp (PW1CorteCC); disp('****** Permeancia Total Vista Corte A-A********') PW1_Total_CorteAA=2*PW1CorteAA+2*PW1CorteCC;; disp(PW1_Total_CorteAA) disp('****** Permeancia Total Vista Corte B-B********') PW1_Total_CorteBB=2*PW1CorteBB+2*PW1CorteCC; disp(PW1_Total_CorteBB)
35e6691ce898fca8bd478a143f250c267f32df05
449d555969bfd7befe906877abab098c6e63a0e8
/1061/CH3/EX3.27/Ex3_27.sce
28da83a33aadbdee73fababe89cddb5b920cf1da
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
449
sce
Ex3_27.sce
//Ex:3.27 clc; clear; close; n1=1.47;// core refractive index n2=1.46;// cladding refractive index y=1.3;// wavelength in um dl=(n1-n2)/n1;// fractional refractive index diff NA=sqrt(n1^2-n2^2); v=2.405; a=(v*y)/(2*3.14*(sqrt(n1^2-n2^2)));// largest core radius in micrometer n_eff=n1-(NA/(2*3.14*(a/y)));// fractional refractive index printf("The largest core radius =%f um", a); printf("\n The fractional refractive index=%f",n_eff);
d773eb6669ba4b77558361c529ccad7b18b25754
8217f7986187902617ad1bf89cb789618a90dd0a
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/genfac3d.man.tst
f9cd4675dc4e16c344ab6a2523525e8e7e8675f6
[ "LicenseRef-scancode-public-domain", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
clg55/Scilab-Workbench
4ebc01d2daea5026ad07fbfc53e16d4b29179502
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
refs/heads/master
2023-05-31T04:06:22.931111
2022-09-13T14:41:51
2022-09-13T14:41:51
258,270,193
0
1
null
null
null
null
UTF-8
Scilab
false
false
97
tst
genfac3d.man.tst
clear;lines(0); t=[0:0.3:2*%pi]'; z=sin(t)*cos(t'); [xx,yy,zz]=genfac3d(t,t,z); plot3d(xx,yy,zz)
543fb84d5401dc08af82b20c824a25085506464c
c206e3f57b0a6f75bd1feefefecd29398746c358
/scripts/mediana.sci
39acc3c8ca1188b0495acf407cda5709556ca729
[]
no_license
danielfcollier/scilab-image-processing-scripts
e092a7c1a6a0ade906c020218a9571290245e40f
43d78cb06dc6c27ab8663f351e4c172d038280ce
refs/heads/main
2023-04-12T20:05:52.840157
2021-04-27T18:56:06
2021-04-27T18:56:06
362,219,761
0
0
null
null
null
null
ISO-8859-1
Scilab
false
false
747
sci
mediana.sci
function M = mediana(M, v) // MEDIANA_ // M: imagem em tons de cinza // v: vizinhança do tipo v x v, 3 ou 5 // // Uso: // I = imread('figura.jpg'); // M = mediana(I, 3); // imshow(M) // [m n] = size(M); // análise do tamanho da vizinhança if (v==3) d = 1; elseif (v==5) d = 2; end // m1 = m + 2*d; n1 = n + 2*d; p0 = 1 + d; X = -ones(m1,n1); X(p0:(m1-d),p0:(n1-d)) = M; // for i=p0:(m1-d) for j=p0:(n1-d) N = X(i-d:i+d,j-d:j+d); if ( max(1*mtlb_any(N==-1)) ) p = sum(1*((-ones(v,v))==(N))); s = N(:); M(i-d,j-d) = median(s(1:(v^2-p))); else M(i-d,j-d) = median(N(:)); end end end // M = round(M); M = M - min(M); M = M / max(M); endfunction
22a465e0e3526ef2c16221e2204f9a9b0551fc21
bbdc72de6d7eef74128eaf52b1f040053943de38
/Code/TP7/TP7.sce
a4bc00100d84814e64d8eac5e649deee6c452958
[]
no_license
Abdel-BHPC/Numerical-analysis
46bb4dbcd26e00d6c4f405fe59a1ba433b8b72e0
2bcdb80d9ab8890d036eac3cce92b595abb88784
refs/heads/main
2023-03-02T14:11:06.939206
2021-02-08T08:40:07
2021-02-08T08:40:07
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
344
sce
TP7.sce
/* Créateur: Jinshan GUO et Anais Debureaux */ exec(fullpath(pwd() + '\TP7.sci'),-1); a = [2;-2]; t0 = 0; T = 15; Nptmil = 100; Neul = 100; Node = 100; Nrk4 = 100; tracevdp(a, t0, T, Neul, Nptmil, Node, Nrk4); //tracevdp(a, t0, T, 1000, 1000, 1000, 1000); //===========Exo5 =========== T = 10; [TV, TE] = compar(a, t0, T);
5f05661f8015935db66ae3776aee902eabea10a9
67a252961f6616fc6db89eb11c1c83abf4d41468
/CS4110Design3/CS16B032Register8.tst
c327e155e7a4bae0fef9f2a5bf335660a17fe966
[]
no_license
ramyavelaga9/CS4110
5a45497cd7ef28d4472a57a257dad8e5f4a3d17b
4a3cd82916820e4f7a4930a0efce14def8268dfc
refs/heads/master
2020-07-17T23:41:12.196500
2019-11-20T04:24:32
2019-11-20T04:24:32
203,223,619
0
0
null
null
null
null
UTF-8
Scilab
false
false
583
tst
CS16B032Register8.tst
load CS16B032Register8.hdl, output-file CS16B032Register8.out, compare-to CS16B032Register8.cmp, output-list time%S1.4.1 in%D1.6.1 load%B2.1.2 out%D1.6.1; set in 0, set load 0, tick, output; tock, output; set in 0, set load 1, tick, output; tock, output; set in 120, set load 0, tick, output; tock, output; set in 111, set load 0, tick, output; tock, output; set in 13, set load 1, tick, output; tock, output; set in 123, set load 1, tick, output; tock, output; set in 0, set load 0, tick, output; tock, output; set in 0, set load 1, tick, output; tock, output;
47ac9743021769794b7faf8b0e4167c67e5a18ee
449d555969bfd7befe906877abab098c6e63a0e8
/443/CH17/EX17.9/17_9.sce
dd7a335368e6a5a2f12cc49e7d41b669135f4578
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
470
sce
17_9.sce
pathname=get_absolute_file_path('17_9.sce') filename=pathname+filesep()+'17_9_data.sci' exec(filename) //Brake specific energy consumption(Power remains same as in the previous problem) bsec=(mf/bp)*CV*10^-3 //Indicated specific energy consumption(mechanical efficiency remains same as in previous problem) isec=bsec*nm printf("\n\nRESULTS\n\n") printf("\nBrake specific energy consumption:%f\n",bsec) printf("\nIndicated specific energy consumption:%f\n",isec)
5718178bb276bf7ec837ef342b3a24cd5fc70db6
31cc146b7597c1571ad100fc4dd888898b1b4eb0
/io/read_off.sce
7682812f7d8efd47912cd0d442126b7c671aac6e
[]
no_license
rigid1980/gpp_scilab
a525ae046722e7ba52ebea6003ce712b51631ff6
fadb75dea26cf341e6dc60874efd88c016df4f3b
refs/heads/master
2016-09-11T08:37:44.538715
2014-03-26T08:37:35
2014-03-26T08:37:35
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
3,670
sce
read_off.sce
//// read_off // Read mesh data from OFF file // //// Syntax // [face,vertex] = read_off(filename) // [face,vertex,color] = read_off(filename) // //// Description // filename : string, file to read. // // face : double array, nf x 3 array specifying the connectivity of the mesh. // vertex : double array, nv x 3 array specifying the position of the vertices. // color : double array, nv x 3 or nf x 3 array specifying the color of the vertices or faces. // //// Example // [face,vertex] = read_off('torus.off'); // [face,vertex,color] = read_off('torus.off'); // //// Contribution // Author: Meng Bin // Created: 2014/03/05 // Revised: 2014/03/07 by Meng Bin, block write to enhance writing speed // Revised: 2014/03/14 by Wen, modify doc and code format // // Copyright 2014 Computational Geometry Group // Department of Mathematics, CUHK // http://www.lokminglui.com function [face,vertex,color] = read_off(filename) fid = fopen(filename,'r'); if( fid==-1 ) error('Can''t open the file.'); end // read header [tline] = skip_comment_blank_line(fid,0); if ~strcmpi(tline(1:3), 'OFF') error('The file is not a valid OFF one.'); end // read number of verteics and faces [tline] = skip_comment_blank_line(fid,0); [a,tline] = strtok(tline); nvert = str2num(a); [a,tline] = strtok(tline); nface = str2num(a); color = []; // read vertex info tot_cnt = 0; A = []; tline = ''; while (~feof(fid) && (isempty(tline) || tline(1) == '#')) pos = ftell(fid); tline = strtrim(fgets(fid)); end C = regexp(tline,'\s+','split'); // read columns of vertex line cols = size(C,2); // rewind to starting of the line fseek(fid, pos,-1); // vertex and color line format string format = strcat(repmat('//f ', [1, cols]), '\n'); // start reading vertex while (~feof(fid) && tot_cnt < cols*nvert) [A_,cnt] = fscanf(fid,format, cols*nvert-tot_cnt); tot_cnt = tot_cnt + cnt; A = [A;A_]; skip_comment_blank_line(fid,1); end if tot_cnt~=cols*nvert warning('Problem in reading vertices. number of vertices does not match header.'); end A = reshape(A, cols, tot_cnt/cols); vertex = A(1:3,:)'; // extract vertex color if cols == 6 color = A(4:6,:)'; elseif cols > 6 color = A(4:7,:)'; end // read face info tot_cnt = 0; A = []; tline = ''; while (~feof(fid) && (isempty(tline) || tline(1) == '#')) pos = ftell(fid); tline = strtrim(fgets(fid)); end C = regexp(tline,'\s+','split'); // read columns of face line nvert_f = str2num(C{1}); cols = nvert_f+1; if isempty(color) cols = size(C,2); end // rewind to starting of the line fseek(fid, pos,-1); // face and color line format string format = strcat(repmat('//d ', [1, nvert_f+1]), repmat('//f ', [1, cols-nvert_f-1])); format = strcat(format, '\n'); // start reading face while (~feof(fid) && tot_cnt < cols*nface) [A_,cnt] = fscanf(fid,format, cols*nface-tot_cnt); tot_cnt = tot_cnt + cnt; A = [A;A_]; skip_comment_blank_line(fid,1); end if tot_cnt~=cols*nface error('Problem in reading faces. Number of faces does not match header.'); end A = reshape(A, cols, tot_cnt/cols); face = A(2:nvert_f+1,:)'+1; // extract face color if cols > nvert_f+1 color = A(nvert_f+2:cols,:)'; end fclose(fid); function [tline] = skip_comment_blank_line(fid,rewind) // skip empty and comment lines // get next content line // if rewind==1, then rewind to the starting of the content line tline = ''; if rewind==1 pos = ftell(fid); end while (~feof(fid) && (isempty(tline) || tline(1) == '#')) if rewind==1 pos = ftell(fid); end tline = strtrim(fgets(fid)); end if rewind==1 fseek(fid, pos,-1); end
0ba36335e85cc8b122a0b73f46d6024523eb5423
6227c5ef4e1c5d72cdebd6eac81f82161dda7e17
/digi_dc_dc/Scilab/test_functions/test_buck_subsampling_dual.sci
037179cd18776eda838770926bb05bfefa6ae22b
[]
no_license
maxsimmonds1337/Scilab
b4e8a03a9fbeda4d8f6e51e07d205bcf51addce8
b413659e2b697565c24ad440d158f5bd28203570
refs/heads/master
2022-11-04T23:17:50.045864
2020-06-13T20:35:24
2020-06-13T20:35:24
272,081,285
0
0
null
null
null
null
UTF-8
Scilab
false
false
707
sci
test_buck_subsampling_dual.sci
//Test the functions for the Buck //REactive elements and switching frequency L=1e-6; rl=5e-3; rc=10e-3; //Parasitic element values are needed, but not very important C=200e-6; f_switch=1e6; tctrl=400*1e-9; Po=9; Vo=1.8; Io=Po/Vo; //The model requires the output current Rl=Vo/Io; Vin=5; //Input voltage range // Worst case in terms of delay will be having the minimum voltage, the longest //Duty Dmax=Vo/min(Vin); Dmin=Vo/max(Vin); n_sub=[1 2 3 4]; magGvuz=[]; phaseGvuz=[]; magGiuz=[]; phaseGiuz=[]; legenda=[]; //New function for(i=1:length(n_sub)) [Gvuz_new,Gvus_new,Giuz_new,Gius_new]=ConverterModels.Buck_ss_model_dual(L,rl,C,rc,max(Vin),Dmin,Vo,0*Io,Rl,tctrl,f_switch,n_sub(i),3); end
a990208afbee2495d309c3cbc1ce936ccb2a6a9f
449d555969bfd7befe906877abab098c6e63a0e8
/3760/CH1/EX1.18/Ex1_18.sce
4dcbbda5dac60e87ae5853cb6a2c82ecdf8eb843
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,222
sce
Ex1_18.sce
clc; P=20000; // rated power of transformer E1=2500; // primary side voltage E2=500; // secondary side voltage r1=8; // primary resistance in ohm x1=17; // primary leakage reactance in ohm r2=0.3; // secondary resistance in ohm x2=0.7; // secondary leakage reactane in ohm k=E2/E1; // turns ratio re2=r2+r1*k^2; // equivalent resistance referred to secondary winding xe2=x2+x1*k^2; // equivalent leakage reactance referred to secondary winding Il=P/E2; // full load secondary current disp('case a'); pf=0.8; // lagging power factor vd=Il*(re2*pf+xe2*sqrt(1-pf^2)); // Voltage drop in impedance in volts vt=E2-vd; // secondary terminal voltage printf('secondary terminal voltage for a lagging power factor is %f v\n',vt); vr=((E2-vt)/E2)*100; // voltage regulation printf('voltage regulation for a lagging power factor is %f percent\n',vr); disp('case b'); pf=0.8; // leading power factor vd=Il*(re2*pf-xe2*sqrt(1-pf^2)); // Voltage drop in impedance in volts vt=E2-vd; // secondary terminal voltage printf('secondary terminal voltage for a leading power factor is %f v\n',vt); vr=((E2-vt)/E2)*100; // voltage regulation printf('voltage regulation for a leading power factor is %f percent\n',vr);
22203f4d0739860542de4f522902c9f65921c5f3
46881586c922b14b8f940ebc1696d0f1703ba9fb
/monte-carlo-method.sci
7a958cdc19bf7ca776b7510197f76b4ac6295c81
[ "MIT" ]
permissive
louisfisch/monte-carlo-method
9519f1e48da334bb6131caecf999bd8ca66eb0f8
c52b46d242610017646a0a69f32b5bbdbb5c9b46
refs/heads/master
2019-08-09T09:56:17.239346
2018-01-20T16:10:07
2018-01-20T16:44:40
118,258,484
1
0
null
null
null
null
UTF-8
Scilab
false
false
2,428
sci
monte-carlo-method.sci
// Clear already defined variables clear; // funcprot(0) prevents from getting a warning message about already defined/loaded functions funcprot(0); function new_graphic_window() AllCurrentFiguresId = get('figures_id'); if isempty(AllCurrentFiguresId) then NewFigureId = 0; else CurrentFigure = get('current_figure'); CurrentFigureId = CurrentFigure.figure_id; NewFigureId = CurrentFigureId + 1; end scf(NewFigureId); clf(NewFigureId); endfunction function I = MonteCarloMethod(fct, a, b, c, d, N) // Generate N x N random numbers X = a + (b - a) * rand(1, N); Y = c + (d - c) * rand(1, N); Z = [X; Y]; SuccessPointCount = 0; FailPointCount = 0; for i = 1:N if Z(2, i) > 0 & Z(2, i) <= fct(Z(1, i)) then SuccessPointCount = SuccessPointCount + 1; elseif Z(2, i) < 0 & Z(2, i) >= fct(Z(1, i)) then FailPointCount = FailPointCount + 1; else SuccessPointCount = SuccessPointCount; FailPointCount = FailPointCount; end end I = (b - a) * (d - c) * ((SuccessPointCount - FailPointCount) / N); new_graphic_window(); // Draw the curve v = linspace(a, b, 100); plot(v, fct); mod_axes = get('current_axes'); // Determine the axes' size mod_axes.data_bounds = [a, c; b, d]; // Force float writing mod_axes.ticks_format = ['%3.1f', '%3.1f']; // Force the axes' size to what was defined through data_bounds mod_axes.tight_limits = 'on'; xgrid; // Compute the vector fct(Z(1,i)) for i = 1, ..., N FctX = feval(Z(1, :), fct); // Look for the "success" and "fail" points SuccessPointsLocations = find((Z(2, :) <= FctX & Z(2, :) >= 0) | (Z(2, :) >= FctX & Z(2, :) < 0)); FailPointsLocations = find((Z(2, :) > FctX & Z(2, :) >= 0) | (Z(2, :) < FctX & Z(2, :) < 0)); // Draw "success" and "fail" points plot(Z(1, SuccessPointsLocations), Z(2, SuccessPointsLocations), '+g'); plot(Z(1, FailPointsLocations), Z(2, FailPointsLocations), '+r'); // Display a figure's key (-1 is for +, 3 and 5 are for green and red in this order) legends(['Success points', 'Fail points'], [-1, -1; 3, 5], 1); // Display the approximate value of I disp(I); endfunction // Define function(s) deff('[y]=f0(x)', 'y=sqrt(1-x^2e)'); // Call MonteCarloMethod() I = MonteCarloMethod(f0, 0, 1, 0, 1, 100000);
af329e5548ffc2eaa3f50f4f22c5748a5197e1bb
449d555969bfd7befe906877abab098c6e63a0e8
/1271/CH13/EX13.16/example13_16.sce
ed406a82a6cffc01e2b3c6e90b1840db422136c8
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
627
sce
example13_16.sce
clc // Given that lambda = 1.4 // wavelength of x-ray in angstrom x1 = 1 // coordinate on x axis of plane y1 = 1 // coordinate on y axis of plane z1 = 1 // coordinate on z axis of plane a = 5 // lattice parameter of of crystal in angstrom // Sample Problem 16 on page no. 13.30 printf("\n # PROBLEM 16 # \n") printf(" Standard formula used \n") printf(" d = a / (x1^2 + y1^2 + z1^2)^1/2 \n") n = 1 // for first order d = a / sqrt(x1^2 + y1^2 + z1^2) theta = asind((n * lambda) / (2 * d)) printf("\n Angle of incidence of x-ray on the plane is %f degree.",theta)
e22f9162fd42f987ea0a10204156cf0fd18920c6
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
/Área 1/Aula 5/Questao_7.sce
78ecf7154852ef850d72b1d07ba93e37df27ae02
[ "MIT" ]
permissive
JPedroSilveira/numerical-calculus-with-scilab
32e04e9b1234a0a82275f86aa2d6416198fa6c81
190bc816dfaa73ec2efe289c34baf21191944a53
refs/heads/master
2023-05-10T22:39:02.550321
2021-05-11T17:17:09
2021-05-11T17:17:09
null
0
0
null
null
null
null
UTF-8
Scilab
false
false
642
sce
Questao_7.sce
n = 405 A = eye(n,n) for j = 1:n for i = 1:n if(abs(i - j) > 1) A(i,j) = 0 else A(i,j) = 1 end end end function [L,A,C] = fatoraLU(A) n = size(A,1) L = eye(n,n) C = 0 for j = 1:n-1 for i = j+1:n L(i,j) = A(i,j)/A(j,j) C = C + 1 for z = j+1:n if(A(j,z) ~= 0 && L(i,j) ~= 0) A(i,z) = A(i,z) - L(i,j)*A(j,z) C = C + 2 end end A(i,j) = 0 /*Para evitar erro de arredondamento*/ end end endfunction [L,U,C] = fatoraLU(A)
c19b0f14968c5d5456d1140612a72fede64957fa
089894a36ef33cb3d0f697541716c9b6cd8dcc43
/NLP_Project/test/tweet/bow/bow.5_3.tst
ba200e0ff863a9146c74bbc8791d032b46594b6d
[]
no_license
mandar15/NLP_Project
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
refs/heads/master
2020-05-20T13:36:05.842840
2013-07-31T06:53:59
2013-07-31T06:53:59
6,534,406
0
1
null
null
null
null
UTF-8
Scilab
false
false
37,222
tst
bow.5_3.tst
5 5:0.5 6:0.11764705882352941 15:0.2222222222222222 24:1.0 34:0.3 37:0.3333333333333333 42:0.2 56:0.3333333333333333 64:0.5 73:1.0 82:0.16666666666666666 97:0.5 140:0.5 173:2.0 191:0.3333333333333333 261:0.019230769230769232 320:2.0 373:0.3333333333333333 399:1.0 488:1.0 489:2.0 583:1.0 587:1.5 671:1.0 775:2.0 908:1.0 1104:0.5 1152:1.0 1160:1.0 1569:0.3333333333333333 1750:1.0 2033:1.0 2292:1.0 2355:1.0 3515:0.015384615384615385 3743:1.0 3970:1.0 4054:1.0 4210:1.0 4348:1.0 4408:0.2 4863:1.0 5100:0.5 5122:2.0 5560:1.0 5807:1.0 7278:1.0 7379:1.0 5 1:0.3333333333333333 5:1.0 6:0.058823529411764705 34:0.1 56:0.3333333333333333 82:0.3333333333333333 97:0.5 105:0.5 131:0.5 143:0.25 151:1.0 190:1.0 191:0.16666666666666666 222:0.5 268:1.0 275:0.5 320:1.0 441:0.3333333333333333 488:1.0 863:1.0 1210:0.3333333333333333 1569:0.3333333333333333 3267:1.0 3375:1.0 3515:0.015384615384615385 4418:1.0 5100:2.0 5135:1.0 5146:1.0 5206:0.5 5732:1.0 5984:1.0 7379:1.0 5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 64:0.25 82:0.16666666666666666 131:0.5 191:0.5 220:1.0 261:0.019230769230769232 367:1.0 1058:1.0 1661:1.0 4210:1.0 4316:1.0 4980:1.0 5100:1.0 5206:0.5 5884:1.0 5 15:0.16666666666666666 73:1.0 97:0.5 155:0.09090909090909091 160:1.0 191:0.3333333333333333 206:1.0 222:0.5 238:0.14285714285714285 320:1.0 367:1.0 488:1.0 613:1.0 730:2.0 795:1.0 911:1.0 938:2.0 1313:1.0 1661:1.0 2457:1.0 3515:0.015384615384615385 4155:1.0 4210:4.0 4547:1.0 5100:0.5 5122:1.0 7379:1.0 5 6:0.17647058823529413 15:0.1111111111111111 53:1.0 64:0.5 106:1.0 107:0.5 135:0.2 150:0.023255813953488372 185:1.0 191:0.16666666666666666 319:0.058823529411764705 320:1.0 327:0.16666666666666666 424:1.0 462:1.0 561:0.5 622:1.0 870:0.5 977:1.0 1021:1.0 1354:0.3333333333333333 1704:1.0 2819:1.0 3101:0.5 3515:0.007692307692307693 4210:2.0 5100:0.5 5122:2.0 6965:1.0 7145:1.0 5 5:2.0 6:0.058823529411764705 34:0.1 56:0.3333333333333333 63:1.0 132:1.0 147:0.5 150:0.023255813953488372 176:1.0 191:0.16666666666666666 215:0.1 226:0.5 308:1.0 320:1.0 350:0.125 427:0.1 443:1.0 473:0.5 533:0.25 561:1.0 722:1.0 866:1.0 918:0.3333333333333333 923:1.0 1354:0.3333333333333333 1384:1.0 2415:1.0 2591:0.3333333333333333 3515:0.007692307692307693 3595:0.5 4210:3.0 4371:1.0 5122:3.0 5215:1.0 6015:1.0 6996:1.0 7198:1.0 5 5:0.5 6:0.058823529411764705 15:0.1111111111111111 17:0.25 23:0.3076923076923077 37:1.0 45:1.0 73:1.0 97:0.5 98:0.5 101:1.0 131:0.5 150:0.023255813953488372 155:0.18181818181818182 165:0.2857142857142857 191:0.16666666666666666 215:0.1 223:1.0 275:0.5 320:1.0 359:0.5 367:1.0 380:1.0 878:1.0 908:1.0 1275:1.0 1391:1.0 1416:1.0 1484:1.0 1580:1.0 1998:3.0 2312:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4210:4.0 4481:1.0 5100:3.0 5122:1.0 5127:0.5 5168:1.0 5206:0.5 7391:1.0 5 5:0.5 6:0.058823529411764705 42:0.2 56:0.3333333333333333 64:1.0 75:0.14285714285714285 82:0.16666666666666666 97:1.0 128:0.5 150:0.023255813953488372 160:1.0 192:1.0 215:0.1 219:0.3333333333333333 232:1.0 319:0.058823529411764705 320:1.0 336:0.5 380:1.0 427:0.1 534:0.25 561:0.5 786:1.0 809:1.0 816:0.5 866:3.0 1109:1.0 1162:1.0 1202:1.0 1569:0.3333333333333333 1885:1.0 1998:1.0 2312:1.0 2462:1.0 3515:0.007692307692307693 3628:1.0 4210:1.0 4256:1.0 4498:1.0 5100:2.0 6086:1.0 6382:1.0 7168:1.0 5 5:0.5 23:0.07692307692307693 56:0.3333333333333333 64:0.25 75:0.14285714285714285 97:0.5 150:0.023255813953488372 191:0.16666666666666666 373:0.6666666666666666 399:0.5 427:0.1 742:0.5 2263:0.5 2722:1.0 2892:1.0 3080:1.0 5100:2.5 5215:1.0 5549:1.0 5662:1.0 5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 34:0.1 54:2.0 56:0.6666666666666666 97:0.5 105:0.5 135:0.2 143:0.25 190:1.0 191:0.16666666666666666 206:2.0 222:0.5 286:1.0 289:1.0 320:1.0 373:0.3333333333333333 543:0.5 644:0.5 829:1.0 866:1.0 908:1.0 1162:1.0 1210:0.3333333333333333 1345:0.5 1661:1.0 2052:1.0 2312:1.0 2683:0.14285714285714285 2892:1.0 3249:1.0 3515:0.007692307692307693 4210:1.0 5100:1.0 5122:1.0 6602:1.0 5 1:0.16666666666666666 15:0.16666666666666666 23:0.23076923076923078 42:0.2 56:0.6666666666666666 64:0.25 96:0.14285714285714285 135:0.2 147:1.0 150:0.023255813953488372 181:0.25 185:1.0 320:1.0 359:1.0 407:1.0 566:1.0 700:1.0 737:1.0 923:1.0 938:1.0 1105:1.0 1210:0.3333333333333333 1345:1.0 1354:0.3333333333333333 1847:1.0 2078:1.0 2249:1.0 2263:0.5 2312:1.0 2683:0.14285714285714285 2892:1.0 3515:0.007692307692307693 4210:5.0 5100:1.5 5170:1.0 5753:1.0 5760:1.0 5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 42:0.2 45:1.0 82:0.16666666666666666 97:1.5 155:0.09090909090909091 191:0.3333333333333333 261:0.019230769230769232 275:0.5 284:1.0 320:1.0 473:0.5 743:1.0 761:1.0 791:0.5 1154:1.0 1651:1.0 2235:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4210:3.0 4568:1.0 4625:1.0 5100:0.5 5135:1.0 5 1:0.16666666666666666 6:0.11764705882352941 34:0.2 56:0.3333333333333333 64:0.25 97:1.0 106:1.0 131:0.5 135:0.6 150:0.06976744186046512 160:1.0 191:0.16666666666666666 194:1.0 220:2.0 261:0.019230769230769232 275:0.5 320:1.0 327:0.16666666666666666 538:1.0 542:0.5 768:0.5 830:1.0 866:3.0 1258:0.3333333333333333 1354:0.3333333333333333 1492:1.0 2052:1.0 3515:0.007692307692307693 4210:4.0 4498:1.0 5122:1.0 5164:0.5 5354:1.0 6530:1.0 5 4:1.0 25:0.5 42:0.2 96:0.14285714285714285 97:0.5 131:0.5 135:0.2 191:0.16666666666666666 1363:1.0 1376:1.0 1586:0.16666666666666666 2113:1.0 3812:1.0 4210:1.0 5100:2.0 5124:1.0 5328:1.0 5861:1.0 6095:1.0 6683:1.0 6869:1.0 5 5:0.5 6:0.11764705882352941 15:0.1111111111111111 24:1.0 34:0.1 42:0.4 56:0.6666666666666666 63:1.0 82:0.16666666666666666 106:1.0 131:0.5 132:1.0 135:0.4 145:1.0 150:0.023255813953488372 155:0.09090909090909091 181:0.25 191:0.16666666666666666 261:0.019230769230769232 327:0.16666666666666666 367:1.0 642:1.0 695:1.0 768:0.5 794:1.0 908:1.0 977:1.0 1345:1.0 1537:1.0 2683:0.14285714285714285 2807:1.0 3567:0.5 4054:1.0 4210:2.0 4475:1.0 5100:1.5 5121:0.5 5318:1.0 5980:1.0 6448:1.0 6607:1.0 7301:1.0 5 97:0.5 117:0.05 150:0.023255813953488372 273:0.3333333333333333 373:0.3333333333333333 1241:0.09090909090909091 2791:0.3333333333333333 4210:1.0 5100:1.5 5 5:0.5 15:0.1111111111111111 191:0.3333333333333333 251:0.5 261:0.019230769230769232 350:0.125 1448:0.3333333333333333 1661:1.0 3563:0.5 3567:0.5 3794:1.0 5100:1.5 5124:1.0 6530:1.0 5 6:0.11764705882352941 17:0.25 42:0.2 56:0.3333333333333333 64:0.25 97:0.5 98:0.5 147:0.5 155:0.09090909090909091 191:0.16666666666666666 215:0.1 261:0.019230769230769232 359:0.5 583:1.0 957:1.0 1083:1.0 1354:0.3333333333333333 1382:0.3333333333333333 1403:1.0 1661:1.0 2302:1.0 2683:0.14285714285714285 2716:1.0 4210:4.0 4262:1.0 5100:1.0 5308:1.0 5 23:0.07692307692307693 82:0.16666666666666666 97:0.5 117:0.05 160:1.0 1241:0.09090909090909091 1484:1.0 2683:0.14285714285714285 3590:1.0 4210:1.0 5100:0.5 5328:1.0 6095:1.0 6384:0.5 5 5:0.5 15:0.05555555555555555 17:0.25 23:0.07692307692307693 96:0.14285714285714285 97:0.5 98:1.0 140:0.5 143:0.25 150:0.023255813953488372 167:1.0 176:1.0 191:0.3333333333333333 215:0.1 222:0.5 261:0.038461538461538464 320:1.0 367:1.0 399:0.5 908:1.0 1063:1.0 1354:0.3333333333333333 1704:1.0 1890:1.0 2530:1.0 3515:0.007692307692307693 5100:1.5 7164:1.0 5 1:0.3333333333333333 5:1.0 11:0.3333333333333333 15:0.16666666666666666 56:0.3333333333333333 197:0.5 226:0.5 240:1.0 320:2.0 350:0.125 795:1.0 953:1.0 1210:0.3333333333333333 1885:2.0 2761:1.0 2875:1.0 3042:1.0 3515:0.015384615384615385 4071:1.0 4210:4.0 4221:1.0 4707:1.0 5100:1.5 5697:1.0 5986:1.0 6430:1.0 6432:1.0 7158:1.0 7177:1.0 7343:1.0 7344:1.0 5 5:0.5 6:0.058823529411764705 15:0.2222222222222222 34:0.2 42:0.2 45:1.0 56:0.6666666666666666 73:2.0 82:0.3333333333333333 97:0.5 177:0.5 191:0.16666666666666666 319:0.058823529411764705 320:1.0 534:0.25 681:0.2 695:1.0 866:2.0 926:1.0 1569:0.3333333333333333 1757:1.0 2054:1.0 2295:1.0 3515:0.015384615384615385 4077:1.0 4210:2.0 4988:1.0 5100:1.0 5522:1.0 5546:1.0 5956:1.0 6238:1.0 6291:1.0 7057:2.0 5 1:0.16666666666666666 5:1.0 6:0.11764705882352941 15:0.05555555555555555 23:0.07692307692307693 34:0.2 51:0.25 56:0.6666666666666666 63:1.0 64:0.5 97:0.5 106:1.0 107:0.5 135:0.2 150:0.023255813953488372 153:0.3333333333333333 191:0.16666666666666666 246:1.0 287:1.0 305:1.0 320:2.0 350:0.125 367:1.0 482:1.0 506:0.3333333333333333 586:1.0 866:1.0 988:0.5 1219:1.0 1266:1.0 1354:0.6666666666666666 1389:0.5 1398:1.0 1492:1.0 1685:1.0 1885:1.0 1992:3.0 2143:1.0 2685:1.0 3515:0.015384615384615385 3522:1.0 3590:1.0 4210:2.0 5100:1.0 5122:1.0 5271:1.0 5524:1.0 5 1:0.16666666666666666 4:1.0 5:1.0 6:0.23529411764705882 15:0.1111111111111111 17:0.25 34:0.2 44:1.0 51:0.25 56:0.3333333333333333 64:0.5 75:0.14285714285714285 97:0.5 320:1.0 473:0.5 488:1.0 530:1.0 531:0.5 534:0.25 866:1.0 988:0.5 1389:0.5 1661:1.0 1759:1.0 3515:0.015384615384615385 4054:1.0 4180:1.0 4210:2.0 4418:1.0 5100:1.5 5122:2.0 5125:1.0 5212:1.0 5222:1.0 6087:1.0 6318:1.0 6537:2.0 5 5:0.5 6:0.17647058823529413 23:0.07692307692307693 56:0.3333333333333333 64:0.25 143:0.25 150:0.023255813953488372 151:1.0 190:1.0 215:0.1 284:1.0 319:0.058823529411764705 320:2.0 350:0.25 368:1.0 373:0.3333333333333333 461:1.0 527:1.0 672:1.0 798:1.0 1432:1.0 2297:1.0 2927:1.0 3515:0.015384615384615385 4210:2.0 4262:1.0 5100:2.5 5122:1.0 5354:1.0 5441:1.0 5641:1.0 6055:1.0 6391:1.0 5 5:0.5 6:0.29411764705882354 15:0.1111111111111111 31:1.0 34:0.2 42:1.4 56:0.3333333333333333 75:0.14285714285714285 82:0.16666666666666666 96:0.14285714285714285 97:0.5 105:0.5 117:0.05 143:0.25 147:0.5 169:1.0 180:1.0 320:3.0 367:1.0 839:1.0 866:1.0 908:1.0 988:0.5 1036:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1355:1.0 1544:1.0 2009:1.0 2295:1.0 3498:1.0 3515:0.015384615384615385 4210:3.0 4498:1.0 5100:1.0 5122:1.0 5124:1.0 5153:0.3333333333333333 5242:1.0 5284:1.0 5687:1.0 5 1:0.16666666666666666 6:0.058823529411764705 15:0.1111111111111111 17:0.25 51:0.25 97:0.5 145:1.0 157:1.0 190:3.0 320:2.0 376:1.0 427:0.1 908:1.0 1210:0.3333333333333333 1674:1.0 1790:1.0 1953:1.0 2083:1.0 2312:1.0 2597:1.0 2598:1.0 3098:1.0 3515:0.015384615384615385 5100:1.5 5119:1.0 5122:2.0 6123:1.0 7210:1.0 5 1:0.16666666666666666 5:0.5 15:0.1111111111111111 17:0.25 42:0.2 45:1.0 56:0.3333333333333333 64:0.25 73:1.0 82:0.3333333333333333 135:0.2 146:0.3333333333333333 176:1.0 182:0.1 191:0.16666666666666666 261:0.019230769230769232 273:0.3333333333333333 275:0.5 320:1.0 339:0.5 402:1.0 483:1.0 594:1.0 1032:1.0 1432:2.0 1448:0.3333333333333333 1661:1.0 1671:1.0 2312:1.0 3098:1.0 3244:1.0 3344:1.0 3515:0.007692307692307693 4210:3.0 5100:1.0 5129:1.0 5745:1.0 7210:1.0 5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 37:0.3333333333333333 51:0.25 143:0.25 150:0.023255813953488372 181:0.25 191:0.3333333333333333 206:1.0 215:0.2 226:0.5 261:0.019230769230769232 320:1.0 427:0.1 561:0.5 617:1.0 681:0.4 768:0.5 795:1.0 995:0.25 1058:1.0 1180:1.0 1265:1.0 1586:0.16666666666666666 1928:1.0 2721:1.0 3401:1.0 3515:0.007692307692307693 4210:1.0 4262:1.0 5100:1.5 6720:1.0 7157:1.0 5 5:1.5 6:0.11764705882352941 15:0.16666666666666666 17:0.25 25:0.5 34:0.1 45:1.0 51:0.25 56:0.6666666666666666 96:0.2857142857142857 97:0.5 98:0.5 128:0.5 191:0.16666666666666666 261:0.019230769230769232 320:2.0 399:0.5 574:0.25 681:0.2 852:1.0 993:1.0 1011:1.0 1258:0.3333333333333333 1403:1.0 1484:1.0 2312:1.0 3344:1.0 3515:0.015384615384615385 4210:1.0 5100:2.0 5153:0.6666666666666666 5291:1.0 5 5:0.5 15:0.1111111111111111 30:0.5 56:0.3333333333333333 96:0.14285714285714285 97:1.0 108:0.5 128:0.5 135:0.2 191:0.16666666666666666 261:0.019230769230769232 275:0.5 320:1.0 327:0.16666666666666666 595:1.0 660:1.0 1349:1.0 3515:0.007692307692307693 3567:0.5 4054:1.0 4210:1.0 5112:1.0 5122:1.0 5124:1.0 5153:0.3333333333333333 5618:1.0 6711:1.0 7164:1.0 5 5:1.5 6:0.058823529411764705 15:0.16666666666666666 17:0.25 23:0.07692307692307693 42:0.4 56:0.3333333333333333 96:0.14285714285714285 97:1.0 143:0.25 150:0.046511627906976744 251:0.5 320:1.0 367:1.0 427:0.1 613:1.0 615:1.0 648:1.0 737:1.0 768:0.5 1210:0.3333333333333333 1281:1.0 1675:1.0 1993:1.0 2268:1.0 2557:1.0 2849:1.0 3515:0.007692307692307693 3575:1.0 3590:1.0 4210:3.0 5100:1.0 5291:1.0 6949:1.0 5 23:0.07692307692307693 56:0.3333333333333333 191:0.16666666666666666 197:1.0 261:0.019230769230769232 368:1.0 647:1.0 908:1.0 1202:1.0 1354:0.6666666666666666 2097:1.0 4210:1.0 5100:1.0 5 5:1.5 15:0.05555555555555555 17:0.25 23:0.07692307692307693 54:1.0 56:0.3333333333333333 73:1.0 131:0.5 143:0.25 185:1.0 191:0.16666666666666666 215:0.1 220:1.0 261:0.019230769230769232 275:0.5 319:0.058823529411764705 320:1.0 561:0.5 566:1.0 654:0.14285714285714285 768:0.5 791:0.5 816:0.5 850:1.0 878:1.0 930:1.0 1210:0.3333333333333333 1421:1.0 1432:1.0 1580:3.0 1923:1.0 2045:1.0 3515:0.007692307692307693 4210:2.0 4480:1.0 5100:1.0 5146:1.0 5614:1.0 5 5:0.5 6:0.17647058823529413 17:0.5 23:0.15384615384615385 25:0.5 34:0.2 42:0.6 54:1.0 56:0.6666666666666666 97:0.5 107:0.5 108:0.5 135:0.2 143:0.5 157:1.0 192:1.0 223:1.0 320:2.0 339:0.5 397:1.0 399:0.5 587:0.5 595:1.0 1036:1.0 1044:1.0 1185:1.0 1354:0.3333333333333333 2033:1.0 2249:1.0 2263:0.5 2942:1.0 3204:1.0 3248:1.0 3249:1.0 3515:0.015384615384615385 4210:5.0 4402:1.0 5100:1.0 5122:1.0 5284:1.0 5317:1.0 5396:1.0 5399:1.0 5730:1.0 6110:1.0 6239:1.0 5 1:0.16666666666666666 5:0.5 6:0.058823529411764705 15:0.05555555555555555 25:0.5 31:1.0 42:0.2 56:0.3333333333333333 150:0.023255813953488372 191:0.5 261:0.019230769230769232 319:0.058823529411764705 320:2.0 339:1.0 423:0.5 424:1.0 427:0.1 488:1.0 717:1.0 742:0.5 768:0.5 1258:0.3333333333333333 2683:0.14285714285714285 2927:1.0 3515:0.007692307692307693 4210:1.0 5100:1.5 5122:2.0 5216:1.0 5317:1.0 5 5:0.5 6:0.11764705882352941 17:0.5 34:0.1 42:0.2 45:1.0 56:0.3333333333333333 64:0.25 97:0.5 147:0.5 150:0.023255813953488372 181:0.25 191:0.16666666666666666 215:0.1 261:0.019230769230769232 275:0.5 320:1.0 511:0.5 561:0.5 681:0.2 999:1.0 1044:1.0 1210:0.3333333333333333 1394:1.0 1432:1.0 2068:1.0 2585:1.0 2683:0.14285714285714285 3515:0.007692307692307693 3829:1.0 4185:1.0 4210:2.0 5100:2.0 5122:1.0 5129:1.0 5391:1.0 5555:1.0 5775:1.0 5776:1.0 6092:1.0 6430:1.0 6955:1.0 5 5:0.5 6:0.11764705882352941 11:0.3333333333333333 56:0.3333333333333333 60:1.0 64:0.25 115:1.0 194:1.0 320:1.0 350:0.125 427:0.2 441:0.3333333333333333 473:0.5 866:1.0 1210:0.3333333333333333 1445:0.5 1586:0.16666666666666666 1998:1.0 2263:0.5 2265:1.0 3515:0.007692307692307693 3628:1.0 4262:1.0 5100:1.5 5775:1.0 6043:1.0 6309:1.0 6347:1.0 7261:1.0 5 5:0.5 23:0.15384615384615385 34:0.1 64:0.25 66:1.0 82:0.16666666666666666 95:1.0 97:1.0 108:0.5 146:0.6666666666666666 160:1.0 185:1.0 191:0.3333333333333333 238:0.14285714285714285 261:0.019230769230769232 275:0.5 320:1.0 443:1.0 499:1.0 506:0.3333333333333333 566:1.0 696:0.5 908:1.0 927:1.0 1354:0.3333333333333333 1484:1.0 3515:0.007692307692307693 4210:4.0 5100:0.5 5122:1.0 5126:1.0 5127:0.5 5146:1.0 5308:1.0 6472:1.0 5 4:1.0 5:0.5 6:0.058823529411764705 17:0.25 56:0.6666666666666666 146:0.3333333333333333 155:0.09090909090909091 185:1.0 191:0.16666666666666666 238:0.14285714285714285 320:1.0 383:1.0 399:0.5 613:1.0 695:1.0 696:0.5 717:1.0 735:1.0 840:1.0 1345:0.5 1661:1.0 1692:0.3333333333333333 2069:1.0 2688:1.0 3515:0.007692307692307693 4210:2.0 5100:2.0 5122:1.0 5142:0.2 5317:1.0 5737:1.0 5 1:0.16666666666666666 15:0.16666666666666666 34:0.1 37:0.3333333333333333 42:0.2 54:1.0 97:0.5 131:0.5 135:0.2 150:0.023255813953488372 155:0.09090909090909091 215:0.1 423:0.5 506:0.3333333333333333 1354:0.3333333333333333 1471:1.0 1602:1.0 1674:1.0 2639:1.0 4210:2.0 5100:2.5 5124:1.0 5738:1.0 5792:1.0 6071:2.0 6348:1.0 5 6:0.058823529411764705 131:0.5 135:0.4 146:0.3333333333333333 147:0.5 150:0.023255813953488372 191:0.3333333333333333 261:0.019230769230769232 350:0.125 368:1.0 423:0.5 816:0.5 2097:1.0 4210:2.0 5100:0.5 5216:1.0 5 5:1.0 15:0.05555555555555555 23:0.07692307692307693 31:1.0 56:0.3333333333333333 63:1.0 64:0.25 96:0.14285714285714285 97:1.0 150:0.046511627906976744 155:0.09090909090909091 191:0.16666666666666666 220:1.0 223:1.0 275:0.5 405:1.0 427:0.1 506:0.3333333333333333 561:0.5 1759:1.0 3002:1.0 4210:2.0 4481:1.0 5100:1.5 5639:1.0 5989:1.0 5990:1.0 5 5:1.0 6:0.058823529411764705 23:0.07692307692307693 54:1.0 95:1.0 106:1.0 191:0.16666666666666666 251:0.5 319:0.058823529411764705 350:0.25 373:0.3333333333333333 409:1.0 424:1.0 427:0.1 583:1.0 1452:1.0 1740:1.0 2683:0.14285714285714285 4210:2.0 5100:1.0 5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 34:0.1 42:0.2 56:0.3333333333333333 63:1.0 64:0.5 73:2.0 167:1.0 191:0.16666666666666666 215:0.1 235:1.0 273:0.3333333333333333 319:0.058823529411764705 320:1.0 350:0.125 402:1.0 445:1.0 506:0.3333333333333333 742:0.5 1123:1.0 1865:1.0 2263:0.5 2266:1.0 2331:1.0 3235:1.0 3271:1.0 3515:0.007692307692307693 4210:1.0 5100:2.5 5122:1.0 5376:1.0 5528:1.0 7297:1.0 5 1:0.16666666666666666 5:2.0 6:0.17647058823529413 15:0.1111111111111111 17:0.25 23:0.07692307692307693 30:0.5 34:0.2 42:0.2 56:0.6666666666666666 95:1.0 96:0.2857142857142857 105:0.5 135:0.2 150:0.023255813953488372 165:0.2857142857142857 191:0.5 220:1.0 320:1.0 373:0.3333333333333333 399:0.5 473:0.5 531:0.5 542:0.5 583:1.0 717:1.0 1044:1.0 1123:1.0 1580:1.0 1872:1.0 1896:1.0 2317:1.0 2721:1.0 2821:1.0 2849:1.0 2921:1.0 3515:0.007692307692307693 3892:1.0 4210:3.0 4408:0.2 5100:1.5 5122:1.0 5768:1.0 6210:1.0 6528:1.0 5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 82:0.3333333333333333 143:0.25 181:0.25 191:0.16666666666666666 226:0.5 261:0.019230769230769232 320:1.0 386:0.5 424:1.0 515:1.0 866:1.0 1107:1.0 1210:0.3333333333333333 1215:1.0 1544:1.0 2683:0.14285714285714285 3515:0.007692307692307693 4054:1.0 4128:1.0 5100:1.0 5249:1.0 5382:0.5 6053:1.0 6210:1.0 6233:1.0 6236:1.0 5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 42:0.4 146:0.3333333333333333 150:0.023255813953488372 176:1.0 191:0.16666666666666666 302:1.0 441:0.3333333333333333 488:1.0 561:0.5 866:1.0 1091:1.0 1154:1.0 1484:1.0 1785:1.0 2331:1.0 2683:0.14285714285714285 2889:0.5 3515:0.007692307692307693 4210:1.0 5100:1.5 5124:1.0 5516:1.0 7145:1.0 5 5:0.5 51:0.25 56:0.3333333333333333 64:0.25 97:0.5 106:1.0 128:0.5 143:0.25 150:0.09302325581395349 165:0.14285714285714285 191:0.5 220:1.0 238:0.14285714285714285 261:0.019230769230769232 320:1.0 339:0.5 473:0.5 499:1.0 587:0.5 866:2.0 1058:1.0 1104:0.5 1161:1.0 1354:1.0 1382:0.3333333333333333 1561:1.0 1743:1.0 1992:1.0 2059:1.0 2132:1.0 2321:1.0 2639:1.0 2721:1.0 2980:1.0 3515:0.007692307692307693 4210:2.0 5100:0.5 5168:1.0 5570:1.0 5738:1.0 6727:1.0 5 5:0.5 42:0.2 51:0.25 96:0.14285714285714285 128:0.5 143:0.25 174:1.0 215:0.1 226:0.5 273:0.3333333333333333 308:1.0 320:1.0 327:0.16666666666666666 336:0.5 506:0.3333333333333333 908:1.0 1349:1.0 1363:1.0 1943:1.0 1998:1.0 3004:2.0 3515:0.007692307692307693 4210:2.0 4408:0.2 5100:0.5 5122:2.0 5124:1.0 5168:1.0 5309:1.0 5350:1.0 5688:1.0 5830:1.0 6136:1.0 5 15:0.05555555555555555 23:0.07692307692307693 37:0.3333333333333333 75:0.2857142857142857 107:0.5 150:0.023255813953488372 191:0.16666666666666666 261:0.019230769230769232 373:0.3333333333333333 427:0.1 528:2.0 654:0.14285714285714285 1492:1.0 4210:2.0 5100:1.5 5133:1.0 5143:1.0 5 5:1.0 147:0.5 150:0.046511627906976744 191:0.16666666666666666 350:0.125 427:0.1 506:0.3333333333333333 561:0.5 918:0.5 1354:0.6666666666666666 4210:3.0 5100:0.5 5112:1.0 5133:1.0 5 1:0.16666666666666666 5:1.0 15:0.05555555555555555 191:0.16666666666666666 312:1.0 427:0.1 918:0.3333333333333333 1123:1.0 1474:1.0 1661:1.0 4210:1.0 5100:0.5 5108:1.0 5109:1.0 5274:1.0 6777:1.0 5 5:0.5 117:0.05 191:0.5 261:0.019230769230769232 427:0.2 1241:0.09090909090909091 1661:1.0 4087:1.0 4210:1.0 5100:1.0 5 6:0.058823529411764705 135:0.2 155:0.09090909090909091 191:0.16666666666666666 261:0.019230769230769232 427:0.1 647:1.0 1154:1.0 1448:0.3333333333333333 2683:0.14285714285714285 5100:1.5 5191:1.0 5 1:0.16666666666666666 5:0.5 150:0.023255813953488372 191:0.5 261:0.038461538461538464 327:0.16666666666666666 427:0.1 587:0.5 3887:1.0 4210:2.0 5100:0.5 5144:0.5 5146:1.0 5721:0.5 5 1:0.16666666666666666 11:0.3333333333333333 82:0.16666666666666666 150:0.046511627906976744 191:0.16666666666666666 215:0.1 261:0.019230769230769232 483:2.0 561:0.5 2538:1.0 2683:0.14285714285714285 4210:4.0 4403:1.0 4908:1.0 5100:1.0 5107:1.0 5692:1.0 5 56:0.3333333333333333 73:1.0 135:0.2 151:1.0 191:0.16666666666666666 261:0.019230769230769232 918:0.3333333333333333 1162:1.0 1354:0.3333333333333333 1466:1.0 1992:1.0 4210:1.0 4221:1.0 5100:1.5 5291:1.0 5298:1.0 5721:0.5 5 101:1.0 191:0.3333333333333333 261:0.019230769230769232 287:1.0 380:1.0 441:0.3333333333333333 488:1.0 561:0.5 995:0.5 1075:1.0 1564:1.0 2683:0.14285714285714285 3567:0.5 4210:1.0 5100:1.5 5124:1.0 5153:0.3333333333333333 6071:1.0 5 5:0.5 11:0.3333333333333333 75:0.14285714285714285 106:1.0 131:0.5 215:0.1 268:1.0 367:1.0 561:0.5 982:1.0 1586:0.16666666666666666 2683:0.14285714285714285 4210:1.0 4924:1.0 5100:1.0 5328:1.0 5956:1.0 5 75:0.14285714285714285 82:0.16666666666666666 106:1.0 191:0.16666666666666666 261:0.019230769230769232 388:1.0 1651:1.0 4210:1.0 4262:1.0 5100:1.0 5121:0.5 5738:1.0 5 17:0.25 23:0.15384615384615385 75:0.2857142857142857 350:0.125 359:0.5 423:0.5 1162:1.0 2069:1.0 3467:1.0 4184:1.0 4908:1.0 5100:1.5 5216:1.0 5328:1.0 5890:1.0 5979:1.0 6954:1.0 5 1:0.16666666666666666 6:0.058823529411764705 56:0.3333333333333333 64:0.25 97:1.5 135:0.2 150:0.023255813953488372 155:0.09090909090909091 191:0.16666666666666666 319:0.058823529411764705 320:1.0 325:1.0 327:0.16666666666666666 587:0.5 742:0.5 908:1.0 995:0.25 2312:1.0 2791:0.3333333333333333 3515:0.007692307692307693 4210:1.0 5100:1.0 5122:1.0 5410:1.0 5 4:1.0 5:0.5 15:0.05555555555555555 23:0.07692307692307693 34:0.2 73:1.0 82:0.16666666666666666 106:1.0 117:0.05 143:0.25 155:0.09090909090909091 185:1.0 191:0.16666666666666666 251:0.5 320:1.0 427:0.2 534:0.25 981:1.0 1241:0.09090909090909091 1596:1.0 2927:1.0 3515:0.007692307692307693 4210:3.0 4498:1.0 5100:1.0 5206:0.5 5222:1.0 5271:1.0 5302:1.0 5308:1.0 5391:1.0 5778:1.0 5781:1.0 7212:1.0 5 5:0.5 15:0.05555555555555555 17:0.25 45:1.0 128:0.5 135:0.2 143:0.25 147:0.5 169:1.0 191:0.16666666666666666 215:0.1 240:1.0 319:0.058823529411764705 320:1.0 389:1.0 654:0.14285714285714285 995:0.25 1661:1.0 1692:0.3333333333333333 2804:1.0 3515:0.007692307692307693 3567:0.5 4210:2.0 4924:1.0 5100:1.5 5122:1.0 5291:1.0 5328:1.0 5614:1.0 6431:1.0 7116:1.0 5 5:0.5 64:0.25 73:1.0 97:0.5 150:0.023255813953488372 169:1.0 191:0.16666666666666666 261:0.019230769230769232 319:0.058823529411764705 327:0.16666666666666666 350:0.125 367:1.0 995:0.25 1154:1.0 1941:1.0 2132:1.0 2295:1.0 2618:1.0 2791:0.3333333333333333 3515:0.007692307692307693 5100:1.0 5122:1.0 5 1:0.16666666666666666 15:0.1111111111111111 23:0.07692307692307693 34:0.1 42:0.2 49:1.0 56:0.6666666666666666 64:0.5 147:0.5 191:0.16666666666666666 215:0.1 320:1.0 359:0.5 443:1.0 511:0.5 569:1.0 1058:1.0 1105:1.0 1275:1.0 1586:0.16666666666666666 1998:1.0 2312:1.0 2394:1.0 3515:0.007692307692307693 4210:1.0 4402:1.0 5100:1.0 5112:1.0 5350:1.0 5614:1.0 5951:1.0 6740:1.0 7081:1.0 5 5:0.5 15:0.05555555555555555 23:0.07692307692307693 42:0.4 82:0.3333333333333333 94:1.0 123:1.0 147:0.5 191:0.6666666666666666 201:1.0 215:0.1 219:0.3333333333333333 238:0.14285714285714285 261:0.019230769230769232 273:0.3333333333333333 281:1.0 320:1.0 350:0.125 353:1.0 359:0.5 388:1.0 427:0.1 484:1.0 488:1.0 672:1.0 908:1.0 995:0.25 1354:0.3333333333333333 1377:1.0 1717:1.0 1719:1.0 2068:1.0 2298:1.0 2325:1.0 2791:0.3333333333333333 3515:0.007692307692307693 4210:3.0 4262:1.0 5093:1.0 5100:1.0 5342:1.0 5357:1.0 6213:1.0 7145:1.0 5 1:0.16666666666666666 5:2.0 15:0.1111111111111111 31:1.0 42:0.2 56:0.3333333333333333 64:0.25 73:1.0 96:0.14285714285714285 97:0.5 105:0.5 106:1.0 110:0.5 123:1.0 150:0.023255813953488372 164:1.0 215:0.1 223:1.0 320:2.0 373:0.3333333333333333 411:1.0 531:1.0 613:1.0 618:1.0 747:0.5 908:1.0 1123:1.0 1160:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1275:1.0 1355:1.0 1389:0.5 1398:1.0 1596:1.0 1872:1.0 2003:1.0 2312:1.0 2993:0.5 3344:1.0 3515:0.015384615384615385 3742:1.0 3837:1.0 4054:1.0 4210:2.0 5100:2.5 5153:0.3333333333333333 5830:1.0 5 5:0.5 6:0.058823529411764705 11:0.3333333333333333 15:0.1111111111111111 23:0.07692307692307693 64:0.25 82:0.16666666666666666 97:0.5 107:0.5 147:0.5 150:0.046511627906976744 169:2.0 181:0.25 185:1.0 191:0.16666666666666666 261:0.019230769230769232 320:2.0 373:0.3333333333333333 399:0.5 613:1.0 866:1.0 908:1.0 1139:0.5 1201:1.0 1215:1.0 1281:1.0 1354:0.6666666666666666 1872:1.0 2003:1.0 2847:1.0 2892:1.0 3276:1.0 3515:0.015384615384615385 4054:2.0 4210:3.0 4747:1.0 4910:1.0 5100:1.0 5173:1.0 5357:1.0 5437:1.0 6404:1.0 5 1:0.16666666666666666 6:0.23529411764705882 15:0.16666666666666666 17:0.25 23:0.07692307692307693 37:0.3333333333333333 56:1.6666666666666667 64:0.25 73:2.0 97:0.5 98:0.5 105:0.5 109:1.0 139:1.0 147:0.5 206:1.0 320:2.0 474:1.0 569:1.0 735:1.0 881:0.5 1210:0.3333333333333333 1354:0.3333333333333333 1421:1.0 1569:0.3333333333333333 1580:2.0 2374:1.0 2737:1.0 2966:1.0 3326:1.0 3515:0.023076923076923078 3653:1.0 4210:5.0 5100:0.5 5122:2.0 5141:1.0 5509:1.0 6044:1.0 6050:1.0 6051:1.0 6071:1.0 7142:1.0 7343:1.0 5 5:1.0 6:0.11764705882352941 15:0.1111111111111111 17:0.75 23:0.15384615384615385 42:0.2 56:0.6666666666666666 64:0.25 75:0.14285714285714285 96:0.14285714285714285 106:1.0 128:0.5 143:0.25 146:0.6666666666666666 147:1.0 160:1.0 176:1.0 191:0.16666666666666666 215:0.3 223:1.0 246:1.0 251:0.5 266:1.0 320:2.0 488:1.0 534:0.25 695:1.0 768:0.5 836:1.0 840:1.0 866:1.0 1036:1.0 1210:0.3333333333333333 1349:1.0 1354:0.6666666666666666 1740:1.0 1756:1.0 2055:1.0 2266:1.0 2571:1.0 3344:1.0 3515:0.015384615384615385 4210:4.0 5057:1.0 5100:1.5 5122:1.0 5205:1.0 5726:1.0 7240:1.0 5 5:1.0 6:0.23529411764705882 15:0.16666666666666666 17:0.25 34:0.1 37:0.3333333333333333 42:0.2 49:1.0 64:0.25 73:2.0 96:0.14285714285714285 97:0.5 123:1.0 143:0.25 147:0.5 150:0.046511627906976744 188:1.0 191:0.16666666666666666 215:0.1 320:2.0 327:0.16666666666666666 427:0.1 488:1.0 566:1.0 789:1.0 1354:0.3333333333333333 1445:0.5 1692:0.3333333333333333 2209:1.0 2305:1.0 2403:1.0 2980:1.0 3042:1.0 3515:0.015384615384615385 3808:1.0 4210:5.0 5100:0.5 5122:1.0 5135:1.0 5730:1.0 5925:1.0 5981:1.0 6228:1.0 6732:1.0 7055:1.0 7208:1.0 7343:1.0 5 5:0.5 6:0.17647058823529413 15:0.05555555555555555 17:0.25 23:0.07692307692307693 25:0.5 37:0.3333333333333333 45:1.0 56:0.3333333333333333 63:1.0 64:0.25 105:0.5 107:0.5 143:0.25 150:0.06976744186046512 165:0.14285714285714285 169:1.0 174:1.0 197:0.5 206:1.0 215:0.1 219:0.3333333333333333 222:0.5 320:3.0 350:0.125 373:0.3333333333333333 561:0.5 866:1.0 911:1.0 1202:1.0 1258:0.3333333333333333 1445:0.5 1569:0.3333333333333333 1651:1.0 2263:0.5 2678:1.0 2759:0.5 3002:1.0 3344:1.0 3515:0.023076923076923078 4054:1.0 4210:5.0 5100:1.5 5122:3.0 5135:1.0 5144:0.5 5168:1.0 5202:1.0 5212:1.0 5268:1.0 6346:1.0 6349:1.0 5 1:0.16666666666666666 4:1.0 5:1.5 6:0.17647058823529413 15:0.05555555555555555 17:0.25 34:0.2 56:0.6666666666666666 64:0.25 82:0.16666666666666666 97:0.5 135:0.2 146:0.3333333333333333 147:0.5 150:0.023255813953488372 191:0.3333333333333333 197:0.5 215:0.1 238:0.14285714285714285 261:0.019230769230769232 275:0.5 284:1.0 320:3.0 359:0.5 427:0.1 647:1.0 908:1.0 1202:1.0 1210:0.3333333333333333 1447:1.0 1484:1.0 1569:0.3333333333333333 1669:1.0 1717:1.0 2585:1.0 2678:1.0 2722:1.0 3515:0.023076923076923078 3683:1.0 3730:1.0 4210:3.0 4316:1.0 4743:1.0 5100:1.0 5122:1.0 5212:1.0 5300:1.0 5302:1.0 5308:1.0 5812:1.0 7301:1.0 5 5:1.0 6:0.11764705882352941 15:0.16666666666666666 17:0.5 23:0.15384615384615385 34:0.2 56:0.3333333333333333 63:1.0 68:1.0 73:1.0 97:0.5 108:0.5 128:0.5 135:0.2 145:1.0 150:0.06976744186046512 165:0.14285714285714285 191:0.3333333333333333 261:0.019230769230769232 320:3.0 327:0.16666666666666666 427:0.1 483:1.0 615:1.0 681:0.2 866:2.0 1104:0.5 1160:1.0 1210:0.3333333333333333 1270:1.0 1432:1.0 2033:1.0 2052:1.0 2252:1.0 2473:1.0 3002:1.0 3062:1.0 3515:0.023076923076923078 4210:5.0 4848:1.0 5100:1.5 5122:2.0 5182:1.0 5202:1.0 5212:1.0 5223:1.0 5806:1.0 6074:1.0 6346:1.0 6532:1.0 6580:1.0 6720:1.0 7114:1.0 7203:1.0 7204:1.0 5 6:0.35294117647058826 15:0.16666666666666666 34:0.4 42:0.2 56:0.3333333333333333 82:0.16666666666666666 123:1.0 135:0.2 169:1.0 275:0.5 320:3.0 350:0.125 383:1.0 587:0.5 737:1.0 1036:1.0 1210:0.3333333333333333 1241:0.09090909090909091 1373:1.0 1414:1.0 1580:1.0 1719:1.0 2227:0.5 2268:1.0 2402:1.0 3050:1.0 3091:1.0 3515:0.023076923076923078 4210:4.0 4262:1.0 4850:1.0 5070:1.0 5100:1.0 5122:2.0 5141:1.0 5382:0.5 5681:1.0 5933:1.0 7077:1.0 7223:1.0 5 5:1.0 6:0.29411764705882354 15:0.05555555555555555 23:0.07692307692307693 24:1.0 42:0.6 56:0.3333333333333333 64:0.25 135:0.2 157:1.0 191:0.16666666666666666 238:0.14285714285714285 320:3.0 350:0.125 441:0.3333333333333333 473:0.5 485:1.0 574:0.25 587:0.5 768:0.5 787:1.0 866:1.0 1028:1.0 1036:1.0 1210:0.3333333333333333 1354:0.3333333333333333 1669:1.0 1671:1.0 1953:1.0 3515:0.023076923076923078 3699:1.0 4042:1.0 4210:6.0 4316:2.0 4730:1.0 5100:0.5 5122:2.0 5153:0.3333333333333333 5282:1.0 5618:1.0 5961:1.0 6669:1.0 6743:1.0 7064:1.0 5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.15384615384615385 42:0.2 56:0.3333333333333333 64:0.25 97:1.0 108:0.5 132:1.0 143:0.25 146:0.3333333333333333 147:0.5 153:0.3333333333333333 165:0.14285714285714285 167:1.0 176:1.0 191:0.3333333333333333 263:1.0 318:1.0 320:3.0 353:1.0 707:1.0 768:0.5 1210:0.3333333333333333 1317:2.0 1710:1.0 2801:1.0 2942:1.0 3267:1.0 3515:0.023076923076923078 4210:5.0 4499:1.0 5100:1.0 5122:2.0 6333:1.0 6379:1.0 6530:1.0 7219:1.0 7221:1.0 5 6:0.17647058823529413 15:0.1111111111111111 17:0.25 42:0.2 45:1.0 56:1.0 63:1.0 64:0.5 82:0.3333333333333333 107:0.5 135:0.4 143:0.25 146:0.3333333333333333 150:0.023255813953488372 155:0.09090909090909091 191:0.16666666666666666 215:0.1 245:0.5 320:3.0 359:0.5 373:0.3333333333333333 405:1.0 424:1.0 427:0.1 461:1.0 473:0.5 483:1.0 613:1.0 629:1.0 816:0.5 1162:1.0 1354:0.3333333333333333 1410:1.0 1445:1.0 1569:0.3333333333333333 1586:0.16666666666666666 1661:1.0 1775:1.0 1997:1.0 2069:1.0 2370:1.0 3000:1.0 3515:0.023076923076923078 3590:1.0 3694:1.0 4210:6.0 4316:1.0 5100:2.5 5212:1.0 5501:1.0 5614:1.0 7082:1.0 7233:1.0 5 11:0.3333333333333333 15:0.05555555555555555 34:0.1 63:1.0 64:0.25 73:1.0 75:0.14285714285714285 82:0.16666666666666666 108:0.5 155:0.09090909090909091 272:0.3333333333333333 320:2.0 350:0.125 359:1.0 427:0.1 583:1.0 866:1.0 918:0.6666666666666666 1345:0.5 1692:0.3333333333333333 1786:1.0 2052:1.0 3183:1.0 3515:0.015384615384615385 3829:1.0 4210:2.0 5100:1.0 5153:0.6666666666666666 5193:1.0 5552:2.0 5553:3.0 5775:1.0 5 5:0.5 6:0.058823529411764705 15:0.05555555555555555 23:0.07692307692307693 56:0.3333333333333333 97:0.5 123:1.0 131:0.5 143:0.25 146:0.3333333333333333 226:0.5 320:2.0 336:0.5 852:1.0 897:1.0 953:1.0 1210:0.3333333333333333 1258:0.3333333333333333 1586:0.16666666666666666 1841:1.0 2297:1.0 2989:1.0 2993:0.5 3098:1.0 3515:0.015384615384615385 4210:5.0 5122:2.0 5153:0.6666666666666666 5219:1.0 5236:1.0 5551:2.0 5552:1.0 5555:1.0 6009:1.0 6055:1.0 5 6:0.17647058823529413 15:0.05555555555555555 37:0.3333333333333333 42:0.2 75:0.14285714285714285 131:0.5 169:1.0 192:1.0 320:3.0 325:1.0 461:1.0 494:1.0 613:1.0 1564:1.0 2052:1.0 2118:1.0 2989:2.0 3515:0.023076923076923078 3808:1.0 4054:1.0 4210:3.0 4316:1.0 5100:1.0 5135:1.0 5153:0.6666666666666666 5164:0.5 5219:1.0 5236:1.0 5284:1.0 5550:1.0 5551:1.5 5552:1.0 5553:1.0 6107:1.0 7029:1.0 5 5:0.5 6:0.17647058823529413 15:0.2222222222222222 34:0.1 42:0.2 49:1.0 56:0.3333333333333333 64:0.25 73:1.0 82:0.3333333333333333 98:0.5 123:1.0 131:0.5 169:1.0 305:1.0 320:2.0 359:0.5 388:1.0 689:1.0 791:0.5 1281:1.0 1433:1.0 1841:1.0 1956:1.0 2004:1.0 2054:1.0 2989:2.0 3098:1.0 3515:0.015384615384615385 4054:2.0 4210:2.0 4238:1.0 4262:1.0 4316:1.0 4555:1.0 4708:1.0 4709:1.0 5100:2.5 5122:1.0 5153:0.3333333333333333 5196:1.0 5212:1.0 5219:1.0 5236:1.0 5308:1.0 5551:2.0 5552:2.0 5553:1.0 5555:1.0 5693:1.0 5752:1.0 6410:1.0 6439:1.0 7103:1.0 5 30:0.5 34:0.2 42:0.4 73:1.0 88:1.0 96:0.14285714285714285 98:1.0 106:1.0 135:0.2 143:0.25 150:0.023255813953488372 157:1.0 169:2.0 175:1.0 191:0.3333333333333333 201:1.0 206:1.0 215:0.1 219:0.3333333333333333 251:0.5 261:0.019230769230769232 275:0.5 320:3.0 336:0.5 427:0.1 527:1.0 534:0.5 561:0.5 613:1.0 689:1.0 743:1.0 866:2.0 1354:0.3333333333333333 1432:1.0 2263:0.5 2750:1.0 2934:1.0 3515:0.023076923076923078 3660:1.0 3970:1.0 4210:3.0 5100:1.0 5113:1.0 5122:1.0 5168:1.0 5219:1.0 5309:1.0 5789:1.0 6048:1.0 6530:1.0 5 5:0.5 6:0.11764705882352941 15:0.1111111111111111 17:0.25 23:0.07692307692307693 97:1.0 135:0.2 191:0.3333333333333333 272:0.3333333333333333 320:2.0 336:0.5 350:0.125 427:0.2 542:0.5 561:0.5 863:1.0 866:1.0 1210:0.6666666666666666 1468:1.0 1661:1.0 2539:1.0 2791:0.3333333333333333 3515:0.015384615384615385 4210:1.0 4555:1.0 5100:2.5 5141:1.0 5219:1.0 5377:1.0 6262:1.0 6615:1.0 5 5:1.0 6:0.058823529411764705 15:0.1111111111111111 17:0.25 42:0.2 98:0.5 128:0.5 169:1.0 235:2.0 302:1.0 320:2.0 373:0.3333333333333333 427:0.2 574:0.25 587:0.5 710:1.0 768:0.5 1123:1.0 1349:1.0 1494:1.0 2791:0.3333333333333333 3515:0.015384615384615385 4210:2.0 4555:1.0 4639:1.0 5077:1.0 5100:1.5 5168:1.0 5219:1.0 5602:0.5 6476:1.0 7298:1.0 5 5:1.5 6:0.058823529411764705 15:0.05555555555555555 31:1.0 34:0.1 42:0.4 55:1.0 56:0.3333333333333333 64:0.25 105:0.5 185:1.0 191:0.3333333333333333 201:1.0 320:1.0 350:0.125 427:0.2 473:0.5 664:1.0 1210:0.3333333333333333 1354:0.3333333333333333 1953:1.0 2662:1.0 2942:1.0 3515:0.007692307692307693 3759:1.0 4210:1.0 5024:1.0 5100:1.5 5133:1.0 5219:1.0 7081:1.0 5 15:0.05555555555555555 51:0.25 98:0.5 125:0.5 150:0.023255813953488372 167:1.0 320:1.0 327:0.16666666666666666 488:1.0 1097:1.0 1586:0.16666666666666666 2791:0.3333333333333333 3515:0.007692307692307693 4555:1.0 5100:2.5 5219:1.0 5382:0.5 5 5:1.0 6:0.058823529411764705 56:0.3333333333333333 117:0.05 191:0.5 201:1.0 261:0.019230769230769232 320:1.0 350:0.125 427:0.1 543:0.5 2683:0.14285714285714285 3515:0.007692307692307693 4210:1.0 5100:1.0 5141:1.0 5219:1.0 5469:1.0 5 6:0.058823529411764705 15:0.05555555555555555 17:0.25 34:0.1 37:0.3333333333333333 42:0.2 56:0.6666666666666666 82:0.16666666666666666 150:0.023255813953488372 191:0.16666666666666666 201:1.0 204:1.0 219:0.3333333333333333 251:0.5 261:0.019230769230769232 273:0.3333333333333333 320:1.0 399:0.5 427:0.2 613:1.0 622:1.0 878:1.0 1258:0.3333333333333333 1445:0.5 2798:1.0 3515:0.007692307692307693 4210:2.0 4555:1.0 5100:1.5 5122:1.0 5219:1.0 5242:1.0 5245:1.0 5248:1.0 5512:1.0 5528:1.0 6028:1.0 7233:1.0 5 5:0.5 6:0.11764705882352941 23:0.07692307692307693 37:0.3333333333333333 42:0.2 56:0.6666666666666666 64:0.25 75:0.14285714285714285 82:0.16666666666666666 106:1.0 115:1.0 128:0.5 147:0.5 150:0.023255813953488372 320:1.0 327:0.16666666666666666 427:0.1 473:0.5 488:1.0 561:0.5 648:1.0 1349:1.0 1389:0.5 2279:1.0 2530:1.0 3515:0.007692307692307693 4210:3.0 4523:1.0 4555:1.0 5100:0.5 5153:0.3333333333333333 5174:1.0 5219:1.0 5246:1.0 5247:1.0 5248:1.0 5 15:0.05555555555555555 25:0.5 42:0.2 82:0.16666666666666666 117:0.05 222:0.5 566:1.0 816:0.5 918:0.5 1072:1.0 1241:0.09090909090909091 1661:1.0 1694:1.0 4210:2.0 5100:1.5 5125:1.0 5168:1.0 5614:1.0 5 96:0.14285714285714285 97:0.5 143:0.25 146:0.3333333333333333 215:0.2 272:0.3333333333333333 654:0.14285714285714285 918:0.5 2266:1.0 4210:1.0 5003:1.0 5100:1.0 5124:1.0 5141:1.0 5142:0.2 5164:0.5 5 5:0.5 23:0.07692307692307693 34:0.1 106:1.0 191:0.5 261:0.019230769230769232 305:1.0 423:0.5 427:0.1 615:1.0 681:0.2 2538:1.0 3394:1.0 4210:1.0 5100:1.5 5186:1.0 6586:1.0 5 191:0.3333333333333333 261:0.038461538461538464 2683:0.14285714285714285 2791:0.3333333333333333 4210:1.0 5100:1.0 5171:1.0 6545:1.0 5 5:1.0 6:0.058823529411764705 15:0.05555555555555555 23:0.07692307692307693 34:0.1 185:1.0 191:0.3333333333333333 192:1.0 235:1.0 350:0.125 427:0.1 488:1.0 717:1.0 843:1.0 908:1.0 1953:1.0 2454:1.0 2683:0.14285714285714285 4054:1.0 4210:1.0 5100:1.0 5122:1.0 5206:0.5 5890:1.0 5958:1.0 5 5:1.0 15:0.1111111111111111 34:0.1 37:0.3333333333333333 56:0.6666666666666666 143:0.25 145:1.0 147:1.0 150:0.023255813953488372 175:1.0 204:1.0 275:0.5 320:1.0 329:0.5 742:0.5 839:1.0 878:1.0 1036:1.0 1409:1.0 1433:1.0 2263:0.5 2683:0.14285714285714285 3515:0.007692307692307693 4077:1.0 4210:3.0 4376:1.0 4568:1.0 5100:0.5 5113:1.0 5122:1.0 5125:1.0 5279:1.0 6537:2.0 5 5:1.0 6:0.11764705882352941 15:0.16666666666666666 23:0.15384615384615385 37:0.3333333333333333 71:1.0 82:0.16666666666666666 95:1.0 191:0.3333333333333333 261:0.019230769230769232 319:0.058823529411764705 320:1.0 534:0.25 543:0.5 643:0.5 1409:1.0 1661:1.0 2934:1.0 3515:0.007692307692307693 4210:2.0 5100:0.5 5113:1.0 5248:1.0 5 1:0.16666666666666666 5:0.5 15:0.05555555555555555 17:0.25 34:0.2 147:0.5 150:0.023255813953488372 185:1.0 191:0.16666666666666666 240:1.0 350:0.125 561:0.5 648:1.0 737:1.0 1044:1.0 1095:1.0 1661:1.0 2254:1.0 4210:2.0
8ad1bdc00a763a92a125619164a209a630d6f24c
449d555969bfd7befe906877abab098c6e63a0e8
/1538/CH16/EX16.1/Ex16_1.sce
7b56d47d4788ef65c11545ec172e5bbae5136445
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
651
sce
Ex16_1.sce
//example-16.1 //page no- 484 //given //atomic radiii of gamma-iron having FCC lattice rFCC=1.26 //A //atomic radius of alpha-iron having BCC lattica rBCC=1.24 //A //as we know that FCC and BCC has effective no of atoms 4 and 2 resp //so aBCC=4/sqrt(3)*rBCC //A aFCC=2*sqrt(2)*rFCC //A //volume of lattice for FCC and BCC VFCC=(aFCC)^3 //A^3 VBCC=(aBCC)^3 //A^3 //percentage change in volume during phase transformation of gamma-iron to alpha-iron is given by percent_vol_change=(VFCC/4-VBCC/2)/(VFCC/4)*100 printf("the percentage volume change during phase transformation of gamma-iron to alpha-iron is %f",percent_vol_change)
2bf4b882db6ea823f3ddab47e4f8af44b73d9652
449d555969bfd7befe906877abab098c6e63a0e8
/3841/CH5/EX5.9/Ex5_9.sce
f5419fd5c16d0bfbcf5c1c36163b0e717f701e2f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
186
sce
Ex5_9.sce
clear // //find the total weight and airfuel ratio //given data O2=409.9 lb=0.231 w=409.9 W=w/lb AFR=W/120. printf("\n \n total weight %.2f ",W) printf("\n \n air fuel ratio %.2f ",AFR)
122ca233c1714df563cbbddc3ffd133372cc3898
449d555969bfd7befe906877abab098c6e63a0e8
/1862/CH12/EX12.7/C12P7.sce
741ebc0276fc752d43bb2178d1d532a036137199
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
413
sce
C12P7.sce
clear clc //to find speed of ball // GIVEN: //refer to problem 9-10 //mass of disk M = 2.5//in kg //distance of fall y = 0.56//in meters //mass of block m = 1.2//in kg //acceleration due to gravity g = 9.8//in m/s^2 // SOLUTION: //applying conservation of mechanocal energy principle //speed of block v = sqrt((4*m*g*y)/(M+2*m))//in m/s printf ("\n\n Speed of ball v = \n\n %.1f m/s",v)
5b055ed978b658207cf3a019cf52b9c442661436
449d555969bfd7befe906877abab098c6e63a0e8
/764/CH7/EX7.4.b/solution7_4.sce
d9a2ee3c36cefa4c2d1e9f53f46d1b1805e2acab
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
1,010
sce
solution7_4.sce
//Function to standardise the given bolt-size function[v] = standard(w) v = ceil(w) rem = pmodulo(v,10) if (rem ~= 0) then v = v + (10 - rem) end endfunction //Obtain path of solution file path = get_absolute_file_path('solution7_4.sce') //Obtain path of data file datapath = path + filesep() + 'data7_4.sci' //Clear all clc //Execute the data file exec(datapath) //Calculate the permissible shear stress tau (N/mm2) tau = ((50/100)*Syt)/fs //Calculate the primary shear force on bolt3 Pshear (N) Pshear = (P * 1000)/N //Calculate the secondary shear force on bolt3 Sshear (N) Sshear = (P * 1000 * e * r1)/((r1^2) + (r3^2)) //Calculate the resultant force on bolt3 P3 (N) P3 = Pshear + Sshear //Calculate the core diameter of the bolt dc (mm) dc = ((4 * P3)/(%pi * tau))^(1/2) //Calculate the nominal diameter of the bolt d (mm) d = dc/0.8 //Standardise the bolt size d = standard(d) //Print results printf('\nThe standard size of the bolts is M%d\n',d)
ec1d511d0a671b9608771faf6827ced6547e2105
449d555969bfd7befe906877abab098c6e63a0e8
/3875/CH6/EX6.2/Ex6_2.sce
7ec6d54ff0e4798f412aeee6a965204916e7eb7b
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
230
sce
Ex6_2.sce
clc; clear; lambda=6000*10^-10 //wavelength in m myu_0=1.554 //refractive index myu_e=1.544 //refractive index //calculation d=lambda/(4*(myu_0-myu_e)) mprintf("The thickness of the quarter wave plate is = %1.1e m",d)
6c124e644c4818615eae871ff726546f0927779a
93640402789b9a9d07c82958f433765f1e2a8397
/part 1/ALUcore.tst
98acb2e1b7f505655f62aef480f5165b8e67d921
[]
no_license
Slayingripper/Z80-CPU
7a6b71f9e59850c3d4492a7f1867f4e81be278ba
451873966cf071f8088407300629994a8d33f13c
refs/heads/master
2020-05-04T02:42:27.419333
2019-04-01T19:27:22
2019-04-01T19:27:22
178,932,396
0
0
null
null
null
null
UTF-8
Scilab
false
false
2,710
tst
ALUcore.tst
// This file is adapted from part of www.nand2tetris.org // and the book "The Elements of Computag Systems" // by Nisan and Schocken, MIT Press. load ALUcore.hdl, output-file ALUcore.out, compare-to ALUcore.cmp, output-list a%B1.4.1 b%B1.4.1 carryIn%B3.1.3 sums%B3.1.3 ands%B3.1.3 xors%B3.1.3 ors%B3.1.3 out%B1.4.1 carryOut%B3.1.3; // Initial test set a %B0000, set b %B0000, set carryIn %B0, set sums %B0, set ands %B0, set xors %B0, eval, output; set a %B0001, set b %B0001, set carryIn %B0, set sums %B0, set ands %B0, set xors %B0, eval, output; set a %B0000, set b %B0000, set carryIn %B1, set sums %B0, set ands %B0, set xors %B0, eval, output; set a %B0001, set b %B0001, set carryIn %B1, set sums %B0, set ands %B0, set xors %B0, eval, output; // Test Add set sums %B1, set carryIn %B0, set a %B0000, set b %B0000, eval, output; set a %B0000, set b %B1111, eval, output; set a %B1111, set b %B1111, eval, output; set a %B1010, set b %B0101, eval, output; set a %B0110, set b %B0011, eval, output; set a %B0110, set b %B1110, eval, output; set a %B1000, set b %B0111, eval, output; set a %B1000, set b %B1000, eval, output; set carryIn %B1, set a %B0000, set b %B0000, eval, output; set a %B0000, set b %B1111, eval, output; set a %B1111, set b %B1111, eval, output; set a %B1010, set b %B0101, eval, output; set a %B0110, set b %B0011, eval, output; set a %B0110, set b %B1110, eval, output; set a %B1000, set b %B0111, eval, output; set a %B1000, set b %B1000, eval, output; // Test and set carryIn %B0, set sums %B0, set ands %B1, set a %B0000, set b %B0000, eval, output; set a %B0000, set b %B1111, eval, output; set a %B1111, set b %B1111, eval, output; set a %B1010, set b %B0101, eval, output; set a %B0110, set b %B0011, eval, output; set a %B0110, set b %B1110, eval, output; // Test XOR set carryIn %B0, set sums %B0, set ands %B0, set xors %B1, set a %B0000, set b %B0000, eval, output; set a %B0000, set b %B1111, eval, output; set a %B1111, set b %B1111, eval, output; set a %B1010, set b %B0101, eval, output; set a %B0110, set b %B0011, eval, output; set a %B0100, set b %B0100, eval, output; set a %B1001, set b %B1100, eval, output; set a %B0110, set b %B1110, eval, output; // Test OR set carryIn %B0, set sums %B0, set xors %B0, set ors %B1, set a %B0000, set b %B0000, eval, output; set a %B0000, set b %B1111, eval, output; set a %B1111, set b %B1111, eval, output; set a %B1010, set b %B0101, eval, output; set a %B0110, set b %B0011, eval, output; set a %B0100, set b %B0100, eval, output; set a %B1001, set b %B0110, eval, output;
bfac6e478a776beede232232da106c2d5e5a6ff9
449d555969bfd7befe906877abab098c6e63a0e8
/3866/CH10/EX10.2/Ex10_2.sce
fa676b449862a0022e53e402423f785aec2fb77f
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
818
sce
Ex10_2.sce
clc; clear; close; Ceff=1;//in fF/um Cint=0.2;//in fF/um Cg=2;//in fF/um Wn=0.8;//in um Wp=0.4;//in um Lwire=20;//in um reff=12.5/2;//in kiloohm rsq=0.054;//in ohm Cfan=4*Cg*(Wn+Wp); disp(Cfan,'Fanout Capacitance(in fermifarads)='); Cself=Ceff*(Wn+Wp); disp(Cself,'Self Capacitance(in fermifarads)='); Cwire=Cint*Lwire; disp(Cwire,'Wire Capacitance(in fermifarads)='); Ctot=Cfan+Cself+Cwire; disp(Ctot,'Total Capacitance(in fermifarads)='); Tdriver=reff*Ctot; disp(Tdriver,'total delay without wire resistance(in picoseconds)='); Rwire=(rsq*(Lwire/0.2))/1000; Tdriver1=reff*(Cself+Cg)+(reff+Rwire)*(Cfan+Cg); disp(Rwire,'wire resistance (in kiloohms)='); disp(Tdriver1,'total delay with wire resistance(in picoseconds)='); disp('Inclusion of wire resistance made no appreciable difference');
565e650142d8d82d4e2ccffbfd46058151409b8c
449d555969bfd7befe906877abab098c6e63a0e8
/1991/CH8/EX8.15/15.sce
2f0573645fdcefb19b3732c3f2fd7d19f5907676
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
171
sce
15.sce
clc clear //input v=14 //voltage //calculation v0=v*sqrt(2)//rms value //output printf("rms value of ac is 14 V") printf("\n the peak value of ac is %3.3f V",v0)
a86de30943d1fcf8d031c5875dd84ca4cd7aef50
527c41bcbfe7e4743e0e8897b058eaaf206558c7
/Positive_Negative_test/Netezza-Base-TimeSeries/FLARIMAUdt-NZ-01.tst
368701a61eb3779ffd97cadeb53461582a999efb
[]
no_license
kamleshm/intern_fuzzy
c2dd079bf08bede6bca79af898036d7a538ab4e2
aaef3c9dc9edf3759ef0b981597746d411d05d34
refs/heads/master
2021-01-23T06:25:46.162332
2017-07-12T07:12:25
2017-07-12T07:12:25
93,021,923
0
0
null
null
null
null
UTF-8
Scilab
false
false
15,191
tst
FLARIMAUdt-NZ-01.tst
-- Fuzzy Logix, LLC: Functional Testing Script for DB Lytix functions on Teradata -- -- Copyright (c): 2014 Fuzzy Logix, LLC -- -- NOTICE: All information contained herein is, and remains the property of Fuzzy Logix, LLC. -- The intellectual and technical concepts contained herein are proprietary to Fuzzy Logix, LLC. -- and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade -- secret or copyright law. Dissemination of this information or reproduction of this material is -- strictly forbidden unless prior written permission is obtained from Fuzzy Logix, LLC. -- -- -- Functional Test Specifications: -- -- Test Category: Time Series Functions -- -- Test Unit Number: FLARIMAUdt-TD-01 -- -- Name(s): FLARIMAUdt -- -- Description: Calculates the coefficients of the autoregressive integrated moving average (ARIMA) model. -- -- Applications: -- -- Signature: FLARIMAUdt (Group_ID BIGINT, -- Obs_ID BIGINT, -- Num_Val DOUBLE PRECISION, -- P INTEGER, -- D INTEGER, -- Q INTEGER) -- -- Parameters: See Documentation -- -- Return value: Table -- -- Last Updated: 04-26-2017 -- -- Author: <Shuai.Yang@fuzzyl.com> -- Author: <Diptesh.Nath@fuzzylogix.com> -- BEGIN: TEST SCRIPT -- .run file=../PulsarLogOn.sql ---- Table used for ARIMAUdt DROP TABLE tblTimeSeriesAll; DROP TABLE tblTimeSeriesTest; DROP TABLE tblARIMATest; CREATE TABLE tblARIMATest AS ( SELECT * FROM tblARIMA ); CREATE TABLE tblTimeSeriesAll ( GroupID BIGINT, ObsID BIGINT, NumVal DOUBLE PRECISION, P INTEGER, D INTEGER, Q INTEGER) DISTRIBUTE ON (GroupID); CREATE TABLE tblTimeSeriesTest( GroupID BIGINT, ObsID BIGINT, NumVal DOUBLE PRECISION, P INTEGER, D INTEGER, Q INTEGER) DISTRIBUTE ON (GroupID); INSERT INTO tblTimeSeriesAll SELECT 1, ObsID, Num_Val, 1, 0, 0 FROM tblTimeSeriesW1 UNION SELECT 2, ObsID, SQRT(Num_Val), 2, 0, 0 FROM tblTimeSeriesW2 UNION SELECT 3, ObsID, Num_Val, 1, 0, 0 FROM tblTimeSeriesW3 UNION SELECT 4, ObsID, Num_Val, 0, 1, 2 FROM tblTimeSeriesW4 UNION SELECT 5, ObsID, Num_Val, 1, 1, 0 FROM tblTimeSeriesW5 UNION SELECT 6, ObsID, LN(Num_Val), 0, 1, 1 FROM tblTimeSeriesW6 UNION SELECT 7, ObsID, LN(Num_Val), 2, 0, 1 FROM tblTimeSeriesW7; SELECT a.GroupID, COUNT(*) FROM tblTimeSeriesAll a GROUP BY a.GroupID ORDER BY 1; ---- BEGIN: NEGATIVE TEST(s) -- Case 1 Invalid parameters ---- Case 1a Arg#3 < 0 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1 as GroupID, ObsID, Num_Val, -1, 0, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 1b Arg#4 < 0 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1 as GroupID,ObsID,Num_Val, 0, -1, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 1c Arg#5 < 0 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1 as GroupID, ObsID, Num_Val, 1, 0, -1 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Case 2 Extreme parameter values ---- Case 2a Arg#3 >= Num Of Observations WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT GroupID, ObsID, Num_Val, COUNT(ObsID) OVER (PARTITION BY groupid), 0, 0 FROM( SELECT 1 AS groupid, ObsID, Num_Val FROM tblTimeSeriesW1 ) AS a ) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 2b Arg#4 >= Num Of Observations WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT GroupID, ObsID, Num_Val, 1, COUNT(ObsID) OVER (PARTITION BY groupid), 0 FROM( SELECT 1 AS groupid, ObsID, Num_Val FROM tblTimeSeriesW1 ) AS a ) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 2c Arg#5 >= Num Of Observations WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT GroupID, ObsID, Num_Val, 1, 0, COUNT(ObsID) OVER (PARTITION BY groupid) FROM( SELECT 1 AS groupid, ObsID, Num_Val FROM tblTimeSeriesW1 ) AS a ) FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; /* ---- Case 2d Arg#3 + Arg#4 + Arg#5 >= Num Of Observations WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT GroupID, ObsID, Num_Val, COUNT(ObsID) OVER (PARTITION BY groupid)/3 + 1, COUNT(ObsID) OVER (PARTITION BY groupid)/3, COUNT(ObsID) OVER (PARTITION BY groupid)/3 FROM( SELECT 1 AS groupid, ObsID, Num_Val FROM tblTimeSeriesW1 ) AS a ) FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; */ -- Case 3 NULL checks ---- Case 3a Mixed NULL Arg#2 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1, ObsID, CASE WHEN OBSID mod 2 = 0 THEN NULL ELSE NUM_VAL END, 1, 0, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 3b NULL Arg#2 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1, ObsID, NULL, 1, 0, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 3c NULL Arg#1 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT NULL, ObsID, NUM_VAL, 1, 0, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 3d NULL Arg#3 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1, ObsID, NUM_VAL, NULL, 0, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 3e NULL Arg#4 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1, ObsID, NUM_VAL, 1, NULL, 0 FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- Case 3f NULL Arg#5 WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT 1, ObsID, NUM_VAL, 1, 0, NULL FROM tblTimeSeriesW1) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---- END: NEGATIVE TEST(s) ---- BEGIN: POSITIVE TEST(s) -- Test with normal and extreme values -- Case 1 Query example in user manual WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Case 2 -- Test AR(1) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 0 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test MA(1) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 0 AS P, 0 AS D, 1 AS Q --FROM tblARIMA a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test ARIMA(1,0,1) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 1 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test ARIMA(1,1,1) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 1 AS D, 1 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test ARIMA(2,0,0) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 2 AS P, 0 AS D, 0 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test ARIMA(0,0,2) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 0 AS P, 0 AS D, 2 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Test ARIMA(1,0,2) --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 2 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Case 3 Empty table DELETE FROM tblARIMATest; --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT 1 AS GroupID, a.ObsID, a.Num_Val, 1 AS P, 0 AS D, 2 AS Q --FROM tblARIMATest a) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; -- Case 4 Constant Arg#2 DELETE FROM tblTimeSeriesTest; INSERT INTO tblTimeSeriesTest SELECT 1, ObsID, 1.0, 1, 0, 0 FROM tblTimeSeriesW1; --WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( --SELECT * FROM tblTimeSeriesTest) --SELECT a.* WITH z (GroupID, ObsID, NumVal, P, D, Q) AS ( SELECT * FROM tblTimeSeriesAll) SELECT a.* FROM (SELECT z.GroupID,z.ObsId,z.NumVal,z.P,z.D,z.Q, NVL(LAG(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS begin_flag, NVL(LEAD(0) OVER (PARTITION BY z.GroupId ORDER BY z.ObsId),1) AS end_flag FROM z) as zz,TABLE (FLARIMAUdt(zz.GroupId,zz.NumVal,zz.P,zz.D,zz.Q,zz.begin_flag,zz.end_flag)) AS a; ---DROP the test table DROP TABLE tblTimeSeriesAll; DROP TABLE tblTimeSeriesTest; DROP TABLE tblARIMATest; -- END: POSITIIVE TEST(s) -- END: TEST SCRIPT
cbed5c6f650a9ca9dfa921935d4ebea818407cb9
449d555969bfd7befe906877abab098c6e63a0e8
/405/CH2/EX2.3/2_3.sce
ebe340860a8861e6aa77b6fac0793f33ec8ed8bd
[]
no_license
FOSSEE/Scilab-TBC-Uploads
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
refs/heads/master
2020-04-09T02:43:26.499817
2018-02-03T05:31:52
2018-02-03T05:31:52
37,975,407
3
12
null
null
null
null
UTF-8
Scilab
false
false
3,094
sce
2_3.sce
clear; clc; printf("\t\t\tExample Number 2.3\n\n\n"); // heat transfer through a composite wall // illustration2.3 // solution // 1. heat transfer through studs for unit depth l = 0.0413;// [m] length of wood studs b = 1.0;// [m] unit depth A = l*b;// [square meter] area of studs for unit depth hi = 7.5;// [W/square meter per degree celsius] convectional heat transfer coefficient ho = 15;// [W/square meter per degree celsius] convectional heat transfer coefficient Kb = 0.69;// [W/m per degree celsius] heat transfer coefficient of brick Kgi = 0.96;// [W/m per degree celsius] heat transfer coefficient of gypsum inner sheath Ki = 0.04;// [W/m per degree celsius] heat transfer coefficient of insulation Kws = 0.1;// [W/m per degree celsius] heat transfer coefficient of wood stud Kgo = 0.48;// [W/m per degree celsius] heat transfer coefficient of gypsum outer sheath Rair = 1/(ho*A);// [degree celsius /W] convection resistance outside of brick dx_b = 0.08;// [m] thickness of brick dx_os = 0.019;//[m] thickness of outer sheet dx_ws = 0.0921;// [m] thickness of wood stud dx_is = 0.019;// [m] thickness of inner sheet Rb = dx_b/(Kb*A);// [degree celsius /W] conduction resistance in brick Ros = dx_os/(Kgi*A);// [degree celsius /W] conduction resistance through outer sheet Rws = dx_ws/(Kws*A);// [degree celsius /W] conduction resistance through wood stud Ris = dx_is/(Kgo*A);// [degree celsius /W] conduction resistance through inner sheet Ri = 1/(hi*A);// [degree celsius /W] convection resistance on inside Rt = Rair+Rb+Ros+Rws+Ris+Ri;// [degree celsius /W] total thermal resistance through the wood stud section printf("total thermal resistance through the wood stud section is %f degree celsius /W",Rt); // 2. heat transfer through insulation section A1 = 0.406-A;// [square meter] area of insulation section for unit depth dx_ins = 0.0921;// [m] thickness of insulation Rins = dx_ins/(Ki*A1);// [degree celsius /W] conduction resistance through insulation section // five of the materials are same but resistance involve different area // i.e. (40.6-4.13) cm instead of 4.13 cm // so that each of the previous must be multiplied by a factor of (4.13/(40.6-4.13)) = 0.113 Rt_ins = (Rair+Rb+Ros+Ris+Ri)*0.113+Rins;// [degree celsius /W] total resistance through insulation section printf("\n total thermal resistance through the insulation section is %f degree celsius /W",Rt_ins); R_overall = 1/((1/Rt)+(1/Rt_ins));// [degree celsius /W] overall resistance for the section // the value is related to overall heat transfer coefficient by // Q = U*A*dt = dt/R_overall // where A is area of total section A_ = 0.406;// [square meter] area of total section U = 1/(R_overall*A_);// [W/square meter degree celsius] overall heat transfer coefficient // R value is somewhat different from thermal resistance and is given by R_value = 1/U;// [degree celsius square meter/W] R value of system printf("\n overall heat transfer coefficient is %f W/square meter per degree celsius",U); printf("\n R value is %f square meter/W",R_value);