blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9ac4a7766e70b761762e7076f3e42b4d2046813a
|
b6b875fb04ec6df2c0fb0d28f36962fa9aebb2bf
|
/TD2/Malthus/malthus.sce
|
41569ec2c6e409e80e0bc9ab8bda3c21cca89d08
|
[] |
no_license
|
MFrizzy/Modelisation
|
51794b2edf421f9d2206cb73972d8d8d7b1e9759
|
0ca819afbcbe00f58f3bbaa8fc97164ae2c1d3cb
|
refs/heads/master
| 2021-08-29T12:02:20.042037 | 2017-12-13T22:39:21 | 2017-12-13T22:39:21 | 106,943,303 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 160 |
sce
|
malthus.sce
|
clear
clf
b = 0.1; d = 0.05 ; x(1) = 1;
r = b - d;
h = 1;
ndate = 0:20
for n = 1:20
x(n+1) = (1 + r ) * x(n);
end
plot2d(ndate, x, style = 2, rect=[0,0,20, 3])
|
5734ce297cb66548803635dccd7ac5129a445d33
|
ebfed86dee276110294a4e93fa80377908bbd317
|
/macros/imlincomb.sci
|
64f01df591d6a17d19d0fef8589b2167090348b5
|
[] |
no_license
|
gursimarsingh/FOSSEE-Image-Processing-Toolbox
|
a9d46b698c98566fec867eb2ce3cfeb427058d5c
|
165f6d7d1f20262a1637a923c6aad6e663ad1538
|
refs/heads/master
| 2021-08-16T19:18:59.591175 | 2017-11-08T17:55:04 | 2017-11-08T17:55:04 | 96,531,802 | 0 | 0 | null | 2017-07-07T11:21:10 | 2017-07-07T11:21:10 | null |
UTF-8
|
Scilab
| false | false | 1,595 |
sci
|
imlincomb.sci
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Gursimar Singh
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
//
function outImg= imlincomb(x1,A1,varargin)
//Blend two or more images
//
//Calling Sequence
//outImg= imlincomb(x1,A1);
//outImg= imlincomb(x1,A1,A2,A2,x3,A3,x4,A4........,xN,AN);
//
//Parameters
//outImg:Output combined image.
//xN:Input multiplication factor.The multiplication factor and the sum of all the mutiplication factors should be less than 1.
//AN:Input image
//
//Description
//This function returns a linear combination of the input images.
//
//Examples
//im1=imread('images/balls.jpg');
//im2=imread('images/lena.jpeg');
//img=imlincomb(0.5,im1,05,im2);
//
//Authors
//Gursimar Singh
//
//See also
//imimposemin
//imadd
[lhs rhs] = argn(0);
if rhs<1 then
error(msprintf("Not enough input arguments"));
end
if lhs >1
error(msprintf("Too many output arguments"));
end
if modulo(rhs-1,2) == 0 then
error(msprintf("Number of input arguments must be even"));
end
out=x1*A1;
if rhs>2
for i=1:rhs/2 -1
A=varargin(2*i);
x=varargin(2*i-1);
B=x*A;
out=imadd(out,B);
end
end
outImg=out;
endfunction
|
8514af479b96653424190e0c255604b7495e8bbb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1370/CH7/EX7.17/exp7_17.sce
|
35a0fa0c22b34e02cab820221f0e9d68fd4f9129
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 913 |
sce
|
exp7_17.sce
|
//example7.17
clc
disp("Given: E_s=30 V, R_f=2 ohm, R_s=8 ohm, R_L=1 k-ohm")
disp("E_s=E_RMS=30 V")
e=30*sqrt(2)
disp(7)
disp(e,"E_sm(in V)=(E_s)*sqrt(2)=")
i=(30*sqrt(2))/(2+1000+8)
format(6)
disp(i,"I_m(in A)=(E_sm)/(R_f+R_L+R_s)=")
i=(2*42)/(%pi)
format(6)
disp(i,"I_DC(in mA)=(2*I_m)/pi=")
p=1000*(26.74*10^-3)^2
disp(p,"a) Power delivered to the load = (I_DC^2)*(R_L) = ")
v=(2*30*sqrt(2))/(%pi)
format(3)
disp(v,"V_DC, no load = (2*E_sm)/pi = ")
v=26.74*1000*10^-3
format(6)
disp(v,"V_DC, full load (in V) = (I_DC)*R_L = ")
r=((27-26.74))/26.74
format(5)
disp(r,"% Regulation = ((V_NL-V_FL)*100)/(V_FL)= ")
e=(8/(%pi)^2)*(1/(1+(10/1000)))
format(6)
disp(e,"c) Efficiency of rectification = dc output/ac output =")
t=(30*42*10^-3)/sqrt(2)
format(5)
disp(t,"d) Transformer secondary rating(in W) = (E_RMS)*(I_RMS) = ")
u=0.715/0.89
disp(u,"TUF = DC power output/AC rating = ")
|
fb7ade623a1318ca1cfd739cea8c4cf2800c705f
|
ab89c2161afc0845367b8e25f534e4f99bd36759
|
/LAB1/partice2.sce
|
13d93be317e86ead7c09774a9a0b598a1d56cc37
|
[] |
no_license
|
PhiTruongCE/Digital_Signal_Processing
|
22446ebfa65765d1dfcd2c420e05c83dc861ec15
|
bacaf762f31a333a641ac48f6b5cc18f120c65be
|
refs/heads/main
| 2023-06-04T03:38:36.140107 | 2021-06-17T04:04:49 | 2021-06-17T04:04:49 | 377,699,926 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 171 |
sce
|
partice2.sce
|
clc;
clf;
clear all;
l =5;
n=-l:l;
x=[zeros(1,l),ones(1,l+1)];
//a=gca();
//a.y_location="middle";
plot2d3(n,x);
title('Unit step');
xlabel('n');
ylabel('x');
|
32f8e90628b9db55288f2a74228d610f01c227b1
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/tests/examples/replot.man.tst
|
c619b8090cb9f8d4e521aad43b4e43cd76af2ce8
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 72 |
tst
|
replot.man.tst
|
clear;lines(0);
x=[0:0.1:2*%pi]';
plot2d(x,sin(x))
replot([-1,-1,10,2])
|
28c839bc31240a0ba8716f310aec3b393c0f773d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2153/CH5/EX5.9/ex_5_9.sce
|
a76862bf4492e7f62c8753c052724b3e4ba03838
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 311 |
sce
|
ex_5_9.sce
|
// Example 5.9: mobility and drift velocity
clc, clear;
// given :
b=6.5*10^7; // conductivity in ohm^-1.m^-1
e=1.602*10^-19; // in C
n=6*10^23; //
E=1; // in V/m
mu=b/(e*n);
v=mu*E;
disp(mu,"mobility ,mu(m^2/volt-sec) = ")
disp(v,"drift velocity,v(m/sec) = ")
// mobility and drift is calculated wrong in book
|
96f71da39b85b070961877895613fe56fb389f75
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1673/CH3/EX3.14/3_14.sce
|
abc816f29ed171682fd3d1c870a35a061ab6a8bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 310 |
sce
|
3_14.sce
|
//example 3.14
//lagrange's interpolation formula
//page 105
clc;clear;close;
y=[4 12 19];
x=[1 3 4];
y_x=7;
Y_X=0;
poly(0,'y');
for i=1:3
p=x(i);
for j=1:3
if i~=j then
p=p*((y_x-y(j) )/( y(i)-y(j)))
end
end
Y_X=Y_X+p;
end
disp(Y_X,'Y_X=');
|
376a3fbacce81727e5206b52cb68dedc901ad39f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/978/CH4/EX4.5/Example4_5.sce
|
65ef32328b751ad0936955ff226530437ccfe1c6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 352 |
sce
|
Example4_5.sce
|
//chapter-4,Example4_5,pg 489
//if A8,B8,C8,D8 is the binary in 8421 code, for 12 this would be 1100(DCBA)
//in 8421-code
A8=0
B8=0
C8=1
D8=1
//in 2421-code
D2=D8
C2=bitor(C8,D8)
B2=bitor(B8,D8)
A2=A8
printf("2421-code for 12 is\n")
printf("%.f ",D2)
printf("%.f ",B2)
printf("%.f ",C2)
printf("%.f ",A2)
|
03d06e747de2163ed6fef1c241c1df06d9cc697e
|
b29e9715ab76b6f89609c32edd36f81a0dcf6a39
|
/ketpic2escifiles6/Setorigin.sci
|
62a1f6243439d486d8b0b4042f2928aadf531bc4
|
[] |
no_license
|
ketpic/ketcindy-scilab-support
|
e1646488aa840f86c198818ea518c24a66b71f81
|
3df21192d25809ce980cd036a5ef9f97b53aa918
|
refs/heads/master
| 2021-05-11T11:40:49.725978 | 2018-01-16T14:02:21 | 2018-01-16T14:02:21 | 117,643,554 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 184 |
sci
|
Setorigin.sci
|
//
// 09.02.27
function Setorigin(varargin)
global GENTEN;
Nargs=length(varargin);
if Nargs==0
disp(GENTEN);
return;
end;
Pt=varargin(1);
GENTEN=Pt;
endfunction
|
b487ab3a89fc4f9d85f211aae72bb7b525ea18be
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2087/CH3/EX3.3/example3_3.sce
|
e382c144c85c917a8fad7d6f7a36ff2b1f7dd08e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 415 |
sce
|
example3_3.sce
|
//example 3.3
//calculate
//depth upto which soil profile is wetted
clc;
//Given
gammad=15.3; //dry weigth of soil
gammaw=9.81; //unit weigth of water
Fc=0.15; //field capacity
Mc=0.08; //moisture content before irrigation
D=60; //Depth of water applied
d=(gammaw*D)/(gammad*(Fc-Mc));
d=round(d);
mprintf("Depth upto which soil profile is wetted=%f mm.",d);
|
8ebdda3c5b033d3d951f2182c44bca49012b1d14
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH7/EX7.16.b/solution7_16.sce
|
957a406147be848adf0a735d08d48812156dc508
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 990 |
sce
|
solution7_16.sce
|
//Obtain path of solution file
path = get_absolute_file_path('solution7_16.sce')
//Obtain path of data file
datapath = path + filesep() + 'data7_16.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate the permissible tensile stress sigmat (N/mm2)
sigmat = Syt/fs
//Assume the inner diameter of the circular plate to be 1mm di
di = 1
//Calculate the outer diameter of the circular plate do (mm)
do = 2 * di
//Calculate the stiffness of the bolts kb (N/mm)
kb = (%pi/4*(di^2))*(E1/l)
//Calculate the area of the two plates Ac (mm2)
Ac = (%pi/4)*((do^2) - (di^2))
//Calculate the combined stiffness of the two plates kc (N/mm)
kc = (Ac * E2)/l
//Calculate the resultant load on the bolt Pb (N)
deltaP = (P * 1000)*(kb/(kb + kc))
Pb = (Pi * 1000) + deltaP
//Calculate the core cross-section area of the bolt A (mm2)
A = Pb/sigmat
//Choose proper diameter from Table 7.1
//Print results
printf('\nArea at the core cross-section(A) = %f mm2\n',A)
|
944ea936d9d42812360f8bb926e4a8e1792c0928
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/587/CH2/EX2.2/example2_2.sce
|
17185e93766582d2c6af5771f4df723e51e88fce
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 537 |
sce
|
example2_2.sce
|
clear;
clc;
//Example2.2[Heat Generation in a Hair Dryer]
//Given:-
E_gen=1200;//[Total rate of heat generation]
L=80;//Length of wire[cm]
D=0.3;//Diameter of wire[cm]
//Solution:-
V_wire=%pi*(D^2)*L/4;//Volume of the wire[cm^3]
e_gen=E_gen/V_wire;//[W/cm^3]
As=%pi*D*L;//Suface Area of wire[m^2]
Q_=E_gen/As;//[W/cm^2]
disp("W/cm^2",Q_,"and","W/cm^3",round(e_gen),"The rate of heat generation in the wire per unit volume and heat flux on the outer surface of the wire as a result of this heat generation are respectively")
|
1b9afd4973f05520a912841fc693126f134ff25e
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/percent/%bhs.sci
|
b4e9347d9648b1e866c5f346f60bc6c61c1c646d
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 41 |
sci
|
%bhs.sci
|
function r=%bhs(a,b)
// r=a&b
r=a&(b<>0)
|
be8114e8ecd4844119d0b723f77db7a001b10b9a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2360/CH3/EX3.20/ex3_20.sce
|
57fd39f259264082cbc3ab75c64f2ec27523562d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 412 |
sce
|
ex3_20.sce
|
// Exa 3.20
format('v',7);clc;clear;close;
// Given data
Erms = 200;//r.m.s value in V
Rm = 100;//meter resistance in ohm
Idc = 25;//dc current in mA
Idc= Idc*10^-3;// in A
Rf = 500;// in ohm
R_D = 2*Rf;// in ohm
Edc = 0.9*Erms;// in V
Rs = (Edc/Idc) - Rm;// in ohm
R_m = Rm+R_D;// in ohm
Rs = (Edc/Idc) - R_m;//required series resistance in ohm
disp(Rs,"The required series resistance in Ω is");
|
519042651a43624c67cc07c0f24dfdefddf929d8
|
4533c11d75f955d8350d45606af92ca064d2e319
|
/differentialEvolution/scilab-scripts/EstimationBiObjDEMOPeakSSAIYCa,t+Kir+K+Lparallele.sce
|
28535fded03f5a022198ff2dd0ef2d2cf6288f1b
|
[] |
no_license
|
lois76/ParamEstimationDE
|
0066c5a18042637b97bf989e77f2ce04ba283b12
|
ab3911174450a4ec9976a108885cf8e7afc62b3d
|
refs/heads/master
| 2022-05-21T04:49:51.662762 | 2022-03-21T13:15:38 | 2022-03-21T13:15:38 | 167,556,538 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 10,083 |
sce
|
EstimationBiObjDEMOPeakSSAIYCa,t+Kir+K+Lparallele.sce
|
//////////////////////////////////////////////////////////
/////////////// Experimental data ///////////////
//////////////////////////////////////////////////////////
t=linspace(0,50,12500);
//Steady-state current
vecV=[-120:10:50];
Inf=[-13.1 -10.4 -7.92 -5.89 -4.11 -2.69 -1.02 0.0211 1.17 3.1 7.32 14.2 22.4 31.5 43.2 54.5 69.5 82.4];
InfSD=[2.88 2.55 1.47 1.31 1.04 0.809 0.7 0.658 0.638 0.889 1.94 3.5 5.36 7.63 10.6 13.3 16 17.9]
//for i=1:length([-100:10:50])
// plot(vecV(i),Inf(i),"r.")
// plot(vecV(i),Inf(i)+InfSD(i),"r+")
// plot(vecV(i),Inf(i)-InfSD(i),"r+")
//end
//Peak current
vecVpk=[-120:10:50]
pk=[-11.9 -9.42 -7.39 -4.88 -3.16 -1.48 0.266 1.67 2.56 4.19 8.25 15.7 24.5 36.4 47.8 62.2 78.2 91.9]
pkSD=[1.7 1.46 0.979 0.834 0.807 0.567 0.559 0.751 1.06 1.14 1.89 3.29 5.26 8.09 11.5 14.6 18.1 21.3]
//for i=1:length([-100:10:50])
// plot(vecVpk(i),pk(i),"r.")
// plot(vecVpk(i),pk(i)+InfSD(i),"r+")
// plot(vecVpk(i),pk(i)-InfSD(i),"r+")
//end
///////////////////////////////////////////////////////////////////////
/////////////// Steady-state current cost function //////////////
///////////////////////////////////////////////////////////////////////
//Boltzmann function
function y=xinf(VH,V12,k)
y=1 ./(1+exp((V12-VH) ./k));
endfunction
function y=WSS(pa)
e=0;
for i=1:length(vecV)
tmp=0;
tmp=(Inf(i)-(pa(1)*xinf(vecV(i),pa(8),pa(12))*xinf(vecV(i),pa(9),pa(13))*(vecV(i)-pa(5)) + pa(2)*xinf(vecV(i),pa(10),pa(14))*(vecV(i)-pa(6)) + pa(3)*xinf(vecV(i),pa(11),pa(15))*(vecV(i)-pa(6)) + pa(4)*(vecV(i)-pa(7))))^2
tmp=tmp/InfSD(i)
e=e+tmp;
end
y=e/length(vecV)
endfunction
///////////////////////////////////////////////////////////////
/////////////// Peak current cost function //////////////
///////////////////////////////////////////////////////////////
//Solution x(t) where x=m,h
function y=x(VH,V12,k,tx,x0,t)
y=xinf(VH,V12,k)+(x0-xinf(VH,V12,k))*exp(-t/tx)
endfunction
//Current equation
function y=Iest(VH,pa,t)
y = pa(1).*x(VH,pa(8),pa(12),pa(16),pa(19),t).*x(VH,pa(9),pa(13),pa(17),pa(20),t).*(VH-pa(5)) + pa(2)*xinf(VH,pa(10),pa(14))*(VH-pa(6)) + pa(3).*x(VH,pa(11),pa(15),pa(18),pa(21),t).*(VH-pa(6)) + pa(4).*(VH-pa(7))
endfunction
//Cost function peak current
function y=Wpeak(pa)
e=0;
for i=1:length(vecVpk)
Ipeak=[];
tmp=0;
Ipeak=max(Iest(vecVpk(i),pa,t(1:251)));
tmp=(pk(i)-Ipeak)^2;
tmp=tmp/pkSD(i);
e=e+tmp;
end
y=e/length(vecVpk)
endfunction
///////////////////////////////////////////////////////////////
///////// Crowding Sorting and Domination Front /////////
///////////////////////////////////////////////////////////////
function [Front]=NDS(A)
dominationCount = zeros(size(A,'r'),1)
S=list(); // S(1) contiendra les indices des solutions que la solution i domine
Front=list(); // F(1) contiendra les indices des solutions du front 1, F(2) les indices des solutions des fronts 2, etc...
for i=1:size(A,'r')
Stmp=[]; // vecteur vide qui va contenir les solutions que la solution i domine
for j=1:size(A,'r')
if i~=j then
// nombre de solutions qui domine la solution i
if A(i,1)>A(j,1) & A(i,2)>A(j,2) then
dominationCount(i) = dominationCount(i) + 1;
end
// Ensemble de solution que la solution i domine
if A(i,1)<A(j,1) & A(i,2)<A(j,2) then
Stmp=[Stmp j]
end
end
end
S(i)=Stmp
end
Front(1)=find(0==dominationCount); // indice des solutions faisant partie du best front
// Il faudra "set a front counter m=1 pour itérer sur tous les fronts pour des cas plus complexes et un while.. for i=
m=1
while Front(m)~=[] // tant que le front m est non vide alors...
Q=[];
for i=Front(m)
for j=S(i)
dominationCount(j) = dominationCount(j) - 1;
if dominationCount(j)==0 then
Q=[Q j];
end
end
end
m=m+1;
Front(m)=Q;
end
endfunction
function [d]=crowdingSorting(A)
l=size(A, 1) // l=nombre d'individus dans A (qui est l'ensemble des fonction coûts du dernier front)
d = zeros(l, 1);
for m=1:2 // pour chaque fonction coûts m. Ici m=2 car seulement 2 fonctions coûts
[tmp, Index] = gsort(A(:, m)); // Step C2 : sort the set in ascendant order of magnitude
// ////pause;
d(Index(1)) = %inf;
d(Index(l)) = %inf;
fmax = max(A(:, m));
fmin = min(A(:, m));
// ////pause;
for j=2:l-1
d(Index(j)) = d(Index(j)) + abs(tmp(j+1) - tmp(j-1)) / (fmax - fmin);
end
// //pause;
end
endfunction
///////////////////////////////////////////////////
///////// Estimation des paramètres /////////
///////////////////////////////////////////////////
function [popInit, valInit, pop2500, val2500, pop5000, val5000, popFinal, valFinal]=simulation(NP,itermax,F,CR)
D=22;
pop=zeros(D,NP);
///////////////////////////////////////////////////////
//// Vecteurs de contraintes borne minimum/maximum ////
///////////////////////////////////////////////////////
Xmin=[0.0001 0.0001 0.0001 0.0001 20 -100 -90 -90 -90 -90 -90 1 -30 -30 1 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001];
Xmax=[50 50 50 50 150 -2 30 -2 -2 -2 -2 30 -1 -1 30 20 20 20 0.999 0.999 0.999 10];
////////////////////////////////////
//// Population initialization ////
////////////////////////////////////
for j=1:NP
for i=1:D
pop(i,j)=Xmin(i)+(Xmax(i)-Xmin(i))*rand();
end
end
// Save popInit
popInit=pop;
// //pause;
///////////////////////////////////////
//// Initial population evaluation ////
///////////////////////////////////////
val=zeros(NP,2); // tableau avec le coût de chacun des individus. 1ère colonne = cout SS. 2ème colonne = cout peak.
for j=1:NP
val(j,1)=WSS(pop(:,j))
val(j,2)=Wpeak(pop(:,j))
end
// Save valInit
valInit=val;
disp(valInit);
// //pause;
////////////////////////
//// Étape suivante ////
////////////////////////
iter=1; // nombre d'itération
U=zeros(D,NP); // Vecteur intermédiaire perturbé (mutation + crossover)
tempvalVol=0;
tempvalSS=0;
while iter<itermax
for j=1:NP
// ======= Construction de la matrice U = variation différentielle + crossover =======
// ========= Tirage aléatoire de 3 entiers distincts r1, r2 et r3 et différents de j ========
r1=j; r2=j; r3=j;//////////////////////////////////////
while (r1==r2 | r1==r3 | r2==r3 | r1==j | r2==j | r3==j)
r1=floor(1+NP*rand());
r2=floor(1+NP*rand());
r3=floor(1+NP*rand());
end
// ======== Variation différentielle =======
V=pop(:,r1) + F*(pop(:,r2)-pop(:,r3));
// ======== Contraintes ========
for i=1:length(Xmin)
if V(i)<=Xmin(i) then V(i)=Xmin(i);
elseif V(i)>Xmax(i) then V(i)=Xmax(i);
end
end
// ======== Crossover ========
for i=1:D
if rand()<CR then
U(i,j)=V(i);
else
U(i,j)=pop(i,j);
end
end
end // fin for j=1:NP
// Ajout des enfants U dans la pop si ils dominent les parents ou si ils sont non-dominés. Donc |pop|>NP
tempPop=pop; // tempPop sera la population modifié et augmenté avec les enfants qui dominent les parents ou enfant+parent qui sont non dominés
tempval=val;
for j=1:NP
tempvalSS = WSS(U(:,j));
tempvalpeak = Wpeak(U(:,j));
if tempvalSS<tempval(j,1) & tempvalpeak<=tempval(j,2) then
tempPop(:,j) = U(:,j);
tempval(j,1) = tempvalSS;
tempval(j,2) = tempvalpeak;
end
if (tempvalSS>tempval(j,1) & tempvalpeak<=tempval(j,2)) | (tempvalSS<tempval(j,1) & tempvalpeak>=tempval(j,2)) then
tempPop=[tempPop U(:,j)]
tempval=[tempval; [tempvalSS tempvalpeak]]
end
end
// Front ranking de tempPop > NP
[Front]=NDS(tempval);
// Intégration des fronts possibles dans la pop
pop=[];
val=[];
k=1;
while (size(pop,2)+length(Front(k)))<NP
for i=1:length(Front(k))
pop=[pop tempPop(:,Front(k)(i))];
val=[val; tempval(Front(k)(i),:)];
end
k=k+1;
end
// Calcul de la distance de crowding du dernier front F(k) qui doit être tronqué
lastFront=[];
for i=1:length(Front(k))
lastFront=[lastFront; tempval(Front(k)(i),:)];
end
cs=crowdingSorting(lastFront);//Asignation d'une distance de crowding
// Intégration des individus du dernier front selon leur distance de crowding
[osef, indice]=gsort(cs);
n=1;
while size(pop,2)<NP
pop=[pop tempPop(:,Front(k)(indice(n)))];
val=[val; tempval(Front(k)(indice(n)),:)];
n=n+1;
end
if iter==8000 then
disp(pop);
disp(val);
pop2500=pop;
val2500=val;
end
if iter==17000 then
disp(pop);
disp(val);
pop5000=pop;
val5000=val;
end
disp(iter);
iter = iter + 1;
end //fin de la boucle while
popFinal=pop;
valFinal=val;
disp(pop);
disp(val);
endfunction
|
23e3f1d6f5a91bbb28001fd81612b79aed47eab4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3784/CH2/EX2.13/Ex2_13.sce
|
82e87d517ac96fa1f1ca56df4f22a191508215f8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 290 |
sce
|
Ex2_13.sce
|
clc
//variable initialisation
Va=230 //Supply voltage in volts
N1=1400 //speed in rpm
N2=600 //speed in rpm
N3=1400 //speed in rpm
Vdrop=15//Voltage drop in Volts
//solution
Eb1=Va-15
Eb2=Eb1*(N2/N1)
Va1=Eb2+Vdrop
a2=acosd(Va1/Va)
printf('\n\n The Firing Angle=%0.1f\n\n',a2)
|
e9b30e1d27bed3e7bc03ea15ba689b33bfa4fef9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH11/EX11.3/11_3.sce
|
249fcc8108a0b2463598ed0f05ee710800e5670c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 203 |
sce
|
11_3.sce
|
clc
//Initialization of variables
T=440 //F
//calculations
disp("From steam tables,")
h1=-169290
h2=7597.6
h3=4030.2
ht=h1+h2-h3
//results
printf("Molal enthalpy of CO2 = %d Btu/lbm mole",ht)
|
d37982996f009d37c9333d6c5eaea6bb222dc124
|
f8551f1c22ee634be672d893e6755b100f0d1994
|
/Hough/houghC.sci
|
3191c3d59f09411232e04762433505380a75f8e1
|
[] |
no_license
|
yanisdxw/computer-vision
|
ed605061a632ae0c7536007de6f83e2ff5ee1d51
|
e9bd0961194f2e4290211296dbe6268ecad8f1c1
|
refs/heads/master
| 2021-08-23T05:30:24.864657 | 2017-12-03T17:05:35 | 2017-12-03T17:05:35 | 111,726,798 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,257 |
sci
|
houghC.sci
|
//--------------------------------------------------------------------------------
// Function to fit a line passing through points in an image using Hough transform
// threshold is used as a minimum value on the accumulator to accept a local max
function houghC(im,rayon,threshold,display)
// some parameters
// step of the accumulator for r
r = rayon;
theta_step=0.5; // step of the accumulator for theta
// Threshold image
img=im2bw(im,0.5);
sizex=size(img,1);
sizey=size(img,2);
sizeimg= sizex*sizey;
sizemax=max(sizex,sizey);
// Create the accumulator
// theta from 0 to 360, step theta_step
// rho from -2*sizemax to 2*sizemax, step rho_step
size_theta = floor(360/theta_step);
size_a = floor(sizex+2*r);
size_b = floor(sizey+2*r);
acc = zeros (size_a,size_b);
// Fill the accumulator for each point in image
for i=1:sizeimg
if img(i) // if the pixel is not black
// coordinate of the point in image
x= modulo(i, sizex);
y= floor(i/sizex)+1;
for index_theta=1:size_theta // loop on possible line orientations
theta = (index_theta-1)*theta_step*%pi/180;
// compute corresponding centre of cercle(a,b)
a = x - r*cos(theta);
b = y - r*sin(theta);
index_a = floor(a+r);
index_b = floor(b+r);
// vote for corresponding line parameters
acc(index_a,index_b)=acc(index_a,index_b)+1;
end
end
end
// complement accumulator to be able to search on border rows and columns
acc_marge = [0 acc(size_a,[size_b:-1:1]) 0 ;zeros(size_a,1) acc zeros(size_a,1);0 acc(1,[size_b:-1:1]) 0];
if (display)
max_acc = max(max(acc_marge))/255;
imshow(uint8(acc_marge/max_acc));
printf('Displaying accumulator. ');
halt('Press Return');
end
// Begin search for local maxima of the accumulator
max_val = [];
ma = [];
mb = [];
for i=2:(size_a+1)
for j=2:(size_b+1)
// compute max value in the point neighborhood
neighbors = acc_marge([i-1:i+1],[j-1:j+1]);
neighbors(2,2) = 0;
max_neighbors = max(max(neighbors));
max_neighbors = max(max_neighbors,threshold);
if acc_marge(i,j) > max_neighbors // if it is a local max
max_val = [max_val acc_marge(i,j)];
ma = [ma (i)-r];
mb = [mb (j+1)-r];
end
end
end
// Sort by decreasing value
[max_val,perm]=mtlb_sort(max_val,'descend');
ma=ma(perm);
mb=mb(perm);
mprintf("Found %d local maxima above threshold\n",length(ma));
for nb=1:length(ma)
printf("a: %f, b: %f, number of pixels: %d \n",ma(nb),mb(nb),max_val(nb));
end
if (display)
// Display lines
for nb=1:length(ma)
// display line
imdisp=drawCercle_a_b(im,ma(nb),mb(nb),r);
imshow(imdisp);
printf("Displaying line %d/%d ... ",nb,length(mb));
halt('Press Return');
end
end
endfunction
|
df63dfe5ab1e0bf5b96c9e685d448605a75a43e3
|
93640402789b9a9d07c82958f433765f1e2a8397
|
/part 1/Not4.tst
|
90699f9601dbe82c2cbd94f716e147eb6a69d346
|
[] |
no_license
|
Slayingripper/Z80-CPU
|
7a6b71f9e59850c3d4492a7f1867f4e81be278ba
|
451873966cf071f8088407300629994a8d33f13c
|
refs/heads/master
| 2020-05-04T02:42:27.419333 | 2019-04-01T19:27:22 | 2019-04-01T19:27:22 | 178,932,396 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 509 |
tst
|
Not4.tst
|
// This file is adapted from part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
load Not4.hdl,
output-file Not4.out,
compare-to Not4.cmp,
output-list in%B1.4.1 out%B1.4.1;
set in %B0000,
eval,
output;
set in %B1111,
eval,
output;
set in %B1010,
eval,
output;
set in %B0110,
eval,
output;
set in %B1001,
eval,
output;
set in %B1000,
eval,
output;
set in %B0100,
eval,
output;
set in %B0010,
eval,
output;
set in %B0001,
eval,
output;
|
2eb728ad7cafa68938326c8dbe39d60b40be4709
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH3/EX3.1/Example_3_1.sce
|
8f6a13274fde341259872c441409639e14963a49
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 587 |
sce
|
Example_3_1.sce
|
//Chapter 3
//Example 3-1
//ProbOnOpampDescriptions
//Page 46,47 figure 3-1
clear;clc;
//Given
Rf=100*(10^3);//Feedback Resistance in ohms
Ri=10*(10^3);//Input Resistance in ohms
Ei=1;//Input volts
//Calculate
//Example 3-1(a)
I=Ei/Ri;//Equation for current through Rf
printf("\n\n Current through Rf = %.4f A \n\n",I)
//Example 3-1(b)
Vout=-(Rf/Ri)*Ei;//Equation for Output Voltage
printf("\n\n Value of output voltage = %.4f V \n\n",Vout)
//Example 3-1(c)
Acl=-(Rf/Ri);//Closed loop gain of the amplifier
printf("\n\n Value of closed loop gain = %.4f \n\n",Acl)
|
329a131897efe5d0d81701725920d8f38e7718f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2507/CH11/EX11.6/Ex11_6.sce
|
6252c0edb6aef5ba6726599b9a58db3666efa328
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 619 |
sce
|
Ex11_6.sce
|
clc
clear
printf("Example 11.6 | Page number 404 \n\n");
//Find pressure exerted using (i) ideal gas equation of state (ii) van der Waals equation of state
//Given data
m = 5//kg //mass of CO2
T = 300 //K
R = 8314.3/44 //J/kgK
V = 1.5 //m^3
//Part(i)
printf("Part(i)\n")
p = m*R*T/V
printf("Pressure exerted by CO2(using ideal gas equation) = %.2f kPa\n\n",p*.001)
//Part(ii)
printf("Part(ii)\n")
R = 8.3143 //J/kmolK
a = 0.3658e3 //kPam^6/kmol^2
b = 0.0428 //m^3.kmol
v = 44*V/m //m^3/kmol
p = T*R/(v-b) - a/v^2
printf("Pressure exerted by CO2(using van der Waals equation) = %.1f kPa\n\n",p)
|
b119b8f65de18b897fff5bb29d343ad0c9199f03
|
952f05b9b2293792559cddaf7ee402ccc22b0b8d
|
/icclim/test-cases/test-cases-read-the-docs/read-the-docs-example-11.tst
|
1f36968a93e2f35aafee3c76175c683d4dd0b258
|
[
"Apache-2.0"
] |
permissive
|
ptrgast/icclim
|
a5c768bde9f5ce0562ef8250262ca1d70213c461
|
1c43cc7fc5d779f04fb72361a80bde3b232a9580
|
refs/heads/master
| 2020-05-18T18:44:15.153378 | 2020-02-04T07:46:40 | 2020-02-04T07:46:40 | 184,594,303 | 0 | 0 |
NOASSERTION
| 2020-02-04T07:46:41 | 2019-05-02T14:19:16 |
Python
|
UTF-8
|
Scilab
| false | false | 342 |
tst
|
read-the-docs-example-11.tst
|
[Read-the-docs-example-11] # Read the docs - example 11
user_indice: {'indice_name': 'my_indice', 'calc_operation': 'max_nb_consecutive_events', 'logical_operation': 'get', 'thresh': 298.15, 'date_event': True}
in_files: ['tasmax_day_IPSL-CM5A-MR_historical_r1i1p1_20000101-20051231.nc']
slice_mode: year
callback: callback.defaultCallback2
|
27e4fbbd194233e93ceec441501b24d10080fa1e
|
fc9dc6e9bb8592bf26f552eee8cf527c5d2000cb
|
/KR1.sce
|
3a40ee418789ca95783087292cb386009cf502b9
|
[] |
no_license
|
Kolmagorov-maxim/kolmagorov_maxim
|
d777ebb71f2a1adfd68b085e4f981af71cedb4cf
|
dba5419d59f677d3ab0409c52d46cff537b18950
|
refs/heads/master
| 2020-03-28T18:39:53.664552 | 2019-01-29T12:43:58 | 2019-01-29T12:43:58 | 148,899,712 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,481 |
sce
|
KR1.sce
|
//Даны функции f (x) =sqrt(3)*sin(x) + cos(x) и g(x) = cos(2x + pi/3) - 1:
//((a) Решить уравнение f (x) = g(x).)
//(b) Исследовать функцию h(x) = f (x) - g(x) на промежутке [0; (5pi)/6].
//Вертикальные асимптоты
x=0
q=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1
x=(5*(%pi))/6
q=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1
//Чётность и нечётность функции
x1=-1
q1=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1
x2=1
q2=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1
if ( q1 == q2 ) then
disp ( "Чётная" )
elseif ( q1 == (q2)*(-1) ) then
disp ( " Не чётная! " )
else
disp ( " В общем виде" )
end
//Построение графика h(x)
function h = myquadratic ( x )
h = sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1
endfunction
xdata = linspace ( 0,(5*(%pi)/6),200 );
ydata = myquadratic ( xdata );
plot ( xdata , ydata )
//Производная первого и второго порядков с помощью интерполяционной формулы Ньютона.
//Производная первого порядка
h=0.1;
x=0:h:(5*(%pi)/6);
y=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1;
dy=diff(y);
dy2=diff(y,2);
dy3=diff(y,3);
//Приближенное значение y’(х)
Y=(dy(1)-dy2(1)/2+dy3(1)/3)/h
//ПРоизводная второго порядка
h=0.1;
x=0:h:(5*(%pi)/6);
y=-sin(x)+2*sin((2*x) + ((%pi)/3)) + sqrt(3)*cos(x);
dy=diff(y);
dy2=diff(y,2);
dy3=diff(y,3);
//Приближенное значение y’(х)
Y=(dy(1)-dy2(1)/2+dy3(1)/3)/h
//Производная первого и второго порядка методом приближения
//Производная первого порядка
function f=myr(x);
f=sqrt(3)*sin(x)+cos(x)-cos((2*x) + ((%pi)/3)) + 1;
endfunction;
h=0.1;
v=0:h:(5*(%pi)/6);
numdiff(myr,v)
//ПРоизводная второго порядка
function f=myr(x), f=-sin(x)+2*sin((2*x) + ((%pi)/3)) + sqrt(3)*cos(x), endfunction;
h=0.1;
v=0:h:(5*(%pi)/6);
numdiff(myr,v)
//Решение уравнения f (x) = g(x) {В h(x) = f (x) - g(x) х равен (Нахождение области определения функции )[х не равен]}:
deff('[y]=h(x)','y1 = (sqrt(3))*(sin(x))+(cos(x)), y2 = cos((2*x) + ((%pi)/3)) - 1, y=y1-y2')
fsolve(0,h)
|
c073e9a2b7abf7a293bebc5e928e1b8cadd7b761
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/371/CH5/EX5.2/5_2.sci
|
87009aa200d45abd258985e76b959bad4226d17a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 665 |
sci
|
5_2.sci
|
//Line commuted Converters//
//Example 5.2//
Id=200;//rated dc current in amperes//
I2=0.817*Id;//AC line current in amperes//
printf('AC line current of the thyristor=I2=%famperes',I2);
E2=415;//AC line voltage in volts//
Xt=0.06*E2/I2;//effective reactance of the thyristor in ohms//
printf('\neffective reactance of the thyristor=Xt=%fohms',Xt);
C=1-((Id*Xt)/(E2*sqrt(3)));//cosine value of the commutational angle//
printf('\ncosine value of the commutational angle=C=%f',C);
CA=acos(C)*180/%pi;
printf('\ncommutation angle=CA=%fdegrees',CA);
IVR=(1-C)/2;//inductive voltage regulation//
printf('\nInductive voltage regulation=IVR=%f',IVR);
|
070fa04e7d3d74361903b314ac48137cb30b2d4e
|
f891f5aed2e66371488173c2b9c4e8f977a9f64a
|
/SunSpec Utilities/Tests/GG.tst
|
fc4d062fe9e7828fc86cd6e1bdbee1462f7022b2
|
[] |
no_license
|
jakedm/svp_directories
|
d9b85c41b45a3ded7572f9f730e8d1efc8515099
|
19272f8784baabf83e197778768933aef015432c
|
refs/heads/master
| 2021-01-18T18:08:29.224016 | 2017-01-16T20:09:35 | 2017-01-16T20:09:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 367 |
tst
|
GG.tst
|
<scriptConfig name="GG" script="gridguard_jay">
<params>
<param name="comm.slave_id" type="int">3</param>
<param name="comm.baudrate" type="int">9600</param>
<param name="comm.ifc_name" type="string">COM3</param>
<param name="comm.parity" type="string">N</param>
<param name="comm.ifc_type" type="string">RTU</param>
</params>
</scriptConfig>
|
10297cc802030e4eb3fba44e2952e6bd905b2d0a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH16/EX16.10/Ch16Ex10.sce
|
efdd61bcfa5e31c1aa8bafa77784b6865ce6cb2c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 498 |
sce
|
Ch16Ex10.sce
|
// Scilab Code Ex16.10 : Page-824 (2011)
clc; clear;
a = 2.5, b = 2.5, c = 1.8; // Lattice parameter of tetragonal crystal, angstrom
h = 1; k = 1; l = 1; // Miller Indices for planes in a tetragonal crystal
d_hkl = 1/sqrt((h/a)^2+(k/b)^2+(l/c)^2); // The interplanar spacing for tetragonal crystals, m
printf("\nThe interplanar spacing between consecutive (111) planes = %4.2f angstrom", d_hkl);
// Result
// The interplanar spacing between consecutive (111) planes = 1.26 angstrom
|
b0fd03b91fa14412dbc0f13956f517900106610a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/149/CH6/EX6.9.1/ex9_1.sce
|
cec7c54c36117a169222aefe473f9f4d79d0961f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 49 |
sce
|
ex9_1.sce
|
clear
clc
integrate('sec(x)^4','x',0,%pi/4)
|
74e5a8ba155c31d8978182722341abacb6f319e9
|
b34461c9ddff1ba130b67023d6e568ada42830dc
|
/scripts/ConvolutionY_sobel.sci
|
14eb7af78bc738d8fefb33956be0b0bbe44ac84d
|
[] |
no_license
|
AdrienKegler/Projet-Exolife
|
f72287fdc41a07b88f03b8346dafab93b4539b07
|
249f0861dc4ba3f2a7639ea60b7d12b45e717933
|
refs/heads/master
| 2020-05-25T14:05:45.213740 | 2017-03-17T09:16:20 | 2017-03-17T09:16:20 | 84,937,694 | 0 | 0 | null | 2017-03-15T10:15:55 | 2017-03-14T10:45:25 |
Scilab
|
UTF-8
|
Scilab
| false | false | 578 |
sci
|
ConvolutionY_sobel.sci
|
function image_out=ConvolutionY_sobel(matrice)
SizeX = size(matrice,"r");
SizeY = size(matrice,"c");
// création d'un tableau de zeros
image_out = zeros(SizeX,SizeY);
// for chaque pixels
for i = 1:SizeX,
for j = 1:SizeY
if i == 1 | i == SizeX | j == 1 | j == SizeY then
image_out(i,j) = matrice(i,j);
else
image_out(i,j) = abs(round((matrice(i-1,j-1)*(-1)+matrice(i-1,j+1)+matrice(i+1,j-1)*(-1)+matrice(i+1,j+1)+matrice(i,j-1)*(-2)+matrice(i,j+1)*(2))/6));
end,
end;
end;
endfunction
|
47d12ec9c7a294da37ebc3a58f383dc49e3d15aa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1208/CH4/EX4.1/Exa1.sce
|
3b5aeddcde9262993d713f799233c0629599d570
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 212 |
sce
|
Exa1.sce
|
//Exa 1
clc;
clear;
close;
//given data :
OrgInv=50000;//in Rs.
AnnualCashInflow=10000;//in Rs.
PaybackPeriod=OrgInv/AnnualCashInflow;
disp(PaybackPeriod,"Payback period of the project(in years) is : ");
|
ec3c3193f51a1a45f83be50b02b949509297df88
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/587/CH8/EX8.3/example8_3.sce
|
f1b4e8cd0badb7fba350c105e2688da453cb7584
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,279 |
sce
|
example8_3.sce
|
clear;
clc;
//Example8.3[Flow of Oil in a Pipeline through a Lake]
//Given:-
Ts=0;//Temp of lake[degree Celcius]
Ti=20;//Temp of oil[degree Celcius]
d=0.3;//Diameter[m]
l=200;//length of pipe[m]
//At 20 degree Celcius
rho=888.1;//[kg/m^3]
nu=9.429*10^(-4);//Kinematic viscosity[m^2/s]
k=0.145;//[W/m.degree Celcius]
Cp=1880;//[J/kg.degree Celcius]
Pr=10863;//Prandtl Number
v_avg=2;//[m/s]
//Solution(a)
Re=v_avg*d/nu;
disp(ceil(Re),"The Reynolds number is")
Lt=0.05*Re*Pr*d;//[m]
disp("m",Lt,"The thermal entry length is")
Nu=3.66+((0.065*(d/l)*Re*Pr)/(1+(0.04*(((d/l)*Re*Pr)^(2/3)))));
h=(k*Nu)/d;//[W/m^2.degree Celcius]
As=%pi*d*l;//[m^2]
m_=rho*%pi*((d/2)^2)*v_avg;//[kg/s]
Te=Ts-((Ts-Ti)*exp((-h*As)/(m_*Cp)));//[degree Celcius]
disp("degree Celcius",Te,"Exit temperature of oil is")
//Solution(b):-
ln_del_T=(Ti-Te)/(log((Ts-Te)/(Ts-Ti)));//[degree Celcius]
disp("degree Celcius",ln_del_T,"The logrithmic mean temperature difference is")
Q=h*As*ln_del_T;//[W]
disp("W",Q,"The rate of heat loss from the oil are")
//Solution(c)
f=64/Re;//Friction factor is
del_P=l*rho*(v_avg^2)/(2*d);//[N/m^2]
disp(del_P);
W_pump=m_*del_P/rho;//[kW]
disp("pump just to overcome the friction in the pipe as the oil flows","kW",W_pump/1000,"We need a")
|
2af0f3e25d6e041a44ad1bb366346bf3bc75140c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2825/CH3/EX3.11/Ex3_11.sce
|
428e8b06461dcdf469fbeb8e50f3788462071abf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 837 |
sce
|
Ex3_11.sce
|
//Ex3_11 Pg-186
clc
Vmin=0.7 //minimum voltage across diode in V
V=5 //supply voltage in V
V_R1=V-Vmin //voltage across resistor R in V
Imin=10^(-3) //minimum current
R1=V_R1/Imin
printf("Maximum value of R =%.1f kohm \n ",R1*1e-3)
I=5*10^(-3) //current through resistance in A
V_R2=V-Vmin //voltage across resistor R in V
R2=V_R2/I
printf("\n\n Minimum value of R =%.0f ohm ",R2)
Vb=6 //supply voltage
Vb_res=Vb-Vmin //voltage across resistor
P=I*Vb_res //power dissipated across resistor
printf("\n\n Power dissipated across R =%.1f W",P*10^3)
P_diode=I*Vmin //power dissipated across diode
printf("\n power dissipated across diode =%.1f mW",P_diode*1e3)
R=10^3 //resistor in ohm
V_R=R*Imin //voltage drop across resistor R in V
Vb=V_R+Vmin
printf("\n\n The minimum voltage across diode = %.1f V",Vb)
|
fb841b0fd830c349431192b2aa56f270d7950a29
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1223/CH1/EX1.1/Ex1_1.sce
|
cfabe932773a45eacbee6d6eb88172912410d403
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 361 |
sce
|
Ex1_1.sce
|
clear;
clc;
//Example 1.1
T=300;//((°K)temperature)
//for silicon
B=5.23*10^(15);//Constant (per centimeter cube degree kelvin)
Eg=1.1;//bandgap energy in electrovolt(eV)
k=86*10^(-6);//Boltzmann's constant(eV per degree kelvin)
n_i=B*T^(3/2)*exp(-Eg/(2*k*T));//intrinsic carrier concentration
printf('intrinsic carrier concentration=%f cm^-3',n_i);
|
4a3836d39b00452dc3df94db45b925618723528f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3782/CH9/EX9.6/Ex9_6.sce
|
fdbe3d6f453e5280109f081c74e276c8f008002c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 882 |
sce
|
Ex9_6.sce
|
//ch-9 page 308 pb-6
//
//
l1=130,l2=215,l3=155.5,l4=120,
t1=20.5,t2=60.25,t3=30.5,t4=80.5,
L1=l1*cos(t1*(%pi/180))
L2=l2*cos(t2*(%pi/180))
L3=-l3*cos(t3*(%pi/180))
L4=l4*cos(t4*(%pi/180))
printf("\n latitudes of AB,BC,CD,DE are %0.3f %0.3f %0.3f %0.3f",L1,L2,L3,L4)
D1=l1*sin(t1*(%pi/180))
D2=l2*sin(t2*(%pi/180))
D3=l3*sin(t3*(%pi/180))
D4=l4*sin(t4*(%pi/180))
printf("\n Depature of AB,BC,CD,DE are %0.3f %0.3f %0.3f %0.3f",D1,D2,D3,D4)
L5=-(L1+L2+L3+L4)
D5=-(D1+D2+D3+D4)
l5=sqrt(L5*L5+(D5*D5))
printf("\n length of EA= %0.3f meters',l5)
t5=atan(D5/L5)
t5=t5*(180/%pi)
printf("\n bearing of EA= %0.3f ",t5)
FA=l5/2
l6=FA
t6=t5
L6=-l6*cos(t6*(%pi/180))
D6=-l6*sin(t6*(%pi/180))
L7=-(L1+L2+L6)
D7=-(D1+D2+D6)
t7=atan(D7/L7)
t7=t7*(180/%pi)
printf("\n bearing from F to C is = %0.3f ",t7)
l7=sqrt(L7*L7+(D7*D7))
printf("\n distance from F to C is = %0.3f ",l7)
|
ec0739ed371aff89dda3c1687d1abadbcf6e2c62
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3137/CH18/EX18.8/Ex18_8.sce
|
a7b269c61f4d703954927b941a141aaf5ce2805a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 421 |
sce
|
Ex18_8.sce
|
//Initilization of variables
W=100 //lb
u=0.2 //coefficient of friction
t=5 //s
v1=5 //ft/s
v2=10 //ft/s
g=32.2 //ft/s^2
ll=0 //lower limit of integration
ul=5 //upper limit of integration
//Calculations
Fr=u*W //lb
//Using The impulse momentum theorem
//Since the integration is just subtraction of limits we can skip that
F=((W/g)*v2-(W/g)*v1+Fr*ul)/ul //lb
//Result
clc
printf('The Force is %f lb',F)
|
34f426618761b76f51b2e69f61df71e990f4d56f
|
04e4dfecf86c47abbad9ad721bcbc552300a8834
|
/Sine_Test/start.sce
|
c4686bc97e858c44ec2595d5dba7911850dd1301
|
[] |
no_license
|
rupakrokade/scilab_local_codes
|
702f741a5cadc6da56e428f7379971818238ff22
|
4de8383487def7f18a1f19906397ed4eaf42480e
|
refs/heads/master
| 2021-01-19T06:58:47.689324 | 2015-10-24T11:55:34 | 2015-10-24T11:55:34 | 26,806,574 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 112 |
sce
|
start.sce
|
getd ../common_files/
exec ../common_files/loader.sce
exec ser_init.sce
exec sine_test.sci
xcos sine_test.xcos
|
b50143e721eeac8fbb590d2fb45e786cfb2087b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/446/CH2/EX2.4/2_4.sce
|
f32245412da963f7fe5c5dea59b2acdbdc5262c6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 480 |
sce
|
2_4.sce
|
clear
clc
disp('Exa-2.3');
Lo=100*(10^3);c=3*(10^8); //Given values//all the quantities are converted to SI units
d=2.2*(10^-6); //time between its birth and decay
t=Lo/c //where Lo is the distance from top of atmosphere to the Earth. c is the velocity of light. t is the time taken
u=sqrt(1-((d/t)^2)); // using time dilaion fromula for finding u where u is the minimum velocity in terms of c;
printf('Hence the minimum speed required is %f c.',u);
|
c61a495dc7d8ae6a33e5ceddb30fd1d255fbd00f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3537/CH2/EX2.11/Ex2_11.sce
|
aa66a6534dd2c77a115c5d2f8f79015936932185
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 261 |
sce
|
Ex2_11.sce
|
//Example 2_11
clc();
clear;
//To find the slit width
d=2 //units in meters
lemda=500*10^-9 //units in meters
x=5*10^-3 //units in meters
a=(d*lemda)/x*10^3
printf("The slit width is %.1f mm",a)
|
34c23ce47a9d3c089caf1e4a09e7276070d6090d
|
b3c9357cd1290921e67444ae057761959fdf24f1
|
/Curso de programação com Scilab/códigos/ex05_lista.sce
|
792ecec1699aa5dd399c29f1eb85e9e2d6abb59d
|
[] |
no_license
|
joaolrneto/Scilab
|
91742520422426dc8a772997ef4a5d6376008b6e
|
f383f87e4585955cf19d0dae1b5c29f93c3f70b4
|
refs/heads/master
| 2023-02-05T20:13:03.677069 | 2020-12-30T14:53:09 | 2020-12-30T14:53:09 | 264,671,730 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 381 |
sce
|
ex05_lista.sce
|
clc
clear
n=input("Tamnhao da amostra :")
na=1
while n>0
cc=input("Conteúdo de Carbono :")
dr=input("Dureza Rokwell")
rt=input("Resistência a tração :")
if cc<7 & dr>50 & rt>800000
grau=10
else if cc<7 & dr>50
grau=9
else if cc<7
grau=8
else grau=7
end
end
end
printf("\nAmostra %d => grau %d",na,grau)
na=na+1
n=n-1
end
|
3893f3a5a458e4abec9fecadb37506d38af8d099
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2873/CH12/EX12.12/Ex12_12.sce
|
0f7ef0dcbc5d5ee52529b705c581d77b9e6fe7ff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 752 |
sce
|
Ex12_12.sce
|
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh Chapter 12 Example 12")
T1=(-150+273);//temperature of air inside in K
T2=(35+273);//temperature of outer surface in K
epsilon1=0.03;//emissivity
epsilon2=epsilon1;
D1=25*10^-2;//diameter of inner sphere in m
D2=30*10^-2;//diameter of outer sphere in m
sigma=2.04*10^-4;//stephen boltzmann constant in KJ/m^2 hr K^4
disp("heat transfer through concentric sphere,Q in KJ/hr ")
disp("Q=(A1*sigma*(T1^4-T2^4))/((1/epsilon1)+((A1/A2)*((1/epsilon2)-1)))")
A1=4*%pi*D1^2/4;
A2=4*%pi*D2^2/4;
Q=(A1*sigma*(T1^4-T2^4))/((1/epsilon1)+((A1/A2)*((1/epsilon2)-1)))
disp("so heat exchange=6297.1 KJ/hr")
|
7a9d5c494181284010976e719b079933a04a7f3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH1/EX1.50/EX1_50.sce
|
c2df79263596297e1fd6e711874233a4b594862a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 218 |
sce
|
EX1_50.sce
|
//EXAMPLE 1-50 PG NO-45
TR=17/6; //TOTAL RESISTANCE
V=40; //VOLTAGE
I=5; //CURRENT
Vs=(TR*I)-V;
disp('i)VOLTAGE = '+string (Vs)+' V')
|
83f04b45dff6610ce974aeeb12e0c9cfb8cbfa40
|
c9e04373e33a2721547c7ae2be20ee84f115be1c
|
/evaluationData/nodeutilization.sce
|
15822d39939e2ab53b5501c867daaa03192566ed
|
[] |
no_license
|
lspxian/junsp
|
f944ce163267608cb9cdb939a0ac809f724fb396
|
ca1571bbc30e6a9a183fa8d675567e169288acf4
|
refs/heads/master
| 2021-01-23T14:10:34.141815 | 2017-10-06T17:03:10 | 2017-10-06T17:03:10 | 34,068,408 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 152 |
sce
|
nodeutilization.sce
|
nodeutilization= read("NodeUtilization.txt",-1,2);
time = nodeutilization(:,$-1);
nodeutilization = nodeutilization(:,$);
plot2d(time,nodeutilization);
|
5cf09d3942aa22e378ca826c6382f4b1924440c0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH5/EX5.1/Ex5_1.sce
|
7053a8d1bf993954ffb3266753c8907324ddf511
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,280 |
sce
|
Ex5_1.sce
|
// Exa 5.1
// To Calculate
// A) The system capacity if the cluster size, N (reuse factor), is 4 and
// B) The system capacity if the cluster size is 7.
// C) How many times would a cluster of size 4 have to be replicated to cover the entire cellular area?
// D) Does decreasing the reuse factor N increase the system capacity?
clc;
clear all;
ToCH=960;// Total available channels
Cellarea=6; //in km^2
Covarea=2000;//in km^2
N1=4; // Cluster Size
N2=7; //Cluster Size
//solution
Area1=N1*Cellarea;//for N=4
Area2=N2*Cellarea;//For N=7
No_of_clusters1=round(Covarea/Area1);
No_of_clusters2=round(Covarea/Area2);
No_of_CH1=ToCH/N1; // No of channels with cluster size 4
No_of_CH2=ToCH/N2; // No of channels with cluster size 7
SysCap1=No_of_clusters1*ToCH;
SysCap2=No_of_clusters2*ToCH;
printf(' System Capacity with cluster size 4 is %d channels \n ',SysCap1);
printf(' Number of clusters for covering total area with N equals 4 are %d \n ',No_of_clusters1);
printf(' System Capacity with cluster size 7 is %d channels \n',SysCap2);
disp(" It is evident when we decrease the value of N from 7 to 4, we increase the system capacity from 46080 to 79680 channels. Thus, decreasing the reuse factor (N) increases the system capacity.")
|
1b37e24a5a091e816fb7057fe399fc350f93c7f5
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/peig/peig3.sce
|
d5fd23798f2194379534feda99652702350cc83d
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 231 |
sce
|
peig3.sce
|
//check o/p when i/p is a vector and the i/p args are x,p,w
x=[1 2 3 4 5 6 2 3 7];
p=3;
w=[1 2 4];
[S,w] = peig(x,p,w);
disp(S);
disp(w);
//output
// 0.8983917
// 0.5246221
// 0.5858427
//
// 1. 2. 4.
|
eb6f402f4e1ccd6884584f825ccba7c3fc24a407
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1205/CH8/EX8.7/S_8_7.sce
|
ee1ffb6e7520633b8d399543f0560c2766cbbf38
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 675 |
sce
|
S_8_7.sce
|
clc;
T1=400;//N, Force on free end of hawser
T2=25;//kN, Force on other end of hawser
T2=T2*1000;//N, conversion
//a, coefficient of friction
bta=2*2*%pi;//rad, angle of contact, 2 turns
//By equation 8.13
us=log(T2/T1)/bta;// Co-efficient of static friction
printf("Coefficient of static friction between hawser and ballard is us= %0.3f \n",us);
//Number of wraps when tension in hawser=75 kN
T2=75;//kN, Tension in hawser
T2=T2*1000;//N, conversion into N
bta=log(T2/T1)/us;//rad, angle of contact
//One turn = 2* pi angle, bta corresponds to
turns=bta/(2*%pi);//Number of turns
printf("Number of wraps when tension in hawser=75 kN are %.2f \n",turns);
|
ae6a92884ddf7170a7bb43251b967641f1e22841
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3673/CH2/EX2.11/Ex2_11.sce
|
189621cd87eb7a65ea3080771d4c5c0bc275f92b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 337 |
sce
|
Ex2_11.sce
|
//Example 2_11 page no:74
clc
//mesh equation for the circuit is
I1=10;//current in ampere
resistance=[5,-2;-2,3]
volt=[20,10]
current=inv(resistance)'*volt'//calculating current I1 I2 I3
disp(I1,"the current I1 is (in ampere)")
disp(current(1),"the current I2 is (in ampere)")
disp(current(2),"the current I3 is (in ampere)")
|
50397af83ae4e5815d3353dba7c9ecb8ba514393
|
12d276a808c8403c4dd3b13dea1edb8720127311
|
/one-back_maininstructions.sce
|
815168dfd565db1581e865185f579b47ec9324e9
|
[] |
no_license
|
npytabitha/VOT3
|
85b317ae4c120eb2bda125b28c1ad27243d40eab
|
51032662c4a6f0960393aad4ebf9b3289c641155
|
refs/heads/develop
| 2021-01-10T05:44:31.715364 | 2015-10-01T13:34:47 | 2015-10-01T13:34:47 | 43,233,510 | 0 | 1 | null | 2015-10-02T09:05:14 | 2015-09-27T03:56:10 |
Scilab
|
UTF-8
|
Scilab
| false | false | 2,641 |
sce
|
one-back_maininstructions.sce
|
scenario = "One-Back"; # This name is recorded in the log file
scenario_type = trials;
response_matching = simple_matching;
no_logfile = true;
active_buttons = 3;
button_codes = 1, 2, 3; # These values will be used to code participant responses
default_font_size = 56;
default_font = "Arial";
default_background_color = 0,0,0; #Black#
default_text_color = 255,255,255; #White#
begin;
#Instructions at the beginning of experiment
trial{
trial_duration=forever;
trial_type=specific_response;
terminator_button = 3;
picture{
text{font_size = 20; max_text_width = 1120; caption = "Herzlich Wilkommen!
In diesem Experiment untersuchen wir die Gehirnprozesse der Klangverarbeitung.
Dafuer bitten wir Dich, auf den Bildschirm zu achten und die Klaenge zu verfolgen, die Dir ueber Kopfhoerer praesentiert werden.
Manchmal wiederholt sich ein und der selbe Klang. In einer Reihe mit Klaengen benannt als
Klang1, Klang2, Klang3, Klang3, Klang4 hat sich zum Beispiel Klang3 wiederholt.
Immer wenn das passiert, druecke bitte die 'Enter' Taste.
Klangwiederholungen tretten unmittelbar aufeinanderfolgend auf (z.B. Klang3, Klang3).
Klangwiederholungen werden NICHT durch andere Klaenge unterbrochen (z.B. Klang3, Klang4, Klang3).
Jedesmal wenn ein Klang ertoent, siehst Du ein Fixationskreuz auf dem Bildschirm.
Bitte halte Deine Augen auf dem Kreuz und versuche nicht zu blinzeln.
Du kannst immer dann blinzeln, wenn Du nichts auf dem Bildschirm siehst.
Bitte druecke 'Enter' um fortzufahren.";
};
x = 0; y = 0;
};
time = 0;
}instructions_pt1;
trial{
trial_duration=forever;
trial_type=specific_response;
terminator_button = 3;
picture{
text{font_size = 20; max_text_width = 1120; caption = "Dieses Experiment beinhaltet 3 Messtage. Deine Aufgabe an diesen Tagen ist immer gleich und auf drei Bloecke verteilt von denen jeder ungefaehr 25 Minuten lang ist. Zwischen den Bloecken kannst Du Pause machen.
Die Versuchsleiterin wird waerend des Experimentes neben Dir sitzen. An einem der Messtage wird sie Dich mit einer weichen Buerste am Arm streicheln. An den beiden anderen Messtagen wird sie Dich entweder nicht streicheln oder auf der Handinnenfleache streicheln.
Die Reihenfolge der Messtage/Streichelbedingungen wird von der Versuchsleiterin festgelegt. Bitte versuche das Streicheln und die Anwesenheit der Versuchsleiterin zu ignorieren und Dich ganz auf die Klaenge zu konzentrieren.
Falls Du Fragen hast, wende Dich bitte jetzt an die Versuchsleiterin.
Fall alles klar ist, druecke bitte die 'Enter' Taste.";
};
x = 0; y = 0;
};
time = 0;
}instructions_pt2;
begin_pcl;
instructions_pt1.present();
instructions_pt2.present();
|
c7c4d574bb871d0897198d7f23cb6053ca60e386
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/416/CH9/EX9.1/exp9_1.sce
|
f3de3abe94b5d614aa79bb301de5d3aa5a1f7f1d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 153 |
sce
|
exp9_1.sce
|
clear
clc
disp("example 9.1")
m=1*10^-3//mass of 1 grm in kgs
c=3*10^8
e=m*c^2;
E=e/(1000*3600)
printf("energy equivalent of 1 gram is %dkWh",E)
|
0b182c3ad42ab13d10b6df27c81c9888d18ae8d1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH3/EX3.4.4/Example3_4_4.sce
|
ec286cbf92b1d7f8b2fef88cca89d4b4ae36114f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 216 |
sce
|
Example3_4_4.sce
|
//Example 3.4.4 page 3.44
clc;
clear;
n1= 1.5;
n=1;
R= (n1-n)^2/(n1+n)^2;
L= -10*log10(1-R);
//Total loss is twice due to reflection
L= L+L;
printf("Total loss due to Fresnel Reflection is %.2f dB",L);
|
9e2a26fade7fe91042d46e6cd214986c27ba439d
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/macros/percent/%c_i_r.sci
|
b6428daa84813d5d00dda03eaafc80a10c7e6aa5
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 355 |
sci
|
%c_i_r.sci
|
function s2=%c_i_r(i,j,s1,s2)
// Copyright INRIA
if type(i)==10 then // sl('dt')
[lhs,rhs]=argn(0)
if rhs<>3 then error(21),end
if i<>'dt' then
error('inserted element '+i+' has inconsistent type')
end
s2=s1;kf=4
if j<>'c'&j<>'d' then
error('inserted element '+i+' must be ''c'' or ''d'' or a scalar')
end
s2(kf)=j
return
end
|
b7e7710c09f316b294a00d87196ef1dc649b6101
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/14/CH4/EX4.2/example_4_2.sce
|
9cb903f93494d6c407881ea394283c5de875eef5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,313 |
sce
|
example_4_2.sce
|
//Chapter 4
//Example 4.2
//ChargingMVA
//Page 80
clear;clc;
//Given values
D_12 = 20;//in ft
D_23 = D_12;
D_31 = 38;//in ft
f = 60;//in Hz
V = 220e3;//in volts
l = 175;//in mi
k = 8.85e-12;//permittivity in F/m
//From tables A.1 and A.3
d = 1.108;//in inches
X_a1 = 0.0912e6;//in ohm mi
X_d1 = 0.0952e6;//in ohm mi
//Calculations
r = d / ( 2 * 12);//division by 12 to convert in to ft
D_eq = (D_12 * D_23 * D_31)^(1/3);
C_n = (2 * %pi * k)/log(D_eq/r);
X_c = 1 / (2 * %pi * f * C_n * 1609);//division by 1609 to convert to ohm mi
printf("\n\n Capacitance = %.4fe-12 F/m \n\n",C_n * 1e12)
printf("\n\n Capacitive reactance = %.4fe6 ohm mi \n\n",X_c / 1e6)
//Calculations From tables
X_c1 = X_a1 + X_d1;
disp('Using capacitive reactance at 1-ft spacing and spacing factor')
printf("\n\n Capacitive reactance = %.4fe6 ohm mi \n\n",X_c1 / 1e6)
X_c_l = X_c1 / l;//Capacitive reactance for 175mi
I_chg = 2 * %pi * f * V * C_n * 1609 / sqrt(3);
I_chg_l = I_chg * l;
Q = sqrt(3) * V * I_chg_l;
disp('For a lenght of 175mi')
printf("\n\n Capacitive reactance = %.4f ohm to neutral \n\n",X_c_l)
printf("\n\n Charging current per mile = %.3f A/mi \n\n",I_chg)
disp('For a lenght of 175mi')
printf("\n\n Charging current = %.0f A \n\n",I_chg_l)
printf("\n\n Total charging megavolt-amperes = %.1f Mvar \n\n",Q / 1e6)
|
1d3ccdf125ea890f282da41ee61af187c9b91e16
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH6/EX6.15/Chapter6_Example15.sce
|
a2e6e539fa6b24f86e194c7ac09f73d0cb04bba8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 588 |
sce
|
Chapter6_Example15.sce
|
clc
clear
//Input data
T1=600;//The higher temperature of the reservoir in K
T2=300;//The lower temperature of the reservoir in K
n1=52;//The efficiency claimed by the inventor in percent
//Calculations
n=(1-(T2/T1))*100;//The efficiency of the carnot engine in percent
//Output
printf('The efficiency of the carnot engine is %3.0f percent \n The efficiency claimed is %3.0f percent \n The efficiency of the engine is more than the efficiency of the carnot engine \n .But no engine can have an efficiency more than a carnots engine, \n so his claim is invalid',n,n1)
|
0ad5b6fe43df343d40f7b5c8aac0b49190eb3771
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/980/CH14/EX14.6/14_6.sce
|
78339e9239595c3eab4c51673a29486afa0895b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 218 |
sce
|
14_6.sce
|
clc;
clear;
format('v',11);
BWFN=10;
del_phi_fn=BWFN/2*%pi/180; //in radian.
phi_0=45;
kd=%pi;
N=2*%pi/(kd*(sind(phi_0)*del_phi_fn+cosd(phi_0)*del_phi_fn^2/2));
disp(N,"no of elements=");
|
87da45f82a8f2855dd51a6ec898666f35f2d3c67
|
62e6605ab494919b6833bf1a1b158bcb6f9b79df
|
/inverse.sci
|
f6b2decdfe566d2a42d31186aa150280e57df0bd
|
[] |
no_license
|
mani1250/system-identification
|
c597c26d10bb5dd62b1b4db650b3945afc336e37
|
5db0536c792dfaa4a8f01561315263503ff34d3d
|
refs/heads/master
| 2021-01-12T06:56:00.703593 | 2017-03-07T12:18:15 | 2017-03-07T12:18:15 | 76,865,655 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 106 |
sci
|
inverse.sci
|
function X = inverse(y,k)
X = [];
for(i=1:k-1)
X = [X y.^(i-1)]
end
endfunction
|
4d70f8e5929171bc518d8be92de8775fccbb449e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3651/CH3/EX3.9/9.sce
|
386932394fc90232a13afd07db26cb11af019d8d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 467 |
sce
|
9.sce
|
//Variable declaration
e=1.6*10**-19; //charge of electron(coulomb)
L=10**-10 //1Angstrom=10**-10 m
n1=1;
n2=2;
n3=3;
h=6.626*10**-34
m=9.1*10**-31
L=10**-10
//Calculations
E1=(h**2)/(8*m*L**2*e)
E2=4*E1
E3=9*E1
//Result
printf('The permitted electron energies =%0.3f *n**2 eV \n ',(E1))
printf('E1=%0.3f eV \n ',(E1))
printf('E2=%0.3f eV \n ',(E2))
printf('E3=%0.3f eV \n ',(E3))
printf('//Answer varies due to ing of numbers")
|
a1b757951ff9cd4ad27412103bb0e208da6f9062
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/CreatingPlots/testfevalsurferror.sce
|
9fe3a81c1f4a4c1c70711bb4b7e422e66fbce2a4
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 237 |
sce
|
testfevalsurferror.sce
|
function z=plan(x,y)
z=x-y
endfunction
// rectangular grid
x=[0:4],y=[0:2],
// bad evaluation
z=feval(x,y,plan)
// surface is correctly displayed with plot3d
clf;plot3d(x,y,z)
// incompatible display dimensions
clf;surf(x,y,z)
|
a271a7e213285cae466eb1cdcefc66d9886b27fa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/623/CH19/EX4.2.4/U4_C2_4.sce
|
73b476449bde988de65bd1655fc490bd2768da4f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 386 |
sce
|
U4_C2_4.sce
|
//variable initialization
rP = 4;
rD = 5;
LP = 1;
LP = 2;
jP = [5/2, 3/2, 1/2];
jD = [4, 3, 2, 1, 0];
//Calculation
SP = (rP-1)/2;
SD = (rD-1)/2;
i=1;
for i=1:3
JP(i) = sqrt(jP(i)*(jP(i)+1));
end
i=1;
for i=1:5
JD(i) = sqrt(jD(i)*(jD(i)+1));
end
printf("\nAngular moments allowed for 4P : %.2f",JP);
printf("\nAngular moments allowed for 5D : %.2f",JD);
|
0f02b9e0a42f31c8e829f21a26e1ac3e3f4df66a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH21/EX21.10/Ex21_10.sce
|
209f98892eab01d01544af87086db708bd12a5c8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 977 |
sce
|
Ex21_10.sce
|
// Exa 21.10
// Repeat Problems 21.8 and 21.9, if the IEEE 802.11 FH device is replaced by the IEEE 802.11 DS device (Gp=11).
clc
clear all;
Gp=11;//processing gain(given)
//Defining variables from Exa 21.8 & 21.9
PBt=20; // transmitted power by the BT in dBm
PMs=40; // transmitted power of the IEEE 802.11 device in dBm
PAp=40; // transmitted power by the AP in dBm
d=10; // distance between AP and IEEE 802.11 device in m
Y=4; //path loss exponent
Pe=10^-5;//Error probability
//solution
//Pe=0.5*e^(-0.5*Eb/No)
SIR=log(Pe/0.5)/(-0.5);
r1max=d*(SIR*PBt/(PAp*Gp))^(1/Y);// range of interference between Bluetooth and 802.11 device
printf(' Maximum coverage range for IEEE 802.11 DS is %.2f metres \n',r1max);
r2max=d*(SIR*PMs/(PBt*Gp))^(1/Y);
printf(' Maximum coverage range for IEEE 802.11 FH is %.2f metres \n',r2max);
disp(" Thus, the interference ranges are smaller for the IEEE 802.11 DS device compared to the IEEE 802.11 FH device.")
|
ab1a4d7c4e21d68cf61ecf8dc5c4336396b2d987
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2708/CH4/EX4.2/ex_4_2.sce
|
951d0833a57fbb1c1879160e2481069d0fe80f9d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 275 |
sce
|
ex_4_2.sce
|
//Example 4.2 // transverse Coherence length
clc;
//given data :
theta=32;//angle on slit in second
theta=32*%pi/(60*180);// to convert in radian
w=5D-5;// wavelength of light used in cm
C=w/theta;//coherence length in cm
disp(C,"transverse coherence length in cm")
|
79c1afabca9d9871f2889d122e65823b32ebc17a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3710/CH7/EX7.8/Ex7_8.sce
|
17e790ff199e1a1fc6e1485c867b7c5a872aff3d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 362 |
sce
|
Ex7_8.sce
|
//Example 7.8, Page Number 334
//Diffusion time of carrier
clc;
t=5*(10**-6) //Thickness of the layer in metres
Dc=3.4*(10**-3) //Dc is the Minority diffusion coefficient in metre square per second
//From equation 7.37
td=(t**2)/(2*Dc) //td is the diffusion time in seconds
mprintf("The Time taken for the excess carriers to diffuse is:%.1e s",td)
|
89730b948502cc372f9245833299d0bfae3915db
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2090/CH3/EX3.7/Chapter3_Example7.sce
|
2f072825a717ea33713a181e9a9b1b5d58c47ae5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,399 |
sce
|
Chapter3_Example7.sce
|
clc
clear
//Input data
t=25;//The temperature of the air entering the diesel engine in degree centigrade
T=600;//The temperature at which the products are released in K
Ta=200;//Theoretical air used in percentage
Q=-93;//Heat loss from the engine in MJ/kmol fuel
f=1;//The fuel rate in kmol/h
//Calculations
hfr=-290.97;//The enthalpy of C12H26 for the given conditions in the reactants side in MJ/kmol
h1=-393.52;//Enthalpy of carbondioxide at formation state in MJ/kmol
h11=12.916;//The change in enthalpy for the given temp of CO2 in MJ/kmol
hfc=h1+h11;//The enthalpy of the carbondioxide in MJ/kmol
h2=-241.82;//The enthalpy of water at formation state in MJ/kmol
h22=10.498;//The change in enthalpy for the given temp of water in MJ/kmol
hfh=h2+h22;//The enthalpy of the water in MJ/kmol
h3=0;//Enthalpy of the oxygen gas
h33=9.247;//The change in enthalpy for the given temp of oxygen in MJ/kmol
hfo=h3+h33;//The enthalpy of oxygen in MJ/kmol
h4=0;//The enthalpy of the nitrogen gas
h44=8.891;//The change in enthalpy of the nitrogen for the given temp in MJ/kmol
hfn=h4+h44;//The enthalpy of nitrogen in MJ/kmol
hfp=(12*hfc)+(13*hfh)+(18.5*hfo)+(139.12*hfn);//The total enthalpy on the products side in MJ/kmol
W=Q+hfr-hfp;//The work in MJ/kmol fuel
W1=(f*W*10^3)/3600;//The work in kW
//Output
printf('The work for a fuel rate of 1 kmol/h is %3.1f kW',W1)
|
ff8dfdadea9c695ba4326ee6e992cef8837f16d1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3718/CH6/EX6.6/Ex6_6.sce
|
c0acffd39b01e93ee489012f2fc61983f60291af
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 362 |
sce
|
Ex6_6.sce
|
//Chapter 6: Electrochemistry
//Problem: 6
clc;
//Declaration of Constant
F = 96500 // C / mol
//Declaration of Variables
n = 2
T = 25 // C
Eo_Ag = 0.80 // Ag+ / Ag
Eo_Ni = - 0.24 // Ni+2 / Ni
// Solution
Eo_Cell = Eo_Ag - Eo_Ni
delta_Go = - n * F * Eo_Cell
mprintf("Standard free energy change %d J / mol",delta_Go)
|
33b308a82303fd201393b6d8d969f9f0c3d2e281
|
b2efed85f1632d9ed4b7d9f4eebc7126d3074940
|
/ted_mini/artandsci_positive/113.ted.sci
|
af0ed448e22a4a3d61dc36ad321de51e7ed1afe3
|
[] |
no_license
|
joytafty-work/unsupervised_nlp
|
837d8ed75eb084b630d75a1deba7bdd53bbcf261
|
7812c7d24bb677c90cf6397ed0e274caba1b884c
|
refs/heads/master
| 2021-01-10T09:24:33.254190 | 2015-11-11T20:40:32 | 2015-11-11T20:40:32 | 45,651,958 | 2 | 7 | null | 2018-01-28T18:54:18 | 2015-11-06T01:42:42 |
Scilab
|
UTF-8
|
Scilab
| false | false | 22,123 |
sci
|
113.ted.sci
|
that splendid music the coming in music the elephant march from aida is the music i ve chosen for my funeral and you can see why it s triumphal i wo n t feel anything but if i could i would feel triumphal at having lived at all and at having lived on this splendid planet and having been given the opportunity to understand something about why i was here in the first place before not being here can you understand my quaint english accent like everybody else i was entranced yesterday by the animal session robert full and frans lanting and others the beauty of the things they showed the only slight jarring note was when jeffrey katzenberg said of the mustang the most splendid creatures that god put on this earth now of course we know that he did n t really mean that but in this country at the moment you ca n t be too careful i m a biologist and the central theorem of our subject the theory of design darwin s theory of evolution by natural selection in professional circles everywhere it s of course universally accepted in non professional circles outside america it s largely ignored but in non professional circles within america it arouses so much hostility that it s fair to say that american biologists are in a state of war the war is so worrying at present with court cases coming up in one state after another that i felt i had to say something about it if you want to know what i have to say about darwinism itself i m afraid you re going to have to look at my books which you wo n t find in the bookstore outside contemporary court cases often concern an allegedly new version of creationism called intelligent design or id do n t be fooled there s nothing new about id it s just creationism under another name rechristened i choose the word advisedly for tactical political reasons the arguments of so called id theorists are the same old arguments that had been refuted again and again since darwin down to the present day there is an effective evolution lobby coordinating the fight on behalf of science and i try to do all i can to help them but they get quite upset when people like me dare to mention that we happen to be atheists as well as evolutionists they see us as rocking the boat and you can understand why creationists lacking any coherent scientific argument for their case fall back on the popular phobia against atheism teach your children evolution in biology class and they ll soon move on to drugs grand larceny and sexual pre version in fact of course educated theologians from the pope down are firm in their support of evolution this book finding darwin s god by kenneth miller is one of the most effective attacks on intelligent design that i know and it s all the more effective because it s written by a devout christian people like kenneth miller could be called a godsend to the evolution lobby because they expose the lie that evolutionism is as a matter of fact tantamount to atheism people like me on the other hand rock the boat but here i want to say something nice about creationists it s not a thing i often do so listen carefully i think they re right about one thing i think they re right that evolution is fundamentally hostile to religion i ve already said that many individual evolutionists like the pope are also religious but i think they re deluding themselves i believe a true understanding of darwinism is deeply corrosive to religious faith now it may sound as though i m about to preach atheism and i want to reassure you that that s not what i m going to do in an audience as sophisticated as this one that would be preaching to the choir no what i want to urge upon you instead what i want to urge upon you is militant atheism but that s putting it too negatively if i was a person who were interested in preserving religious faith i would be very afraid of the positive power of evolutionary science and indeed science generally but evolution in particular to inspire and enthrall precisely because it is atheistic now the difficult problem for any theory of biological design is to explain the massive statistical improbability of living things statistical improbability in the direction of good design complexity is another word for this the standard creationist argument there is only one they all reduce to this one takes off from a statistical improbability living creatures are too complex to have come about by chance therefore they must have had a designer this argument of course shoots itself in the foot any designer capable of designing something really complex has to be even more complex himself and that s before we even start on the other things he s expected to do like forgive sins bless marriages listen to prayers favor our side in a war disapprove of our sex lives and so on complexity is the problem that any theory of biology has to solve and you ca n t solve it by postulating an agent that is even more complex thereby simply compounding the problem darwinian natural selection is so stunningly elegant because it solves the problem of explaining complexity in terms of nothing but simplicity essentially it does it by providing a smooth ramp of gradual step by step increment but here i only want to make the point that the elegance of darwinism is corrosive to religion precisely because it is so elegant so parsimonious so powerful so economically powerful it has the sinewy economy of a beautiful suspension bridge the god theory is not just a bad theory it turns out to be in principle incapable of doing the job required of it so returning to tactics and the evolution lobby i want to argue that rocking the boat may be just the right thing to do my approach to attacking creationism is unlike the evolution lobby my approach to attacking creationism is to attack religion as a whole and at this point i need to acknowledge the remarkable taboo against speaking ill of religion and i m going to do so in the words of the late douglas adams a dear friend who if he never came to ted certainly should have been invited richard dawkins he was good i thought he must have been he begins this speech which was tape recorded in cambridge shortly before he died he begins by explaining how science works through the testing of hypotheses that are framed to be vulnerable to disproof and then he goes on i quote religion does n t seem to work like that it has certain ideas at the heart of it which we call sacred or holy what it means is here is an idea or a notion that you re not allowed to say anything bad about you re just not why not because you re not why should it be that it s perfectly legitimate to support the republicans or democrats this model of economics versus that macintosh instead of windows but to have an opinion about how the universe began about who created the universe no that s holy so we re used to not challenging religious ideas and it s very interesting how much of a furor richard creates when he does it he meant me not that one everybody gets absolutely frantic about it because you re not allowed to say these things yet when you look at it rationally there is no reason why those ideas should n t be as open to debate as any other except that we ve agreed somehow between us that they should n t be and that s the end of the quote from douglas in my view not only is science corrosive to religion religion is corrosive to science it teaches people to be satisfied with trivial supernatural non explanations and blinds them to the wonderful real explanations that we have within our grasp it teaches them to accept authority revelation and faith instead of always insisting on evidence there s douglas adams magnificent picture from his book last chance to see now there s a typical scientific journal the quarterly review of biology and i m going to put together as guest editor a special issue on the question did an asteroid kill the dinosaurs and the first paper is a standard scientific paper presenting evidence iridium layer at the k t boundary potassium argon dated crater in yucatan indicate that an asteroid killed the dinosaurs perfectly ordinary scientific paper now the next one the president of the royal society has been vouchsafed a strong inner conviction that an asteroid killed the dinosaurs it has been privately revealed to professor huxtane that an asteroid killed the dinosaurs professor hordley was brought up to have total and unquestioning faith that an asteroid killed the dinosaurs professor hawkins has promulgated an official dogma binding on all loyal hawkinsians that an asteroid killed the dinosaurs that s inconceivable of course but suppose in 1987 a reporter asked george bush sr whether he recognized the equal citizenship and patriotism of americans who are atheists mr bush s reply has become infamous no i do n t know that atheists should be considered citizens nor should they be considered patriots this is one nation under god bush s bigotry was not an isolated mistake blurted out in the heat of the moment and later retracted he stood by it in the face of repeated calls for clarification or withdrawal he really meant it more to the point he knew it posed no threat to his election quite the contrary democrats as well as republicans parade their religiousness if they want to get elected both parties invoke one nation under god incidentally i m not usually very proud of being british but you ca n t help making the comparison in practice what is an atheist an atheist is just somebody who feels about yahweh the way any decent christian feels about thor or baal or the golden calf as has been said before we are all atheists about most of the gods that humanity has ever believed in some of us just go one god further and however we define atheism it s surely the kind of academic belief that a person is entitled to hold without being vilified as an unpatriotic unelectable non citizen nevertheless it s an undeniable fact that to own up to being an atheist is tantamount to introducing yourself as mr hitler or miss beelzebub and that all stems from the perception of atheists as some kind of weird way out minority natalie angier wrote a rather sad piece in the new yorker saying how lonely she felt as an atheist she clearly feels in a beleaguered minority but actually how do american atheists stack up numerically the latest survey makes surprisingly encouraging reading christianity of course takes a massive lion s share of the population with nearly 160 million but what would you think was the second largest group convincingly outnumbering jews with 2 8 million muslims at 1 1 million and hindus buddhists and all other religions put together the second largest group of nearly 30 million is the one described as non religious or secular you ca n t help wondering why vote seeking politicians are so proverbially overawed by the power of for example the jewish lobby the state of israel seems to owe its very existence to the american jewish vote while at the same time consigning the non religious to political oblivion this secular non religious vote if properly mobilized is nine times as numerous as the jewish vote why does this far more substantial minority not make a move to exercise its political muscle well so much for quantity how about quality is there any correlation positive or negative between intelligence and tendency to be religious the survey that i quoted which is the aris survey did n t break down its data by socio economic class or education iq or anything else but a recent article by paul g bell in the mensa magazine provides some straws in the wind mensa as you know is an international organization for people with very high iq and from a meta analysis of the literature bell concludes that i quote of 43 studies carried out since 1927 on the relationship between religious belief and one s intelligence or educational level all but four found an inverse connection that is the higher one s intelligence or educational level the less one is likely to be religious well i have n t seen the original 42 studies and i ca n t comment on that meta anaysis but i would like to see more studies done along those lines and i know that there are if i could put a little plug here there are people in this audience easily capable of financing a massive research survey to settle the question and i put the suggestion up for what it s worth but let me know show you some data that have been properly published and analyzed on one special group namely top scientists in 1998 larson and witham polled the cream of american scientists those who d been honored by election to the national academy of sciences and among this select group belief in a personal god dropped to a shattering seven percent about 20 percent are agnostic and the rest could fairly be called atheists similar figures obtained for belief in personal immortality among biological scientists the figures are even lower 5 5 percent only believe in god physical scientists it s 7 5 percent i ve not seen corresponding figures for elite scholars in other fields such history or philosophy but i d be surprised if they were different so we ve reached a truly remarkable situation a grotesque mismatch between the american intelligentsia and the american electorate a philosophical opinion about the nature of the universe which is held by the vast majority of top american scientists and probably the majority of the intelligentsia generally is so abhorrent to the american electorate that no candidate for popular election dare affirm it in public if i m right this means that high office in the greatest country in the world is barred to the very people best qualified to hold it the intelligentsia unless they are prepared to lie about their beliefs to put it bluntly american political opportunities are heavily loaded against those who are simultaneously intelligent and honest i m not a citizen of this country so i hope it wo n t be thought unbecoming if i suggest that something needs to be done and i ve already hinted what that something is from what i ve seen of ted i think this may be the ideal place to launch it again i fear it will cost money we need a consciousness raising coming out campaign for american atheists this could be similar to the campaign organized by homosexuals a few years ago although heaven forbid that we should stoop to public outing of people against their will in most cases people who out themselves will help to destroy the myth that there is something wrong with atheists on the contrary they ll demonstrate that atheists are often the kinds of people that could serve as decent role models for your children the kinds of people an advertising agent could use to recommend a product the kinds of people who are sitting in this room there should be a snowball effect a positive feedback such that the more names we have the more we get there could be non linearities threshold effects when a critical mass has been attained there s an abrupt acceleration in recruitment and again it will need money i suspect that the word atheist itself contains or remains a stumbling block far out of proportion to what it actually means and a stumbling block to people who otherwise might be happy to out themselves so what other words might be used to smooth the path oil the wheels sugar the pill darwin himself preferred agnostic and not only out of loyalty to his friend huxley who coined the term darwin said i have never been an atheist in the same sense of denying the existence of a god i think that generally an agnostic would be the most correct description of my state of mind he even became uncharacteristically tetchy with edward aveling aveling was a militant atheist who failed to persuade darwin to accept the dedication of his book on atheism incidentally giving rise to a fascinating myth that karl marx tried to dedicate das kapital to darwin which he did n t it was actually edward aveling what happened was that aveling s mistress was marx s daughter and when both darwin and marx were dead marx s papers became muddled up with aveling s papers and a letter from darwin saying my dear sir thank you very much but i do n t want you to dedicate your book to me was mistakenly supposed to be addressed to marx and that gave rise to this whole myth which you ve probably heard it s a sort of urban myth that marx tried to dedicate kapital to darwin anyway it was aveling and when they met darwin challenged aveling why do you call yourselves atheists agnostic retorted aveling was simply atheist writ respectable and atheist was simply agnostic writ aggressive darwin complained but why should you be so aggressive darwin thought that atheism might be well and good for the intelligentsia but that ordinary people were not quote ripe for it which is of course our old friend the do n t rock the boat argument it s not recorded whether aveling told darwin to come down off his high horse but in any case that was more than 100 years ago you think we might have grown up since then now a friend an intelligent lapsed jew who incidentally observed the sabbath for reasons of cultural solidarity describes himself as a tooth fairy agnostic he wo n t call himself an atheist because it s in principle impossible to prove a negative but agnostic on its own might suggest that god s existence was therefore on equal terms of likelihood as his non existence so my friend is strictly agnostic about the tooth fairy but it is n t very likely is it like god hence the phrase tooth fairy agnostic bertrand russell made the same point using a hypothetical teapot in orbit about mars you would strictly have to be agnostic about whether there is a teapot in orbit about mars but that does n t mean you treat the likelihood of its existence as on all fours with its non existence the list of things which we strictly have to be agnostic about does n t stop at tooth fairies and teapots it s infinite if you want to believe one particular one of them unicorns or tooth fairies or teapots or yahweh the onus is on you to say why the onus is not on the rest of us to say why not we who are atheists are also a fairiests and a teapotists but we do n t bother to say so and this is why my friend uses tooth fairy agnostic as a label for what most people would call atheist nonetheless if we want to attract deep down atheists to come out publicly we re going to have find something better to stick on our banner than tooth fairy or teapot agnostic so how about humanist this has the advantage of a worldwide network of well organized associations and journals and things already in place my problem with it only is its apparent anthropocentrism one of the things we ve learned from darwin is that the human species is only one among millions of cousins some close some distant and there are other possibilities like naturalist but that also has problems of confusion because darwin would have thought naturalist naturalist means of course as opposed to supernaturalist and it is used sometimes darwin would have been confused by the other sense of naturalist which he was of course and i suppose there might be others who would confuse it with nudism such people might be those belonging to the british lynch mob which last year attacked a pediatrician in mistake for a pedophile i think the best of the available alternatives for atheist is simply non theist it lacks the strong connotation that there s definitely no god and it could therefore easily be embraced by teapot or tooth fairy agnostics it s completely compatible with the god of the physicists when atheists like stephen hawking and albert einstein use the word god they use it of course as a metaphorical shorthand for that deep mysterious part of physics which we do n t yet understand non theist will do for all that yet unlike atheist it does n t have the same phobic hysterical responses but i think actually the alternative is to grasp the nettle of the word atheism itself precisely because it is a taboo word carrying frissons of hysterical phobia critical mass may be harder to achieve with the word atheist than with the word non theist or some other non confrontational word but if we did achieve it with that dread word atheist itself the political impact would be even greater now i said that if i were religious i d be very afraid of evolution i d go further i would fear science in general if properly understood and this is because the scientific worldview is so much more exciting more poetic more filled with sheer wonder than anything in the poverty stricken arsenals of the religious imagination as carl sagan another recently dead hero put it how is it that hardly any major religion has looked at science and concluded this is better than we thought the universe is much bigger than our prophet said grander more subtle more elegant instead they say no no no my god is a little god and i want him to stay that way a religion old or new that stressed the magnificence of the universe as revealed by modern science might be able to draw forth reserves of reverence and awe hardly tapped by the conventional faiths now this is an elite audience and i would therefore expect about 10 percent of you to be religious many of you probably subscribe to our polite cultural belief that we should respect religion but i also suspect that a fair number of those secretly despise religion as much as i do if you re one of them and of course many of you may not be but if you are one of them i m asking you to stop being polite come out and say so and if you happen to be rich give some thought to ways in which you might make a difference the religious lobby in this country is massively financed by foundations to say nothing of all the tax benefits by foundations such as the templeton foundation and the discovery institute we need an anti templeton to step forward if my books sold as well as stephen hawking s books instead of only as well as richard dawkins books i d do it myself people are always going on about how did september the 11th change you well here s how it changed me let s all stop being so damned respectful thank you very much
|
030a28e02c9da52b62975b744ea34b2e17b20881
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/830/CH3/EX3.2.7/Differentaition_Property.sce
|
9ace5fbf4741033993b96dc02b16be9bd148b8f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 173 |
sce
|
Differentaition_Property.sce
|
//Graphical//
//Example 3.2.7
//Z transform of x[n] = n.a^n.u[n]
clear;
clc;
close;
syms n z;
x=(1)^n;
X=symsum(x*(z^(-n)),n,0,%inf)
disp(X,"ans=")
Y = diff(X,z)
|
d8ab6a32043db410fb06c915308e2147111cd9e2
|
caacee6f7fc90459aed063c180d0c25da99c4f79
|
/fourier odd stepfunction.sce
|
e1b0d57737177f4b0a86866e30e2eadc1270a63b
|
[] |
no_license
|
Akul-Verma/plot-of-odd-step-function-using-fourier-series
|
85d6fa68c70e591cdd7c0aefab5b1628e2daacf2
|
cff4452d36dfaf9acc8cc61987d4b5aea0e656d3
|
refs/heads/main
| 2023-08-14T04:09:31.889820 | 2021-10-16T11:48:03 | 2021-10-16T11:48:03 | 417,811,480 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 610 |
sce
|
fourier odd stepfunction.sce
|
//name:-Akul Verma
//roll.no:-44
//for odd step function
clc;
clf;
ea=1e-8;
err=1e-14;
a=0;
b=1;
d=-1;
n=1000;
x=linspace(-1,1,n)
for i=1:n
B(i)=integrate('sin(i*%pi*x)','x',0,1)
end
for i=1:n
C(i)=integrate('-1*sin(i*%pi*x)','x',-1,0)
end
for j=1:n
A(j)=0
for i=1:n
A(j)=A(j)+B(i)*sin(i*%pi*x(j))
end
p(j)=0
for i=1:n
p(j)=p(j)+C(i)*sin(i*%pi*x(j))
end
v(j)=p(j)+A(j)
end
plot(x',v)
a=gca()
a.x_location="origin"
a.y_location="origin"
xlabel("x-axis","fontsize",4);
ylabel("y-axis","fontsize",4);
title("Plot of odd stepfunction n=1000","fontsize",5);
|
484544a678b3dbc26221c4e5f2b7d1dd5941e5fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/615/CH2/EX2.11/2_11.sce
|
09ce48a2728f7ab278c2a996ad503433e59663a5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 614 |
sce
|
2_11.sce
|
//acids and bases//
//example 2.11//
disp("In the presence of highly ionised NH4Cl,ammonium hydroxide is practically unionised.Thus all NH4+ ions are obtained from the dissociation of NH4Cl");
k=2.5*10^-5;//dissociation constant of NH4OH//
N=1/100;//normality of NH4OH//
C=N;//since volume of solution is one litre//
NH=C;
printf("NH4+ concentration is %fg.ion/lit",NH);
NHOH=C;
printf("\nNH4OH concentration is %fg.ion/lit",NHOH);
OH1=k*NHOH/NH;
OH=OH1/10^-5;
printf("\nHydroxyl ion concentration in the solution is %f*10^-5",OH);
a=OH1/N;
printf("\nDegree of dissociation of the solution is %f",a);
|
922eed8cec60b69d13efbf20dca28bf603b63ed9
|
5f838df28ada5a3bbd5be4c69902b9df4dbffacb
|
/iir_filter_design.sce
|
124536f58478d28868068c971bd008654f707ea8
|
[] |
no_license
|
Sai-Sumedh/filter_design_180070024
|
dca29c7b95cb43421e1577af3673f29df3a83251
|
c8348c85b515e9d987404c335f52150933512405
|
refs/heads/main
| 2023-01-14T05:11:25.601573 | 2020-11-12T18:44:36 | 2020-11-12T18:44:36 | 312,361,627 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 7,675 |
sce
|
iir_filter_design.sce
|
// use functions defined to get all results
// first, common parameters for both filters
M = 37; // my filter design number
delta = 0.15; // tolerance in passband and stopband
B_tran = 4e3; // transition bandwidth in Hz
//...................................................
// parameters specific to the two filters
// Filter 1: A Bandpass filter
B_signal_analog_1 = 160e3; // bw of analog signal, inconsequential
F_sampling_1 = 330e3; // sampling frequency in Hz for filter 1
filter_type_1 = 'bpf';
filter_nature_1 = 'bu';
//...................................................
// Filter 2: Band Stop filter
B_signal_analog_2 = 120e3; //analog signal BW in Hz
F_sampling_2 = 260e3; // Sampling frequency in Hz
filter_type_2 = 'bsf';
filter_nature_2 = 'ch';
//..................................................
// Normalized filter specifications
criticalf_1 = un_norm_filter_edges(M, B_tran, filter_type_1);
criticalf_2 = un_norm_filter_edges(M, B_tran, filter_type_2);
//disp("Un-normalized Filter_1 (BPF) Specifications [fs1, fp1, fp2, fs2]:");
//disp(criticalf_1);
//disp("Un-normalized Filter_2 (BSF) Specifications [fp1, fs1, fs2, fp2]:");
//disp(criticalf_2);
criticalw_1 = get_critical_w(M, filter_type_1, B_tran, F_sampling_1);
criticalw_2 = get_critical_w(M, filter_type_2, B_tran, F_sampling_2);
//disp("Normalized Filter_1 (BPF) Specifications [ws1, wp1, wp2, ws2]:");
//disp(criticalw_1);
//disp("Normalized Filter_2 (BSF) Specifications [wp1, ws1, ws2, wp2]:");
//disp(criticalw_2);
//....................................................
// Bilinear transform to convert to analog frequency W
criticalW_1 = bilinear_transform_wtoW(criticalw_1);
criticalW_2 = bilinear_transform_wtoW(criticalw_2);
//disp("Analog Filter_1 (BPF) Specifications [Ws1, Wp1, Wp2, Ws2]");
//disp(criticalW_1);
//disp("Analog Filter_2 (BSF) Specifications [Wp1, Ws1, Ws2, Wp2]");
//disp(criticalW_2);
//....................................................
//Frequency transform to convert to LPF
temp_W_lpf_1 = freq_trans_init(criticalW_1, filter_type_1);
temp_W_lpf_2 = freq_trans_init(criticalW_2, filter_type_2); // temp since need to choose to get stopband, passband
//disp("Frequency transformed LPF values Filter_1 ");
//disp(temp_W_lpf_1);
//disp("Frequency transformed LPF values Filter_2");
//disp(temp_W_lpf_2);
criticalW_lpf_1 = analog_freq_trans(criticalW_1, filter_type_1);
criticalW_lpf_2 = analog_freq_trans(criticalW_2, filter_type_2);
//disp("Analog LPF specifications Filter_1:");
//disp(criticalW_lpf_1);
//disp("Analog LPF specifications Filter_2:");
//disp(criticalW_lpf_2);
//.........................................................
// get useful parameters
parameters_1=lpf_parameters(delta, criticalW_lpf_1, filter_nature_1); //[N, Wc]
parameters_2=lpf_parameters(delta, criticalW_lpf_2, filter_nature_2); //[N, eps, Wp]
//disp("Analog LPF parameters Filter 1 (Butterworth) [N, Wc]");
//disp(parameters_1);
//disp("Analog LPF parameters Filter 2 (Chebyshev) [N, epsilon, Wp]");
//disp(parameters_2);
//............................................................
// get poles
poles_1 = find_poles(filter_nature_1, parameters_1);
poles_2 = find_poles(filter_nature_2, parameters_2);
//disp("The poles of H_analog_LPF for Filter_1");
//disp(poles_1);
//disp("The poles of H_analog_LPF for Filter_2");
//disp(poles_2);
// view poles
plot(real(poles_2), imag(poles_2), '*');
W_p =parameters_2(3);
B_k = (1/parameters_2(1))*asinh(1/parameters_2(2))
mag = W_p*sinh(B_k);
x = -mag:0.0001: mag;
plot(x, W_p*cosh(B_k)*sqrt(1-(x./(W_p*sinh(B_k))).^2));
plot(x, -W_p*cosh(B_k)*sqrt(1-(x./(W_p*sinh(B_k))).^2));
isoview on;
a = gca();
a.limits()
xlabel("Real(sL)");
ylabel("Imag(sL)");
title("Poles of H_analog_LPF (sL)*H_analog_LPF(-sL)");
//............................................................
//get left poles
left_poles_1 = find_left_poles(poles_1);
left_poles_2 = find_left_poles(poles_2);
//disp("The left poles of H_analog_LPF for Filter_1");
//disp(left_poles_1);
//disp("The left poles of H_analog_LPF for Filter_2");
//disp(left_poles_2);
//... parameters for plotting
params_plot_2 = [criticalW_lpf_2(4), criticalW_lpf_2(3) ,delta]
params_plot_1 = [criticalW_lpf_1(4), criticalW_lpf_1(3) ,delta]
//.............................................................
//get H_analog_LPF
H_analog_LPF_1 = H_lpf_from_poles(left_poles_1, filter_nature_1, parameters_1);
H_analog_LPF_2 = H_lpf_from_poles(left_poles_2, filter_nature_2, parameters_2);
disp("H_analog_LPF(sL) Filter 1:")
disp(H_analog_LPF_1);
disp("H_analog_LPF(sL) Filter 2:")
disp(H_analog_LPF_2);
freq_axis = -5:0.001:5;
//lin_sys_1 = syslin('c',H_analog_LPF_1);
//bode(lin_sys_1, freq_axis, "rad");
name = "Analog LPF Filter 1 (Butterworth) ";
//plot_H_analog_LPF(H_analog_LPF_1, params_plot_1, name);
name_2 = "Analog LPF Filter 2 (Chebyshev) "
//plot_H_analog_LPF(H_analog_LPF_2, params_plot_2, name_2);
//..............................................................
//get H_analog(s)
H_analog_1 = analog_filter_from_lpf(filter_type_1, H_analog_LPF_1, criticalW_1);
H_analog_2 = analog_filter_from_lpf(filter_type_2, H_analog_LPF_2, criticalW_2);
//disp("H_analog(s) Filter_1");
//disp(H_analog_1);
//disp("H_analog(s) Filter_2");
//disp(H_analog_2);
name_analog_1 = "Filter 1: Analog BPF Butterworth";
//plot_H_analog(H_analog_1, criticalW_1, delta, name_analog_1);
name_analog_2 = "Filter 2: Analog BSF Chebyshev";
//plot_H_analog(H_analog_2, criticalW_2, delta, name_analog_2);
//..............................................................
//get H(z)
H_z_1 = discrete_filter_from_analog(H_analog_1);
H_z_2 = discrete_filter_from_analog(H_analog_2);
//disp(H_z_1)
//temp = syslin('d',H_z_1);
//trfmod(temp);
// plot magnitude and phase response
name_z_1 = "Filter 1: Discrete-Time Butterworth BPF";
//plot_H_z(H_z_1, criticalw_1, delta, name_z_1);
name_z_2 = "Filter 2: Discrete-Time Chebyshev BSF";
//plot_H_z(H_z_2, criticalw_2, delta, name_z_2);
//disp("H(z) Filter_1");
//disp(H_z_1);
//disp("H(z) Filter_2");
//disp(H_z_2);
w_axis_new = 0.001:0.001:3;
H_bpf_val = horner(H_z_1, exp(%i*w_axis_new));
H_bsf_val = horner(H_z_2, exp(%i*w_axis_new));
mag_bpf_val = abs(H_bpf_val);
phase_bpf_val = atan(imag(H_bpf_val), real(H_bpf_val)); // tan-1(y/x)
//h1 = gca();
//plot(w_axis_new, mag_bpf_val, 'r');
////legend(["|H(w)|"]);
//xlabel("w (normalized frequency)");
//ylabel("|H(w)|", "color",'r');
//h2 = newaxes();
//plot(w_axis_new, phase_bpf_val);
//h2.filled="off";
//h2.y_location="right";
//ylabel("argH(w)", "color",'b')
//set(gca(),"auto_clear","off");
////legends(["|H(w)|";"arg(H(w))"]);
//title("IIR Filter-1 (BPF- Butterworth) Frequency Response");
mag_bsf_val = abs(H_bsf_val);
phase_bsf_val = atan(imag(H_bsf_val), real(H_bsf_val)); // tan-1(y/x)
//h1 = gca();
//plot(w_axis_new, mag_bsf_val, 'r');
////legend(["|H(w)|"]);
//xlabel("w (normalized frequency)");
//ylabel("|H(w)|", "color",'r');
//h2 = newaxes();
//plot(w_axis_new, phase_bsf_val);
//h2.filled="off";
//h2.y_location="right";
//ylabel("argH(w)", "color",'b')
//set(gca(),"auto_clear","off");
////legends(["|H(w)|";"arg(H(w))"]);
//title("IIR Filter-2 (BSF- Chebyshev) Frequency Response");
//................................................................
//plot relevant figures
//plot_H_analog_LPF(H_analog_LPF_2, params_plot_2);
//plot_H_z(H_z_2, criticalw_2,delta);
//plot_H_analog(H_analog_2, criticalW_2, delta)
|
688928edfd4f76da6824eb521165053a3c781806
|
b829a470efb851fdd8700559c2092711adaa42e0
|
/Data/OVI-CV-03-Facenet/CV-Groups/cv-group-114528472701/OVI-Test/cv-group-114528472701-run-03.tst
|
179068135c447cd25c9c435f31e902b9905081db
|
[] |
no_license
|
achbogga/FaceRecognition
|
6f9d50bd1f32f2eb7f23c7ae56f9e7b225d32325
|
165ebc7658228d2cceaee4619e129e248665c49a
|
refs/heads/master
| 2021-07-04T21:47:57.252016 | 2017-08-01T18:53:12 | 2017-08-01T18:53:12 | 96,568,452 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 504 |
tst
|
cv-group-114528472701-run-03.tst
|
Huiping\Huiping_018.jpg
Huiping\Huiping_014.jpg
Don\Don_003.jpg
Don\Don_012.jpg
Shirley\Shirley_001.jpg
Shirley\Shirley_006.jpg
Kiran\Kiran_012.jpg
Kiran\Kiran_016.jpg
Allison\Allison_013.jpg
Allison\Allison_010.jpg
Amit\Amit_010.jpg
Amit\Amit_004.jpg
Gang\Gang_008.jpg
Gang\Gang_014.jpg
Ethan\Ethan_013.jpg
Ethan\Ethan_005.jpg
Rob\Rob_001.jpg
Rob\Rob_003.jpg
Nara\Nara_009.jpg
Nara\Nara_013.jpg
Weihong\Weihong_010.jpg
Weihong\Weihong_003.jpg
Dave\Dave_010.jpg
Dave\Dave_005.jpg
|
dd2904f00156b38579e7f66f7fc984b00254cc21
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1976/CH3/EX3.11/Ex3_11.sce
|
40b587eea89b317dac863d46c701516d0b30c7e8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,726 |
sce
|
Ex3_11.sce
|
//To Compare the volume of copper required
//Page 116
clc;
clear;
//Unknown Resistances
r=poly(0,'r');
r1=poly(0,'r1');
//Lengths of the segements of the ring scheme
L1=100;
L2=200;
L3=200;
L4=150;
L5=150;
//Currents taken by respective loads
I1=40;
I2=20;
I3=100;
I4=40;
It=I1+I2+I3+I4;//Total Current
//Without Interconnector
//Let x be the current flowing through the entire ring
x=poly(0,'x');
Eq=(L1*x)+(L2*(x-I1))+(L3*(x-I1-I2))+(L4*(x-I1-I2-I3))+(L4*(x-I1-I2-I3-I4)); //Polynomial Equation to find x
x=roots(Eq);
x1=It-x; //Current flowing in the other direction
Vac1=((x1*L5)+((x1-I4)*L4))*r; // Voltage across AC without the connector
MVac1=((x1*L5)+((x1-I4)*L4)); // Magnitude of Vac1;
//With Interconnector
//Considering x amount of current to flow clockwise through segment AE
//Considering y amount of current to flow anticlockwise through segment AB
//Considering 200-(x+y) amount if current to flow through the segment AC
// Mesh Analysis of ABCDE gives 5x - 3y = 140;
// Mesh Analysis of ABC gives 5x + 11y = 1120;
R=[5,-3;5,11];
V=[140;1120];
I=inv(R)*V;
x=I(1);
y=I(2);
Vac2=(It-(x+y))*250*r1; // Voltage across AC with connector
MVac2=(It-(x+y))*250; // Magnitude of Vac2;
printf('The Voltage drop across AC in both case is the same\n')
disp(Vac2,'Is Equal to',Vac1)
printf('\n \n')
//To Compute the Numerical Values of the Ratio of resistances
RatioA = MVac1/MVac2;
disp(RatioA,'is',r1,'divided by',r)
//Effective Length of both the cases
Leff=L1+L2+L3+L4+L5;
LeffC=Leff+250;
//Volume is Length * Area
RatioV=Leff*RatioA/LeffC;
printf('\nThe Volume of copper without the connector is %g times the volume required with connector\n',RatioV)
|
b3a0b4c8913fe1f51f88765f1ab3633e3fdf2c7f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH11/EX11.24/ex11_24.sce
|
67d5be825eb35d1cddac41c96be319c01c262b1c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 660 |
sce
|
ex11_24.sce
|
//Two-Port Networks : example 11.24 :(pg11.54 & 11.55)
printf("\nApplying KCL to Node 3 \nV3 = V2/3 - - - -(i)");
printf("\nI1 = 2V1 - (2/3)V2 - - - -(ii)");
printf("\nI2 = 3V2 - (V2/3) = (8/3)V2 - - - -(iii)");
//Comparing (iii) & (ii) ,we get
printf("\nY-parameters:");
a=2;b=(-2/3);c=0;d=(8/3);
disp([a b;b d]);
dY=((a*d)-(b*c));
Z11=(d/dY);
Z12=(-b/dY);
Z21=(c/dY);
Z22=(a/dY);
printf("\ndY=Y11.Y22-Y12.Y21 =%.1f",dY);
printf("\nZ11 = Y22/dY = %.1f Ohm",Z11);
printf("\nZ12 = -Y12/dY = %.1f Ohm",Z12);
printf("\nZ21 = -Y21/-dY = %.f Ohm",Z21);
printf("\nZ22 = Y11/dY = %.1f Ohm",Z22);
printf("\nZ-parameters :");
disp([Z11 Z12;Z21 Z22]);
|
f3ca7f18049a8e78fa4d1256e1b80e3187fdc748
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/162/CH6/EX6.6.b/example66b.sce
|
65ee0e229c400b712e54a8aeb9ef4cb2720bcdda
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 115 |
sce
|
example66b.sce
|
//Example 6.6b
clc;
syms z n;
x=(1/3)^n;
X1=symsum(x*(z^-n),n,0,%inf);
X2=symsum(x*(z^-n),n,8,%inf);
X=X1-X2;
|
d2e163f6255243d63cbd6dc687d1c44e09d6466c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH21/EX21.7/Ex21_7.sce
|
fcaa73b19ce3c9d8fe328cf76791784d5922b3ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 544 |
sce
|
Ex21_7.sce
|
//Example 21.7
R=1*10^3;//Resistance (ohm)
C=8*10^-6;//Capacitance (F)
tau=R*C;//Time constant (s)
printf('a.Time constant tau = %0.2f ms',tau*1000)
V_0=10*10^3;//Intial voltage (V)
V_f=5*10^2;//Final voltage (V)
V=0.368*V_0;//Voltage falls to 0.368 of V_0 after 8ms (V)
T=8*10^-3;//Time (s)
while V>V_f
V=0.368*V;
T=T+8*10^-3;
end//To find the time taken for voltage to decline to V_f
printf('\nb.Time taken = %0.1f ms',T*1000)
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
7cd76c2428d36ef29e3a194856b373bb1f644df7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH14/EX14.2/Ex14_2.sce
|
dfd31dd9fbabfc9c09054b7ced897ee761a82442
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 219 |
sce
|
Ex14_2.sce
|
//example 14.2 PG-14.27//
clc
clear
printf(" Implementation of EX-OR gate using NAND gate")
printf(" \n Refer to the figure-14.45(a) shown")
printf("\n The Boolean expression for EX-OR gate is Y=AB''+A''B")
|
5d19046400a04243e6b06787876d02dc28edfa34
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3669/CH14/EX14.6/6.sce
|
1fcb2111ba36264563a51e49b24e79490ca83adc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 323 |
sce
|
6.sce
|
//Variable declaration
lamda1=650*10**-9; //wavelength(m)
lamda2=500*10**-9; //wavelength(m)
D=1; //distance(m)
d=0.5*10**-3; //seperation(m)
n=10;
//Calculation
x=n*lamda1*D/d; //least distance of the point(m)
//Result
printf('least distance of the point is %0.3f mm \n',int(x*10**3))
|
d2a84b67943f49106acd0c15d99cd6bc118dfd16
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1052/CH14/EX14.1/141.sce
|
76d35fd4705e5f137833062d0e3d18b327fc9916
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 288 |
sce
|
141.sce
|
clc;
//Example 14.1
//page no 148
printf("Example 14.1 page no 148\n\n");
//a liquid flow through a tube
meu=0.78e-2//viscosity of liquid,g/cm*s
rho=1.50//density,g/cm^3
D=2.54//diameter,cm
v=20//flow velocity
R_e=D*v*rho/meu//reynolds no
printf("\n Reynolds no R_e=%f ",R_e);
|
d0a17fb93451b7310b55861776904daf9a6002b7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1133/CH5/EX5.21/Example5_21.sce
|
7433611c6e40d5d305eceaf58c324b73303f0ba0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,091 |
sce
|
Example5_21.sce
|
//Example 5.21
clc
disp("Fig. 5.40 shows 3 to 8 line decoder. Here, 3 inputs are decoded into eight outputs, each output represent one of the minterms of the 3 input variables. The three inverters provide the complement of the inputs, and each one of the eight AND gates generates one of the minterms. Enable input is provided to activate decoded output based on data inputs A, B and C. The table shows the truth table for 3 to 8 decoder.")
disp("")
disp("Truth table for a 3 to 8 decoder")
disp(" Inputs | Outputs")
disp("EN A B C | Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0")
disp("0 X X X | 0 0 0 0 0 0 0 0")
disp("1 0 0 0 | 0 0 0 0 0 0 0 1")
disp("1 0 0 1 | 0 0 0 0 0 0 1 0")
disp("1 0 1 0 | 0 0 0 0 0 1 0 0")
disp("1 0 1 1 | 0 0 0 0 1 0 0 0")
disp("1 1 0 0 | 0 0 0 1 0 0 0 0")
disp("1 1 0 1 | 0 0 1 0 0 0 0 0")
disp("1 1 1 0 | 0 1 0 0 0 0 0 0")
disp("1 1 1 1 | 1 0 0 0 0 0 0 0")
|
441cd991b6b432d532fbd18aff5f494df12179e6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2045/CH2/EX2.22/Ex2_22.sce
|
59f0ef4ec77108c754726d4eef1c9fee7e22f014
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 142 |
sce
|
Ex2_22.sce
|
//pagenumber 115 example 22
clear
dopfac=1000;
w=300;//kelvin
q=0.026*log(dopfac);
disp("change in barrier = "+string((q))+"volt");
|
bcccb34f3a9167538618f0a52d2bd40b291f10fc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH12/EX12.7/12_7.sce
|
e04dc8667a03097a759d51d3aa72c7b5e3ce699a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 383 |
sce
|
12_7.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 12.7
//calculation of the time period of a pendulum
//given data
g=%pi^2//gravitational acceleration(in m/s^2) of the earth
l=1//length(in m) of the pendulum
//calculation
T=2*%pi*sqrt(l*g^-1)//formula of time period
printf('the time period of the pendulum is %3.1f s',T)
|
7a05063c263a2d4f61299d325c319d28eb3615bc
|
33f77c32fb16283501d950b6fc6b43a07914f32e
|
/scilab_autopilot/lib/math/quat/rot2quat.sce
|
f0a76b2063def41e4d5073f215b3ee09499a9394
|
[] |
no_license
|
CLUBMODELISMECEADSTOULOUSE/autopilot
|
26b79d6a2a632f08989a5528e82f553616617646
|
a6ffae2f8a86fbc79e636ddd5173af104e1af9cd
|
refs/heads/master
| 2021-01-21T00:59:06.271128 | 2015-10-25T09:31:54 | 2015-10-25T09:31:54 | 34,409,237 | 1 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 460 |
sce
|
rot2quat.sce
|
// Build a quaternion from a rotation
//
// Construct the quaternion encoding the expected rotation.
//
// INTPUT
// - ang: rotation angle [rad]
// - vect: rotation direction
//
// OUTPUT
// - q: quaternion encoding the rotation of ang around the vect direction.
//
// USAGE
// [q] = rot2quat(ang, vect);
//
// HISTORY
// 28/03/2014: T. Pareaud - Creation
function [q] = rot2quat(ang, vect)
q = [cos(ang/2) ; vect_scalProd(sin(ang/2),vect)];
endfunction
|
0f38f37554ecf8c23d2d055cde07f3599f19ee3e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH3/EX3.13/3_13.sce
|
6d0042aa516d243081d26f924e1d695593bc62ef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 322 |
sce
|
3_13.sce
|
//Chapter 3, Problem 13
clc
t1=20 //tempreture in celsius
t2=90 //tempreture in celsius
R20=200 //resistance in ohm
a0=0.004 //coefficient of resistance
R90=(R20*(1+(a0*t2)))/(1+(a0*t1))
printf("Resistance of wire = %.2f ohm",R90)
|
b6298e9f6a24418c165ae98e533df116cbdd249a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/991/CH11/EX11.3/Example11_3.sce
|
9078a662e2cc4b655bf5635d46db2fabb740799b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 367 |
sce
|
Example11_3.sce
|
//Example 11.3.
clc
hfe=400
hie=10*10^3
Rs=600
RL=5*10^3
RE=1*10^3
VCC=12
R1=15*10^3
R2=2.2*10^3
CE=50*10^-6
format(8)
RB=(R1*R2)/(R1+R2)
Av=(-hfe*RL)/(Rs+hie+((hie*Rs)/RB))
disp(Av,"AV(MF) = (-hfe*RL) / (RS + hie + ((hie*RS)/RB)) =")
disp("Lower 3-dB point,")
format(4)
f1=(1+hfe)/((Rs+hie)*2*%pi*CE)
disp(f1,"f1 = (1+hfe) / ((RS+hie)*2*%pi*CE) =")
|
9fcd7c6b3244c26dee9776b5057cc96d643224ce
|
1c441287d69eb026f0c59fd69b7c0793511746eb
|
/test/dm.P_LEASROUTING_MODELS_CALC.tst
|
75a9c4df6049650b1bda33aee36221e2b1b596a4
|
[] |
no_license
|
pavel-v-masalov/fair
|
34eb4feafba2b21790d780b37d014ea82aefd883
|
0225cada4f98622f5b87626833a36f6975968702
|
refs/heads/main
| 2023-05-26T12:36:28.124283 | 2021-06-08T20:07:59 | 2021-06-08T20:07:59 | 308,316,930 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 106 |
tst
|
dm.P_LEASROUTING_MODELS_CALC.tst
|
PL/SQL Developer Test script 3.0
3
begin
dm.P_LEASROUTING_MODELS_CALC(p_develop_mode => true);
end;
0
0
|
91618531d6a0b372ee7e6c0faa18cc9423bd124e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/710/CH9/EX9.4/9_4.sci
|
ad9fedefdeeded9cb55fc55eef3e69570f032af4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 664 |
sci
|
9_4.sci
|
clc();
clear;
//To calcuate the potential difference
h=6.626*10^-34; //plancks constant
c=3*10^8; //speed of light
lambda=175*10^-9; //wavelength of light
w=5; //work function of nickel
E=(h*c)/(lambda*1.6*10^-19); //Energy of 200 nm photon
//From photoelectric equation E-w is the potential difference
p=E-w //potential difference required to stop the fastest electron
printf("The potential difference that should be applied to stop fastest photoelectron emitted by the surface is %f eV",p);
|
04421b8c1cd9b4a7e0553627052b1b913e4c49e7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/14/CH6/EX6.3/example_6_3.sce
|
1670ee0288aa08d3a5dbfc03a4dce0d27e2b0f7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 359 |
sce
|
example_6_3.sce
|
//Chapter 6
//Example 6.3
//Page 145
//autotransformer
clear;clc;
//Given
P = 30e3;
V_lt = 120;
V_ht = 240;
//Calculations
I_1 = P / V_lt;
I_2 = P / V_ht;
V_2 = V_lt + V_ht;
I_in = I_1 + I_2;
input_kva = I_in * V_lt / 1e3;
output_kva = I_2 * V_2 / 1e3;
printf("\n\n Input kVA = %.0f kVA \n\n",input_kva)
printf("\n\n Output kVA = %.0f kVA \n\n",output_kva)
|
74f02e04e896dc7c5ec5fb166e04d11e42fc2065
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1826/CH8/EX8.20/ex8_20.sce
|
78851a4d520bf92d587a6035529755c6bdaf5b6c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 368 |
sce
|
ex8_20.sce
|
// Example 8.18, page no-221
clear
clc
h=6.62*10^-34//Js
m=9.1*10^-31//Kg
e=1.6*10^-19//C
ef=7*e
k=((3/(8*%pi))^(2/3))*((h^2)/(2*m))
k=ef/k
n=k^(1.5)
printf("The number of free electrons concentration in metal is %.2f *10^28 per cubic meter ",n*10^-28)
vth=sqrt(2*ef/m)
printf("\nThe termal velocity of electrons in copper is %.3f *10^6 m/s",vth*10^-6)
|
dfb9347855085dce05c34f0ffb535e54a414172b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH21/EX21.19/21_19.sce
|
5e78753a05da86e032dfeeaf9b9e8216e95d5652
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,031 |
sce
|
21_19.sce
|
//Problem 21.19: A 100 V d.c. generator supplies a current of 15 A when running at 1500 rev/min. If the torque on the shaft driving the generator is 12 Nm, determine (a) the efficiency of the generator and (b) the power loss in the generator.
//initializing the variables:
T = 12; // in Nm
I = 15; // in Amperes
V = 100; // in Volts
n = 1500/60; // in rev/sec
//calculation:
//the efficiency of a generator = (output power/input power)*100 %
//The output power is the electrical output, i.e. VI watts. The input power to a generator is the mechanical power in the shaft driving the generator, i.e. T*w or T(2*pi*n) watts, where T is the torque in Nm and n is speed of rotation in rev/s. Hence, for a generator
//efficiency = V*I*100/(T*2*pi*n) %
eff = V*I*100/(T*2*%pi*n) // in Percent
//The input power = output power + losses
// hence, T*2*%pi*n = V*I + losses
Pl = T*2*%pi*n - V*I
printf("\n\n Result \n\n")
printf("\n (a) efficiency is %.2f percent ",eff)
printf("\n (b) power loss is %.0f W ",Pl)
|
a225a9d64e6cde5b3a5882070f3610b7b0989823
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/800/CH10/EX10.5/10_5.sce
|
9565ce9787d2c047a84f5f4694050726daf2cdf2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 526 |
sce
|
10_5.sce
|
//clear//
clc
clear
exec("10.5data.sci");
t = 0:.01:.5;
function w=f(t,Y)
w =zeros(2,1);
ya0=Ca0/Ct0;
X=1-(1+ya0)/(1+Y(2)/Ct0)*Y(2)/Ca0;
w(1)=-kd*Y(1)*Y(2);
w(2) = (Ca0/tau)-((1+ya0)/(1+(Y(2)/Ct0))+tau*Y(1)*k)*Y(2)/tau;
endfunction
x=ode([1;.8],t0,t,f);
Ca0=.8;
Ct0=1
ya0=Ca0/Ct0;
for i=1:length(t)
X1(i)=1-(1+ya0)/(1+x(2,i)/Ct0)*x(2,i)/Ca0;
end
l1=x(1,: )'
l2=x(2,: )'
l3=X1;
plot2d(t',[l1 l2 l3]);
xtitle( 'Figure E10-5.1', 't', 'a,Ca,X' ) ;
legend(['a';'Ca';'X']);
|
616cfccb76d0d31218f2f063b7f786fbf914e2b4
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/Ripper-C/results/Ripper-C.abalone-10-1tra/result5s0.tst
|
16d159faf4d4615a96d3145855154f53d926d639
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062 | 2017-05-04T20:08:05 | 2017-05-04T20:08:05 | 90,484,366 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 2,618 |
tst
|
result5s0.tst
|
@relation abalone
@attribute Sex{M,F,I}
@attribute Length real[0.075,0.815]
@attribute Diameter real[0.055,0.65]
@attribute Height real[0.0,1.13]
@attribute Whole_weight real[0.002,2.8255]
@attribute Shucked_weight real[0.001,1.488]
@attribute Viscera_weight real[5.0E-4,0.76]
@attribute Shell_weight real[0.0015,1.005]
@attribute Rings{15,7,9,10,8,20,16,19,14,11,12,18,13,5,4,6,21,17,22,1,3,26,23,29,2,27,25,24}
@inputs Sex,Length,Diameter,Height,Whole_weight,Shucked_weight,Viscera_weight,Shell_weight
@outputs Rings
@data
9 8
14 9
9 7
11 8
13 13
8 9
7 6
8 9
9 10
11 10
9 9
9 7
11 10
6 7
12 24
12 10
13 10
12 10
12 8
13 20
11 10
10 6
7 6
17 13
14 8
22 21
10 10
17 20
4 5
5 8
14 9
12 9
18 15
9 8
12 10
7 9
11 10
18 10
20 10
14 10
12 18
10 20
12 15
13 19
11 10
17 11
15 19
17 19
5 6
10 7
11 9
11 9
11 8
10 10
12 10
9 13
16 18
12 8
12 8
5 4
15 9
21 9
10 10
16 20
13 8
11 9
7 5
10 9
13 11
15 14
15 10
13 13
12 10
15 8
11 10
10 10
5 5
6 7
6 7
7 8
8 8
10 11
10 8
9 13
12 11
9 9
3 5
6 5
7 6
6 7
7 6
7 6
9 9
8 8
8 8
9 18
8 10
8 9
10 10
9 10
10 10
11 11
10 11
10 11
11 12
4 5
5 5
6 5
7 6
7 8
7 8
9 10
10 10
10 11
11 11
9 9
9 10
10 11
8 11
5 5
5 5
5 6
8 7
8 7
9 8
8 8
8 9
8 18
11 10
10 10
10 10
9 11
13 10
11 11
7 8
9 9
8 9
8 9
9 10
8 13
10 11
6 7
7 8
8 7
7 7
8 10
8 8
10 10
9 9
8 8
9 10
8 8
11 11
8 19
8 10
10 8
10 15
10 11
8 10
13 11
10 10
11 9
12 11
13 11
7 8
9 8
9 8
10 8
7 10
8 8
10 9
10 20
9 10
11 10
7 5
6 6
7 6
6 8
10 8
10 10
9 8
8 10
10 10
9 9
10 9
10 10
8 9
11 10
11 11
12 11
4 4
6 5
5 6
7 6
10 8
9 8
9 10
10 10
9 10
6 8
8 9
8 10
11 10
11 10
19 10
11 9
10 8
15 16
9 9
11 10
12 10
9 17
7 6
10 8
18 10
12 12
6 8
12 16
14 19
13 8
6 6
21 24
19 13
13 18
13 18
7 10
8 8
11 7
10 14
20 11
9 7
7 7
9 7
10 9
7 7
23 11
7 6
11 14
14 10
14 8
16 9
10 19
13 6
11 9
9 9
9 10
20 10
14 9
14 14
11 10
9 10
6 7
8 8
9 8
9 10
15 11
10 12
10 12
4 3
5 4
5 5
8 8
6 8
9 7
7 8
9 10
8 10
10 11
8 10
9 10
9 11
6 7
7 7
8 8
8 10
9 10
10 10
9 10
3 3
7 7
8 8
8 9
8 8
9 11
10 10
6 7
7 9
9 10
7 6
9 7
8 8
11 11
9 10
10 10
9 11
11 21
15 11
12 10
10 11
10 11
13 12
8 6
8 8
12 14
4 5
6 6
7 7
8 9
8 10
9 10
11 10
10 11
7 7
9 8
5 4
9 13
13 13
9 9
12 9
16 12
14 10
14 10
14 21
16 16
11 10
15 10
9 10
6 7
12 13
17 8
12 8
11 10
9 10
11 11
13 10
10 7
12 11
16 10
10 10
11 10
13 10
12 9
11 18
13 10
19 14
10 6
8 10
10 14
7 6
8 8
6 7
8 8
7 9
8 11
9 10
6 7
6 7
8 7
7 6
9 10
9 8
9 10
7 7
10 9
8 9
10 10
10 10
11 10
9 18
11 12
8 10
10 10
6 7
7 7
9 8
9 8
11 10
9 11
13 11
12 11
10 16
11 11
9 10
18 10
9 10
15 12
12 8
10 8
11 9
10 10
16 14
6 4
11 9
10 9
6 5
6 7
7 8
10 9
7 8
8 8
11 11
11 17
11 11
11 11
8 8
9 8
9 10
9 13
11 11
9 10
7 6
8 9
8 8
10 13
8 8
11 10
10 13
|
30b5c5af42755c561390c6e6cb14a11ece513440
|
717ddeb7e700373742c617a95e25a2376565112c
|
/2474/CH11/EX11.14/Ch11Ex14.sce
|
673fecb476d33e8ed6fc5a16d34de3b54672b4e6
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674 | 2017-09-19T11:51:56 | 2017-09-19T11:51:56 | 92,444,732 | 0 | 0 | null | 2017-05-25T21:09:20 | 2017-05-25T21:09:19 | null |
UTF-8
|
Scilab
| false | false | 622 |
sce
|
Ch11Ex14.sce
|
// Scilab code Ex11.14: Pg.507 (2008)
clc; clear;
e = 1.6e-19; // Charge on proton, C
m_p = 1.67e-27; // Mass of proton, kg
k = 8.999e+09; // Coulomb's constant, N-m^2/C^2
// For simplicity let r = 1
r = 1; // Distance between protons, , fm
F_Coul = k*(e^2/r^2);
G = 6.67e-11; // Gravitational constant, N-m^2/kg^2
F_grav = G*(m_p^2/r^2);
r = F_grav/F_Coul; // Ratio of Gravitational force to Coulomb's force
printf("\nThe ratio of Gravitational force to Coulomb force between protons = %3.1e", r);
// Result
// The ratio of Gravitational force to Coulomb force between protons = 8.1e-037
|
6847d7d49d09b7ba1a5f6a113744adddede48e93
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/62/CH4/EX4.20/ex_4_20.sce
|
d426e02cb26aeb7e488fc60aa1df94a220d515e4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 532 |
sce
|
ex_4_20.sce
|
z = %z;
syms n z1;
X =z/((z-1)*(z-2)^2);
X1 = denom(X);
zp = roots(X1);
X1 = z1/((z1-1)*(z1-2)^2);
F1 = X1/z1*(z1-zp(3))^2;
F2 = X1/z1*(z1-zp(1));
Y2 = limit(F1,z1,zp(3));
C1 = limit(F2,z1,zp(1));
F3=(X1/z1-(Y2*F1+C1*F2))*(z1-zp(3));
Y1 = limit(F3,z1,0);
Xa=z1/(z1-zp(1));
F2 = Xa*z1^(n-1)*(z1-zp(1));
x1=limit(F2,z1,zp(1));
Xb=z1/(z1-zp(3));
F1= Xb*z1^(n-1)*(z1-zp(3));
x2 =limit(F1,z1,zp(3));
//x3 is differntiation of x2 w.r.t a where a is x2=a^n
x3=n*2^(n-1);
x=C1*x1+Y1*x2+Y2*x3;
disp(x*'u(n)',"x[n]=");
|
3f6c1e56788e3f1b1d28e6e79ddd132823013356
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1016/CH11/EX11.6/ex11_6.sce
|
e9e2e6c4d774e853e0cb4c6b0f2cb3d56507c60d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 246 |
sce
|
ex11_6.sce
|
clc;clear;
//Example 11.6
//given data
hf=1620;//half life in yrs
Mo=1/100;//mass in gm
//calculations
k=0.693/hf;
M=(1-Mo);
t=log(1/M)/k;
disp(t,'time reqd for (i) in yrs');
M=Mo;
t=log(1/M)/k;
disp(t,'time reqd for (ii) in yrs')
|
812c4346566f1c7009613810176e3f51f7c38db4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/69/CH7/EX7.17/7_17.sce
|
ad3ca86ef01d056216ff16177930ba40088bc6d0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 173 |
sce
|
7_17.sce
|
clear; clc; close;
Id_on = 4*10^(-3);
Vgs_on = 6;
Vgs_th = 3;
Vgs = Vgs_on;
Vdd = 2*Vgs;
Vds = Vgs;
Id = Id_on;
Rd = (Vdd-Vds)/Id;
disp(Rd,'Rd(Ohms) = ');
|
c92636cc4d83f8508d122a9f7a8cf8c83631d9e3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/698/CH2/EX2.1/P1_factor_of_safety.sce
|
682f423a8b8524584674eadb19f6653f19b64447
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,150 |
sce
|
P1_factor_of_safety.sce
|
clc
//Example 2.1
//Factor of safety
//------------------------------------------------------------------------------
//Given Data:
//Dimensions
b=0.04//m
h=0.05//m
// the value of h is given 20mm in the problem statement but taken 50mm while solving, therefore we will take 50mm as the value of h
//Force
P=200000//N
//------------------------------------------------------------------------------
//Stress induced
S=P/(b*h)
S=S*(10^-6)//To convert units into Mpa
//Yield strength
Sy=500//Mpa
//Factor of safety
fos=Sy/S
//------------------------------------------------------------------------------
//Printing the result file to .txt
res1=mopen(TMPDIR+'1_factor_of_safety.txt','wt')
mfprintf(res1,"The stress in the bar is given by:\n")
mfprintf(res1,"\n\tSx=P/A\n")
mfprintf(res1,"\n\tFactor of safety=(Yield Strength)/(Induced Strength)\n\n")
mfprintf(res1,"The factor of safety is %d",fos)
mclose(res1)
editor(TMPDIR+'1_factor_of_safety.txt')
//------------------------------------------------------------------------------
//-----------------------------End of program-----------------------------------
|
47477de2f4d48d008132062d795b5aab0104c0a3
|
389bd4af3bf5a0f54f51e8aafea5035f568ba445
|
/Daire_alan_fonk.sce
|
7a19ec31166cc7673f6f30f90a2f9aa0102a9b06
|
[] |
no_license
|
esraatlici/Bilgisayar-Destekli-Matematik
|
d47f057d9cb7ee987e367c67f8923cfcf02342d8
|
dae1079f60fc7e0d3b54802b4cbed9182b52fcd7
|
refs/heads/main
| 2022-12-25T11:14:25.575530 | 2020-10-05T15:09:58 | 2020-10-05T15:09:58 | 301,447,895 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 54 |
sce
|
Daire_alan_fonk.sce
|
function g=alan(x)
g=%pi*(x^2)
endfunction
|
f1acc2fed953d10d3d5b3dac7439031f63cddd67
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2705/CH5/EX5.15/Ex5_15.sce
|
e5ae9aa6a0c95cc98976930e6ab3bfc87a5f8fa0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 973 |
sce
|
Ex5_15.sce
|
clear;
clc;
disp('Example 5.15');
// aim : To determine
// the heat transferred and polytropic specific heat capacity
// Given values
P1 = 1;// initial pressure, [MN/m^2]
V1 = .003;// initial volume, [m^3]
P2 = .1;// final pressure,[MN/m^2]
cv = .718;// [kJ/kg*K]
Gamma=1.4;// heat capacity ratio
// solution
// Given process is polytropic with
n = 1.3;// polytropic index
// hence
V2 = V1*(P1/P2)^(1/n);// final volume,[m^3]
W = (P1*V1-P2*V2)*10^3/(n-1);// work done,[kJ]
// so
Q = (Gamma-n)*W/(Gamma-1);// heat transferred,[kJ]
mprintf('\n The heat received or rejected by the gas during this process is Q = %f kJ',Q);
if(Q>0)
disp('since Q>0, so heat is received by the gas')
else
disp('since Q<0, so heat is rejected by the gas')
end
// now
cn = cv*(Gamma-n)/(n-1);// polytropic specific heat capacity,[kJ/kg K]
mprintf('\n The polytropic specific heat capacity is cn = %f kJ/kg K\n',cn);
// End
|
8487342e2eab84c4b3d6b7f7129a44b4b0467c0c
|
b2675f983fedb79e5e6f1940962373bda0570ec4
|
/TransformationServiceSample-v2/TransformationServiceTest-v2.tst
|
b69a945e056912659d70dceec63d61b334165917
|
[] |
no_license
|
Meena92/Projects
|
b854c40b91515bb429c9e13fb0cbc95c03e0a9d6
|
06361e24bf51883ff4140db5c37c3f40836a5752
|
refs/heads/master
| 2020-03-29T01:45:03.726432 | 2019-06-11T05:26:08 | 2019-06-11T05:26:08 | 149,404,524 | 0 | 0 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 3,645 |
tst
|
TransformationServiceTest-v2.tst
|
<?xml version="1.0" ?>
<TestCase name="TransformationServiceTest-v2" version="5">
<meta>
<create version="8.0.1" buildNumber="8.0.1.644" author="admin" date="08/06/2015" host="DVTBLISAPP002" />
<lastEdited version="8.3.0" buildNumber="8.3.0.241" author="admin" date="09/08/2015" host="DVTBLISAPP002" />
</meta>
<id>FE31513560A11E59527BE4B20524153</id>
<Documentation>Put documentation of the Test Case here.</Documentation>
<IsInProject>true</IsInProject>
<sig>ZWQ9NSZ0Y3Y9NSZsaXNhdj04LjMuMCAoOC4zLjAuMjQxKSZub2Rlcz0yMjgzOTA4ODY=</sig>
<subprocess>false</subprocess>
<initState>
</initState>
<resultState>
</resultState>
<deletedProps>
</deletedProps>
<Node name="Raw SOAP Request" log=""
type="com.itko.lisa.ws.RawSOAPNode"
version="1"
uid="FE31514560A11E59527BE4B20524153"
think="500-1S"
useFilters="true"
quiet="false"
next="end" >
<!-- Filters -->
<Filter type="com.itko.lisa.xml.FilterXMLXPath">
<valueToFilterKey>lisa.Raw SOAP Request.rsp</valueToFilterKey>
<prop>response_AccountID</prop>
<xpathq>/soapenv:Envelope/soapenv:Body/Response/field1/text()</xpathq>
<nsMap0>soapenv=http://schemas.xmlsoap.org/soap/envelope/</nsMap0>
<nsMap1>web=http://webreceiver/</nsMap1>
<nsMap2>xsd=http://www.w3.org/2001/XMLSchema</nsMap2>
<nsMap3>xsi=http://www.w3.org/2001/XMLSchema-instance</nsMap3>
</Filter>
<Filter type="com.itko.lisa.xml.FilterXMLXPath">
<valueToFilterKey>lisa.Raw SOAP Request.req</valueToFilterKey>
<prop>request_AccountID</prop>
<xpathq>/soapenv:Envelope/soapenv:Body/Request/field1/text()</xpathq>
</Filter>
<!-- Assertions -->
<CheckResult assertTrue="false" name="Ensure Properties Are Equal" type="com.itko.lisa.test.AssertPropsEqual">
<log>Assertion name: Ensure Properties Are Equal checks for: false is of type: Assert Properties Equal.</log>
<then>fail</then>
<valueToAssertKey></valueToAssertKey>
<prop1>request_AccountID</prop1>
<prop2>response_AccountID</prop2>
</CheckResult>
<url>{{ENDPOINT8}}</url>
<action></action>
<soapRequest itko_enc="base64">PHNvYXBlbnY6RW52ZWxvcGUgeG1sbnM6eHNpPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZSIgeG1sbnM6eHNkPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgeG1sbnM6c29hcGVudj0iaHR0cDovL3NjaGVtYXMueG1sc29hcC5vcmcvc29hcC9lbnZlbG9wZS8iIHhtbG5zOndlYj0iaHR0cDovL3dlYnJlY2VpdmVyLyI+DQogICA8c29hcGVudjpCb2R5Pg0KICAgIDxSZXF1ZXN0Pg0KICAgICAgICAgICAgPFBBTk5PPkFiY2RlNDU2N1g8L1BBTk5PPg0KICAgICAgICAgICAgPEFDQ09VTlROTz4xMjM0NTY3ODkwMTI8L0FDQ09VTlROTz4NCgk8L1JlcXVlc3Q+DQogICA8L3NvYXBlbnY6Qm9keT4NCjwvc29hcGVudjpFbnZlbG9wZT4=</soapRequest>
<contentType>text/xml; charset=UTF-8</contentType>
<onError>abort</onError>
<discardResponse>false</discardResponse>
<customHTTPHeaderInfo>
</customHTTPHeaderInfo>
</Node>
<Node name="end" log=""
type="com.itko.lisa.test.NormalEnd"
version="1"
uid="FE31517560A11E59527BE4B20524153"
think="0h"
useFilters="true"
quiet="true"
next="fail" >
</Node>
<Node name="fail" log=""
type="com.itko.lisa.test.Abend"
version="1"
uid="FE31516560A11E59527BE4B20524153"
think="0h"
useFilters="true"
quiet="true"
next="abort" >
</Node>
<Node name="abort" log=""
type="com.itko.lisa.test.AbortStep"
version="1"
uid="FE31515560A11E59527BE4B20524153"
think="0h"
useFilters="true"
quiet="true"
next="" >
</Node>
</TestCase>
|
9a4f81f216ac66383f9dd723fb2c33de0eb51c4d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1478/CH2/EX2.18.44.B/2_18_44_B.sce
|
5afcf10f637f6542fbbe0d19bceaf6c2c9d017ca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,051 |
sce
|
2_18_44_B.sce
|
//water and its treatment//
//example 2.18.44.B//
clc
Purity_Lime=.85
Purity_soda=.90
W1=16.2;//amount of Ca(HCO3)2 in ppm//
W2=6.8;//amount of CaSO4 in ppm//
W3=11.1;//amount of CaCl2 in ppm//
W4=6;//amount of MgSO4 in ppm//
W5=8.4;//amount of Mg(HCO3)2 in ppm//
W6=8;//amount of SiO2 in ppm//
M1=100/162;//multiplication factor of Ca(HCO3)2//
M2=100/136;//multiplication factor of CaSO4//
M3=100/111;//multiplication factor of CaCl2//
M4=100/120//multiplication factor of MgSO4//
M5=100/146//multiplication factor of Mg(HCO3)2//
P1=W1*M1;//in terms of CaCO3//L
P2=W2*M2;//in terms of CaCO3//L+S
P3=W3*M3;//in terms of CaCO3//L+S
P4=W4*M4;//in terms of CaCO3//L+S
P5=W5*M5;//in terms of CaCO3//L
printf ("We do not take SiO2 since it does not react with lime/soda");
V=1000000;//volume of water in litres//
L=0.74*(P1+P4+P5*2)*V/Purity_Lime;//lime required in mg//
L=L/10^6;
printf("\nLime required is %.3fkg",L);
S=1.06*(P2+P3+P4)*V/Purity_soda;//soda required in mg//
S=S/10^6;
printf("\nSoda required is %.2fkg",S)
|
3b3a10b0f3fc7f8cf4f9851e3cb51998c22e97ee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/527/CH2/EX2.9/2_9eaxm.sce
|
0b245e1a1ca5447e229e4f6d5905d297cae7ccdd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,049 |
sce
|
2_9eaxm.sce
|
//Engineering and Chemical Thermodynamics
//Example 2.9
//Page no :65
clear ; clc
//solution(a)
// Given data:
P1 = 100000 ; // [N/m^2]
T1 = 298 ; //[K]
V1 = 0.1 * 0.1 ; // [m^3]
T2 = 373 ; // [N]
P_ext = 100000 ; //[N/m^2]
k = 50000 ; //[N/m]
A = 0.1 ; //[m^2]
// Applying ideal gas law we getan quadritic eqn of the form :
// a * V2^2 + b * V2 + c = 0 where
a = k / (T2 * A^2) ;
b = (P_ext / T2) - k * V1 / (A^2 * T2) ;
c = -P1 * V1 / T1 ;
V2 = (-b + sqrt ( b^2 - (4*a*c))) / (2 * a) ;
W = -P_ext * (V2 - V1) - ( k * (V2 - V1)^2)/(2 * A**2);//From eqn E2.9C
disp(" Example: 2.9 Page no : 65") ;
printf('\n (a) Work required = %g J \n\n',W);
//Solution(b):
//Given data:
A = 3.355 ;
B = 0.575 * 10^-3 ;
D = -0.016 * 10^5 ;
P1 = 10^5 ; //[N/m^2]
V1 = 0.01 ; //[m^3]
R = 8.314 ;
T1 = 298 ;
n = (P1 * V1) / (R * T1) ;
function y=f(T),y=R*((A - 1) * T + B/2 * T^2 -D/T)
endfunction
del_u = f(373) - f(298) ;
del_U = n * del_u ;
Q = del_U - W;
printf('\n (b).Heat transfered = %.4f J',Q);
|
0d3b3d2a709e501b26eb9311f988885aecb09923
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH4/EX4.10.a/data4_10.sci
|
3eb5a22895fd369ea89170c885edcb31c8a87d49
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 336 |
sci
|
data4_10.sci
|
//(Design against Static Load) Example 4.10
//Refer Fig.4.29
//Distance between the axis of the column and the load e (mm)
e = 500
//Tensile yield strength of FeE200 Syt (N/mm2)
Syt = 200
//Factor of safety fs
fs = 4
//Load supported by the column P (kN)
P = 25
//Ratio of outer diameter to inner diameter ratio
ratio = 0.8
|
6823d841f43aed643d729f123fb04a9a471a775f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3751/CH16/EX16.6/Ex16_6.sce
|
6c14d6b67e0207ed10f441106c58ace6469d5b29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,159 |
sce
|
Ex16_6.sce
|
//Fluid Systems - By Shiv Kumar
//Chapter 16- Hydraulic Power and Its Transmissions
//Example 16.6
//To Calculate the Rise in Pressure due to Valve Closure in (i)10 seconds, (ii)2.5 seconds.
clc
clear
//Given Data:-
l=2500; //Lenfth of Pipe, m
V=1.2 ; //Velocity of Flow, m/s
K=20*10^8; //Bulk Modulus of Water, N/m^2
//Data Used:-
rho=1000; //Density of Water, Kg/m^3
//Computations:-
a=sqrt(K/rho); //Velocity of Pressure Wave, m/s
t_c=2*l /a; //Critical time, s
// (i)
t=10; // s
//t>t_c. so, This is a case of Gradual valve closure.
p=rho*l*V/(t*1000); //Pressure Rise, kPa
//Result (i)
printf("(i)Pressure Rise, p=%.f kPa\n",p)
//(ii)
t=2.5; // s
// t<t_c. This is a case of Instantaneous Valve Closure.
p=rho*V*a/1000; // Pressure Rise, kPa
//Result (ii)
printf("(ii)Pressure Rise, p=%.2f kPa\n",p) //The answer vary due to round off error
|
f4d85170b78e1b4c8bfefd2713ce0bb23fee7c8d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/389/CH7/EX7.4/Example7_4.sce
|
cb544325ed2c5242ef114e9bd814c463c39f80ff
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null |
UTF-8
|
Scilab
| false | false | 1,021 |
sce
|
Example7_4.sce
|
clear;
clc;
// Illustration 7.4
// Page: 227
printf('Illustration 7.4 - Page: 227\n\n');
// solution
//****Data****//
// A = benzene vapour; B = Nitrogen Gas
P = 800;// [mm Hg]
Temp = 273+60;// [K]
pA = 100;// [mm Hg]
//******//
pB = P-pA;// [mm Hg]
MA = 78.05;// [kg/kmol]
MB = 28.08;// [kg/kmol]
// Mole Fraction
printf("On the Basis of Mole Fraction\n");
yAm = pA/P;
yBm = pB/P;
printf("Mole Fraction of Benzene is %f\n",yAm);
printf("Mole Fraction of Nitrogen is %f\n",yBm);
printf("\n");
// Volume Fraction
printf("On the Basis of Volume Fraction\n");
// Volume fraction is same as mole Fraction
yAv = yAm;
yBv = yBm;
printf("Volume Fraction of Benzene is %f\n",yAv);
printf("Volume Fraction of Nitrogen is %f\n",yBv);
printf("\n");
// Absolute Humidity
printf("On the basis of Absolute humidity\n")
Y = pA/pB;// [mol benzene/mol nitrogen]
Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen]
printf("The concentration of benzene is %f kg benzene/kg nitrogen\n",Y_prime);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.