content
stringlengths
5
1.05M
import argparse from torch.utils.data import DataLoader from model import BERT from trainer import BERTTrainer from dataset import BERTDataset, WordVocab parser = argparse.ArgumentParser() parser.add_argument("-d", "--train_dataset", required=True, type=str) parser.add_argument("-t", "--test_dataset", type=str, default=None) parser.add_argument("-v", "--vocab_path", required=True, type=str) parser.add_argument("-o", "--output_dir", required=True, type=str) parser.add_argument("-hs", "--hidden", type=int, default=256) parser.add_argument("-n", "--layers", type=int, default=8) parser.add_argument("-a", "--attn_heads", type=int, default=8) parser.add_argument("-s", "--seq_len", type=int, default=20) parser.add_argument("-b", "--batch_size", type=int, default=64) parser.add_argument("-e", "--epochs", type=int, default=10) parser.add_argument("-w", "--num_workers", type=int, default=5) parser.add_argument("-cl", "--corpus_lines", type=int, default=None) args = parser.parse_args() print("Loading Vocab", args.vocab_path) vocab = WordVocab.load_vocab(args.vocab_path) print("Loading Train Dataset", args.train_dataset) train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len, corpus_lines=args.corpus_lines) print("Loading Test Dataset", args.test_dataset) test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len) if args.test_dataset is not None else None train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ if test_dataset is not None else None bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads) trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader) for epoch in range(args.epochs): trainer.train(epoch) trainer.save(args.output_dir, epoch) if test_data_loader is not None: trainer.test(epoch)
# Creates an HTML file consisting of an interactive plot from Ontario Covid-19 database. import pandas as pd import numpy as np import ssl import bokeh.plotting as plt from bokeh.models import LinearAxis, Range1d, HoverTool, SingleIntervalTicker from scipy.signal import savgol_filter as sf data_url = 'https://data.ontario.ca/dataset/f4f86e54-872d-43f8-8a86-3892fd3cb5e6/resource/ed270bb8-340b-41f9-a7c6-e8ef587e6d11/download/covidtesting.csv' school_data_url = 'https://data.ontario.ca/dataset/b1fef838-8784-4338-8ef9-ae7cfd405b41/resource/7fbdbb48-d074-45d9-93cb-f7de58950418/download/schoolcovidsummary.csv' ssl._create_default_https_context = ssl._create_unverified_context data = pd.read_csv(data_url) sch_data = pd.read_csv(school_data_url) columns = list(data) sc_columns = list(sch_data) tot_cases = np.nan_to_num(np.array(data['Total Cases'])).astype(np.int64) new_cases = [tot_cases[x] - tot_cases[x - 1] for x in range(2, len(tot_cases))] new_sch_cases = np.array(sch_data[sc_columns[5]]) tot_tests = np.nan_to_num(np.array(data[columns[9]])).astype(np.int64) dates = pd.to_datetime(data[columns[0]])[2:] dates_num = np.arange(1, len(dates) - 1) tot_deaths = np.nan_to_num(np.array(data['Deaths']).astype(np.int64)) new_deaths = [tot_deaths[x] - tot_deaths[x - 1] for x in range(2, len(tot_deaths))] axis2 = np.nan_to_num(np.array(new_deaths)) # Change column selection here axis3 = np.nan_to_num(np.array(data[columns[9]][2:])) smoothened_y1 = sf(new_cases, window_length=31, polyorder=3) # Creating first figure and setting parameters fig = plt.figure(x_axis_type="datetime", sizing_mode='stretch_both') ticker = SingleIntervalTicker(interval=5, num_minor_ticks=10) fig.xaxis.axis_label = 'Date' fig.y_range = Range1d(start=0, end=max(new_cases) * 1.1) fig.yaxis.axis_label = 'New Daily Cases' # Create second axis and add it to plot fig.extra_y_ranges = {"axis2": Range1d(start=0, end=max(axis2) * 1.1)} fig.add_layout(LinearAxis(y_range_name="axis2", axis_label='Total Deaths'), 'right') source = plt.ColumnDataSource(data={ 'x': dates, 'y1': new_cases, 'y2': axis2, 'y3': smoothened_y1 }) plot1 = fig.line( x='x', y='y1', legend_label='New daily cases', color='green', source=source ) fig.add_tools(HoverTool(renderers=[plot1], tooltips=[('Value', '@y1'), ('Date', '@x{%F}')], formatters={'@x': 'datetime'}, mode='vline')) plot1_1 = fig.line( x='x', y='y3', color='green', source=source, line_width=6, line_alpha=0.5, legend_label='Savitzky-Golay Filter Smoothened' ) plot2 = fig.line( x='x', y='y2', legend_label='New Deaths', color='purple', y_range_name='axis2', source=source ) fig.add_tools(HoverTool(renderers=[plot2], tooltips=[('Value', '@y2'), ('Date', '@x{%F}')], formatters={'@x': 'datetime'}, mode='vline')) fig.toolbar.logo = None fig.toolbar_location = 'above' fig.legend.location = 'top_left' fig.ygrid.minor_grid_line_color = 'grey' fig.ygrid.minor_grid_line_alpha = 0.1 fig.xgrid.minor_grid_line_color = 'grey' fig.xgrid.minor_grid_line_alpha = 0.1 plt.output_file('covid_ontario_visual.html') plt.show(fig)
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AmpeDeviceVO(object): def __init__(self): self._add_time = None self._device_id = None self._model_id = None self._model_name = None self._model_no = None self._product_id = None self._product_name = None @property def add_time(self): return self._add_time @add_time.setter def add_time(self, value): self._add_time = value @property def device_id(self): return self._device_id @device_id.setter def device_id(self, value): self._device_id = value @property def model_id(self): return self._model_id @model_id.setter def model_id(self, value): self._model_id = value @property def model_name(self): return self._model_name @model_name.setter def model_name(self, value): self._model_name = value @property def model_no(self): return self._model_no @model_no.setter def model_no(self, value): self._model_no = value @property def product_id(self): return self._product_id @product_id.setter def product_id(self, value): self._product_id = value @property def product_name(self): return self._product_name @product_name.setter def product_name(self, value): self._product_name = value def to_alipay_dict(self): params = dict() if self.add_time: if hasattr(self.add_time, 'to_alipay_dict'): params['add_time'] = self.add_time.to_alipay_dict() else: params['add_time'] = self.add_time if self.device_id: if hasattr(self.device_id, 'to_alipay_dict'): params['device_id'] = self.device_id.to_alipay_dict() else: params['device_id'] = self.device_id if self.model_id: if hasattr(self.model_id, 'to_alipay_dict'): params['model_id'] = self.model_id.to_alipay_dict() else: params['model_id'] = self.model_id if self.model_name: if hasattr(self.model_name, 'to_alipay_dict'): params['model_name'] = self.model_name.to_alipay_dict() else: params['model_name'] = self.model_name if self.model_no: if hasattr(self.model_no, 'to_alipay_dict'): params['model_no'] = self.model_no.to_alipay_dict() else: params['model_no'] = self.model_no if self.product_id: if hasattr(self.product_id, 'to_alipay_dict'): params['product_id'] = self.product_id.to_alipay_dict() else: params['product_id'] = self.product_id if self.product_name: if hasattr(self.product_name, 'to_alipay_dict'): params['product_name'] = self.product_name.to_alipay_dict() else: params['product_name'] = self.product_name return params @staticmethod def from_alipay_dict(d): if not d: return None o = AmpeDeviceVO() if 'add_time' in d: o.add_time = d['add_time'] if 'device_id' in d: o.device_id = d['device_id'] if 'model_id' in d: o.model_id = d['model_id'] if 'model_name' in d: o.model_name = d['model_name'] if 'model_no' in d: o.model_no = d['model_no'] if 'product_id' in d: o.product_id = d['product_id'] if 'product_name' in d: o.product_name = d['product_name'] return o
from browser import document, bind # Note: If you could avoid unnecessary import, your script will save several seconds loading time # For example, use `"message".title()` instead of `import string; string.capwords("message")` import datetime from collections import Counter from dateutil.easter import easter # Came from python-dateutil package from charts.css import bar, column, line # Came from charts.css.py package def easter_stat(starting_year): easters = list(easter(year) for year in range(starting_year, starting_year + 100)) months = Counter(e.month for e in easters) easters_per_month = sorted(months.items()) document["easters_per_month"].html = bar( easters_per_month, headers_in_first_column=True, heading="How many Easters happen per month during the sampling period", ) dates = Counter("{}-{:>2}".format(e.month, e.day) for e in easters) easters_per_date = sorted(dates.items()) document["easters_per_date"].html = column( easters_per_date, headers_in_first_column=True, heading="How many Easters happen per date during the sampling period", ) year_by_year = [(e, (e - datetime.date(e.year, 1, 1)).days) for e in easters] document["year_by_year"].html = line( year_by_year, heading="""How Easter day swings back and forth, year after year. (Y-axis is the number of days between January 1st to Easter data of that year)""", headers_in_first_column=True, hide_label=lambda row_number, header: bool(row_number % 10), # Hide most labels hide_data=True, # Otherwise it would be messy tooltip_builder="{label}".format, ) @bind("#trigger", "click") def trigger(event): easter_stat(int(document["year_starts_at"].value))
from typing import Union class UInt160(bytes): """ Represents a 160-bit unsigned integer. """ def __init__(self, arg: Union[bytes, int] = 0): super().__init__() pass class UInt256(bytes): """ Represents a 256-bit unsigned integer. """ def __init__(self, arg: Union[bytes, int] = 0): super().__init__() pass class ECPoint(bytes): """ Represents a coordinate pair for elliptic curve cryptography (ECC) structures. """ def __init__(self, arg: bytes): super().__init__() pass
import json import asyncio import pytest from model_mommy import mommy from aiohttp import ws_connect, WSServerHandshakeError from aiohttp.web import Application, MsgType from rest_framework.authtoken.models import Token from redis_pubsub.contrib.websockets import websocket, websocket_pubsub from redis_pubsub.contrib.websockets.util import _clean_route from testapp.models import Message @pytest.mark.parametrize("route, expect", [ ("/hello", "/hello/"), ("hello", "/hello/"), ("hello/world", "/hello/world/"), ("/hello/world/", "/hello/world/"), ]) def test_clean_route(route, expect): route = _clean_route(route) assert route == expect def test_websocket_wrapper(): loop = asyncio.get_event_loop() @websocket("/") def handler(ws, params, **kwargs): ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) client = yield from ws_connect("http://localhost:9000") message = yield from client.receive() assert message.data == "hello, world!" yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_websocket_pubsub_wrapper(subscription): loop = asyncio.get_event_loop() @websocket_pubsub("/") def handler(ws, params, **kwargs): reader = subscription.get_reader(kwargs["manager"]) @reader.callback def send_message(channel_name, model): ws.send_str(model.name) return False listener = yield from reader.listen() yield from asyncio.gather(listener) @asyncio.coroutine def pub(): yield from asyncio.sleep(1) # wait a second for the listener to start return subscription.channel.publish(subscription.channel) @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) client = yield from ws_connect("http://localhost:9000") yield from pub() message = yield from client.receive() assert message.data == subscription.channel.name yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) def test_websocket_wrapper_authentication_error(): loop = asyncio.get_event_loop() @websocket("/", authenticate=True) def handler(ws, params, **kwargs): ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) with pytest.raises(WSServerHandshakeError): client = yield from ws_connect("http://localhost:9000") yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_websocket_wrapper_invalid_token_error(): loop = asyncio.get_event_loop() @websocket("/", authenticate=True) def handler(ws, params, **kwargs): ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) with pytest.raises(WSServerHandshakeError): client = yield from ws_connect("http://localhost:9000?token=ooo") yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_websocket_wrapper_valid_token(subscription): loop = asyncio.get_event_loop() token, _ = Token.objects.get_or_create(user=subscription.subscriber) token = token.key @websocket("/", authenticate=True) def handler(ws, params, **kwargs): assert kwargs["user"].id == subscription.subscriber.id ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) uri = "http://localhost:9000?token=" + token client = yield from ws_connect(uri) message = yield from client.receive() assert message.data == "hello, world!" yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) def test_websocket_pubsub_wrapper_authentication_error(): loop = asyncio.get_event_loop() @websocket_pubsub("/", authenticate=True) def handler(ws, params, **kwargs): ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) with pytest.raises(WSServerHandshakeError): client = yield from ws_connect("http://localhost:9000") yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_websocket_pubsub_wrapper_invalid_token_error(): loop = asyncio.get_event_loop() @websocket_pubsub("/", authenticate=True) def handler(ws, params, **kwargs): ws.send_str("hello, world!") @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) with pytest.raises(WSServerHandshakeError): client = yield from ws_connect("http://localhost:9000?token=ooo") yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_websocket_pubsub_wrapper_valid_token(subscription): loop = asyncio.get_event_loop() token, _ = Token.objects.get_or_create(user=subscription.subscriber) token = token.key @websocket_pubsub("/", authenticate=True) def handler(ws, params, **kwargs): assert kwargs["user"].id == subscription.subscriber.id reader = subscription.get_reader(kwargs["manager"]) @reader.callback def send_message(channel_name, model): ws.send_str(model.name) return False listener = yield from reader.listen() yield from asyncio.gather(listener) @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*handler.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def pub(): yield from asyncio.sleep(1) # wait a second for the listener to start return subscription.channel.publish(subscription.channel) @asyncio.coroutine def go(loop): srv = yield from start_server(loop) uri = "http://localhost:9000?token=" + token client = yield from ws_connect(uri) yield from pub() message = yield from client.receive() assert message.data == subscription.channel.name yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop)) @pytest.mark.django_db def test_all_subscriptions(subscription): loop = asyncio.get_event_loop() token, _ = Token.objects.get_or_create(user=subscription.subscriber) token = token.key message = mommy.make(Message, channel=subscription.channel, to_user=subscription.subscriber) @websocket_pubsub("/", authenticate=True) def subscriptions(ws, params, user, manager): def callback(channel_name, model): ws.send_str(model.serialize()) return False yield from manager.listen_to_all_subscriptions(user, callback) while True: message = yield from ws.receive() if message.tp in (MsgType.error, MsgType.close): break @asyncio.coroutine def start_server(loop): app = Application() app.router.add_route(*subscriptions.route) srv = yield from loop.create_server(app.make_handler(), "localhost", 9000) return srv @asyncio.coroutine def go(loop): srv = yield from start_server(loop) uri = "http://localhost:9000?token=" + token client = yield from ws_connect(uri) yield from asyncio.sleep(1) message.save() message_ = yield from client.receive() data = json.loads(message_.data) message.refresh_from_db() assert data[0]["pk"] == message.pk yield from client.close() srv.close() yield from srv.wait_closed() loop.run_until_complete(go(loop))
from typing import Any from pyspark.ml.clustering import KMeans from pyspark.ml.evaluation import MulticlassClassificationEvaluator from pyspark.sql import DataFrame from sparksampling.core.job.base_job import BaseJob import numpy as np from pyspark.sql.types import DoubleType from sparksampling.core.mlsamplinglib.func import vectorized_feature import random class KmeansEvaluationJob(BaseJob): type_map = { 'source_path': str, 'selected_features_list': list, 'K': Any, 'round': int, 'key': str, } def __init__(self, source_path=None, selected_features_list=None, key=None, K=None, round=10, *args, **kwargs): super(KmeansEvaluationJob, self).__init__(*args, **kwargs) self.source_path = source_path self.selected_features_list = selected_features_list self.K = K self.round = round self.key = key self.check_type() def KM(self, dataset=None, K=2, predict=None, seed=np.random.randint(1, 65535)): # Trains a k-means model. kmeans = KMeans(seed=seed).setK(K).setFeaturesCol('features').setPredictionCol( 'prediction') model = kmeans.fit(dataset) # Make predictions predictions = model.transform(predict) # Shows the result. centers = model.clusterCenters() return centers, predictions def evaluation_centers(self, centers, sample_centers): def metric_corrcoef_matrix(corrcoef_matrix): corrcoef = abs(corrcoef_matrix[0][1]) score = int(corrcoef * 100) return score result = [] for i in range(len(centers)): mix = np.array([centers[i], sample_centers[i]]) corrcoef_matrix = np.corrcoef(mix) result.append(metric_corrcoef_matrix(corrcoef_matrix)) return int(np.mean(result)) def evaluation_prediction(self, prediction, sample_prediction): prediction = prediction.withColumnRenamed('prediction', 'label') df = sample_prediction.join(prediction, ['features']) df = df.select(['prediction', 'label']).withColumn("label", df.label.cast(DoubleType())).withColumn( "prediction", df.prediction.cast(DoubleType())) evaluator_accuracy = MulticlassClassificationEvaluator(predictionCol="prediction", metricName="accuracy", labelCol='label') return evaluator_accuracy.evaluate(df) def _statistics(self, df: DataFrame, *args, **kwargs) -> dict: if not self.K: self.K = self.get_K_num_by_label(df) source_df = self._get_df_from_source(self.source_path, dataio=kwargs.get('data_io')).select( *self.selected_features_list) df = df.select(*self.selected_features_list) source_df = vectorized_feature(source_df) df = vectorized_feature(df) acc, cent, score = 0, 0, 0 for _ in range(self.round): t_acc, t_cent = self.__kmeans_acc(source_df, df, *args, **kwargs) t_acc_score = int((t_acc * 100) ** (1 / 2) * 10) t_score = np.mean([t_acc_score, t_cent]) if t_score > score: score, acc, cent = t_score, t_acc, t_cent print(f"acc: {t_acc_score}, cent: {t_cent}, score:{t_score}") return { "score": score, "accuracy": acc, "centers_result": cent, } def __kmeans_acc(self, source_df: DataFrame, df: DataFrame, *args, **kwargs): seed = np.random.randint(1, 65535) centers, predictions = self.KM(source_df, self.K, df, seed=seed) sample_centers, sample_predictions = self.KM(df, self.K, df, seed=seed) # 计算中心的相关系数 centers_result = self.evaluation_centers(centers, sample_centers) # 计算抽样中的准确率召回率 accuracy = self.evaluation_prediction(predictions, sample_predictions) return accuracy, centers_result def get_K_num_by_label(self, df: DataFrame): if not self.key: return 2 print(f"Get K by label col:{self.key}") return df.select(self.key).distinct().count()
#!python import click # from prettytable import PrettyTable import json import requests import os from string import Template import re METAURL = 'https://api.softlayer.com/metadata/v3.1' SERVICEMARKDOWN = """--- title: "$service" description: "$documentation" date: "2018-02-12" tags: - "$layoutType" - "sldn" - "$serviceType" classes: - "$mainService" type: "reference" layout: "$layoutType" mainService : "$mainService" --- """ LISTMARKDOWN = """--- title: "$type" description: "List of $type" date: "2018-02-12" type: reference layout: $listType url: /reference/$type/list.html --- """ def wikiToMarkdownFilter(text): # the r'(\|[0-9A-Za-z_\'\(\) ]*)?' Regex is required (over r'(\|.*)?' ) because for some reason the smaller regex # was causing the whole JSON string to be truncated. # [[SoftLayer_Account]] -> reference/datatypes/SoftLayer_Account text = re.sub(r'\[\[(?P<one>\w+)( \(type\))?(\|[0-9A-Za-z_\'\(\) ]*)?\]\]', '[\g<one>](/reference/datatypes/\g<one>)', text) #text1 = re.sub(r'\[\[(?P<one>\w+)\]\]', '[\g<one>](reference/datatypes/\g<one>)', text) # [[SoftLayer_Account/getObject]] -> reference/services/SoftLayer_Account/getObject text = re.sub(r'\[\[(?P<one>\w+)\/(?P<two>\w+)(\|[0-9A-Za-z_\'\(\) ]*)?\]\]', "[\g<one>::\g<two>](/reference/services/\g<one>/\g<two>)", text) # [[SoftLayer_Account::id]] -> reference/datatypes/SoftLayer_ACccount/#id text = re.sub(r'\[\[(?P<one>\w+)::(?P<two>\w+)(\|[0-9A-Za-z_\'\(\) ]*)?\]\]', "[\g<one>::\g<two>](/reference/datatypes/$1/#$2)", text) return text def cleanupYaml(text): # Remove double quotes, because hugo will complain about that. text = text.replace('"', "'") # Even if they are escaped. text = text.replace('\\"', "'") # Newlines need to end with 2 spaces and have another newline for the markdown to respect them. # text = text.replace('\n\n', ' \n\n') return text class SLDNgenerator(): def __init__(self): cwd = os.getcwd() if not cwd.endswith('githubio_source'): raise Exception(f"Working Directory should be githubio_source, is currently {cwd}") # Make sure required directories exist if not os.path.isdir(f'{cwd}/content/reference/datatypes'): os.mkdir(f'{cwd}/content/reference/datatypes') substitions = { "type": "datatypes", "listType": "datatypelist" } template = Template(LISTMARKDOWN) with open(f"{cwd}/content/reference/datatypes/list.md", "w", encoding="utf-8") as f: f.write(template.substitute(substitions)) if not os.path.isdir(f'{cwd}/content/reference/services'): os.mkdir(f'{cwd}/content/reference/services') substitions = { "type": "services", "listType": "servicelist" } template = Template(LISTMARKDOWN) with open(f"{cwd}/content/reference/services/list.md", "w", encoding="utf-8") as f: f.write(template.substitute(substitions)) self.metajson = None def getMetadata(self, url): response = requests.get(url) if response.status_code != 200: raise Exception(f"{url} returned \n{response.text}\nHTTP CODE: {response.status_code}") self.metajson = response.json() return self.metajson def getLocalMetadata(self, filename='data/sldn_metadata.json'): with open(filename, "r", encoding="utf-8") as f: metadata = f.read() self.metajson = json.loads(metadata) return self.metajson def saveMetadata(self, filename='data/sldn_metadata.json'): print(f"Writing SLDN Metadata to {filename}") with open(filename, 'w') as f: json.dump(self.metajson, f, indent=4) def generateMarkdown(self): for serviceName, service in self.metajson.items(): print(f"Working on: {serviceName}") # noservice means datatype only. if service.get('noservice', False) == False: self.writeServiceMarkdown(service) for methodName, method in service.get('methods', {}).items(): self.writeMethodMarkdown(method, serviceName=serviceName) self.writeDatatypeMarkdown(service) def addInORMMethods(self): for serviceName, service in self.metajson.items(): # noservice means datatype only. if service.get('noservice', False) == False: for propName, prop in service.get('properties', {}).items(): if prop.get('form', '') == 'relational': # capitlize() sadly lowercases the other letters in the string ormName = f"get{propName[0].upper()}{propName[1:]}" ormMethod = { 'doc': prop.get('doc', ''), 'docOverview': "", 'name': ormName, 'type': prop.get('type'), 'typeArray': prop.get('typeArray', None), 'ormMethod': True, 'maskable': True, 'filterable': True, 'deprecated': prop.get('deprecated', False) } if ormMethod['typeArray']: ormMethod['limitable'] = True self.metajson[serviceName]['methods'][ormName] = ormMethod return self.metajson def addInChildMethods(self): for serviceName, service in self.metajson.items(): self.metajson[serviceName]['methods'] = self.getBaseMethods(serviceName, 'methods') self.metajson[serviceName]['properties'] = self.getBaseMethods(serviceName, 'properties') def getBaseMethods(self, serviceName, objectType): """Responsible for pulling in properties or methods from the base class of the service requested""" service = self.metajson[serviceName] methods = service.get(objectType, {}) if service.get('base', "SoftLayer_Entity") != "SoftLayer_Entity": baseMethods = self.getBaseMethods(service.get('base'), objectType) for bName, bMethod in baseMethods.items(): if not methods.get(bName, False): methods[bName] = bMethod return methods def writeServiceMarkdown(self, serviceJson): service_dir = f"./content/reference/services/{serviceJson.get('name')}/" if not (os.path.isdir(service_dir)): os.mkdir(service_dir) template = Template(SERVICEMARKDOWN) # Needed to get the category of the service. service_parts = serviceJson.get('name').split('_') documentation = serviceJson.get('serviceDoc', '') substitions = { 'service': serviceJson.get('name'), 'documentation': cleanupYaml(documentation), 'serviceType': service_parts[1], 'layoutType' : 'service', 'mainService': serviceJson.get('name') } with open(f"{service_dir}/_index.md", "w", encoding="utf-8") as f: f.write(template.substitute(substitions)) def writeDatatypeMarkdown(self, serviceJson): service_dir = f"./content/reference/datatypes/{serviceJson.get('name')}.md" # if not (os.path.isdir(service_dir)): # os.mkdir(service_dir) template = Template(SERVICEMARKDOWN) # Needed to get the category of the service. service_parts = serviceJson.get('name').split('_') # For datatypes, docs will either be in one of these 2 fields. documentation = serviceJson.get('typeDoc', '') if documentation == '': documentation = serviceJson.get('serviceDoc', '') substitions = { 'service': serviceJson.get('name'), 'documentation': cleanupYaml(documentation), 'serviceType': service_parts[1], 'layoutType' : 'datatype', 'mainService': serviceJson.get('name') } with open(f"{service_dir}", "w", encoding="utf-8") as f: f.write(template.substitute(substitions)) def writeMethodMarkdown(self, serviceJson, serviceName): service_dir = f"./content/reference/services/{serviceName}/" if not (os.path.isdir(service_dir)): os.mkdir(service_dir) template = Template(SERVICEMARKDOWN) # Needed to get the category of the service. service_parts = serviceName.split('_') documentation = serviceJson.get('doc', '') if documentation == '': documentation = serviceJson.get('docOverview', '') substitions = { 'service': serviceJson.get('name'), 'documentation': cleanupYaml(documentation), 'serviceType': service_parts[1], 'layoutType' : 'method', 'mainService': serviceName } with open(f"{service_dir}/{serviceJson.get('name','')}.md", "w", encoding="utf-8") as f: f.write(template.substitute(substitions)) @click.command() @click.option('--download', default=False, is_flag=True) def main(download): generator = SLDNgenerator() if download: try: metajson = generator.getMetadata(url = METAURL) generator.saveMetadata() except Exception as e: print("========== ERROR ==========") print(f"{e}") print("========== ERROR ==========") else: metajson = generator.getLocalMetadata() # fix mediaWiki links. So far its easiest just to regex the whole JSON string jsonString = json.dumps(metajson) jsonString = wikiToMarkdownFilter(jsonString) # print(jsonString) generator.metajson = json.loads(jsonString) generator.addInChildMethods() generator.addInORMMethods() generator.saveMetadata() print("Generating Markdown....") # print(metajson) generator.generateMarkdown() if __name__ == "__main__": main()
import gzip from io import BytesIO try: from jsmin import jsmin from cssmin import * except: jsmin = None cssmin = None def gzip_content(headers, stream): "Gzips a file" headers['Content-Encoding'] = 'gzip' buff = BytesIO() gz = gzip.GzipFile(filename="tmp", fileobj=buff, mode='w') gz.write(stream.read()) gz.close() stream.close() stream = BytesIO(buff.getvalue()) return headers, stream def minify(filename, filetype, stream): if ".min" in filename or ".pack" in filename: return stream, 'already minified' if filetype == 'application/javascript': # Remove console statements js = re.sub("console.\\w+\\(.*?\\);?", "", stream.read()) js = jsmin(js) stream = BytesIO(js) elif filetype == 'text/css': css = cssmin(stream.read()) stream = BytesIO(css) return stream, 'minified'
import django_filters from django_filters import rest_framework as filters from rest_framework import viewsets from .models import Ilm, Jaam from .serializers import IlmSerializer, JaamSerializer class IlmFilter(filters.FilterSet): # Võimaldab API päringuid: http://18.196.203.237:8000/api/i/?m=2&y=2013&d=24&h=12 # või http://18.196.203.237:8000/api/i/?y=2013 m = django_filters.NumberFilter(field_name='timestamp', lookup_expr='month') y = django_filters.NumberFilter(field_name='timestamp', lookup_expr='year') d = django_filters.NumberFilter(field_name='timestamp', lookup_expr='day') h = django_filters.NumberFilter(field_name='timestamp', lookup_expr='hour') class IlmViewSet(viewsets.ModelViewSet): queryset = Ilm.objects.all().order_by('-timestamp') serializer_class = IlmSerializer # Järgnev vajalik, et saaks teha filtreeritud API päringuid filter_backends = (filters.DjangoFilterBackend,) filter_class = IlmFilter class JaamViewSet(viewsets.ModelViewSet): queryset = Jaam.objects.all() serializer_class = JaamSerializer
import streamlit as st import pandas as pd import numpy as np import functools import fetch import data import error def main(): if st.sidebar.button("Refresh Data"): st.caching.clear_cache() league_id = st.sidebar.text_input("League ID", value="309333") try: league_id = int(league_id) except ValueError as exc: st.sidebar.error( f"Invalid League ID: {league_id}. Must be an integer." ) raise st.StopException from exc try: league = data.H2HLeague.create( functools.partial(fetch.get_league_json, league_id) ) except Exception as exc: st.error(f"Error obtaining league data: {exc}") raise st.StopException from exc st.title(f"FPL H2H Tool: {league.name}") st.header("Current Standings") st.dataframe(league.display_df) st.dataframe(league.standings_df) if __name__ == "__main__": main()
import math import os from payton.scene import Scene from payton.scene.geometry import Wavefront scene = Scene() scene.background.top_color = [0, 0, 0, 1] scene.background.bottom_color = [0, 0, 0, 1] amount = 0.5 total_angles = -30 def swing(period, total): global total_angles, amount scene.objects["lamp"].rotate_around_x(math.radians(amount)) total_angles += amount if total_angles >= 30: amount = -0.5 if total_angles <= -60: amount = 0.5 light_pos = scene.objects["lamp"].to_absolute([0, 0, -3.4]) scene.lights[0].position = light_pos table_file = os.path.join(os.path.dirname(__file__), "scene", "table.obj") lamp_file = os.path.join(os.path.dirname(__file__), "scene", "lamp.obj") table = Wavefront(table_file) lamp = Wavefront(lamp_file) lamp.fix_normals(reverse=True) lamp.position = [0, 0, 12] scene.create_clock("swing", 0.01, swing) scene.active_camera.position = [ 8.261520800759284, 8.259030103723475, 17.54799562339614, ] scene.lights[0].position = [0, 0, 8.6] scene.add_object("table", table) scene.add_object("lamp", lamp) scene.run(start_clocks=True)
import numpy as np # Fuel is infinite, so an agent can learn to fly and then land on its first attempt. # Action is two real values vector from -1 to +1. First controls main engine, -1..0 off, 0..+1 throttle from 50% to 100% power. # Engine can't work with less than 50% power. # Second value -1.0..-0.5 fire left engine, +0.5..+1.0 fire right engine, -0.5..0.5 off. class Shield: def __init__(self, thresholds_main_engine=0.9): self.thresholds_main_engine = thresholds_main_engine def shield_action(self, action): action_main_engine = np.clip(action[0], -self.thresholds_main_engine, self.thresholds_main_engine) action = [action_main_engine, action[1]] return action if __name__ == '__main__': shield = Shield(thresholds_main_engine=0.9) a = np.array([0, 1]) action = shield_action(a) print(action)
from six.moves.urllib.parse import ( parse_qsl, quote_plus, unquote_plus, urlencode, urlparse, urlunparse, ) WEB2DBND_MAP = {"http": "dbnd", "https": "dbnd+s"} DBND2WEB_MAP = { "dbnd": "http", "databand": "http", "dbnd+s": "https", "databand+s": "https", } def is_composite_uri(uri): """Check if the passed uri has a dbnd store uri schema Parameters: uri (str): uri to be checked Returns: bool: is the uri has a dbnd store uri schema >>> is_composite_uri('dbnd://localhost:8080') True >>> is_composite_uri('dbnd+s://localhost:8080') True >>> is_composite_uri('databand://localhost:8080') True >>> is_composite_uri('databand+s://localhost:8080') True >>> is_composite_uri('http://localhost:8080') False """ parsed_url = urlparse(uri) return parsed_url.scheme in DBND2WEB_MAP def build_composite_uri(dbnd_store_url, duplicate_tracking_to): """Returns dbnd store uri that contain uri to duplicate tracking data to. E.g. dbnd://localhost:8080?duplicate_tracking_to=http%3A%2F%2Fmlflow-store%3A80%2F Parameters: dbnd_store_url (str): dbnd store url to send tracking data to duplicate_tracking_to (str): mlflow store uri to duplicate tracking data to Returns: str: dbnd store composite uri to be used by MLFlow >>> build_composite_uri('http://localhost:8080', 'http://mlflow-store:80/') 'dbnd://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F' >>> build_composite_uri('https://localhost:8080', 'http://mlflow-store:80/') 'dbnd+s://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F' >>> build_composite_uri('http://localhost:8080', '') 'dbnd://localhost:8080?duplicate_tracking_to=' >>> build_composite_uri('http://localhost:8080', None) 'dbnd://localhost:8080' """ parsed_url = urlparse(dbnd_store_url) assert parsed_url.scheme in WEB2DBND_MAP parsed_query_dict = dict(parse_qsl(parsed_url.query)) if duplicate_tracking_to is not None: parsed_query_dict["duplicate_tracking_to"] = quote_plus(duplicate_tracking_to) parsed_url = parsed_url._replace(scheme=WEB2DBND_MAP[parsed_url.scheme]) parsed_url = parsed_url._replace(query=urlencode(parsed_query_dict)) return urlunparse(parsed_url) def parse_composite_uri(composite_uri): """Returns a tuple with a parsed dbnd store url and mlflow uri to duplicate tracking data to. E.g. dbnd://localhost:8080?duplicate_tracking_to=http%3A%2F%2Fmlflow-store%3A80%2F Parameters: composite_uri (str): dbnd store uri with dbnd schema Returns: tuple: dbnd_store_url and duplicate_tracking_to url >>> parse_composite_uri('dbnd://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F') ('http://localhost:8080', 'http://mlflow-store:80/') >>> parse_composite_uri('dbnd+s://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F') ('https://localhost:8080', 'http://mlflow-store:80/') >>> parse_composite_uri('dbnd://localhost:8080?duplicate_tracking_to=') ('http://localhost:8080', None) >>> parse_composite_uri('dbnd+s://localhost:8080?duplicate_tracking_to=') ('https://localhost:8080', None) >>> parse_composite_uri('databand://localhost:8080?duplicate_tracking_to=') ('http://localhost:8080', None) >>> parse_composite_uri('databand+s://localhost:8080?duplicate_tracking_to=') ('https://localhost:8080', None) >>> parse_composite_uri('dbnd://localhost:8080') ('http://localhost:8080', None) """ parsed_url = urlparse(composite_uri) assert parsed_url.scheme in DBND2WEB_MAP parsed_query_dict = dict(parse_qsl(parsed_url.query)) duplicate_tracking_to = parsed_query_dict.pop("duplicate_tracking_to", None) if duplicate_tracking_to: duplicate_tracking_to = unquote_plus(duplicate_tracking_to) parsed_url = parsed_url._replace(scheme=DBND2WEB_MAP[parsed_url.scheme]) parsed_url = parsed_url._replace(query=urlencode(parsed_query_dict)) return urlunparse(parsed_url), duplicate_tracking_to
# Copyright 2022 ConvolutedDog (https://github.com/ConvolutedDog/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python3 import torch import torchvision from utils.utils_v2 import gradient_backward_v2 # __all__ is all the models we now support. __all__ = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'alexnet'] # You can choose the model from __all__. model = torchvision.models.alexnet() print(model, end='\n') # Alexnet can use (224, 224) pictures or (228, 228) pictures; # VGG series network models can use (224, 224) or (228, 228) pictures; # ResNet and ResNext series network models can use (228, 228) pictures. # Choose the input shape (BacthSize x InputChannel x Height x Width). img = torch.rand(2,3,228,228) # You also can edit the label. label = torch.Tensor([1 for i in range(2)]).long() # g_view = True means means that the structure diagram of neural network model will be drawn. # For details on the implementation of back propagation on each layer, refer to the source code # in utils_v2.py. dz_list, dw, db = gradient_backward_v2(model, img, label, num_class=1000, g_view=True)
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/casch/Dropbox/humanoid_robot/catkin_ws/src/pr2_simulator/pr2_gazebo_plugins/msg/PlugCommand.msg;/home/casch/Dropbox/humanoid_robot/catkin_ws/src/pr2_simulator/pr2_gazebo_plugins/msg/ModelJointsState.msg" services_str = "/home/casch/Dropbox/humanoid_robot/catkin_ws/src/pr2_simulator/pr2_gazebo_plugins/srv/SetModelsJointsStates.srv" pkg_name = "pr2_gazebo_plugins" dependencies_str = "std_msgs;nav_msgs;sensor_msgs;pr2_msgs;geometry_msgs;diagnostic_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "pr2_gazebo_plugins;/home/casch/Dropbox/humanoid_robot/catkin_ws/src/pr2_simulator/pr2_gazebo_plugins/msg;std_msgs;/opt/ros/kinetic/share/std_msgs/cmake/../msg;nav_msgs;/opt/ros/kinetic/share/nav_msgs/cmake/../msg;sensor_msgs;/opt/ros/kinetic/share/sensor_msgs/cmake/../msg;pr2_msgs;/opt/ros/kinetic/share/pr2_msgs/cmake/../msg;geometry_msgs;/opt/ros/kinetic/share/geometry_msgs/cmake/../msg;diagnostic_msgs;/opt/ros/kinetic/share/diagnostic_msgs/cmake/../msg;actionlib_msgs;/opt/ros/kinetic/share/actionlib_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/home/casch/anaconda2/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/kinetic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
source_domain = None # set by user target_domain = None # set by user init_cfg = dict(type='studio') # model settings model = dict( type='Pix2Pix', generator=dict( type='SAGANGenerator', output_scale=128, base_channels=64, attention_cfg=dict(type='SelfAttentionBlock'), attention_after_nth_block=4, with_spectral_norm=True, use_cbn=False, # num_classes=1000, init_cfg=init_cfg), discriminator=dict( type='ProjDiscriminator', input_scale=128, base_channels=64, attention_cfg=dict(type='SelfAttentionBlock'), attention_after_nth_block=1, with_spectral_norm=True, # use_cbn=False, # num_classes=1000, init_cfg=init_cfg), gan_loss=dict( type='GANLoss', gan_type='hinge', real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0), default_domain=target_domain, reachable_domains=[target_domain], related_domains=[target_domain, source_domain], gen_auxiliary_loss=dict( type='L1Loss', loss_weight=100.0, loss_name='pixel_loss', data_info=dict( pred=f'fake_{target_domain}', target=f'real_{target_domain}'), reduction='mean')) # model training and testing settings train_cfg = dict(disc_steps=1) test_cfg = None
""" Created on 13/nov/2019 with PyCharm INPI - Instituto Nacional da Propriedade Industrial @author: Rafael Nunes - rafael.nunes@inpi.gov.br @title: hackerrank - test_averybigsum.py -------------------------------------------------------------------------------- *** Description of the module function *** -------------------------------------------------------------------------------- """ import unittest import averybigsum class MyTestCase(unittest.TestCase): def setUp(self) -> None: pass def test_0(self): self.assertEqual(5000000015, averybigsum.aVeryBigSum([1000000001, 1000000002, 1000000003, 1000000004, 1000000005])) def tearDown(self) -> None: pass if __name__ == '__main__': unittest.main()
from django.apps import AppConfig class CalendarioConfig(AppConfig): name = 'frequencia.calendario'
import cv2 as cv def gray_to_ascii(img): '''convert grayscale image into ascii formated image''' ascii_format = ['.', ',', '*', '+', '^', ';', '?', '%', '$', "#", '@'] ascii_draw = '' i=0 for x in img.flatten(): i+=1 ascii_draw+= ascii_format[x//25] if i%img.shape[1]==0: ascii_draw+='\n' print(ascii_draw) def video_display(filepath): """converts a video to ascii and display both cmd text and original video""" cap = cv.VideoCapture(filepath) height = cap.get(cv.CAP_PROP_FRAME_HEIGHT) width = cap.get(cv.CAP_PROP_FRAME_WIDTH) aspect_ratio = 3 if width//height<=1 else width//height new_height = 50 new_width = new_height*aspect_ratio while cap.isOpened: ret, frame = cap.read() if not ret: print("thanks for watching") break cv.imshow('display',frame) frame = cv.resize(cv.cvtColor(frame, cv.COLOR_BGR2GRAY),(new_width, new_height)) gray_to_ascii(frame) if cv.waitKey(1) == ord('q'): break cap.release() cv.destroyAllWindows() def main(): video_display('assets//badapple.mp4') if __name__ == "__main__": main()
""" Utilities --------- Utility functions for general operations and plotting. Contents: normalize, gen_list_of_lists, gen_faction_groups, gen_parl_points, swap_parl_allocations, hex_to_rgb, rgb_to_hex, scale_saturation """ import colorsys import numpy as np import pandas as pd from colormath.color_objects import sRGBColor def normalize(vals): """Returns respective normalized values.""" total_vals = sum(vals) return [1.0 * v / total_vals for v in vals] def gen_list_of_lists(original_list, new_structure): """Generates a list of lists with a given structure from a given list.""" assert len(original_list) == sum( new_structure ), "The number of elements in the original list and desired structure don't match." return [ [original_list[i + sum(new_structure[:j])] for i in range(new_structure[j])] for j in range(len(new_structure)) ] def gen_faction_groups(original_list, factions_indexes): """ Reorders a list into a list of lists where sublists are faction amounts. Parameters ---------- original_list : list The data to be reorganized. factions_indexes : list of lists (contains ints) The structure of original_list indexes to output. Returns ------- factioned_list : list of lists The values of original_list ordered as the indexes of factions_indexes. """ factions_structure = [len(sublist) for sublist in factions_indexes] flat_indexes = [item for sublist in factions_indexes for item in sublist] ordered_original_list = [original_list[i] for i in flat_indexes] return gen_list_of_lists(ordered_original_list, factions_structure) def gen_parl_points( allocations, labels=None, style="semicircle", num_rows=2, speaker=False ): """ Produces a df with coordinates for a parliament plot. Parameters ---------- allocations : list The share of seats given to the regions or parties. labels : list : optional (default=None) The names of the groups. style : str (default=semicircle) Whether to plot the parliament as a semicircle or a rectangle. num_rows : int (default=2) The number of rows in the plot. speaker : bool : optional (default=False) Whether to include a point for the speaker of the house colored by their group. Note: 'True' colors the point based on the largest group, but passing a name from 'labels' is also possible. Returns ------- df_seat_lctns : pd.DataFrame A dataframe with points to be converted to a parliament plot via seaborn's scatterplot. """ assert style in [ "semicircle", "rectangle", ], "Please choose one of semicircle or rectangle for the plotting style." total_seats = sum(allocations) if not labels: # For dataframe assignment. labels = [f"group_{i}" for i in range(len(allocations))] if speaker: assert (speaker == True) or ( speaker in labels ), "Either the 'speaker' argument must be true, or must match an element from the provided 'labels' argument." total_seats -= 1 allocations = list(allocations) if speaker == True: assert ( len([c for c in allocations if c == max(allocations)]) == 1 ), "Two parties got the highest number of seats in the allocation. Please assign the speaker via passing one of their names." largest_group_index = allocations.index(max(allocations)) allocations[largest_group_index] -= 1 # Reassign 'speaker' to the largest group's name so it can be assigned later. speaker = labels[largest_group_index] elif speaker in labels: largest_group_index = labels.index(speaker) allocations[largest_group_index] -= 1 # Make an empty dataframe and fill it with coordinates for the structure. # Then assign group values for allocation based on the rows. df_seat_lctns = pd.DataFrame( columns=["group", "row", "row_position", "x_loc", "y_loc"] ) if style == "semicircle": def arc_coordinates(r, seats): """ Generates an arc of the parliament plot given a radius and the number of seats. """ angles = np.linspace(start=np.pi, stop=0, num=seats) x_coordinates, y_coordinates = [], [] # Broadcast angles to their corresponding coordinates. x_coordinates = list(r * np.cos(angles)) y_coordinates = list(r * np.sin(angles)) return x_coordinates, y_coordinates xs, ys = [], [] radii = range(2, 2 + num_rows) row_seats = [int(total_seats / num_rows)] * num_rows extra_seat = total_seats - sum( row_seats ) # 0 or 1 based on whether the seats divide evenly into the rows row_seats[-1] += extra_seat # Shift the seats per row such that it's always increasing. if num_rows % 2 != 0: seats_shift = list(range(-int(num_rows / 2), int(num_rows / 2) + 1, 1)) else: positive_shift = list(range(1, int(num_rows / 2) + 1, 1)) negative_shift = [-1 * i for i in positive_shift[::-1]] seats_shift = negative_shift + positive_shift seats_shift = [ i * int(num_rows / 2) for i in seats_shift ] # greater shift for higher rows for more equal spacing seats_per_row = [rs + seats_shift[i] for i, rs in enumerate(row_seats)] row_indexes = [] row_position_indexes = [] for i, spr in enumerate(seats_per_row): arc_xs, arc_ys = arc_coordinates(radii[i], spr) xs += arc_xs ys += arc_ys row_indexes += [i] * spr # List of lists for position indexes such that they can be accessed by row and position. row_position_indexes += [list(range(spr))] for i in range(total_seats): df_seat_lctns.loc[i, "x_loc"] = xs[i] df_seat_lctns.loc[i, "y_loc"] = ys[i] df_seat_lctns["row"] = row_indexes df_seat_lctns["row_position"] = [ item for sublist in row_position_indexes for item in sublist ] # Index the group and deplete a copy of allocations at its location. group_index = 0 seats_to_allocate = allocations.copy() row_index = 0 while total_seats > 0: # Assign based on row and the current index within that row. if row_position_indexes[row_index] != []: index_to_assign = [ i for i in df_seat_lctns.index if df_seat_lctns.loc[i, "row"] == row_index and df_seat_lctns.loc[i, "row_position"] == row_position_indexes[row_index][0] ][0] df_seat_lctns.loc[index_to_assign, "group"] = labels[group_index] total_seats -= 1 seats_to_allocate[group_index] -= 1 if seats_to_allocate[group_index] == 0: group_index += 1 row_position_indexes[row_index].pop(0) row_index += 1 if row_index == num_rows: row_index = 0 # Make sure that radii are filled before rows are completed. for i in range(num_rows): if len(row_position_indexes[i]) < i + 2: if i != 0: row_index -= 1 else: row_index = num_rows - 1 else: while row_position_indexes[row_index] == []: row_index += 1 elif style == "rectangle": x_coordinate = 0 # y_coordinates are split by baseline of 2 units, with double that for # the middle aisle. equa_distant_indexes = list(range(0, num_rows * 2, 2)) y_coordinates = [ i if ( equa_distant_indexes.index(i) < int(len(equa_distant_indexes) / 2) and len(equa_distant_indexes) % 2 == 0 ) or ( equa_distant_indexes.index(i) < int(len(equa_distant_indexes) / 2) + 1 and len(equa_distant_indexes) % 2 != 0 ) else i + 2 for i in equa_distant_indexes ] if num_rows == 1: for i in range(total_seats): df_seat_lctns.loc[i, "x_loc"] = x_coordinate df_seat_lctns.loc[i, "y_loc"] = 0 x_coordinate += 2 df_seat_lctns["row"] = [0] * len(df_seat_lctns) list_of_name_lists = [[labels[i]] * a for i, a in enumerate(allocations)] df_seat_lctns["group"] = [ item for sublist in list_of_name_lists for item in sublist ] else: row_index = 0 position_index = 0 row_seats_no_remainder = int(total_seats / num_rows) * num_rows for i in range(row_seats_no_remainder): y_coordinate = y_coordinates[row_index] df_seat_lctns.loc[i, "row"] = row_index df_seat_lctns.loc[i, "row_position"] = position_index df_seat_lctns.loc[i, "x_loc"] = x_coordinate df_seat_lctns.loc[i, "y_loc"] = y_coordinate x_coordinate += 2 position_index += 1 # Reset to the start of the next row. if (i + 1) % int(total_seats / num_rows) == 0: row_index += 1 x_coordinate = 0 position_index = 0 # Add last seats that were rounded off. max_x = max(df_seat_lctns["x_loc"]) max_pos = max(df_seat_lctns["x_loc"]) row_index = 0 # reset to first row for i in list(range(total_seats))[row_seats_no_remainder:]: y_coordinate = y_coordinates[row_index] df_seat_lctns.loc[i, "row"] = row_index df_seat_lctns.loc[i, "row_position"] = max_pos + 1 df_seat_lctns.loc[i, "x_loc"] = max_x + 2 df_seat_lctns.loc[i, "y_loc"] = y_coordinate row_index += 1 # Sort df for index based assignment. df_seat_lctns.sort_values( ["row", "x_loc", "y_loc"], ascending=[True, True, True], inplace=True ) df_seat_lctns.reset_index(inplace=True, drop=True) # Define the top and bottom rows so they can be filled in order. top_rows = y_coordinates[int((len(y_coordinates) + 1) / 2) :] bottom_rows = y_coordinates[: int((len(y_coordinates) + 1) / 2)] # Find the total seats in each section to be depleated. total_top_seats = 0 for row in top_rows: total_top_seats += len(df_seat_lctns[df_seat_lctns["y_loc"] == row]) total_bottom_seats = 0 for row in bottom_rows: total_bottom_seats += len(df_seat_lctns[df_seat_lctns["y_loc"] == row]) # Index the group and deplete a copy of allocations at its location. group_index = 0 seats_to_allocate = allocations.copy() # Top assignment from low to high and left to right. top_x = 0 top_y = top_rows[0] while total_top_seats > 0: index_to_assign = [ i for i in df_seat_lctns.index if df_seat_lctns.loc[i, "x_loc"] == top_x and df_seat_lctns.loc[i, "y_loc"] == top_y ][0] df_seat_lctns.loc[index_to_assign, "group"] = labels[group_index] seats_to_allocate[group_index] -= 1 if seats_to_allocate[group_index] == 0: group_index += 1 if top_y == top_rows[-1]: # Move right and reset vertical. top_x += 2 top_y = top_rows[0] else: # Move up. top_y += 2 total_top_seats -= 1 # Bottom assignment from high to low and right to left. bottom_x = max(df_seat_lctns["x_loc"]) bottom_y = bottom_rows[-1] # Fix initial position in case of unequal seats per row. while ( len( [ i for i in df_seat_lctns.index if df_seat_lctns.loc[i, "x_loc"] == bottom_x and df_seat_lctns.loc[i, "y_loc"] == bottom_y ] ) == 0 ): # Move down. bottom_y -= 2 while total_bottom_seats > 0: index_to_assign = [ i for i in df_seat_lctns.index if df_seat_lctns.loc[i, "x_loc"] == bottom_x and df_seat_lctns.loc[i, "y_loc"] == bottom_y ][0] df_seat_lctns.loc[index_to_assign, "group"] = labels[group_index] seats_to_allocate[group_index] -= 1 if seats_to_allocate[group_index] == 0: group_index += 1 if bottom_y == bottom_rows[0]: # Move left and reset vertical bottom_x -= 2 bottom_y = bottom_rows[-1] else: # Move down. bottom_y -= 2 total_bottom_seats -= 1 else: ValueError("The 'style' argument must be either 'semicircle' or 'rectangle'") if speaker: index_to_assign = len(df_seat_lctns) if style == "semicircle": df_seat_lctns.loc[index_to_assign, "x_loc"] = 0 df_seat_lctns.loc[index_to_assign, "y_loc"] = 0 df_seat_lctns.loc[index_to_assign, "group"] = speaker elif style == "rectangle": if len(y_coordinates) % 2 == 0: middle_index_1 = len(y_coordinates) / 2 - 1 middle_index_2 = len(y_coordinates) / 2 y_coordinate = ( y_coordinates[int(middle_index_1)] + y_coordinates[int(middle_index_2)] ) / 2 else: middle_index = int(len(y_coordinates) / 2) y_coordinate = float(y_coordinates[middle_index] + 2) df_seat_lctns.loc[index_to_assign, "x_loc"] = 0 df_seat_lctns.loc[index_to_assign, "y_loc"] = y_coordinate df_seat_lctns.loc[index_to_assign, "group"] = speaker return df_seat_lctns def swap_parl_allocations(df, row_0, pos_0, row_1, pos_1): """ Replaces two allocations of the parliament plot df to clean up coloration. Parameters ---------- row_0 : int The row of one seat to swap. pos_0 : int The position in the row of one seat to swap. row_1 : int The row of the other seat to swap. pos_1 : int The position in the row of the other seat to swap. Returns ------- df_seat_lctns : pd.DataFrame A parliament plot allocations data frame with two allocations swapped """ allocation_0 = df[(df["row"] == row_0) & (df["row_position"] == pos_0)][ "group" ].values[0] index_1 = df[(df["row"] == row_0) & (df["row_position"] == pos_0)].index allocation_1 = df[(df["row"] == row_1) & (df["row_position"] == pos_1)][ "group" ].values[0] index_2 = df[(df["row"] == row_1) & (df["row_position"] == pos_1)].index df.loc[index_1, "group"] = allocation_1 df.loc[index_2, "group"] = allocation_0 def hex_to_rgb(hex_rep): """ Converts a hexadecimal representation to its RGB ratios. Parameters ---------- hex_rep : str The hex representation of the color. Returns ------- rgb_trip : tuple An RGB tuple color representation. """ return sRGBColor( *[int(hex_rep[i + 1 : i + 3], 16) for i in (0, 2, 4)], is_upscaled=True ) def rgb_to_hex(rgb_trip): """ Converts rgb ratios to their hexadecimal representation. Parameters ---------- rgb_trip : tuple An RGB tuple color representation. Returns ------- hex_rep : str The hex representation of the color. """ trip_0, trip_1, trip_2 = rgb_trip[0], rgb_trip[1], rgb_trip[2] if isinstance(trip_0, (float, np.float64)): trip_0 *= 255 trip_1 *= 255 trip_2 *= 255 return "#%02x%02x%02x" % (int(trip_0), int(trip_1), int(trip_2)) def scale_saturation(rgb_trip, sat): """ Changes the saturation of an rgb color. Parameters ---------- rgb_trip : tuple An RGB tuple color representation. sat : float The saturation it rgb_trip should be modified by. Returns ------- saturated_rgb : tuple colorsys.hls_to_rgb saturation of the given color. """ if (isinstance(rgb_trip, str)) and (len(rgb_trip) == 9) and (rgb_trip[-2:] == "00"): # An RGBA has been provided and its alpha is 00, so return it for # a transparent marker. return rgb_trip if (isinstance(rgb_trip, str)) and (len(rgb_trip) == 7): rgb_trip = hex_to_rgb(rgb_trip) if isinstance(rgb_trip, sRGBColor): rgb_trip = rgb_trip.get_value_tuple() h, l, s = colorsys.rgb_to_hls(*rgb_trip) return colorsys.hls_to_rgb(h, min(1, l * sat), s=s)
from hopex.client.trade import TradeClient from hopex.constant.test import t_api_key, t_secret_key from hopex.utils.log_info import LogInfo trade_client = TradeClient(api_key=t_api_key, secret_key=t_secret_key) """ The condition orders information :params contract_code_list: Contract List, Being blank to search all contracts task_type_list: 1:Buy Long, 2:Sell Short, 3:Buy to Close Short, 4:Sell to Close Long, Being blank to search all trig_type_list: 1:Market Price 2:Faire Price,Being blank to search all task_status_list: 1: Untriggered 2.Canceled 3.Order Submitted 4.Trigger failed, Being blank to search all direct: 1 LONG,2 SHORT,0:search all side: 1:Sell 2Buy,0:search all start_time: 0:search all,Start Time Stamp(Unit microsecond) end_time: 0:search all,End Time Stamp(Unit microsecond) """ # case query condition orders all contract_code_list = ['BTCUSDT', 'ETHUSDT'] task_type_list = [] trig_type_list = [] task_status_list = [] direct = 0 side = 0 start_time = 0 end_time = 0 list_obj = trade_client.req_condition_orders(contract_code_list=contract_code_list, task_type_list=task_type_list, trig_type_list=trig_type_list, task_status_list=task_status_list, direct=direct, side=side, start_time=start_time, end_time=end_time) LogInfo.output_list(list_obj, "==query condition orders all==")
n=int(input()) a='abcdefghijklmnopqrstuvwxyz' pad=n+n-1+n+1 res=[] for i in range(n): p1=a[i:n] p2=a[i+1:n][::-1] a1='-'.join(map(str,list(p1))) a2='-'.join(map(str,list(p2))) print(a1,a2) if a2=='': req=a1 else: req=a2+'-'+a1 res.append(req.center(pad,'-')) res=res[1:][::-1]+res[:] print(*res,sep='\n')
# Copyright (c) 2012-2021, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "AWS Firewall Manager" prefix = "fms" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) AssociateAdminAccount = Action("AssociateAdminAccount") DeleteAppsList = Action("DeleteAppsList") DeleteNotificationChannel = Action("DeleteNotificationChannel") DeletePolicy = Action("DeletePolicy") DeleteProtocolsList = Action("DeleteProtocolsList") DisassociateAdminAccount = Action("DisassociateAdminAccount") GetAdminAccount = Action("GetAdminAccount") GetAppsList = Action("GetAppsList") GetComplianceDetail = Action("GetComplianceDetail") GetNotificationChannel = Action("GetNotificationChannel") GetPolicy = Action("GetPolicy") GetProtectionStatus = Action("GetProtectionStatus") GetProtocolsList = Action("GetProtocolsList") GetViolationDetails = Action("GetViolationDetails") ListAppsLists = Action("ListAppsLists") ListComplianceStatus = Action("ListComplianceStatus") ListMemberAccounts = Action("ListMemberAccounts") ListPolicies = Action("ListPolicies") ListProtocolsLists = Action("ListProtocolsLists") ListTagsForResource = Action("ListTagsForResource") PutAppsList = Action("PutAppsList") PutNotificationChannel = Action("PutNotificationChannel") PutPolicy = Action("PutPolicy") PutProtocolsList = Action("PutProtocolsList") TagResource = Action("TagResource") UntagResource = Action("UntagResource")
import torch.nn as nn import torch.utils.model_zoo as model_zoo import torch.nn.functional as F import torch import numpy as np from collections import OrderedDict import re import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from collections import OrderedDict __all__ = ['DPN', 'dpn92', 'dpn98', 'dpn131', 'dpn107', 'dpns', "SimpleNet", 'se_resnet18', 'se_resnet34', 'se_resnet50', 'se_resnet101', 'se_resnet152', "densenet121", "densenet169", "densenet201", "densenet161"] class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() # Conv2d # CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) self.conv1 = nn.Conv2d(3, 32, kernel_size=10, stride=3) self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, kernel_size=5, stride=2) self.bn2 = nn.BatchNorm2d(64) # self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1) # self.bn3 = nn.BatchNorm2d(128) self.pool = nn.MaxPool2d(2, stride=1) self.fc1 = nn.Linear(135424, 1000) self.fc2 = nn.Linear(1000, 2) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.relu(self.bn1(self.conv1(x))) x = self.pool(self.relu(self.bn2(self.conv2(x)))) # x = self.pool(self.relu(self.bn3(self.conv3(x)))) x = x.view(x.size(0), -1) x = self.relu(self.fc1(x)) # x = self.relu(self.fc2(x)) x = self.fc2(x) return x # Shake-shake implementation from https://github.com/owruby/shake-shake_pytorch/blob/master/models/shakeshake.py class ShakeShake(torch.autograd.Function): @staticmethod def forward(ctx, x1, x2, training=True): if training: alpha = torch.FloatTensor(x1.size(0)).uniform_().to("cuda:1") alpha = alpha.view(alpha.size(0), 1, 1, 1).expand_as(x1) else: alpha = 0.5 return alpha * x1 + (1 - alpha) * x2 @staticmethod def backward(ctx, grad_output): beta = torch.FloatTensor(grad_output.size(0)).uniform_().to("cuda:1") beta = beta.view(beta.size(0), 1, 1, 1).expand_as(grad_output) # beta = Variable(beta) return beta * grad_output, (1 - beta) * grad_output, None # SENet # https://github.com/moskomule/senet.pytorch/blob/master/senet/se_resnet.py # from torchvision.models import ResNet class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, int(channel // reduction), bias=False), nn.ReLU(inplace=True), nn.Linear(int(channel // reduction), channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x) def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class SEBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16, shake_shake=False, device="cuda:0"): super(SEBasicBlock, self).__init__() self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes, reduction) self.downsample = downsample self.stride = stride self.reduction = reduction self.device=device self.shake_shake = shake_shake # bn - 3*3 conv - bn - relu - dropout - 3*3 conv - bn - add # https://arxiv.org/pdf/1610.02915.pdf self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.drop = nn.Dropout2d(p=0.3) self.conv2 = conv3x3(planes, planes, 1) self.bn3 = nn.BatchNorm2d(planes) if shake_shake: self.branch1 = self._make_branch(inplanes, planes, stride) self.branch2 = self._make_branch(inplanes, planes, stride) def _make_branch(self, inplanes, planes, stride=1): # bn - 3*3 conv - bn - relu - dropout - 3*3 conv - bn - add return nn.Sequential( nn.BatchNorm2d(inplanes), conv3x3(inplanes, planes, stride), nn.BatchNorm2d(planes), nn.ReLU(inplace=False), nn.Dropout2d(p=0.3), conv3x3(planes, planes, stride), nn.BatchNorm2d(planes), SELayer(planes, self.reduction)) def forward(self, x): residual = x if not self.shake_shake: # bn - 3*3 conv - bn - relu - dropout - 3*3 conv - bn - add out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.drop(out) out = self.conv2(out) out = self.bn3(out) out = self.se(out) ####### if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) elif self.shake_shake: h1 = self.branch1(x) h2 = self.branch2(x) out = ShakeShake.apply(h1, h2, self.training) assert h1.size() == out.size() if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16, shake_shake=False): super(SEBottleneck, self).__init__() self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes * 4, reduction) self.downsample = downsample self.stride = stride # bn - 1*1conv - bn - relu - 3*3conv - bn - relu - 1*1conv - bn self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes, stride=stride) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn4 = nn.BatchNorm2d(planes * 4) def forward(self, x): residual = x # bn - 1*1conv - bn - relu - 3*3conv - bn - relu - 1*1conv - bn # This architecture is proposed in Deep Pyramidal Residual Networks. out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) out = self.bn4(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def se_resnet18(num_classes, if_mixup=False, if_shake_shake=False, first_conv_stride=2, first_pool=True): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBasicBlock, [2, 2, 2, 2], num_classes=num_classes, mixup_hidden=if_mixup, shake_shake=if_shake_shake, first_conv_stride=first_conv_stride, first_pool=first_pool) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet34(num_classes, if_mixup=False, if_shake_shake=False, first_conv_stride=2, first_pool=True): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBasicBlock, [3, 4, 6, 3], num_classes=num_classes, mixup_hidden=if_mixup, shake_shake=if_shake_shake, first_conv_stride=first_conv_stride, first_pool=first_pool) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet50(num_classes, if_mixup=False, if_shake_shake=False, first_conv_stride=2, first_pool=True): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes, mixup_hidden=if_mixup, shake_shake=if_shake_shake, first_conv_stride=first_conv_stride, first_pool=first_pool) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet101(num_classes, if_mixup=False, if_shake_shake=False, first_conv_stride=2, first_pool=True): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 4, 23, 3],num_classes=num_classes, mixup_hidden=if_mixup, shake_shake=if_shake_shake, first_conv_stride=first_conv_stride, first_pool=first_pool) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet152(num_classes, if_mixup=False, if_shake_shake=False, first_conv_stride=2, first_pool=True): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(SEBottleneck, [3, 8, 36, 3], num_classes=num_classes, mixup_hidden=if_mixup, shake_shake=if_shake_shake) model.avgpool = nn.AdaptiveAvgPool2d(1) return model class ResNet(nn.Module): # This ResNet does Manifold-Mixup. # https://arxiv.org/pdf/1806.05236.pdf def __init__(self, block, layers, num_classes=2, zero_init_residual=True, mixup_hidden=True, shake_shake=False, first_conv_stride=2, first_pool=True, device="cuda:0"): super(ResNet, self).__init__() self.mixup_hidden = mixup_hidden self.shake_shake = shake_shake self.inplanes = 64 self.num_classes = num_classes self.first_pool = first_pool self.device=device widen_factor = 1 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=first_conv_stride, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64*widen_factor, layers[0]) self.layer2 = self._make_layer(block, 128*widen_factor, layers[1], stride=2) self.layer3 = self._make_layer(block, 256*widen_factor, layers[2], stride=2) self.layer4 = self._make_layer(block, 512*widen_factor, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion * widen_factor, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): # Heの初期化 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual and (not shake_shake): for m in self.modules(): if isinstance(m, SEBottleneck): nn.init.constant_(m.bn4.weight, 0) elif isinstance(m, SEBasicBlock): nn.init.constant_(m.bn3.weight, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): if self.shake_shake: layers.append(block(self.inplanes, planes, shake_shake=True)) else: layers.append(block(self.inplanes, planes, shake_shake=False)) return nn.Sequential(*layers) def forward(self, x, lam=None, target=None, device=None): def mixup_process(out, target_reweighted, lam): # target_reweighted is one-hot vector # target is the taerget class. # shuffle indices of mini-batch indices = np.random.permutation(out.size(0)) out = out*lam.expand_as(out) + out[indices]*(1-lam.expand_as(out)) target_shuffled_onehot = target_reweighted[indices] target_reweighted = target_reweighted * lam.expand_as(target_reweighted) + target_shuffled_onehot * (1 - lam.expand_as(target_reweighted)) return out, target_reweighted def to_one_hot(inp, num_classes): y_onehot = torch.FloatTensor(inp.size(0), num_classes) y_onehot.zero_() y_onehot.scatter_(1, inp.unsqueeze(1).cpu(), 1) return y_onehot.to(device) if self.mixup_hidden: layer_mix = np.random.randint(0,3) else: layer_mix = 0 out = x if lam is not None: target_reweighted = to_one_hot(target, self.num_classes) if lam is not None and self.mixup_hidden and layer_mix == 0: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.conv1(out) out = self.bn1(out) out = self.relu(out) if self.first_pool: out = self.maxpool(out) else: out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.layer1(out) if lam is not None and self.mixup_hidden and layer_mix == 1: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.layer2(out) if lam is not None and self.mixup_hidden and layer_mix == 2: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.fc(out) if lam is None: return out else: return out, target_reweighted def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model class _DenseLayer(nn.Sequential): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate def forward(self, x): # nn.sequentilaを継承, forwardする new_features = super(_DenseLayer, self).forward(x) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return torch.cat([x, new_features], 1) class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, if_selayer=False): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) self.add_module('denselayer%d' % (i + 1), layer) # if if_selayer: # self.add_module("selayer", SELayer(num_input_features + growth_rate*num_layers, reduction=16)) class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features, if_selayer=False): super(_Transition, self).__init__() self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) if if_selayer: # Squeeze-and-Excitation self.add_module("selayer", SELayer(num_output_features)) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes """ def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=2, mixup_hidden=False, if_selayer=False, first_conv_stride=2, first_pool=True): super(DenseNet, self).__init__() self.mixup_hidden = mixup_hidden self.num_classes = num_classes self.se = if_selayer self.first_pool = first_pool # First convolution if first_pool: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=first_conv_stride, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) else: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('conv1', nn.Conv2d(num_init_features, num_init_features, kernel_size=3, stride=2, padding=1, bias=False)), ('norm1', nn.BatchNorm2d(num_init_features)), ('relu1', nn.ReLU(inplace=True)), ])) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, if_selayer=self.se) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2, if_selayer=self.se) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Official init from torch repo. # for m in self.modules(): # if isinstance(m, nn.Conv2d): # nn.init.kaiming_normal_(m.weight) # elif isinstance(m, nn.BatchNorm2d): # nn.init.constant_(m.weight, 1) # nn.init.constant_(m.bias, 0) # elif isinstance(m, nn.Linear): # nn.init.constant_(m.bias, 0) for m in self.modules(): if isinstance(m, nn.Conv2d): # Heの初期化 nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x, lam=None, target=None, device=None): def mixup_process(out, target_reweighted, lam): # target_reweighted is one-hot vector of an original target class # target is the taerget class. # shuffle indices of mini-batch indices = np.random.permutation(out.size(0)) out = out*lam.expand_as(out) + out[indices]*(1-lam.expand_as(out)) target_shuffled_onehot = target_reweighted[indices] target_reweighted = target_reweighted * lam.expand_as(target_reweighted) + target_shuffled_onehot * (1 - lam.expand_as(target_reweighted)) return out, target_reweighted def to_one_hot(inp, num_classes): y_onehot = torch.FloatTensor(inp.size(0), num_classes) y_onehot.zero_() y_onehot.scatter_(1, inp.unsqueeze(1).cpu(), 1) return y_onehot.to(device) # features = self.features(x) if self.mixup_hidden: layer_mix = np.random.randint(0,4) else: layer_mix = 0 if lam is not None: target_reweighted = to_one_hot(target, self.num_classes) out = x if lam is not None and self.mixup_hidden and layer_mix == 0: out, target_reweighted = mixup_process(out, target_reweighted, lam) if self.first_pool: out = self.features.pool0(self.features.relu0(self.features.norm0(self.features.conv0(out)))) else: out = self.features.relu0(self.features.norm0(self.features.conv0(out))) out = self.features.relu1(self.features.norm1(self.features.conv1(out))) out = self.features.denseblock1(out) out = self.features.transition1(out) if lam is not None and self.mixup_hidden and layer_mix == 1: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.features.denseblock2(out) out = self.features.transition2(out) if lam is not None and self.mixup_hidden and layer_mix == 2: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.features.denseblock3(out) out = self.features.transition3(out) if lam is not None and self.mixup_hidden and layer_mix == 3: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.features.denseblock4(out) out = self.features.norm5(out) out = F.relu(out, inplace=True) # out = F.relu(features, inplace=True) # out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1) out = F.adaptive_avg_pool2d(out, (1, 1)).view(out.size(0), -1) out = self.classifier(out) if lam is not None: return out, target_reweighted else: return out def densenet121(pretrained=False, if_mixup=False, if_selayer=False, first_conv_stride=2, first_pool=True, drop_rate=0.2): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), mixup_hidden=if_mixup, if_selayer=if_selayer, drop_rate=drop_rate, first_conv_stride=first_conv_stride, first_pool=first_pool) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet121']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet169(pretrained=False, if_mixup=False, if_selayer=False, first_conv_stride=2, first_pool=True): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), mixup_hidden=if_mixup, if_selayer=if_selayer, drop_rate=0.2, first_conv_stride=first_conv_stride, first_pool=first_pool) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet169']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet201(pretrained=False, if_mixup=False, if_selayer=False, first_conv_stride=2, first_pool=True): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), mixup_hidden=if_mixup, if_selayer=if_selayer, drop_rate=0.2, first_conv_stride=first_conv_stride, first_pool=first_pool) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet201']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def densenet161(pretrained=False, mixup_hidden=False, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), mixup_hidden=mixup_hidden, **kwargs) if pretrained: # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. This pattern is used # to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url(model_urls['densenet161']) for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] model.load_state_dict(state_dict) return model def dpn92(num_classes=2, if_selayer=False, if_mixup=False, first_conv_stride=2, first_pool=True): return DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=num_classes, if_selayer=if_selayer, if_mixup=if_mixup, first_conv_stride=first_conv_stride, first_pool=first_pool) def dpn98(num_classes=2, if_selayer=False, if_mixup=False, first_conv_stride=2, first_pool=True): return DPN(num_init_features=96, k_R=160, G=40, k_sec=(3,6,20,3), inc_sec=(16,32,32,128), num_classes=num_classes, if_selayer=if_selayer, if_mixup=if_mixup, first_conv_stride=first_conv_stride, first_pool=first_pool) def dpn131(num_classes=2, if_selayer=False, if_mixup=False, first_conv_stride=2, first_pool=True): return DPN(num_init_features=128, k_R=160, G=40, k_sec=(4,8,28,3), inc_sec=(16,32,32,128), num_classes=num_classes, if_selayer=if_selayer, if_mixup=if_mixup, first_conv_stride=first_conv_stride, first_pool=first_pool) def dpn107(num_classes=2, if_selayer=False, if_mixup=False, first_conv_stride=2, first_pool=True): return DPN(num_init_features=128, k_R=200, G=50, k_sec=(4,8,20,3), inc_sec=(20,64,64,128), num_classes=num_classes, if_selayer=if_selayer, if_mixup=if_mixup, first_conv_stride=first_conv_stride, first_pool=first_pool) class DualPathBlock(nn.Module): def __init__(self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, increase, Groups, _type='normal', if_selayer=False): super(DualPathBlock, self).__init__() self.num_1x1_c = num_1x1_c self.increase = increase if _type is 'proj': key_stride = 1 self.has_proj = True if _type is 'down': key_stride = 2 self.has_proj = True if _type is 'normal': key_stride = 1 self.has_proj = False if self.has_proj: self.c1x1_w = self.BN_ReLU_Conv(in_chs=in_chs, out_chs=num_1x1_c+2*increase, kernel_size=1, stride=key_stride) if not if_selayer: self.layers = nn.Sequential(OrderedDict([ ('c1x1_a', self.BN_ReLU_Conv(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1)), ('c3x3_b', self.BN_ReLU_Conv(in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=key_stride, padding=1, groups=Groups)), ('c1x1_c', self.BN_ReLU_Conv(in_chs=num_3x3_b, out_chs=num_1x1_c+increase, kernel_size=1, stride=1)) ])) else: self.layers = nn.Sequential(OrderedDict([ ('c1x1_a', self.BN_ReLU_Conv(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1)), ('c3x3_b', self.BN_ReLU_Conv(in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=key_stride, padding=1, groups=Groups)), ('c1x1_c', self.BN_ReLU_Conv(in_chs=num_3x3_b, out_chs=num_1x1_c+increase, kernel_size=1, stride=1)), ('se_layer', SELayer(num_1x1_c+increase)) ])) def BN_ReLU_Conv(self, in_chs, out_chs, kernel_size, stride, padding=0, groups=1): return nn.Sequential(OrderedDict([ ('norm', nn.BatchNorm2d(in_chs)), ('relu', nn.ReLU(inplace=True)), ('conv', nn.Conv2d(in_chs, out_chs, kernel_size, stride, padding, groups=groups, bias=False)), ])) def forward(self, x): data_in = torch.cat(x, dim=1) if isinstance(x, list) else x if self.has_proj: data_o = self.c1x1_w(data_in) data_o1 = data_o[:, :self.num_1x1_c, :, :] data_o2 = data_o[:, self.num_1x1_c:, :, :] else: data_o1 = x[0] data_o2 = x[1] out = self.layers(data_in) summ = data_o1 + out[:, :self.num_1x1_c, :, :] dense = torch.cat([data_o2, out[:, self.num_1x1_c:, :, :]], dim=1) return [summ, dense] class DPN(nn.Module): def __init__(self, num_init_features=64, k_R=96, G=32, k_sec=(3, 4, 20, 3), inc_sec=(16,32,24,128) #DPN-92 , num_classes=2, if_selayer=False, if_mixup=False, first_conv_stride=2, first_pool=True): super(DPN, self).__init__() self.mixup_hidden=if_mixup self.num_classes = num_classes self.first_pool = first_pool blocks = OrderedDict() # conv1 if first_pool: blocks['conv1'] = nn.Sequential( nn.Conv2d(3, num_init_features, kernel_size=7, stride=first_conv_stride, padding=3, bias=False), nn.BatchNorm2d(num_init_features), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) else: blocks['conv1'] = nn.Sequential( nn.Conv2d(3, num_init_features, kernel_size=7, stride=first_conv_stride, padding=3, bias=False), nn.BatchNorm2d(num_init_features), nn.ReLU(inplace=True), nn.Conv2d(num_init_features, num_init_features, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(num_init_features), nn.ReLU(inplace=True), ) # conv2 bw = 256 inc = inc_sec[0] R = int((k_R*bw)/256) blocks['conv2_1'] = DualPathBlock(num_init_features, R, R, bw, inc, G, 'proj', if_selayer=False) in_chs = bw + 3 * inc for i in range(2, k_sec[0]+1): if i == k_sec[0]: blocks['conv2_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=if_selayer) else: blocks['conv2_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=False) in_chs += inc # conv3 bw = 512 inc = inc_sec[1] R = int((k_R*bw)/256) blocks['conv3_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down', if_selayer=False) in_chs = bw + 3 * inc for i in range(2, k_sec[1]+1): if i == k_sec[1]: blocks['conv3_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=if_selayer) else: blocks['conv3_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=False) in_chs += inc # conv4 bw = 1024 inc = inc_sec[2] R = int((k_R*bw)/256) blocks['conv4_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down', if_selayer=False) in_chs = bw + 3 * inc for i in range(2, k_sec[2]+1): if i == k_sec[2]: blocks['conv4_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=if_selayer) else: blocks['conv4_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=False) in_chs += inc # conv5 bw = 2048 inc = inc_sec[3] R = int((k_R*bw)/256) blocks['conv5_1'] = DualPathBlock(in_chs, R, R, bw, inc, G, 'down', if_selayer=False) in_chs = bw + 3 * inc for i in range(2, k_sec[3]+1): if i == k_sec[3]: blocks['conv5_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=if_selayer) else: blocks['conv5_{}'.format(i)] = DualPathBlock(in_chs, R, R, bw, inc, G, 'normal', if_selayer=False) in_chs += inc self.conv2_block = nn.Sequential() for i in range(1, k_sec[0]+1): self.conv2_block.add_module("conv2_{}".format(i), blocks['conv2_{}'.format(i)]) self.conv3_block = nn.Sequential() for i in range(1, k_sec[1]+1): self.conv3_block.add_module("conv3_{}".format(i), blocks['conv3_{}'.format(i)]) self.conv4_block = nn.Sequential() for i in range(1, k_sec[2]+1): self.conv4_block.add_module("conv4_{}".format(i), blocks['conv4_{}'.format(i)]) self.conv5_block = nn.Sequential() for i in range(1, k_sec[3]+1): self.conv5_block.add_module("conv5_{}".format(i), blocks['conv5_{}'.format(i)]) self.features = nn.Sequential(blocks) self.classifier = nn.Linear(in_chs, num_classes) def forward(self, x, lam=None, target=None): def mixup_process(out, target_reweighted, lam): # target_reweighted is one-hot vector # target is the taerget class. if isinstance(out, list): threshold = out[0].size(1) out = torch.cat(out, dim=1) # shuffle indices of mini-batch indices = np.random.permutation(out.size(0)) out = out*lam.expand_as(out) + out[indices]*(1-lam.expand_as(out)) target_shuffled_onehot = target_reweighted[indices] target_reweighted = target_reweighted * lam.expand_as(target_reweighted) + target_shuffled_onehot * (1 - lam.expand_as(target_reweighted)) if isinstance(out, list): out = [out[:, :threshold, :, :], out[:, threshold:, :, :]] return out, target_reweighted def to_one_hot(inp, num_classes): y_onehot = torch.FloatTensor(inp.size(0), num_classes) y_onehot.zero_() y_onehot.scatter_(1, inp.unsqueeze(1).cpu(), 1) return y_onehot.to("cuda:0") if lam is None: features = torch.cat(self.features(x), dim=1) out = F.avg_pool2d(features, kernel_size=7).view(features.size(0), -1) out = self.classifier(out) return out else: layer_mix = np.random.randint(0,4) if lam is not None: target_reweighted = to_one_hot(target, self.num_classes) out = x if lam is not None and layer_mix == 0: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.features.conv1(out) out = self.conv2_block(out) if lam is not None and layer_mix == 1: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.conv3_block(out) if lam is not None and layer_mix == 2: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.conv4_block(out) if lam is not None and layer_mix == 3: out, target_reweighted = mixup_process(out, target_reweighted, lam) out = self.conv5_block(out) features = torch.cat(out, dim=1) out = F.avg_pool2d(features, kernel_size=7).view(features.size(0), -1) out = self.classifier(out) return out, target_reweighted ## WideResNet # https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True) def conv_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.xavier_uniform(m.weight, gain=np.sqrt(2)) init.constant(m.bias, 0) elif classname.find('BatchNorm') != -1: init.constant(m.weight, 1) init.constant(m.bias, 0) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
from dps.hyper import run_experiment from dps.utils import copy_update from silot.run import basic_config, alg_configs, env_configs import argparse parser = argparse.ArgumentParser() parser.add_argument('--max-digits', type=int, choices=[6, 12], required=True) args, _ = parser.parse_known_args() distributions = dict( final_count_prior_log_odds=[0.0125, 0.025, 0.05, 0.1], stage_steps=[5000, 10000, 20000, 40000] ) readme = "Running SILOT experiment on moving_mnist." run_kwargs = dict( max_hosts=2, ppn=8, cpp=2, gpu_set="0,1,2,3", pmem=10000, project="rpp-bengioy", wall_time="71hours", cleanup_time="5mins", slack_time="5mins", n_repeats=1, copy_locally=True, config=dict(max_steps=200000, render_step=1000000) ) durations = dict( long=copy_update(run_kwargs), medium=copy_update( run_kwargs, wall_time="6hours", config=dict(stage_steps=3000, max_steps=12000), ), short=dict( wall_time="180mins", gpu_set="0", ppn=4, n_repeats=4, distributions=None, config=dict(max_steps=3000, render_step=500, eval_step=100, display_step=100, stage_steps=600, curriculum=[dict()]), ), build=dict( ppn=1, cpp=1, gpu_set="0", wall_time="60mins", n_repeats=1, distributions=None, config=dict(do_train=False, render_first=False, render_final=False), ), ) config = basic_config.copy() config.update(env_configs['moving_mnist']) config.update(alg_configs['silot'], max_digits=args.max_digits) run_experiment( "moving_mnist_silot", config, "silot on moving_mnist.", name_variables="max_digits", distributions=distributions, durations=durations )
from django.db import models from db.base_model import BaseModel from tinymce.models import HTMLField # Create your models here. class GoodsType(BaseModel): name = models.CharField(max_length=20) logo = models.CharField(max_length=20) image = models.ImageField(upload_to='type') def __str__(self): return self.name class Meta: db_table = 'fs_goods_type' class GoodsSKU(BaseModel): STATUS_CHOICES = ( (0, 'Unavailable'), (1, 'Available'), ) type = models.ForeignKey('GoodsType', on_delete=False) goods = models.ForeignKey('Goods', on_delete=True) name = models.CharField(max_length=20) desc = models.CharField(max_length=256) price = models.DecimalField(max_digits=10, decimal_places=2) unit = models.CharField(max_length=20) image = models.ImageField(upload_to='goods') stock = models.IntegerField(default=1) sales_volume = models.IntegerField(default=0) status = models.SmallIntegerField(default=1, choices=STATUS_CHOICES) class Meta: db_table = 'fs_goods_sku' class Goods(BaseModel): name = models.CharField(max_length=20) detail = HTMLField(blank=True) class Meta: db_table = 'fs_goods' class GoodsImage(BaseModel): sku = models.ForeignKey('GoodsSKU', on_delete=True) image = models.ImageField(upload_to='goods') class Meta: db_table = 'fs_goods_image' class IndexGoodsBanner(BaseModel): sku = models.ForeignKey('GoodsSKU', on_delete=True) image = models.ImageField(upload_to='banner') index = models.SmallIntegerField(default=0) class Meta: db_table = 'fs_index_banner' class IndexTypeGoodsBanner(BaseModel): DISPLAY_TYPE_CHOICES = ( (0, "title"), (1, "image") ) type = models.ForeignKey('GoodsType', on_delete=True) sku = models.ForeignKey('GoodsSKU', on_delete=True) display_type = models.SmallIntegerField(default=1, choices=DISPLAY_TYPE_CHOICES) index = models.SmallIntegerField(default=0) class Meta: db_table = 'fs_index_type_goods' class IndexPromotionBanner(BaseModel): name = models.CharField(max_length=20) url = models.CharField(max_length=256) image = models.ImageField(upload_to='banner') index = models.SmallIntegerField(default=0) class Meta: db_table = 'fs_index_promotion'
import torch import torch.nn as nn import numpy as np import torchvision import torch.nn.functional as F import math import copy import collections from pytorchcv.model_provider import get_model as ptcv_get_model from pytorchcv.models.common import conv3x3_block import pretrainedmodels class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0), -1) def l2_norm(input,axis=1): norm = torch.norm(input,2,axis,True) output = torch.div(input, norm) return output class Window(nn.Module): def forward(self, x): return torch.clamp(x,0,1) class ArcMarginProduct(nn.Module): r"""Implement of large margin arc distance: : Args: in_features: size of each input sample out_features: size of each output sample s: norm of input feature m: margin cos(theta + m) """ def __init__(self, in_features, out_features,weights=None): super(ArcMarginProduct, self).__init__() if weights is None: self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features)) self.reset_parameters() else: self.weight = nn.Parameter(weights) def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) # self.k.data=torch.ones(1,dtype=torch.float) def forward(self, features): cosine = F.linear(l2_norm(features), l2_norm(self.weight)) return cosine class ArcClassifier(nn.Module): def __init__(self,in_features, out_features,weights=None): super(ArcClassifier, self).__init__() self.classifier = ArcMarginProduct(in_features, out_features,weights=weights) self.dropout1=nn.Dropout(p=0.5, inplace=True) def forward(self, x,eq): out = self.dropout1(x-eq) out = self.classifier(out) return out def no_grad(self): for param in self.parameters(): param.requires_grad=False def do_grad(self): for param in self.parameters(): param.requires_grad=True class MyDenseNet(nn.Module): def __init__(self,model, num_classes, num_channels=1, strategy='copy', add_noise=0., drop_out=0.5, arcface=False, return_features=False, norm=False, intermediate=0, extra_pool=1, pool_type='avg', wso=None, dont_do_grad=['wso'], do_bn=False): super(MyDenseNet, self).__init__() self.features= torch.nn.Sequential() self.num_channels=num_channels self.dont_do_grad=dont_do_grad self.pool_type=pool_type self.norm=norm self.return_features=return_features self.num_classes=num_classes self.extra_pool=extra_pool if wso is not None: conv_ = nn.Conv2d(1,self.num_channels, kernel_size=(1, 1)) if hasattr(wso, '__iter__'): conv_.weight.data.copy_(torch.tensor([[[[1./wso[0][1]]]],[[[1./wso[1][1]]]],[[[1./wso[2][1]]]]])) conv_.bias.data.copy_(torch.tensor([0.5 - wso[0][0]/wso[0][1], 0.5 - wso[1][0]/wso[1][1], 0.5 -wso[2][0]/wso[2][1]])) self.features.add_module('wso_conv',conv_) self.features.add_module('wso_window',nn.Sigmoid()) if do_bn: self.features.add_module('wso_norm',nn.BatchNorm2d(self.num_channels)) else: self.features.add_module('wso_norm',nn.InstanceNorm2d(self.num_channels)) if (strategy == 'copy') or (num_channels!=3): base = list(list(model.children())[0].named_children())[1:] conv0 = model.state_dict()['features.conv0.weight'] new_conv=nn.Conv2d(self.num_channels, conv0.shape[0], kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) a=(np.arange(3*(self.num_channels//3+1),dtype=np.int)%3) np.random.shuffle(a) for i in range(self.num_channels): new_conv.state_dict()['weight'][:,i,:,:]=conv0.clone()[:,a[i],:,:]*(1.0+torch.randn_like(conv0[:,a[i],:,:])*add_noise) self.features.add_module('conv0',new_conv) else: base = list(list(model.children())[0].named_children()) for (n,l) in base: self.features.add_module(n,l) if intermediate==0: self.num_features=list(model.children())[-1].in_features self.intermediate=None else: self.num_features=intermediate self.intermediate=nn.Linear(list(model.children())[-1].in_features, self.num_features) self.dropout1=nn.Dropout(p=drop_out, inplace=True) if arcface: self.classifier=ArcMarginProduct(self.num_features, num_classes) else: self.classifier = nn.Linear(self.num_features//self.extra_pool, self.num_classes) def forward(self, x): x = self.features(x) x = F.relu(x, inplace=True) if self.pool_type=='avg': x = F.avg_pool3d(x.unsqueeze(1), kernel_size=(self.extra_pool,)+x.size()[2:]).view(x.size(0), -1) else: x = F.max_pool3d(x.unsqueeze(1), kernel_size=(self.extra_pool,)+x.size()[2:]).view(x.size(0), -1) # x = F.max_pool1d(x.view(x.unsqueeze(1),self.extra_pool).squeeze() x = self.dropout1(x) if self.intermediate is not None: x = self.intermediate(x) x = F.relu(x) features = x if self.norm: features = l2_norm(features,axis=1) out = self.classifier(features) return out if not self.return_features else (out,features) def parameter_scheduler(self,epoch): do_first=['classifier','wso'] if epoch>0: for n,p in self.named_parameters(): p.requires_grad=True else: for n,p in self.named_parameters(): p.requires_grad= any(nd in n for nd in do_first) def no_grad(self): for param in self.parameters(): param.requires_grad=False def do_grad(self): for n,p in self.named_parameters(): p.requires_grad= not any(nd in n for nd in self.dont_do_grad) class MySENet(nn.Module): def __init__(self,model, num_classes, num_channels=3, dropout=0.2, return_features=False, wso=None, full_copy=False, dont_do_grad=['wso'], extra_pool=1, do_bn=False): super(MySENet, self).__init__() self.num_classes=num_classes self.return_features=return_features self.num_channels = num_channels self.features= torch.nn.Sequential() self.extra_pool=extra_pool self.dont_do_grad=dont_do_grad if full_copy: for (n,l) in list(list(model.children())[0].named_children()): self.features.add_module(n,l) if wso is not None: self.dont_do_grad=model.dont_do_grad else: if wso is not None: conv_ = nn.Conv2d(1,self.num_channels, kernel_size=(1, 1)) if hasattr(wso, '__iter__'): conv_.weight.data.copy_(torch.tensor([[[[1./wso[0][1]]]],[[[1./wso[1][1]]]],[[[1./wso[2][1]]]]])) conv_.bias.data.copy_(torch.tensor([0.5 - wso[0][0]/wso[0][1], 0.5 - wso[1][0]/wso[1][1], 0.5 -wso[2][0]/wso[2][1]])) self.features.add_module('wso_conv',conv_) self.features.add_module('wso_relu',nn.Sigmoid()) if do_bn: self.features.add_module('wso_norm',nn.BatchNorm2d(self.num_channels)) else: self.features.add_module('wso_norm',nn.InstanceNorm2d(self.num_channels)) # layer0= torch.nn.Sequential() # layer0.add_module('conv1',model.conv1) # layer0.add_module('bn1',model.bn1) se_layers={'layer0':model.layer0, 'layer1':model.layer1, 'layer2':model.layer2, 'layer3':model.layer3, 'layer4':model.layer4} for key in se_layers: self.features.add_module(key,se_layers[key]) self.dropout = dropout if dropout is None else nn.Dropout(p=dropout, inplace=True) self.classifier=nn.Linear(model.last_linear.in_features//self.extra_pool, self.num_classes) def forward(self, x): x = self.features(x) x = F.max_pool3d(x.unsqueeze(1), kernel_size=(self.extra_pool,)+x.size()[2:]).view(x.size(0), -1) if self.dropout is not None: x = self.dropout(x) features = x out = self.classifier(features) return out if not self.return_features else (out,features) def parameter_scheduler(self,epoch): do_first=['classifier'] if epoch>0: for n,p in self.named_parameters(): p.requires_grad=True else: for n,p in self.named_parameters(): p.requires_grad= any(nd in n for nd in do_first) def no_grad(self): for param in self.parameters(): param.requires_grad=False def do_grad(self): for n,p in self.named_parameters(): p.requires_grad= not any(nd in n for nd in self.dont_do_grad) class MyEfficientNet(nn.Module): def __init__(self,model,num_classes,num_channels=3,dropout=0.5,return_features=False,wso=True, full_copy=False, dont_do_grad=['wso'], extra_pool=1, num_features=None): super(MyEfficientNet, self).__init__() self.num_classes=num_classes self.return_features=return_features self.num_channels = num_channels self.features= torch.nn.Sequential() self.extra_pool=extra_pool self.dont_do_grad=dont_do_grad if full_copy: for (n,l) in list(list(model.children())[0].named_children()): self.features.add_module(n,l) if wso is not None: self.dont_do_grad=model.dont_do_grad else: if wso is not None: conv_ = nn.Conv2d(1,self.num_channels, kernel_size=(1, 1)) if hasattr(wso, '__iter__'): conv_.weight.data.copy_(torch.tensor([[[[1./wso[0][1]]]],[[[1./wso[1][1]]]],[[[1./wso[2][1]]]]])) conv_.bias.data.copy_(torch.tensor([0.5 - wso[0][0]/wso[0][1], 0.5 - wso[1][0]/wso[1][1], 0.5 -wso[2][0]/wso[2][1]])) self.features.add_module('wso_conv',conv_) self.features.add_module('wso_relu',nn.Sigmoid()) self.features.add_module('wso_norm',nn.InstanceNorm2d(self.num_channels)) for (n,l) in list(list(model.children())[0].named_children()): self.features.add_module(n,l) self.dropout = dropout if dropout is None else nn.Dropout(p=dropout, inplace=True) if num_features is None: self.classifier=nn.Linear(model.output.fc.in_features//self.extra_pool, self.num_classes) else: self.classifier=nn.Linear(num_features, self.num_classes) def forward(self, x): x = self.features(x) x = F.avg_pool2d(x, kernel_size=x.size(-1)).view(x.size(0), -1) if self.extra_pool>1: x = x.view(x.shape[0],x.shape[1]//self.extra_pool,self.extra_pool).mean(-1) if self.dropout is not None: x = self.dropout(x) features = x out = self.classifier(features) return out if not self.return_features else (out,features) def parameter_scheduler(self,epoch): do_first=['classifier'] if epoch>0: for n,p in self.named_parameters(): p.requires_grad=True else: for n,p in self.named_parameters(): p.requires_grad= any(nd in n for nd in do_first) def no_grad(self): for param in self.parameters(): param.requires_grad=False def do_grad(self): for n,p in self.named_parameters(): p.requires_grad= not any(nd in n for nd in self.dont_do_grad) class NeighborsNet(nn.Module): def __init__(self,num_classes,num_features=1024,num_neighbors=1,classifier_layer=None,intermidiate=None,dropout=0.2): super(NeighborsNet, self).__init__() self.num_classes=num_classes if classifier_layer is not None: self.num_features = classifier_layer.in_features else: self.num_features=num_features self.num_neighbors=num_neighbors layers=collections.OrderedDict() if dropout>0: layers['dropout']=nn.Dropout(p=dropout) if intermidiate is not None: layers['intermidiate']=nn.Linear(self.num_features*(2*self.num_neighbors+1), intermidiate) layers['relu']=nn.ReLU() layers['classifier']=nn.Linear(intermidiate, self.num_classes) else: layers['classifier']=nn.Linear(self.num_features*(2*self.num_neighbors+1), self.num_classes) if (classifier_layer is not None) and (intermidiate is None): _=layers['classifier'].bias.data.copy_((1.0+0.2*self.num_neighbors)*classifier_layer.bias.data) d = torch.cat([0.1*classifier_layer.weight.data for i in range(self.num_neighbors)]+\ [classifier_layer.weight.data]+\ [0.1*classifier_layer.weight.data for i in range(self.num_neighbors)],dim=1) _=layers['classifier'].weight.data.copy_(d) self.network= torch.nn.Sequential(layers) def forward(self, x): x = x.view((x.shape[0],-1)) return self.network(x) def parameter_scheduler(self,epoch): do_first=['classifier'] if epoch>0: for n,p in self.named_parameters(): p.requires_grad=True else: for n,p in self.named_parameters(): p.requires_grad= any(nd in n for nd in do_first) def no_grad(self): for param in self.parameters(): param.requires_grad=False def do_grad(self): for param in self.parameters(): param.requires_grad=True def mean_model(models): model = copy.deepcopy(models[0]) params=[] for model_ in models: params.append(dict(model_.named_parameters())) param_dict=dict(model.named_parameters()) for name in param_dict.keys(): _=param_dict[name].data.copy_(torch.cat([param[name].data[...,None] for param in params],-1).mean(-1)) return model
""" ``goless`` introduces go-like channels and select to Python, built on top of Stackless Python (and maybe one day gevent). Use :func:`goless.chan` to create a synchronous or buffered channel. Use :func:`goless.select` like you would the ``Select`` function in Go's reflect package (since Python lacks a switch/case statement, replicating Go's select statement syntax wasn't very effective). """ import logging import sys import traceback from .backends import current as _be # noinspection PyUnresolvedReferences from .channels import chan, ChannelClosed # noinspection PyUnresolvedReferences from .selecting import dcase, rcase, scase, select version_info = 0, 0, 1 version = '.'.join([str(v) for v in version_info]) def on_panic(etype, value, tb): """ Called when there is an unhandled error in a goroutine. By default, logs and exits the process. """ logging.critical(traceback.format_exception(etype, value, tb)) _be.propagate_exc(SystemExit, 1) def go(func, *args, **kwargs): """ Run a function in a new tasklet, like a goroutine. If the goroutine raises an unhandled exception (*panics*), the :func:`goless.on_panic` will be called, which by default logs the error and exits the process. :param args: Positional arguments to ``func``. :param kwargs: Keyword arguments to ``func``. """ def safe_wrapped(f): # noinspection PyBroadException try: f(*args, **kwargs) except: on_panic(*sys.exc_info()) _be.start(safe_wrapped, func)
COLUMNS=['ts', 'curr_pid', 'pid', 'src_cpu', 'dst_cpu', 'imbalance', 'src_len', 'src_numa_len', 'src_preferred_len', 'delta', 'cpu_idle', 'cpu_not_idle', 'cpu_newly_idle', 'same_node', 'prefer_src', 'prefer_dst', 'delta_faults', 'total_faults', 'dst_len', 'src_load', 'dst_load', 'nr_fails', 'cache_nice_tries', 'buddy_hot', 'throttled', 'p_running', 'test_aggressive', 'can_migrate', 'pc_0', 'pc_1']
# The MIT License (MIT) # Copyright (c) 2017 Massachusetts Institute of Technology # # Authors: Victor Pankratius, Justin Li, Cody Rude # This software has been created in projects supported by the US National # Science Foundation and NASA (PI: Pankratius) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Skdaccess imports from skdaccess.framework.data_class import DataFetcherCache from skdaccess.framework.param_class import * from skdaccess.geo.mahali.rinex.data_wrapper import DataWrapper from pkg_resources import resource_filename from skdaccess.utilities.mahali_util import convert_date # Standard library imports from glob import glob import shutil import os from six.moves.urllib.request import urlopen import sys # 3rd part imports from tqdm import tqdm import pandas as pd class DataFetcher(DataFetcherCache): ''' Data Fetcher for Mahali Data ''' def __init__(self, ap_paramList=[], start_date=None, end_date=None, generate_links = False): ''' Initialize Mahali Data Fetcher @param ap_paramList[stations]: Autolist of stations (Defaults to all stations) @param start_date: Starting date for seelcting data (Defaults to beginning of available data) @param end_date: Ending date for selecting data (Defaults to end of available data) @param generate_links: Generate links to data instead of downloading data ''' if start_date == None: self.start_date = pd.to_datetime('2015232', format='%Y%j') else: self.start_date = convert_date(start_date) if end_date == None: self.end_date = pd.to_datetime('2015314', format='%Y%j') else: self.end_date = convert_date(end_date) self.date_range = pd.date_range(self.start_date, self.end_date) if len(ap_paramList) == 0: station_list = [ 'mh02', 'mh03', 'mh04', 'mh05', 'mh06', 'mh07', 'mh08', 'mh09', 'mh13', ] ap_paramList = [ AutoList(station_list) ] self.generate_links = generate_links super(DataFetcher, self).__init__(ap_paramList) def cacheData(self): ''' Downloads all needed data. Called by output(). ''' station_list = self.ap_paramList[0]() remote_location = '/data/mahali_UAF_data/cloud/rinex/obs' day_list = [] start_year = self.start_date.strftime('%Y') start_day = self.start_date.strftime('%j') end_year = self.end_date.strftime('%Y') end_date = self.end_date.strftime('%j') data_list = pd.DataFrame(columns=['Site','Date']) # Get a list of all data that needs to be loaded mahali_data_info_location = resource_filename('skdaccess',os.path.join('support','mahali_data_info.hdf')) for station in station_list: try: available_dates = pd.read_hdf(mahali_data_info_location, station) except KeyError: print('Unknown station:',station, ) common_dates = list(set(self.date_range).intersection(set(available_dates))) common_dates.sort() data_list = pd.concat([data_list, pd.DataFrame({'Site':station,'Date':common_dates})]) # Get a list of all needed filenames data_list_obs = data_list.Site + data_list.Date.apply(lambda x: x.strftime('%j0.%yo')) data_list_nav = data_list.Site + data_list.Date.apply(lambda x: x.strftime('%j0.%yn')) data_set_filenames = set(pd.concat([data_list_obs, data_list_nav])) # Get locations of all files to download def getFileLocation(in_file): day = in_file[4:7] if in_file[-1] == 'n': data_folder = 'nav' elif in_file[-1] == 'o': data_folder = 'obs' else: raise ValueError('Could not parse in_file') return 'rinex/' + data_folder + '/2015/' + day + '/' + in_file # Key function to sort rinex files by date, then # station, then type (NAV or OBS) key_func = lambda x: x[-3:-1] + x[-8:-5] + x[-12:-8] + x[-1] # Base url of data base_url = 'http://apollo.haystack.mit.edu/mahali-data/' # Download files to disk if not self.generate_links: data_location = DataFetcher.getDataLocation('mahali_rinex') if data_location == None: data_location = os.path.join(os.path.expanduser('~'), '.skdaccess','mahali_rinex') os.makedirs(data_location, exist_ok=True) # Get currently downloaded files file_list = glob(os.path.join(data_location,'*.*n',)) + glob(os.path.join(data_location,'*.*o',)) file_list = set(file.split(os.sep)[-1] for file in file_list) # Select files that are wanted but not yet downloaded missing_files = data_set_filenames.difference(file_list) missing_files = list(missing_files) missing_files.sort() file_location_list = [getFileLocation(filename) for filename in missing_files] if len(file_location_list) > 0: print('Downloading mahali data') sys.stdout.flush() for url_path, filename in tqdm(zip(file_location_list, missing_files), total=len(missing_files)): with open(os.path.join(data_location, filename), 'wb') as data_file: shutil.copyfileobj(urlopen(base_url+ url_path), data_file) # return the appropriate list of files to load obs_file_list = [os.path.join(data_location, file) for file in data_list_obs] nav_file_list = [os.path.join(data_location, file) for file in data_list_nav] # Not downloading data, just generating links to where data is located else: obs_file_list = [base_url + getFileLocation(location) for location in data_list_obs] nav_file_list = [base_url + getFileLocation(location) for location in data_list_nav] obs_file_list.sort(key=key_func) nav_file_list.sort(key=key_func) return nav_file_list, obs_file_list def output(self): ''' Generate data wrapper for Mahali data @return Mahali data wrapper ''' nav_files, obs_files = self.cacheData() def getSiteAndDate(in_filename): date = pd.to_datetime('2015' + in_filename[-8:-5], format='%Y%j') return in_filename[-12:-8], date data_list = [] for nav, obs in zip(nav_files, obs_files): site, date = getSiteAndDate(nav) if (site,date) != getSiteAndDate(obs): raise RuntimeError('Data mismatch') # data_list.append([site,date,readRinexNav(nav), rinexobs(obs)]) data_list.append([site,date,nav, obs]) return DataWrapper(data_list)
from app import app, mongo from flask_restful import Resource, Api from flask import jsonify, request from bson.objectid import ObjectId import bcrypt, datetime from flask_jwt_extended import ( create_access_token, create_refresh_token, jwt_refresh_token_required, get_jwt_identity, get_raw_jwt, jwt_required, decode_token ) api = Api(app) class GetAllUsers(Resource): def get(self): users = mongo.db.users data = [] for field in users.find(): data.append( { '_id': str(field['_id']), 'username': field['name'], 'email': field['email'], 'password': field['password'], 'followers': field['followers'], 'following': field['following'] } ) return jsonify(data) class Login(Resource): def post(self): users = mongo.db.users email = request.get_json()['email'] password = request.get_json()['password'] user = users.find_one({ 'email': email }) user['_id'] = str(user['_id']) if user and bcrypt.checkpw(password.encode('utf8'), user['password'].encode('utf8')): token = create_access_token(identity=user['_id'], fresh=True, expires_delta=datetime.timedelta(days=1), ) user['token'] = token user.pop('password', 0) return jsonify(user) class Token(Resource): def post(self): users = mongo.db.users token = request.get_json()['token'] userToken = decode_token(token) print(userToken['identity']) user = users.find_one({ '_id': ObjectId(userToken['identity']) }) print(user) if user is None: return jsonify({ 'error': 'token invalid' }) user['_id'] = str(user['_id']) user.pop('password', 0) return jsonify(user) class AddUser(Resource): def post(self): users = mongo.db.users name = request.get_json()['name'] email = request.get_json()['email'] password = request.get_json()['password'] hashPassword = bcrypt.hashpw(password.encode('utf8'), bcrypt.gensalt(10)) name_id = users.insert( { 'name': name, 'email': email, 'password': hashPassword.decode('utf8'), 'followers': [], 'following': [], 'posts': [] } ) new_user = users.find_one({'_id': name_id}) result = {'username': new_user['name'], 'message': 'user was created successfully'} return jsonify({'data': result}) class UpdateUser(Resource): def put(self, id): users = mongo.db.users name = request.get_json()['name'] users.find_one_and_update({'_id': ObjectId(id)}, {'$set': {'name': name}}, upsert=False) new_user = users.find_one({'_id': ObjectId(id)}) result = {'username': new_user['name'], 'message': 'user was updated successfully'} return jsonify({'data': result}) class DeleteUser(Resource): def delete(self, id): users = mongo.db.users response = users.delete_one({'_id': ObjectId(id)}) if response.deleted_count == 1: result = {'message': 'user deleted successfully'} else: result = {'message': 'failed to delete user'} return jsonify({'data': result}) class Follow(Resource): def put(self, id): users = mongo.db.users userId = request.get_json()['userId'] user = users.find_one_and_update({'_id': ObjectId(id)}, {'$addToSet': {'followers': userId}}, upsert=False) user2 = users.find_one_and_update({'_id': ObjectId(userId)}, {'$addToSet': {'following': id}}, upsert=False) user['_id'] = str(user['_id']) user2['_id'] = str(user2['_id']) return jsonify({'data': [{'follower': user2}, {'following': user}]}) class Unfollow(Resource): def put(self, id): users = mongo.db.users userId = request.get_json()['userId'] user = users.find_one_and_update({'_id': ObjectId(userId)}, {'$pull': {'followers': id}}, upsert=False) user2 = users.find_one_and_update({'_id': ObjectId(id)}, {'$pull': {'following': userId}}, upsert=False) user['_id'] = str(user['_id']) user2['_id'] = str(user2['_id']) return jsonify({'data': [{'follower': user2}, {'following': user}]}) api.add_resource(GetAllUsers, '/users') api.add_resource(AddUser, '/users') api.add_resource(UpdateUser, '/users/<id>') api.add_resource(DeleteUser, '/users/<id>') api.add_resource(Login, '/users/login') api.add_resource(Follow, '/users/<id>/follow') api.add_resource(Unfollow, '/users/<id>/unfollow') api.add_resource(Token, '/users/token')
inputs = [1.2, 5.1, 2.1] weights = [3.1, 2.1, 8.7] bias = 3 output = inputs[0]*weights[0] + inputs[1]*weights[1] + inputs[2]*weights[2] + bias print(output)
from pylatex import Section, Command, NoEscape def add_competence(doc, cv_data): with doc.create(Section("Competences")): doc.append(Command("textbf", arguments=NoEscape("Techniques" + " "))) techniques = "" for technique in cv_data["technique"]: techniques += (technique + ", ") doc.append(NoEscape(techniques))
# ini file
from transpose_dict import TD import json def test_transpose_dict(): with open("tests/start.json", "r") as f: start = json.load(f) for i in range(3): with open("tests/test_{i}.json".format(i=i), "r") as f: print(TD(start, i)) assert json.load(f) == TD(start, i)
from django.urls import path from . import views from .decorators import org_admin_only, unauthenticated_user from django.contrib.auth.views import LoginView, LogoutView from .views import ( PolicyListView, PolicyCreateView, PolicyDeleteView, PolicyUpdateView, OrganizationCreateView, ) urlpatterns = [ path('', views.home, name='home'), path('about', views.about, name='about'), path('view_policies', views.view_policies, name='view_policies'), path('violations', views.violations, name='violations'), path('scan', views.scan, name='scan'), path('new_policy', org_admin_only(PolicyCreateView.as_view()), name='new_policy'), path('policies', PolicyListView.as_view(), name='policies'), path('policies/<int:pk>/delete/', org_admin_only(PolicyDeleteView.as_view()), name='delete_policy'), path('policies/<int:pk>/update/', org_admin_only(PolicyUpdateView.as_view()), name='update_policy'), path('new_organization', OrganizationCreateView.as_view(), name='new_organization'), path('login/', unauthenticated_user(LoginView.as_view()), name="login"), path('register/', views.register, name="register"), path('register_org/', unauthenticated_user(OrganizationCreateView.as_view()), name="register_org"), path('logout/', LogoutView.as_view(next_page="login"), name="logout"), path('update_profile/', views.update_profile, name="update_profile"), path('profile/', views.profile, name="profile"), path('change_password/', views.change_password, name="change_password"), ]
import sys class Matrix: def __init__(self, array): self.rows = len(array) self.cols = len(array[0]) self.array = array def calculate_min_top_down_path(self): return self.calculate_min_top_down_path_impl(0, 0) def calculate_min_top_down_path_impl(self, row, col): if row >= self.rows or row < 0: return 0 if col >= self.cols or col < 0: return 0 if row+1 == self.rows and col+1 == self.cols: return self.array[row][col] result1 = self.calculate_min_top_down_path_impl(row+1, col) result2 = self.calculate_min_top_down_path_impl(row, col+1) if row+1 == self.rows: return result2 + self.array[row][col] if col+1 == self.cols: return result1 + self.array[row][col] return min(result1, result2) + self.array[row][col] def parse_matrix(n, input_stream): matrix = [] for i in range(n): line = input_stream.readline().split(',') row = [] for r in line: row.append(int(r)) matrix.append(row) return Matrix(matrix) test_cases = open(sys.argv[1], 'r') while True: line = test_cases.readline() if len(line) == 0: break n = int(line) matrix = parse_matrix(n, test_cases) print(matrix.calculate_min_top_down_path()) test_cases.close()
import datetime import math import itertools import pytest import calendar from homeplotter.timeseries import TimeSeries sample_data = { "both-broken":[[datetime.date(2020, 10, 12), 200.0],[datetime.date(2020, 11, 24), 50.0],[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 2, 2), 100],[datetime.date(2021,3,11),60]], "last-broken":[[datetime.date(2020, 10, 1), 200.0],[datetime.date(2020, 11, 24), 50.0],[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 2, 2), 100],[datetime.date(2021,3,11),60]], "last-broken-year":[[datetime.date(2020, 10, 1), 200.0],[datetime.date(2020, 11, 24), 50.0],[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 1, 2), 100]], "first-broken":[[datetime.date(2020, 10, 12), 200.0],[datetime.date(2020, 11, 24), 50.0],[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 2, 2), 100],[datetime.date(2021,3,31),60]], "first-broken-year":[[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 2, 2), 100],[datetime.date(2021,3,31),60]], "both-even":[[datetime.date(2020, 10, 1), 200.0],[datetime.date(2020, 11, 24), 50.0],[datetime.date(2020, 12, 5), 200.0], [datetime.date(2020, 12, 30), 400.0], [datetime.date(2020, 12, 31), -300], [datetime.date(2021, 2, 2), 100],[datetime.date(2021,3,31),60]], "one-month":[[datetime.date(2020, 12, 1), 200.0],[datetime.date(2020, 12, 5), 50.0],[datetime.date(2020, 12, 31), 300.0]], } def expected_start_date(date, padding): year = date.year month = date.month if padding or date.day == 1: return datetime.date(year,month,1) else: if month < 12: return datetime.date(year,month+1,1) else: return datetime.date(year+1,1,1) def expected_end_date(date, padding): year = date.year month = date.month if padding or date.day==calendar.monthrange(year,month)[1]: return datetime.date(year,month,1) else: if month > 1: return datetime.date(year,month-1,1) else: return datetime.date(year-1,12,1) @pytest.mark.parametrize("padding,sample_key", itertools.product([False,True],sample_data.keys())) def test_accumulate__len(padding,sample_key): ts = TimeSeries(sample_data[sample_key]) original_len = len(ts.data) start_date = expected_start_date(ts.data[0][0],padding) end_date = expected_end_date(ts.data[-1][0], padding) expected_len = (end_date.year-start_date.year)*12+(end_date.month-start_date.month)+1 ts.accumulate(1,"Month",padding=padding) assert(len(ts.data) == expected_len) @pytest.mark.parametrize("padding,sample_key", itertools.product([False,True],sample_data.keys())) def test_accumulate__start_date(padding,sample_key): sd = sample_data[sample_key] ts = TimeSeries(sd) ts.accumulate(1,"Month",padding=padding) assert(ts.get_x()[0]==expected_start_date(sd[0][0],padding)) assert(ts.get_x()[0].day==1) @pytest.mark.parametrize("padding,sample_key", itertools.product([False,True],sample_data.keys())) def test_accumulate__steps(padding,sample_key): ts = TimeSeries(sample_data[sample_key]) ts.accumulate(1,"Month",padding=padding) for i in range(1,len(ts.data)): assert((ts.data[i][0]-ts.data[i-1][0]).days == calendar.monthrange(ts.data[i-1][0].year,ts.data[i-1][0].month)[1]) @pytest.mark.parametrize("padding,sample_key", itertools.product([False,True],sample_data.keys())) def test_accumulate__end_date(padding,sample_key): sd = sample_data[sample_key] ts = TimeSeries(sd) ts.accumulate(1,"Month",padding=padding) assert(ts.get_x()[-1]==expected_end_date(sd[-1][0],padding)) assert(ts.get_x()[-1].day==1) @pytest.mark.parametrize("padding,sample_key", itertools.product([False,True],sample_data.keys())) def test_accumulate__sum(padding,sample_key): sd = sample_data[sample_key] ts = TimeSeries(sd) ts.accumulate(1,"Month",padding=padding) for i in range(len(ts.data)): cum_sum = 0 for data in sd: if ts.data[i][0]<=data[0]<ts.data[i][0]+datetime.timedelta(calendar.monthrange(ts.data[i][0].year,ts.data[i][0].month)[1]): cum_sum+=data[1] assert(ts.data[i][1]==cum_sum)
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Project model.""" from ggrc import db from ggrc.access_control.roleable import Roleable from ggrc.fulltext.mixin import Indexed from ggrc.models import mixins from ggrc.models.mixins import synchronizable from ggrc.models.comment import ScopedCommentable from ggrc.models.object_document import PublicDocumentable from ggrc.models.object_person import Personable from ggrc.models.relationship import Relatable class Project(Roleable, synchronizable.Synchronizable, mixins.CustomAttributable, Personable, Relatable, mixins.LastDeprecatedTimeboxed, PublicDocumentable, ScopedCommentable, mixins.TestPlanned, mixins.base.ContextRBAC, mixins.ScopeObject, mixins.Folderable, Indexed, db.Model): """Representation for Project model.""" __tablename__ = 'projects' _aliases = { "documents_file": None, }
""" Exceptions declaration. """ __all__ = [ "PyCozmoException", "PyCozmoConnectionError", "ConnectionTimeout", "Timeout", ] class PyCozmoException(Exception): """ Base class for all PyCozmo exceptions. """ class PyCozmoConnectionError(PyCozmoException): """ Base class for all PyCozmo connection exceptions. """ class ConnectionTimeout(PyCozmoConnectionError): """ Connection timeout. """ class Timeout(PyCozmoException): """ Timeout. """
# -*- coding: utf-8 -*- from openprocurement.archivarius.core.utils import Root def factory(request): request.validated['contract_src'] = {} root = Root(request) if not request.matchdict or not request.matchdict.get('contract_id'): return root request.validated['contract_id'] = request.matchdict['contract_id'] contract = request.contract contract.__parent__ = root request.validated['contract'] = request.validated['db_doc'] = contract return contract
from nbconvert.exporters.exporter import ResourcesDict from nbdocs.core import read_nb from nbdocs.process import ( CorrectMdImageLinkPreprocessor, copy_images, correct_markdown_image_link, md_correct_image_link, get_image_link_re, md_find_image_names, ) from nbdocs.tests.base import create_tmp_image_file new_link_expected = "![dog](images/markdown_image_files/dog.jpg)" wrong_link = "![dog](images/dogs.jpg)" external_link = "![dog](https://localhost/dog.jpg)" text = """ Its a dog image. here - ![dog](images/dog.jpg) --- === cat --- ![cat](images/cat.jpg) --- just line, ext link![mkd link] (https://images/some.jpg) dsf one more line output link ![jpg](output.jpg) dsf second output ![jpg] (output2.jpg) dsf output image, link with whitespaces ![asdf] ( output.jpg ) dsf """ text_with_output_image_link = "some text\n![jpg](output.jpg)\nmore text" def test_get_image_link_re(): """get_image_link_re""" re_link = get_image_link_re() all_links = re_link.findall(text) assert len(all_links) == 6 fn = "output.jpg" re_link = get_image_link_re(fn) res = re_link.finditer(text) assert len(list(res)) == 2 res = re_link.finditer(text) match = next(res) assert match.group("path") == fn def test_md_find_image_names(): """test md_find_image_names""" image_names = md_find_image_names(text) assert len(image_names) == 5 def test_copy_images(tmp_path): """test_copy_images""" test_names = ["t_1.png", "t_2.jpg"] for fn in test_names: fn = tmp_path / fn create_tmp_image_file(fn) assert fn.exists() dest = tmp_path / "dest" done, left = copy_images(set(test_names), tmp_path, dest) assert len(done) == 2 assert len(left) == 0 for fn in test_names: assert (dest / fn).exists() def test_md_correct_image_link(): """test md_correct_image_link""" corrected_text = md_correct_image_link( md=text_with_output_image_link, image_name="output.jpg", image_path="images" ) assert "![jpg](images/output.jpg)" in corrected_text assert "some text" in corrected_text assert "more text" in corrected_text # wrong name, nothing changed corrected_text = md_correct_image_link( md=text_with_output_image_link, image_name="output2.jpg", image_path="images" ) assert corrected_text == text_with_output_image_link # def test_cell_md_correct_image_link(): # pass def test_correct_markdown_image_link(tmp_path): """Correct image link""" nb_fn = "tests/test_nbs/markdown_image.ipynb" nb = read_nb(nb_fn) dest_path = "test_docs" image_path = "images" correct_markdown_image_link(nb, nb_fn, tmp_path / dest_path, image_path) assert (tmp_path / dest_path / image_path).exists() assert ( tmp_path / dest_path / image_path / "markdown_image_files" / "dog.jpg" ).exists() assert nb.cells[1].source.splitlines()[1] == new_link_expected nb.cells[1].source = external_link correct_markdown_image_link(nb, nb_fn, tmp_path / dest_path, image_path) assert nb.cells[1].source == external_link nb.cells[1].source = wrong_link correct_markdown_image_link(nb, nb_fn, tmp_path / dest_path, image_path) assert nb.cells[1].source == wrong_link nb_fn = "tests/test_nbs/code_image.ipynb" nb = read_nb(nb_fn) nb_copy = nb.copy() correct_markdown_image_link(nb, nb_fn, tmp_path / dest_path, image_path) assert nb == nb_copy def test_CorrectMdImageLinkPreprocessor(tmp_path): """test CorrectMdImageLinkPreprocessor""" nb_fn = "tests/test_nbs/markdown_image.ipynb" nb = read_nb(nb_fn) dest_path = "test_docs" image_path = "images" resources = ResourcesDict() processor = CorrectMdImageLinkPreprocessor(tmp_path / dest_path, image_path) processor.enabled = True nb, _ = processor(nb, resources) assert (tmp_path / dest_path / image_path).exists() assert ( tmp_path / dest_path / image_path / "markdown_image_files" / "dog.jpg" ).exists() assert nb.cells[1].source.splitlines()[1] == new_link_expected nb.cells[1].source = external_link nb, _ = processor(nb, resources) assert nb.cells[1].source == external_link nb.cells[1].source = wrong_link nb, _ = processor(nb, resources) assert nb.cells[1].source == wrong_link nb_fn = "tests/test_nbs/code_image.ipynb" nb = read_nb(nb_fn) nb_copy = nb.copy() nb, _ = processor(nb, resources) assert nb == nb_copy
""" dblist - Detect accessible databases and display properties (architecture, platform and version), also return the Field Definition Table if a file number is specified Usage: python dblist.py --dbids <dbid> [--fnr <fnr> --xopt <LF-option> <other> ] Options: -a, --auth dbid,userid,password;... authentication for user for database (open systems only) -d, --dbids <dbid> is a valid dbid or a list of dbids (i,j,...) may have to be quoted "(i,j..)" or a range of dbids i-j -e --env set adalnk parameter -f --fnr display FDT of Adabas file number <fnr> -n, --noclose leave session open (use for testing only) -r, --replytimeout <sec> Adalink max. wait time on reply -s, --silent don't print rsp-148 (use for large ranges) -x, --xopt <n> =1 use LF/X, =2 use LF/F, =3 use LF/I =0 use LF/S (default) (MF: from V8.2, OS: from V6.2) use acbx for 1 and 2 -p --password <pwd> Adabas security password -u, --usr <userid> userid for ADASAF database -w, --pwd <pwd> password for ADASAF database -y, --newpass <npw> new password for ADASAF database -v --verbose <level> dump adabas buffers 1 = after call 2 = before and after -h, --help display this help Examples: python dblist.py -d 241 python dblist.py -s -d 1-10000 python dblist.py --dbids (241,10007,65535) python dblist.py -d 241 -f 10 display FDT of db 241 file 10 $Date: 2019-11-08 15:01:35 +0100 (Fri, 08 Nov 2019) $ $Rev: 947 $ """ from __future__ import print_function # PY3 from adapya.adabas.api import Adabas, Adabasx, archit2str, adaSetParameter from adapya.adabas.api import DatabaseError, InterfaceError, adaSetTimeout from adapya.adabas.api import setsaf, setuidpw from adapya.adabas.fields import readfdt from adapya.base.defs import log,LOGBEFORE,LOGCMD,LOGCB,LOGRB,LOGRSP,LOGFB from adapya.base.conv import str2ebc # log(LOGCMD+LOGCB+LOGRB+LOGRSP) import getopt import sys def usage(): print(__doc__) dbids=[] fnr=0 dbidstr='(8,12,49,240,241,10006,10007,65534)' # check dbids newpass='' noclose=0 pwd='' ph=0 replytimeout=0 silent=0 safid='' safpw='' verbose=0 xopt=0 try: opts, args = getopt.getopt(sys.argv[1:], 'a:hd:e:f:nPp:r:su:v:w:x:y:', ['auth=,help','dbids=','env=','fnr=','newpass=','noclose','password=','ph', 'replytimeout=','silent','usr=','verbose=','pwd=','xopt=']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): usage() sys.exit() elif opt in ('-a', '--auth'): ss = arg.split(';') for s in ss: adbid,auser,apwd = s.split(',') adbid=int(adbid) i=setuidpw(adbid,auser,apwd) print('setuidpw(%d,%s,%s) returned %d' % (adbid,auser,apwd,i)) elif opt in ('-d', '--dbids'): dbidstr=arg elif opt in ('-e', '--env'): i=adaSetParameter(arg) if i: if i == -3: t='Invalid parameter' elif i == -4: t='Parameter already set' else: t = '%d' % i print('adaSetParameter(%s) returned "%s"' % (arg,t)) sys.exit(-1) elif opt in ('-f', '--fnr'): fnr=int(arg) elif opt in ('-n', '--noclose'): noclose=1 elif opt in ('-p', '--password'): pwd=arg elif opt in ('-P', '--ph'): ph=int(arg) elif opt in ('-r', '--replytimeout'): replytimeout=int(arg) elif opt in ('-s', '--silent'): silent=1 elif opt in ('-u', '--usr'): safid=arg elif opt in ('-v', '--verbose'): verbose=int(arg) elif opt in ('-w', '--pwd'): safpw=arg elif opt in ('-x', '--xopt'): xopt=int(arg) if not( 0<=xopt<=3): print('invalid xopt parameter', xopt) usage() sys.exit(2) elif opt in ('-y', '--newpass'): newpass=arg print('\nCheck if the following databases are active:', dbidstr, '\n') if safid and safpw: i = setsaf(safid, safpw, newpass) if i: print('Setting adasaf parameter returned %d' % i) if dbidstr[0] in '([': dbids+=eval(dbidstr) else: fromto=dbidstr.split('-') if len(fromto) == 2: # range given? for i in range(int(fromto[0]),int(fromto[1])+1): dbids.append(i) else: dbids.append(int(dbidstr)) opsysDict={0: 'Mainframe (IBM/Siemens/Fujitsu)', 1: 'VMS', 2: "Unix, Windows", 4: 'Entire System Server'} if 0 < xopt < 3: c1=Adabasx(rbl=80,fbl=10) # acbx needs fb/rb pair: fbl=0 gives error else: c1=Adabas(rbl=80) c1.cb.cid='list' if ph: c1.cb.typ=0x04 if replytimeout: rsp=adaSetTimeout(replytimeout) if verbose > 1: log(LOGCMD|LOGCB|LOGFB|LOGRB|LOGBEFORE) elif verbose == 1: log(LOGCMD|LOGCB|LOGRB) else: log(0) # we handle response codes here for i in dbids: # loop through list of databases if i < 1 or i > 65535: # halt on invalid dbid print("Invalid DBID %d" % i) break try: c1.dbid=i c1.cb.dbid=i c1.nucid=ph if 1<=xopt<=2: c1.cb.nid=ph #c1.open(wcharset='UTF-8',acode=819,tz='Europe/Berlin',arc=9) c1.open() # Evaluate architecture and version information given back # from the open call if c1.opsys in opsysDict: s = opsysDict[c1.opsys] else: s = '%d' % c1.opsys if c1.opsys != 4: print(('Database %5d is active, V%d.%d.%d.%d, arc=%d,'\ ' opsys=%s,\n'+26*' '+'cluster nucid %d, %s') %\ (c1.cb.dbid or c1.dbid,c1.version, c1.release, c1.smlevel, c1.ptlevel,\ c1.dbarchit, s, c1.nucid, archit2str(c1.dbarchit)) ) if c1.cb.typ==0x04 and ph: # physical call with nucid assert c1.nucid == ph, \ 'Error: Response from wrong NUCID %d, expected %d'%( c1.nucid, ph) # nucid is refreshed from isl+2(2) in open() call else: print( 'Entire System %d is active, V%d.%d.%d.%d, arc=%d' %\ (c1.cb.dbid or c1.dbid,c1.version, c1.release, c1.smlevel, c1.ptlevel,\ c1.dbarchit) ) if fnr: print( '\nField Definition Table for file %d' % fnr) readfdt(i, fnr,printfdt=True,xopt=xopt,pwd=pwd) if not noclose: c1.close() except DatabaseError as e: ax=e.apa if not silent: # or or ax.sub1 or ax.sub2: print( 'Database %5d --'%i, e.value) if not ax.cb.rsp==148: sys.exit(8) except InterfaceError as e: print( 'Database %5d -- %s' % (e.apa.dbid,e.value)) sys.exit(16) except Exception as e: print(e) raise sys.exit(12) # Copyright 2004-ThisYear Software AG # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
""" A simple script listing serial ports on the computer. This requires to install the adafruit-board-toolkit module. pip3 install adafruit-board-toolkit """ import adafruit_board_toolkit.circuitpython_serial ports = ( adafruit_board_toolkit.circuitpython_serial.repl_comports() +adafruit_board_toolkit.circuitpython_serial.data_comports() ) if ports: print(f"{len(ports)} serial Circuitpython ports found connected to the computer.") col1 = max([len(port.device) for port in ports]) + 1 col1 = max(13, col1) col3 = max([len(port.product) for port in ports]) + 1 col3 = max(7, col3) col4 = max([len(port.product+port.manufacturer) for port in ports]) + 3 col4 = max(10, col4) print("") print(" Port Location".ljust(col1), "Type ", " Device") print("-" * col1, "-" * 5, "-" * col4) for port in adafruit_board_toolkit.circuitpython_serial.repl_comports(): print(f"{port.device:{col1}s} REPL {port.product} ({port.manufacturer})") print("") for port in adafruit_board_toolkit.circuitpython_serial.data_comports(): print(f"{port.device:{col1}s} DATA {port.product} ({port.manufacturer})") else: print("No serial port matching a Circuitpython board was found.")
from django.shortcuts import render, redirect, render_to_response, get_object_or_404 from django.http import HttpResponse, Http404, HttpResponseRedirect from .models import * from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.core.urlresolvers import reverse from django.views.generic import RedirectView from .forms import * from django.http import JsonResponse from rest_framework.response import Response from rest_framework.views import APIView from .serializers import * from rest_framework import status from .permissions import IsAdminOrReadOnly # Create your views here. def index(request): title = 'AudRate' projects = Project.objects.all() return render(request, 'index.html', {"projects": projects, "title": title}) def search_results(request): if 'project' in request.GET and request.GET["project"]: search_term = request.GET.get("project") searched_projects = Project.search_by_title(search_term) message = f"{search_term}" return render(request, 'search.html', {"message": message, "projects": searched_projects}) else: message = "You haven't searched for any project" return render(request, 'search.html', {"message": message}) @login_required(login_url = '/accounts/login/') def myprofile(request): user = request.user # author = user.profile projects = Project.objects.filter(author = user.profile) title = f'{user.first_name} {user.last_name}' return render(request, 'myprofile.html', {'projects': projects, 'title': title}) @login_required(login_url = '/accounts/login/') def update_profile(request): user = request.user title = f'Edit {user.first_name} {user.last_name}\'s Profile' if request.method == 'POST': profile_form = ProfileUpdateForm(request.POST, request.FILES,instance = user.profile) contact_form = ContactUpdateForm(request.POST) if profile_form.is_valid() and contact_form.is_valid(): profile_form.save() contact = contact_form.save(commit = False) contact.profile = user.profile contact.save() return redirect('myprofile') else: profile_form = ProfileUpdateForm(instance = user.profile) contact_form = ContactUpdateForm() return render(request, 'update_profile.html', {'title': title, 'profile_form': profile_form, 'contact_form': contact_form}) @login_required(login_url = '/accounts/login/') def new_project(request): user = request.user title = 'New Project' if request.method == 'POST': project_form = ProjectForm(request.POST, request.FILES) if project_form.is_valid(): project = project_form.save(commit = False) project.author = user.profile project.save() return redirect('index') else: project_form = ProjectForm() return render(request, 'new_project.html', {'title': title, 'project_form': project_form}) def project_view(request,project_id): project = Project.objects.filter(pk = project_id) try: project = Project.objects.get(pk = project_id) except Project.DoesNotExist: raise Http404("Sorry. The project does not exist.") return render(request, 'project_view.html', { 'project': project}) class ProfileList(APIView): permission_classes = (IsAdminOrReadOnly,) def get(self, request, format = None): all_profiles = Profile.objects.all() serializers = ProfileSerializer(all_profiles, many = True) return Response(serializers.data) def post(self, request, format = None): serializers = ProfileSerializer(data = request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data, status = status.HTTP_201_CREATED) return Response(serializers.errors, status = status.HTTP_400_BAD_REQUEST) class ProjectList(APIView): permission_classes = (IsAdminOrReadOnly,) def get(self, request, format = None): all_projects = Project.objects.all() serializers = ProjectSerializer(all_projects, many = True) return Response(serializers.data) def post(self, request, format = None): serializers = ProjectSerializer(data = request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data, status = status.HTTP_201_CREATED) return Response(serializers.errors, status = status.HTTP_400_BAD_REQUEST)
import numpy as np from controller import Dumbbell from kinematics import attitude angle = (2*np.pi- 0) * np.random.rand(1) + 0 # generate a random initial state that is outside of the asteroid pos = np.random.rand(3)+np.array([2,2,2]) R = attitude.rot1(angle).reshape(9) vel = np.random.rand(3) ang_vel = np.random.rand(3) t = np.random.rand()*100 state = np.hstack((pos,vel, R, ang_vel)) class TestDumbbellInertialDesiredAttitude(): dum = Dumbbell() alpha = np.random.rand() axis = np.array([1, 0, 0]) Rd, Rd_dot, ang_vel_d, ang_vel_d_dot = dum.desired_attitude(1, alpha, axis) def test_desired_rotation_matrix_determinant(self): np.testing.assert_almost_equal(np.linalg.det(self.Rd), 1) def test_desired_rotation_matrix_orthogonal(self): np.testing.assert_array_almost_equal(self.Rd.T.dot(self.Rd), np.eye(3,3)) def test_desired_attitude_satifies_kinematics(self): np.testing.assert_array_almost_equal(self.Rd_dot, self.Rd.dot(attitude.hat_map(self.ang_vel_d))) def test_moment_of_inertia(self): np.testing.assert_allclose(self.dum.J, np.trace(self.dum.Jd)*np.eye(3,3) - self.dum.Jd) class TestDumbbellInertialAttitudeController(): """Test the attitude controller for the inertial eoms """ dum = Dumbbell() u_m = dum.attitude_controller(t, state, np.zeros(3)) def test_control_moment_size(self): np.testing.assert_equal(self.u_m.shape, (3,)) class TestDumbbellInertialTranslationalController(): dum = Dumbbell() u_f = dum.translation_controller(t, state, np.zeros(3)) def test_control_force_size(self): np.testing.assert_equal(self.u_f.shape, (3,))
"""Functions related to the main event handling.""" import traceback from extutils.emailutils import MailSender from msghandle import handle_message_main from msghandle.models import ( Event, TextMessageEventObject, ImageMessageEventObject, HandledMessageEventsHolder ) from .logger import DISCORD __all__ = ("handle_discord_main", "handle_error",) def handle_discord_main(event: Event) -> HandledMessageEventsHolder: """Main function to handle the message received from the discord bot.""" try: # Early return on not-handled object if not isinstance(event, (TextMessageEventObject, ImageMessageEventObject)): DISCORD.logger.warning("Discord event object not handled. " "Raw: %s" % event.raw if hasattr(event, "raw") else event) return HandledMessageEventsHolder(event.channel_model) return handle_message_main(event) except Exception as ex: # pylint: disable=broad-except handle_error(ex) return HandledMessageEventsHolder(event.channel_model) def handle_error(ex: Exception): """Function to be called when any error occurred during the discord message handling.""" subject = "Error on Discord Message Processing" html = f"<h4>{ex}</h4>\n" \ f"<hr>\n" \ f"<pre>Traceback:\n" \ f"{traceback.format_exc()}</pre>" MailSender.send_email_async(html, subject=subject) DISCORD.logger.error(subject, exc_info=True)
from django.shortcuts import render from django.http import HttpResponse from basic_app.models import AccessRecord, Topic, Webpage # Create your views here. def index(request): webpages_list = AccessRecord.objects.order_by("date") date_dict = {"access_records": webpages_list} return render(request, "basic_app/index.html", context=date_dict)
from __future__ import division, print_function import copy import fnmatch import os import subprocess import wave import struct import hashlib import h5py from copy import deepcopy from math import ceil from numpy.fft import fftshift, ifftshift import numpy as np from scipy.io.wavfile import read as read_wavfile from scipy.fftpack import fft, ifft, fftfreq, fft2, ifft2, dct from scipy.signal import resample, firwin, filtfilt from scipy.linalg import inv, toeplitz from scipy.optimize import leastsq import matplotlib.pyplot as plt import matplotlib.cm as cmap import matplotlib.colors as pltcolors import matplotlib.mlab as mlab import colorsys from soundsig.signal import lowpass_filter, gaussian_window, correlation_function from soundsig.timefreq import gaussian_stft from soundsig.detect_peaks import detect_peaks class WavFile(): """ Class for representing a sound and writing it to a .wav file """ def __init__(self, file_name=None, log_spectrogram=True): self.log_spectrogram = log_spectrogram if file_name is None: self.sample_depth = 2 # in bytes self.sample_rate = 44100.0 # in Hz self.data = None self.num_channels = 1 else: wr = wave.open(file_name, 'r') self.num_channels = wr.getnchannels() self.sample_depth = wr.getsampwidth() wr.close() self.sample_rate, data = read_wavfile(file_name) # If stereo make mono if self.num_channels == 1: self.data = data else: self.data = data.mean(axis=1) self.analyzed = False def to_wav(self, output_file, normalize=False, max_amplitude=32767.0): wf = wave.open(output_file, 'w') wf.setparams( (self.num_channels, self.sample_depth, self.sample_rate, len(self.data), 'NONE', 'not compressed') ) # normalize the sample if normalize: nsound = ((self.data / np.abs(self.data).max())*max_amplitude).astype('int') else: nsound = self.data #print 'nsound.min=%d, max=%d' % (nsound.min(), nsound.max()) hex_sound = [struct.pack('h', x) for x in nsound] wf.writeframes(b''.join(hex_sound)) wf.close() def analyze(self, min_freq=0, max_freq=None, spec_sample_rate=1000.0, freq_spacing=125.0, envelope_cutoff_freq=200.0, noise_level_db=80, rectify=True, cmplx=False): if self.analyzed: return self.data_t = np.arange(0.0, len(self.data), 1.0) / self.sample_rate #compute the temporal envelope self.envelope = temporal_envelope(self.data, self.sample_rate, envelope_cutoff_freq) #compute log power spectrum fftx = fft(self.data) ps_f = fftfreq(len(self.data), d=(1.0 / self.sample_rate)) if max_freq == None: findx = (ps_f > min_freq) & (ps_f < np.inf) else: findx = (ps_f > min_freq) & (ps_f < max_freq) self.power_spectrum = np.log10(np.abs(fftx[findx])) self.power_spectrum_f = ps_f[findx] #estimate fundamental frequency from log power spectrum in the simplest way possible ps = np.abs(fftx[findx]) peak_index = ps.argmax() try: self.fundamental_freq = self.power_spectrum_f[peak_index] except IndexError: print('Could not identify fundamental frequency!') self.fundamental_freq = 0.0 #compute log spectrogram t,f,spec,spec_rms = spectrogram(self.data, self.sample_rate, spec_sample_rate=spec_sample_rate, freq_spacing=freq_spacing, min_freq=min_freq, max_freq=max_freq) self.spectrogram_t = t self.spectrogram_f = f self.spectrogram = spec self.spectrogram_rms = spec_rms self.analyzed = True def reanalyze(self, min_freq=0, max_freq=None, spec_sample_rate=1000.0, freq_spacing=25.0, envelope_cutoff_freq=200.0, noise_level_db=80, rectify=True, cmplx=False): self.analyzed = False return self.analyze(min_freq, max_freq, spec_sample_rate, freq_spacing, envelope_cutoff_freq, noise_level_db, rectify, cmplx) def plot(self, fig=None, show_envelope=True, min_freq=0.0, max_freq=10000.0, colormap=cmap.gist_yarg, noise_level_db=80, start_time=0, end_time=np.inf): self.analyze(min_freq=min_freq, max_freq=max_freq, noise_level_db=noise_level_db) if show_envelope: spw_size = 15 spec_size = 35 else: spw_size = 25 spec_size = 75 raw_ti = (self.data_t > start_time) & (self.data_t < end_time) if fig is None: fig = plt.figure() gs = plt.GridSpec(100, 1) ax = fig.add_subplot(gs[:spw_size]) plt.plot(self.data_t[raw_ti], self.data[raw_ti], 'k-') plt.axis('tight') plt.ylabel('Sound Pressure') s = (spw_size+5) e = s + spec_size ax = fig.add_subplot(gs[s:e]) spec_ti = (self.spectrogram_t > start_time) & (self.spectrogram_t < end_time) plot_spectrogram(self.spectrogram_t[spec_ti], self.spectrogram_f, self.spectrogram[:, spec_ti], ax=ax, ticks=True, colormap=colormap, colorbar=False) if show_envelope: ax = fig.add_subplot(gs[(e+5):95]) plt.plot(self.spectrogram_t, self.spectrogram_rms, 'g-') plt.xlabel('Time (s)') plt.ylabel('Envelope') plt.axis('tight') class BioSound(object): """ Class for representing a communication sound using multiple feature spaces""" def __init__(self, soundWave=np.array(0.0), fs=np.array(0.0), emitter='Unknown', calltype = 'U' ): # Note that all the fields are numpy arrays for saving to h5 files. self.sound = soundWave # sound pressure waveform self.hashid = np.string_(hashlib.md5(np.array_str(soundWave).encode('utf-8')).hexdigest()) self.samprate = float(fs) if isinstance(fs,int) else fs # sampling rate self.emitter = np.string_(emitter) # string for id of emitter self.type = np.string_(calltype) # string for call type self.spectro = np.asarray([]) # Log spectrogram self.to = np.asarray([]) # Time scale for spectrogram self.fo = np.asarray([]) # Frequency scale for spectrogram self.mps = np.asarray([]) # Modulation Power Spectrum self.wf = np.asarray([]) # Spectral modulations self.wt = np.asarray([]) # Temporal modulations self.f0 = np.asarray([]) # time varying fundamental self.f0_2 = np.asarray([]) # time varying fundamental of second voice self.F1 = np.asarray([]) # time varying formant 1 self.F2 = np.asarray([]) # time varying formant 2 self.F3 = np.asarray([]) # time varying formant 3 self.fund = np.asarray([]) # Average fundamental self.sal = np.asarray([]) # time varying saliency self.meansal = np.asarray([]) # mean saliency self.fund2 = np.asarray([]) # Average fundamental of 2nd peak self.voice2percent = np.asarray([]) # Average percent of presence of second peak self.maxfund = np.asarray([]) self.minfund = np.asarray([]) self.cvfund = np.asarray([]) self.meanspect = np.asarray([]) self.stdspect = np.asarray([]) self.skewspect = np.asarray([]) self.kurtosisspect = np.asarray([]) self.entropyspect = np.asarray([]) self.q1 = np.asarray([]) self.q2 = np.asarray([]) self.q3 = np.asarray([]) self.meantime = np.asarray([]) self.stdtime = np.asarray([]) self.skewtime = np.asarray([]) self.kurtosistime = np.asarray([]) self.entropytime = np.asarray([]) self.fpsd = np.asarray([]) self.psd = np.asarray([]) self.tAmp = np.asarray([]) self.amp = np.asarray([]) self.rms = np.asarray([]) self.maxAmp = np.asarray([]) def saveh5(self, fileName=None): # Save as an h5 file. Uses the hashid if fileName is not given # Not using attributes if fileName is None: fileName = '%s.h5' % self.hashid fid = h5py.File(fileName,'w') selfDict = vars(self) for varnames in selfDict: fid.create_dataset(varnames, data=selfDict[varnames]) fid.close() def readh5(self, fileName): fid = h5py.File(fileName, 'r') for varnames in fid.keys(): setattr(self, varnames, np.array(fid[varnames]).squeeze()) fid.close() def spectrum(self, f_high=10000): # Calculates power spectrum and features from power spectrum # Need to add argument for window size # f_high is the upper bound of the frequency for saving power spectrum # nwindow = (1000.0*np.size(soundIn)/samprate)/window_len # Pxx, Freqs = mlab.psd(self.sound, Fs=self.samprate, NFFT=1024, noverlap=512) # Find quartile power cum_power = np.cumsum(Pxx) tot_power = np.sum(Pxx) quartile_freq = np.zeros(3, dtype = 'int') quartile_values = [0.25, 0.5, 0.75] nfreqs = np.size(cum_power) iq = 0 for ifreq in range(nfreqs): if (cum_power[ifreq] > quartile_values[iq]*tot_power): quartile_freq[iq] = ifreq iq = iq+1 if (iq > 2): break # Find skewness, kurtosis and entropy for power spectrum below f_high ind_fmax = np.where(Freqs > f_high)[0][0] # Description of spectral shape spectdata = Pxx[0:ind_fmax] freqdata = Freqs[0:ind_fmax] spectdata = spectdata/np.sum(spectdata) meanspect = np.sum(freqdata*spectdata) stdspect = np.sqrt(np.sum(spectdata*((freqdata-meanspect)**2))) skewspect = np.sum(spectdata*(freqdata-meanspect)**3) skewspect = skewspect/(stdspect**3) kurtosisspect = np.sum(spectdata*(freqdata-meanspect)**4) kurtosisspect = kurtosisspect/(stdspect**4) entropyspect = -np.sum(spectdata*np.log2(spectdata))/np.log2(ind_fmax) # Storing the values self.meanspect = meanspect self.stdspect = stdspect self.skewspect = skewspect self.kurtosisspect = kurtosisspect self.entropyspect = entropyspect self.q1 = Freqs[quartile_freq[0]] self.q2 = Freqs[quartile_freq[1]] self.q3 = Freqs[quartile_freq[2]] self.fpsd = freqdata self.psd = spectdata def spectroCalc(self, spec_sample_rate=1000, freq_spacing = 50, min_freq=0, max_freq=10000): # Calculates the spectrogram in dB t,f,spec,spec_rms = spectrogram(self.sound, self.samprate, spec_sample_rate=spec_sample_rate, freq_spacing=freq_spacing, min_freq=min_freq, max_freq=max_freq, cmplx=True) self.to = t self.fo = f self.spectro = 20*np.log10(np.abs(spec)) def mpsCalc(self, window=None, Norm=True): if self.spectro.size == 0: self.spectroCalc() wf, wt, mps_powAvg = mps(self.spectro, self.fo, self.to, window=window, Norm=Norm) self.mps = mps_powAvg # Modulation Power Spectrum self.wf = wf # Spectral modulations self.wt = wt def ampenv(self, cutoff_freq = 20, amp_sample_rate = 1000): # Calculates the amplitude enveloppe and related parameters (amp, tdata) = temporal_envelope(self.sound, self.samprate, cutoff_freq=cutoff_freq, resample_rate=amp_sample_rate) # Here are the parameters ampdata = amp/np.sum(amp) meantime = np.sum(tdata*ampdata) stdtime = np.sqrt(np.sum(ampdata*((tdata-meantime)**2))) skewtime = np.sum(ampdata*(tdata-meantime)**3) skewtime = skewtime/(stdtime**3) kurtosistime = np.sum(ampdata*(tdata-meantime)**4) kurtosistime = kurtosistime/(stdtime**4) indpos = np.where(ampdata>0)[0] entropytime = -np.sum(ampdata[indpos]*np.log2(ampdata[indpos]))/np.log2(np.size(indpos)) self.meantime = meantime self.stdtime = stdtime self.skewtime = skewtime self.kurtosistime = kurtosistime self.entropytime = entropytime self.tAmp = tdata self.amp = amp self.maxAmp = max(amp) def fundest(self, maxFund = 1500, minFund = 300, lowFc = 200, highFc = 6000, minSaliency = 0.5, debugFig = 0, minFormantFreq = 500, maxFormantBW = 500, windowFormant = 0.1, method='Stack'): # Calculate the fundamental, the formants and parameters related to these sal, fund, fund2, form1, form2, form3, lenfund = fundEstimator(self.sound, self.samprate, self.to, debugFig = debugFig, maxFund = maxFund, minFund = minFund, lowFc = lowFc, highFc = highFc, minSaliency = minSaliency, minFormantFreq = minFormantFreq, maxFormantBW = maxFormantBW, windowFormant = windowFormant, method = method) goodFund = fund[~np.isnan(fund)] goodSal = sal[~np.isnan(sal)] goodFund2 = fund2[~np.isnan(fund2)] if np.size(goodFund) > 0 : meanfund = np.mean(goodFund) else: meanfund = np.asarray([]) meansal = np.mean(goodSal) if np.size(goodFund2)> 0: meanfund2 = np.mean(goodFund2) else: meanfund2 = np.asarray([]) if np.size(goodFund) == 0 or np.size(goodFund2) == 0: fund2prop = 0.0 else: fund2prop = np.float(np.size(goodFund2))/np.float(np.size(goodFund)) self.f0 = fund # time varying fundamental self.f0_2 = fund2 # time varying fundamental of second voice self.F1 = form1 # time varying formant 1 self.F2 = form2 # time varying formant 2 self.F3 = form3 # time varying formant 3 self.fund = meanfund # Average fundamental self.sal = sal # Time varying saliency self.meansal = meansal # Average saliency self.fund2 = meanfund2 # Average fundamental of 2nd peak self.voice2percent = fund2prop*100 # Average percent of presence of second peak if np.size(goodFund) > 0 : self.maxfund = np.max(goodFund) self.minfund = np.min(goodFund) self.cvfund = np.std(goodFund)/meanfund def play(self): # Plays the sound play_sound_array(self.sound*(2**15), self.samprate) def plot(self, DBNOISE=50, f_low=250, f_high=10000): # Plots a biosound in figures 1, 2, 3 # Ploting Variables soundlen = np.size(self.sound) t = np.array(range(soundlen)) t = t*(1000.0/self.samprate) # Plot the oscillogram + spectrogram plt.figure(1) plt.clf() # mngr = plt.get_current_fig_manager() # mngr.window.setGeometry(0, 260, 640, 545) # The oscillogram plt.axes([0.1, 0.75, 0.85, 0.20]) plt.plot(t,self.sound, 'k') # plt.xlabel('Time (ms)') plt.xlim(0, t[-1]) # Plot the amplitude enveloppe if self.tAmp.size != 0 : # rescale amp envelope to max for better display plt.plot(self.tAmp*1000.0, self.amp*np.max(self.sound)/np.max(self.amp), 'r', linewidth=2) # Plot the spectrogram plt.axes([0.1, 0.1, 0.85, 0.6]) spec_colormap() # defined in sound.py cmap = plt.get_cmap('SpectroColorMap') if self.spectro.size != 0 : soundSpect = self.spectro if soundSpect.shape[0] == self.to.size: soundSpect = np.transpose(soundSpect) maxB = soundSpect.max() minB = maxB-DBNOISE soundSpect[soundSpect < minB] = minB minSpect = soundSpect.min() plt.imshow(soundSpect, extent = (self.to[0]*1000, self.to[-1]*1000, self.fo[0], self.fo[-1]), aspect='auto', interpolation='nearest', origin='lower', cmap=cmap, vmin=minSpect, vmax=maxB) plt.ylim(f_low, f_high) plt.xlim(0, t[-1]) plt.ylabel('Frequency (Hz)') plt.xlabel('Time (ms)') # Plot the fundamental on the same figure if self.f0.size != 0 : fundplot = self.f0 diffFund = np.diff(fundplot) diffFundInd = np.concatenate(([False], abs(diffFund)>1000)) fundplot[diffFundInd] = float('nan') plt.plot(self.to*1000.0, self.f0, 'k', linewidth=3) plt.plot(self.to*1000.0, self.f0_2, 'm', linewidth=3) plt.plot(self.to*1000.0, self.F1, 'r--', linewidth=3) plt.plot(self.to*1000.0, self.F2, 'w--', linewidth=3) plt.plot(self.to*1000.0, self.F3, 'b--', linewidth=3) plt.show() # Plot Power Spectrum plt.figure(2) plt.clf() # mngr = plt.get_current_fig_manager() # mngr.window.setGeometry(650, 260, 640, 545) if self.psd.size != 0 : plt.plot(self.fpsd, self.psd, 'k-') plt.xlabel('Frequency Hz') plt.ylabel('Power Linear') xl, xh, yl, yh = plt.axis() xl = f_low xh = f_high plt.axis((xl, xh, yl, yh)) if self.q1.size != 0: plt.plot([self.q1, self.q1], [yl, yh], 'k--') plt.plot([self.q2, self.q2], [yl, yh], 'k--') plt.plot([self.q3, self.q3], [yl, yh], 'k--') if self.F1.size != 0: F1Mean = self.F1[~np.isnan(self.F1)].mean() F2Mean = self.F2[~np.isnan(self.F2)].mean() F3Mean = self.F3[~np.isnan(self.F3)].mean() plt.plot([F1Mean, F1Mean], [yl, yh], 'r--', linewidth=2.0) plt.plot([F2Mean, F2Mean], [yl, yh], 'c--', linewidth=2.0) plt.plot([F3Mean, F3Mean], [yl, yh], 'b--', linewidth=2.0) plt.show() # Table of results plt.figure(3) plt.clf() # mngr = plt.get_current_fig_manager() # mngr.window.setGeometry(320, 10, 640, 250) textstr = '%s %s' % (self.emitter, self.type) plt.text(0.4, 1.0, textstr) if self.fund.size != 0: if self.fund2.size != 0: textstr = 'Mean Fund = %.2f Hz Mean Saliency = %.2f Mean Fund2 = %.2f PF2 = %.2f%%' % (self.fund, self.meansal, self.fund2, self.voice2percent) else: textstr = 'Mean Fund = %.2f Hz Mean Saliency = %.2f No 2nd Voice Detected' % (self.fund, self.meansal) plt.text(-0.1, 0.8, textstr) if self.fund.size != 0: textstr = ' Max Fund = %.2f Hz, Min Fund = %.2f Hz, CV = %.2f' % (self.maxfund, self.minfund, self.cvfund) plt.text(-0.1, 0.7, textstr) textstr = 'Mean Spect = %.2f Hz, Std Spect= %.2f Hz' % (self.meanspect, self.stdspect) plt.text(-0.1, 0.6, textstr) textstr = ' Skew = %.2f, Kurtosis = %.2f Entropy=%.2f' % (self.skewspect, self.kurtosisspect, self.entropyspect) plt.text(-0.1, 0.5, textstr) textstr = ' Q1 F = %.2f Hz, Q2 F= %.2f Hz, Q3 F= %.2f Hz' % (self.q1, self.q2, self.q3 ) plt.text(-0.1, 0.4, textstr) if self.F1.size != 0: textstr = ' For1 = %.2f Hz, For2 = %.2f Hz, For3= %.2f Hz' % (F1Mean, F2Mean, F3Mean ) plt.text(-0.1, 0.3, textstr) textstr = 'Mean Time = %.2f s, Std Time= %.2f s' % (self.meantime, self.stdtime) plt.text(-0.1, 0.2, textstr) textstr = ' Skew = %.2f, Kurtosis = %.2f Entropy=%.2f' % (self.skewtime, self.kurtosistime, self.entropytime) plt.text(-0.1, 0.1, textstr) if self.rms.size != 0 and self.maxAmp.size != 0 : textstr = 'RMS = %.2f, Max Amp = %.2f' % (self.rms, self.maxAmp) plt.text(-0.1, 0.0, textstr) plt.axis('off') plt.show() # Plot Modulation Power spectrum if it exists #ex = (spectral_freq.min(), spectral_freq.max(), temporal_freq.min(), temporal_freq.max()) if self.mps.size != 0 : plt.figure(4) plt.clf() cmap = plt.get_cmap('jet') ex = (self.wt.min(), self.wt.max(), self.wf.min()*1e3, self.wf.max()*1e3) logMPS = 10.0*np.log10(self.mps) maxMPS = logMPS.max() minMPS = maxMPS-DBNOISE logMPS[logMPS < minMPS] = minMPS plt.imshow(logMPS, interpolation='nearest', aspect='auto', origin='lower', cmap=cmap, extent=ex) plt.ylabel('Spectral Frequency (Cycles/KHz)') plt.xlabel('Temporal Frequency (Hz)') plt.colorbar() plt.ylim((0,self.wf.max()*1e3)) plt.title('Modulation Power Spectrum') plt.show() plt.pause(1) # To flush the plots? def spec_colormap(): # Makes the colormap that we like for spectrograms cmap = np.zeros((64,3)) cmap[0,2] = 1.0 for ib in range(21): cmap[ib+1,0] = (31.0+ib*(12.0/20.0))/60.0 cmap[ib+1,1] = (ib+1.0)/21.0 cmap[ib+1,2] = 1.0 for ig in range(21): cmap[ig+ib+1,0] = (21.0-(ig)*(12.0/20.0))/60.0 cmap[ig+ib+1,1] = 1.0 cmap[ig+ib+1,2] = 0.5+(ig)*(0.3/20.0) for ir in range(21): cmap[ir+ig+ib+1,0] = (8.0-(ir)*(7.0/20.0))/60.0 cmap[ir+ig+ib+1,1] = 0.5 + (ir)*(0.5/20.0) cmap[ir+ig+ib+1,2] = 1 for ic in range(64): (cmap[ic,0], cmap[ic,1], cmap[ic,2]) = colorsys.hsv_to_rgb(cmap[ic,0], cmap[ic,1], cmap[ic,2]) spec_cmap = pltcolors.ListedColormap(cmap, name=u'SpectroColorMap', N=64) plt.register_cmap(cmap=spec_cmap) def plot_spectrogram(t, freq, spec, ax=None, ticks=True, fmin=None, fmax=None, colormap=None, colorbar=True, log = True, dBNoise = 50): if colormap == None: spec_colormap() colormap = plt.get_cmap('SpectroColorMap') if ax is None: ax = plt.gca() if fmin is None: fmin = freq.min() if fmax is None: fmax = freq.max() ex = (t.min(), t.max(), freq.min(), freq.max()) plotSpect = np.abs(spec) if log == True and dBNoise is not None: plotSpect = 20*np.log10(plotSpect) maxB = plotSpect.max() minB = maxB-dBNoise else: if dBNoise is not None: maxB = 20*np.log10(plotSpect.max()) minB = ((maxB-dBNoise)/20.0)**10 else: maxB = plotSpect.max() minB = plotSpect.min() plotSpect[plotSpect < minB] = minB iax = ax.imshow(plotSpect, aspect='auto', interpolation='nearest', origin='lower', extent=ex, cmap=colormap, vmin=minB, vmax=maxB) ax.set_ylim(fmin, fmax) if not ticks: ax.set_xticks([]) ax.set_yticks([]) else: ax.set_ylabel('Frequency (Hz)') ax.set_xlabel('Time (s)') if colorbar: plt.colorbar(iax) def play_sound(file_name): """ Install sox to get this to work: http://sox.sourceforge.net/ """ subprocess.call(['play', file_name]) def play_wavfile(filename): import pyaudio chunk_size = 1024 wf = wave.open(filename, "r") p = pyaudio.PyAudio() stream = p.open(format=p.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), output=True) data = wf.readframes(chunk_size) while data != '': stream.write(data) data = wf.readframes(chunk_size) wf.close() stream.stop_stream() stream.close() p.terminate() def play_sound_array(data, sample_rate): ''' Requires pyaudio package. Can be downloaded here http://people.csail.mit.edu/hubert/pyaudio/ ''' import pyaudio # Only play one channel if len(data.shape) > 1: data = np.mean(data, axis=np.argmin(data.shape)) data = data.astype('int16') p = pyaudio.PyAudio() stream = p.open(format=p.get_format_from_width(2), channels=1, rate=int(sample_rate), output=True) stream.write(data.tostring()) stream.stop_stream() stream.close() p.terminate() def spectrogram(s, sample_rate, spec_sample_rate, freq_spacing, min_freq=0, max_freq=None, nstd=6, cmplx = True): """ Given a sound pressure waveform, s, compute the complex spectrogram. See documentation on gaussian_stft for additional details. Returns: t, freq, timefreq, rms t: array of time values to use as x axis freq: array of frequencies to use as y axis timefreq: the spectrogram (a time-frequency represnetaion) rms : the time varying average Arguments: REQUIRED: s: sound pressssure waveform sample_rate: sampling rate for s in Hz spec_sample_rate: sampling rate for the output spectrogram in Hz. This variable sets the overlap for the windows in the STFFT. freq_spacing: the time-frequency scale for the spectrogram in Hz. This variable determines the width of the gaussian window. OPTIONAL complex = False: returns the absolute value use min_freq and max_freq to save space nstd = number of standard deviations of the gaussian in one window. """ # We need units here!! increment = 1.0 / spec_sample_rate window_length = nstd / (2.0*np.pi*freq_spacing) t,freq,timefreq,rms = gaussian_stft(s, sample_rate, window_length, increment, nstd=nstd, min_freq=min_freq, max_freq=max_freq) # rms = spec.std(axis=0, ddof=1) if cmplx == False: timefreq = np.abs(timefreq) return t, freq, timefreq, rms def temporal_envelope(s, sample_rate, cutoff_freq=200.0, resample_rate=None): """ Get the temporal envelope from the sound pressure waveform. s: the signal sample_rate: the sample rate of the signal cutoff_freq: the cutoff frequency of the low pass filter used to create the envelope Returns the temporal envelope of the signal, with same sample rate or downsampled. """ #rectify a zeroed version srect = np.abs(s - np.mean(s)) #low pass filter if cutoff_freq is not None: srect = lowpass_filter(srect, sample_rate, cutoff_freq, filter_order=4) srect[srect < 0] = 0 if resample_rate is not None: lensound = len(srect) t=(np.array(range(lensound),dtype=float))/sample_rate lenresampled = int(round(float(lensound)*resample_rate/sample_rate)) (srectresampled, tresampled) = resample(srect, lenresampled, t=t, axis=0, window=None) return (srectresampled, tresampled) else: return srect def recursive_ls(root_dir, file_pattern): """ Walks through all the files in root_dir and returns every file whose name matches the pattern specified by file_pattern. """ matches = list() for root, dirnames, filenames in os.walk(root_dir): for filename in fnmatch.filter(filenames, file_pattern): matches.append(os.path.join(root, filename)) return matches def sox_convert_to_mono(file_path): """ Uses Sox (sox.sourceforge.net) to convert a stereo .wav file to mono. """ root_dir,file_name = os.path.split(file_path) base_file_name = file_name[:-4] output_file_path = os.path.join(root_dir, '%s_mono.wav' % base_file_name) cmd = 'sox \"%s\" -c 1 \"%s\"' % (file_path, output_file_path) print(cmd) subprocess.call(cmd, shell=True) def generate_sine_wave(duration, freq, samprate): """ Generate a pure tone at a given frequency and sample rate for a specified duration. """ t = np.arange(0.0, duration, 1.0 / samprate) return np.sin(2*np.pi*freq*t) def generate_simple_stack(duration, fundamental_freq, samprate, num_harmonics=10): nsamps = int(duration*samprate) s = np.zeros(nsamps, dtype='float') ffreq = 0.0 for n in range(num_harmonics): ffreq += fundamental_freq s += generate_sine_wave(duration, ffreq, samprate) return s def generate_harmonic_stack(duration, fundamental_freq, samprate, num_harmonics=10, base=2): nsamps = int(duration*samprate) s = np.zeros(nsamps, dtype='float') for n in range(num_harmonics): freq = fundamental_freq * base**n s += generate_sine_wave(duration, freq, samprate) return s def modulate_wave(s, samprate, freq): t = np.arange(len(s), dtype='float') / samprate c = np.sin(2*np.pi*t*freq) return c*s def mtfft(spectrogram, df, dt, Log=False): """ Compute the 2d modulation power and phase for a given time frequency slice. return temporal_freq,spectral_freq,mps_pow,mps_phase """ #take the 2D FFT and center it smps = fft2(spectrogram) smps = fftshift(smps) #compute the log amplitude mps_pow = np.abs(smps)**2 if Log: mps_pow = 10*np.log10(mps_pow) #compute the phase mps_phase = np.angle(smps) #compute the axes nf = mps_pow.shape[0] nt = mps_pow.shape[1] spectral_freq = fftshift(fftfreq(nf, d=df[1]-df[0])) temporal_freq = fftshift(fftfreq(nt, d=dt[1]-dt[0])) """ nb = sdata.shape[1] dwf = np.zeros(nb) for ib in range(int(np.ceil((nb+1)/2.0))+1): posindx = ib negindx = nb-ib+2 print 'ib=%d, posindx=%d, negindx=%d'% (ib, posindx, negindx ) dwf[ib]= (ib-1)*(1.0/(df*nb)) if ib > 1: dwf[negindx] =- dwf[ib] nt = sdata.shape[0] dwt = np.zeros(nt) for it in range(0, int(np.ceil((nt+1)/2.0))+1): posindx = it negindx = nt-it+2 print 'it=%d, posindx=%d, negindx=%d' % (it, posindx, negindx) dwt[it] = (it-1)*(1.0/(nt*dt)) if it > 1 : dwt[negindx] = -dwt[it] spectral_freq = dwf temporal_freq = dwt """ return spectral_freq, temporal_freq, mps_pow, mps_phase def mps(spectrogram, df, dt, window=None, Norm=True): """ Calculates the modulation power spectrum using overlapp and add method with a gaussian window of length window in s Assumes that spectrogram is in dB. df and dt are the axis of spectrogram. """ # Debugging paramenter debugPlot = False # Resolution of spectrogram in DB dbRES = 50 # Check the size of the spectrogram vs dt nt = dt.size nf = df.size if spectrogram.shape[1] != nt and spectrogram.shape[0] != nf: print('Error in mps. Expected %d bands in frequency and %d points in time' % (nf, nt)) print('Spectrogram had shape %d, %d' % spectrogram.shape) return 0, 0, 0 # Z-score the flattened spectrogram is Norm is True sdata = deepcopy(spectrogram) if Norm: maxdata = sdata.max() mindata = maxdata - dbRES sdata[sdata< mindata] = mindata sdata -= sdata.mean() sdata /= sdata.std() if window == None: window = dt[-1]/10.0 # Find the number of spectrogram points in the gaussian window if dt[-1] < window: print('Warning in mps: Requested MPS window size is greater than spectrogram temporal extent.') print('mps will be calculate with windows of %d points or %s s' % (nt-1, dt[-1]) ) nWindow = nt - 1 else: nWindow = np.where(dt>= window)[0][0] if nWindow%2 == 0: nWindow += 1 # Make it odd size so that we have a symmetric window #if nWindow < 64: # print('Error in mps: window size %d pts (%.3f s) is two small for reasonable estimates' % (nWindow, window)) # return np.asarray([]), np.asarray([]), np.asarray([]) # Generate the Gaussian window gt, wg = gaussian_window(nWindow, 6) tShift = int(gt[-1]/3) nchunks = 0 # Pad the spectrogram with zeros. minSdata = sdata.min() sdataZeros = np.ones((sdata.shape[0], int((nWindow-1)/2))) * minSdata sdata = np.concatenate((sdataZeros, sdata, sdataZeros), axis = 1) if debugPlot: plt.figure(1) plt.clf() plt.subplot() plt.imshow(sdata, origin='lower') plt.title('Scaled and Padded Spectrogram') plt.show() plt.pause(1) for tmid in range(tShift, nt, tShift): # t mid is in the original coordinates while tstart and tend # are shifted to deal with the zero padding. tstart = tmid-(nWindow-1)//2-1 tstart += (nWindow-1)//2 if tstart < 0: print('Error in mps. tstart negative') break; tend = tmid+(nWindow-1)//2 tend += (nWindow-1)//2 if tend > sdata.shape[1]: print('Error in mps. tend too large') break nchunks += 1 # Multiply the spectrogram by the window wSpect = deepcopy(sdata[:,tstart:tend]) # Debugging code if debugPlot: plt.figure(nchunks+1) plt.clf() plt.subplot(121) plt.imshow(wSpect, origin='lower') plt.title('%d Middle (%d %d)' % (tmid, tstart, tend) ) for fInd in range(nf): wSpect[fInd,:] = wSpect[fInd,:]*wg # Debugging code if debugPlot: plt.figure(nchunks+1) plt.subplot(122) plt.imshow(wSpect, origin='lower') plt.title('After') plt.show() plt.pause(1) input("Press Enter to continue...") # Get the 2d FFT wf, wt, mps_pow, mps_phase = mtfft(wSpect, df, dt[0:tend-tstart]) if nchunks == 1: mps_powAvg = mps_pow else: mps_powAvg += mps_pow mps_powAvg /= nchunks return wf, wt, mps_powAvg def plot_mps(spectral_freq, temporal_freq, amp, phase=None): plt.figure() #plot the amplitude if phase: plt.subplot(2, 1, 1) #ex = (spectral_freq.min(), spectral_freq.max(), temporal_freq.min(), temporal_freq.max()) ex = (temporal_freq.min(), temporal_freq.max(), spectral_freq.min()*1e3, spectral_freq.max()*1e3) plt.imshow(amp, interpolation='nearest', aspect='auto', origin='lower', cmap=cmap.jet, extent=ex) plt.ylabel('Spectral Frequency (Cycles/KHz)') plt.xlabel('Temporal Frequency (Hz)') plt.colorbar() plt.ylim((0,spectral_freq.max()*1e3)) plt.title('Power') #plot the phase if phase: plt.subplot(2, 1, 2) plt.imshow(phase, interpolation='nearest', aspect='auto', origin='lower', cmap=cmap.jet, extent=ex) plt.ylabel('Spectral Frequency (Cycles/KHz)') plt.xlabel('Temporal Frequency (Hz)') plt.ylim((0,spectral_freq.max()*1e3)) plt.title('Phase') plt.colorbar() def synSpect(b, x): # Generates a model spectrum made out of gaussian peaks # fund, sigma, pkmax, dbfloor # global fundGlobal maxFund minFund npeaks = np.size(b)-1 # First element of b is the sampling rate # amp = 25 # Force 25 dB peaks sdpk = 60 # Force 80 hz width synS = np.zeros(len(x)) for i in range(npeaks): a = b[i+1] # To inforce positive peaks only synS = synS + a*np.exp(-(x-b[0]*(i+1))**2/(2*sdpk**2)) #if (sum(isinf(synS)) + sum(isnan(synS))): # for i in range(npeaks): # fprintf(1,'%f ', exp(b(i+1))) return synS def residualSyn(vars, x, realS): b = vars synS = synSpect(b, x) return realS-synS #if (sum(isinf(synS)) + sum(isnan(synS))) # for i=1:npeaks # fprintf(1,'%f ', exp(b(i+1))) def lpc(signal, order): """Compute the Linear Prediction Coefficients. Return the order + 1 LPC coefficients for the signal. c = lpc(x, k) will find the k+1 coefficients of a k order linear filter: xp[n] = -c[1] * x[n-2] - ... - c[k-1] * x[n-k-1] Such as the sum of the squared-error e[i] = xp[i] - x[i] is minimized. Parameters ---------- signal: array_like input signal order : int LPC order (the output will have order + 1 items)""" order = int(order) if signal.ndim > 1: raise ValueError("Array of rank > 1 not supported yet") if order > signal.size: raise ValueError("Input signal must have a lenght >= lpc order") if order > 0: p = order + 1 r = np.zeros(p, signal.dtype) # Number of non zero values in autocorrelation one needs for p LPC # coefficients nx = np.min([p, signal.size]) x = np.correlate(signal, signal, 'full') r[:nx] = x[signal.size-1:signal.size+order] phi = np.dot(inv(toeplitz(r[:-1])), -r[1:]) return np.concatenate(([1.], phi)), None, None else: return np.ones(1, dtype = signal.dtype), None, None def fundEstimator(soundIn, fs, t=None, debugFig = 0, maxFund = 1500, minFund = 300, lowFc = 200, highFc = 6000, minSaliency = 0.5, minFormantFreq = 500, maxFormantBW = 500, windowFormant = 0.1, method='Stack'): """ Estimates the fundamental frequency of a complex sound. soundIn is the sound pressure waveformlog spectrogram. fs is the sampling rate t is a vector of time values in s at which the fundamental will be estimated. The sound must include at least 1024 sample points The optional parameter with defaults are Some user parameters debugFig = 0 Set to zero to eliminate figures. maxFund = 1500 Maximum fundamental frequency minFund = 300 Minimum fundamental frequency lowFc = 200 Low frequency cut-off for band-passing the signal prior to auto-correlation. highFc = 6000 High frequency cut-off minSaliency = 0.5 Threshold in the auto-correlation for minimum saliency - returns NaN for pitch values is saliency is below this number minFormantFreq = 500 Minimum value of firt formant maxFormantBW = 500 Maxminum value of formants bandwith. windowFormant = 0.1 Time window for Formant calculation. Includes 5 std of normal window. Four methods are available: 'AC' - Peak of the auto-correlation function 'ACA' - Peak of envelope of auto-correlation function 'Cep' - First peak in cepstrum 'Stack' - Fitting of harmonic stacks (default - works well for zebra finches) Returns sal - the time varying pitch saliency - a number between 0 and 1 corresponding to relative size of the first auto-correlation peak fund - the time-varying fundamental in Hz at the same resolution as the spectrogram. fund2 - a second peak in the spectrum - not a multiple of the fundamental a sign of a second voice form1 - the first formant, if it exists form2 - the second formant, if it exists form3 - the third formant, if it exists soundLen - length of sal, fund, fund2, form1, form2, form3 """ # Band-pass filtering signal prior to auto-correlation soundLen = len(soundIn) nfilt = 1024 if soundLen < 1024: print('Warning in fundEstimator: sound too short for bandpass filtering, len(soundIn)=%d' % soundLen) print('Signal will not be filtered - you might want to filter before making Biosound oobject') # return (np.asarray([]), np.asarray([]), np.asarray([]), np.asarray([]), np.asarray([]), np.asarray([]), soundLen) else: # high pass filter the signal highpassFilter = firwin(nfilt-1, 2.0*lowFc/fs, pass_zero=False) padlen = min(soundLen-10, 3*len(highpassFilter)) soundIn = filtfilt(highpassFilter, [1.0], soundIn, padlen=padlen) # low pass filter the signal lowpassFilter = firwin(nfilt, 2.0*highFc/fs) padlen = min(soundLen-10, 3*len(lowpassFilter)) soundIn = filtfilt(lowpassFilter, [1.0], soundIn, padlen=padlen) # Plot a spectrogram? #if debugFig: # plt.figure(9) # (tDebug ,freqDebug ,specDebug , rms) = spectrogram(soundIn, fs, 1000.0, 50, min_freq=0, max_freq=10000, nstd=6, log=True, noise_level_db=50, rectify=True) # plot_spectrogram(tDebug, freqDebug, specDebug) # Initializations and useful variables soundLen = len(soundIn) sound_dur = soundLen / fs if t is None: # initialize t to be spaced by 1 ms increments if not specified _si = 1e-3 npts = int(sound_dur / _si) t = np.arange(npts) * _si nt=len(t) soundRMS = np.zeros(nt) fund = np.zeros(nt) fund2 = np.zeros(nt) sal = np.zeros(nt) form1 = np.zeros(nt) form2 = np.zeros(nt) form3 = np.zeros(nt) # Calculate the size of the window for the auto-correlation alpha = 5 # Number of sd in the Gaussian window winLen = int(np.fix((2.0*alpha/minFund)*fs)) # Length of Gaussian window based on minFund if (winLen%2 == 0): # Make a symmetric window winLen += 1 # Use 200 ms for LPC Window - make this a parameter at some point winLen2 = int(np.fix(windowFormant*fs)) if (winLen2%2 == 0): # Make a symmetric window winLen2 += 1 gt, w = gaussian_window(winLen, alpha) gt2, w2 = gaussian_window(winLen2, alpha) maxlags = int(2*ceil((float(fs)/minFund))) # First calculate the rms in each window for it in range(nt): tval = t[it] # Center of window in time if tval >= sound_dur: continue tind = int(np.fix(tval*fs)) # Center of window in ind tstart = tind - (winLen-1)//2 tend = tind + (winLen-1)//2 if tstart < 0: winstart = - tstart tstart = 0 else: winstart = 0 if tend >= soundLen: windend = winLen - (tend-soundLen+1) - 1 tend = soundLen-1 else: windend = winLen-1 soundWin = soundIn[tstart:tend]*w[winstart:windend] soundRMS[it] = np.std(soundWin) soundRMSMax = max(soundRMS) # Calculate the auto-correlation in windowed segments and obtain 4 guess values of the fundamental # fundCorrGuess - guess from the auto-correlation function # fundCorrAmpGuess - guess form the amplitude of the auto-correlation function # fundCepGuess - guess from the cepstrum # fundStackGuess - guess taken from a fit of the power spectrum with a harmonic stack, using the fundCepGuess as a starting point # Current version use fundStackGuess as the best estimate... soundlen = 0 for it in range(nt): fund[it] = float('nan') sal[it] = float('nan') fund2[it] = float('nan') form1[it] = float('nan') form2[it] = float('nan') form3[it] = float('nan') if (soundRMS[it] < soundRMSMax*0.1): continue soundlen += 1 tval = t[it] # Center of window in time if tval >= sound_dur: # This should not happen here because the RMS should be zero continue tind = int(np.fix(tval*fs)) # Center of window in ind tstart = tind - (winLen-1)//2 tend = tind + (winLen-1)//2 if tstart < 0: winstart = - tstart tstart = 0 else: winstart = 0 if tend >= soundLen: windend = winLen - (tend-soundLen+1) - 1 tend = soundLen-1 else: windend = winLen-1 tstart2 = tind - (winLen2-1)//2 tend2 = tind + (winLen2-1)//2 if tstart2 < 0: winstart2 = - tstart2 tstart2 = 0 else: winstart2 = 0 if tend2 >= soundLen: windend2 = winLen2 - (tend2-soundLen+1) - 1 tend2 = soundLen-1 else: windend2 = winLen2-1 soundWin = soundIn[tstart:tend]*w[winstart:windend] soundWin2 = soundIn[tstart2:tend2]*w2[winstart2:windend2] # Apply LPC to get time-varying formants and one additional guess for the fundamental frequency # TODO (kevin): replace this with librosa A, E, K = lpc(soundWin2, 8) # 8 degree polynomial rts = np.roots(A) # Find the roots of A rts = rts[np.imag(rts)>=0] # Keep only half of them angz = np.arctan2(np.imag(rts),np.real(rts)) # Calculate the frequencies and the bandwidth of the formants frqsFormants = angz*(fs/(2*np.pi)) indices = np.argsort(frqsFormants) bw = -0.5*(fs/(2*np.pi))*np.log(np.abs(rts)) # FIXME (kevin): I think this line was broken before... it was using 1/2 # Keep formants above 500 Hz and with bandwidth < 500 # This was 1000 for bird calls formants = [] for kk in indices: if ( frqsFormants[kk]>minFormantFreq and bw[kk] < maxFormantBW): formants.append(frqsFormants[kk]) formants = np.array(formants) if len(formants) > 0 : form1[it] = formants[0] if len(formants) > 1 : form2[it] = formants[1] if len(formants) > 2 : form3[it] = formants[2] # Calculate the auto-correlation lags = np.arange(-maxlags, maxlags+1, 1) autoCorr = correlation_function(soundWin, soundWin, lags) ind0 = int(np.where(lags == 0)[0][0]) # need to find lag zero index # find peaks indPeaksCorr = detect_peaks(autoCorr, mph=autoCorr.max()/10.0) # Eliminate center peak and all peaks too close to middle indPeaksCorr = np.delete(indPeaksCorr,np.where( (indPeaksCorr-ind0) < fs/maxFund)[0]) pksCorr = autoCorr[indPeaksCorr] # Find max peak if len(pksCorr)==0: pitchSaliency = 0.1 # 0.1 goes with the detection of peaks greater than max/10 else: indIndMax = np.where(pksCorr == max(pksCorr))[0][0] indMax = indPeaksCorr[indIndMax] fundCorrGuess = fs/abs(lags[indMax]) pitchSaliency = autoCorr[indMax]/autoCorr[ind0] sal[it] = pitchSaliency if sal[it] < minSaliency: continue # Calculate the envelope of the auto-correlation after rectification envCorr = temporal_envelope(autoCorr, fs, cutoff_freq=maxFund, resample_rate=None) locsEnvCorr = detect_peaks(envCorr, mph=envCorr.max()/10.0) pksEnvCorr = envCorr[locsEnvCorr] # Find the peak closest to zero if locsEnvCorr.size > 1: lagdiff = np.abs(locsEnvCorr[0]-ind0) indIndEnvMax = 0 for indtest in range(1,locsEnvCorr.size): lagtest = np.abs(locsEnvCorr[indtest]-ind0) if lagtest < lagdiff: lagdiff = lagtest indIndEnvMax = indtest # Take the first peak after the one closest to zero if indIndEnvMax+2 > len(locsEnvCorr): # No such peak - use data for correlation function fundCorrAmpGuess = fundCorrGuess indEnvMax = indMax else: indEnvMax = locsEnvCorr[indIndEnvMax+1] if lags[indEnvMax] == 0 : # This should not happen print('Error: Max Peak in enveloppe auto-correlation found at zero delay') fundCorrAmpGuess = fundCorrGuess indEnvMax = indMax else: fundCorrAmpGuess = fs/lags[indEnvMax] else: fundCorrAmpGuess = fundCorrGuess indEnvMax = indMax # Calculate power spectrum and cepstrum Y = fft(soundWin, n=winLen+1) f = (fs/2.0)*(np.array(range(int((winLen+1)/2+1)), dtype=float)/float((winLen+1)//2)) fhigh = np.where(f >= highFc)[0][0] powSound = 20.0*np.log10(np.abs(Y[0:(winLen+1)//2+1])) # This is the power spectrum powSoundGood = powSound[0:fhigh] maxPow = max(powSoundGood) powSoundGood = powSoundGood - maxPow # Set zero as the peak amplitude powSoundGood[powSoundGood < - 60] = -60 # Calculate coarse spectral enveloppe p = np.polyfit(f[0:fhigh], powSoundGood, 3) powAmp = np.polyval(p, f[0:fhigh]) # Cepstrum CY = dct(powSoundGood-powAmp, norm = 'ortho') tCY = 1000.0*np.array(range(len(CY)))/fs # Units of Cepstrum in ms fCY = np.zeros(tCY.size) fCY[1:] = 1000.0/tCY[1:] # Corresponding fundamental frequency in Hz. fCY[0] = fs*2.0 # Nyquist limit not infinity lowInd = np.where(fCY<lowFc)[0] if lowInd.size > 0: flowCY = np.where(fCY < lowFc)[0][0] else: flowCY = fCY.size fhighCY = np.where(fCY < highFc)[0][0] # Find peak of Cepstrum indPk = np.where(CY[fhighCY:flowCY] == max(CY[fhighCY:flowCY]))[0][-1] indPk = fhighCY + indPk fmass = 0 mass = 0 indTry = indPk while (CY[indTry] > 0): fmass = fmass + fCY[indTry]*CY[indTry] mass = mass + CY[indTry] indTry = indTry + 1 if indTry >= len(CY): break indTry = indPk - 1 if (indTry >= 0 ): while (CY[indTry] > 0): fmass = fmass + fCY[indTry]*CY[indTry] mass = mass + CY[indTry] indTry = indTry - 1 if indTry < 0: break fGuess = fmass/mass if (fGuess == 0 or np.isnan(fGuess) or np.isinf(fGuess) ): # Failure of cepstral method fGuess = fundCorrGuess fundCepGuess = fGuess # Force fundamendal to be bounded if (fundCepGuess > maxFund ): i = 2 while(fundCepGuess > maxFund): fundCepGuess = fGuess/i i += 1 elif (fundCepGuess < minFund): i = 2 while(fundCepGuess < minFund): fundCepGuess = fGuess*i i += 1 # Fit Gaussian harmonic stack maxPow = max(powSoundGood-powAmp) # This is the matlab code... # fundFitCep = NonLinearModel.fit(f(1:fhigh)', powSoundGood'-powAmp, @synSpect, [fundCepGuess ones(1,9).*log(maxPow)]) # modelPowCep = synSpect(double(fundFitCep.Coefficients(:,1)), f(1:fhigh)) vars = np.concatenate(([fundCorrGuess], np.ones(9)*np.log(maxPow))) bout = leastsq(residualSyn, vars, args = (f[0:fhigh], powSoundGood-powAmp)) modelPowCep = synSpect(bout[0], f[0:fhigh]) errCep = sum((powSoundGood - powAmp - modelPowCep)**2) vars = np.concatenate(([fundCorrGuess*2], np.ones(9)*np.log(maxPow))) bout2 = leastsq(residualSyn, vars, args = (f[0:fhigh], powSoundGood-powAmp)) modelPowCep2 = synSpect(bout2[0], f[0:fhigh]) errCep2 = sum((powSoundGood - powAmp - modelPowCep2)**2) if errCep2 < errCep: bout = bout2 modelPowCep = modelPowCep2 fundStackGuess = bout[0][0] if (fundStackGuess > maxFund) or (fundStackGuess < minFund ): fundStackGuess = float('nan') # Store the result depending on the method chosen if method == 'AC': fund[it] = fundCorrGuess elif method == 'ACA': fund[it] = fundCorrAmpGuess elif method == 'Cep': fund[it] = fundCepGuess elif method == 'Stack': fund[it] = fundStackGuess # A second cepstrum for the second voice # CY2 = dct(powSoundGood-powAmp'- modelPowCep) if not np.isnan(fundStackGuess): powLeft = powSoundGood- powAmp - modelPowCep maxPow2 = max(powLeft) f2 = 0 if ( maxPow2 > maxPow*0.5): # Possible second peak in central area as indicator of second voice. f2 = f[np.where(powLeft == maxPow2)[0][0]] if ( f2 > 1000 and f2 < 4000): if (pitchSaliency > minSaliency): fund2[it] = f2 #% modelPowCorrAmp = synSpect(double(fundFitCorrAmp.Coefficients(:,1)), f(1:fhigh)) #% #% errCorr = sum((powSoundGood - powAmp' - modelPowCorr).^2) #% errCorrAmp = sum((powSoundGood - powAmp' - modelPowCorrAmp).^2) #% errCorrSum = sum((powSoundGood - powAmp' - (modelPowCorr+modelPowCorrAmp) ).^2) #% #% f1 = double(fundFitCorr.Coefficients(1,1)) #% f2 = double(fundFitCorrAmp.Coefficients(1,1)) #% #% if (pitchSaliency > minSaliency) #% if (errCorr < errCorrAmp) #% fund(it) = f1 #% if errCorrSum < errCorr #% fund2(it) = f2 #% end #% else #% fund(it) = f2 #% if errCorrSum < errCorrAmp #% fund2(it) = f1 #% end #% end #% #% end if (debugFig ): plt.figure(10) plt.subplot(4,1,1) plt.cla() plt.plot(soundWin) # f1 = double(fundFitCorr.Coefficients(1,1)) # f2 = double(fundFitCorrAmp.Coefficients(1,1)) titleStr = 'Saliency = %.2f F0 AC = %.2f ACA = %.2f Cep = %.2f St = %.2f(Hz)' % (pitchSaliency, fundCorrGuess, fundCorrAmpGuess, fundCepGuess, fundStackGuess) plt.title(titleStr) plt.subplot(4,1,2) plt.cla() plt.plot(1000*(lags/fs), autoCorr) plt.plot([1000.*lags[indMax]/fs, 1000.*lags[indMax]/fs], [0, autoCorr[ind0]], 'k') plt.plot(1000.*lags/fs, envCorr, 'r', linewidth= 2) plt.plot([1000*lags[indEnvMax]/fs, 1000.*lags[indEnvMax]/fs], [0, autoCorr[ind0]], 'g', linewidth=2) plt.xlabel('Time (ms)') plt.subplot(4,1,3) plt.cla() plt.plot(f[0:fhigh],powSoundGood) plt.axis([0, highFc, -60, 0]) plt.plot(f[0:fhigh], powAmp, 'b--') plt.plot(f[0:fhigh], modelPowCep + powAmp, 'k') # plt.plot(f(1:fhigh), modelPowCorrAmp + powAmp', 'g') for ih in range(1,6): plt.plot([fundCorrGuess*ih, fundCorrGuess*ih], [-60, 0], 'k') plt.plot([fundCorrAmpGuess*ih, fundCorrAmpGuess*ih], [-60, 0], 'g') plt.plot([fundStackGuess*ih, fundStackGuess*ih], [-60, 0], 'r') plt.plot([fundCepGuess*ih, fundCepGuess*ih], [-60, 0], 'y') if f2 != 0: plt.plot([f2, f2], [-60, 0], 'b') plt.xlabel('Frequency (Hz)') # title(sprintf('Err1 = %.1f Err2 = %.1f', errCorr, errCorrAmp)) plt.subplot(4,1,4) plt.cla() plt.plot(tCY, CY) # plot(tCY, CY2, 'k--') plt.plot([1000./fundCorrGuess, 1000./fundCorrGuess], [0, max(CY)], 'k') plt.plot([1000./fundCorrAmpGuess, 1000./fundCorrAmpGuess], [0, max(CY)], 'g') plt.plot([1000./fundStackGuess, 1000./fundStackGuess], [0, max(CY)], 'r') plt.plot([1000./fundCepGuess, 1000./fundCepGuess], [0, max(CY)], 'y') #% plot([(pkClosest-1)/fs (pkClosest-1)/fs], [0 max(CY)], 'g') #% if ~isempty(ipk2) #% plot([(pk2-1)/fs (pk2-1)/fs], [0 max(CY)], 'b') #% end #% for ip=1:length(pks) #% plot([(locs(ip)-1)/fs (locs(ip)-1)/fs], [0 pks(ip)/4], 'r') #% end plt.axis([0, 1000.*np.size(CY)/(2.*fs), 0, max(CY)]) plt.xlabel('Time (ms)') plt.pause(1) # Fix formants. # Find means in regions where there are two formants # Decide whether there is formant 3 n3 = np.sum(~np.isnan(form3)) if (n3 < 0.1*nt): # There are only two formants - fix formant 3 by merging... meanf1 = np.mean(form1[~np.isnan(form2)]) meanf2 = np.mean(form2[~np.isnan(form2)]) for it in range(nt): if ~np.isnan(form3[it]): df12 = np.abs(form2[it]-meanf1) df23 = np.abs(form3[it]-meanf2) if df12 < df23 : form1[it] = (form1[it] + form2[it])/2.0 form2[it] = form3[it] form3[it] = np.nan else: form2[it] = (form2[it] + form3[it])/2.0 form3[it] = np.nan else: # if there is only one figure out if its second or first if np.isnan(form2[it]): if ~np.isnan(form1[it]): df11 = np.abs(form1[it]-meanf1) df12 = np.abs(form1[it]-meanf2) if (df12 < df11): form2[it] = form1[it] form1[it] = np.nan else: meanf1 = np.mean(form1[~np.isnan(form3)]) meanf2 = np.mean(form2[~np.isnan(form3)]) meanf3 = np.mean(form3[~np.isnan(form3)]) for it in range(nt): if np.isnan(form3[it]): if np.isnan(form2[it]): # there is only one formant found if ~np.isnan(form1[it]): df11 = np.abs(form1[it]-meanf1) df12 = np.abs(form1[it]-meanf2) df13 = np.abs(form1[it]-meanf3) if (df13 < np.minimum(df11,df12)): form3[it] = form1[it] form1[it] = np.nan elif (df12 < np.minimum(df11, df13)): form2[it] = form1[it] form1[it] = np.nan else: # two formants are found df22 = np.abs(form2[it]-meanf2) df23 = np.abs(form2[it]-meanf3) if (df23 < df22): form3[it] = form2[it] df11 = np.abs(form1[it]-meanf1) df12 = np.abs(form1[it]-meanf2) if (df12 < df11): form2[it] = form1[it] form1[it] = np.nan else: form2[it] = np.nan # for it in range(nt): # if ~np.isnan(form1[it]): # df11 = np.abs(form1[it]-meanf1) # df12 = np.abs(form1[it]-meanf2) # df13 = np.abs(form1[it]-meanf3) # if df12 < df11: # if df13 < df12: # if ~np.isnan(form3[it]): # df33 = np.abs(form3[it]-meanf3) # if df13 < df33: # form3[it] = form1[it] # else: # form3[it] = form1[it] # else: # if ~np.isnan(form2[it]): # df22 = np.abs(form2[it]-meanf2) # if df12 < df22: # form2[it] = form1[it] # else: # form2[it] = form1[it] # form1[it] = float('nan') # if ~np.isnan(form2[it]): # df21 = np.abs(form2[it]-meanf1) # df22 = np.abs(form2[it]-meanf2) # df23 = np.abs(form2[it]-meanf3) # if df21 < df22 : # if ~np.isnan(form1[it]): # df11 = np.abs(form1[it]-meanf1) # if df21 < df11: # form1[it] = form2[it] # else: # form1[it] = form2[it] # form2[it] = float('nan') # elif df23 < df22: # if ~np.isnan(form3[it]): # df33 = np.abs(form3[it]-meanf3) # if df23 < df33: # form3[it] = form2[it] # else: # form3[it] = form2[it] # form2[it] = float('nan') # if ~np.isnan(form3[it]): # df31 = np.abs(form3[it]-meanf1) # df32 = np.abs(form3[it]-meanf2) # df33 = np.abs(form3[it]-meanf3) # if df32 < df33: # if df31 < df32: # if ~np.isnan(form1[it]): # df11 = np.abs(form1[it]-meanf1) # if df31 < df11: # form1[it] = form3[it] # else: # form1[it] = form3[it] # else: # if ~np.isnan(form2[it]): # df22 = np.abs(form2[it]-meanf2) # if df32 < df22: # form2[it] = form3[it] # else: # form2[it] = form3[it] # form3[it] = float('nan') return (sal, fund, fund2, form1, form2, form3, soundlen) def get_mps(t, freq, spec): "Computes the MPS of a spectrogram (idealy a log-spectrogram) or other REAL time-freq representation" mps = fftshift(fft2(spec)) amps = np.real(mps * np.conj(mps)) nf = mps.shape[0] nt = mps.shape[1] wfreq = fftshift(fftfreq(nf, d=freq[1] - freq[0])) wt = fftshift(fftfreq(nt, d=t[1] - t[0])) return wt, wfreq, mps, amps def inverse_mps(mps): "Inverts a MPS back to a spectrogram" spec = ifft2(ifftshift(mps)) return spec def play_signal(s, normalize = False): "quick and easy temporary play" wf = WavFile() wf.sample_rate = 44100 #standard samp rate wf.data = s wf.to_wav("/tmp/README.wav", normalize) play_sound("/tmp/README.wav") def inverse_spectrogram(spec, s_len, sample_rate, spec_sample_rate, freq_spacing, min_freq=0, max_freq=None, nstd=6, log=True, noise_level_db=80, rectify=True): """turns the complex spectrogram into a signal inverts by repeating the process on a string-of-ones """ spec_copy = spec.copy() if log: spec_copy = 10**(spec_copy) spec_tranpose = spec.transpose() # spec_tranpose[time][frequency] hnwinlen = len(spec) - 1 nincrement = int(np.round(float(sample_rate)/spec_sample_rate)) gauss_t = np.arange(-hnwinlen, hnwinlen+1, 1.0) gauss_std = float(2*hnwinlen) / float(nstd) gauss_window = np.exp(-gauss_t**2 / (2.0*gauss_std**2)) / (gauss_std*np.sqrt(2*np.pi)) s = np.zeros(s_len + 2*hnwinlen+1) w = np.zeros(s_len + 2*hnwinlen+1) for i in range(len(spec_tranpose)): sample = i * nincrement spec_slice = np.concatenate((spec_tranpose[i][:0:-1].conj(), spec_tranpose[i])) s[sample:sample+2*hnwinlen+1] += gauss_window * ifft(ifftshift(spec_slice)) w[sample:sample+2*hnwinlen+1] += gauss_window ** 2 s /= w return s[hnwinlen:hnwinlen+s_len] def inverse_real_spectrogram(spec, s_len, sample_rate, spec_sample_rate, freq_spacing, min_freq=0, max_freq=None, nstd=6, log=True, noise_level_db=80, rectify=True, iterations = 10): "inverts a real spectrogram into a signal using the griffith/lim algorithm" spec_magnitude = spec.copy() if log: spec_magnitude = 10**spec_magnitude estimated = inverse_spectrogram(spec_magnitude, s_len, sample_rate, spec_sample_rate, freq_spacing, min_freq, max_freq, nstd, log=False) for i in range(iterations): phase_spec = spectrogram(estimated, sample_rate, spec_sample_rate, freq_spacing, min_freq, max_freq, nstd, log=False)[2] error = ((abs(spec_magnitude) - abs(phase_spec))**2).sum() / (abs(spec_magnitude)**2).sum() print('the error after iteration %d is %f' % (i+i, error)) spec_angle = np.angle(phase_spec) estimated_spec = spec_magnitude * np.exp(1j*spec_angle) estimated = inverse_spectrogram(estimated_spec, s_len, sample_rate, spec_sample_rate, freq_spacing, min_freq, max_freq, nstd, log=False) return estimated def log_transform(x, dbnoise=100, normalize=False): """ Takes the log of a power spectrum or spectrogram to convert into decibels. :param x: The power spectrum or spectrogram. The contents of x will be replaced with the log version. :param dbnoise: The noise level in decibels. Anything lower than dbnoise will be set to zero. """ x /= x.max() zi = x > 0 x[zi] = 20*np.log10(x[zi]) + dbnoise x[x < 0] = 0 if normalize: x /= x.max() def spec_stats(spec_t, spec_freq, spec): """ Compute time-varying statistics on a spectrogram (or log spectrogram). :param spec_t: Spectrogram times with shape (num_time_points) :param spec_freq: Spectrogram frequencies with shape (num_freq) :param spec: Spectrogram of shape (num_freq, num_time_points) :return: """ # normalize each time point by it's sum to create a probability distribution nfreq,nt = spec.shape spec_p = deepcopy(spec) spec_p -= spec_p.min() spec_p_sum = spec_p.sum(axis=0) spec_p /= spec_p_sum # compute mean frequency freq_mean = np.dot(spec_p.T, spec_freq) # compute quantiles spec_p_csum = np.cumsum(spec_p, axis=0) qvals = [0.25, 0.5, 0.75] Q = np.zeros([len(qvals), nt]) for t in range(nt): for k,q in enumerate(qvals): i = spec_p_csum[:, t] <= q if i.sum() > 0: fi = np.max(np.where(i)[0]) Q[k, t] = spec_freq[fi] stats = dict() stats['Q'] = Q stats['qvals'] = qvals stats['freq_mean'] = freq_mean return stats def addramp(sound_in, samp_rate=44100, ramp_duration=5): # Adds a cosine onset and offset ramp to the sound of length ramp_duration # in ms samp_ms = samp_rate/1000 sound_out = sound_in lensound = len(sound_in) nend = int(ramp_duration*samp_ms); if (nend >= lensound): nend = lensound -1; # Onset ramp for t in range(nend): mult1=0.5*(1.0-np.cos(np.pi*t/nend)) sound_out[t] = sound_out[t]*mult1 # Offset ramp nbeg = lensound - nend for t in range(nbeg, lensound): mult1=0.5*(1.0-np.cos(np.pi*(lensound-t-1)/nend)) sound_out[t] = sound_out[t]*mult1 return sound_out
from django.db import models from cached_fields.fields import CachedIntegerField from cached_fields.mixins import CachedFieldsMixin from reverseapp.handlers import InvoiceSignalHandler class Item(models.Model): name = models.CharField(max_length=12) price = models.IntegerField() class Invoice(models.Model): item = models.ForeignKey(Item, on_delete=models.CASCADE, related_name="invoices") quantity = models.IntegerField() total = CachedIntegerField(InvoiceSignalHandler)
import os SITE_ID = 1 BASE_DIR = os.path.dirname(__file__) ROOT_URLCONF = 'urls' SECRET_KEY = 'secretkey' SITE_ROOT = os.path.dirname(os.path.abspath(__file__)) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.sessions', 'django.contrib.contenttypes', 'django.contrib.admin', 'django.contrib.messages', 'django.contrib.sites', 'cached_httpbl', ) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'test.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware' ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.messages.context_processors.messages', ) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'cached-httpbl', } } # this htttpBL API key is legal only for testing purposes CACHED_HTTPBL_API_KEY = 'abcdefghijkl' CACHED_HTTPBL_USE_CACHE = False
#!/usr/bin/env python3 class Node(object): """Node class for binary tree""" def __init__(self, data=None): self.left = None self.right = None self.data = data class Tree(object): """Tree class for binary search""" def __init__(self, data=None): self.root = Node(data) def insert(self, data): self._add(data, self.root) def _add(self, data, node): if data < node.data: if node.left: self._add(data, node.left) else: node.left = Node(data) else: if node.right: self._add(data, node.right) else: node.right = Node(data) def traverseBFS(self, node): queue = [node] out = [] # output buffer while len(queue) > 0: currentNode = queue.pop(0) out.append(currentNode.data) if currentNode.left: queue.append(currentNode.left) if currentNode.right: queue.append(currentNode.right) return out def inorder(self, node, buf=[]): if node is not None: self.inorder(node.left, buf) buf.append(node.data) self.inorder(node.right, buf) def preorder(self, node, buf=[]): if node is not None: buf.append(node.data) self.preorder(node.left, buf) self.preorder(node.right, buf) def postorder(self, node, buf=[]): if node is not None: self.postorder(node.left, buf) self.postorder(node.right, buf) buf.append(node.data) def test(self): d = self.traverseBFS(self.root) assert(d == [1,0,5,7,10]) f = [] self.inorder(self.root, f) assert(f == [0,1,5,7,10]) j = [] self.preorder(self.root, j) assert(j == [1,0,5,7,10]) l = [] self.postorder(self.root, l) assert(l == [0,10,7,5,1]) def main(): tree = Tree(1) data = [5,7,10,0] for i in data: tree.insert(i) tree.test() if __name__ == '__main__': main()
from abc import abstractmethod import argparse import copy import numpy as np import torch from tqdm import tqdm from cogdl.data import Dataset from cogdl.data.sampler import ( SAINTSampler, NeighborSampler, ClusteredLoader, ) from cogdl.models.supervised_model import SupervisedModel from cogdl.trainers.base_trainer import BaseTrainer from . import register_trainer class SampledTrainer(BaseTrainer): @staticmethod def add_args(parser): # fmt: off parser.add_argument("--num-workers", type=int, default=4) parser.add_argument("--eval-step", type=int, default=3) parser.add_argument("--batch-size", type=int, default=128) parser.add_argument("--no-self-loop", action="store_true") # fmt: on @abstractmethod def fit(self, model: SupervisedModel, dataset: Dataset): raise NotImplementedError @abstractmethod def _train_step(self): raise NotImplementedError @abstractmethod def _test_step(self, split="val"): raise NotImplementedError def __init__(self, args): super(SampledTrainer, self).__init__(args) self.device = "cpu" if not torch.cuda.is_available() or args.cpu else args.device_id[0] self.patience = args.patience self.max_epoch = args.max_epoch self.lr = args.lr self.weight_decay = args.weight_decay self.loss_fn, self.evaluator = None, None self.data, self.train_loader, self.optimizer = None, None, None self.eval_step = args.eval_step if hasattr(args, "eval_step") else 1 self.num_workers = args.num_workers if hasattr(args, "num_workers") else 0 self.batch_size = args.batch_size self.self_loop = not (hasattr(args, "no_self_loop") and args.no_self_loop) @classmethod def build_trainer_from_args(cls, args): return cls(args) def train(self): epoch_iter = tqdm(range(self.max_epoch)) patience = 0 max_score = 0 min_loss = np.inf best_model = copy.deepcopy(self.model) for epoch in epoch_iter: self._train_step() if (epoch + 1) % self.eval_step == 0: acc, loss = self._test_step() train_acc = acc["train"] val_acc = acc["val"] val_loss = loss["val"] epoch_iter.set_description( f"Epoch: {epoch:03d}, Train Acc/F1: {train_acc:.4f}, Val Acc/F1: {val_acc:.4f}" ) self.model = self.model.to(self.device) if val_loss <= min_loss or val_acc >= max_score: if val_loss <= min_loss: best_model = copy.deepcopy(self.model) min_loss = np.min((min_loss, val_loss.cpu())) max_score = np.max((max_score, val_acc)) patience = 0 else: patience += 1 if patience == self.patience: epoch_iter.close() break return best_model @register_trainer("graphsaint") class SAINTTrainer(SampledTrainer): @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--eval-cpu", action="store_true") parser.add_argument("--method", type=str, default="node", help="graph samplers") parser.add_argument("--sample-coverage", default=20, type=float, help="sample coverage ratio") parser.add_argument("--size-subgraph", default=1200, type=int, help="subgraph size") args = parser.parse_args() if args.method == "rw" or args.method == "mrw": parser.add_argument("--num-walks", default=50, type=int, help="number of random walks") parser.add_argument("--walk-length", default=20, type=int, help="random walk length") parser.add_argument("--size-frontier", default=20, type=int, help="frontier size in multidimensional random walks") # fmt: on @staticmethod def get_args4sampler(args): args4sampler = { "method": args.method, "sample_coverage": args.sample_coverage, "size_subgraph": args.size_subgraph, } if args.method == "rw" or args.method == "mrw": args4sampler["num_walks"] = args.num_walks args4sampler["walk_length"] = args.walk_length if args.method == "mrw": args4sampler["size_frontier"] = args.size_frontier return args4sampler @classmethod def build_trainer_from_args(cls, args): return cls(args) def __init__(self, args): super(SAINTTrainer, self).__init__(args) self.args4sampler = self.get_args4sampler(args) self.eval_cpu = args.eval_cpu if hasattr(args, "eval_cpu") else False def fit(self, model: SupervisedModel, dataset: Dataset): self.dataset = dataset self.data = dataset.data if self.self_loop: self.data.add_remaining_self_loops() self.model = model.to(self.device) self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() self.sampler = SAINTSampler(dataset, self.args4sampler)() # self.train_dataset = SAINTDataset(dataset, self.args_sampler) # self.train_loader = SAINTDataLoader( # dataset=train_dataset, # num_workers=self.num_workers, # persistent_workers=True, # pin_memory=True # ) # self.set_data_model(dataset, model) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) return self.train() def _train_step(self): self.data = self.sampler.one_batch("train") self.data.to(self.device) self.model = self.model.to(self.device) self.model.train() self.optimizer.zero_grad() mask = self.data.train_mask if len(self.data.y.shape) > 1: logits = self.model.predict(self.data) weight = self.data.norm_loss[mask].unsqueeze(1) loss = torch.nn.BCEWithLogitsLoss(reduction="sum", weight=weight)(logits[mask], self.data.y[mask].float()) else: logits = torch.nn.functional.log_softmax(self.model.predict(self.data), dim=-1) loss = ( torch.nn.NLLLoss(reduction="none")(logits[mask], self.data.y[mask]) * self.data.norm_loss[mask] ).sum() loss.backward() self.optimizer.step() def _test_step(self, split="val"): self.data = self.sampler.one_batch(split) if split != "train" and self.eval_cpu: self.model = self.model.cpu() else: self.data.apply(lambda x: x.to(self.device)) self.model.eval() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.predict(self.data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss @register_trainer("neighborsampler") class NeighborSamplingTrainer(SampledTrainer): model: torch.nn.Module @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) # fmt: on def __init__(self, args): super(NeighborSamplingTrainer, self).__init__(args) self.hidden_size = args.hidden_size self.sample_size = args.sample_size def fit(self, model, dataset): self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() settings = dict( batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, persistent_workers=True, pin_memory=True, ) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.data.train() self.train_loader = NeighborSampler( dataset=dataset, mask=self.data.train_mask, sizes=self.sample_size, **settings, ) settings["batch_size"] *= 5 self.data.eval() self.test_loader = NeighborSampler( dataset=dataset, mask=None, sizes=[-1], **settings, ) self.model = model.to(self.device) self.model.set_data_device(self.device) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) best_model = self.train() self.model = best_model acc, loss = self._test_step() return dict(Acc=acc["test"], ValAcc=acc["val"]) def _train_step(self): self.data.train() self.model.train() self.train_loader.shuffle() x_all = self.data.x.to(self.device) y_all = self.data.y.to(self.device) for target_id, n_id, adjs in self.train_loader: self.optimizer.zero_grad() n_id = n_id.to(x_all.device) target_id = target_id.to(y_all.device) x_src = x_all[n_id].to(self.device) y = y_all[target_id].to(self.device) loss = self.model.node_classification_loss(x_src, adjs, y) loss.backward() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.inference(self.data.x, self.test_loader) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} acc = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return acc, loss @classmethod def build_trainer_from_args(cls, args): return cls(args) @register_trainer("clustergcn") class ClusterGCNTrainer(SampledTrainer): @staticmethod def add_args(parser: argparse.ArgumentParser): """Add trainer-specific arguments to the parser.""" # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--n-cluster", type=int, default=1000) parser.add_argument("--batch-size", type=int, default=20) # fmt: on @staticmethod def get_args4sampler(args): args4sampler = { "method": "metis", "n_cluster": args.n_cluster, } return args4sampler def __init__(self, args): super(ClusterGCNTrainer, self).__init__(args) self.n_cluster = args.n_cluster self.batch_size = args.batch_size def fit(self, model, dataset): self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.model = model.to(self.device) self.evaluator = dataset.get_evaluator() self.loss_fn = dataset.get_loss_fn() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) settings = dict( batch_size=self.batch_size, num_workers=self.num_workers, persistent_workers=True, pin_memory=True ) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.data.train() self.train_loader = ClusteredLoader( dataset, self.n_cluster, method="metis", **settings, ) best_model = self.train() self.model = best_model metric, loss = self._test_step() return dict(Acc=metric["test"], ValAcc=metric["val"]) def _train_step(self): self.model.train() self.data.train() self.train_loader.shuffle() total_loss = 0 for batch in self.train_loader: self.optimizer.zero_grad() batch = batch.to(self.device) loss = self.model.node_classification_loss(batch) loss.backward() total_loss += loss.item() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() data = self.data self.model = self.model.cpu() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model(data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss @register_trainer("random_cluster") class RandomClusterTrainer(SampledTrainer): @staticmethod def add_args(parser): # fmt: off SampledTrainer.add_args(parser) parser.add_argument("--n-cluster", type=int, default=10) parser.add_argument("--val-n-cluster", type=int, default=-1) # fmt: on def __init__(self, args): super(RandomClusterTrainer, self).__init__(args) self.patience = args.patience // args.eval_step self.n_cluster = args.n_cluster self.val_n_cluster = args.val_n_cluster if hasattr(args, "val_n_cluster") else -1 self.eval_step = args.eval_step self.data, self.optimizer, self.evaluator, self.loss_fn = None, None, None, None def fit(self, model, dataset): self.model = model.to(self.device) self.data = dataset[0] if self.self_loop: self.data.add_remaining_self_loops() self.loss_fn = dataset.get_loss_fn() self.evaluator = dataset.get_evaluator() settings = dict(num_workers=self.num_workers, persistent_workers=True, pin_memory=True) if torch.__version__.split("+")[0] < "1.7.1": settings.pop("persistent_workers") self.train_loader = ClusteredLoader(dataset=dataset, n_cluster=self.n_cluster, method="random", **settings) if self.val_n_cluster > 0: self.test_loader = ClusteredLoader( dataset=dataset, n_cluster=self.val_n_cluster, method="random", num_workers=self.num_workers, persistent_workers=True, shuffle=False, ) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay) best_model = self.train() self.model = best_model metric, loss = self._test_step() return dict(Acc=metric["test"], ValAcc=metric["val"]) def _train_step(self): self.model.train() self.data.train() self.train_loader.shuffle() for batch in self.train_loader: self.optimizer.zero_grad() batch = batch.to(self.device) loss_n = self.model.node_classification_loss(batch) loss_n.backward() self.optimizer.step() def _test_step(self, split="val"): self.model.eval() self.data.eval() if self.val_n_cluster > 0: return self.batch_eval(split) self.model = self.model.to("cpu") data = self.data self.model = self.model.cpu() masks = {"train": self.data.train_mask, "val": self.data.val_mask, "test": self.data.test_mask} with torch.no_grad(): logits = self.model.predict(data) loss = {key: self.loss_fn(logits[val], self.data.y[val]) for key, val in masks.items()} metric = {key: self.evaluator(logits[val], self.data.y[val]) for key, val in masks.items()} return metric, loss def batch_eval(self, split="val"): preds = {"train": [], "val": [], "test": []} ys = {"train": [], "val": [], "test": []} with torch.no_grad(): for batch in self.test_loader: batch = batch.to(self.device) pred = self.model.predict(batch) for item in ["train", "val", "test"]: preds[item].append(pred[batch[f"{item}_mask"]]) ys[item].append(batch.y[batch[f"{item}_mask"]]) metric = dict() loss = dict() for key in preds.keys(): pred = torch.cat(preds[key], dim=0) y = torch.cat(ys[key], dim=0) _metric = self.evaluator(pred, y) _loss = self.loss_fn(pred, y) metric[key] = _metric loss[key] = _loss return metric, loss
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def removeElements(self, head: ListNode, val: int) -> ListNode: prev = dummy = ListNode(-1, head) cur = head while cur: if cur.val == val: prev.next = cur.next else: prev = cur cur = cur.next return dummy.next
import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import StandardScaler from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error data = pd.read_csv('Final_Data_5203.csv') data = data.drop(['imdb_id', 'titleType', 'primaryTitle', 'id', 'original_language'], axis=1) y = data['weighted_rating'].values X = data.drop(['weighted_rating', 'revenue', 'Variance'], axis = 1) X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) #Weighted Rating # For Weighted Rating parameter_space = { 'n_estimators': [10,50,100], 'criterion': ['squared_error', 'absolute_error', 'poisson'], 'max_depth': [10,20,30,40,50], } clf = RandomizedSearchCV(RandomForestRegressor(), parameter_space, n_iter=15, cv = 3, scoring = "explained_variance", verbose = True) clf.fit(X_train,y_train) clf.best_params_ train_pred = clf.predict(X_train) # Train predict test_pred = clf.predict(X_test) # Test predict print("For Train:") print("Mean Square Error is",mean_squared_error(y_train,train_pred)) # Calculating MSE print("Root Mean Square Error is",mean_squared_error(y_train,train_pred)**(1/2)) # Calculating RMSE print("Mean Absolute Error is",mean_absolute_error(y_train,train_pred)) # Calculating MAE print("r2 Score is", r2_score(y_train,train_pred)) # Calculating r2 Score print("For Test:") print("Mean Square Error is",mean_squared_error(y_test,test_pred)) # Calculating MSE print("Root Mean Square Error is",mean_squared_error(y_test,test_pred)**(1/2)) # Calculating RMSE print("Mean Absolute Error is",mean_absolute_error(y_test,test_pred)) # Calculating MAE print("r2 Score is", r2_score(y_test,test_pred)) # Calculating r2 Score #Revenue # For Revenue y2 = np.log(data['revenue']).values X_train, X_test, y_train, y_test = train_test_split(X, y2, test_size=0.2, random_state=42) clf2 = RandomizedSearchCV(RandomForestRegressor(), parameter_space, n_iter=15, cv = 3, scoring = "explained_variance", verbose = True) clf2.fit(X_train,y_train) clf2.best_params_ train_pred2 = clf2.predict(X_train) test_pred2 = clf2.predict(X_test) print("For Train:") print("Mean Square Error is",mean_squared_error(y_train,train_pred2)) # Calculating MSE print("Root Mean Square Error is",mean_squared_error(y_train,train_pred2)**(1/2)) # Calculating RMSE print("Mean Absolute Error is",mean_absolute_error(y_train,train_pred2)) # Calculating MAE print("r2 Score is", r2_score(y_train,train_pred2)) # Calculating r2 Score print("For Test:") print("Mean Square Error is",mean_squared_error(y_test,test_pred2)) # Calculating MSE print("Root Mean Square Error is",mean_squared_error(y_test,test_pred2)**(1/2)) # Calculating RMSE print("Mean Absolute Error is",mean_absolute_error(y_test,test_pred2)) # Calculating MAE print("r2 Score is", r2_score(y_test,test_pred2)) # Calculating r2 Score # save the model to disk filename = 'random_forest_model.sav' #joblib.dump(clf2, filename)
from setuptools import setup import os import re if os.environ.get("CI_COMMIT_TAG"): version = os.environ["CI_COMMIT_TAG"] if version.startswith("v"): version = version[1:] if not re.search(r"^\d+\.\d+\.\d+$", version): raise AttributeError( "given CI_COMMIT_TAG {} incorrect format. It must be vX.Y.Z or X.Y.Z format".format( os.environ["CI_COMMIT_TAG"] ) ) elif os.environ.get("CI_JOB_ID"): version = os.environ["CI_JOB_ID"] else: version = None setup( zip_safe=True, name="desafe", version=version, author="pjon", url="https://github.com/joncastro/SafeInCloud", py_modules=["desafe"], description="An utility to decrypt Safe in Cloud password files", use_2to3=True, license="LICENSE", install_requires=["pycrypto", "xmltodict", "passlib", "docopt"], entry_points={"console_scripts": ["desafe = desafe:main"]}, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: System Administrators", "Intended Audience :: End Users/Desktop", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Topic :: Security :: Cryptography", "Topic :: Utilities", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", "Operating System :: MacOS", ], )
from .lrs_layer import TimeAugmentation from .rlrs_layer import RecurrentLRS import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import keras from keras import backend as K from keras.layers import Dense, BatchNormalization, Reshape def init_rlrs_model(input_shape, num_levels, num_hidden, num_classes, decoupled=False): model = keras.Sequential() model.add(keras.layers.InputLayer(input_shape=input_shape)) model.add(TimeAugmentation()) model.add(RecurrentLRS(num_hidden, num_levels, input_shape[-1] + 1, decoupled=decoupled)) model.add(BatchNormalization(axis=-1)) model.add(Dense(num_classes, activation='softmax')) if not decoupled: model.name = 'RLRS_M{}_H{}'.format(num_levels, num_hidden) else: model.name = 'RLRS2_M{}_H{}'.format(num_levels, num_hidden) return model
#=============================================================================== # Copyright 2020-2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # daal4py KNN regression scikit-learn-compatible classes from ._base import NeighborsBase, KNeighborsMixin from sklearn.base import RegressorMixin from .._utils import sklearn_check_version if sklearn_check_version("0.22"): from sklearn.neighbors._regression import KNeighborsRegressor as \ BaseKNeighborsRegressor from sklearn.neighbors._base import _check_weights from sklearn.utils.validation import _deprecate_positional_args else: from sklearn.neighbors.regression import KNeighborsRegressor as \ BaseKNeighborsRegressor from sklearn.neighbors.base import _check_weights def _deprecate_positional_args(f): return f if sklearn_check_version("0.24"): class KNeighborsRegressor_(KNeighborsMixin, RegressorMixin, NeighborsBase): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) else: if sklearn_check_version("0.22"): from sklearn.neighbors._base import SupervisedFloatMixin as \ BaseSupervisedFloatMixin else: from sklearn.neighbors.base import SupervisedFloatMixin as \ BaseSupervisedFloatMixin class KNeighborsRegressor_(NeighborsBase, KNeighborsMixin, BaseSupervisedFloatMixin, RegressorMixin): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) class KNeighborsRegressor(KNeighborsRegressor_): @_deprecate_positional_args def __init__(self, n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs): super().__init__( n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = \ weights if sklearn_check_version("1.0") else _check_weights(weights) def _more_tags(self): return BaseKNeighborsRegressor._more_tags(self) def fit(self, X, y): return NeighborsBase._fit(self, X, y) def predict(self, X): return BaseKNeighborsRegressor.predict(self, X)
''' Functions for performing Otsu's algorithm. 3 variations: 1. the standard way Otsu's algorithm on the whole image 2. segmenting the image into blocks, and performing Otsu's algorithm on each block 3. use sliding window on the image, and use Otsu's algorithm within the window ''' import cv2 import numpy as np def threshold(image: np.ndarray) -> np.ndarray: ''' Otsu algorithm, done the standard way. (global threshold) The mask that is obtained can be used to binarize the image, by doing: np.where(image > threshold_mask, 255, 0) :params: - image (np.ndarray): the image to find the threshold of :return: - mask of threshold (np.ndarray) ''' histogram = cv2.calcHist( images=[image], channels=[0], mask=None, histSize=[256], ranges=[0, 256], ) num_pixels = image.size gray_level_probabilities = [ bin_count[0] / num_pixels for bin_count in histogram ] best_threshold = -1 min_intraclass_variance = float('inf') for threshold in range(len(histogram)): # 0 to 255 lower_group_probability = sum(gray_level_probabilities[:threshold+1]) upper_group_probability = sum(gray_level_probabilities[threshold+1:]) if lower_group_probability == 0 or upper_group_probability == 0: continue # otherwise, divide by 0 lower_group_mean = sum([ gray_level * probability # gray level == pixel value for gray_level, probability in enumerate(gray_level_probabilities[:threshold+1]) ]) / lower_group_probability upper_group_mean = sum([ gray_level * probability for gray_level, probability in enumerate(gray_level_probabilities[threshold+1:]) ]) / upper_group_probability lower_group_variance = sum([ ((gray_level - lower_group_mean)**2) * probability for gray_level, probability in enumerate(gray_level_probabilities[:threshold+1]) ]) / lower_group_probability upper_group_variance = sum([ ((gray_level - upper_group_mean)**2) * probability for gray_level, probability in enumerate(gray_level_probabilities[threshold+1:]) ]) / upper_group_probability intraclass_variance = lower_group_probability * lower_group_variance + \ upper_group_probability * upper_group_variance if intraclass_variance < min_intraclass_variance: min_intraclass_variance = intraclass_variance best_threshold = threshold return np.full_like(image, fill_value=best_threshold) def segmented_threshold( image: np.ndarray, num_vertical_segments: int, num_horizontal_segments: int, ) -> np.ndarray: ''' Otsu threshold, done on segments of the image. Total number of segments = num_vertical_segments * num_horizontal_segments The mask that is obtained can be used to binarize the image, by doing: np.where(image > threshold_mask, 255, 0) :params: - image (np.ndarray): the image to find the threshold of - num_vertical_segments (int): number of times to segment vertically; at least 1 - num_horizontal_segments (int): number of times to segment horizontally; at least 1 :return: - mask of threshold (np.ndarray) ''' if num_vertical_segments < 1: raise ValueError('There must be at least 1 segment in vertical direction') if num_horizontal_segments < 1: raise ValueError('There must be at least 1 segment in horizontal direction') image_height, image_length = image.shape # take ceiling to ensure entire image is covered segment_height = image_height // num_vertical_segments + 1 segment_length = image_length // num_horizontal_segments + 1 threshold_mask = np.zeros_like(image) for vertical_offset in range(0, image_height, segment_height): for horizontal_offset in range(0, image_length, segment_length): image_segment = image[ vertical_offset: vertical_offset + segment_height, horizontal_offset: horizontal_offset + segment_length ] # standard Otsu's algorithm segmented_threshold_mask = threshold(image_segment) threshold_mask[ vertical_offset: vertical_offset + segment_height, horizontal_offset: horizontal_offset + segment_length ] = segmented_threshold_mask return threshold_mask def sliding_window_threshold( image: np.ndarray, window_height: int, window_length: int, vertical_stride: int, horizontal_stride: int, ) -> np.ndarray: ''' Otsu threshold, done by using a sliding window over the image. The mask that is obtained can be used to binarize the image, by doing: np.where(image > threshold_mask, 255, 0) :params: - image (np.ndarray): the image to find the threshold of - window_height (int): height of the window i.e. vertical width - window_length (int): length of the window i.e. horizontal width - vertical_stride (int): number of pixel-wise steps to take in the vertical direction - horizontal_stride (int): number of pixel-wise steps to take in the horizontal direction :return: - mask of threshold (np.ndarray) ''' if window_height < 1: raise ValueError('Window must have a height of at least 1 pixel') if window_length < 1: raise ValueError('Window must have a length of at least 1 pixel') if vertical_stride < 1: raise ValueError('Stride in the vertical direction must be of at least 1 pixel') if horizontal_stride < 1: raise ValueError('Stride in the horizontal direction must be of at least 1 pixel') image_height, image_length = image.shape threshold_mask = np.zeros_like(image, dtype=np.float64) num_repetitions = np.zeros_like(image) for vertical_offset in range(0, image_height - window_height + vertical_stride, vertical_stride): for horizontal_offset in range(0, image_length - window_length + horizontal_stride, horizontal_stride): window = image[ vertical_offset: vertical_offset + window_height, horizontal_offset: horizontal_offset + window_length ] # standard Otsu's algorithm window_threshold_mask = threshold(window) threshold_mask[ vertical_offset: vertical_offset + window_height, horizontal_offset: horizontal_offset + window_length ] += np.mean(window_threshold_mask) num_repetitions[ vertical_offset: vertical_offset + window_height, horizontal_offset: horizontal_offset + window_length ] += 1 return threshold_mask / num_repetitions # get average
from sklearn import metrics from sklearn.metrics import roc_auc_score, roc_curve, auc from matplotlib import pyplot as plt import preprocess import utils class Evaluator: def accuracy(self, Y_test, preds): auc = metrics.accuracy_score(preds, Y_test) print(f"Classification accuracy is {auc}") return auc def classification_report(self, Y_test, preds): cr = metrics.classification_report(Y_test, preds) print(f"Classification report:\n {cr}") return cr def confusion_matrix(self, Y_test, preds): cm = metrics.confusion_matrix(Y_test, preds) # print(f"Confusion matrix:\n {cm}") precision = metrics.precision_score(Y_test, preds, average="weighted") recall = metrics.recall_score(Y_test, preds, average="weighted") f1_score = metrics.f1_score(Y_test, preds, average="weighted") print( f"Precision: {round(precision, 3)}, " f"recall: {round(recall, 3)}, " f"F1-score: {round(f1_score, 3)}" ) return cm def feature_importance(self, model, classes): """Return feature importance - value below zero means that the feature is not important""" print(model.feature_importances_) imp = model.coef_[0] imp, names = zip(*sorted(zip(imp, classes))) plt.rcParams["figure.figsize"] = (15, 10) plt.barh(range(len(names)), imp, align="center") plt.yticks(range(len(names)), names) plt.show()
# -*- coding: utf-8 -*- from benedict.core import keypaths as _keypaths import unittest class keypaths_test_case(unittest.TestCase): def test_keypaths(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, }, } o = _keypaths(i) r = [ 'a', 'b', 'b.c', 'b.c.x', 'b.c.y', 'b.d', 'b.d.x', 'b.d.y', ] self.assertEqual(o, r) def test_keypaths_with_custom_separator(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, }, } o = _keypaths(i, separator='/') r = [ 'a', 'b', 'b/c', 'b/c/x', 'b/c/y', 'b/d', 'b/d/x', 'b/d/y', ] self.assertEqual(o, r) def test_keypaths_with_invalid_separator(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, }, } with self.assertRaises(ValueError): o = _keypaths(i, separator=True) def test_keypaths_without_separator(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, }, } # with self.assertRaises(ValueError): # o = _keypaths(i, separator=None) o = _keypaths(i) r = [ 'a', 'b', 'b.c', 'b.c.x', 'b.c.y', 'b.d', 'b.d.x', 'b.d.y', ] self.assertEqual(o, r) def test_keypaths_with_non_string_keys(self): i = { True: { True: 1, }, False: { False: 1, }, None: { None: 1, }, } o = _keypaths(i) r = [ 'False', 'False.False', 'None', 'None.None', 'True', 'True.True', ] self.assertEqual(o, r) def test_keypaths_with_lists_and_indexes_included(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, 'e': [ { 'x': 1, 'y': -1, 'z': [1, 2, 3], }, { 'x': 2, 'y': -2, 'z': [2, 3, 4], }, { 'x': 3, 'y': -3, 'z': [3, 4, 5], }, ] }, } o = _keypaths(i, indexes=True) r = [ 'a', 'b', 'b.c', 'b.c.x', 'b.c.y', 'b.d', 'b.d.x', 'b.d.y', 'b.e', 'b.e[0]', 'b.e[0].x', 'b.e[0].y', 'b.e[0].z', 'b.e[0].z[0]', 'b.e[0].z[1]', 'b.e[0].z[2]', 'b.e[1]', 'b.e[1].x', 'b.e[1].y', 'b.e[1].z', 'b.e[1].z[0]', 'b.e[1].z[1]', 'b.e[1].z[2]', 'b.e[2]', 'b.e[2].x', 'b.e[2].y', 'b.e[2].z', 'b.e[2].z[0]', 'b.e[2].z[1]', 'b.e[2].z[2]', ] self.assertEqual(o, r) def test_keypaths_with_lists_and_indexes_not_included(self): i = { 'a': 1, 'b': { 'c': { 'x': 2, 'y': 3, }, 'd': { 'x': 4, 'y': 5, }, 'e': [ { 'x': 1, 'y': -1, 'z': [1, 2, 3], }, { 'x': 2, 'y': -2, 'z': [2, 3, 4], }, { 'x': 3, 'y': -3, 'z': [3, 4, 5], }, ] }, } o = _keypaths(i, indexes=False) r = [ 'a', 'b', 'b.c', 'b.c.x', 'b.c.y', 'b.d', 'b.d.x', 'b.d.y', 'b.e', ] self.assertEqual(o, r) def test_keypaths_with_nested_lists_and_indexes_included(self): i = { 'a': { 'b': [ [1, 2], [3, 4, 5], [ { 'x': 1, 'y': -1, }, ] , ], }, } o = _keypaths(i, indexes=True) r = [ 'a', 'a.b', 'a.b[0]', 'a.b[0][0]', 'a.b[0][1]', 'a.b[1]', 'a.b[1][0]', 'a.b[1][1]', 'a.b[1][2]', 'a.b[2]', 'a.b[2][0]', 'a.b[2][0].x', 'a.b[2][0].y', ] self.assertEqual(o, r)
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import sys import os pp = os.path.abspath('..') p = os.path.abspath('.') sys.path.insert(0, p) sys.path.insert(0, pp) from DataGenerator import DistributionDataGenerator, Workload from SyntheticDataGenerators import SyntheticStreamMaker from QueryGenerator import * import SketchExperiment import logging import Oracle import random import numpy as np import scipy as sp import copy import types import sketches.Sketches as Sketches logging.getLogger().setLevel(logging.WARNING) if __name__ == '__main__': # query for quantiles 5, 10, ..., 95 qg1 = ConfigQueryGenerator( queries='quantile', parameters=np.arange(0.05, 1, 0.05), indices=DataGeneratorSeq(length=10), ) qg2 = ConfigQueryGenerator( queries='cdf', parameters=np.arange(0.05, 1, 0.05), indices=DataGeneratorSeq(length=10), ) qg1.name = 'quantile' qg2.name = 'cdf' qg = ChainQueryGenerators(generators=[qg1, qg2]) dg1 = DistributionDataGenerator(length=int(1e5), distribution=sp.stats.beta(1,1), name='Uniform') w1 = Workload(data_generator=dg1, query_generator=qg) dg2 = DistributionDataGenerator(length=int(1e5), distribution=sp.stats.norm(0.5,0.2), name='Normal') w2 = Workload(data_generator=dg2, query_generator=qg) dg3 = SyntheticStreamMaker(n=1e5, order='zoomin') w3 = Workload(data_generator=dg3, query_generator=qg1) oracle = Oracle.QuantileOracle(save_dir = "/tmp/answers", as_json=True, read_cache=True) qg.connectDataGenerator(dg2) opts = SketchExperiment.ExperimentOptions( nparallel=8, ndatasets=1, nrepetitions=8, save_answers=True, ) e = SketchExperiment.SketchMetaExperiment(workloads=[w1, w2, w3], oracle=oracle, options=opts, result_file="tmp_quantile_exp_results.csv", ) #oracle2 = copy.deepcopy(oracle) # SketchConfig(sketch=Sketches.KLLSketch, size=range(100,1000,100)) KLL_params = [{'size':s} for s in range(100,1000,200)] REQ_params = [{'size':s} for s in range(10,100,20)] Tdigest_params = [{'delta':1/s} for s in range(20,200,40)] sketches = {'KLL': (Sketches.KLLSketch, KLL_params), 'REQ': (Sketches.REQSketch, REQ_params), 'Tdigest': (Sketches.TDigestSketch, Tdigest_params), #'Oracle': Sketches.SketchFactory(Sketches.OracleSketch, oracle2), } e.addSketches(sketches) # e.prepare() e.execute()
# Generated by Django 3.0.4 on 2021-04-07 10:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blogs', '0003_auto_20210407_0913'), ] operations = [ migrations.AlterModelOptions( name='postcomment', options={}, ), migrations.AlterModelTable( name='post', table='post', ), migrations.AlterModelTable( name='postcomment', table='post_comment', ), migrations.AlterModelTable( name='postimage', table='post_image', ), ]
#mapdatain_5.py #to read in ALL data #TRYING TO FIGURE OUT WHERE PHONY FIGURES COMING FROM """ These 3 imports needed for the full program # from classes import * # from code import * """ import math import matplotlib.pyplot as plt from scipy import stats import numpy as np import random import time # import data import data as pass_data from orangeclass_V_3efix import * #import the FUNCTIONS from the CLASSES # from boxesmap3_1 import * def filein (fname): numlines=0 xin=[] f=open(fname,'r') for line in f: #print (line, end='') xin.append(line) numlines=numlines+1 f.close() return xin,numlines def fileout (filename,filedata): f2=open(filename,'w') f2.write(filedata) f2.close() def getxy (fname): data,numlines=filein(fname) # dataline=['0' for i in range(numlines)] x=['0' for i in range(numlines)] y=['0' for i in range(numlines)] for i in range(numlines): xline=data[i] xline2=xline.split('\t') xline2[-1]=xline2[-1].replace('\n','') #print ('\nxline2',xline2) x[i]=eval(xline2[0]) y[i]=eval(xline2[1]) return x,y,numlines def getx (fname): data,numlines=filein(fname) #print ('\ndata\n',data,'\nlines',numlines) x=['0' for i in range(numlines)] for i in range(numlines): x[i]=data[i].replace('\n','') x[i]=eval(x[i]) return x,numlines def getxn(fname): data,numlines=filein(fname) #print (numlines) #print (data) dataline=['0' for i in range(numlines)] for i in range(numlines): x=data[i] y=x.split('\t') y[-1]=y[-1].replace('\n','') dataline[i]=y #print ('\n\nascii-input',dataline) xdata=dataline[:] for i in range (numlines): inline=len(dataline[i]) for j in range (inline): if xdata[i][j] != '': xdata[i][j]=eval(xdata[i][j]) else: xdata[i][j]=None #print ('dataline',dataline) #print ('xdata',xdata) return xdata, numlines #MIDIFYING THIS FUNCTION TO GET THE COLOR def getxnsecondstring(fname): #get n inputs from each line #first column=text, next colu1mns all numbers #here: variable name, x, y, height, width data,numlines=filein(fname) #print (numlines) #print (data) dataline=['0' for i in range(numlines)] for i in range(numlines): x=data[i] y=x.split('\t') y[-1]=y[-1].replace('\n','') dataline[i]=y #print ('\n\nascii-input',dataline) xdata=dataline[:] for i in range (numlines): inline=len(dataline[i]) for j in range (2,inline): if xdata[i][j] != '': xdata[i][j]=eval(xdata[i][j]) else: xdata[i][j]=None8 #print ('dataline',dataline) #print ('xdata',xdata) return xdata, numlines #------------------------------------------------------------------------- def lslin(invars,invar): print('\ncurrent value of ',invars,' is= ',invar) outvars=input('\nchange to (def=no change)') if (outvars==''): return invar else: outvar=eval(outvars) return outvar #END OF DEFINED FUNCTIONS--------------- #START DATA INPUT #give it just a number n, will find files cn.txt, bn.txt, mn.txt, icn.txt, btext and bxy fast=input('\n ONLY NUMBER n and I will find cn.txt, etc. (#/a, Def=a)') if fast.isdigit(): fnamec='c'+fast+'.txt' fnameb='b'+fast+'.txt' fnamem='m'+fast+'.txt' fnameic='ic'+fast+'.txt' fnamebtextbxy='btextbxy'+fast+'.txt' else: fname=input('\nfilename for array c [I will add .txt]= ') fnamec=fname+'.txt' fname=input('\nfilename for array b [I will add .txt]= ') fnameb=fname+'.txt' fname=input('\nfilename for array m [I will add .txt]= ') fnamem=fname+'.txt' fname=input('\nfilename for array IC [I will add .txt]= ') fnameic=fname+'.txt' fname=input('\nfilename for bxy, btext [I will add .txt]= ') fnamebtextbxy=fname+'.txt' #get the files c,numc=getxn(fnamec) b,numb=getx(fnameb) m,numm=getx(fnamem) ic,numic=getx(fnameic) btextbxydata,numvar=getxnsecondstring(fnamebtextbxy) #check for consistentcy if (numc**4!=numb*numm*numic*numvar): print ("\nFATAL WARNING - input issue - numbers c,b,m,ic,bxy,btext don't match") quit() #PART ONE make original m, b, c, ic arrays (NOT matrices) and print ma=np.array(m) ba=np.array(b) ca=np.array(c) ica=np.array(ic) print ('\nca= ',ca) print ('\nba= ',ba) print ('\nma= ',ma) print ('\nica= ',ica) change=input('\nWant to CHANGE parameters (y/n), def=n') if (change=='y' or change=='Y'): c=lslin('c',c) b=lslin('b',b) m=lslin('m',m) ic=lslin('ic',ic) ma=np.array(m) ba=np.array(b) ca=np.array(c) ica=np.array(ic) print ('\n\nNEW PARAMTER VALUES ARE:') print ('\nca= ',ca) print ('\nba= ',ba) print ('\nma= ',ma) print ('\nic= ',ica) else: pass #PART TWO read in the variable names and box locations in the plot btext and bxy(x,y,h,w) print('\n numvar(from btextbxy)= ',numvar) print('\n btextbxydata= ',btextbxydata) #COMPUTE (x,y)=[0,1] needed from PPTX bx=[btextbxydata[i][2] for i in range (numvar)] by=[btextbxydata[i][3] for i in range (numvar)] wx=[btextbxydata[i][5] for i in range (numvar)] hy=[btextbxydata[i][4] for i in range (numvar)] #note this scaling has changed 2017-07-06 #SCALE as needed for the plot xp=[0. for i in range(numvar)] yp=[0. for i in range(numvar)] xp2=[0. for i in range(numvar)] yp2=[0. for i in range(numvar)] for i in range(numvar): xp[i]=(bx[i] + 0.5*wx[i]) yp[i]=(by[i] + 0.5*hy[i]) maxx,minx=max(xp),min(xp) maxy,miny=max(yp),min(yp) for i in range(numvar): xp2[i]=0.9*(xp[i]-minx)/(maxx-minx)+0.05 yp2[i]=1-(0.9*(yp[i]-miny)/(maxy-miny)+0.05) bxy=[[xp2[i],yp2[i]] for i in range(numvar)] print ('\nbxy= ',bxy) #PARAEMTERS NEEDED FOR THE NUMERICAL INTEGRATION dt=.001 numdata=30000 t=[0. for i in range(numdata)] z=np.array([ica for i in range (numdata)]) #READY TO PASS ON DATA---------------------------------------------------------- #wrap parameters to pass into function pass_data.numdata=numdata pass_data.ca=ca pass_data.dt=dt pass_data.ma=ma pass_data.ba=ba pass_data.numc=numc pass_data.z=z pass_data.t=t pass_data.ica=ica #NEW DATA's ADDED BELOW pass_data.fnamec=fnamec pass_data.fnamem=fnamem pass_data.fnameb=fnameb pass_data.fnamebtextbxy=fnamebtextbxy pass_data.dt=dt #EVEN MORE DATA'S ADDED BELOW pass_data.a=ca pass_data.bxy=bxy pass_data.btext=str([btextbxydata[i][0] for i in range(numvar)]) pass_data.b=ica pass_data.labels=[btextbxydata[i][0] for i in range(numvar)] #ADDING BOX COLORS pass_data.boxcolor=[btextbxydata[i][1] for i in range(numvar)] #this stuff to call data_3.py and make PLOTS! #FIRST LET'S CHECK INPUT THEN LATER DO THE CALL------------ zzz=App() #FIRST LET'S CHECK INPUT THEN LATER DO THE CALL------------ # zzz.MakeWindow() # zzz.MakeSample() """ THESE NEEDED FOR THE FULL PROGRAM # App.recalculate(pass_data) #---------->call App # callGUI() """
# -*- coding: utf-8 -*- from __future__ import unicode_literals from irekua_database.models import MimeType from irekua_rest_api.serializers.base import IrekuaModelSerializer from irekua_rest_api.serializers.base import IrekuaHyperlinkedModelSerializer class SelectSerializer(IrekuaModelSerializer): class Meta: model = MimeType fields = ( 'url', 'mime_type', 'media_info_schema' ) class DescriptionSerializer(IrekuaModelSerializer): class Meta: model = MimeType fields = ( 'mime_type', 'media_info_schema' ) class ListSerializer(IrekuaModelSerializer): class Meta: model = MimeType fields = ( 'url', 'mime_type', 'media_info_schema', ) class DetailSerializer(IrekuaHyperlinkedModelSerializer): class Meta: model = MimeType fields = ( 'url', 'mime_type', 'media_info_schema', ) class CreateSerializer(IrekuaModelSerializer): class Meta: model = MimeType fields = ( 'mime_type', 'media_info_schema', ) class UpdateSerializer(IrekuaModelSerializer): class Meta: model = MimeType fields = ( 'mime_type', 'media_info_schema', )
import cv2 import numpy as np import matplotlib.pyplot as plt from MyDIPUtils.config import * # check_ol1: circle[i] and circle[j] overlaps too much # check_ol2: circle[i] lies too much outside original image # check_ol3: compare the overlapping area between different stepsize def direction_map(edge, clockwise): # edge_pad = np.pad(edge, 1, mode='constant', constant_values=255) # pdb.set_trace() edge_copy = edge.copy() flag = np.zeros_like(edge_copy) edge_y, edge_x = np.nonzero(edge_copy == 0) leftmost_x = np.min(edge_x) leftmost_y = np.max(edge_y[edge_x == leftmost_x]) original_point = (leftmost_x, leftmost_y) points = [] neigh = edge_copy[leftmost_y-1:leftmost_y+2, leftmost_x-1:leftmost_x+2] if not clockwise: direction = 0 if neigh[1, 2] == 0 else 7/4 if direction == 0: next_point = (leftmost_x+1, leftmost_y) else: next_point = (leftmost_x+1, leftmost_y+1) else: direction = 0 if neigh[1, 2] == 0 else 1/4 if direction == 0: next_point = (leftmost_x+1, leftmost_y) else: next_point = (leftmost_x+1, leftmost_y-1) points.append((direction, original_point)) # flag[leftmost_y, leftmost_x] = 1 while next_point != original_point: x, y = next_point neigh = edge_copy[y-1:y+2, x-1:x+2] flag_neigh = flag[y-1:y+2, x-1:x+2] this_point = next_point direction, next_point = find_next_direction(neigh, this_point, flag_neigh) points.append((direction, this_point)) flag[this_point[1], this_point[0]] = 1 # dir_map[y, x] = direction return points def find_next_direction(neigh, this_point, flag_neigh): x, y = this_point neigh[flag_neigh==1] = 255 # 4-neighbour is prior to 8-neighbour if neigh[0, 1] == 0: return 1/2, (x, y-1) if neigh[1, 2] == 0: return 0, (x+1, y) if neigh[2, 1] == 0: return 3/2, (x, y+1) if neigh[1, 0] == 0: return 1, (x-1, y) if neigh[0, 2] == 0: return 1/4, (x+1, y-1) if neigh[0, 0] == 0: return 3/4, (x-1, y-1) if neigh[2, 0] == 0: return 5/4, (x-1, y+1) if neigh[2, 2] == 0: return 7/4, (x+1, y+1) def tangent_line(points, seq_num, img, draw=True): k = 0 angle = 0 for i in range(1, max_neigh): s0 = 0 for j in range(i): s0 += points[j+seq_num][0] angle += s0/i k += np.tan(s0*np.pi/(i)) angle /= (max_neigh-1) k /= (max_neigh-1) x0, y0 = points[seq_num][1] y0 = img.shape[0] - y0 b = y0-k*x0 if draw: line_point(k, b, img) return k, angle, b def points_sequence(points): # points should be passed directly from cv2.goodFeaturesToTrack # shape is (N, 1, 2) sequence = [] points = np.squeeze(points) leftmost = np.argmin(points[:, 0]) sequence.append(points[leftmost]) for direction in ['lr', 'ur', 'ul', 'll']: next_point = find_next_anticlock(sequence[-1], points, direction) while np.any(next_point) is not None: sequence.append(next_point) next_point = find_next_anticlock(sequence[-1], points, direction) return sequence def find_next_anticlock(point, points, direction): if direction not in ['lr', 'ur', 'ul', 'll']: raise ValueError('Unknown direction') x, y = point if direction == 'lr': target = points[points[:, 1] > y] if len(target) == 0: return None return target[np.argmin(target[:, 0])] if direction == 'ur': target = points[points[:, 0] > x] if len(target) == 0: return None return target[np.argmax(target[:, 1])] if direction == 'll': target = points[points[:, 0] < x] if len(target) == 0: return None return target[np.argmin(target[:, 1])] if direction == 'ul': target = points[points[:, 1] < y] if len(target) == 0: return None return target[np.argmax(target[:, 0])] def find_line(point1, point2, img_size, pb): x1, y1 = point1 x2, y2 = point2 y1, y2 = img_size - y1, img_size - y2 if pb == True: if np.abs(y1-y2) > l1_norm_threshold: k = -(x1-x2)/(y1-y2) b = (y1+y2)/2 - k*(x1+x2)/2 else: k = None b = (x1+x2)/2 else: if np.abs(x1-x2) > l1_norm_threshold: k = (y1-y2)/(x1-x2) b = y2 - k*x2 else: k = None b = x1 return k, b def find_para_line(k, point, img_size): if k != None: return -k*point[0]+(img_size-point[1]) else: return point[0] def line_point(k, b, img): if k != None: if b > 0: point1 = (0, img.shape[0] - int(b)) else: point1 = (int(-b/k), img.shape[0]) if k*img.shape[0] + b > img.shape[0]: point2 = (int((img.shape[0] - b)/k), 0) else: point2 = (img.shape[0], int(img.shape[0] - (k*img.shape[0] + b))) else: point1 = (b, 0) point2 = (b, img.shape[0]) cv2.line(img, point1, point2, 0) # return img def line_gen_1(k, b, img_size): # img[i, j]: i->y, j->x if k != None: return lambda x, y: k*x-(img_size-y)+b else: return lambda x, y: x-b def line_gen_2(k, b, img_size): # Warning: if k == None, cannot use this function assert k != None return lambda x: img_size-(k*x+b) def distance(x1, y1, x2, y2, norm='l2'): if norm == 'l1': return min(np.abs(x1-x2), np.abs(y1-y2)) else: return np.sqrt((x1-x2)**2+(y1-y2)**2) def find_center_and_radius(point1, point2, points, img): # 1. find the side of the arc k0, b0 = find_line(point1, point2, img.shape[0], pb=False) line = line_gen_1(k0, b0, img.shape[0]) for point in points: if not np.any(np.logical_or(point == point1, point == point2)): flag = np.sign(line(*point)) break # 2. mask only the interested arc arc_ma = np.full_like(img, 255, dtype=np.uint8) arc_y, arc_x = np.nonzero(img != 255) for i in range(len(arc_x)): if flag != np.sign(line(arc_x[i], arc_y[i])): arc_ma[arc_y[i], arc_x[i]] = 0 # 3. further mask only the area between 2 corner point k, b = find_line(point1, point2, img.shape[0], pb=True) b1, b2 = find_para_line(k, point1, img.shape[0]), find_para_line(k, point2, img.shape[0]) line1, line2 = line_gen_1(k, b1, img.shape[0]), line_gen_1(k, b2, img.shape[0]) sgn1, sgn2 = np.sign(line1(*point2)), np.sign(line2(*point1)) arc_y, arc_x = np.nonzero(arc_ma != 255) for i in range(len(arc_x)): i_sgn1, i_sgn2 = np.sign(line1(arc_x[i], arc_y[i])), np.sign(line2(arc_x[i], arc_y[i])) if sgn1 != i_sgn1 or sgn2 != i_sgn2: arc_ma[arc_y[i], arc_x[i]] = 255 # test = draw_points([tuple(point1), tuple(point2)], arc_ma) # line_point(k, b, test) # line_point(k0, b0, test) # imgshow(test) # plt.figure() # plt.imshow(arc_ma, cmap='gray') # 3.find center and radius arc_y, arc_x = np.nonzero(arc_ma == 0) len_arc = len(arc_y) if len_arc < 5: return None if k != None: lower_x = max((point1[0]+point2[0])//2-max_radius, 0) upper_x = min((point1[0]+point2[0])//2+max_radius, img.shape[0]) line = line_gen_2(k, b, img.shape[0]) dis_var = [] dis = [] for x in range(lower_x, upper_x): tmp_dis = [] y = line(x) for i in range(len_arc): ay, ax = arc_y[i], arc_x[i] tmp_dis.append(distance(x, y, ax, ay)) dis_var.append(np.var(tmp_dis)) dis.append(np.mean(tmp_dis)) cur = np.argmin(dis_var) center_x = lower_x + cur center_y = int(line(center_x)) radius = dis[cur] else: lower_y = max((point1[1]+point2[1])//2-max_radius, 0) upper_y = min((point1[1]+point2[1])//2+max_radius, img.shape[0]) x = b dis_var = [] dis = [] for y in range(lower_y, upper_y): tmp_dis = [] for i in range(len_arc): ay, ax = arc_y[i], arc_x[i] tmp_dis.append(distance(x, y, ax, ay)) dis_var.append(np.var(tmp_dis)) dis.append(np.mean(tmp_dis)) cur = np.argmin(dis_var) center_x = b center_y = lower_y + cur radius = dis[cur] return (int(center_x), int(center_y)), int(radius) def check_close(circles): flags = [-1 for _ in range(len(circles))] count = 0 for i in range(len(circles)): if flags[i] == -1: color = count count += 1 else: color = flags[i] flags[i] = color for j in range(len(circles)): if j != i and distance(*circles[i][0], *circles[j][0]) < distance_threshold: flags[j] = color final = [] for i in range(len(flags)): if flags[i] != -1: color = flags[i] flags[i] = -1 tmp_center = [circles[i][0]] tmp_radius = [circles[i][1]] for j in range(i+1, len(flags)): if flags[j] == color: tmp_center.append(circles[j][0]) tmp_radius.append(circles[j][1]) flags[j] = -1 mean_center = np.mean(tmp_center, axis=0) mean_radius = np.mean(tmp_radius) final.append(((int(mean_center[0]), int(mean_center[1])), int(mean_radius))) return final def overlapping(circle1, circle2, img_shape): tmp1 = np.full(img_shape, 255, dtype=np.uint8) tmp2 = np.full(img_shape, 255, dtype=np.uint8) cv2.circle(tmp1, circle1[0], circle1[1], 0, cv2.FILLED) cv2.circle(tmp2, circle2[0], circle2[1], 0, cv2.FILLED) ol = np.full(img_shape, 255, dtype=np.uint8) ol[np.logical_and(tmp1==0, tmp2==0)] = 0 area1 = np.sum(tmp1==0) area2 = np.sum(tmp2==0) area_ol = np.sum(ol==0) return area_ol/area1, area_ol/area2 def check_ol1(circles, shape): final = [] flags = [-1 for _ in range(len(circles))] for i in range(len(circles)): if flags[i] == -1: for j in range(i+1, len(circles)): if flags[j] == -1: ol_i, ol_j = overlapping(circles[i], circles[j], shape) if max(ol_i, ol_j) > overlapping1_threshold: if max(ol_i, ol_j) == ol_i: flags[i] = 0 else: flags[j] = 0 if flags[i] == -1: final.append(circles[i]) return final def check_ol2(circles, ori_img): final = [] for circle in circles: tmp = np.full(ori_img.shape, 255, dtype=np.uint8) cv2.circle(tmp, circle[0], circle[1], 0, cv2.FILLED) ol = np.full(ori_img.shape, 255, dtype=np.uint8) ol[np.logical_and(tmp==0, ori_img==0)]=0 if np.sum(ol==0)/np.sum(tmp==0) > overlapping2_threshold: final.append(circle) return final def check_ol3(circles, ori_img): tmp = np.full(ori_img.shape, 255, dtype=np.uint8) for circle in circles: cv2.circle(tmp, circle[0], circle[1], 0, cv2.FILLED) intersec = np.full(ori_img.shape, 255, dtype=np.uint8) intersec[np.logical_and(tmp==0, ori_img==0)]=0 ol = np.sum(intersec==0) tmp[intersec==0] = 255 sub = np.sum(tmp==0) # return ol/sub or ol-sub? # problem... return ol-sub def find_all_circles(check_close_radius=True, check_overlapping_1=True, check_overlapping_2=True, **kwargs): # points should be binded with edge if 'points' in kwargs.keys(): points = kwargs['points'] has_point = True else: has_point = False if 'edge' in kwargs.keys(): edge = kwargs['edge'] has_edge = True else: has_edge = False if 'img' in kwargs.keys(): img = kwargs['img'] has_img = True else: has_img = False flag_edge = has_point^has_edge if flag_edge: raise KeyError('Points and edge should be passed concurrently.') if has_img == False and has_point == False: raise KeyError('Either image or edge should be passed.') if has_img == False and check_overlapping_2 == True: raise KeyError('Checking overlapping 2 requries original image.') flag_edge = has_edge if not has_edge: img = cv2.GaussianBlur(img,(5,5),0) # TODO: integrate erosion edge = cv2.Canny(img, 100, 200) edge = cv2.bitwise_not(edge) out = edge.copy() corners = cv2.goodFeaturesToTrack(img,10,0.1,10) white = np.zeros_like(img) for i in corners: x,y = i.ravel() cv2.circle(white,(x,y),3,255,-1) points = corners else: out = edge.copy() # sequence = points_sequence(points) points += [points[0]] sequence = np.array(points, dtype=np.int32) circles = [] if len(sequence) < 3: left, right, up, down = find_4_points(edge) center = int((right+left)/2), int((down+up)/2) radius = int(min((right-left)/2, (down-up)/2)) return [(center, radius)] for i in range(len(sequence) - 1): point = find_center_and_radius(sequence[i], sequence[i+1], sequence, edge) if point != None and point[1] < max_radius: circles.append(point) if check_overlapping_2 and has_img: circles = check_ol2(circles, img) if check_close_radius: circles = check_close(circles) if check_overlapping_1: # check overlapping 1 means check if one deteced circle is mostly inside another detected circle # TODO: take average or just choose the larger circle? circles = check_ol1(circles, edge.shape) for circle in circles: center, radius = circle cv2.circle(out,center,3,0,-1) cv2.circle(out,center,radius,0) return circles, out def imgshow(img): plt.figure() plt.imshow(img, cmap='gray') plt.show() def draw_points(points, img): copy = img.copy() for point in points: cv2.circle(copy, point, 3, 0, cv2.FILLED) return copy def find_feature_points(points_sample): slope = [] for i in range(len(points_sample)-1): x1, y1 = points_sample[i] x2, y2 = points_sample[i+1] theta = np.arctan((y1-y2)/(x1-x2)) if (x1-x2) != 0 else 0.5*np.pi print(theta, points_sample[i]) slope.append(theta) interested = [] for i in range(len(slope)-1): diff = np.abs(slope[i]-slope[i+1]) if diff > np.pi/2: diff = np.pi - diff if diff > slope_lower: print(slope[i]-slope[i+1]) # imgshow(test) interested.append(points_sample[i+1]) # cv2.circle(erode, points_sample[i], 2, 0, cv2.FILLED) flags = [-1 for _ in range(len(interested))] count = 0 for i in range(len(interested)): if flags[i] == -1: color = count count += 1 else: color = flags[i] flags[i] = color for j in range(len(interested)): if j != i and distance(*interested[i], *interested[j]) < distance_threshold: flags[j] = color final = [] for i in range(len(flags)): if flags[i] != -1: color = flags[i] flags[i] = -1 tmp = [interested[i]] for j in range(i+1, len(flags)): if flags[j] == color: tmp.append(interested[j]) flags[j] = -1 mean = np.mean(tmp, axis=0) final.append((int(mean[0]), int(mean[1]))) return final def find_feature_points2(points_sample): slope = [] slope_rev = [] for i in range(len(points_sample)-1): x1, y1 = points_sample[i] x2, y2 = points_sample[i+1] x3, y3 = points_sample[i-1] theta = np.arctan((y1-y2)/(x1-x2)) if (x1-x2) != 0 else 0.5*np.pi theta_rev = np.arctan((y1-y3)/(x1-x3)) if (x1-x3) != 0 else 0.5*np.pi slope.append(theta) slope_rev.append(theta_rev) interested = [] for i in range(len(slope)-1): diff = np.abs(slope[i]-slope_rev[i]) if diff > slope_lower and diff < slope_upper: # imgshow(test) interested.append(points_sample[i]) # cv2.circle(erode, points_sample[i], 2, 0, cv2.FILLED) flags = [-1 for _ in range(len(interested))] count = 0 for i in range(len(interested)): if flags[i] == -1: color = count count += 1 else: color = flags[i] flags[i] = color for j in range(len(interested)): if j != i and distance(*interested[i], *interested[j]) < distance_threshold: flags[j] = color final = [] for i in range(len(flags)): if flags[i] != -1: color = flags[i] flags[i] = -1 tmp = [interested[i]] for j in range(i+1, len(flags)): if flags[j] == color: tmp.append(interested[j]) flags[j] = -1 mean = np.mean(tmp, axis=0) final.append((int(mean[0]), int(mean[1]))) return final def find_4_points(img): x, y = np.nonzero(img==0) left, right = np.min(x), np.max(x) up, down = np.min(y), np.max(y) return left, right, up, down def count_one(img): left, right, up, down = find_4_points(img) if np.abs((down-up)-(right-left)) > single_circle_thresh1: return None else: center = int((right+left)/2), int((down+up)/2) radius = int(min((right-left)/2, (down-up)/2)) test = np.full_like(img, 255) imgshow(img) cv2.circle(test, center, radius, 0, cv2.FILLED) imgshow(test) ol = np.logical_and(img==0, test==0) area_ol = np.sum(ol) test[ol] = 255 area_sub = np.sum(test==0) area_img = np.sum(img==0) if area_ol/area_img > single_circle_thresh2 and area_sub/area_img < single_circle_thresh3: return center, radius else: return None if __name__ == '__main__': # img = cv2.imread('73.png') # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # find_all_circles(img) circle1 = ((50, 50), 40) circle2 = ((80, 80), 40)
from binary_array_to_number import binary_array_to_number import unittest class Test(unittest.TestCase): def test_1(self): result = binary_array_to_number([0, 0, 0, 1]) self.assertEqual(result, 1) def test_2(self): result = binary_array_to_number([0, 0, 1, 0]) self.assertEqual(result, 2) if __name__ == "__main__": unittest.main()
from requests import get, post from subprocess import check_output from json import dumps def acessar_dontpad(link_dontpad): dontpad = get(link_dontpad).text text = dontpad[dontpad.find('<textarea id="text">' ) + len('<textarea id="text">') : dontpad.find('</textarea>') ] return text def listar_processos(): lista_processos = [] comando = "tasklist" comando_output = check_output(comando, shell=True).decode("latin-1") comando_output = comando_output.split("\n") comando_output = comando_output[3:] for processos in comando_output: processo = processos.split() if len(processo) > 0: if ".exe" in processo[0]: lista_processos.append({"processo":processo[0], "PID":processo[1]}) lista_processos = dumps(lista_processos) return lista_processos def encerrar_processos(nome_exe): comando = "taskkill /IM " + nome_exe subprocess.check_output(comando, shell=True).decode("latin-1") return 0 def enviar_processos_dontpad(lista_processos, url): data = {"text": lista_processos} post(url, data).text return 0 def main(args): url = "http://dontpad.com/testando2015" lista_de_processos = listar_processos() enviar_processos_dontpad(lista_de_processos, url) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
import numpy as np import matplotlib.pyplot as plt curve_F3 = np.loadtxt('./result/CUM_NN_F3_L100_50000.txt', delimiter = ',', dtype = float) curve_F9 = np.loadtxt('./result/CUM_NN_F9_L100_50000.txt', delimiter = ',', dtype = float) curve_TC = np.loadtxt('./result/cum_based_all_L100.txt', delimiter = ',', dtype = float) #plot the curve of SNR and Total Accuracy plt.figure() plt.plot(curve_F3[0,:],curve_F3[1,:],'bo-') plt.plot(curve_F9[0,:],curve_F9[1,:],'rs-') plt.plot(curve_TC[0,:],curve_TC[1,:],'y^-') plt.legend(['FCNN based on 3 features','FCNN based on 9 features','TC Method'],loc=4) plt.xlabel('SNR/dB') plt.ylabel('Total Accuracy') plt.title('Total accuracy and signal-to-noise ratio') plt.show() #plot the curve of SNR and Accuracy of each categories NClass=4 output_label=np.array(['BPSK','QPSK','8PSK','16QAM']) for i in range(NClass): plt.subplot(2,2,i+1); plt.plot(curve_F3[0,:],curve_F3[i+2,:],'bo-') plt.plot(curve_F9[0,:],curve_F9[i+2,:],'rs-') plt.legend(['3 features','9 features'],loc=4) plt.xlabel('SNR/dB') plt.ylabel(output_label[i]+' accuracy') plt.title(output_label[i]) plt.subplots_adjust(wspace=0.5, hspace=0.5) plt.show()
# MINLP written by GAMS Convert at 04/21/18 13:55:18 # # Equation counts # Total E G L N X C B # 1853 1105 307 441 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 1495 1414 81 0 0 0 0 0 # FX 12 12 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 4918 4009 909 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.b2 = Var(within=Binary,bounds=(0,1),initialize=0) m.b3 = Var(within=Binary,bounds=(0,1),initialize=0) m.b4 = Var(within=Binary,bounds=(0,1),initialize=0) m.b5 = Var(within=Binary,bounds=(0,1),initialize=0) m.b6 = Var(within=Binary,bounds=(0,1),initialize=0) m.b7 = Var(within=Binary,bounds=(0,1),initialize=0) m.b8 = Var(within=Binary,bounds=(0,1),initialize=0) m.b9 = Var(within=Binary,bounds=(0,1),initialize=0) m.b10 = Var(within=Binary,bounds=(0,1),initialize=0) m.b11 = Var(within=Binary,bounds=(0,1),initialize=0) m.b12 = Var(within=Binary,bounds=(0,1),initialize=0) m.b13 = Var(within=Binary,bounds=(0,1),initialize=0) m.b14 = Var(within=Binary,bounds=(0,1),initialize=0) m.b15 = Var(within=Binary,bounds=(0,1),initialize=0) m.b16 = Var(within=Binary,bounds=(0,1),initialize=0) m.b17 = Var(within=Binary,bounds=(0,1),initialize=0) m.b18 = Var(within=Binary,bounds=(0,1),initialize=0) m.b19 = Var(within=Binary,bounds=(0,1),initialize=0) m.b20 = Var(within=Binary,bounds=(0,1),initialize=0) m.b21 = Var(within=Binary,bounds=(0,1),initialize=0) m.b22 = Var(within=Binary,bounds=(0,1),initialize=0) m.b23 = Var(within=Binary,bounds=(0,1),initialize=0) m.b24 = Var(within=Binary,bounds=(0,1),initialize=0) m.b25 = Var(within=Binary,bounds=(0,1),initialize=0) m.b26 = Var(within=Binary,bounds=(0,1),initialize=0) m.b27 = Var(within=Binary,bounds=(0,1),initialize=0) m.b28 = Var(within=Binary,bounds=(0,1),initialize=0) m.b29 = Var(within=Binary,bounds=(0,1),initialize=0) m.b30 = Var(within=Binary,bounds=(0,1),initialize=0) m.b31 = Var(within=Binary,bounds=(0,1),initialize=0) m.b32 = Var(within=Binary,bounds=(0,1),initialize=0) m.b33 = Var(within=Binary,bounds=(0,1),initialize=0) m.b34 = Var(within=Binary,bounds=(0,1),initialize=0) m.b35 = Var(within=Binary,bounds=(0,1),initialize=0) m.b36 = Var(within=Binary,bounds=(0,1),initialize=0) m.b37 = Var(within=Binary,bounds=(0,1),initialize=0) m.b38 = Var(within=Binary,bounds=(0,1),initialize=0) m.b39 = Var(within=Binary,bounds=(0,1),initialize=0) m.b40 = Var(within=Binary,bounds=(0,1),initialize=0) m.b41 = Var(within=Binary,bounds=(0,1),initialize=0) m.b42 = Var(within=Binary,bounds=(0,1),initialize=0) m.b43 = Var(within=Binary,bounds=(0,1),initialize=0) m.b44 = Var(within=Binary,bounds=(0,1),initialize=0) m.b45 = Var(within=Binary,bounds=(0,1),initialize=0) m.b46 = Var(within=Binary,bounds=(0,1),initialize=0) m.b47 = Var(within=Binary,bounds=(0,1),initialize=0) m.b48 = Var(within=Binary,bounds=(0,1),initialize=0) m.b49 = Var(within=Binary,bounds=(0,1),initialize=0) m.b50 = Var(within=Binary,bounds=(0,1),initialize=0) m.b51 = Var(within=Binary,bounds=(0,1),initialize=0) m.b52 = Var(within=Binary,bounds=(0,1),initialize=0) m.b53 = Var(within=Binary,bounds=(0,1),initialize=0) m.b54 = Var(within=Binary,bounds=(0,1),initialize=0) m.b55 = Var(within=Binary,bounds=(0,1),initialize=0) m.b56 = Var(within=Binary,bounds=(0,1),initialize=0) m.b57 = Var(within=Binary,bounds=(0,1),initialize=0) m.b58 = Var(within=Binary,bounds=(0,1),initialize=0) m.b59 = Var(within=Binary,bounds=(0,1),initialize=0) m.b60 = Var(within=Binary,bounds=(0,1),initialize=0) m.b61 = Var(within=Binary,bounds=(0,1),initialize=0) m.b62 = Var(within=Binary,bounds=(0,1),initialize=0) m.b63 = Var(within=Binary,bounds=(0,1),initialize=0) m.b64 = Var(within=Binary,bounds=(0,1),initialize=0) m.b65 = Var(within=Binary,bounds=(0,1),initialize=0) m.b66 = Var(within=Binary,bounds=(0,1),initialize=0) m.b67 = Var(within=Binary,bounds=(0,1),initialize=0) m.b68 = Var(within=Binary,bounds=(0,1),initialize=0) m.b69 = Var(within=Binary,bounds=(0,1),initialize=0) m.b70 = Var(within=Binary,bounds=(0,1),initialize=0) m.b71 = Var(within=Binary,bounds=(0,1),initialize=0) m.b72 = Var(within=Binary,bounds=(0,1),initialize=0) m.b73 = Var(within=Binary,bounds=(0,1),initialize=0) m.b74 = Var(within=Binary,bounds=(0,1),initialize=0) m.b75 = Var(within=Binary,bounds=(0,1),initialize=0) m.b76 = Var(within=Binary,bounds=(0,1),initialize=0) m.b77 = Var(within=Binary,bounds=(0,1),initialize=0) m.b78 = Var(within=Binary,bounds=(0,1),initialize=0) m.b79 = Var(within=Binary,bounds=(0,1),initialize=0) m.b80 = Var(within=Binary,bounds=(0,1),initialize=0) m.b81 = Var(within=Binary,bounds=(0,1),initialize=0) m.b82 = Var(within=Binary,bounds=(0,1),initialize=0) m.x83 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x84 = Var(within=Reals,bounds=(None,None),initialize=0) m.x85 = Var(within=Reals,bounds=(None,None),initialize=0) m.x86 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x87 = Var(within=Reals,bounds=(None,None),initialize=0) m.x88 = Var(within=Reals,bounds=(None,None),initialize=0) m.x89 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x90 = Var(within=Reals,bounds=(None,None),initialize=0) m.x91 = Var(within=Reals,bounds=(None,None),initialize=0) m.x92 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x93 = Var(within=Reals,bounds=(None,None),initialize=0) m.x94 = Var(within=Reals,bounds=(None,None),initialize=0) m.x95 = Var(within=Reals,bounds=(None,None),initialize=0) m.x96 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x97 = Var(within=Reals,bounds=(None,None),initialize=0) m.x98 = Var(within=Reals,bounds=(None,None),initialize=0) m.x99 = Var(within=Reals,bounds=(None,None),initialize=0) m.x100 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x101 = Var(within=Reals,bounds=(None,None),initialize=0) m.x102 = Var(within=Reals,bounds=(None,None),initialize=0) m.x103 = Var(within=Reals,bounds=(None,None),initialize=0) m.x104 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x105 = Var(within=Reals,bounds=(None,None),initialize=0) m.x106 = Var(within=Reals,bounds=(None,None),initialize=0) m.x107 = Var(within=Reals,bounds=(None,None),initialize=0) m.x108 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x109 = Var(within=Reals,bounds=(None,None),initialize=0) m.x110 = Var(within=Reals,bounds=(None,None),initialize=0) m.x111 = Var(within=Reals,bounds=(None,None),initialize=0) m.x112 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x113 = Var(within=Reals,bounds=(None,None),initialize=0) m.x114 = Var(within=Reals,bounds=(None,None),initialize=0) m.x115 = Var(within=Reals,bounds=(None,None),initialize=0) m.x116 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x117 = Var(within=Reals,bounds=(None,None),initialize=0) m.x118 = Var(within=Reals,bounds=(None,None),initialize=0) m.x119 = Var(within=Reals,bounds=(None,None),initialize=0) m.x120 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x121 = Var(within=Reals,bounds=(None,None),initialize=0) m.x122 = Var(within=Reals,bounds=(None,None),initialize=0) m.x123 = Var(within=Reals,bounds=(None,None),initialize=0) m.x124 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x125 = Var(within=Reals,bounds=(None,None),initialize=0) m.x126 = Var(within=Reals,bounds=(None,None),initialize=0) m.x127 = Var(within=Reals,bounds=(None,None),initialize=0) m.x128 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x129 = Var(within=Reals,bounds=(None,None),initialize=0) m.x130 = Var(within=Reals,bounds=(None,None),initialize=0) m.x131 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x132 = Var(within=Reals,bounds=(None,None),initialize=0) m.x133 = Var(within=Reals,bounds=(None,None),initialize=0) m.x134 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x135 = Var(within=Reals,bounds=(None,None),initialize=0) m.x136 = Var(within=Reals,bounds=(None,None),initialize=0) m.x137 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x138 = Var(within=Reals,bounds=(None,None),initialize=0) m.x139 = Var(within=Reals,bounds=(None,None),initialize=0) m.x140 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x141 = Var(within=Reals,bounds=(None,None),initialize=0) m.x142 = Var(within=Reals,bounds=(None,None),initialize=0) m.x143 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x144 = Var(within=Reals,bounds=(None,None),initialize=0) m.x145 = Var(within=Reals,bounds=(None,None),initialize=0) m.x146 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x147 = Var(within=Reals,bounds=(None,None),initialize=0) m.x148 = Var(within=Reals,bounds=(None,None),initialize=0) m.x149 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x150 = Var(within=Reals,bounds=(None,None),initialize=0) m.x151 = Var(within=Reals,bounds=(None,None),initialize=0) m.x152 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x153 = Var(within=Reals,bounds=(None,None),initialize=0) m.x154 = Var(within=Reals,bounds=(None,None),initialize=0) m.x155 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x156 = Var(within=Reals,bounds=(None,None),initialize=0) m.x157 = Var(within=Reals,bounds=(None,None),initialize=0) m.x158 = Var(within=Reals,bounds=(None,None),initialize=0) m.x159 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x160 = Var(within=Reals,bounds=(None,None),initialize=0) m.x161 = Var(within=Reals,bounds=(None,None),initialize=0) m.x162 = Var(within=Reals,bounds=(None,None),initialize=0) m.x163 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x164 = Var(within=Reals,bounds=(None,None),initialize=0) m.x165 = Var(within=Reals,bounds=(None,None),initialize=0) m.x166 = Var(within=Reals,bounds=(None,None),initialize=0) m.x167 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x168 = Var(within=Reals,bounds=(None,None),initialize=0) m.x169 = Var(within=Reals,bounds=(None,None),initialize=0) m.x170 = Var(within=Reals,bounds=(None,None),initialize=0) m.x171 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x172 = Var(within=Reals,bounds=(None,None),initialize=0) m.x173 = Var(within=Reals,bounds=(None,None),initialize=0) m.x174 = Var(within=Reals,bounds=(None,None),initialize=0) m.x175 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x176 = Var(within=Reals,bounds=(None,None),initialize=0) m.x177 = Var(within=Reals,bounds=(None,None),initialize=0) m.x178 = Var(within=Reals,bounds=(None,None),initialize=0) m.x179 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x180 = Var(within=Reals,bounds=(None,None),initialize=0) m.x181 = Var(within=Reals,bounds=(None,None),initialize=0) m.x182 = Var(within=Reals,bounds=(None,None),initialize=0) m.x183 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x184 = Var(within=Reals,bounds=(None,None),initialize=0) m.x185 = Var(within=Reals,bounds=(None,None),initialize=0) m.x186 = Var(within=Reals,bounds=(None,None),initialize=0) m.x187 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x188 = Var(within=Reals,bounds=(None,None),initialize=0) m.x189 = Var(within=Reals,bounds=(None,None),initialize=0) m.x190 = Var(within=Reals,bounds=(None,None),initialize=0) m.x191 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x192 = Var(within=Reals,bounds=(None,None),initialize=0) m.x193 = Var(within=Reals,bounds=(None,None),initialize=0) m.x194 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x195 = Var(within=Reals,bounds=(None,None),initialize=0) m.x196 = Var(within=Reals,bounds=(None,None),initialize=0) m.x197 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x198 = Var(within=Reals,bounds=(None,None),initialize=0) m.x199 = Var(within=Reals,bounds=(None,None),initialize=0) m.x200 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x201 = Var(within=Reals,bounds=(None,None),initialize=0) m.x202 = Var(within=Reals,bounds=(None,None),initialize=0) m.x203 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x204 = Var(within=Reals,bounds=(None,None),initialize=0) m.x205 = Var(within=Reals,bounds=(None,None),initialize=0) m.x206 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x207 = Var(within=Reals,bounds=(None,None),initialize=0) m.x208 = Var(within=Reals,bounds=(None,None),initialize=0) m.x209 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x210 = Var(within=Reals,bounds=(None,None),initialize=0) m.x211 = Var(within=Reals,bounds=(None,None),initialize=0) m.x212 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x213 = Var(within=Reals,bounds=(None,None),initialize=0) m.x214 = Var(within=Reals,bounds=(None,None),initialize=0) m.x215 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x216 = Var(within=Reals,bounds=(None,None),initialize=0) m.x217 = Var(within=Reals,bounds=(None,None),initialize=0) m.x218 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x219 = Var(within=Reals,bounds=(None,None),initialize=0) m.x220 = Var(within=Reals,bounds=(None,None),initialize=0) m.x221 = Var(within=Reals,bounds=(None,None),initialize=0) m.x222 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x223 = Var(within=Reals,bounds=(None,None),initialize=0) m.x224 = Var(within=Reals,bounds=(None,None),initialize=0) m.x225 = Var(within=Reals,bounds=(None,None),initialize=0) m.x226 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x227 = Var(within=Reals,bounds=(None,None),initialize=0) m.x228 = Var(within=Reals,bounds=(None,None),initialize=0) m.x229 = Var(within=Reals,bounds=(None,None),initialize=0) m.x230 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x231 = Var(within=Reals,bounds=(None,None),initialize=0) m.x232 = Var(within=Reals,bounds=(None,None),initialize=0) m.x233 = Var(within=Reals,bounds=(None,None),initialize=0) m.x234 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x235 = Var(within=Reals,bounds=(None,None),initialize=0) m.x236 = Var(within=Reals,bounds=(None,None),initialize=0) m.x237 = Var(within=Reals,bounds=(None,None),initialize=0) m.x238 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x239 = Var(within=Reals,bounds=(None,None),initialize=0) m.x240 = Var(within=Reals,bounds=(None,None),initialize=0) m.x241 = Var(within=Reals,bounds=(None,None),initialize=0) m.x242 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x243 = Var(within=Reals,bounds=(None,None),initialize=0) m.x244 = Var(within=Reals,bounds=(None,None),initialize=0) m.x245 = Var(within=Reals,bounds=(None,None),initialize=0) m.x246 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x247 = Var(within=Reals,bounds=(None,None),initialize=0) m.x248 = Var(within=Reals,bounds=(None,None),initialize=0) m.x249 = Var(within=Reals,bounds=(None,None),initialize=0) m.x250 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x251 = Var(within=Reals,bounds=(None,None),initialize=0) m.x252 = Var(within=Reals,bounds=(None,None),initialize=0) m.x253 = Var(within=Reals,bounds=(None,None),initialize=0) m.x254 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x255 = Var(within=Reals,bounds=(None,None),initialize=0) m.x256 = Var(within=Reals,bounds=(None,None),initialize=0) m.x257 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x258 = Var(within=Reals,bounds=(None,None),initialize=0) m.x259 = Var(within=Reals,bounds=(None,None),initialize=0) m.x260 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x261 = Var(within=Reals,bounds=(None,None),initialize=0) m.x262 = Var(within=Reals,bounds=(None,None),initialize=0) m.x263 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x264 = Var(within=Reals,bounds=(None,None),initialize=0) m.x265 = Var(within=Reals,bounds=(None,None),initialize=0) m.x266 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x267 = Var(within=Reals,bounds=(None,None),initialize=0) m.x268 = Var(within=Reals,bounds=(None,None),initialize=0) m.x269 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x270 = Var(within=Reals,bounds=(None,None),initialize=0) m.x271 = Var(within=Reals,bounds=(None,None),initialize=0) m.x272 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x273 = Var(within=Reals,bounds=(None,None),initialize=0) m.x274 = Var(within=Reals,bounds=(None,None),initialize=0) m.x275 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x276 = Var(within=Reals,bounds=(None,None),initialize=0) m.x277 = Var(within=Reals,bounds=(None,None),initialize=0) m.x278 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x279 = Var(within=Reals,bounds=(None,None),initialize=0) m.x280 = Var(within=Reals,bounds=(None,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,5),initialize=0) m.x282 = Var(within=Reals,bounds=(0,5),initialize=0) m.x283 = Var(within=Reals,bounds=(0,5),initialize=0) m.x284 = Var(within=Reals,bounds=(0,5),initialize=0) m.x285 = Var(within=Reals,bounds=(0,5),initialize=0) m.x286 = Var(within=Reals,bounds=(0,5),initialize=0) m.x287 = Var(within=Reals,bounds=(0,5),initialize=0) m.x288 = Var(within=Reals,bounds=(0,5),initialize=0) m.x289 = Var(within=Reals,bounds=(0,5),initialize=0) m.x290 = Var(within=Reals,bounds=(0,5),initialize=0) m.x291 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x292 = Var(within=Reals,bounds=(0,5),initialize=0) m.x293 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x294 = Var(within=Reals,bounds=(0,5),initialize=0) m.x295 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x296 = Var(within=Reals,bounds=(0,5),initialize=0) m.x297 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x298 = Var(within=Reals,bounds=(0,5),initialize=0) m.x299 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x300 = Var(within=Reals,bounds=(0,5),initialize=0) m.x301 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x302 = Var(within=Reals,bounds=(0,5),initialize=0) m.x303 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x304 = Var(within=Reals,bounds=(0,5),initialize=0) m.x305 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x306 = Var(within=Reals,bounds=(0,5),initialize=0) m.x307 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x308 = Var(within=Reals,bounds=(0,5),initialize=0) m.x309 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x310 = Var(within=Reals,bounds=(0,5),initialize=0) m.x311 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x312 = Var(within=Reals,bounds=(0,5),initialize=0) m.x313 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x314 = Var(within=Reals,bounds=(0,5),initialize=0) m.x315 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x316 = Var(within=Reals,bounds=(0,5),initialize=0) m.x317 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x318 = Var(within=Reals,bounds=(0,5),initialize=0) m.x319 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x320 = Var(within=Reals,bounds=(0,5),initialize=0) m.x321 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x322 = Var(within=Reals,bounds=(0,5),initialize=0) m.x323 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x324 = Var(within=Reals,bounds=(0,5),initialize=0) m.x325 = Var(within=Reals,bounds=(0,2.4),initialize=0) m.x326 = Var(within=Reals,bounds=(0,5),initialize=0) m.x327 = Var(within=Reals,bounds=(0,5),initialize=0) m.x328 = Var(within=Reals,bounds=(0,5),initialize=0) m.x329 = Var(within=Reals,bounds=(0,5),initialize=0) m.x330 = Var(within=Reals,bounds=(0,5),initialize=0) m.x331 = Var(within=Reals,bounds=(0,5),initialize=0) m.x332 = Var(within=Reals,bounds=(0,5),initialize=0) m.x333 = Var(within=Reals,bounds=(0,5),initialize=0) m.x334 = Var(within=Reals,bounds=(0,5),initialize=0) m.x335 = Var(within=Reals,bounds=(0,5),initialize=0) m.x336 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x337 = Var(within=Reals,bounds=(0,5),initialize=0) m.x338 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x339 = Var(within=Reals,bounds=(0,5),initialize=0) m.x340 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x341 = Var(within=Reals,bounds=(0,5),initialize=0) m.x342 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x343 = Var(within=Reals,bounds=(0,5),initialize=0) m.x344 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x345 = Var(within=Reals,bounds=(0,5),initialize=0) m.x346 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x347 = Var(within=Reals,bounds=(0,5),initialize=0) m.x348 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x349 = Var(within=Reals,bounds=(0,5),initialize=0) m.x350 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x351 = Var(within=Reals,bounds=(0,5),initialize=0) m.x352 = Var(within=Reals,bounds=(0,1.16),initialize=0) m.x353 = Var(within=Reals,bounds=(0,5),initialize=0) m.x354 = Var(within=Reals,bounds=(0,5),initialize=0) m.x355 = Var(within=Reals,bounds=(0,5),initialize=0) m.x356 = Var(within=Reals,bounds=(0,5),initialize=0) m.x357 = Var(within=Reals,bounds=(0,5),initialize=0) m.x358 = Var(within=Reals,bounds=(0,5),initialize=0) m.x359 = Var(within=Reals,bounds=(0,5),initialize=0) m.x360 = Var(within=Reals,bounds=(0,5),initialize=0) m.x361 = Var(within=Reals,bounds=(0,5),initialize=0) m.x362 = Var(within=Reals,bounds=(3.5,3.5),initialize=3.5) m.x363 = Var(within=Reals,bounds=(2,5),initialize=2) m.x364 = Var(within=Reals,bounds=(2,5),initialize=2) m.x365 = Var(within=Reals,bounds=(2,5),initialize=2) m.x366 = Var(within=Reals,bounds=(2,5),initialize=2) m.x367 = Var(within=Reals,bounds=(2,5),initialize=2) m.x368 = Var(within=Reals,bounds=(2,5),initialize=2) m.x369 = Var(within=Reals,bounds=(2,5),initialize=2) m.x370 = Var(within=Reals,bounds=(2,5),initialize=2) m.x371 = Var(within=Reals,bounds=(2,5),initialize=2) m.x372 = Var(within=Reals,bounds=(2,5),initialize=2) m.x373 = Var(within=Reals,bounds=(2,5),initialize=2) m.x374 = Var(within=Reals,bounds=(2,5),initialize=2) m.x375 = Var(within=Reals,bounds=(2,5),initialize=2) m.x376 = Var(within=Reals,bounds=(2,5),initialize=2) m.x377 = Var(within=Reals,bounds=(2,5),initialize=2) m.x378 = Var(within=Reals,bounds=(2,5),initialize=2) m.x379 = Var(within=Reals,bounds=(2,5),initialize=2) m.x380 = Var(within=Reals,bounds=(4.1,4.1),initialize=4.1) m.x381 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x382 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x383 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x384 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x385 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x386 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x387 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x388 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x389 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x390 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x391 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x392 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x393 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x394 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x395 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x396 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x397 = Var(within=Reals,bounds=(2.5,5),initialize=2.5) m.x398 = Var(within=Reals,bounds=(4,4),initialize=4) m.x399 = Var(within=Reals,bounds=(2,6),initialize=2) m.x400 = Var(within=Reals,bounds=(2,6),initialize=2) m.x401 = Var(within=Reals,bounds=(2,6),initialize=2) m.x402 = Var(within=Reals,bounds=(2,6),initialize=2) m.x403 = Var(within=Reals,bounds=(2,6),initialize=2) m.x404 = Var(within=Reals,bounds=(2,6),initialize=2) m.x405 = Var(within=Reals,bounds=(2,6),initialize=2) m.x406 = Var(within=Reals,bounds=(2,6),initialize=2) m.x407 = Var(within=Reals,bounds=(2,6),initialize=2) m.x408 = Var(within=Reals,bounds=(2,6),initialize=2) m.x409 = Var(within=Reals,bounds=(2,6),initialize=2) m.x410 = Var(within=Reals,bounds=(2,6),initialize=2) m.x411 = Var(within=Reals,bounds=(2,6),initialize=2) m.x412 = Var(within=Reals,bounds=(2,6),initialize=2) m.x413 = Var(within=Reals,bounds=(2,6),initialize=2) m.x414 = Var(within=Reals,bounds=(2,6),initialize=2) m.x415 = Var(within=Reals,bounds=(2,6),initialize=2) m.x416 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x417 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x418 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x419 = Var(within=Reals,bounds=(None,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x421 = Var(within=Reals,bounds=(None,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x423 = Var(within=Reals,bounds=(None,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x425 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x426 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x427 = Var(within=Reals,bounds=(None,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x429 = Var(within=Reals,bounds=(None,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x431 = Var(within=Reals,bounds=(None,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x433 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x434 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x435 = Var(within=Reals,bounds=(None,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x437 = Var(within=Reals,bounds=(None,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x439 = Var(within=Reals,bounds=(None,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x441 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x442 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x443 = Var(within=Reals,bounds=(None,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x445 = Var(within=Reals,bounds=(None,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x447 = Var(within=Reals,bounds=(None,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x449 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x450 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x451 = Var(within=Reals,bounds=(None,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x453 = Var(within=Reals,bounds=(None,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x455 = Var(within=Reals,bounds=(None,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x457 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x458 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x459 = Var(within=Reals,bounds=(None,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x461 = Var(within=Reals,bounds=(None,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x463 = Var(within=Reals,bounds=(None,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x465 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x466 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x467 = Var(within=Reals,bounds=(None,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,0.8),initialize=0) m.x469 = Var(within=Reals,bounds=(None,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x471 = Var(within=Reals,bounds=(None,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x473 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x474 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x475 = Var(within=Reals,bounds=(None,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x477 = Var(within=Reals,bounds=(None,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x479 = Var(within=Reals,bounds=(None,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x481 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x482 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x483 = Var(within=Reals,bounds=(None,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x485 = Var(within=Reals,bounds=(None,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x487 = Var(within=Reals,bounds=(None,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x489 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x490 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x491 = Var(within=Reals,bounds=(None,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x493 = Var(within=Reals,bounds=(None,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x495 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x496 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x497 = Var(within=Reals,bounds=(None,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x499 = Var(within=Reals,bounds=(None,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x501 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x502 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x503 = Var(within=Reals,bounds=(None,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,0.5),initialize=0) m.x505 = Var(within=Reals,bounds=(None,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x507 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x508 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x509 = Var(within=Reals,bounds=(None,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x511 = Var(within=Reals,bounds=(None,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x513 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x514 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x515 = Var(within=Reals,bounds=(None,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x517 = Var(within=Reals,bounds=(None,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x519 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x520 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x521 = Var(within=Reals,bounds=(None,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x523 = Var(within=Reals,bounds=(None,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x525 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x526 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x527 = Var(within=Reals,bounds=(None,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x529 = Var(within=Reals,bounds=(None,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x531 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x532 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x533 = Var(within=Reals,bounds=(None,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x535 = Var(within=Reals,bounds=(None,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x537 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x538 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x539 = Var(within=Reals,bounds=(None,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,0.7),initialize=0) m.x541 = Var(within=Reals,bounds=(None,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x543 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x544 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x545 = Var(within=Reals,bounds=(None,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x547 = Var(within=Reals,bounds=(None,None),initialize=0) m.x548 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x549 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x550 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x551 = Var(within=Reals,bounds=(None,None),initialize=0) m.x552 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x553 = Var(within=Reals,bounds=(None,None),initialize=0) m.x554 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x555 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x556 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x557 = Var(within=Reals,bounds=(None,None),initialize=0) m.x558 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x559 = Var(within=Reals,bounds=(None,None),initialize=0) m.x560 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x561 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x562 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x563 = Var(within=Reals,bounds=(None,None),initialize=0) m.x564 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x565 = Var(within=Reals,bounds=(None,None),initialize=0) m.x566 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x567 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x568 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x569 = Var(within=Reals,bounds=(None,None),initialize=0) m.x570 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x571 = Var(within=Reals,bounds=(None,None),initialize=0) m.x572 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x573 = Var(within=Reals,bounds=(-1000,1000),initialize=0) m.x574 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x575 = Var(within=Reals,bounds=(None,None),initialize=0) m.x576 = Var(within=Reals,bounds=(0,0.58),initialize=0) m.x577 = Var(within=Reals,bounds=(None,None),initialize=0) m.x578 = Var(within=Reals,bounds=(62,65),initialize=62) m.x579 = Var(within=Reals,bounds=(62,65),initialize=62) m.x580 = Var(within=Reals,bounds=(62,65),initialize=62) m.x581 = Var(within=Reals,bounds=(62,65),initialize=62) m.x582 = Var(within=Reals,bounds=(62,65),initialize=62) m.x583 = Var(within=Reals,bounds=(62,65),initialize=62) m.x584 = Var(within=Reals,bounds=(62,65),initialize=62) m.x585 = Var(within=Reals,bounds=(62,65),initialize=62) m.x586 = Var(within=Reals,bounds=(62,65),initialize=62) m.x587 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x588 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x589 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x590 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x591 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x592 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x593 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x594 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x595 = Var(within=Reals,bounds=(92.5,95),initialize=92.5) m.x596 = Var(within=Reals,bounds=(105,109),initialize=105) m.x597 = Var(within=Reals,bounds=(105,109),initialize=105) m.x598 = Var(within=Reals,bounds=(105,109),initialize=105) m.x599 = Var(within=Reals,bounds=(105,109),initialize=105) m.x600 = Var(within=Reals,bounds=(105,109),initialize=105) m.x601 = Var(within=Reals,bounds=(105,109),initialize=105) m.x602 = Var(within=Reals,bounds=(105,109),initialize=105) m.x603 = Var(within=Reals,bounds=(105,109),initialize=105) m.x604 = Var(within=Reals,bounds=(105,109),initialize=105) m.x605 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x606 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x607 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x608 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x609 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x610 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x611 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x612 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x613 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x614 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x615 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x616 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x617 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x618 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x619 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x620 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x621 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x622 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x623 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x624 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x625 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x626 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x627 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x628 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x629 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x630 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x631 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x632 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x633 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x634 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x635 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x636 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x637 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x638 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x639 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x640 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x641 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x642 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x643 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x644 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x645 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x646 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x647 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x648 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x649 = Var(within=Reals,bounds=(-100,100),initialize=0) m.x650 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x651 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x652 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x653 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x654 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x655 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x656 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x657 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x658 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x659 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x660 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x661 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x662 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x663 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x664 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x665 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x666 = Var(within=Reals,bounds=(0,1000),initialize=0) m.x667 = Var(within=Reals,bounds=(-125,125),initialize=0) m.x668 = Var(within=Reals,bounds=(49,49),initialize=49) m.x669 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x670 = Var(within=Reals,bounds=(49,49),initialize=49) m.x671 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x672 = Var(within=Reals,bounds=(49,49),initialize=49) m.x673 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x674 = Var(within=Reals,bounds=(49,49),initialize=49) m.x675 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x676 = Var(within=Reals,bounds=(49,49),initialize=49) m.x677 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x678 = Var(within=Reals,bounds=(49,49),initialize=49) m.x679 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x680 = Var(within=Reals,bounds=(49,49),initialize=49) m.x681 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x682 = Var(within=Reals,bounds=(49,49),initialize=49) m.x683 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x684 = Var(within=Reals,bounds=(49,49),initialize=49) m.x685 = Var(within=Reals,bounds=(-49,1000),initialize=0) m.x686 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x687 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x688 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x689 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x690 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x691 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x692 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x693 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x694 = Var(within=Reals,bounds=(-65,1000),initialize=0) m.x695 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x696 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x697 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x698 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x699 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x700 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x701 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x702 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x703 = Var(within=Reals,bounds=(-95,1000),initialize=0) m.x704 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x705 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x706 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x707 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x708 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x709 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x710 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x711 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x712 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x713 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x714 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x715 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x716 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x717 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x718 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x719 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x720 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x721 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x722 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x723 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x724 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x725 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x726 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x727 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x728 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x729 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x730 = Var(within=Reals,bounds=(0.2,0.8),initialize=0.2) m.x731 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x732 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x733 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x734 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x735 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x736 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x737 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x738 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x739 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x740 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x741 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x742 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x743 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x744 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x745 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x746 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x747 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x748 = Var(within=Reals,bounds=(0.25,0.5),initialize=0.25) m.x749 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x750 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x751 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x752 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x753 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x754 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x755 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x756 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x757 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x758 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x759 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x760 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x761 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x762 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x763 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x764 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x765 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x766 = Var(within=Reals,bounds=(0.4,0.7),initialize=0.4) m.x767 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x768 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x769 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x770 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x771 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x772 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x773 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x774 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x775 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x776 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x777 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x778 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x779 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x780 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x781 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x782 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x783 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x784 = Var(within=Reals,bounds=(0.24,0.58),initialize=0.24) m.x785 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x786 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x787 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x788 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x789 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x790 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x791 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x792 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x793 = Var(within=Reals,bounds=(0.6,1),initialize=0.6) m.x794 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x795 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x796 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x797 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x798 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x799 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x800 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x801 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x802 = Var(within=Reals,bounds=(0.8,1),initialize=0.8) m.x803 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x804 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x805 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x806 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x807 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x808 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x809 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x810 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x811 = Var(within=Reals,bounds=(0.85,1),initialize=0.85) m.x812 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x813 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x814 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x815 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x816 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x817 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x818 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x819 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x820 = Var(within=Reals,bounds=(0.7,1),initialize=0.7) m.x821 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x822 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x823 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x824 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x825 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x826 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x827 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x828 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x829 = Var(within=Reals,bounds=(100,1000),initialize=100) m.x830 = Var(within=Reals,bounds=(None,None),initialize=0) m.x831 = Var(within=Reals,bounds=(None,None),initialize=0) m.x832 = Var(within=Reals,bounds=(None,None),initialize=0) m.x833 = Var(within=Reals,bounds=(None,None),initialize=0) m.x834 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x835 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x836 = Var(within=Reals,bounds=(None,None),initialize=0) m.x837 = Var(within=Reals,bounds=(None,None),initialize=0) m.x838 = Var(within=Reals,bounds=(None,None),initialize=0) m.x839 = Var(within=Reals,bounds=(None,None),initialize=0) m.x840 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x841 = Var(within=Reals,bounds=(None,None),initialize=0) m.x842 = Var(within=Reals,bounds=(None,None),initialize=0) m.x843 = Var(within=Reals,bounds=(None,None),initialize=0) m.x844 = Var(within=Reals,bounds=(None,None),initialize=0) m.x845 = Var(within=Reals,bounds=(None,None),initialize=0) m.x846 = Var(within=Reals,bounds=(None,None),initialize=0) m.x847 = Var(within=Reals,bounds=(None,None),initialize=0) m.x848 = Var(within=Reals,bounds=(None,None),initialize=0) m.x849 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x850 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x851 = Var(within=Reals,bounds=(None,None),initialize=0) m.x852 = Var(within=Reals,bounds=(None,None),initialize=0) m.x853 = Var(within=Reals,bounds=(None,None),initialize=0) m.x854 = Var(within=Reals,bounds=(None,None),initialize=0) m.x855 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x856 = Var(within=Reals,bounds=(None,None),initialize=0) m.x857 = Var(within=Reals,bounds=(None,None),initialize=0) m.x858 = Var(within=Reals,bounds=(None,None),initialize=0) m.x859 = Var(within=Reals,bounds=(None,None),initialize=0) m.x860 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x861 = Var(within=Reals,bounds=(None,None),initialize=0) m.x862 = Var(within=Reals,bounds=(None,None),initialize=0) m.x863 = Var(within=Reals,bounds=(None,None),initialize=0) m.x864 = Var(within=Reals,bounds=(None,None),initialize=0) m.x865 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x866 = Var(within=Reals,bounds=(None,None),initialize=0) m.x867 = Var(within=Reals,bounds=(None,None),initialize=0) m.x868 = Var(within=Reals,bounds=(None,None),initialize=0) m.x869 = Var(within=Reals,bounds=(None,None),initialize=0) m.x870 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x871 = Var(within=Reals,bounds=(None,None),initialize=0) m.x872 = Var(within=Reals,bounds=(None,None),initialize=0) m.x873 = Var(within=Reals,bounds=(None,None),initialize=0) m.x874 = Var(within=Reals,bounds=(None,None),initialize=0) m.x875 = Var(within=Reals,bounds=(None,None),initialize=0) m.x876 = Var(within=Reals,bounds=(None,None),initialize=0) m.x877 = Var(within=Reals,bounds=(None,None),initialize=0) m.x878 = Var(within=Reals,bounds=(None,None),initialize=0) m.x879 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x880 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x881 = Var(within=Reals,bounds=(None,None),initialize=0) m.x882 = Var(within=Reals,bounds=(None,None),initialize=0) m.x883 = Var(within=Reals,bounds=(None,None),initialize=0) m.x884 = Var(within=Reals,bounds=(None,None),initialize=0) m.x885 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x886 = Var(within=Reals,bounds=(None,None),initialize=0) m.x887 = Var(within=Reals,bounds=(None,None),initialize=0) m.x888 = Var(within=Reals,bounds=(None,None),initialize=0) m.x889 = Var(within=Reals,bounds=(None,None),initialize=0) m.x890 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x891 = Var(within=Reals,bounds=(None,None),initialize=0) m.x892 = Var(within=Reals,bounds=(None,None),initialize=0) m.x893 = Var(within=Reals,bounds=(None,None),initialize=0) m.x894 = Var(within=Reals,bounds=(None,None),initialize=0) m.x895 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x896 = Var(within=Reals,bounds=(None,None),initialize=0) m.x897 = Var(within=Reals,bounds=(None,None),initialize=0) m.x898 = Var(within=Reals,bounds=(None,None),initialize=0) m.x899 = Var(within=Reals,bounds=(None,None),initialize=0) m.x900 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x901 = Var(within=Reals,bounds=(None,None),initialize=0) m.x902 = Var(within=Reals,bounds=(None,None),initialize=0) m.x903 = Var(within=Reals,bounds=(None,None),initialize=0) m.x904 = Var(within=Reals,bounds=(None,None),initialize=0) m.x905 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x906 = Var(within=Reals,bounds=(None,None),initialize=0) m.x907 = Var(within=Reals,bounds=(None,None),initialize=0) m.x908 = Var(within=Reals,bounds=(None,None),initialize=0) m.x909 = Var(within=Reals,bounds=(None,None),initialize=0) m.x910 = Var(within=Reals,bounds=(None,None),initialize=0) m.x911 = Var(within=Reals,bounds=(None,None),initialize=0) m.x912 = Var(within=Reals,bounds=(None,None),initialize=0) m.x913 = Var(within=Reals,bounds=(None,None),initialize=0) m.x914 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x915 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x916 = Var(within=Reals,bounds=(None,None),initialize=0) m.x917 = Var(within=Reals,bounds=(None,None),initialize=0) m.x918 = Var(within=Reals,bounds=(None,None),initialize=0) m.x919 = Var(within=Reals,bounds=(None,None),initialize=0) m.x920 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x921 = Var(within=Reals,bounds=(None,None),initialize=0) m.x922 = Var(within=Reals,bounds=(None,None),initialize=0) m.x923 = Var(within=Reals,bounds=(None,None),initialize=0) m.x924 = Var(within=Reals,bounds=(None,None),initialize=0) m.x925 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x926 = Var(within=Reals,bounds=(None,None),initialize=0) m.x927 = Var(within=Reals,bounds=(None,None),initialize=0) m.x928 = Var(within=Reals,bounds=(None,None),initialize=0) m.x929 = Var(within=Reals,bounds=(None,None),initialize=0) m.x930 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x931 = Var(within=Reals,bounds=(None,None),initialize=0) m.x932 = Var(within=Reals,bounds=(None,None),initialize=0) m.x933 = Var(within=Reals,bounds=(None,None),initialize=0) m.x934 = Var(within=Reals,bounds=(None,None),initialize=0) m.x935 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x936 = Var(within=Reals,bounds=(None,None),initialize=0) m.x937 = Var(within=Reals,bounds=(None,None),initialize=0) m.x938 = Var(within=Reals,bounds=(None,None),initialize=0) m.x939 = Var(within=Reals,bounds=(None,None),initialize=0) m.x940 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x941 = Var(within=Reals,bounds=(None,None),initialize=0) m.x942 = Var(within=Reals,bounds=(None,None),initialize=0) m.x943 = Var(within=Reals,bounds=(None,None),initialize=0) m.x944 = Var(within=Reals,bounds=(None,None),initialize=0) m.x945 = Var(within=Reals,bounds=(0,54.1717996137183),initialize=0) m.x946 = Var(within=Reals,bounds=(None,None),initialize=0) m.x947 = Var(within=Reals,bounds=(None,None),initialize=0) m.x948 = Var(within=Reals,bounds=(None,None),initialize=0) m.x949 = Var(within=Reals,bounds=(None,None),initialize=0) m.x950 = Var(within=Reals,bounds=(None,None),initialize=0) m.x951 = Var(within=Reals,bounds=(None,None),initialize=0) m.x952 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x953 = Var(within=Reals,bounds=(None,None),initialize=0) m.x954 = Var(within=Reals,bounds=(None,None),initialize=0) m.x955 = Var(within=Reals,bounds=(None,None),initialize=0) m.x956 = Var(within=Reals,bounds=(None,None),initialize=0) m.x957 = Var(within=Reals,bounds=(None,None),initialize=0) m.x958 = Var(within=Reals,bounds=(None,None),initialize=0) m.x959 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x960 = Var(within=Reals,bounds=(0,126.620406999846),initialize=0) m.x961 = Var(within=Reals,bounds=(None,None),initialize=0) m.x962 = Var(within=Reals,bounds=(None,None),initialize=0) m.x963 = Var(within=Reals,bounds=(None,None),initialize=0) m.x964 = Var(within=Reals,bounds=(None,None),initialize=0) m.x965 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x966 = Var(within=Reals,bounds=(None,None),initialize=0) m.x967 = Var(within=Reals,bounds=(None,None),initialize=0) m.x968 = Var(within=Reals,bounds=(None,None),initialize=0) m.x969 = Var(within=Reals,bounds=(None,None),initialize=0) m.x970 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x971 = Var(within=Reals,bounds=(None,None),initialize=0) m.x972 = Var(within=Reals,bounds=(None,None),initialize=0) m.x973 = Var(within=Reals,bounds=(None,None),initialize=0) m.x974 = Var(within=Reals,bounds=(None,None),initialize=0) m.x975 = Var(within=Reals,bounds=(None,None),initialize=0) m.x976 = Var(within=Reals,bounds=(None,None),initialize=0) m.x977 = Var(within=Reals,bounds=(None,None),initialize=0) m.x978 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x979 = Var(within=Reals,bounds=(None,None),initialize=0) m.x980 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x981 = Var(within=Reals,bounds=(None,None),initialize=0) m.x982 = Var(within=Reals,bounds=(None,None),initialize=0) m.x983 = Var(within=Reals,bounds=(None,None),initialize=0) m.x984 = Var(within=Reals,bounds=(None,None),initialize=0) m.x985 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x986 = Var(within=Reals,bounds=(None,None),initialize=0) m.x987 = Var(within=Reals,bounds=(None,None),initialize=0) m.x988 = Var(within=Reals,bounds=(None,None),initialize=0) m.x989 = Var(within=Reals,bounds=(None,None),initialize=0) m.x990 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x991 = Var(within=Reals,bounds=(None,None),initialize=0) m.x992 = Var(within=Reals,bounds=(None,None),initialize=0) m.x993 = Var(within=Reals,bounds=(None,None),initialize=0) m.x994 = Var(within=Reals,bounds=(None,None),initialize=0) m.x995 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x996 = Var(within=Reals,bounds=(None,None),initialize=0) m.x997 = Var(within=Reals,bounds=(None,None),initialize=0) m.x998 = Var(within=Reals,bounds=(None,None),initialize=0) m.x999 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1000 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x1001 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1002 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1003 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1004 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1005 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x1006 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1007 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1008 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1009 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1010 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1011 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1012 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1013 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1014 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1015 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1016 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1017 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1018 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1019 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1020 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1021 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1022 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1023 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1024 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1025 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1026 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1027 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1028 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1029 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1030 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1031 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1032 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1033 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1034 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1035 = Var(within=Reals,bounds=(0,93.045051789432),initialize=0) m.x1036 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1037 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1038 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1039 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1040 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x1041 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1042 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1043 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1044 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1045 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x1046 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1047 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1048 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1049 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1050 = Var(within=Reals,bounds=(0,217.482203118763),initialize=0) m.x1051 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1052 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1053 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1054 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1055 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1056 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1057 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1058 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1059 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1060 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1061 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1062 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1063 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1064 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1065 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1066 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1067 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1068 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1069 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1070 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1071 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1072 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1073 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1074 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1075 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1076 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1077 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1078 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1079 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1080 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1081 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1082 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1083 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1084 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1085 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1086 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1087 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1088 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1089 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1090 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1091 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1092 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1093 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1094 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1095 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1096 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1097 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1098 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1099 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1100 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1101 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1102 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1103 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1104 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1105 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1106 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1107 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1108 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1109 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1110 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1111 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1112 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1113 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1114 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1115 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1116 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1117 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1118 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1119 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1120 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1121 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1122 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1123 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1124 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1125 = Var(within=Reals,bounds=(0,112.384987749469),initialize=0) m.x1126 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1127 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1128 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1129 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1130 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1131 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1132 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1133 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1134 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1135 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1136 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1137 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1138 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1139 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1140 = Var(within=Reals,bounds=(0,262.687099025355),initialize=0) m.x1141 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1142 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1143 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1144 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1145 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1146 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1147 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1148 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1149 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1150 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1151 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1152 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1153 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1154 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1155 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1156 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1157 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1158 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1159 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1160 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1161 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1162 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1163 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1164 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1165 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1166 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1167 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1168 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1169 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1170 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1171 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1172 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1173 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1174 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1175 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1176 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1177 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1178 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1179 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1180 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1181 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1182 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1183 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1184 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1185 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1186 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1187 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1188 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1189 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1190 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1191 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1192 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1193 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1194 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1195 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1196 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1197 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1198 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1199 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1200 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1201 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1202 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1203 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1204 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1205 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1206 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1207 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1208 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1209 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1210 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1211 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1212 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1213 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1214 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1215 = Var(within=Reals,bounds=(0,42.066542469172),initialize=0) m.x1216 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1217 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1218 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1219 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1220 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1221 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1222 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1223 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1224 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1225 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1226 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1227 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1228 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1229 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1230 = Var(within=Reals,bounds=(0,98.325748203019),initialize=0) m.x1231 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1232 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1233 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1234 = Var(within=Reals,bounds=(None,None),initialize=0) m.x1235 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1236 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1237 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1238 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1239 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1240 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1241 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1242 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1243 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1244 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1245 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1246 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1247 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1248 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1249 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1250 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1251 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1252 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1253 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1254 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1255 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1256 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1257 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1258 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1259 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1260 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1261 = Var(within=Reals,bounds=(0,25),initialize=0) m.x1262 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1263 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1264 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1265 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1266 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1267 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1268 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1269 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1270 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1271 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1272 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1273 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1274 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1275 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1276 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1277 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1278 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1279 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1280 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1281 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1282 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1283 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1284 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1285 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1286 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1287 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1288 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1289 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1290 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1291 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1292 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1293 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1294 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1295 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1296 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1297 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1298 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1299 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1300 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1301 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1302 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1303 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1304 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1305 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1306 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1307 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1308 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1309 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1310 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1311 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1312 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1313 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1314 = Var(within=Reals,bounds=(0,0.64),initialize=0) m.x1315 = Var(within=Reals,bounds=(0,0.512),initialize=0) m.x1316 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1317 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1318 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1319 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1320 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1321 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1322 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1323 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1324 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1325 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1326 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1327 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1328 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1329 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1330 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1331 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1332 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1333 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1334 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1335 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1336 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1337 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1338 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1339 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1340 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1341 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1342 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1343 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1344 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1345 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1346 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1347 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1348 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1349 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1350 = Var(within=Reals,bounds=(0,0.25),initialize=0) m.x1351 = Var(within=Reals,bounds=(0,0.125),initialize=0) m.x1352 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1353 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1354 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1355 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1356 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1357 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1358 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1359 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1360 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1361 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1362 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1363 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1364 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1365 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1366 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1367 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1368 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1369 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1370 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1371 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1372 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1373 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1374 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1375 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1376 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1377 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1378 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1379 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1380 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1381 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1382 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1383 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1384 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1385 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1386 = Var(within=Reals,bounds=(0,0.49),initialize=0) m.x1387 = Var(within=Reals,bounds=(0,0.343),initialize=0) m.x1388 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1389 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1390 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1391 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1392 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1393 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1394 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1395 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1396 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1397 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1398 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1399 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1400 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1401 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1402 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1403 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1404 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1405 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1406 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1407 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1408 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1409 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1410 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1411 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1412 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1413 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1414 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1415 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1416 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1417 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1418 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1419 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1420 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1421 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1422 = Var(within=Reals,bounds=(0,0.3364),initialize=0) m.x1423 = Var(within=Reals,bounds=(0,0.195112),initialize=0) m.x1424 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1425 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1426 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1427 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1428 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1429 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1430 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1431 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1432 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1433 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1434 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1435 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1436 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1437 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1438 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1439 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1440 = Var(within=Reals,bounds=(0.36,1),initialize=0.36) m.x1441 = Var(within=Reals,bounds=(0.216,1),initialize=0.216) m.x1442 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1443 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1444 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1445 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1446 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1447 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1448 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1449 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1450 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1451 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1452 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1453 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1454 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1455 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1456 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1457 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1458 = Var(within=Reals,bounds=(0.64,1),initialize=0.64) m.x1459 = Var(within=Reals,bounds=(0.512,1),initialize=0.512) m.x1460 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1461 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1462 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1463 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1464 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1465 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1466 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1467 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1468 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1469 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1470 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1471 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1472 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1473 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1474 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1475 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1476 = Var(within=Reals,bounds=(0.7225,1),initialize=0.7225) m.x1477 = Var(within=Reals,bounds=(0.614125,1),initialize=0.614125) m.x1478 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1479 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1480 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1481 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1482 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1483 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1484 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1485 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1486 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1487 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1488 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1489 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1490 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1491 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1492 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1493 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.x1494 = Var(within=Reals,bounds=(0.49,1),initialize=0.49) m.x1495 = Var(within=Reals,bounds=(0.343,1),initialize=0.343) m.obj = Objective(expr= m.x834 + m.x835 + m.x840 + m.x849 + m.x850 + m.x855 + m.x860 + m.x865 + m.x870 + m.x879 + m.x880 + m.x885 + m.x890 + m.x895 + m.x900 + m.x905 + m.x914 + m.x915 + m.x920 + m.x925 + m.x930 + m.x935 + m.x940 + m.x945 + m.x952 + m.x959 + m.x960 + m.x965 + m.x970 + m.x978 + m.x980 + m.x985 + m.x990 + m.x995 + m.x1000 + m.x1005 + m.x1010 + m.x1015 + m.x1020 + m.x1025 + m.x1030 + m.x1035 + m.x1040 + m.x1045 + m.x1050 + m.x1055 + m.x1060 + m.x1065 + m.x1070 + m.x1075 + m.x1080 + m.x1085 + m.x1090 + m.x1095 + m.x1100 + m.x1105 + m.x1110 + m.x1115 + m.x1120 + m.x1125 + m.x1130 + m.x1135 + m.x1140 + m.x1149 + m.x1150 + m.x1155 + m.x1160 + m.x1165 + m.x1170 + m.x1175 + m.x1180 + m.x1185 + m.x1194 + m.x1195 + m.x1200 + m.x1205 + m.x1210 + m.x1215 + m.x1220 + m.x1225 + m.x1230, sense=minimize) m.c2 = Constraint(expr= m.x417 + 37.5407324*m.x419 - 57.2814121*m.x421 + 27.42831624*m.x423 == 0) m.c3 = Constraint(expr= m.x425 + 27.42831624*m.x427 - 57.2814121*m.x429 + 37.5407324*m.x431 == 0) m.c4 = Constraint(expr= m.x433 - 57.2814121*m.x435 + 37.5407324*m.x437 + 27.42831624*m.x439 == 0) m.c5 = Constraint(expr= m.x441 - 57.2814121*m.x443 + 37.5407324*m.x445 + 27.42831624*m.x447 == 0) m.c6 = Constraint(expr= m.x449 - 57.2814121*m.x451 + 37.5407324*m.x453 + 27.42831624*m.x455 == 0) m.c7 = Constraint(expr= m.x457 + 27.42831624*m.x459 - 57.2814121*m.x461 + 37.5407324*m.x463 == 0) m.c8 = Constraint(expr= m.x465 - 57.2814121*m.x467 + 27.42831624*m.x469 + 37.5407324*m.x471 == 0) m.c9 = Constraint(expr= m.x473 - 57.2814121*m.x475 + 37.5407324*m.x477 + 27.42831624*m.x479 == 0) m.c10 = Constraint(expr= m.x481 + 27.42831624*m.x483 - 57.2814121*m.x485 + 37.5407324*m.x487 == 0) m.c11 = Constraint(expr= - 57.2814121*m.x421 + m.x489 + 37.5407324*m.x491 + 27.42831624*m.x493 == 0) m.c12 = Constraint(expr= - 57.2814121*m.x429 + m.x495 + 37.5407324*m.x497 + 27.42831624*m.x499 == 0) m.c13 = Constraint(expr= - 57.2814121*m.x435 + m.x501 + 37.5407324*m.x503 + 27.42831624*m.x505 == 0) m.c14 = Constraint(expr= - 57.2814121*m.x443 + m.x507 + 37.5407324*m.x509 + 27.42831624*m.x511 == 0) m.c15 = Constraint(expr= - 57.2814121*m.x451 + m.x513 + 27.42831624*m.x515 + 37.5407324*m.x517 == 0) m.c16 = Constraint(expr= - 57.2814121*m.x461 + m.x519 + 37.5407324*m.x521 + 27.42831624*m.x523 == 0) m.c17 = Constraint(expr= - 57.2814121*m.x467 + m.x525 + 37.5407324*m.x527 + 27.42831624*m.x529 == 0) m.c18 = Constraint(expr= - 57.2814121*m.x475 + m.x531 + 27.42831624*m.x533 + 37.5407324*m.x535 == 0) m.c19 = Constraint(expr= - 57.2814121*m.x485 + m.x537 + 37.5407324*m.x539 + 27.42831624*m.x541 == 0) m.c20 = Constraint(expr= - 57.2814121*m.x421 + m.x543 + 37.5407324*m.x545 + 27.42831624*m.x547 == 0) m.c21 = Constraint(expr= - 57.2814121*m.x429 + m.x549 + 27.42831624*m.x551 + 37.5407324*m.x553 == 0) m.c22 = Constraint(expr= - 57.2814121*m.x435 + m.x555 + 27.42831624*m.x557 + 37.5407324*m.x559 == 0) m.c23 = Constraint(expr= - 57.2814121*m.x443 + m.x561 + 37.5407324*m.x563 + 27.42831624*m.x565 == 0) m.c24 = Constraint(expr= - 57.2814121*m.x451 + m.x567 + 27.42831624*m.x569 + 37.5407324*m.x571 == 0) m.c25 = Constraint(expr= - 57.2814121*m.x461 + m.x573 + 27.42831624*m.x575 + 37.5407324*m.x577 == 0) m.c26 = Constraint(expr= m.x83 + 37.5407324*m.x84 + 27.42831624*m.x85 - 57.2814121*m.x467 == 0) m.c27 = Constraint(expr= m.x86 + 27.42831624*m.x87 + 37.5407324*m.x88 - 57.2814121*m.x475 == 0) m.c28 = Constraint(expr= m.x89 + 37.5407324*m.x90 + 27.42831624*m.x91 - 57.2814121*m.x485 == 0) m.c29 = Constraint(expr= m.x92 + 43.14087708*m.x93 - 76.45219958*m.x94 + 50.37356589*m.x95 == 0) m.c30 = Constraint(expr= m.x96 + 50.37356589*m.x97 - 76.45219958*m.x98 + 43.14087708*m.x99 == 0) m.c31 = Constraint(expr= m.x100 + 43.14087708*m.x101 - 76.45219958*m.x102 + 50.37356589*m.x103 == 0) m.c32 = Constraint(expr= m.x104 + 43.14087708*m.x105 - 76.45219958*m.x106 + 50.37356589*m.x107 == 0) m.c33 = Constraint(expr= m.x108 - 76.45219958*m.x109 + 50.37356589*m.x110 + 43.14087708*m.x111 == 0) m.c34 = Constraint(expr= m.x112 + 50.37356589*m.x113 - 76.45219958*m.x114 + 43.14087708*m.x115 == 0) m.c35 = Constraint(expr= m.x116 + 43.14087708*m.x117 - 76.45219958*m.x118 + 50.37356589*m.x119 == 0) m.c36 = Constraint(expr= m.x120 + 43.14087708*m.x121 - 76.45219958*m.x122 + 50.37356589*m.x123 == 0) m.c37 = Constraint(expr= m.x124 + 50.37356589*m.x125 + 43.14087708*m.x126 - 76.45219958*m.x127 == 0) m.c38 = Constraint(expr= - 76.45219958*m.x94 + m.x128 + 43.14087708*m.x129 + 50.37356589*m.x130 == 0) m.c39 = Constraint(expr= - 76.45219958*m.x98 + m.x131 + 50.37356589*m.x132 + 43.14087708*m.x133 == 0) m.c40 = Constraint(expr= - 76.45219958*m.x102 + m.x134 + 43.14087708*m.x135 + 50.37356589*m.x136 == 0) m.c41 = Constraint(expr= - 76.45219958*m.x106 + m.x137 + 43.14087708*m.x138 + 50.37356589*m.x139 == 0) m.c42 = Constraint(expr= - 76.45219958*m.x109 + m.x140 + 50.37356589*m.x141 + 43.14087708*m.x142 == 0) m.c43 = Constraint(expr= - 76.45219958*m.x114 + m.x143 + 50.37356589*m.x144 + 43.14087708*m.x145 == 0) m.c44 = Constraint(expr= - 76.45219958*m.x118 + m.x146 + 43.14087708*m.x147 + 50.37356589*m.x148 == 0) m.c45 = Constraint(expr= - 76.45219958*m.x122 + m.x149 + 43.14087708*m.x150 + 50.37356589*m.x151 == 0) m.c46 = Constraint(expr= - 76.45219958*m.x127 + m.x152 + 50.37356589*m.x153 + 43.14087708*m.x154 == 0) m.c47 = Constraint(expr= m.x155 - 69.39622571*m.x156 + 58.31011875*m.x157 - 25.39911174*m.x158 == 0) m.c48 = Constraint(expr= m.x159 + 58.31011875*m.x160 - 25.39911174*m.x161 - 69.39622571*m.x162 == 0) m.c49 = Constraint(expr= m.x163 - 25.39911174*m.x164 - 69.39622571*m.x165 + 58.31011875*m.x166 == 0) m.c50 = Constraint(expr= m.x167 - 25.39911174*m.x168 - 69.39622571*m.x169 + 58.31011875*m.x170 == 0) m.c51 = Constraint(expr= m.x171 - 69.39622571*m.x172 + 58.31011875*m.x173 - 25.39911174*m.x174 == 0) m.c52 = Constraint(expr= m.x175 - 25.39911174*m.x176 - 69.39622571*m.x177 + 58.31011875*m.x178 == 0) m.c53 = Constraint(expr= m.x179 - 69.39622571*m.x180 + 58.31011875*m.x181 - 25.39911174*m.x182 == 0) m.c54 = Constraint(expr= m.x183 - 69.39622571*m.x184 + 58.31011875*m.x185 - 25.39911174*m.x186 == 0) m.c55 = Constraint(expr= m.x187 - 69.39622571*m.x188 + 58.31011875*m.x189 - 25.39911174*m.x190 == 0) m.c56 = Constraint(expr= - 69.39622571*m.x156 + m.x191 - 25.39911174*m.x192 + 58.31011875*m.x193 == 0) m.c57 = Constraint(expr= - 69.39622571*m.x162 + m.x194 - 25.39911174*m.x195 + 58.31011875*m.x196 == 0) m.c58 = Constraint(expr= - 69.39622571*m.x165 + m.x197 + 58.31011875*m.x198 - 25.39911174*m.x199 == 0) m.c59 = Constraint(expr= - 69.39622571*m.x169 + m.x200 + 58.31011875*m.x201 - 25.39911174*m.x202 == 0) m.c60 = Constraint(expr= - 69.39622571*m.x172 + m.x203 + 58.31011875*m.x204 - 25.39911174*m.x205 == 0) m.c61 = Constraint(expr= - 69.39622571*m.x177 + m.x206 - 25.39911174*m.x207 + 58.31011875*m.x208 == 0) m.c62 = Constraint(expr= - 69.39622571*m.x180 + m.x209 - 25.39911174*m.x210 + 58.31011875*m.x211 == 0) m.c63 = Constraint(expr= - 69.39622571*m.x184 + m.x212 - 25.39911174*m.x213 + 58.31011875*m.x214 == 0) m.c64 = Constraint(expr= - 69.39622571*m.x188 + m.x215 + 58.31011875*m.x216 - 25.39911174*m.x217 == 0) m.c65 = Constraint(expr= m.x218 - 34.92732674*m.x219 - 2.03724124*m.x220 + 63.61644904*m.x221 == 0) m.c66 = Constraint(expr= m.x222 + 63.61644904*m.x223 - 34.92732674*m.x224 - 2.03724124*m.x225 == 0) m.c67 = Constraint(expr= m.x226 - 34.92732674*m.x227 - 2.03724124*m.x228 + 63.61644904*m.x229 == 0) m.c68 = Constraint(expr= m.x230 + 63.61644904*m.x231 - 2.03724124*m.x232 - 34.92732674*m.x233 == 0) m.c69 = Constraint(expr= m.x234 + 63.61644904*m.x235 - 34.92732674*m.x236 - 2.03724124*m.x237 == 0) m.c70 = Constraint(expr= m.x238 + 63.61644904*m.x239 - 34.92732674*m.x240 - 2.03724124*m.x241 == 0) m.c71 = Constraint(expr= m.x242 - 2.03724124*m.x243 - 34.92732674*m.x244 + 63.61644904*m.x245 == 0) m.c72 = Constraint(expr= m.x246 + 63.61644904*m.x247 - 34.92732674*m.x248 - 2.03724124*m.x249 == 0) m.c73 = Constraint(expr= m.x250 - 34.92732674*m.x251 - 2.03724124*m.x252 + 63.61644904*m.x253 == 0) m.c74 = Constraint(expr= - 34.92732674*m.x219 + m.x254 + 63.61644904*m.x255 - 2.03724124*m.x256 == 0) m.c75 = Constraint(expr= - 34.92732674*m.x224 + m.x257 + 63.61644904*m.x258 - 2.03724124*m.x259 == 0) m.c76 = Constraint(expr= - 34.92732674*m.x227 + m.x260 - 2.03724124*m.x261 + 63.61644904*m.x262 == 0) m.c77 = Constraint(expr= - 34.92732674*m.x233 + m.x263 - 2.03724124*m.x264 + 63.61644904*m.x265 == 0) m.c78 = Constraint(expr= - 34.92732674*m.x236 + m.x266 + 63.61644904*m.x267 - 2.03724124*m.x268 == 0) m.c79 = Constraint(expr= - 34.92732674*m.x240 + m.x269 + 63.61644904*m.x270 - 2.03724124*m.x271 == 0) m.c80 = Constraint(expr= - 34.92732674*m.x244 + m.x272 - 2.03724124*m.x273 + 63.61644904*m.x274 == 0) m.c81 = Constraint(expr= - 34.92732674*m.x248 + m.x275 - 2.03724124*m.x276 + 63.61644904*m.x277 == 0) m.c82 = Constraint(expr= - 34.92732674*m.x251 + m.x278 + 63.61644904*m.x279 - 2.03724124*m.x280 == 0) m.c83 = Constraint(expr= m.x281 + m.x282 + m.x283 + m.x284 + m.x285 + m.x286 + m.x287 + m.x288 + m.x289 >= 3.723333333) m.c84 = Constraint(expr= - m.x290 + m.x291 == 0) m.c85 = Constraint(expr= - m.x292 + m.x293 == 0) m.c86 = Constraint(expr= - m.x294 + m.x295 == 0) m.c87 = Constraint(expr= - m.x296 + m.x297 == 0) m.c88 = Constraint(expr= - m.x298 + m.x299 == 0) m.c89 = Constraint(expr= - m.x300 + m.x301 == 0) m.c90 = Constraint(expr= - m.x302 + m.x303 == 0) m.c91 = Constraint(expr= - m.x304 + m.x305 == 0) m.c92 = Constraint(expr= - m.x306 + m.x307 == 0) m.c93 = Constraint(expr= - m.x308 + m.x309 == 0) m.c94 = Constraint(expr= - m.x310 + m.x311 == 0) m.c95 = Constraint(expr= - m.x312 + m.x313 == 0) m.c96 = Constraint(expr= - m.x314 + m.x315 == 0) m.c97 = Constraint(expr= - m.x316 + m.x317 == 0) m.c98 = Constraint(expr= - m.x318 + m.x319 == 0) m.c99 = Constraint(expr= - m.x320 + m.x321 == 0) m.c100 = Constraint(expr= - m.x322 + m.x323 == 0) m.c101 = Constraint(expr= - m.x324 + m.x325 == 0) m.c102 = Constraint(expr= m.x308 - m.x326 == 0) m.c103 = Constraint(expr= m.x310 - m.x327 == 0) m.c104 = Constraint(expr= m.x312 - m.x328 == 0) m.c105 = Constraint(expr= m.x314 - m.x329 == 0) m.c106 = Constraint(expr= m.x316 - m.x330 == 0) m.c107 = Constraint(expr= m.x318 - m.x331 == 0) m.c108 = Constraint(expr= m.x320 - m.x332 == 0) m.c109 = Constraint(expr= m.x322 - m.x333 == 0) m.c110 = Constraint(expr= m.x324 - m.x334 == 0) m.c111 = Constraint(expr= - m.x335 + m.x336 == 0) m.c112 = Constraint(expr= - m.x337 + m.x338 == 0) m.c113 = Constraint(expr= - m.x339 + m.x340 == 0) m.c114 = Constraint(expr= - m.x341 + m.x342 == 0) m.c115 = Constraint(expr= - m.x343 + m.x344 == 0) m.c116 = Constraint(expr= - m.x345 + m.x346 == 0) m.c117 = Constraint(expr= - m.x347 + m.x348 == 0) m.c118 = Constraint(expr= - m.x349 + m.x350 == 0) m.c119 = Constraint(expr= - m.x351 + m.x352 == 0) m.c120 = Constraint(expr= m.x353 == 0.296666667) m.c121 = Constraint(expr= m.x354 == 0.294444444) m.c122 = Constraint(expr= m.x355 == 0.283888889) m.c123 = Constraint(expr= m.x356 == 0.277222222) m.c124 = Constraint(expr= m.x357 == 0.293333333) m.c125 = Constraint(expr= m.x358 == 0.306944444) m.c126 = Constraint(expr= m.x359 == 0.595555556) m.c127 = Constraint(expr= m.x360 == 0.641388889) m.c128 = Constraint(expr= m.x361 == 0.733888889) m.c129 = Constraint(expr= m.x281 - m.x291 == 0) m.c130 = Constraint(expr= m.x282 - m.x293 == 0) m.c131 = Constraint(expr= m.x283 - m.x295 == 0) m.c132 = Constraint(expr= m.x284 - m.x297 == 0) m.c133 = Constraint(expr= m.x285 - m.x299 == 0) m.c134 = Constraint(expr= m.x286 - m.x301 == 0) m.c135 = Constraint(expr= m.x287 - m.x303 == 0) m.c136 = Constraint(expr= m.x288 - m.x305 == 0) m.c137 = Constraint(expr= m.x289 - m.x307 == 0) m.c138 = Constraint(expr= 3600*m.x290 - 3600*m.x309 + 1800*m.x362 - 1800*m.x363 == 0) m.c139 = Constraint(expr= 3600*m.x292 - 3600*m.x311 + 1800*m.x364 - 1800*m.x365 == 0) m.c140 = Constraint(expr= 3600*m.x294 - 3600*m.x313 + 1800*m.x366 - 1800*m.x367 == 0) m.c141 = Constraint(expr= 3600*m.x296 - 3600*m.x315 + 1800*m.x368 - 1800*m.x369 == 0) m.c142 = Constraint(expr= 3600*m.x298 - 3600*m.x317 + 1800*m.x370 - 1800*m.x371 == 0) m.c143 = Constraint(expr= 3600*m.x300 - 3600*m.x319 + 1800*m.x372 - 1800*m.x373 == 0) m.c144 = Constraint(expr= 3600*m.x302 - 3600*m.x321 + 1800*m.x374 - 1800*m.x375 == 0) m.c145 = Constraint(expr= 3600*m.x304 - 3600*m.x323 + 1800*m.x376 - 1800*m.x377 == 0) m.c146 = Constraint(expr= 3600*m.x306 - 3600*m.x325 + 1800*m.x378 - 1800*m.x379 == 0) m.c147 = Constraint(expr= 3600*m.x326 - 3600*m.x336 + 720*m.x380 - 720*m.x381 == 0) m.c148 = Constraint(expr= 3600*m.x327 - 3600*m.x338 + 720*m.x382 - 720*m.x383 == 0) m.c149 = Constraint(expr= 3600*m.x328 - 3600*m.x340 + 720*m.x384 - 720*m.x385 == 0) m.c150 = Constraint(expr= 3600*m.x329 - 3600*m.x342 + 720*m.x386 - 720*m.x387 == 0) m.c151 = Constraint(expr= 3600*m.x330 - 3600*m.x344 + 720*m.x388 - 720*m.x389 == 0) m.c152 = Constraint(expr= 3600*m.x331 - 3600*m.x346 + 720*m.x390 - 720*m.x391 == 0) m.c153 = Constraint(expr= 3600*m.x332 - 3600*m.x348 + 720*m.x392 - 720*m.x393 == 0) m.c154 = Constraint(expr= 3600*m.x333 - 3600*m.x350 + 720*m.x394 - 720*m.x395 == 0) m.c155 = Constraint(expr= 3600*m.x334 - 3600*m.x352 + 720*m.x396 - 720*m.x397 == 0) m.c156 = Constraint(expr= 3600*m.x335 - 3600*m.x353 + 1600*m.x398 - 1600*m.x399 == 0) m.c157 = Constraint(expr= 3600*m.x337 - 3600*m.x354 + 1600*m.x400 - 1600*m.x401 == 0) m.c158 = Constraint(expr= 3600*m.x339 - 3600*m.x355 + 1600*m.x402 - 1600*m.x403 == 0) m.c159 = Constraint(expr= 3600*m.x341 - 3600*m.x356 + 1600*m.x404 - 1600*m.x405 == 0) m.c160 = Constraint(expr= 3600*m.x343 - 3600*m.x357 + 1600*m.x406 - 1600*m.x407 == 0) m.c161 = Constraint(expr= 3600*m.x345 - 3600*m.x358 + 1600*m.x408 - 1600*m.x409 == 0) m.c162 = Constraint(expr= 3600*m.x347 - 3600*m.x359 + 1600*m.x410 - 1600*m.x411 == 0) m.c163 = Constraint(expr= 3600*m.x349 - 3600*m.x360 + 1600*m.x412 - 1600*m.x413 == 0) m.c164 = Constraint(expr= 3600*m.x351 - 3600*m.x361 + 1600*m.x414 - 1600*m.x415 == 0) m.c165 = Constraint(expr= - m.x363 + m.x364 == 0) m.c166 = Constraint(expr= - m.x365 + m.x366 == 0) m.c167 = Constraint(expr= - m.x367 + m.x368 == 0) m.c168 = Constraint(expr= - m.x369 + m.x370 == 0) m.c169 = Constraint(expr= - m.x371 + m.x372 == 0) m.c170 = Constraint(expr= - m.x373 + m.x374 == 0) m.c171 = Constraint(expr= - m.x375 + m.x376 == 0) m.c172 = Constraint(expr= - m.x377 + m.x378 == 0) m.c173 = Constraint(expr= - m.x381 + m.x382 == 0) m.c174 = Constraint(expr= - m.x383 + m.x384 == 0) m.c175 = Constraint(expr= - m.x385 + m.x386 == 0) m.c176 = Constraint(expr= - m.x387 + m.x388 == 0) m.c177 = Constraint(expr= - m.x389 + m.x390 == 0) m.c178 = Constraint(expr= - m.x391 + m.x392 == 0) m.c179 = Constraint(expr= - m.x393 + m.x394 == 0) m.c180 = Constraint(expr= - m.x395 + m.x396 == 0) m.c181 = Constraint(expr= - m.x399 + m.x400 == 0) m.c182 = Constraint(expr= - m.x401 + m.x402 == 0) m.c183 = Constraint(expr= - m.x403 + m.x404 == 0) m.c184 = Constraint(expr= - m.x405 + m.x406 == 0) m.c185 = Constraint(expr= - m.x407 + m.x408 == 0) m.c186 = Constraint(expr= - m.x409 + m.x410 == 0) m.c187 = Constraint(expr= - m.x411 + m.x412 == 0) m.c188 = Constraint(expr= - m.x413 + m.x414 == 0) m.c189 = Constraint(expr= - 0.2*m.b2 + m.x416 >= 0) m.c190 = Constraint(expr= - 0.2*m.b3 + m.x418 >= 0) m.c191 = Constraint(expr= - 0.2*m.b4 + m.x420 >= 0) m.c192 = Constraint(expr= - 0.2*m.b5 + m.x422 >= 0) m.c193 = Constraint(expr= - 0.2*m.b6 + m.x424 >= 0) m.c194 = Constraint(expr= - 0.2*m.b7 + m.x426 >= 0) m.c195 = Constraint(expr= - 0.2*m.b8 + m.x428 >= 0) m.c196 = Constraint(expr= - 0.2*m.b9 + m.x430 >= 0) m.c197 = Constraint(expr= - 0.2*m.b10 + m.x432 >= 0) m.c198 = Constraint(expr= - 0.2*m.b11 + m.x434 >= 0) m.c199 = Constraint(expr= - 0.2*m.b12 + m.x436 >= 0) m.c200 = Constraint(expr= - 0.2*m.b13 + m.x438 >= 0) m.c201 = Constraint(expr= - 0.2*m.b14 + m.x440 >= 0) m.c202 = Constraint(expr= - 0.2*m.b15 + m.x442 >= 0) m.c203 = Constraint(expr= - 0.2*m.b16 + m.x444 >= 0) m.c204 = Constraint(expr= - 0.2*m.b17 + m.x446 >= 0) m.c205 = Constraint(expr= - 0.2*m.b18 + m.x448 >= 0) m.c206 = Constraint(expr= - 0.2*m.b19 + m.x450 >= 0) m.c207 = Constraint(expr= - 0.2*m.b20 + m.x452 >= 0) m.c208 = Constraint(expr= - 0.2*m.b21 + m.x454 >= 0) m.c209 = Constraint(expr= - 0.2*m.b22 + m.x456 >= 0) m.c210 = Constraint(expr= - 0.2*m.b23 + m.x458 >= 0) m.c211 = Constraint(expr= - 0.2*m.b24 + m.x460 >= 0) m.c212 = Constraint(expr= - 0.2*m.b25 + m.x462 >= 0) m.c213 = Constraint(expr= - 0.2*m.b26 + m.x464 >= 0) m.c214 = Constraint(expr= - 0.2*m.b27 + m.x466 >= 0) m.c215 = Constraint(expr= - 0.2*m.b28 + m.x468 >= 0) m.c216 = Constraint(expr= - 0.25*m.b29 + m.x470 >= 0) m.c217 = Constraint(expr= - 0.25*m.b30 + m.x472 >= 0) m.c218 = Constraint(expr= - 0.25*m.b31 + m.x474 >= 0) m.c219 = Constraint(expr= - 0.25*m.b32 + m.x476 >= 0) m.c220 = Constraint(expr= - 0.25*m.b33 + m.x478 >= 0) m.c221 = Constraint(expr= - 0.25*m.b34 + m.x480 >= 0) m.c222 = Constraint(expr= - 0.25*m.b35 + m.x482 >= 0) m.c223 = Constraint(expr= - 0.25*m.b36 + m.x484 >= 0) m.c224 = Constraint(expr= - 0.25*m.b37 + m.x486 >= 0) m.c225 = Constraint(expr= - 0.25*m.b38 + m.x488 >= 0) m.c226 = Constraint(expr= - 0.25*m.b39 + m.x490 >= 0) m.c227 = Constraint(expr= - 0.25*m.b40 + m.x492 >= 0) m.c228 = Constraint(expr= - 0.25*m.b41 + m.x494 >= 0) m.c229 = Constraint(expr= - 0.25*m.b42 + m.x496 >= 0) m.c230 = Constraint(expr= - 0.25*m.b43 + m.x498 >= 0) m.c231 = Constraint(expr= - 0.25*m.b44 + m.x500 >= 0) m.c232 = Constraint(expr= - 0.25*m.b45 + m.x502 >= 0) m.c233 = Constraint(expr= - 0.25*m.b46 + m.x504 >= 0) m.c234 = Constraint(expr= - 0.4*m.b47 + m.x506 >= 0) m.c235 = Constraint(expr= - 0.4*m.b48 + m.x508 >= 0) m.c236 = Constraint(expr= - 0.4*m.b49 + m.x510 >= 0) m.c237 = Constraint(expr= - 0.4*m.b50 + m.x512 >= 0) m.c238 = Constraint(expr= - 0.4*m.b51 + m.x514 >= 0) m.c239 = Constraint(expr= - 0.4*m.b52 + m.x516 >= 0) m.c240 = Constraint(expr= - 0.4*m.b53 + m.x518 >= 0) m.c241 = Constraint(expr= - 0.4*m.b54 + m.x520 >= 0) m.c242 = Constraint(expr= - 0.4*m.b55 + m.x522 >= 0) m.c243 = Constraint(expr= - 0.4*m.b56 + m.x524 >= 0) m.c244 = Constraint(expr= - 0.4*m.b57 + m.x526 >= 0) m.c245 = Constraint(expr= - 0.4*m.b58 + m.x528 >= 0) m.c246 = Constraint(expr= - 0.4*m.b59 + m.x530 >= 0) m.c247 = Constraint(expr= - 0.4*m.b60 + m.x532 >= 0) m.c248 = Constraint(expr= - 0.4*m.b61 + m.x534 >= 0) m.c249 = Constraint(expr= - 0.4*m.b62 + m.x536 >= 0) m.c250 = Constraint(expr= - 0.4*m.b63 + m.x538 >= 0) m.c251 = Constraint(expr= - 0.4*m.b64 + m.x540 >= 0) m.c252 = Constraint(expr= - 0.24*m.b65 + m.x542 >= 0) m.c253 = Constraint(expr= - 0.24*m.b66 + m.x544 >= 0) m.c254 = Constraint(expr= - 0.24*m.b67 + m.x546 >= 0) m.c255 = Constraint(expr= - 0.24*m.b68 + m.x548 >= 0) m.c256 = Constraint(expr= - 0.24*m.b69 + m.x550 >= 0) m.c257 = Constraint(expr= - 0.24*m.b70 + m.x552 >= 0) m.c258 = Constraint(expr= - 0.24*m.b71 + m.x554 >= 0) m.c259 = Constraint(expr= - 0.24*m.b72 + m.x556 >= 0) m.c260 = Constraint(expr= - 0.24*m.b73 + m.x558 >= 0) m.c261 = Constraint(expr= - 0.24*m.b74 + m.x560 >= 0) m.c262 = Constraint(expr= - 0.24*m.b75 + m.x562 >= 0) m.c263 = Constraint(expr= - 0.24*m.b76 + m.x564 >= 0) m.c264 = Constraint(expr= - 0.24*m.b77 + m.x566 >= 0) m.c265 = Constraint(expr= - 0.24*m.b78 + m.x568 >= 0) m.c266 = Constraint(expr= - 0.24*m.b79 + m.x570 >= 0) m.c267 = Constraint(expr= - 0.24*m.b80 + m.x572 >= 0) m.c268 = Constraint(expr= - 0.24*m.b81 + m.x574 >= 0) m.c269 = Constraint(expr= - 0.24*m.b82 + m.x576 >= 0) m.c270 = Constraint(expr= - 0.8*m.b2 + m.x416 <= 0) m.c271 = Constraint(expr= - 0.8*m.b3 + m.x418 <= 0) m.c272 = Constraint(expr= - 0.8*m.b4 + m.x420 <= 0) m.c273 = Constraint(expr= - 0.8*m.b5 + m.x422 <= 0) m.c274 = Constraint(expr= - 0.8*m.b6 + m.x424 <= 0) m.c275 = Constraint(expr= - 0.8*m.b7 + m.x426 <= 0) m.c276 = Constraint(expr= - 0.8*m.b8 + m.x428 <= 0) m.c277 = Constraint(expr= - 0.8*m.b9 + m.x430 <= 0) m.c278 = Constraint(expr= - 0.8*m.b10 + m.x432 <= 0) m.c279 = Constraint(expr= - 0.8*m.b11 + m.x434 <= 0) m.c280 = Constraint(expr= - 0.8*m.b12 + m.x436 <= 0) m.c281 = Constraint(expr= - 0.8*m.b13 + m.x438 <= 0) m.c282 = Constraint(expr= - 0.8*m.b14 + m.x440 <= 0) m.c283 = Constraint(expr= - 0.8*m.b15 + m.x442 <= 0) m.c284 = Constraint(expr= - 0.8*m.b16 + m.x444 <= 0) m.c285 = Constraint(expr= - 0.8*m.b17 + m.x446 <= 0) m.c286 = Constraint(expr= - 0.8*m.b18 + m.x448 <= 0) m.c287 = Constraint(expr= - 0.8*m.b19 + m.x450 <= 0) m.c288 = Constraint(expr= - 0.8*m.b20 + m.x452 <= 0) m.c289 = Constraint(expr= - 0.8*m.b21 + m.x454 <= 0) m.c290 = Constraint(expr= - 0.8*m.b22 + m.x456 <= 0) m.c291 = Constraint(expr= - 0.8*m.b23 + m.x458 <= 0) m.c292 = Constraint(expr= - 0.8*m.b24 + m.x460 <= 0) m.c293 = Constraint(expr= - 0.8*m.b25 + m.x462 <= 0) m.c294 = Constraint(expr= - 0.8*m.b26 + m.x464 <= 0) m.c295 = Constraint(expr= - 0.8*m.b27 + m.x466 <= 0) m.c296 = Constraint(expr= - 0.8*m.b28 + m.x468 <= 0) m.c297 = Constraint(expr= - 0.5*m.b29 + m.x470 <= 0) m.c298 = Constraint(expr= - 0.5*m.b30 + m.x472 <= 0) m.c299 = Constraint(expr= - 0.5*m.b31 + m.x474 <= 0) m.c300 = Constraint(expr= - 0.5*m.b32 + m.x476 <= 0) m.c301 = Constraint(expr= - 0.5*m.b33 + m.x478 <= 0) m.c302 = Constraint(expr= - 0.5*m.b34 + m.x480 <= 0) m.c303 = Constraint(expr= - 0.5*m.b35 + m.x482 <= 0) m.c304 = Constraint(expr= - 0.5*m.b36 + m.x484 <= 0) m.c305 = Constraint(expr= - 0.5*m.b37 + m.x486 <= 0) m.c306 = Constraint(expr= - 0.5*m.b38 + m.x488 <= 0) m.c307 = Constraint(expr= - 0.5*m.b39 + m.x490 <= 0) m.c308 = Constraint(expr= - 0.5*m.b40 + m.x492 <= 0) m.c309 = Constraint(expr= - 0.5*m.b41 + m.x494 <= 0) m.c310 = Constraint(expr= - 0.5*m.b42 + m.x496 <= 0) m.c311 = Constraint(expr= - 0.5*m.b43 + m.x498 <= 0) m.c312 = Constraint(expr= - 0.5*m.b44 + m.x500 <= 0) m.c313 = Constraint(expr= - 0.5*m.b45 + m.x502 <= 0) m.c314 = Constraint(expr= - 0.5*m.b46 + m.x504 <= 0) m.c315 = Constraint(expr= - 0.7*m.b47 + m.x506 <= 0) m.c316 = Constraint(expr= - 0.7*m.b48 + m.x508 <= 0) m.c317 = Constraint(expr= - 0.7*m.b49 + m.x510 <= 0) m.c318 = Constraint(expr= - 0.7*m.b50 + m.x512 <= 0) m.c319 = Constraint(expr= - 0.7*m.b51 + m.x514 <= 0) m.c320 = Constraint(expr= - 0.7*m.b52 + m.x516 <= 0) m.c321 = Constraint(expr= - 0.7*m.b53 + m.x518 <= 0) m.c322 = Constraint(expr= - 0.7*m.b54 + m.x520 <= 0) m.c323 = Constraint(expr= - 0.7*m.b55 + m.x522 <= 0) m.c324 = Constraint(expr= - 0.7*m.b56 + m.x524 <= 0) m.c325 = Constraint(expr= - 0.7*m.b57 + m.x526 <= 0) m.c326 = Constraint(expr= - 0.7*m.b58 + m.x528 <= 0) m.c327 = Constraint(expr= - 0.7*m.b59 + m.x530 <= 0) m.c328 = Constraint(expr= - 0.7*m.b60 + m.x532 <= 0) m.c329 = Constraint(expr= - 0.7*m.b61 + m.x534 <= 0) m.c330 = Constraint(expr= - 0.7*m.b62 + m.x536 <= 0) m.c331 = Constraint(expr= - 0.7*m.b63 + m.x538 <= 0) m.c332 = Constraint(expr= - 0.7*m.b64 + m.x540 <= 0) m.c333 = Constraint(expr= - 0.58*m.b65 + m.x542 <= 0) m.c334 = Constraint(expr= - 0.58*m.b66 + m.x544 <= 0) m.c335 = Constraint(expr= - 0.58*m.b67 + m.x546 <= 0) m.c336 = Constraint(expr= - 0.58*m.b68 + m.x548 <= 0) m.c337 = Constraint(expr= - 0.58*m.b69 + m.x550 <= 0) m.c338 = Constraint(expr= - 0.58*m.b70 + m.x552 <= 0) m.c339 = Constraint(expr= - 0.58*m.b71 + m.x554 <= 0) m.c340 = Constraint(expr= - 0.58*m.b72 + m.x556 <= 0) m.c341 = Constraint(expr= - 0.58*m.b73 + m.x558 <= 0) m.c342 = Constraint(expr= - 0.58*m.b74 + m.x560 <= 0) m.c343 = Constraint(expr= - 0.58*m.b75 + m.x562 <= 0) m.c344 = Constraint(expr= - 0.58*m.b76 + m.x564 <= 0) m.c345 = Constraint(expr= - 0.58*m.b77 + m.x566 <= 0) m.c346 = Constraint(expr= - 0.58*m.b78 + m.x568 <= 0) m.c347 = Constraint(expr= - 0.58*m.b79 + m.x570 <= 0) m.c348 = Constraint(expr= - 0.58*m.b80 + m.x572 <= 0) m.c349 = Constraint(expr= - 0.58*m.b81 + m.x574 <= 0) m.c350 = Constraint(expr= - 0.58*m.b82 + m.x576 <= 0) m.c351 = Constraint(expr= - m.x362 + m.x578 == 60) m.c352 = Constraint(expr= - m.x364 + m.x579 == 60) m.c353 = Constraint(expr= - m.x366 + m.x580 == 60) m.c354 = Constraint(expr= - m.x368 + m.x581 == 60) m.c355 = Constraint(expr= - m.x370 + m.x582 == 60) m.c356 = Constraint(expr= - m.x372 + m.x583 == 60) m.c357 = Constraint(expr= - m.x374 + m.x584 == 60) m.c358 = Constraint(expr= - m.x376 + m.x585 == 60) m.c359 = Constraint(expr= - m.x378 + m.x586 == 60) m.c360 = Constraint(expr= - m.x380 + m.x587 == 90) m.c361 = Constraint(expr= - m.x382 + m.x588 == 90) m.c362 = Constraint(expr= - m.x384 + m.x589 == 90) m.c363 = Constraint(expr= - m.x386 + m.x590 == 90) m.c364 = Constraint(expr= - m.x388 + m.x591 == 90) m.c365 = Constraint(expr= - m.x390 + m.x592 == 90) m.c366 = Constraint(expr= - m.x392 + m.x593 == 90) m.c367 = Constraint(expr= - m.x394 + m.x594 == 90) m.c368 = Constraint(expr= - m.x396 + m.x595 == 90) m.c369 = Constraint(expr= - m.x398 + m.x596 == 103) m.c370 = Constraint(expr= - m.x400 + m.x597 == 103) m.c371 = Constraint(expr= - m.x402 + m.x598 == 103) m.c372 = Constraint(expr= - m.x404 + m.x599 == 103) m.c373 = Constraint(expr= - m.x406 + m.x600 == 103) m.c374 = Constraint(expr= - m.x408 + m.x601 == 103) m.c375 = Constraint(expr= - m.x410 + m.x602 == 103) m.c376 = Constraint(expr= - m.x412 + m.x603 == 103) m.c377 = Constraint(expr= - m.x414 + m.x604 == 103) m.c378 = Constraint(expr= - m.x578 + m.x605 - m.x606 == 0) m.c379 = Constraint(expr= - m.x579 + m.x607 - m.x608 == 0) m.c380 = Constraint(expr= - m.x580 + m.x609 - m.x610 == 0) m.c381 = Constraint(expr= - m.x581 + m.x611 - m.x612 == 0) m.c382 = Constraint(expr= - m.x582 + m.x613 - m.x614 == 0) m.c383 = Constraint(expr= - m.x583 + m.x615 - m.x616 == 0) m.c384 = Constraint(expr= - m.x584 + m.x617 - m.x618 == 0) m.c385 = Constraint(expr= - m.x585 + m.x619 - m.x620 == 0) m.c386 = Constraint(expr= - m.x586 + m.x621 - m.x622 == 0) m.c387 = Constraint(expr= m.x623 - m.x624 - m.x625 == 0) m.c388 = Constraint(expr= m.x626 - m.x627 - m.x628 == 0) m.c389 = Constraint(expr= m.x629 - m.x630 - m.x631 == 0) m.c390 = Constraint(expr= m.x632 - m.x633 - m.x634 == 0) m.c391 = Constraint(expr= m.x635 - m.x636 - m.x637 == 0) m.c392 = Constraint(expr= m.x638 - m.x639 - m.x640 == 0) m.c393 = Constraint(expr= m.x641 - m.x642 - m.x643 == 0) m.c394 = Constraint(expr= m.x644 - m.x645 - m.x646 == 0) m.c395 = Constraint(expr= m.x647 - m.x648 - m.x649 == 0) m.c396 = Constraint(expr= - m.x596 + m.x650 - m.x651 == 0) m.c397 = Constraint(expr= - m.x597 + m.x652 - m.x653 == 0) m.c398 = Constraint(expr= - m.x598 + m.x654 - m.x655 == 0) m.c399 = Constraint(expr= - m.x599 + m.x656 - m.x657 == 0) m.c400 = Constraint(expr= - m.x600 + m.x658 - m.x659 == 0) m.c401 = Constraint(expr= - m.x601 + m.x660 - m.x661 == 0) m.c402 = Constraint(expr= - m.x602 + m.x662 - m.x663 == 0) m.c403 = Constraint(expr= - m.x603 + m.x664 - m.x665 == 0) m.c404 = Constraint(expr= - m.x604 + m.x666 - m.x667 == 0) m.c405 = Constraint(expr= m.x605 - m.x668 - m.x669 == 0) m.c406 = Constraint(expr= m.x607 - m.x670 - m.x671 == 0) m.c407 = Constraint(expr= m.x609 - m.x672 - m.x673 == 0) m.c408 = Constraint(expr= m.x611 - m.x674 - m.x675 == 0) m.c409 = Constraint(expr= m.x613 - m.x676 - m.x677 == 0) m.c410 = Constraint(expr= m.x615 - m.x678 - m.x679 == 0) m.c411 = Constraint(expr= m.x617 - m.x680 - m.x681 == 0) m.c412 = Constraint(expr= m.x619 - m.x682 - m.x683 == 0) m.c413 = Constraint(expr= m.x621 - m.x684 - m.x685 == 0) m.c414 = Constraint(expr= - m.x578 + m.x623 - m.x686 == 0) m.c415 = Constraint(expr= - m.x579 + m.x626 - m.x687 == 0) m.c416 = Constraint(expr= - m.x580 + m.x629 - m.x688 == 0) m.c417 = Constraint(expr= - m.x581 + m.x632 - m.x689 == 0) m.c418 = Constraint(expr= - m.x582 + m.x635 - m.x690 == 0) m.c419 = Constraint(expr= - m.x583 + m.x638 - m.x691 == 0) m.c420 = Constraint(expr= - m.x584 + m.x641 - m.x692 == 0) m.c421 = Constraint(expr= - m.x585 + m.x644 - m.x693 == 0) m.c422 = Constraint(expr= - m.x586 + m.x647 - m.x694 == 0) m.c423 = Constraint(expr= - m.x587 + m.x650 - m.x695 == 0) m.c424 = Constraint(expr= - m.x588 + m.x652 - m.x696 == 0) m.c425 = Constraint(expr= - m.x589 + m.x654 - m.x697 == 0) m.c426 = Constraint(expr= - m.x590 + m.x656 - m.x698 == 0) m.c427 = Constraint(expr= - m.x591 + m.x658 - m.x699 == 0) m.c428 = Constraint(expr= - m.x592 + m.x660 - m.x700 == 0) m.c429 = Constraint(expr= - m.x593 + m.x662 - m.x701 == 0) m.c430 = Constraint(expr= - m.x594 + m.x664 - m.x702 == 0) m.c431 = Constraint(expr= - m.x595 + m.x666 - m.x703 == 0) m.c432 = Constraint(expr= 0.2*m.b2 - m.x416 + m.x704 <= 0.2) m.c433 = Constraint(expr= 0.2*m.b3 - m.x418 + m.x705 <= 0.2) m.c434 = Constraint(expr= 0.2*m.b4 - m.x420 + m.x706 <= 0.2) m.c435 = Constraint(expr= 0.2*m.b5 - m.x422 + m.x707 <= 0.2) m.c436 = Constraint(expr= 0.2*m.b6 - m.x424 + m.x708 <= 0.2) m.c437 = Constraint(expr= 0.2*m.b7 - m.x426 + m.x709 <= 0.2) m.c438 = Constraint(expr= 0.2*m.b8 - m.x428 + m.x710 <= 0.2) m.c439 = Constraint(expr= 0.2*m.b9 - m.x430 + m.x711 <= 0.2) m.c440 = Constraint(expr= 0.2*m.b10 - m.x432 + m.x712 <= 0.2) m.c441 = Constraint(expr= 0.2*m.b11 - m.x434 + m.x713 <= 0.2) m.c442 = Constraint(expr= 0.2*m.b12 - m.x436 + m.x714 <= 0.2) m.c443 = Constraint(expr= 0.2*m.b13 - m.x438 + m.x715 <= 0.2) m.c444 = Constraint(expr= 0.2*m.b14 - m.x440 + m.x716 <= 0.2) m.c445 = Constraint(expr= 0.2*m.b15 - m.x442 + m.x717 <= 0.2) m.c446 = Constraint(expr= 0.2*m.b16 - m.x444 + m.x718 <= 0.2) m.c447 = Constraint(expr= 0.2*m.b17 - m.x446 + m.x719 <= 0.2) m.c448 = Constraint(expr= 0.2*m.b18 - m.x448 + m.x720 <= 0.2) m.c449 = Constraint(expr= 0.2*m.b19 - m.x450 + m.x721 <= 0.2) m.c450 = Constraint(expr= 0.2*m.b20 - m.x452 + m.x722 <= 0.2) m.c451 = Constraint(expr= 0.2*m.b21 - m.x454 + m.x723 <= 0.2) m.c452 = Constraint(expr= 0.2*m.b22 - m.x456 + m.x724 <= 0.2) m.c453 = Constraint(expr= 0.2*m.b23 - m.x458 + m.x725 <= 0.2) m.c454 = Constraint(expr= 0.2*m.b24 - m.x460 + m.x726 <= 0.2) m.c455 = Constraint(expr= 0.2*m.b25 - m.x462 + m.x727 <= 0.2) m.c456 = Constraint(expr= 0.2*m.b26 - m.x464 + m.x728 <= 0.2) m.c457 = Constraint(expr= 0.2*m.b27 - m.x466 + m.x729 <= 0.2) m.c458 = Constraint(expr= 0.2*m.b28 - m.x468 + m.x730 <= 0.2) m.c459 = Constraint(expr= 0.25*m.b29 - m.x470 + m.x731 <= 0.25) m.c460 = Constraint(expr= 0.25*m.b30 - m.x472 + m.x732 <= 0.25) m.c461 = Constraint(expr= 0.25*m.b31 - m.x474 + m.x733 <= 0.25) m.c462 = Constraint(expr= 0.25*m.b32 - m.x476 + m.x734 <= 0.25) m.c463 = Constraint(expr= 0.25*m.b33 - m.x478 + m.x735 <= 0.25) m.c464 = Constraint(expr= 0.25*m.b34 - m.x480 + m.x736 <= 0.25) m.c465 = Constraint(expr= 0.25*m.b35 - m.x482 + m.x737 <= 0.25) m.c466 = Constraint(expr= 0.25*m.b36 - m.x484 + m.x738 <= 0.25) m.c467 = Constraint(expr= 0.25*m.b37 - m.x486 + m.x739 <= 0.25) m.c468 = Constraint(expr= 0.25*m.b38 - m.x488 + m.x740 <= 0.25) m.c469 = Constraint(expr= 0.25*m.b39 - m.x490 + m.x741 <= 0.25) m.c470 = Constraint(expr= 0.25*m.b40 - m.x492 + m.x742 <= 0.25) m.c471 = Constraint(expr= 0.25*m.b41 - m.x494 + m.x743 <= 0.25) m.c472 = Constraint(expr= 0.25*m.b42 - m.x496 + m.x744 <= 0.25) m.c473 = Constraint(expr= 0.25*m.b43 - m.x498 + m.x745 <= 0.25) m.c474 = Constraint(expr= 0.25*m.b44 - m.x500 + m.x746 <= 0.25) m.c475 = Constraint(expr= 0.25*m.b45 - m.x502 + m.x747 <= 0.25) m.c476 = Constraint(expr= 0.25*m.b46 - m.x504 + m.x748 <= 0.25) m.c477 = Constraint(expr= 0.4*m.b47 - m.x506 + m.x749 <= 0.4) m.c478 = Constraint(expr= 0.4*m.b48 - m.x508 + m.x750 <= 0.4) m.c479 = Constraint(expr= 0.4*m.b49 - m.x510 + m.x751 <= 0.4) m.c480 = Constraint(expr= 0.4*m.b50 - m.x512 + m.x752 <= 0.4) m.c481 = Constraint(expr= 0.4*m.b51 - m.x514 + m.x753 <= 0.4) m.c482 = Constraint(expr= 0.4*m.b52 - m.x516 + m.x754 <= 0.4) m.c483 = Constraint(expr= 0.4*m.b53 - m.x518 + m.x755 <= 0.4) m.c484 = Constraint(expr= 0.4*m.b54 - m.x520 + m.x756 <= 0.4) m.c485 = Constraint(expr= 0.4*m.b55 - m.x522 + m.x757 <= 0.4) m.c486 = Constraint(expr= 0.4*m.b56 - m.x524 + m.x758 <= 0.4) m.c487 = Constraint(expr= 0.4*m.b57 - m.x526 + m.x759 <= 0.4) m.c488 = Constraint(expr= 0.4*m.b58 - m.x528 + m.x760 <= 0.4) m.c489 = Constraint(expr= 0.4*m.b59 - m.x530 + m.x761 <= 0.4) m.c490 = Constraint(expr= 0.4*m.b60 - m.x532 + m.x762 <= 0.4) m.c491 = Constraint(expr= 0.4*m.b61 - m.x534 + m.x763 <= 0.4) m.c492 = Constraint(expr= 0.4*m.b62 - m.x536 + m.x764 <= 0.4) m.c493 = Constraint(expr= 0.4*m.b63 - m.x538 + m.x765 <= 0.4) m.c494 = Constraint(expr= 0.4*m.b64 - m.x540 + m.x766 <= 0.4) m.c495 = Constraint(expr= 0.24*m.b65 - m.x542 + m.x767 <= 0.24) m.c496 = Constraint(expr= 0.24*m.b66 - m.x544 + m.x768 <= 0.24) m.c497 = Constraint(expr= 0.24*m.b67 - m.x546 + m.x769 <= 0.24) m.c498 = Constraint(expr= 0.24*m.b68 - m.x548 + m.x770 <= 0.24) m.c499 = Constraint(expr= 0.24*m.b69 - m.x550 + m.x771 <= 0.24) m.c500 = Constraint(expr= 0.24*m.b70 - m.x552 + m.x772 <= 0.24) m.c501 = Constraint(expr= 0.24*m.b71 - m.x554 + m.x773 <= 0.24) m.c502 = Constraint(expr= 0.24*m.b72 - m.x556 + m.x774 <= 0.24) m.c503 = Constraint(expr= 0.24*m.b73 - m.x558 + m.x775 <= 0.24) m.c504 = Constraint(expr= 0.24*m.b74 - m.x560 + m.x776 <= 0.24) m.c505 = Constraint(expr= 0.24*m.b75 - m.x562 + m.x777 <= 0.24) m.c506 = Constraint(expr= 0.24*m.b76 - m.x564 + m.x778 <= 0.24) m.c507 = Constraint(expr= 0.24*m.b77 - m.x566 + m.x779 <= 0.24) m.c508 = Constraint(expr= 0.24*m.b78 - m.x568 + m.x780 <= 0.24) m.c509 = Constraint(expr= 0.24*m.b79 - m.x570 + m.x781 <= 0.24) m.c510 = Constraint(expr= 0.24*m.b80 - m.x572 + m.x782 <= 0.24) m.c511 = Constraint(expr= 0.24*m.b81 - m.x574 + m.x783 <= 0.24) m.c512 = Constraint(expr= 0.24*m.b82 - m.x576 + m.x784 <= 0.24) m.c513 = Constraint(expr= - m.x416 + m.x704 >= 0) m.c514 = Constraint(expr= - m.x418 + m.x705 >= 0) m.c515 = Constraint(expr= - m.x420 + m.x706 >= 0) m.c516 = Constraint(expr= - m.x422 + m.x707 >= 0) m.c517 = Constraint(expr= - m.x424 + m.x708 >= 0) m.c518 = Constraint(expr= - m.x426 + m.x709 >= 0) m.c519 = Constraint(expr= - m.x428 + m.x710 >= 0) m.c520 = Constraint(expr= - m.x430 + m.x711 >= 0) m.c521 = Constraint(expr= - m.x432 + m.x712 >= 0) m.c522 = Constraint(expr= - m.x434 + m.x713 >= 0) m.c523 = Constraint(expr= - m.x436 + m.x714 >= 0) m.c524 = Constraint(expr= - m.x438 + m.x715 >= 0) m.c525 = Constraint(expr= - m.x440 + m.x716 >= 0) m.c526 = Constraint(expr= - m.x442 + m.x717 >= 0) m.c527 = Constraint(expr= - m.x444 + m.x718 >= 0) m.c528 = Constraint(expr= - m.x446 + m.x719 >= 0) m.c529 = Constraint(expr= - m.x448 + m.x720 >= 0) m.c530 = Constraint(expr= - m.x450 + m.x721 >= 0) m.c531 = Constraint(expr= - m.x452 + m.x722 >= 0) m.c532 = Constraint(expr= - m.x454 + m.x723 >= 0) m.c533 = Constraint(expr= - m.x456 + m.x724 >= 0) m.c534 = Constraint(expr= - m.x458 + m.x725 >= 0) m.c535 = Constraint(expr= - m.x460 + m.x726 >= 0) m.c536 = Constraint(expr= - m.x462 + m.x727 >= 0) m.c537 = Constraint(expr= - m.x464 + m.x728 >= 0) m.c538 = Constraint(expr= - m.x466 + m.x729 >= 0) m.c539 = Constraint(expr= - m.x468 + m.x730 >= 0) m.c540 = Constraint(expr= - m.x470 + m.x731 >= 0) m.c541 = Constraint(expr= - m.x472 + m.x732 >= 0) m.c542 = Constraint(expr= - m.x474 + m.x733 >= 0) m.c543 = Constraint(expr= - m.x476 + m.x734 >= 0) m.c544 = Constraint(expr= - m.x478 + m.x735 >= 0) m.c545 = Constraint(expr= - m.x480 + m.x736 >= 0) m.c546 = Constraint(expr= - m.x482 + m.x737 >= 0) m.c547 = Constraint(expr= - m.x484 + m.x738 >= 0) m.c548 = Constraint(expr= - m.x486 + m.x739 >= 0) m.c549 = Constraint(expr= - m.x488 + m.x740 >= 0) m.c550 = Constraint(expr= - m.x490 + m.x741 >= 0) m.c551 = Constraint(expr= - m.x492 + m.x742 >= 0) m.c552 = Constraint(expr= - m.x494 + m.x743 >= 0) m.c553 = Constraint(expr= - m.x496 + m.x744 >= 0) m.c554 = Constraint(expr= - m.x498 + m.x745 >= 0) m.c555 = Constraint(expr= - m.x500 + m.x746 >= 0) m.c556 = Constraint(expr= - m.x502 + m.x747 >= 0) m.c557 = Constraint(expr= - m.x504 + m.x748 >= 0) m.c558 = Constraint(expr= - m.x506 + m.x749 >= 0) m.c559 = Constraint(expr= - m.x508 + m.x750 >= 0) m.c560 = Constraint(expr= - m.x510 + m.x751 >= 0) m.c561 = Constraint(expr= - m.x512 + m.x752 >= 0) m.c562 = Constraint(expr= - m.x514 + m.x753 >= 0) m.c563 = Constraint(expr= - m.x516 + m.x754 >= 0) m.c564 = Constraint(expr= - m.x518 + m.x755 >= 0) m.c565 = Constraint(expr= - m.x520 + m.x756 >= 0) m.c566 = Constraint(expr= - m.x522 + m.x757 >= 0) m.c567 = Constraint(expr= - m.x524 + m.x758 >= 0) m.c568 = Constraint(expr= - m.x526 + m.x759 >= 0) m.c569 = Constraint(expr= - m.x528 + m.x760 >= 0) m.c570 = Constraint(expr= - m.x530 + m.x761 >= 0) m.c571 = Constraint(expr= - m.x532 + m.x762 >= 0) m.c572 = Constraint(expr= - m.x534 + m.x763 >= 0) m.c573 = Constraint(expr= - m.x536 + m.x764 >= 0) m.c574 = Constraint(expr= - m.x538 + m.x765 >= 0) m.c575 = Constraint(expr= - m.x540 + m.x766 >= 0) m.c576 = Constraint(expr= - m.x542 + m.x767 >= 0) m.c577 = Constraint(expr= - m.x544 + m.x768 >= 0) m.c578 = Constraint(expr= - m.x546 + m.x769 >= 0) m.c579 = Constraint(expr= - m.x548 + m.x770 >= 0) m.c580 = Constraint(expr= - m.x550 + m.x771 >= 0) m.c581 = Constraint(expr= - m.x552 + m.x772 >= 0) m.c582 = Constraint(expr= - m.x554 + m.x773 >= 0) m.c583 = Constraint(expr= - m.x556 + m.x774 >= 0) m.c584 = Constraint(expr= - m.x558 + m.x775 >= 0) m.c585 = Constraint(expr= - m.x560 + m.x776 >= 0) m.c586 = Constraint(expr= - m.x562 + m.x777 >= 0) m.c587 = Constraint(expr= - m.x564 + m.x778 >= 0) m.c588 = Constraint(expr= - m.x566 + m.x779 >= 0) m.c589 = Constraint(expr= - m.x568 + m.x780 >= 0) m.c590 = Constraint(expr= - m.x570 + m.x781 >= 0) m.c591 = Constraint(expr= - m.x572 + m.x782 >= 0) m.c592 = Constraint(expr= - m.x574 + m.x783 >= 0) m.c593 = Constraint(expr= - m.x576 + m.x784 >= 0) m.c594 = Constraint(expr= - 0.6*m.b2 + m.x704 <= 0.2) m.c595 = Constraint(expr= - 0.6*m.b3 + m.x705 <= 0.2) m.c596 = Constraint(expr= - 0.6*m.b4 + m.x706 <= 0.2) m.c597 = Constraint(expr= - 0.6*m.b5 + m.x707 <= 0.2) m.c598 = Constraint(expr= - 0.6*m.b6 + m.x708 <= 0.2) m.c599 = Constraint(expr= - 0.6*m.b7 + m.x709 <= 0.2) m.c600 = Constraint(expr= - 0.6*m.b8 + m.x710 <= 0.2) m.c601 = Constraint(expr= - 0.6*m.b9 + m.x711 <= 0.2) m.c602 = Constraint(expr= - 0.6*m.b10 + m.x712 <= 0.2) m.c603 = Constraint(expr= - 0.6*m.b11 + m.x713 <= 0.2) m.c604 = Constraint(expr= - 0.6*m.b12 + m.x714 <= 0.2) m.c605 = Constraint(expr= - 0.6*m.b13 + m.x715 <= 0.2) m.c606 = Constraint(expr= - 0.6*m.b14 + m.x716 <= 0.2) m.c607 = Constraint(expr= - 0.6*m.b15 + m.x717 <= 0.2) m.c608 = Constraint(expr= - 0.6*m.b16 + m.x718 <= 0.2) m.c609 = Constraint(expr= - 0.6*m.b17 + m.x719 <= 0.2) m.c610 = Constraint(expr= - 0.6*m.b18 + m.x720 <= 0.2) m.c611 = Constraint(expr= - 0.6*m.b19 + m.x721 <= 0.2) m.c612 = Constraint(expr= - 0.6*m.b20 + m.x722 <= 0.2) m.c613 = Constraint(expr= - 0.6*m.b21 + m.x723 <= 0.2) m.c614 = Constraint(expr= - 0.6*m.b22 + m.x724 <= 0.2) m.c615 = Constraint(expr= - 0.6*m.b23 + m.x725 <= 0.2) m.c616 = Constraint(expr= - 0.6*m.b24 + m.x726 <= 0.2) m.c617 = Constraint(expr= - 0.6*m.b25 + m.x727 <= 0.2) m.c618 = Constraint(expr= - 0.6*m.b26 + m.x728 <= 0.2) m.c619 = Constraint(expr= - 0.6*m.b27 + m.x729 <= 0.2) m.c620 = Constraint(expr= - 0.6*m.b28 + m.x730 <= 0.2) m.c621 = Constraint(expr= - 0.25*m.b29 + m.x731 <= 0.25) m.c622 = Constraint(expr= - 0.25*m.b30 + m.x732 <= 0.25) m.c623 = Constraint(expr= - 0.25*m.b31 + m.x733 <= 0.25) m.c624 = Constraint(expr= - 0.25*m.b32 + m.x734 <= 0.25) m.c625 = Constraint(expr= - 0.25*m.b33 + m.x735 <= 0.25) m.c626 = Constraint(expr= - 0.25*m.b34 + m.x736 <= 0.25) m.c627 = Constraint(expr= - 0.25*m.b35 + m.x737 <= 0.25) m.c628 = Constraint(expr= - 0.25*m.b36 + m.x738 <= 0.25) m.c629 = Constraint(expr= - 0.25*m.b37 + m.x739 <= 0.25) m.c630 = Constraint(expr= - 0.25*m.b38 + m.x740 <= 0.25) m.c631 = Constraint(expr= - 0.25*m.b39 + m.x741 <= 0.25) m.c632 = Constraint(expr= - 0.25*m.b40 + m.x742 <= 0.25) m.c633 = Constraint(expr= - 0.25*m.b41 + m.x743 <= 0.25) m.c634 = Constraint(expr= - 0.25*m.b42 + m.x744 <= 0.25) m.c635 = Constraint(expr= - 0.25*m.b43 + m.x745 <= 0.25) m.c636 = Constraint(expr= - 0.25*m.b44 + m.x746 <= 0.25) m.c637 = Constraint(expr= - 0.25*m.b45 + m.x747 <= 0.25) m.c638 = Constraint(expr= - 0.25*m.b46 + m.x748 <= 0.25) m.c639 = Constraint(expr= - 0.3*m.b47 + m.x749 <= 0.4) m.c640 = Constraint(expr= - 0.3*m.b48 + m.x750 <= 0.4) m.c641 = Constraint(expr= - 0.3*m.b49 + m.x751 <= 0.4) m.c642 = Constraint(expr= - 0.3*m.b50 + m.x752 <= 0.4) m.c643 = Constraint(expr= - 0.3*m.b51 + m.x753 <= 0.4) m.c644 = Constraint(expr= - 0.3*m.b52 + m.x754 <= 0.4) m.c645 = Constraint(expr= - 0.3*m.b53 + m.x755 <= 0.4) m.c646 = Constraint(expr= - 0.3*m.b54 + m.x756 <= 0.4) m.c647 = Constraint(expr= - 0.3*m.b55 + m.x757 <= 0.4) m.c648 = Constraint(expr= - 0.3*m.b56 + m.x758 <= 0.4) m.c649 = Constraint(expr= - 0.3*m.b57 + m.x759 <= 0.4) m.c650 = Constraint(expr= - 0.3*m.b58 + m.x760 <= 0.4) m.c651 = Constraint(expr= - 0.3*m.b59 + m.x761 <= 0.4) m.c652 = Constraint(expr= - 0.3*m.b60 + m.x762 <= 0.4) m.c653 = Constraint(expr= - 0.3*m.b61 + m.x763 <= 0.4) m.c654 = Constraint(expr= - 0.3*m.b62 + m.x764 <= 0.4) m.c655 = Constraint(expr= - 0.3*m.b63 + m.x765 <= 0.4) m.c656 = Constraint(expr= - 0.3*m.b64 + m.x766 <= 0.4) m.c657 = Constraint(expr= - 0.34*m.b65 + m.x767 <= 0.24) m.c658 = Constraint(expr= - 0.34*m.b66 + m.x768 <= 0.24) m.c659 = Constraint(expr= - 0.34*m.b67 + m.x769 <= 0.24) m.c660 = Constraint(expr= - 0.34*m.b68 + m.x770 <= 0.24) m.c661 = Constraint(expr= - 0.34*m.b69 + m.x771 <= 0.24) m.c662 = Constraint(expr= - 0.34*m.b70 + m.x772 <= 0.24) m.c663 = Constraint(expr= - 0.34*m.b71 + m.x773 <= 0.24) m.c664 = Constraint(expr= - 0.34*m.b72 + m.x774 <= 0.24) m.c665 = Constraint(expr= - 0.34*m.b73 + m.x775 <= 0.24) m.c666 = Constraint(expr= - 0.34*m.b74 + m.x776 <= 0.24) m.c667 = Constraint(expr= - 0.34*m.b75 + m.x777 <= 0.24) m.c668 = Constraint(expr= - 0.34*m.b76 + m.x778 <= 0.24) m.c669 = Constraint(expr= - 0.34*m.b77 + m.x779 <= 0.24) m.c670 = Constraint(expr= - 0.34*m.b78 + m.x780 <= 0.24) m.c671 = Constraint(expr= - 0.34*m.b79 + m.x781 <= 0.24) m.c672 = Constraint(expr= - 0.34*m.b80 + m.x782 <= 0.24) m.c673 = Constraint(expr= - 0.34*m.b81 + m.x783 <= 0.24) m.c674 = Constraint(expr= - 0.34*m.b82 + m.x784 <= 0.24) m.c675 = Constraint(expr= - 0.4*m.b2 + m.x785 <= 0.6) m.c676 = Constraint(expr= - 0.4*m.b3 + m.x786 <= 0.6) m.c677 = Constraint(expr= - 0.4*m.b4 + m.x787 <= 0.6) m.c678 = Constraint(expr= - 0.4*m.b5 + m.x788 <= 0.6) m.c679 = Constraint(expr= - 0.4*m.b6 + m.x789 <= 0.6) m.c680 = Constraint(expr= - 0.4*m.b7 + m.x790 <= 0.6) m.c681 = Constraint(expr= - 0.4*m.b8 + m.x791 <= 0.6) m.c682 = Constraint(expr= - 0.4*m.b9 + m.x792 <= 0.6) m.c683 = Constraint(expr= - 0.4*m.b10 + m.x793 <= 0.6) m.c684 = Constraint(expr= - 0.2*m.b29 + m.x794 <= 0.8) m.c685 = Constraint(expr= - 0.2*m.b30 + m.x795 <= 0.8) m.c686 = Constraint(expr= - 0.2*m.b31 + m.x796 <= 0.8) m.c687 = Constraint(expr= - 0.2*m.b32 + m.x797 <= 0.8) m.c688 = Constraint(expr= - 0.2*m.b33 + m.x798 <= 0.8) m.c689 = Constraint(expr= - 0.2*m.b34 + m.x799 <= 0.8) m.c690 = Constraint(expr= - 0.2*m.b35 + m.x800 <= 0.8) m.c691 = Constraint(expr= - 0.2*m.b36 + m.x801 <= 0.8) m.c692 = Constraint(expr= - 0.2*m.b37 + m.x802 <= 0.8) m.c693 = Constraint(expr= - 0.15*m.b47 + m.x803 <= 0.85) m.c694 = Constraint(expr= - 0.15*m.b48 + m.x804 <= 0.85) m.c695 = Constraint(expr= - 0.15*m.b49 + m.x805 <= 0.85) m.c696 = Constraint(expr= - 0.15*m.b50 + m.x806 <= 0.85) m.c697 = Constraint(expr= - 0.15*m.b51 + m.x807 <= 0.85) m.c698 = Constraint(expr= - 0.15*m.b52 + m.x808 <= 0.85) m.c699 = Constraint(expr= - 0.15*m.b53 + m.x809 <= 0.85) m.c700 = Constraint(expr= - 0.15*m.b54 + m.x810 <= 0.85) m.c701 = Constraint(expr= - 0.15*m.b55 + m.x811 <= 0.85) m.c702 = Constraint(expr= - 0.3*m.b65 + m.x812 <= 0.7) m.c703 = Constraint(expr= - 0.3*m.b66 + m.x813 <= 0.7) m.c704 = Constraint(expr= - 0.3*m.b67 + m.x814 <= 0.7) m.c705 = Constraint(expr= - 0.3*m.b68 + m.x815 <= 0.7) m.c706 = Constraint(expr= - 0.3*m.b69 + m.x816 <= 0.7) m.c707 = Constraint(expr= - 0.3*m.b70 + m.x817 <= 0.7) m.c708 = Constraint(expr= - 0.3*m.b71 + m.x818 <= 0.7) m.c709 = Constraint(expr= - 0.3*m.b72 + m.x819 <= 0.7) m.c710 = Constraint(expr= - 0.3*m.b73 + m.x820 <= 0.7) m.c711 = Constraint(expr= m.b2 - m.b11 >= 0) m.c712 = Constraint(expr= m.b3 - m.b12 >= 0) m.c713 = Constraint(expr= m.b4 - m.b13 >= 0) m.c714 = Constraint(expr= m.b5 - m.b14 >= 0) m.c715 = Constraint(expr= m.b6 - m.b15 >= 0) m.c716 = Constraint(expr= m.b7 - m.b16 >= 0) m.c717 = Constraint(expr= m.b8 - m.b17 >= 0) m.c718 = Constraint(expr= m.b9 - m.b18 >= 0) m.c719 = Constraint(expr= m.b10 - m.b19 >= 0) m.c720 = Constraint(expr= m.b11 - m.b20 >= 0) m.c721 = Constraint(expr= m.b12 - m.b21 >= 0) m.c722 = Constraint(expr= m.b13 - m.b22 >= 0) m.c723 = Constraint(expr= m.b14 - m.b23 >= 0) m.c724 = Constraint(expr= m.b15 - m.b24 >= 0) m.c725 = Constraint(expr= m.b16 - m.b25 >= 0) m.c726 = Constraint(expr= m.b17 - m.b26 >= 0) m.c727 = Constraint(expr= m.b18 - m.b27 >= 0) m.c728 = Constraint(expr= m.b19 - m.b28 >= 0) m.c729 = Constraint(expr= m.b29 - m.b38 >= 0) m.c730 = Constraint(expr= m.b30 - m.b39 >= 0) m.c731 = Constraint(expr= m.b31 - m.b40 >= 0) m.c732 = Constraint(expr= m.b32 - m.b41 >= 0) m.c733 = Constraint(expr= m.b33 - m.b42 >= 0) m.c734 = Constraint(expr= m.b34 - m.b43 >= 0) m.c735 = Constraint(expr= m.b35 - m.b44 >= 0) m.c736 = Constraint(expr= m.b36 - m.b45 >= 0) m.c737 = Constraint(expr= m.b37 - m.b46 >= 0) m.c738 = Constraint(expr= m.b47 - m.b56 >= 0) m.c739 = Constraint(expr= m.b48 - m.b57 >= 0) m.c740 = Constraint(expr= m.b49 - m.b58 >= 0) m.c741 = Constraint(expr= m.b50 - m.b59 >= 0) m.c742 = Constraint(expr= m.b51 - m.b60 >= 0) m.c743 = Constraint(expr= m.b52 - m.b61 >= 0) m.c744 = Constraint(expr= m.b53 - m.b62 >= 0) m.c745 = Constraint(expr= m.b54 - m.b63 >= 0) m.c746 = Constraint(expr= m.b55 - m.b64 >= 0) m.c747 = Constraint(expr= m.b65 - m.b74 >= 0) m.c748 = Constraint(expr= m.b66 - m.b75 >= 0) m.c749 = Constraint(expr= m.b67 - m.b76 >= 0) m.c750 = Constraint(expr= m.b68 - m.b77 >= 0) m.c751 = Constraint(expr= m.b69 - m.b78 >= 0) m.c752 = Constraint(expr= m.b70 - m.b79 >= 0) m.c753 = Constraint(expr= m.b71 - m.b80 >= 0) m.c754 = Constraint(expr= m.b72 - m.b81 >= 0) m.c755 = Constraint(expr= m.b73 - m.b82 >= 0) m.c756 = Constraint(expr= m.x291 - m.x416 - m.x434 - m.x452 == 0) m.c757 = Constraint(expr= m.x293 - m.x418 - m.x436 - m.x454 == 0) m.c758 = Constraint(expr= m.x295 - m.x420 - m.x438 - m.x456 == 0) m.c759 = Constraint(expr= m.x297 - m.x422 - m.x440 - m.x458 == 0) m.c760 = Constraint(expr= m.x299 - m.x424 - m.x442 - m.x460 == 0) m.c761 = Constraint(expr= m.x301 - m.x426 - m.x444 - m.x462 == 0) m.c762 = Constraint(expr= m.x303 - m.x428 - m.x446 - m.x464 == 0) m.c763 = Constraint(expr= m.x305 - m.x430 - m.x448 - m.x466 == 0) m.c764 = Constraint(expr= m.x307 - m.x432 - m.x450 - m.x468 == 0) m.c765 = Constraint(expr= m.x309 - m.x470 - m.x488 - m.x506 - m.x524 == 0) m.c766 = Constraint(expr= m.x311 - m.x472 - m.x490 - m.x508 - m.x526 == 0) m.c767 = Constraint(expr= m.x313 - m.x474 - m.x492 - m.x510 - m.x528 == 0) m.c768 = Constraint(expr= m.x315 - m.x476 - m.x494 - m.x512 - m.x530 == 0) m.c769 = Constraint(expr= m.x317 - m.x478 - m.x496 - m.x514 - m.x532 == 0) m.c770 = Constraint(expr= m.x319 - m.x480 - m.x498 - m.x516 - m.x534 == 0) m.c771 = Constraint(expr= m.x321 - m.x482 - m.x500 - m.x518 - m.x536 == 0) m.c772 = Constraint(expr= m.x323 - m.x484 - m.x502 - m.x520 - m.x538 == 0) m.c773 = Constraint(expr= m.x325 - m.x486 - m.x504 - m.x522 - m.x540 == 0) m.c774 = Constraint(expr= m.x336 - m.x542 - m.x560 == 0) m.c775 = Constraint(expr= m.x338 - m.x544 - m.x562 == 0) m.c776 = Constraint(expr= m.x340 - m.x546 - m.x564 == 0) m.c777 = Constraint(expr= m.x342 - m.x548 - m.x566 == 0) m.c778 = Constraint(expr= m.x344 - m.x550 - m.x568 == 0) m.c779 = Constraint(expr= m.x346 - m.x552 - m.x570 == 0) m.c780 = Constraint(expr= m.x348 - m.x554 - m.x572 == 0) m.c781 = Constraint(expr= m.x350 - m.x556 - m.x574 == 0) m.c782 = Constraint(expr= m.x352 - m.x558 - m.x576 == 0) m.c783 = Constraint(expr= - 2000*m.b2 + m.x417 - m.x669 >= -2000) m.c784 = Constraint(expr= - 2000*m.b3 + m.x425 - m.x671 >= -2000) m.c785 = Constraint(expr= - 2000*m.b4 + m.x433 - m.x673 >= -2000) m.c786 = Constraint(expr= - 2000*m.b5 + m.x441 - m.x675 >= -2000) m.c787 = Constraint(expr= - 2000*m.b6 + m.x449 - m.x677 >= -2000) m.c788 = Constraint(expr= - 2000*m.b7 + m.x457 - m.x679 >= -2000) m.c789 = Constraint(expr= - 2000*m.b8 + m.x465 - m.x681 >= -2000) m.c790 = Constraint(expr= - 2000*m.b9 + m.x473 - m.x683 >= -2000) m.c791 = Constraint(expr= - 2000*m.b10 + m.x481 - m.x685 >= -2000) m.c792 = Constraint(expr= - 2000*m.b11 + m.x489 - m.x669 >= -2000) m.c793 = Constraint(expr= - 2000*m.b12 + m.x495 - m.x671 >= -2000) m.c794 = Constraint(expr= - 2000*m.b13 + m.x501 - m.x673 >= -2000) m.c795 = Constraint(expr= - 2000*m.b14 + m.x507 - m.x675 >= -2000) m.c796 = Constraint(expr= - 2000*m.b15 + m.x513 - m.x677 >= -2000) m.c797 = Constraint(expr= - 2000*m.b16 + m.x519 - m.x679 >= -2000) m.c798 = Constraint(expr= - 2000*m.b17 + m.x525 - m.x681 >= -2000) m.c799 = Constraint(expr= - 2000*m.b18 + m.x531 - m.x683 >= -2000) m.c800 = Constraint(expr= - 2000*m.b19 + m.x537 - m.x685 >= -2000) m.c801 = Constraint(expr= - 2000*m.b20 + m.x543 - m.x669 >= -2000) m.c802 = Constraint(expr= - 2000*m.b21 + m.x549 - m.x671 >= -2000) m.c803 = Constraint(expr= - 2000*m.b22 + m.x555 - m.x673 >= -2000) m.c804 = Constraint(expr= - 2000*m.b23 + m.x561 - m.x675 >= -2000) m.c805 = Constraint(expr= - 2000*m.b24 + m.x567 - m.x677 >= -2000) m.c806 = Constraint(expr= - 2000*m.b25 + m.x573 - m.x679 >= -2000) m.c807 = Constraint(expr= - 2000*m.b26 + m.x83 - m.x681 >= -2000) m.c808 = Constraint(expr= - 2000*m.b27 + m.x86 - m.x683 >= -2000) m.c809 = Constraint(expr= - 2000*m.b28 + m.x89 - m.x685 >= -2000) m.c810 = Constraint(expr= - 2000*m.b29 + m.x92 - m.x686 >= -2000) m.c811 = Constraint(expr= - 2000*m.b30 + m.x96 - m.x687 >= -2000) m.c812 = Constraint(expr= - 2000*m.b31 + m.x100 - m.x688 >= -2000) m.c813 = Constraint(expr= - 2000*m.b32 + m.x104 - m.x689 >= -2000) m.c814 = Constraint(expr= - 2000*m.b33 + m.x108 - m.x690 >= -2000) m.c815 = Constraint(expr= - 2000*m.b34 + m.x112 - m.x691 >= -2000) m.c816 = Constraint(expr= - 2000*m.b35 + m.x116 - m.x692 >= -2000) m.c817 = Constraint(expr= - 2000*m.b36 + m.x120 - m.x693 >= -2000) m.c818 = Constraint(expr= - 2000*m.b37 + m.x124 - m.x694 >= -2000) m.c819 = Constraint(expr= - 2000*m.b38 + m.x128 - m.x686 >= -2000) m.c820 = Constraint(expr= - 2000*m.b39 + m.x131 - m.x687 >= -2000) m.c821 = Constraint(expr= - 2000*m.b40 + m.x134 - m.x688 >= -2000) m.c822 = Constraint(expr= - 2000*m.b41 + m.x137 - m.x689 >= -2000) m.c823 = Constraint(expr= - 2000*m.b42 + m.x140 - m.x690 >= -2000) m.c824 = Constraint(expr= - 2000*m.b43 + m.x143 - m.x691 >= -2000) m.c825 = Constraint(expr= - 2000*m.b44 + m.x146 - m.x692 >= -2000) m.c826 = Constraint(expr= - 2000*m.b45 + m.x149 - m.x693 >= -2000) m.c827 = Constraint(expr= - 2000*m.b46 + m.x152 - m.x694 >= -2000) m.c828 = Constraint(expr= - 2000*m.b47 + m.x155 - m.x686 >= -2000) m.c829 = Constraint(expr= - 2000*m.b48 + m.x159 - m.x687 >= -2000) m.c830 = Constraint(expr= - 2000*m.b49 + m.x163 - m.x688 >= -2000) m.c831 = Constraint(expr= - 2000*m.b50 + m.x167 - m.x689 >= -2000) m.c832 = Constraint(expr= - 2000*m.b51 + m.x171 - m.x690 >= -2000) m.c833 = Constraint(expr= - 2000*m.b52 + m.x175 - m.x691 >= -2000) m.c834 = Constraint(expr= - 2000*m.b53 + m.x179 - m.x692 >= -2000) m.c835 = Constraint(expr= - 2000*m.b54 + m.x183 - m.x693 >= -2000) m.c836 = Constraint(expr= - 2000*m.b55 + m.x187 - m.x694 >= -2000) m.c837 = Constraint(expr= - 2000*m.b56 + m.x191 - m.x686 >= -2000) m.c838 = Constraint(expr= - 2000*m.b57 + m.x194 - m.x687 >= -2000) m.c839 = Constraint(expr= - 2000*m.b58 + m.x197 - m.x688 >= -2000) m.c840 = Constraint(expr= - 2000*m.b59 + m.x200 - m.x689 >= -2000) m.c841 = Constraint(expr= - 2000*m.b60 + m.x203 - m.x690 >= -2000) m.c842 = Constraint(expr= - 2000*m.b61 + m.x206 - m.x691 >= -2000) m.c843 = Constraint(expr= - 2000*m.b62 + m.x209 - m.x692 >= -2000) m.c844 = Constraint(expr= - 2000*m.b63 + m.x212 - m.x693 >= -2000) m.c845 = Constraint(expr= - 2000*m.b64 + m.x215 - m.x694 >= -2000) m.c846 = Constraint(expr= - 2000*m.b65 + m.x218 - m.x695 >= -2000) m.c847 = Constraint(expr= - 2000*m.b66 + m.x222 - m.x696 >= -2000) m.c848 = Constraint(expr= - 2000*m.b67 + m.x226 - m.x697 >= -2000) m.c849 = Constraint(expr= - 2000*m.b68 + m.x230 - m.x698 >= -2000) m.c850 = Constraint(expr= - 2000*m.b69 + m.x234 - m.x699 >= -2000) m.c851 = Constraint(expr= - 2000*m.b70 + m.x238 - m.x700 >= -2000) m.c852 = Constraint(expr= - 2000*m.b71 + m.x242 - m.x701 >= -2000) m.c853 = Constraint(expr= - 2000*m.b72 + m.x246 - m.x702 >= -2000) m.c854 = Constraint(expr= - 2000*m.b73 + m.x250 - m.x703 >= -2000) m.c855 = Constraint(expr= - 2000*m.b74 + m.x254 - m.x695 >= -2000) m.c856 = Constraint(expr= - 2000*m.b75 + m.x257 - m.x696 >= -2000) m.c857 = Constraint(expr= - 2000*m.b76 + m.x260 - m.x697 >= -2000) m.c858 = Constraint(expr= - 2000*m.b77 + m.x263 - m.x698 >= -2000) m.c859 = Constraint(expr= - 2000*m.b78 + m.x266 - m.x699 >= -2000) m.c860 = Constraint(expr= - 2000*m.b79 + m.x269 - m.x700 >= -2000) m.c861 = Constraint(expr= - 2000*m.b80 + m.x272 - m.x701 >= -2000) m.c862 = Constraint(expr= - 2000*m.b81 + m.x275 - m.x702 >= -2000) m.c863 = Constraint(expr= - 2000*m.b82 + m.x278 - m.x703 >= -2000) m.c864 = Constraint(expr= 1049*m.b2 + m.x417 - m.x669 <= 1049) m.c865 = Constraint(expr= 1049*m.b3 + m.x425 - m.x671 <= 1049) m.c866 = Constraint(expr= 1049*m.b4 + m.x433 - m.x673 <= 1049) m.c867 = Constraint(expr= 1049*m.b5 + m.x441 - m.x675 <= 1049) m.c868 = Constraint(expr= 1049*m.b6 + m.x449 - m.x677 <= 1049) m.c869 = Constraint(expr= 1049*m.b7 + m.x457 - m.x679 <= 1049) m.c870 = Constraint(expr= 1049*m.b8 + m.x465 - m.x681 <= 1049) m.c871 = Constraint(expr= 1049*m.b9 + m.x473 - m.x683 <= 1049) m.c872 = Constraint(expr= 1049*m.b10 + m.x481 - m.x685 <= 1049) m.c873 = Constraint(expr= 1049*m.b11 + m.x489 - m.x669 <= 1049) m.c874 = Constraint(expr= 1049*m.b12 + m.x495 - m.x671 <= 1049) m.c875 = Constraint(expr= 1049*m.b13 + m.x501 - m.x673 <= 1049) m.c876 = Constraint(expr= 1049*m.b14 + m.x507 - m.x675 <= 1049) m.c877 = Constraint(expr= 1049*m.b15 + m.x513 - m.x677 <= 1049) m.c878 = Constraint(expr= 1049*m.b16 + m.x519 - m.x679 <= 1049) m.c879 = Constraint(expr= 1049*m.b17 + m.x525 - m.x681 <= 1049) m.c880 = Constraint(expr= 1049*m.b18 + m.x531 - m.x683 <= 1049) m.c881 = Constraint(expr= 1049*m.b19 + m.x537 - m.x685 <= 1049) m.c882 = Constraint(expr= 1049*m.b20 + m.x543 - m.x669 <= 1049) m.c883 = Constraint(expr= 1049*m.b21 + m.x549 - m.x671 <= 1049) m.c884 = Constraint(expr= 1049*m.b22 + m.x555 - m.x673 <= 1049) m.c885 = Constraint(expr= 1049*m.b23 + m.x561 - m.x675 <= 1049) m.c886 = Constraint(expr= 1049*m.b24 + m.x567 - m.x677 <= 1049) m.c887 = Constraint(expr= 1049*m.b25 + m.x573 - m.x679 <= 1049) m.c888 = Constraint(expr= 1049*m.b26 + m.x83 - m.x681 <= 1049) m.c889 = Constraint(expr= 1049*m.b27 + m.x86 - m.x683 <= 1049) m.c890 = Constraint(expr= 1049*m.b28 + m.x89 - m.x685 <= 1049) m.c891 = Constraint(expr= 1065*m.b29 + m.x92 - m.x686 <= 1065) m.c892 = Constraint(expr= 1065*m.b30 + m.x96 - m.x687 <= 1065) m.c893 = Constraint(expr= 1065*m.b31 + m.x100 - m.x688 <= 1065) m.c894 = Constraint(expr= 1065*m.b32 + m.x104 - m.x689 <= 1065) m.c895 = Constraint(expr= 1065*m.b33 + m.x108 - m.x690 <= 1065) m.c896 = Constraint(expr= 1065*m.b34 + m.x112 - m.x691 <= 1065) m.c897 = Constraint(expr= 1065*m.b35 + m.x116 - m.x692 <= 1065) m.c898 = Constraint(expr= 1065*m.b36 + m.x120 - m.x693 <= 1065) m.c899 = Constraint(expr= 1065*m.b37 + m.x124 - m.x694 <= 1065) m.c900 = Constraint(expr= 1065*m.b38 + m.x128 - m.x686 <= 1065) m.c901 = Constraint(expr= 1065*m.b39 + m.x131 - m.x687 <= 1065) m.c902 = Constraint(expr= 1065*m.b40 + m.x134 - m.x688 <= 1065) m.c903 = Constraint(expr= 1065*m.b41 + m.x137 - m.x689 <= 1065) m.c904 = Constraint(expr= 1065*m.b42 + m.x140 - m.x690 <= 1065) m.c905 = Constraint(expr= 1065*m.b43 + m.x143 - m.x691 <= 1065) m.c906 = Constraint(expr= 1065*m.b44 + m.x146 - m.x692 <= 1065) m.c907 = Constraint(expr= 1065*m.b45 + m.x149 - m.x693 <= 1065) m.c908 = Constraint(expr= 1065*m.b46 + m.x152 - m.x694 <= 1065) m.c909 = Constraint(expr= 1065*m.b47 + m.x155 - m.x686 <= 1065) m.c910 = Constraint(expr= 1065*m.b48 + m.x159 - m.x687 <= 1065) m.c911 = Constraint(expr= 1065*m.b49 + m.x163 - m.x688 <= 1065) m.c912 = Constraint(expr= 1065*m.b50 + m.x167 - m.x689 <= 1065) m.c913 = Constraint(expr= 1065*m.b51 + m.x171 - m.x690 <= 1065) m.c914 = Constraint(expr= 1065*m.b52 + m.x175 - m.x691 <= 1065) m.c915 = Constraint(expr= 1065*m.b53 + m.x179 - m.x692 <= 1065) m.c916 = Constraint(expr= 1065*m.b54 + m.x183 - m.x693 <= 1065) m.c917 = Constraint(expr= 1065*m.b55 + m.x187 - m.x694 <= 1065) m.c918 = Constraint(expr= 1065*m.b56 + m.x191 - m.x686 <= 1065) m.c919 = Constraint(expr= 1065*m.b57 + m.x194 - m.x687 <= 1065) m.c920 = Constraint(expr= 1065*m.b58 + m.x197 - m.x688 <= 1065) m.c921 = Constraint(expr= 1065*m.b59 + m.x200 - m.x689 <= 1065) m.c922 = Constraint(expr= 1065*m.b60 + m.x203 - m.x690 <= 1065) m.c923 = Constraint(expr= 1065*m.b61 + m.x206 - m.x691 <= 1065) m.c924 = Constraint(expr= 1065*m.b62 + m.x209 - m.x692 <= 1065) m.c925 = Constraint(expr= 1065*m.b63 + m.x212 - m.x693 <= 1065) m.c926 = Constraint(expr= 1065*m.b64 + m.x215 - m.x694 <= 1065) m.c927 = Constraint(expr= 1095*m.b65 + m.x218 - m.x695 <= 1095) m.c928 = Constraint(expr= 1095*m.b66 + m.x222 - m.x696 <= 1095) m.c929 = Constraint(expr= 1095*m.b67 + m.x226 - m.x697 <= 1095) m.c930 = Constraint(expr= 1095*m.b68 + m.x230 - m.x698 <= 1095) m.c931 = Constraint(expr= 1095*m.b69 + m.x234 - m.x699 <= 1095) m.c932 = Constraint(expr= 1095*m.b70 + m.x238 - m.x700 <= 1095) m.c933 = Constraint(expr= 1095*m.b71 + m.x242 - m.x701 <= 1095) m.c934 = Constraint(expr= 1095*m.b72 + m.x246 - m.x702 <= 1095) m.c935 = Constraint(expr= 1095*m.b73 + m.x250 - m.x703 <= 1095) m.c936 = Constraint(expr= 1095*m.b74 + m.x254 - m.x695 <= 1095) m.c937 = Constraint(expr= 1095*m.b75 + m.x257 - m.x696 <= 1095) m.c938 = Constraint(expr= 1095*m.b76 + m.x260 - m.x697 <= 1095) m.c939 = Constraint(expr= 1095*m.b77 + m.x263 - m.x698 <= 1095) m.c940 = Constraint(expr= 1095*m.b78 + m.x266 - m.x699 <= 1095) m.c941 = Constraint(expr= 1095*m.b79 + m.x269 - m.x700 <= 1095) m.c942 = Constraint(expr= 1095*m.b80 + m.x272 - m.x701 <= 1095) m.c943 = Constraint(expr= 1095*m.b81 + m.x275 - m.x702 <= 1095) m.c944 = Constraint(expr= 1095*m.b82 + m.x278 - m.x703 <= 1095) m.c945 = Constraint(expr= - m.x587 + m.x624 >= 0) m.c946 = Constraint(expr= - m.x588 + m.x627 >= 0) m.c947 = Constraint(expr= - m.x589 + m.x630 >= 0) m.c948 = Constraint(expr= - m.x590 + m.x633 >= 0) m.c949 = Constraint(expr= - m.x591 + m.x636 >= 0) m.c950 = Constraint(expr= - m.x592 + m.x639 >= 0) m.c951 = Constraint(expr= - m.x593 + m.x642 >= 0) m.c952 = Constraint(expr= - m.x594 + m.x645 >= 0) m.c953 = Constraint(expr= - m.x595 + m.x648 >= 0) m.c954 = Constraint(expr= m.x596 - m.x821 >= 0) m.c955 = Constraint(expr= m.x597 - m.x822 >= 0) m.c956 = Constraint(expr= m.x598 - m.x823 >= 0) m.c957 = Constraint(expr= m.x599 - m.x824 >= 0) m.c958 = Constraint(expr= m.x600 - m.x825 >= 0) m.c959 = Constraint(expr= m.x601 - m.x826 >= 0) m.c960 = Constraint(expr= m.x602 - m.x827 >= 0) m.c961 = Constraint(expr= m.x603 - m.x828 >= 0) m.c962 = Constraint(expr= m.x604 - m.x829 >= 0) m.c963 = Constraint(expr= 13.94696158*m.x830 + 24.46510819*m.x831 - 7.28623839*m.x832 - 23.57687014*m.x833 - 0.309838295393634*m.x834 <= 0) m.c964 = Constraint(expr= - 0.309838295393634*m.x835 + 13.94696158*m.x836 + 24.46510819*m.x837 - 7.28623839*m.x838 - 23.57687014*m.x839 <= 0) m.c965 = Constraint(expr= - 0.309838295393634*m.x840 + 13.94696158*m.x841 + 24.46510819*m.x842 - 7.28623839*m.x843 - 23.57687014*m.x844 <= 0) m.c966 = Constraint(expr= 13.94696158*m.x845 + 24.46510819*m.x846 - 7.28623839*m.x847 - 23.57687014*m.x848 - 0.309838295393634*m.x849 <= 0) m.c967 = Constraint(expr= - 0.309838295393634*m.x850 + 13.94696158*m.x851 + 24.46510819*m.x852 - 7.28623839*m.x853 - 23.57687014*m.x854 <= 0) m.c968 = Constraint(expr= - 0.309838295393634*m.x855 + 13.94696158*m.x856 + 24.46510819*m.x857 - 7.28623839*m.x858 - 23.57687014*m.x859 <= 0) m.c969 = Constraint(expr= - 0.132557606221724*m.x860 + 13.94696158*m.x861 + 24.46510819*m.x862 - 7.28623839*m.x863 - 23.57687014*m.x864 <= 0) m.c970 = Constraint(expr= - 0.132557606221724*m.x865 + 13.94696158*m.x866 + 24.46510819*m.x867 - 7.28623839*m.x868 - 23.57687014*m.x869 <= 0) m.c971 = Constraint(expr= - 0.132557606221724*m.x870 - 23.57687014*m.x871 + 13.94696158*m.x872 + 24.46510819*m.x873 - 7.28623839*m.x874 <= 0) m.c972 = Constraint(expr= 13.94696158*m.x875 + 24.46510819*m.x876 - 7.28623839*m.x877 - 23.57687014*m.x878 - 0.309838295393634*m.x879 <= 0) m.c973 = Constraint(expr= - 0.309838295393634*m.x880 + 13.94696158*m.x881 + 24.46510819*m.x882 - 7.28623839*m.x883 - 23.57687014*m.x884 <= 0) m.c974 = Constraint(expr= - 0.309838295393634*m.x885 + 13.94696158*m.x886 + 24.46510819*m.x887 - 7.28623839*m.x888 - 23.57687014*m.x889 <= 0) m.c975 = Constraint(expr= - 0.309838295393634*m.x890 + 13.94696158*m.x891 + 24.46510819*m.x892 - 7.28623839*m.x893 - 23.57687014*m.x894 <= 0) m.c976 = Constraint(expr= - 0.309838295393634*m.x895 + 13.94696158*m.x896 + 24.46510819*m.x897 - 7.28623839*m.x898 - 23.57687014*m.x899 <= 0) m.c977 = Constraint(expr= - 0.309838295393634*m.x900 + 13.94696158*m.x901 + 24.46510819*m.x902 - 7.28623839*m.x903 - 23.57687014*m.x904 <= 0) m.c978 = Constraint(expr= - 0.132557606221724*m.x905 + 13.94696158*m.x906 + 24.46510819*m.x907 - 7.28623839*m.x908 - 23.57687014*m.x909 <= 0) m.c979 = Constraint(expr= 13.94696158*m.x910 + 24.46510819*m.x911 - 7.28623839*m.x912 - 23.57687014*m.x913 - 0.132557606221724*m.x914 <= 0) m.c980 = Constraint(expr= - 0.132557606221724*m.x915 + 13.94696158*m.x916 + 24.46510819*m.x917 - 7.28623839*m.x918 - 23.57687014*m.x919 <= 0) m.c981 = Constraint(expr= - 0.309838295393634*m.x920 + 13.94696158*m.x921 + 24.46510819*m.x922 - 7.28623839*m.x923 - 23.57687014*m.x924 <= 0) m.c982 = Constraint(expr= - 0.309838295393634*m.x925 + 13.94696158*m.x926 + 24.46510819*m.x927 - 7.28623839*m.x928 - 23.57687014*m.x929 <= 0) m.c983 = Constraint(expr= - 0.309838295393634*m.x930 + 24.46510819*m.x931 + 13.94696158*m.x932 - 7.28623839*m.x933 - 23.57687014*m.x934 <= 0) m.c984 = Constraint(expr= - 0.309838295393634*m.x935 + 13.94696158*m.x936 + 24.46510819*m.x937 - 7.28623839*m.x938 - 23.57687014*m.x939 <= 0) m.c985 = Constraint(expr= - 0.309838295393634*m.x940 + 13.94696158*m.x941 + 24.46510819*m.x942 - 7.28623839*m.x943 - 23.57687014*m.x944 <= 0) m.c986 = Constraint(expr= - 0.309838295393634*m.x945 + 13.94696158*m.x946 + 24.46510819*m.x947 - 7.28623839*m.x948 - 23.57687014*m.x949 <= 0) m.c987 = Constraint(expr= - 7.28623839*m.x950 - 23.57687014*m.x951 - 0.132557606221724*m.x952 + 13.94696158*m.x953 + 24.46510819*m.x954 <= 0) m.c988 = Constraint(expr= 13.94696158*m.x955 + 24.46510819*m.x956 - 7.28623839*m.x957 - 23.57687014*m.x958 - 0.132557606221724*m.x959 <= 0) m.c989 = Constraint(expr= - 0.132557606221724*m.x960 + 13.94696158*m.x961 + 24.46510819*m.x962 - 7.28623839*m.x963 - 23.57687014*m.x964 <= 0) m.c990 = Constraint(expr= - 0.309838295393634*m.x965 + 29.29404529*m.x966 - 108.39408287*m.x967 + 442.21990639*m.x968 - 454.58448169*m.x969 <= 0) m.c991 = Constraint(expr= - 0.309838295393634*m.x970 + 29.29404529*m.x971 - 108.39408287*m.x972 + 442.21990639*m.x973 - 454.58448169*m.x974 <= 0) m.c992 = Constraint(expr= 29.29404529*m.x975 + 442.21990639*m.x976 - 454.58448169*m.x977 - 0.309838295393634*m.x978 - 108.39408287*m.x979 <= 0) m.c993 = Constraint(expr= - 0.309838295393634*m.x980 + 29.29404529*m.x981 - 108.39408287*m.x982 + 442.21990639*m.x983 - 454.58448169*m.x984 <= 0) m.c994 = Constraint(expr= - 0.309838295393634*m.x985 + 29.29404529*m.x986 - 108.39408287*m.x987 + 442.21990639*m.x988 - 454.58448169*m.x989 <= 0) m.c995 = Constraint(expr= - 0.309838295393634*m.x990 + 29.29404529*m.x991 - 108.39408287*m.x992 + 442.21990639*m.x993 - 454.58448169*m.x994 <= 0) m.c996 = Constraint(expr= - 0.132557606221724*m.x995 + 29.29404529*m.x996 - 108.39408287*m.x997 + 442.21990639*m.x998 - 454.58448169*m.x999 <= 0) m.c997 = Constraint(expr= - 0.132557606221724*m.x1000 + 29.29404529*m.x1001 - 108.39408287*m.x1002 + 442.21990639*m.x1003 - 454.58448169*m.x1004 <= 0) m.c998 = Constraint(expr= - 0.132557606221724*m.x1005 + 29.29404529*m.x1006 - 108.39408287*m.x1007 + 442.21990639*m.x1008 - 454.58448169*m.x1009 <= 0) m.c999 = Constraint(expr= - 0.309838295393634*m.x1010 + 29.29404529*m.x1011 - 108.39408287*m.x1012 + 442.21990639*m.x1013 - 454.58448169*m.x1014 <= 0) m.c1000 = Constraint(expr= - 0.309838295393634*m.x1015 + 29.29404529*m.x1016 - 108.39408287*m.x1017 + 442.21990639*m.x1018 - 454.58448169*m.x1019 <= 0) m.c1001 = Constraint(expr= - 0.309838295393634*m.x1020 + 29.29404529*m.x1021 - 108.39408287*m.x1022 + 442.21990639*m.x1023 - 454.58448169*m.x1024 <= 0) m.c1002 = Constraint(expr= - 0.309838295393634*m.x1025 + 29.29404529*m.x1026 - 108.39408287*m.x1027 + 442.21990639*m.x1028 - 454.58448169*m.x1029 <= 0) m.c1003 = Constraint(expr= - 0.309838295393634*m.x1030 + 29.29404529*m.x1031 - 108.39408287*m.x1032 + 442.21990639*m.x1033 - 454.58448169*m.x1034 <= 0) m.c1004 = Constraint(expr= - 0.309838295393634*m.x1035 + 29.29404529*m.x1036 - 108.39408287*m.x1037 + 442.21990639*m.x1038 - 454.58448169*m.x1039 <= 0) m.c1005 = Constraint(expr= - 0.132557606221724*m.x1040 + 29.29404529*m.x1041 - 108.39408287*m.x1042 + 442.21990639*m.x1043 - 454.58448169*m.x1044 <= 0) m.c1006 = Constraint(expr= - 0.132557606221724*m.x1045 + 29.29404529*m.x1046 - 108.39408287*m.x1047 + 442.21990639*m.x1048 - 454.58448169*m.x1049 <= 0) m.c1007 = Constraint(expr= - 0.132557606221724*m.x1050 + 29.29404529*m.x1051 - 108.39408287*m.x1052 + 442.21990639*m.x1053 - 454.58448169*m.x1054 <= 0) m.c1008 = Constraint(expr= - 0.309838295393634*m.x1055 + 25.92674585*m.x1056 + 18.13482123*m.x1057 + 22.12766012*m.x1058 - 42.68950769*m.x1059 <= 0) m.c1009 = Constraint(expr= - 0.309838295393634*m.x1060 + 25.92674585*m.x1061 + 18.13482123*m.x1062 + 22.12766012*m.x1063 - 42.68950769*m.x1064 <= 0) m.c1010 = Constraint(expr= - 0.309838295393634*m.x1065 + 25.92674585*m.x1066 + 18.13482123*m.x1067 + 22.12766012*m.x1068 - 42.68950769*m.x1069 <= 0) m.c1011 = Constraint(expr= - 0.309838295393634*m.x1070 + 25.92674585*m.x1071 + 18.13482123*m.x1072 + 22.12766012*m.x1073 - 42.68950769*m.x1074 <= 0) m.c1012 = Constraint(expr= - 0.309838295393634*m.x1075 + 25.92674585*m.x1076 + 18.13482123*m.x1077 + 22.12766012*m.x1078 - 42.68950769*m.x1079 <= 0) m.c1013 = Constraint(expr= - 0.309838295393634*m.x1080 + 25.92674585*m.x1081 + 18.13482123*m.x1082 + 22.12766012*m.x1083 - 42.68950769*m.x1084 <= 0) m.c1014 = Constraint(expr= - 0.132557606221724*m.x1085 + 25.92674585*m.x1086 + 18.13482123*m.x1087 + 22.12766012*m.x1088 - 42.68950769*m.x1089 <= 0) m.c1015 = Constraint(expr= - 0.132557606221724*m.x1090 + 25.92674585*m.x1091 + 18.13482123*m.x1092 + 22.12766012*m.x1093 - 42.68950769*m.x1094 <= 0) m.c1016 = Constraint(expr= - 0.132557606221724*m.x1095 + 25.92674585*m.x1096 + 18.13482123*m.x1097 + 22.12766012*m.x1098 - 42.68950769*m.x1099 <= 0) m.c1017 = Constraint(expr= - 0.309838295393634*m.x1100 + 25.92674585*m.x1101 + 18.13482123*m.x1102 + 22.12766012*m.x1103 - 42.68950769*m.x1104 <= 0) m.c1018 = Constraint(expr= - 0.309838295393634*m.x1105 + 25.92674585*m.x1106 + 18.13482123*m.x1107 + 22.12766012*m.x1108 - 42.68950769*m.x1109 <= 0) m.c1019 = Constraint(expr= - 0.309838295393634*m.x1110 + 25.92674585*m.x1111 + 18.13482123*m.x1112 + 22.12766012*m.x1113 - 42.68950769*m.x1114 <= 0) m.c1020 = Constraint(expr= - 0.309838295393634*m.x1115 + 25.92674585*m.x1116 + 18.13482123*m.x1117 + 22.12766012*m.x1118 - 42.68950769*m.x1119 <= 0) m.c1021 = Constraint(expr= - 0.309838295393634*m.x1120 + 25.92674585*m.x1121 + 18.13482123*m.x1122 + 22.12766012*m.x1123 - 42.68950769*m.x1124 <= 0) m.c1022 = Constraint(expr= - 0.309838295393634*m.x1125 + 25.92674585*m.x1126 + 18.13482123*m.x1127 + 22.12766012*m.x1128 - 42.68950769*m.x1129 <= 0) m.c1023 = Constraint(expr= - 0.132557606221724*m.x1130 + 25.92674585*m.x1131 + 18.13482123*m.x1132 + 22.12766012*m.x1133 - 42.68950769*m.x1134 <= 0) m.c1024 = Constraint(expr= - 0.132557606221724*m.x1135 + 25.92674585*m.x1136 + 18.13482123*m.x1137 + 22.12766012*m.x1138 - 42.68950769*m.x1139 <= 0) m.c1025 = Constraint(expr= - 0.132557606221724*m.x1140 + 25.92674585*m.x1141 + 18.13482123*m.x1142 + 22.12766012*m.x1143 - 42.68950769*m.x1144 <= 0) m.c1026 = Constraint(expr= 17.4714791*m.x1145 - 39.98407808*m.x1146 + 134.55943082*m.x1147 - 135.88441782*m.x1148 - 0.309838295393634*m.x1149 <= 0) m.c1027 = Constraint(expr= - 0.309838295393634*m.x1150 + 17.4714791*m.x1151 - 39.98407808*m.x1152 + 134.55943082*m.x1153 - 135.88441782*m.x1154 <= 0) m.c1028 = Constraint(expr= - 0.309838295393634*m.x1155 + 17.4714791*m.x1156 - 39.98407808*m.x1157 + 134.55943082*m.x1158 - 135.88441782*m.x1159 <= 0) m.c1029 = Constraint(expr= - 0.309838295393634*m.x1160 + 17.4714791*m.x1161 - 39.98407808*m.x1162 + 134.55943082*m.x1163 - 135.88441782*m.x1164 <= 0) m.c1030 = Constraint(expr= - 0.309838295393634*m.x1165 + 17.4714791*m.x1166 - 39.98407808*m.x1167 + 134.55943082*m.x1168 - 135.88441782*m.x1169 <= 0) m.c1031 = Constraint(expr= - 0.309838295393634*m.x1170 + 17.4714791*m.x1171 - 39.98407808*m.x1172 + 134.55943082*m.x1173 - 135.88441782*m.x1174 <= 0) m.c1032 = Constraint(expr= - 0.132557606221724*m.x1175 + 17.4714791*m.x1176 - 39.98407808*m.x1177 + 134.55943082*m.x1178 - 135.88441782*m.x1179 <= 0) m.c1033 = Constraint(expr= - 0.132557606221724*m.x1180 + 17.4714791*m.x1181 - 39.98407808*m.x1182 + 134.55943082*m.x1183 - 135.88441782*m.x1184 <= 0) m.c1034 = Constraint(expr= - 0.132557606221724*m.x1185 + 17.4714791*m.x1186 - 39.98407808*m.x1187 + 134.55943082*m.x1188 - 135.88441782*m.x1189 <= 0) m.c1035 = Constraint(expr= 17.4714791*m.x1190 - 39.98407808*m.x1191 + 134.55943082*m.x1192 - 135.88441782*m.x1193 - 0.309838295393634*m.x1194 <= 0) m.c1036 = Constraint(expr= - 0.309838295393634*m.x1195 + 17.4714791*m.x1196 - 39.98407808*m.x1197 + 134.55943082*m.x1198 - 135.88441782*m.x1199 <= 0) m.c1037 = Constraint(expr= - 0.309838295393634*m.x1200 + 17.4714791*m.x1201 - 39.98407808*m.x1202 + 134.55943082*m.x1203 - 135.88441782*m.x1204 <= 0) m.c1038 = Constraint(expr= - 0.309838295393634*m.x1205 + 17.4714791*m.x1206 - 39.98407808*m.x1207 + 134.55943082*m.x1208 - 135.88441782*m.x1209 <= 0) m.c1039 = Constraint(expr= - 0.309838295393634*m.x1210 + 17.4714791*m.x1211 - 39.98407808*m.x1212 + 134.55943082*m.x1213 - 135.88441782*m.x1214 <= 0) m.c1040 = Constraint(expr= - 0.309838295393634*m.x1215 + 17.4714791*m.x1216 - 39.98407808*m.x1217 + 134.55943082*m.x1218 - 135.88441782*m.x1219 <= 0) m.c1041 = Constraint(expr= - 0.132557606221724*m.x1220 + 17.4714791*m.x1221 - 39.98407808*m.x1222 + 134.55943082*m.x1223 - 135.88441782*m.x1224 <= 0) m.c1042 = Constraint(expr= - 0.132557606221724*m.x1225 + 17.4714791*m.x1226 - 39.98407808*m.x1227 + 134.55943082*m.x1228 - 135.88441782*m.x1229 <= 0) m.c1043 = Constraint(expr= - 0.132557606221724*m.x1230 + 17.4714791*m.x1231 - 39.98407808*m.x1232 + 134.55943082*m.x1233 - 135.88441782*m.x1234 <= 0) m.c1044 = Constraint(expr=m.x290**2 - m.x1235 == 0) m.c1045 = Constraint(expr= m.x606 - 5*m.x1235 == 0) m.c1046 = Constraint(expr=m.x292**2 - m.x1236 == 0) m.c1047 = Constraint(expr= m.x608 - 5*m.x1236 == 0) m.c1048 = Constraint(expr=m.x294**2 - m.x1237 == 0) m.c1049 = Constraint(expr= m.x610 - 5*m.x1237 == 0) m.c1050 = Constraint(expr=m.x296**2 - m.x1238 == 0) m.c1051 = Constraint(expr= m.x612 - 5*m.x1238 == 0) m.c1052 = Constraint(expr=m.x298**2 - m.x1239 == 0) m.c1053 = Constraint(expr= m.x614 - 5*m.x1239 == 0) m.c1054 = Constraint(expr=m.x300**2 - m.x1240 == 0) m.c1055 = Constraint(expr= m.x616 - 5*m.x1240 == 0) m.c1056 = Constraint(expr=m.x302**2 - m.x1241 == 0) m.c1057 = Constraint(expr= m.x618 - 5*m.x1241 == 0) m.c1058 = Constraint(expr=m.x304**2 - m.x1242 == 0) m.c1059 = Constraint(expr= m.x620 - 5*m.x1242 == 0) m.c1060 = Constraint(expr=m.x306**2 - m.x1243 == 0) m.c1061 = Constraint(expr= m.x622 - 5*m.x1243 == 0) m.c1062 = Constraint(expr=m.x308**2 - m.x1244 == 0) m.c1063 = Constraint(expr= m.x625 - 4*m.x1244 == 0) m.c1064 = Constraint(expr=m.x310**2 - m.x1245 == 0) m.c1065 = Constraint(expr= m.x628 - 4*m.x1245 == 0) m.c1066 = Constraint(expr=m.x312**2 - m.x1246 == 0) m.c1067 = Constraint(expr= m.x631 - 4*m.x1246 == 0) m.c1068 = Constraint(expr=m.x314**2 - m.x1247 == 0) m.c1069 = Constraint(expr= m.x634 - 4*m.x1247 == 0) m.c1070 = Constraint(expr=m.x316**2 - m.x1248 == 0) m.c1071 = Constraint(expr= m.x637 - 4*m.x1248 == 0) m.c1072 = Constraint(expr=m.x318**2 - m.x1249 == 0) m.c1073 = Constraint(expr= m.x640 - 4*m.x1249 == 0) m.c1074 = Constraint(expr=m.x320**2 - m.x1250 == 0) m.c1075 = Constraint(expr= m.x643 - 4*m.x1250 == 0) m.c1076 = Constraint(expr=m.x322**2 - m.x1251 == 0) m.c1077 = Constraint(expr= m.x646 - 4*m.x1251 == 0) m.c1078 = Constraint(expr=m.x324**2 - m.x1252 == 0) m.c1079 = Constraint(expr= m.x649 - 4*m.x1252 == 0) m.c1080 = Constraint(expr=m.x335**2 - m.x1253 == 0) m.c1081 = Constraint(expr= m.x651 - 5*m.x1253 == 0) m.c1082 = Constraint(expr=m.x337**2 - m.x1254 == 0) m.c1083 = Constraint(expr= m.x653 - 5*m.x1254 == 0) m.c1084 = Constraint(expr=m.x339**2 - m.x1255 == 0) m.c1085 = Constraint(expr= m.x655 - 5*m.x1255 == 0) m.c1086 = Constraint(expr=m.x341**2 - m.x1256 == 0) m.c1087 = Constraint(expr= m.x657 - 5*m.x1256 == 0) m.c1088 = Constraint(expr=m.x343**2 - m.x1257 == 0) m.c1089 = Constraint(expr= m.x659 - 5*m.x1257 == 0) m.c1090 = Constraint(expr=m.x345**2 - m.x1258 == 0) m.c1091 = Constraint(expr= m.x661 - 5*m.x1258 == 0) m.c1092 = Constraint(expr=m.x347**2 - m.x1259 == 0) m.c1093 = Constraint(expr= m.x663 - 5*m.x1259 == 0) m.c1094 = Constraint(expr=m.x349**2 - m.x1260 == 0) m.c1095 = Constraint(expr= m.x665 - 5*m.x1260 == 0) m.c1096 = Constraint(expr=m.x351**2 - m.x1261 == 0) m.c1097 = Constraint(expr= m.x667 - 5*m.x1261 == 0) m.c1098 = Constraint(expr=m.x416**2 - m.x1262 == 0) m.c1099 = Constraint(expr= m.x423 - m.x1262 == 0) m.c1100 = Constraint(expr=m.x416**3 - m.x1263 == 0) m.c1101 = Constraint(expr= m.x833 - m.x1263 == 0) m.c1102 = Constraint(expr=m.x418**2 - m.x1264 == 0) m.c1103 = Constraint(expr= m.x427 - m.x1264 == 0) m.c1104 = Constraint(expr=m.x418**3 - m.x1265 == 0) m.c1105 = Constraint(expr= m.x839 - m.x1265 == 0) m.c1106 = Constraint(expr=m.x420**2 - m.x1266 == 0) m.c1107 = Constraint(expr= m.x439 - m.x1266 == 0) m.c1108 = Constraint(expr=m.x420**3 - m.x1267 == 0) m.c1109 = Constraint(expr= m.x844 - m.x1267 == 0) m.c1110 = Constraint(expr=m.x422**2 - m.x1268 == 0) m.c1111 = Constraint(expr= m.x447 - m.x1268 == 0) m.c1112 = Constraint(expr=m.x422**3 - m.x1269 == 0) m.c1113 = Constraint(expr= m.x848 - m.x1269 == 0) m.c1114 = Constraint(expr=m.x424**2 - m.x1270 == 0) m.c1115 = Constraint(expr= m.x455 - m.x1270 == 0) m.c1116 = Constraint(expr=m.x424**3 - m.x1271 == 0) m.c1117 = Constraint(expr= m.x854 - m.x1271 == 0) m.c1118 = Constraint(expr=m.x426**2 - m.x1272 == 0) m.c1119 = Constraint(expr= m.x459 - m.x1272 == 0) m.c1120 = Constraint(expr=m.x426**3 - m.x1273 == 0) m.c1121 = Constraint(expr= m.x859 - m.x1273 == 0) m.c1122 = Constraint(expr=m.x428**2 - m.x1274 == 0) m.c1123 = Constraint(expr= m.x469 - m.x1274 == 0) m.c1124 = Constraint(expr=m.x428**3 - m.x1275 == 0) m.c1125 = Constraint(expr= m.x864 - m.x1275 == 0) m.c1126 = Constraint(expr=m.x430**2 - m.x1276 == 0) m.c1127 = Constraint(expr= m.x479 - m.x1276 == 0) m.c1128 = Constraint(expr=m.x430**3 - m.x1277 == 0) m.c1129 = Constraint(expr= m.x869 - m.x1277 == 0) m.c1130 = Constraint(expr=m.x432**2 - m.x1278 == 0) m.c1131 = Constraint(expr= m.x483 - m.x1278 == 0) m.c1132 = Constraint(expr=m.x432**3 - m.x1279 == 0) m.c1133 = Constraint(expr= m.x871 - m.x1279 == 0) m.c1134 = Constraint(expr=m.x434**2 - m.x1280 == 0) m.c1135 = Constraint(expr= m.x493 - m.x1280 == 0) m.c1136 = Constraint(expr=m.x434**3 - m.x1281 == 0) m.c1137 = Constraint(expr= m.x878 - m.x1281 == 0) m.c1138 = Constraint(expr=m.x436**2 - m.x1282 == 0) m.c1139 = Constraint(expr= m.x499 - m.x1282 == 0) m.c1140 = Constraint(expr=m.x436**3 - m.x1283 == 0) m.c1141 = Constraint(expr= m.x884 - m.x1283 == 0) m.c1142 = Constraint(expr=m.x438**2 - m.x1284 == 0) m.c1143 = Constraint(expr= m.x505 - m.x1284 == 0) m.c1144 = Constraint(expr=m.x438**3 - m.x1285 == 0) m.c1145 = Constraint(expr= m.x889 - m.x1285 == 0) m.c1146 = Constraint(expr=m.x440**2 - m.x1286 == 0) m.c1147 = Constraint(expr= m.x511 - m.x1286 == 0) m.c1148 = Constraint(expr=m.x440**3 - m.x1287 == 0) m.c1149 = Constraint(expr= m.x894 - m.x1287 == 0) m.c1150 = Constraint(expr=m.x442**2 - m.x1288 == 0) m.c1151 = Constraint(expr= m.x515 - m.x1288 == 0) m.c1152 = Constraint(expr=m.x442**3 - m.x1289 == 0) m.c1153 = Constraint(expr= m.x899 - m.x1289 == 0) m.c1154 = Constraint(expr=m.x444**2 - m.x1290 == 0) m.c1155 = Constraint(expr= m.x523 - m.x1290 == 0) m.c1156 = Constraint(expr=m.x444**3 - m.x1291 == 0) m.c1157 = Constraint(expr= m.x904 - m.x1291 == 0) m.c1158 = Constraint(expr=m.x446**2 - m.x1292 == 0) m.c1159 = Constraint(expr= m.x529 - m.x1292 == 0) m.c1160 = Constraint(expr=m.x446**3 - m.x1293 == 0) m.c1161 = Constraint(expr= m.x909 - m.x1293 == 0) m.c1162 = Constraint(expr=m.x448**2 - m.x1294 == 0) m.c1163 = Constraint(expr= m.x533 - m.x1294 == 0) m.c1164 = Constraint(expr=m.x448**3 - m.x1295 == 0) m.c1165 = Constraint(expr= m.x913 - m.x1295 == 0) m.c1166 = Constraint(expr=m.x450**2 - m.x1296 == 0) m.c1167 = Constraint(expr= m.x541 - m.x1296 == 0) m.c1168 = Constraint(expr=m.x450**3 - m.x1297 == 0) m.c1169 = Constraint(expr= m.x919 - m.x1297 == 0) m.c1170 = Constraint(expr=m.x452**2 - m.x1298 == 0) m.c1171 = Constraint(expr= m.x547 - m.x1298 == 0) m.c1172 = Constraint(expr=m.x452**3 - m.x1299 == 0) m.c1173 = Constraint(expr= m.x924 - m.x1299 == 0) m.c1174 = Constraint(expr=m.x454**2 - m.x1300 == 0) m.c1175 = Constraint(expr= m.x551 - m.x1300 == 0) m.c1176 = Constraint(expr=m.x454**3 - m.x1301 == 0) m.c1177 = Constraint(expr= m.x929 - m.x1301 == 0) m.c1178 = Constraint(expr=m.x456**2 - m.x1302 == 0) m.c1179 = Constraint(expr= m.x557 - m.x1302 == 0) m.c1180 = Constraint(expr=m.x456**3 - m.x1303 == 0) m.c1181 = Constraint(expr= m.x934 - m.x1303 == 0) m.c1182 = Constraint(expr=m.x458**2 - m.x1304 == 0) m.c1183 = Constraint(expr= m.x565 - m.x1304 == 0) m.c1184 = Constraint(expr=m.x458**3 - m.x1305 == 0) m.c1185 = Constraint(expr= m.x939 - m.x1305 == 0) m.c1186 = Constraint(expr=m.x460**2 - m.x1306 == 0) m.c1187 = Constraint(expr= m.x569 - m.x1306 == 0) m.c1188 = Constraint(expr=m.x460**3 - m.x1307 == 0) m.c1189 = Constraint(expr= m.x944 - m.x1307 == 0) m.c1190 = Constraint(expr=m.x462**2 - m.x1308 == 0) m.c1191 = Constraint(expr= m.x575 - m.x1308 == 0) m.c1192 = Constraint(expr=m.x462**3 - m.x1309 == 0) m.c1193 = Constraint(expr= m.x949 - m.x1309 == 0) m.c1194 = Constraint(expr=m.x464**2 - m.x1310 == 0) m.c1195 = Constraint(expr= m.x85 - m.x1310 == 0) m.c1196 = Constraint(expr=m.x464**3 - m.x1311 == 0) m.c1197 = Constraint(expr= m.x951 - m.x1311 == 0) m.c1198 = Constraint(expr=m.x466**2 - m.x1312 == 0) m.c1199 = Constraint(expr= m.x87 - m.x1312 == 0) m.c1200 = Constraint(expr=m.x466**3 - m.x1313 == 0) m.c1201 = Constraint(expr= m.x958 - m.x1313 == 0) m.c1202 = Constraint(expr=m.x468**2 - m.x1314 == 0) m.c1203 = Constraint(expr= m.x91 - m.x1314 == 0) m.c1204 = Constraint(expr=m.x468**3 - m.x1315 == 0) m.c1205 = Constraint(expr= m.x964 - m.x1315 == 0) m.c1206 = Constraint(expr=m.x470**2 - m.x1316 == 0) m.c1207 = Constraint(expr= m.x95 - m.x1316 == 0) m.c1208 = Constraint(expr=m.x470**3 - m.x1317 == 0) m.c1209 = Constraint(expr= m.x969 - m.x1317 == 0) m.c1210 = Constraint(expr=m.x472**2 - m.x1318 == 0) m.c1211 = Constraint(expr= m.x97 - m.x1318 == 0) m.c1212 = Constraint(expr=m.x472**3 - m.x1319 == 0) m.c1213 = Constraint(expr= m.x974 - m.x1319 == 0) m.c1214 = Constraint(expr=m.x474**2 - m.x1320 == 0) m.c1215 = Constraint(expr= m.x103 - m.x1320 == 0) m.c1216 = Constraint(expr=m.x474**3 - m.x1321 == 0) m.c1217 = Constraint(expr= m.x977 - m.x1321 == 0) m.c1218 = Constraint(expr=m.x476**2 - m.x1322 == 0) m.c1219 = Constraint(expr= m.x107 - m.x1322 == 0) m.c1220 = Constraint(expr=m.x476**3 - m.x1323 == 0) m.c1221 = Constraint(expr= m.x984 - m.x1323 == 0) m.c1222 = Constraint(expr=m.x478**2 - m.x1324 == 0) m.c1223 = Constraint(expr= m.x110 - m.x1324 == 0) m.c1224 = Constraint(expr=m.x478**3 - m.x1325 == 0) m.c1225 = Constraint(expr= m.x989 - m.x1325 == 0) m.c1226 = Constraint(expr=m.x480**2 - m.x1326 == 0) m.c1227 = Constraint(expr= m.x113 - m.x1326 == 0) m.c1228 = Constraint(expr=m.x480**3 - m.x1327 == 0) m.c1229 = Constraint(expr= m.x994 - m.x1327 == 0) m.c1230 = Constraint(expr=m.x482**2 - m.x1328 == 0) m.c1231 = Constraint(expr= m.x119 - m.x1328 == 0) m.c1232 = Constraint(expr=m.x482**3 - m.x1329 == 0) m.c1233 = Constraint(expr= m.x999 - m.x1329 == 0) m.c1234 = Constraint(expr=m.x484**2 - m.x1330 == 0) m.c1235 = Constraint(expr= m.x123 - m.x1330 == 0) m.c1236 = Constraint(expr=m.x484**3 - m.x1331 == 0) m.c1237 = Constraint(expr= m.x1004 - m.x1331 == 0) m.c1238 = Constraint(expr=m.x486**2 - m.x1332 == 0) m.c1239 = Constraint(expr= m.x125 - m.x1332 == 0) m.c1240 = Constraint(expr=m.x486**3 - m.x1333 == 0) m.c1241 = Constraint(expr= m.x1009 - m.x1333 == 0) m.c1242 = Constraint(expr=m.x488**2 - m.x1334 == 0) m.c1243 = Constraint(expr= m.x130 - m.x1334 == 0) m.c1244 = Constraint(expr=m.x488**3 - m.x1335 == 0) m.c1245 = Constraint(expr= m.x1014 - m.x1335 == 0) m.c1246 = Constraint(expr=m.x490**2 - m.x1336 == 0) m.c1247 = Constraint(expr= m.x132 - m.x1336 == 0) m.c1248 = Constraint(expr=m.x490**3 - m.x1337 == 0) m.c1249 = Constraint(expr= m.x1019 - m.x1337 == 0) m.c1250 = Constraint(expr=m.x492**2 - m.x1338 == 0) m.c1251 = Constraint(expr= m.x136 - m.x1338 == 0) m.c1252 = Constraint(expr=m.x492**3 - m.x1339 == 0) m.c1253 = Constraint(expr= m.x1024 - m.x1339 == 0) m.c1254 = Constraint(expr=m.x494**2 - m.x1340 == 0) m.c1255 = Constraint(expr= m.x139 - m.x1340 == 0) m.c1256 = Constraint(expr=m.x494**3 - m.x1341 == 0) m.c1257 = Constraint(expr= m.x1029 - m.x1341 == 0) m.c1258 = Constraint(expr=m.x496**2 - m.x1342 == 0) m.c1259 = Constraint(expr= m.x141 - m.x1342 == 0) m.c1260 = Constraint(expr=m.x496**3 - m.x1343 == 0) m.c1261 = Constraint(expr= m.x1034 - m.x1343 == 0) m.c1262 = Constraint(expr=m.x498**2 - m.x1344 == 0) m.c1263 = Constraint(expr= m.x144 - m.x1344 == 0) m.c1264 = Constraint(expr=m.x498**3 - m.x1345 == 0) m.c1265 = Constraint(expr= m.x1039 - m.x1345 == 0) m.c1266 = Constraint(expr=m.x500**2 - m.x1346 == 0) m.c1267 = Constraint(expr= m.x148 - m.x1346 == 0) m.c1268 = Constraint(expr=m.x500**3 - m.x1347 == 0) m.c1269 = Constraint(expr= m.x1044 - m.x1347 == 0) m.c1270 = Constraint(expr=m.x502**2 - m.x1348 == 0) m.c1271 = Constraint(expr= m.x151 - m.x1348 == 0) m.c1272 = Constraint(expr=m.x502**3 - m.x1349 == 0) m.c1273 = Constraint(expr= m.x1049 - m.x1349 == 0) m.c1274 = Constraint(expr=m.x504**2 - m.x1350 == 0) m.c1275 = Constraint(expr= m.x153 - m.x1350 == 0) m.c1276 = Constraint(expr=m.x504**3 - m.x1351 == 0) m.c1277 = Constraint(expr= m.x1054 - m.x1351 == 0) m.c1278 = Constraint(expr=m.x506**2 - m.x1352 == 0) m.c1279 = Constraint(expr= m.x158 - m.x1352 == 0) m.c1280 = Constraint(expr=m.x506**3 - m.x1353 == 0) m.c1281 = Constraint(expr= m.x1059 - m.x1353 == 0) m.c1282 = Constraint(expr=m.x508**2 - m.x1354 == 0) m.c1283 = Constraint(expr= m.x161 - m.x1354 == 0) m.c1284 = Constraint(expr=m.x508**3 - m.x1355 == 0) m.c1285 = Constraint(expr= m.x1064 - m.x1355 == 0) m.c1286 = Constraint(expr=m.x510**2 - m.x1356 == 0) m.c1287 = Constraint(expr= m.x164 - m.x1356 == 0) m.c1288 = Constraint(expr=m.x510**3 - m.x1357 == 0) m.c1289 = Constraint(expr= m.x1069 - m.x1357 == 0) m.c1290 = Constraint(expr=m.x512**2 - m.x1358 == 0) m.c1291 = Constraint(expr= m.x168 - m.x1358 == 0) m.c1292 = Constraint(expr=m.x512**3 - m.x1359 == 0) m.c1293 = Constraint(expr= m.x1074 - m.x1359 == 0) m.c1294 = Constraint(expr=m.x514**2 - m.x1360 == 0) m.c1295 = Constraint(expr= m.x174 - m.x1360 == 0) m.c1296 = Constraint(expr=m.x514**3 - m.x1361 == 0) m.c1297 = Constraint(expr= m.x1079 - m.x1361 == 0) m.c1298 = Constraint(expr=m.x516**2 - m.x1362 == 0) m.c1299 = Constraint(expr= m.x176 - m.x1362 == 0) m.c1300 = Constraint(expr=m.x516**3 - m.x1363 == 0) m.c1301 = Constraint(expr= m.x1084 - m.x1363 == 0) m.c1302 = Constraint(expr=m.x518**2 - m.x1364 == 0) m.c1303 = Constraint(expr= m.x182 - m.x1364 == 0) m.c1304 = Constraint(expr=m.x518**3 - m.x1365 == 0) m.c1305 = Constraint(expr= m.x1089 - m.x1365 == 0) m.c1306 = Constraint(expr=m.x520**2 - m.x1366 == 0) m.c1307 = Constraint(expr= m.x186 - m.x1366 == 0) m.c1308 = Constraint(expr=m.x520**3 - m.x1367 == 0) m.c1309 = Constraint(expr= m.x1094 - m.x1367 == 0) m.c1310 = Constraint(expr=m.x522**2 - m.x1368 == 0) m.c1311 = Constraint(expr= m.x190 - m.x1368 == 0) m.c1312 = Constraint(expr=m.x522**3 - m.x1369 == 0) m.c1313 = Constraint(expr= m.x1099 - m.x1369 == 0) m.c1314 = Constraint(expr=m.x524**2 - m.x1370 == 0) m.c1315 = Constraint(expr= m.x192 - m.x1370 == 0) m.c1316 = Constraint(expr=m.x524**3 - m.x1371 == 0) m.c1317 = Constraint(expr= m.x1104 - m.x1371 == 0) m.c1318 = Constraint(expr=m.x526**2 - m.x1372 == 0) m.c1319 = Constraint(expr= m.x195 - m.x1372 == 0) m.c1320 = Constraint(expr=m.x526**3 - m.x1373 == 0) m.c1321 = Constraint(expr= m.x1109 - m.x1373 == 0) m.c1322 = Constraint(expr=m.x528**2 - m.x1374 == 0) m.c1323 = Constraint(expr= m.x199 - m.x1374 == 0) m.c1324 = Constraint(expr=m.x528**3 - m.x1375 == 0) m.c1325 = Constraint(expr= m.x1114 - m.x1375 == 0) m.c1326 = Constraint(expr=m.x530**2 - m.x1376 == 0) m.c1327 = Constraint(expr= m.x202 - m.x1376 == 0) m.c1328 = Constraint(expr=m.x530**3 - m.x1377 == 0) m.c1329 = Constraint(expr= m.x1119 - m.x1377 == 0) m.c1330 = Constraint(expr=m.x532**2 - m.x1378 == 0) m.c1331 = Constraint(expr= m.x205 - m.x1378 == 0) m.c1332 = Constraint(expr=m.x532**3 - m.x1379 == 0) m.c1333 = Constraint(expr= m.x1124 - m.x1379 == 0) m.c1334 = Constraint(expr=m.x534**2 - m.x1380 == 0) m.c1335 = Constraint(expr= m.x207 - m.x1380 == 0) m.c1336 = Constraint(expr=m.x534**3 - m.x1381 == 0) m.c1337 = Constraint(expr= m.x1129 - m.x1381 == 0) m.c1338 = Constraint(expr=m.x536**2 - m.x1382 == 0) m.c1339 = Constraint(expr= m.x210 - m.x1382 == 0) m.c1340 = Constraint(expr=m.x536**3 - m.x1383 == 0) m.c1341 = Constraint(expr= m.x1134 - m.x1383 == 0) m.c1342 = Constraint(expr=m.x538**2 - m.x1384 == 0) m.c1343 = Constraint(expr= m.x213 - m.x1384 == 0) m.c1344 = Constraint(expr=m.x538**3 - m.x1385 == 0) m.c1345 = Constraint(expr= m.x1139 - m.x1385 == 0) m.c1346 = Constraint(expr=m.x540**2 - m.x1386 == 0) m.c1347 = Constraint(expr= m.x217 - m.x1386 == 0) m.c1348 = Constraint(expr=m.x540**3 - m.x1387 == 0) m.c1349 = Constraint(expr= m.x1144 - m.x1387 == 0) m.c1350 = Constraint(expr=m.x542**2 - m.x1388 == 0) m.c1351 = Constraint(expr= m.x221 - m.x1388 == 0) m.c1352 = Constraint(expr=m.x542**3 - m.x1389 == 0) m.c1353 = Constraint(expr= m.x1148 - m.x1389 == 0) m.c1354 = Constraint(expr=m.x544**2 - m.x1390 == 0) m.c1355 = Constraint(expr= m.x223 - m.x1390 == 0) m.c1356 = Constraint(expr=m.x544**3 - m.x1391 == 0) m.c1357 = Constraint(expr= m.x1154 - m.x1391 == 0) m.c1358 = Constraint(expr=m.x546**2 - m.x1392 == 0) m.c1359 = Constraint(expr= m.x229 - m.x1392 == 0) m.c1360 = Constraint(expr=m.x546**3 - m.x1393 == 0) m.c1361 = Constraint(expr= m.x1159 - m.x1393 == 0) m.c1362 = Constraint(expr=m.x548**2 - m.x1394 == 0) m.c1363 = Constraint(expr= m.x231 - m.x1394 == 0) m.c1364 = Constraint(expr=m.x548**3 - m.x1395 == 0) m.c1365 = Constraint(expr= m.x1164 - m.x1395 == 0) m.c1366 = Constraint(expr=m.x550**2 - m.x1396 == 0) m.c1367 = Constraint(expr= m.x235 - m.x1396 == 0) m.c1368 = Constraint(expr=m.x550**3 - m.x1397 == 0) m.c1369 = Constraint(expr= m.x1169 - m.x1397 == 0) m.c1370 = Constraint(expr=m.x552**2 - m.x1398 == 0) m.c1371 = Constraint(expr= m.x239 - m.x1398 == 0) m.c1372 = Constraint(expr=m.x552**3 - m.x1399 == 0) m.c1373 = Constraint(expr= m.x1174 - m.x1399 == 0) m.c1374 = Constraint(expr=m.x554**2 - m.x1400 == 0) m.c1375 = Constraint(expr= m.x245 - m.x1400 == 0) m.c1376 = Constraint(expr=m.x554**3 - m.x1401 == 0) m.c1377 = Constraint(expr= m.x1179 - m.x1401 == 0) m.c1378 = Constraint(expr=m.x556**2 - m.x1402 == 0) m.c1379 = Constraint(expr= m.x247 - m.x1402 == 0) m.c1380 = Constraint(expr=m.x556**3 - m.x1403 == 0) m.c1381 = Constraint(expr= m.x1184 - m.x1403 == 0) m.c1382 = Constraint(expr=m.x558**2 - m.x1404 == 0) m.c1383 = Constraint(expr= m.x253 - m.x1404 == 0) m.c1384 = Constraint(expr=m.x558**3 - m.x1405 == 0) m.c1385 = Constraint(expr= m.x1189 - m.x1405 == 0) m.c1386 = Constraint(expr=m.x560**2 - m.x1406 == 0) m.c1387 = Constraint(expr= m.x255 - m.x1406 == 0) m.c1388 = Constraint(expr=m.x560**3 - m.x1407 == 0) m.c1389 = Constraint(expr= m.x1193 - m.x1407 == 0) m.c1390 = Constraint(expr=m.x562**2 - m.x1408 == 0) m.c1391 = Constraint(expr= m.x258 - m.x1408 == 0) m.c1392 = Constraint(expr=m.x562**3 - m.x1409 == 0) m.c1393 = Constraint(expr= m.x1199 - m.x1409 == 0) m.c1394 = Constraint(expr=m.x564**2 - m.x1410 == 0) m.c1395 = Constraint(expr= m.x262 - m.x1410 == 0) m.c1396 = Constraint(expr=m.x564**3 - m.x1411 == 0) m.c1397 = Constraint(expr= m.x1204 - m.x1411 == 0) m.c1398 = Constraint(expr=m.x566**2 - m.x1412 == 0) m.c1399 = Constraint(expr= m.x265 - m.x1412 == 0) m.c1400 = Constraint(expr=m.x566**3 - m.x1413 == 0) m.c1401 = Constraint(expr= m.x1209 - m.x1413 == 0) m.c1402 = Constraint(expr=m.x568**2 - m.x1414 == 0) m.c1403 = Constraint(expr= m.x267 - m.x1414 == 0) m.c1404 = Constraint(expr=m.x568**3 - m.x1415 == 0) m.c1405 = Constraint(expr= m.x1214 - m.x1415 == 0) m.c1406 = Constraint(expr=m.x570**2 - m.x1416 == 0) m.c1407 = Constraint(expr= m.x270 - m.x1416 == 0) m.c1408 = Constraint(expr=m.x570**3 - m.x1417 == 0) m.c1409 = Constraint(expr= m.x1219 - m.x1417 == 0) m.c1410 = Constraint(expr=m.x572**2 - m.x1418 == 0) m.c1411 = Constraint(expr= m.x274 - m.x1418 == 0) m.c1412 = Constraint(expr=m.x572**3 - m.x1419 == 0) m.c1413 = Constraint(expr= m.x1224 - m.x1419 == 0) m.c1414 = Constraint(expr=m.x574**2 - m.x1420 == 0) m.c1415 = Constraint(expr= m.x277 - m.x1420 == 0) m.c1416 = Constraint(expr=m.x574**3 - m.x1421 == 0) m.c1417 = Constraint(expr= m.x1229 - m.x1421 == 0) m.c1418 = Constraint(expr=m.x576**2 - m.x1422 == 0) m.c1419 = Constraint(expr= m.x279 - m.x1422 == 0) m.c1420 = Constraint(expr=m.x576**3 - m.x1423 == 0) m.c1421 = Constraint(expr= m.x1234 - m.x1423 == 0) m.c1422 = Constraint(expr=m.x416*m.x785 - m.x419 == 0) m.c1423 = Constraint(expr=m.x785*m.x1262 - m.x832 == 0) m.c1424 = Constraint(expr=m.x434*m.x785 - m.x491 == 0) m.c1425 = Constraint(expr=m.x785*m.x1280 - m.x877 == 0) m.c1426 = Constraint(expr=m.x452*m.x785 - m.x545 == 0) m.c1427 = Constraint(expr=m.x785*m.x1298 - m.x923 == 0) m.c1428 = Constraint(expr=m.x785**2 - m.x1424 == 0) m.c1429 = Constraint(expr= m.x421 - m.x1424 == 0) m.c1430 = Constraint(expr=m.x416*m.x1424 - m.x831 == 0) m.c1431 = Constraint(expr=m.x434*m.x1424 - m.x876 == 0) m.c1432 = Constraint(expr=m.x452*m.x1424 - m.x922 == 0) m.c1433 = Constraint(expr=m.x785**3 - m.x1425 == 0) m.c1434 = Constraint(expr=m.b2*m.x1425 - m.x830 == 0) m.c1435 = Constraint(expr=m.b11*m.x1425 - m.x875 == 0) m.c1436 = Constraint(expr=m.b20*m.x1425 - m.x921 == 0) m.c1437 = Constraint(expr=m.x418*m.x786 - m.x431 == 0) m.c1438 = Constraint(expr=m.x786*m.x1264 - m.x838 == 0) m.c1439 = Constraint(expr=m.x436*m.x786 - m.x497 == 0) m.c1440 = Constraint(expr=m.x786*m.x1282 - m.x883 == 0) m.c1441 = Constraint(expr=m.x454*m.x786 - m.x553 == 0) m.c1442 = Constraint(expr=m.x786*m.x1300 - m.x928 == 0) m.c1443 = Constraint(expr=m.x786**2 - m.x1426 == 0) m.c1444 = Constraint(expr= m.x429 - m.x1426 == 0) m.c1445 = Constraint(expr=m.x418*m.x1426 - m.x837 == 0) m.c1446 = Constraint(expr=m.x436*m.x1426 - m.x882 == 0) m.c1447 = Constraint(expr=m.x454*m.x1426 - m.x927 == 0) m.c1448 = Constraint(expr=m.x786**3 - m.x1427 == 0) m.c1449 = Constraint(expr=m.b3*m.x1427 - m.x836 == 0) m.c1450 = Constraint(expr=m.b12*m.x1427 - m.x881 == 0) m.c1451 = Constraint(expr=m.b21*m.x1427 - m.x926 == 0) m.c1452 = Constraint(expr=m.x420*m.x787 - m.x437 == 0) m.c1453 = Constraint(expr=m.x787*m.x1266 - m.x843 == 0) m.c1454 = Constraint(expr=m.x438*m.x787 - m.x503 == 0) m.c1455 = Constraint(expr=m.x787*m.x1284 - m.x888 == 0) m.c1456 = Constraint(expr=m.x456*m.x787 - m.x559 == 0) m.c1457 = Constraint(expr=m.x787*m.x1302 - m.x933 == 0) m.c1458 = Constraint(expr=m.x787**2 - m.x1428 == 0) m.c1459 = Constraint(expr= m.x435 - m.x1428 == 0) m.c1460 = Constraint(expr=m.x420*m.x1428 - m.x842 == 0) m.c1461 = Constraint(expr=m.x438*m.x1428 - m.x887 == 0) m.c1462 = Constraint(expr=m.x456*m.x1428 - m.x931 == 0) m.c1463 = Constraint(expr=m.x787**3 - m.x1429 == 0) m.c1464 = Constraint(expr=m.b4*m.x1429 - m.x841 == 0) m.c1465 = Constraint(expr=m.b13*m.x1429 - m.x886 == 0) m.c1466 = Constraint(expr=m.b22*m.x1429 - m.x932 == 0) m.c1467 = Constraint(expr=m.x422*m.x788 - m.x445 == 0) m.c1468 = Constraint(expr=m.x788*m.x1268 - m.x847 == 0) m.c1469 = Constraint(expr=m.x440*m.x788 - m.x509 == 0) m.c1470 = Constraint(expr=m.x788*m.x1286 - m.x893 == 0) m.c1471 = Constraint(expr=m.x458*m.x788 - m.x563 == 0) m.c1472 = Constraint(expr=m.x788*m.x1304 - m.x938 == 0) m.c1473 = Constraint(expr=m.x788**2 - m.x1430 == 0) m.c1474 = Constraint(expr= m.x443 - m.x1430 == 0) m.c1475 = Constraint(expr=m.x422*m.x1430 - m.x846 == 0) m.c1476 = Constraint(expr=m.x440*m.x1430 - m.x892 == 0) m.c1477 = Constraint(expr=m.x458*m.x1430 - m.x937 == 0) m.c1478 = Constraint(expr=m.x788**3 - m.x1431 == 0) m.c1479 = Constraint(expr=m.b5*m.x1431 - m.x845 == 0) m.c1480 = Constraint(expr=m.b14*m.x1431 - m.x891 == 0) m.c1481 = Constraint(expr=m.b23*m.x1431 - m.x936 == 0) m.c1482 = Constraint(expr=m.x424*m.x789 - m.x453 == 0) m.c1483 = Constraint(expr=m.x789*m.x1270 - m.x853 == 0) m.c1484 = Constraint(expr=m.x442*m.x789 - m.x517 == 0) m.c1485 = Constraint(expr=m.x789*m.x1288 - m.x898 == 0) m.c1486 = Constraint(expr=m.x460*m.x789 - m.x571 == 0) m.c1487 = Constraint(expr=m.x789*m.x1306 - m.x943 == 0) m.c1488 = Constraint(expr=m.x789**2 - m.x1432 == 0) m.c1489 = Constraint(expr= m.x451 - m.x1432 == 0) m.c1490 = Constraint(expr=m.x424*m.x1432 - m.x852 == 0) m.c1491 = Constraint(expr=m.x442*m.x1432 - m.x897 == 0) m.c1492 = Constraint(expr=m.x460*m.x1432 - m.x942 == 0) m.c1493 = Constraint(expr=m.x789**3 - m.x1433 == 0) m.c1494 = Constraint(expr=m.b6*m.x1433 - m.x851 == 0) m.c1495 = Constraint(expr=m.b15*m.x1433 - m.x896 == 0) m.c1496 = Constraint(expr=m.b24*m.x1433 - m.x941 == 0) m.c1497 = Constraint(expr=m.x426*m.x790 - m.x463 == 0) m.c1498 = Constraint(expr=m.x790*m.x1272 - m.x858 == 0) m.c1499 = Constraint(expr=m.x444*m.x790 - m.x521 == 0) m.c1500 = Constraint(expr=m.x790*m.x1290 - m.x903 == 0) m.c1501 = Constraint(expr=m.x462*m.x790 - m.x577 == 0) m.c1502 = Constraint(expr=m.x790*m.x1308 - m.x948 == 0) m.c1503 = Constraint(expr=m.x790**2 - m.x1434 == 0) m.c1504 = Constraint(expr= m.x461 - m.x1434 == 0) m.c1505 = Constraint(expr=m.x426*m.x1434 - m.x857 == 0) m.c1506 = Constraint(expr=m.x444*m.x1434 - m.x902 == 0) m.c1507 = Constraint(expr=m.x462*m.x1434 - m.x947 == 0) m.c1508 = Constraint(expr=m.x790**3 - m.x1435 == 0) m.c1509 = Constraint(expr=m.b7*m.x1435 - m.x856 == 0) m.c1510 = Constraint(expr=m.b16*m.x1435 - m.x901 == 0) m.c1511 = Constraint(expr=m.b25*m.x1435 - m.x946 == 0) m.c1512 = Constraint(expr=m.x428*m.x791 - m.x471 == 0) m.c1513 = Constraint(expr=m.x791*m.x1274 - m.x863 == 0) m.c1514 = Constraint(expr=m.x446*m.x791 - m.x527 == 0) m.c1515 = Constraint(expr=m.x791*m.x1292 - m.x908 == 0) m.c1516 = Constraint(expr=m.x464*m.x791 - m.x84 == 0) m.c1517 = Constraint(expr=m.x791*m.x1310 - m.x950 == 0) m.c1518 = Constraint(expr=m.x791**2 - m.x1436 == 0) m.c1519 = Constraint(expr= m.x467 - m.x1436 == 0) m.c1520 = Constraint(expr=m.x428*m.x1436 - m.x862 == 0) m.c1521 = Constraint(expr=m.x446*m.x1436 - m.x907 == 0) m.c1522 = Constraint(expr=m.x464*m.x1436 - m.x954 == 0) m.c1523 = Constraint(expr=m.x791**3 - m.x1437 == 0) m.c1524 = Constraint(expr=m.b8*m.x1437 - m.x861 == 0) m.c1525 = Constraint(expr=m.b17*m.x1437 - m.x906 == 0) m.c1526 = Constraint(expr=m.b26*m.x1437 - m.x953 == 0) m.c1527 = Constraint(expr=m.x430*m.x792 - m.x477 == 0) m.c1528 = Constraint(expr=m.x792*m.x1276 - m.x868 == 0) m.c1529 = Constraint(expr=m.x448*m.x792 - m.x535 == 0) m.c1530 = Constraint(expr=m.x792*m.x1294 - m.x912 == 0) m.c1531 = Constraint(expr=m.x466*m.x792 - m.x88 == 0) m.c1532 = Constraint(expr=m.x792*m.x1312 - m.x957 == 0) m.c1533 = Constraint(expr=m.x792**2 - m.x1438 == 0) m.c1534 = Constraint(expr= m.x475 - m.x1438 == 0) m.c1535 = Constraint(expr=m.x430*m.x1438 - m.x867 == 0) m.c1536 = Constraint(expr=m.x448*m.x1438 - m.x911 == 0) m.c1537 = Constraint(expr=m.x466*m.x1438 - m.x956 == 0) m.c1538 = Constraint(expr=m.x792**3 - m.x1439 == 0) m.c1539 = Constraint(expr=m.b9*m.x1439 - m.x866 == 0) m.c1540 = Constraint(expr=m.b18*m.x1439 - m.x910 == 0) m.c1541 = Constraint(expr=m.b27*m.x1439 - m.x955 == 0) m.c1542 = Constraint(expr=m.x432*m.x793 - m.x487 == 0) m.c1543 = Constraint(expr=m.x793*m.x1278 - m.x874 == 0) m.c1544 = Constraint(expr=m.x450*m.x793 - m.x539 == 0) m.c1545 = Constraint(expr=m.x793*m.x1296 - m.x918 == 0) m.c1546 = Constraint(expr=m.x468*m.x793 - m.x90 == 0) m.c1547 = Constraint(expr=m.x793*m.x1314 - m.x963 == 0) m.c1548 = Constraint(expr=m.x793**2 - m.x1440 == 0) m.c1549 = Constraint(expr= m.x485 - m.x1440 == 0) m.c1550 = Constraint(expr=m.x432*m.x1440 - m.x873 == 0) m.c1551 = Constraint(expr=m.x450*m.x1440 - m.x917 == 0) m.c1552 = Constraint(expr=m.x468*m.x1440 - m.x962 == 0) m.c1553 = Constraint(expr=m.x793**3 - m.x1441 == 0) m.c1554 = Constraint(expr=m.b10*m.x1441 - m.x872 == 0) m.c1555 = Constraint(expr=m.b19*m.x1441 - m.x916 == 0) m.c1556 = Constraint(expr=m.b28*m.x1441 - m.x961 == 0) m.c1557 = Constraint(expr=m.x470*m.x794 - m.x93 == 0) m.c1558 = Constraint(expr=m.x794*m.x1316 - m.x968 == 0) m.c1559 = Constraint(expr=m.x488*m.x794 - m.x129 == 0) m.c1560 = Constraint(expr=m.x794*m.x1334 - m.x1013 == 0) m.c1561 = Constraint(expr=m.x794**2 - m.x1442 == 0) m.c1562 = Constraint(expr= m.x94 - m.x1442 == 0) m.c1563 = Constraint(expr=m.x470*m.x1442 - m.x967 == 0) m.c1564 = Constraint(expr=m.x488*m.x1442 - m.x1012 == 0) m.c1565 = Constraint(expr=m.x794**3 - m.x1443 == 0) m.c1566 = Constraint(expr=m.b29*m.x1443 - m.x966 == 0) m.c1567 = Constraint(expr=m.b38*m.x1443 - m.x1011 == 0) m.c1568 = Constraint(expr=m.x472*m.x795 - m.x99 == 0) m.c1569 = Constraint(expr=m.x795*m.x1318 - m.x973 == 0) m.c1570 = Constraint(expr=m.x490*m.x795 - m.x133 == 0) m.c1571 = Constraint(expr=m.x795*m.x1336 - m.x1018 == 0) m.c1572 = Constraint(expr=m.x795**2 - m.x1444 == 0) m.c1573 = Constraint(expr= m.x98 - m.x1444 == 0) m.c1574 = Constraint(expr=m.x472*m.x1444 - m.x972 == 0) m.c1575 = Constraint(expr=m.x490*m.x1444 - m.x1017 == 0) m.c1576 = Constraint(expr=m.x795**3 - m.x1445 == 0) m.c1577 = Constraint(expr=m.b30*m.x1445 - m.x971 == 0) m.c1578 = Constraint(expr=m.b39*m.x1445 - m.x1016 == 0) m.c1579 = Constraint(expr=m.x474*m.x796 - m.x101 == 0) m.c1580 = Constraint(expr=m.x796*m.x1320 - m.x976 == 0) m.c1581 = Constraint(expr=m.x492*m.x796 - m.x135 == 0) m.c1582 = Constraint(expr=m.x796*m.x1338 - m.x1023 == 0) m.c1583 = Constraint(expr=m.x796**2 - m.x1446 == 0) m.c1584 = Constraint(expr= m.x102 - m.x1446 == 0) m.c1585 = Constraint(expr=m.x474*m.x1446 - m.x979 == 0) m.c1586 = Constraint(expr=m.x492*m.x1446 - m.x1022 == 0) m.c1587 = Constraint(expr=m.x796**3 - m.x1447 == 0) m.c1588 = Constraint(expr=m.b31*m.x1447 - m.x975 == 0) m.c1589 = Constraint(expr=m.b40*m.x1447 - m.x1021 == 0) m.c1590 = Constraint(expr=m.x476*m.x797 - m.x105 == 0) m.c1591 = Constraint(expr=m.x797*m.x1322 - m.x983 == 0) m.c1592 = Constraint(expr=m.x494*m.x797 - m.x138 == 0) m.c1593 = Constraint(expr=m.x797*m.x1340 - m.x1028 == 0) m.c1594 = Constraint(expr=m.x797**2 - m.x1448 == 0) m.c1595 = Constraint(expr= m.x106 - m.x1448 == 0) m.c1596 = Constraint(expr=m.x476*m.x1448 - m.x982 == 0) m.c1597 = Constraint(expr=m.x494*m.x1448 - m.x1027 == 0) m.c1598 = Constraint(expr=m.x797**3 - m.x1449 == 0) m.c1599 = Constraint(expr=m.b32*m.x1449 - m.x981 == 0) m.c1600 = Constraint(expr=m.b41*m.x1449 - m.x1026 == 0) m.c1601 = Constraint(expr=m.x478*m.x798 - m.x111 == 0) m.c1602 = Constraint(expr=m.x798*m.x1324 - m.x988 == 0) m.c1603 = Constraint(expr=m.x496*m.x798 - m.x142 == 0) m.c1604 = Constraint(expr=m.x798*m.x1342 - m.x1033 == 0) m.c1605 = Constraint(expr=m.x798**2 - m.x1450 == 0) m.c1606 = Constraint(expr= m.x109 - m.x1450 == 0) m.c1607 = Constraint(expr=m.x478*m.x1450 - m.x987 == 0) m.c1608 = Constraint(expr=m.x496*m.x1450 - m.x1032 == 0) m.c1609 = Constraint(expr=m.x798**3 - m.x1451 == 0) m.c1610 = Constraint(expr=m.b33*m.x1451 - m.x986 == 0) m.c1611 = Constraint(expr=m.b42*m.x1451 - m.x1031 == 0) m.c1612 = Constraint(expr=m.x480*m.x799 - m.x115 == 0) m.c1613 = Constraint(expr=m.x799*m.x1326 - m.x993 == 0) m.c1614 = Constraint(expr=m.x498*m.x799 - m.x145 == 0) m.c1615 = Constraint(expr=m.x799*m.x1344 - m.x1038 == 0) m.c1616 = Constraint(expr=m.x799**2 - m.x1452 == 0) m.c1617 = Constraint(expr= m.x114 - m.x1452 == 0) m.c1618 = Constraint(expr=m.x480*m.x1452 - m.x992 == 0) m.c1619 = Constraint(expr=m.x498*m.x1452 - m.x1037 == 0) m.c1620 = Constraint(expr=m.x799**3 - m.x1453 == 0) m.c1621 = Constraint(expr=m.b34*m.x1453 - m.x991 == 0) m.c1622 = Constraint(expr=m.b43*m.x1453 - m.x1036 == 0) m.c1623 = Constraint(expr=m.x482*m.x800 - m.x117 == 0) m.c1624 = Constraint(expr=m.x800*m.x1328 - m.x998 == 0) m.c1625 = Constraint(expr=m.x500*m.x800 - m.x147 == 0) m.c1626 = Constraint(expr=m.x800*m.x1346 - m.x1043 == 0) m.c1627 = Constraint(expr=m.x800**2 - m.x1454 == 0) m.c1628 = Constraint(expr= m.x118 - m.x1454 == 0) m.c1629 = Constraint(expr=m.x482*m.x1454 - m.x997 == 0) m.c1630 = Constraint(expr=m.x500*m.x1454 - m.x1042 == 0) m.c1631 = Constraint(expr=m.x800**3 - m.x1455 == 0) m.c1632 = Constraint(expr=m.b35*m.x1455 - m.x996 == 0) m.c1633 = Constraint(expr=m.b44*m.x1455 - m.x1041 == 0) m.c1634 = Constraint(expr=m.x484*m.x801 - m.x121 == 0) m.c1635 = Constraint(expr=m.x801*m.x1330 - m.x1003 == 0) m.c1636 = Constraint(expr=m.x502*m.x801 - m.x150 == 0) m.c1637 = Constraint(expr=m.x801*m.x1348 - m.x1048 == 0) m.c1638 = Constraint(expr=m.x801**2 - m.x1456 == 0) m.c1639 = Constraint(expr= m.x122 - m.x1456 == 0) m.c1640 = Constraint(expr=m.x484*m.x1456 - m.x1002 == 0) m.c1641 = Constraint(expr=m.x502*m.x1456 - m.x1047 == 0) m.c1642 = Constraint(expr=m.x801**3 - m.x1457 == 0) m.c1643 = Constraint(expr=m.b36*m.x1457 - m.x1001 == 0) m.c1644 = Constraint(expr=m.b45*m.x1457 - m.x1046 == 0) m.c1645 = Constraint(expr=m.x486*m.x802 - m.x126 == 0) m.c1646 = Constraint(expr=m.x802*m.x1332 - m.x1008 == 0) m.c1647 = Constraint(expr=m.x504*m.x802 - m.x154 == 0) m.c1648 = Constraint(expr=m.x802*m.x1350 - m.x1053 == 0) m.c1649 = Constraint(expr=m.x802**2 - m.x1458 == 0) m.c1650 = Constraint(expr= m.x127 - m.x1458 == 0) m.c1651 = Constraint(expr=m.x486*m.x1458 - m.x1007 == 0) m.c1652 = Constraint(expr=m.x504*m.x1458 - m.x1052 == 0) m.c1653 = Constraint(expr=m.x802**3 - m.x1459 == 0) m.c1654 = Constraint(expr=m.b37*m.x1459 - m.x1006 == 0) m.c1655 = Constraint(expr=m.b46*m.x1459 - m.x1051 == 0) m.c1656 = Constraint(expr=m.x506*m.x803 - m.x157 == 0) m.c1657 = Constraint(expr=m.x803*m.x1352 - m.x1058 == 0) m.c1658 = Constraint(expr=m.x524*m.x803 - m.x193 == 0) m.c1659 = Constraint(expr=m.x803*m.x1370 - m.x1103 == 0) m.c1660 = Constraint(expr=m.x803**2 - m.x1460 == 0) m.c1661 = Constraint(expr= m.x156 - m.x1460 == 0) m.c1662 = Constraint(expr=m.x506*m.x1460 - m.x1057 == 0) m.c1663 = Constraint(expr=m.x524*m.x1460 - m.x1102 == 0) m.c1664 = Constraint(expr=m.x803**3 - m.x1461 == 0) m.c1665 = Constraint(expr=m.b47*m.x1461 - m.x1056 == 0) m.c1666 = Constraint(expr=m.b56*m.x1461 - m.x1101 == 0) m.c1667 = Constraint(expr=m.x508*m.x804 - m.x160 == 0) m.c1668 = Constraint(expr=m.x804*m.x1354 - m.x1063 == 0) m.c1669 = Constraint(expr=m.x526*m.x804 - m.x196 == 0) m.c1670 = Constraint(expr=m.x804*m.x1372 - m.x1108 == 0) m.c1671 = Constraint(expr=m.x804**2 - m.x1462 == 0) m.c1672 = Constraint(expr= m.x162 - m.x1462 == 0) m.c1673 = Constraint(expr=m.x508*m.x1462 - m.x1062 == 0) m.c1674 = Constraint(expr=m.x526*m.x1462 - m.x1107 == 0) m.c1675 = Constraint(expr=m.x804**3 - m.x1463 == 0) m.c1676 = Constraint(expr=m.b48*m.x1463 - m.x1061 == 0) m.c1677 = Constraint(expr=m.b57*m.x1463 - m.x1106 == 0) m.c1678 = Constraint(expr=m.x510*m.x805 - m.x166 == 0) m.c1679 = Constraint(expr=m.x805*m.x1356 - m.x1068 == 0) m.c1680 = Constraint(expr=m.x528*m.x805 - m.x198 == 0) m.c1681 = Constraint(expr=m.x805*m.x1374 - m.x1113 == 0) m.c1682 = Constraint(expr=m.x805**2 - m.x1464 == 0) m.c1683 = Constraint(expr= m.x165 - m.x1464 == 0) m.c1684 = Constraint(expr=m.x510*m.x1464 - m.x1067 == 0) m.c1685 = Constraint(expr=m.x528*m.x1464 - m.x1112 == 0) m.c1686 = Constraint(expr=m.x805**3 - m.x1465 == 0) m.c1687 = Constraint(expr=m.b49*m.x1465 - m.x1066 == 0) m.c1688 = Constraint(expr=m.b58*m.x1465 - m.x1111 == 0) m.c1689 = Constraint(expr=m.x512*m.x806 - m.x170 == 0) m.c1690 = Constraint(expr=m.x806*m.x1358 - m.x1073 == 0) m.c1691 = Constraint(expr=m.x530*m.x806 - m.x201 == 0) m.c1692 = Constraint(expr=m.x806*m.x1376 - m.x1118 == 0) m.c1693 = Constraint(expr=m.x806**2 - m.x1466 == 0) m.c1694 = Constraint(expr= m.x169 - m.x1466 == 0) m.c1695 = Constraint(expr=m.x512*m.x1466 - m.x1072 == 0) m.c1696 = Constraint(expr=m.x530*m.x1466 - m.x1117 == 0) m.c1697 = Constraint(expr=m.x806**3 - m.x1467 == 0) m.c1698 = Constraint(expr=m.b50*m.x1467 - m.x1071 == 0) m.c1699 = Constraint(expr=m.b59*m.x1467 - m.x1116 == 0) m.c1700 = Constraint(expr=m.x514*m.x807 - m.x173 == 0) m.c1701 = Constraint(expr=m.x807*m.x1360 - m.x1078 == 0) m.c1702 = Constraint(expr=m.x532*m.x807 - m.x204 == 0) m.c1703 = Constraint(expr=m.x807*m.x1378 - m.x1123 == 0) m.c1704 = Constraint(expr=m.x807**2 - m.x1468 == 0) m.c1705 = Constraint(expr= m.x172 - m.x1468 == 0) m.c1706 = Constraint(expr=m.x514*m.x1468 - m.x1077 == 0) m.c1707 = Constraint(expr=m.x532*m.x1468 - m.x1122 == 0) m.c1708 = Constraint(expr=m.x807**3 - m.x1469 == 0) m.c1709 = Constraint(expr=m.b51*m.x1469 - m.x1076 == 0) m.c1710 = Constraint(expr=m.b60*m.x1469 - m.x1121 == 0) m.c1711 = Constraint(expr=m.x516*m.x808 - m.x178 == 0) m.c1712 = Constraint(expr=m.x808*m.x1362 - m.x1083 == 0) m.c1713 = Constraint(expr=m.x534*m.x808 - m.x208 == 0) m.c1714 = Constraint(expr=m.x808*m.x1380 - m.x1128 == 0) m.c1715 = Constraint(expr=m.x808**2 - m.x1470 == 0) m.c1716 = Constraint(expr= m.x177 - m.x1470 == 0) m.c1717 = Constraint(expr=m.x516*m.x1470 - m.x1082 == 0) m.c1718 = Constraint(expr=m.x534*m.x1470 - m.x1127 == 0) m.c1719 = Constraint(expr=m.x808**3 - m.x1471 == 0) m.c1720 = Constraint(expr=m.b52*m.x1471 - m.x1081 == 0) m.c1721 = Constraint(expr=m.b61*m.x1471 - m.x1126 == 0) m.c1722 = Constraint(expr=m.x518*m.x809 - m.x181 == 0) m.c1723 = Constraint(expr=m.x809*m.x1364 - m.x1088 == 0) m.c1724 = Constraint(expr=m.x536*m.x809 - m.x211 == 0) m.c1725 = Constraint(expr=m.x809*m.x1382 - m.x1133 == 0) m.c1726 = Constraint(expr=m.x809**2 - m.x1472 == 0) m.c1727 = Constraint(expr= m.x180 - m.x1472 == 0) m.c1728 = Constraint(expr=m.x518*m.x1472 - m.x1087 == 0) m.c1729 = Constraint(expr=m.x536*m.x1472 - m.x1132 == 0) m.c1730 = Constraint(expr=m.x809**3 - m.x1473 == 0) m.c1731 = Constraint(expr=m.b53*m.x1473 - m.x1086 == 0) m.c1732 = Constraint(expr=m.b62*m.x1473 - m.x1131 == 0) m.c1733 = Constraint(expr=m.x520*m.x810 - m.x185 == 0) m.c1734 = Constraint(expr=m.x810*m.x1366 - m.x1093 == 0) m.c1735 = Constraint(expr=m.x538*m.x810 - m.x214 == 0) m.c1736 = Constraint(expr=m.x810*m.x1384 - m.x1138 == 0) m.c1737 = Constraint(expr=m.x810**2 - m.x1474 == 0) m.c1738 = Constraint(expr= m.x184 - m.x1474 == 0) m.c1739 = Constraint(expr=m.x520*m.x1474 - m.x1092 == 0) m.c1740 = Constraint(expr=m.x538*m.x1474 - m.x1137 == 0) m.c1741 = Constraint(expr=m.x810**3 - m.x1475 == 0) m.c1742 = Constraint(expr=m.b54*m.x1475 - m.x1091 == 0) m.c1743 = Constraint(expr=m.b63*m.x1475 - m.x1136 == 0) m.c1744 = Constraint(expr=m.x522*m.x811 - m.x189 == 0) m.c1745 = Constraint(expr=m.x811*m.x1368 - m.x1098 == 0) m.c1746 = Constraint(expr=m.x540*m.x811 - m.x216 == 0) m.c1747 = Constraint(expr=m.x811*m.x1386 - m.x1143 == 0) m.c1748 = Constraint(expr=m.x811**2 - m.x1476 == 0) m.c1749 = Constraint(expr= m.x188 - m.x1476 == 0) m.c1750 = Constraint(expr=m.x522*m.x1476 - m.x1097 == 0) m.c1751 = Constraint(expr=m.x540*m.x1476 - m.x1142 == 0) m.c1752 = Constraint(expr=m.x811**3 - m.x1477 == 0) m.c1753 = Constraint(expr=m.b55*m.x1477 - m.x1096 == 0) m.c1754 = Constraint(expr=m.b64*m.x1477 - m.x1141 == 0) m.c1755 = Constraint(expr=m.x542*m.x812 - m.x220 == 0) m.c1756 = Constraint(expr=m.x812*m.x1388 - m.x1147 == 0) m.c1757 = Constraint(expr=m.x560*m.x812 - m.x256 == 0) m.c1758 = Constraint(expr=m.x812*m.x1406 - m.x1192 == 0) m.c1759 = Constraint(expr=m.x812**2 - m.x1478 == 0) m.c1760 = Constraint(expr= m.x219 - m.x1478 == 0) m.c1761 = Constraint(expr=m.x542*m.x1478 - m.x1146 == 0) m.c1762 = Constraint(expr=m.x560*m.x1478 - m.x1191 == 0) m.c1763 = Constraint(expr=m.x812**3 - m.x1479 == 0) m.c1764 = Constraint(expr=m.b65*m.x1479 - m.x1145 == 0) m.c1765 = Constraint(expr=m.b74*m.x1479 - m.x1190 == 0) m.c1766 = Constraint(expr=m.x544*m.x813 - m.x225 == 0) m.c1767 = Constraint(expr=m.x813*m.x1390 - m.x1153 == 0) m.c1768 = Constraint(expr=m.x562*m.x813 - m.x259 == 0) m.c1769 = Constraint(expr=m.x813*m.x1408 - m.x1198 == 0) m.c1770 = Constraint(expr=m.x813**2 - m.x1480 == 0) m.c1771 = Constraint(expr= m.x224 - m.x1480 == 0) m.c1772 = Constraint(expr=m.x544*m.x1480 - m.x1152 == 0) m.c1773 = Constraint(expr=m.x562*m.x1480 - m.x1197 == 0) m.c1774 = Constraint(expr=m.x813**3 - m.x1481 == 0) m.c1775 = Constraint(expr=m.b66*m.x1481 - m.x1151 == 0) m.c1776 = Constraint(expr=m.b75*m.x1481 - m.x1196 == 0) m.c1777 = Constraint(expr=m.x546*m.x814 - m.x228 == 0) m.c1778 = Constraint(expr=m.x814*m.x1392 - m.x1158 == 0) m.c1779 = Constraint(expr=m.x564*m.x814 - m.x261 == 0) m.c1780 = Constraint(expr=m.x814*m.x1410 - m.x1203 == 0) m.c1781 = Constraint(expr=m.x814**2 - m.x1482 == 0) m.c1782 = Constraint(expr= m.x227 - m.x1482 == 0) m.c1783 = Constraint(expr=m.x546*m.x1482 - m.x1157 == 0) m.c1784 = Constraint(expr=m.x564*m.x1482 - m.x1202 == 0) m.c1785 = Constraint(expr=m.x814**3 - m.x1483 == 0) m.c1786 = Constraint(expr=m.b67*m.x1483 - m.x1156 == 0) m.c1787 = Constraint(expr=m.b76*m.x1483 - m.x1201 == 0) m.c1788 = Constraint(expr=m.x548*m.x815 - m.x232 == 0) m.c1789 = Constraint(expr=m.x815*m.x1394 - m.x1163 == 0) m.c1790 = Constraint(expr=m.x566*m.x815 - m.x264 == 0) m.c1791 = Constraint(expr=m.x815*m.x1412 - m.x1208 == 0) m.c1792 = Constraint(expr=m.x815**2 - m.x1484 == 0) m.c1793 = Constraint(expr= m.x233 - m.x1484 == 0) m.c1794 = Constraint(expr=m.x548*m.x1484 - m.x1162 == 0) m.c1795 = Constraint(expr=m.x566*m.x1484 - m.x1207 == 0) m.c1796 = Constraint(expr=m.x815**3 - m.x1485 == 0) m.c1797 = Constraint(expr=m.b68*m.x1485 - m.x1161 == 0) m.c1798 = Constraint(expr=m.b77*m.x1485 - m.x1206 == 0) m.c1799 = Constraint(expr=m.x550*m.x816 - m.x237 == 0) m.c1800 = Constraint(expr=m.x816*m.x1396 - m.x1168 == 0) m.c1801 = Constraint(expr=m.x568*m.x816 - m.x268 == 0) m.c1802 = Constraint(expr=m.x816*m.x1414 - m.x1213 == 0) m.c1803 = Constraint(expr=m.x816**2 - m.x1486 == 0) m.c1804 = Constraint(expr= m.x236 - m.x1486 == 0) m.c1805 = Constraint(expr=m.x550*m.x1486 - m.x1167 == 0) m.c1806 = Constraint(expr=m.x568*m.x1486 - m.x1212 == 0) m.c1807 = Constraint(expr=m.x816**3 - m.x1487 == 0) m.c1808 = Constraint(expr=m.b69*m.x1487 - m.x1166 == 0) m.c1809 = Constraint(expr=m.b78*m.x1487 - m.x1211 == 0) m.c1810 = Constraint(expr=m.x552*m.x817 - m.x241 == 0) m.c1811 = Constraint(expr=m.x817*m.x1398 - m.x1173 == 0) m.c1812 = Constraint(expr=m.x570*m.x817 - m.x271 == 0) m.c1813 = Constraint(expr=m.x817*m.x1416 - m.x1218 == 0) m.c1814 = Constraint(expr=m.x817**2 - m.x1488 == 0) m.c1815 = Constraint(expr= m.x240 - m.x1488 == 0) m.c1816 = Constraint(expr=m.x552*m.x1488 - m.x1172 == 0) m.c1817 = Constraint(expr=m.x570*m.x1488 - m.x1217 == 0) m.c1818 = Constraint(expr=m.x817**3 - m.x1489 == 0) m.c1819 = Constraint(expr=m.b70*m.x1489 - m.x1171 == 0) m.c1820 = Constraint(expr=m.b79*m.x1489 - m.x1216 == 0) m.c1821 = Constraint(expr=m.x554*m.x818 - m.x243 == 0) m.c1822 = Constraint(expr=m.x818*m.x1400 - m.x1178 == 0) m.c1823 = Constraint(expr=m.x572*m.x818 - m.x273 == 0) m.c1824 = Constraint(expr=m.x818*m.x1418 - m.x1223 == 0) m.c1825 = Constraint(expr=m.x818**2 - m.x1490 == 0) m.c1826 = Constraint(expr= m.x244 - m.x1490 == 0) m.c1827 = Constraint(expr=m.x554*m.x1490 - m.x1177 == 0) m.c1828 = Constraint(expr=m.x572*m.x1490 - m.x1222 == 0) m.c1829 = Constraint(expr=m.x818**3 - m.x1491 == 0) m.c1830 = Constraint(expr=m.b71*m.x1491 - m.x1176 == 0) m.c1831 = Constraint(expr=m.b80*m.x1491 - m.x1221 == 0) m.c1832 = Constraint(expr=m.x556*m.x819 - m.x249 == 0) m.c1833 = Constraint(expr=m.x819*m.x1402 - m.x1183 == 0) m.c1834 = Constraint(expr=m.x574*m.x819 - m.x276 == 0) m.c1835 = Constraint(expr=m.x819*m.x1420 - m.x1228 == 0) m.c1836 = Constraint(expr=m.x819**2 - m.x1492 == 0) m.c1837 = Constraint(expr= m.x248 - m.x1492 == 0) m.c1838 = Constraint(expr=m.x556*m.x1492 - m.x1182 == 0) m.c1839 = Constraint(expr=m.x574*m.x1492 - m.x1227 == 0) m.c1840 = Constraint(expr=m.x819**3 - m.x1493 == 0) m.c1841 = Constraint(expr=m.b72*m.x1493 - m.x1181 == 0) m.c1842 = Constraint(expr=m.b81*m.x1493 - m.x1226 == 0) m.c1843 = Constraint(expr=m.x558*m.x820 - m.x252 == 0) m.c1844 = Constraint(expr=m.x820*m.x1404 - m.x1188 == 0) m.c1845 = Constraint(expr=m.x576*m.x820 - m.x280 == 0) m.c1846 = Constraint(expr=m.x820*m.x1422 - m.x1233 == 0) m.c1847 = Constraint(expr=m.x820**2 - m.x1494 == 0) m.c1848 = Constraint(expr= m.x251 - m.x1494 == 0) m.c1849 = Constraint(expr=m.x558*m.x1494 - m.x1187 == 0) m.c1850 = Constraint(expr=m.x576*m.x1494 - m.x1232 == 0) m.c1851 = Constraint(expr=m.x820**3 - m.x1495 == 0) m.c1852 = Constraint(expr=m.b73*m.x1495 - m.x1186 == 0) m.c1853 = Constraint(expr=m.b82*m.x1495 - m.x1231 == 0)
import os, sys, getopt import itertools as it sys.path.append(os.path.dirname(os.path.realpath(__file__)) + "/src") from pandocLatex import * ################## ### Formatting ### ################## # Some global parameters latexEngine="lualatex" highlightstyle='"tango"' #pygments, kate, monochrome, espresso, zenburn, haddock, tango template="template/document.latex" beamer="template/beamer.latex" letter="template/letter.latex" # Format documents with yaml files docFormat = [ "template/format_simple.yaml", "template/color_unihd.yaml", "template/objects.yaml", "template/titlepage.yaml", "template/typography_sans.yaml" ] # Pandoc parameters docOptions = [ "-t latex", "-s ", # "--columns 1", # "--filter pandoc-include-code", # "--filter pandoc-include", # "--filter pandoc-csv2table", # "--filter pandoc-crossref", # "--filter diagrams-pandoc", # "--filter pandoc-placetable", # compiled with inlinemarkdown "--filter pandoc-citeproc", "--template={template}".format(template=template), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), "--number-sections", "--biblatex", # "--chapter", # "-M synctex:yes" "-M codeBlockCaptions:yes", ] # Presentations beamerFormat = [ "template/format_beamer.yaml", "template/color_unihd.yaml", "template/objects.yaml", "template/typography_lmodern.yaml" ] beamerOptions = [ "-t beamer", "-s ", # "-o {out}".format(out=texFile), # "--columns 1", # "--filter pandoc-include", # "--filter pandoc-csv2table", # "--filter pandoc-crossref", # "--filter diagrams-pandoc", # "--filter pandoc-placetable", # compiled with inlinemarkdown "--filter pandoc-citeproc", "--template={template}".format(template=beamer), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), "--number-sections", "--biblatex", "-M synctex:yes" ] # Tikzfiles # Tikz images can be generated from separate files using the same formatting as their documents # On this way each figure is generated in a separate pdf tikzFormat = [ "template/format_tikz.yaml", # Just this is different.... "template/color_unihd.yaml", "template/objects.yaml", "template/typography_sans.yaml" ] tikzOptions= [ "-t latex", "-s ", # "--columns 1", "--template={template}".format(template=template), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), ] # PSGraf files # Files generated with PSGraf - separated in .pdf and .tex file - can be placed in PSGrafIN to generate a standalone image psgrafFormat = [ "template/format_psgraf.yaml", # Just this is different.... "template/color_unihd.yaml", "template/objects.yaml", "template/typography_sans.yaml" ] psgrafOptions= [ "-t latex", "-s ", # "--columns 1", "--template={template}".format(template=template), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), ] inkscapeFormat = [ "template/format_inkscape.yaml", # Just this is different.... "template/color_unihd.yaml", "template/objects.yaml", "template/typography_sans.yaml" ] inkscapeOptions= [ "-t latex", "-s ", # "--columns 1", "--template={template}".format(template=template), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), ] letterFormat = [ "template/format_letter.yaml", "template/color_unihd.yaml", "template/objects.yaml", "template/titlepage.yaml", "template/typography_sans.yaml" ] # Pandoc parameters letterOptions = [ "-t latex", "-s ", # "--columns 1", # "--filter pandoc-include", # "--filter pandoc-csv2table", # "--filter pandoc-crossref", # "--filter diagrams-pandoc", # "--filter pandoc-placetable", # compiled with inlinemarkdown "--filter pandoc-citeproc", "--template={template}".format(template=letter), "--highlight-style={hls}".format(hls=highlightstyle), "--pdf-engine={le}".format(le=latexEngine), "--number-sections", "--biblatex", # "--chapter", # "-M synctex:yes" "-M codeBlockCaptions:yes", "-M documentclass:scrlttr2" ] ################ ### Commands ### ################ # Commands are created using the cmdObj defined in src/pandocLatex.py # cmdObj(cmd, shellOutput, befor, after) # cmd: command string to be executed # shellOutput: True/False # before: action performed before execution # after: action performed after execution # # before and after ta a list of tuples with functions, arguments, and keyword arguments # E.g. # before = [ # ... # (func,(arg1,arg2,arg3),{kw1: karg1, kw2: kwarg2}), # ... # ] def createDirMaybe(name=""): dir=os.path.dirname(name) if not os.path.exists(dir): os.makedirs(dir) # Convert Markdown to Latex, using a latex template and YAML configuration def genPandocCmd(out, src, format, options): return cmdObj( " ".join(["pandoc"] + format + src + ["-o {out}".format(out=out)] + options), True, before=[ (createDirMaybe,(),{"name": out}), (print,("-----\t","Pandoc\t{out}\t".format(out=out),"-----"),{})], # Adjust appearance of tables and figures # applyOnFile is defined in src/pandocLatex.py # Each line in file is passed through a list of filters... #after =[(applyOnFile, ([adjustLongtableFilter,centerFigureFilter],texFile) ,{})] after =[(applyOnFile, ([adjustLongtableFilter,adjustBeamerFootnote,adjustFigureCaption],out) ,{})] ) # Run latex def genLatexCmd(src, options, pushDir=""): return cmdObj( " ".join([latexEngine] + options +[src]), True, before=[ (print,("-----\t","Latex\t{out}\t".format(out=src),"-----"),{})], after =[], pushDir =pushDir ) # Run biber def genBiberCmd(src, options): return cmdObj( " ".join(["biber"] + options + [src]), True, before=[(print,("-----\t","Biber\t{out}\t".format(out=src),"-----"),{})], after =[] ) # Make Glossary def genGlossaryCmd(src, options, pushDir=""): return cmdObj( " ".join(["makeglossaries"] + options + [src]), True, before=[(print,("-----\t","Glossary\t{out}\t".format(out=src),"-----"),{})], after =[], pushDir =pushDir ) def genPSGrafWrapCmd(out, src, format, options): return cmdObj( #"echo \"\\begin{{minipage}}[b]{{2.0\\textwidth}}\\PDFfigure{{}}{{{fn}}}{{}}{{}}{{b}}{{T}}{{f}}\\end{{minipage}}\" > {out}".format(fn=src,out=out), #"echo \"\\PDFfigure{{}}{{{fn}}}{{}}{{}}{{b}}{{T}}{{f}}\" > {out}".format(fn=src,out=out), "mkdir -p {dir}\n".format(dir=os.path.dirname(out)) + "echo \"\\PDFfigureStandaloneSTL{{{fn}}}{{T}}\" > {out}".format(fn=src,out=out), True, before=[ (createDirMaybe,(),{"name": out}), (print,("-----\t","Create PSGraf Wrapper File \t{out}\t".format(out=out),"-----"),{})], after =[] ) def genInkscapeWrapCmd(out, src, format, options): return cmdObj( "mkdir -p {dir}\n".format(dir=os.path.dirname(out)) + "echo \"\\input{{{fn}}}\" > {out}".format(fn=src,out=out), True, before=[ (createDirMaybe,(),{"name": out}), (print,("-----\t","Create Inkscape Wrapper File \t{out}\t".format(out=out),"-----"),{})], after =[] ) def recursiveListDir(path): p2 = os.path.dirname(path) for f in os.listdir(p2): fp = p2+'/'+f; if(os.path.isdir(fp)): for f2 in recursiveListDir(fp+'/'): yield f2 else: yield fp def recursiveListDirNoFiles(path): p2 = os.path.dirname(path) for f in os.listdir(p2): fp = p2+'/'+f; if(os.path.isdir(fp)): yield(fp) for f2 in recursiveListDirNoFiles(fp+'/'): yield f2 ################# ### Documents ### ################# # Take each filename in tikz/ ending with .md and add string to tikzFiles filterFilesInDir = lambda d, filterf: ("/".join( (".".join(f[:-1])).split("/")[1:] ) for f in map(lambda fn: fn.split("."), recursiveListDir(d)) if filterf(f)) mdFilesInDir = lambda d: filterFilesInDir(d,lambda f: f[-1] == 'md') pdfFilesInDir = lambda d: filterFilesInDir(d,lambda f: f[-1] == 'pdf') pdfTexFilesInDir = lambda d: filterFilesInDir(d,lambda f: f[-1] == 'pdf_tex') splitPathFile = lambda d: (lambda sl: ( '/'.join(sl[:-1]), sl[-1]))(d.split('/')) # Has to end with "/" docInDir = "doc/" docOutDir = "out/doc/" presInDir = "pres/" presOutDir = "out/pres/" tikzInDir = "tikz/" tikzOutDir = "out/tikz/" psgrafInDir = "PSGraf/" psgrafOutDir = "out/PSGraf" inkscapeInDir = "Inkscape/" inkscapeOutDir = "out/Inkscape" letterInDir = "letter/" letterOutDir = "out/letter/" tikzFiles = {"prefix": tikzInDir, "keys": mdFilesInDir(tikzInDir), "suffix": ".md"} psgrafFiles = {"prefix": psgrafInDir, "keys": pdfFilesInDir(psgrafInDir), "suffix": ".pdf"} inkscapeFiles = {"prefix": inkscapeInDir, "keys": pdfTexFilesInDir(inkscapeInDir), "suffix": ".pdf_tex"} docFiles = {"prefix": docInDir, "keys": mdFilesInDir(docInDir), "suffix": ".md"} presFiles = {"prefix": presInDir, "keys": mdFilesInDir(presInDir), "suffix": ".md"} letterFiles = {"prefix": letterInDir, "keys": mdFilesInDir(letterInDir), "suffix": ".md"} # Global document object storing all keys with a list of cmdObjs docs = { # **{ # "mydoc": [ # genPandocCmd( # **{ # "out" : "out/mydoc.tex", # "src" : [ # "doc/mydoc.md" # ], # "format": docFormat, # "options": docOptions # }), # # Just uncomment to not rerun it each time # genBiberCmd( # **{ # "src" : "out/mydoc", # "options": [], # }), # genLatexCmd( # **{ # "src" : "out/mydoc.tex", # "options": ["-synctex=1", # "--output-directory=./out/"], # #"options": ["--interaction=batchmode","-synctex=1"], # }), # ]}, # docFiles **{ keyprefix+key+keysuffix : ( genPandocCmd( **{ "out": docOutDir+key+".tex", "src": [ docInDir+key+".md", ], "format": docFormat, "options": docOptions, }), # Just uncomment to not rerun it each time genBiberCmd( **{ "src" : docOutDir+key, "options": [], }), genGlossaryCmd( **{ "src": key+".glo", "options": [], "pushDir": os.path.abspath(docOutDir) }), genLatexCmd( **{ "src": docOutDir+key+".tex", "options": ["--output-directory="+docOutDir], #"options": ["--interaction=batchmode","-synctex=1"], }), ) for (keyprefix,keys,keysuffix) in [(docFiles["prefix"],docFiles["keys"],docFiles["suffix"])] for key in keys }, # presFiles **{ keyprefix+key+keysuffix: ( genPandocCmd( **{ "out": presOutDir+key+".tex", "src": [ presInDir+key+".md", ], "format": beamerFormat, "options": beamerOptions, }), # Just uncomment to not rerun it each time genBiberCmd( **{ "src" : presOutDir+key, "options": [], }), genLatexCmd( **{ "src": presOutDir+key+".tex", "options": ["--output-directory="+presOutDir], #"options": ["--interaction=batchmode","-synctex=1"], }), ) for (keyprefix,keys,keysuffix) in [(presFiles["prefix"],presFiles["keys"],presFiles["suffix"])] for key in keys }, # tikzFiles **{ keyprefix+fullkey+keysuffix: ( genPandocCmd( **{ "out": tikzOutDir+fullkey+".tex", "src": [ tikzInDir+fullkey+".md", ], "format": tikzFormat, "options": tikzOptions, }), genLatexCmd( **{ "src": tikzOutDir+fullkey+".tex", "options": ["--output-directory="+os.path.abspath(os.path.dirname(tikzOutDir+fullkey))] #"pushDir": os.path.abspath(keyprefix+keydir) }), ) for (keyprefix,keys,keysuffix) in [(tikzFiles["prefix"],tikzFiles["keys"],tikzFiles["suffix"])] for fullkey in keys for (keydir,key) in [splitPathFile(fullkey)] }, # psGrafFiles **{ keyprefix+key+keysuffix: ( genPSGrafWrapCmd( **{ "out": psgrafOutDir+'/'+key+".md", "src": keyprefix+key, "format": [], "options": [], }), genPandocCmd( **{ "out": psgrafOutDir+'/'+key+".tex", "src": [ psgrafOutDir+'/'+key+".md", ], "format": psgrafFormat, "options": psgrafOptions, }), genLatexCmd( **{ "src": psgrafOutDir+'/'+key+".tex", #"options": ["--output-directory="+os.path.dirname(psgrafOutDir+'/'.join(key.split('/')[1:]))], "options": ["--output-directory="+os.path.dirname(psgrafOutDir+'/'+key)], }), ) for (keyprefix,keys,keysuffix) in [(psgrafFiles["prefix"],psgrafFiles["keys"],psgrafFiles["suffix"])] for key in keys }, # inkscapeFiles **{ keyprefix+fullkey+keysuffix: ( genInkscapeWrapCmd( **{ "out": inkscapeOutDir+'/'+fullkey+".md", "src": key+keysuffix, "format": [], "options": [], }), genPandocCmd( **{ "out": inkscapeOutDir+'/'+fullkey+".tex", "src": [ inkscapeOutDir+'/'+fullkey+".md", ], "format": inkscapeFormat, "options": inkscapeOptions, }), genLatexCmd( **{ "src": os.path.abspath(inkscapeOutDir+'/'+fullkey+".tex"), "options": ["--output-directory="+os.path.abspath(os.path.dirname(inkscapeOutDir+'/'+fullkey))], "pushDir": os.path.abspath(keyprefix+keydir) }), ) for (keyprefix,keys,keysuffix) in [(inkscapeFiles["prefix"],inkscapeFiles["keys"],inkscapeFiles["suffix"])] for fullkey in keys for (keydir,key) in [splitPathFile(fullkey)] }, # letterFiles **{ keyprefix+key+keysuffix : ( genPandocCmd( **{ "out": letterOutDir+key+".tex", "src": [ letterInDir+key+".md", ], "format": letterFormat, "options": letterOptions, }), # Just uncomment to not rerun it each time genBiberCmd( **{ "src" : letterOutDir+key, "options": [], }), genGlossaryCmd( **{ "src": key+".glo", "options": [], "pushDir": os.path.abspath(letterOutDir) }), genLatexCmd( **{ "src": letterOutDir+key+".tex", "options": ["--output-directory="+letterOutDir], #"options": ["--interaction=batchmode","-synctex=1"], }), ) for (keyprefix,keys,keysuffix) in [(letterFiles["prefix"],letterFiles["keys"],letterFiles["suffix"])] for key in keys }, } # Form some groups of keys if desired docGroups={} docGroups["all"] = it.chain(*(docs[k] for k in docs.keys())) docGroups["docs"] = it.chain(*(docs[docFiles["prefix"]+k+docFiles["suffix"]] for k in docFiles["keys"])) for d in recursiveListDirNoFiles(docInDir): docGroups[d] = it.chain(*(docs[docFiles["prefix"]+k+docFiles["suffix"]] for k in mdFilesInDir(d+'/'))) docGroups["pres"] = it.chain(*(docs[presFiles["prefix"]+k+presFiles["suffix"]] for k in presFiles["keys"])) for d in recursiveListDirNoFiles(presInDir): docGroups[d] = it.chain(*(docs[presFiles["prefix"]+k+presFiles["suffix"]] for k in mdFilesInDir(d+'/'))) docGroups["tikz"] = it.chain(*(docs[tikzFiles["prefix"]+k+tikzFiles["suffix"]] for k in tikzFiles["keys"])) for d in recursiveListDirNoFiles(tikzInDir): docGroups[d] = it.chain(*(docs[tikzFiles["prefix"]+k+tikzFiles["suffix"]] for k in mdFilesInDir(d+'/'))) docGroups["psgraf"] = it.chain(*(docs[psGrafFiles["prefix"]+k+psgrafFiles["suffix"]] for k in psgrafFiles["keys"])) for d in recursiveListDirNoFiles(psgrafInDir): docGroups[d] = it.chain(*(docs[psgrafFiles["prefix"]+k+psgrafFiles["suffix"]] for k in pdfFilesInDir(d+'/'))) docGroups["inkscape"] = it.chain(*(docs[inkscapeFiles["prefix"]+k+inkscapeFiles["suffix"]] for k in inkscapeFiles["keys"])) for d in recursiveListDirNoFiles(inkscapeInDir): docGroups[d] = it.chain(*(docs[inkscapeFiles["prefix"]+k+inkscapeFiles["suffix"]] for k in pdfTexFilesInDir(d+'/'))) docGroups["letter"] = it.chain(*(docs[letterFiles["prefix"]+k+letterFiles["suffix"]] for k in letterFiles["keys"])) for d in recursiveListDirNoFiles(letterInDir): docGroups[d] = it.chain(*(docs[letterFiles["prefix"]+k+letterFiles["suffix"]] for k in mdFilesInDir(d+'/'))) def printUsage(): print(bold("Usage:")) print("\t./run [DocKey] [-g GroupKey]\n") print(bold("Documets:")) for k in docs.keys(): print("\t{k}".format(k=k)) print("") print(bold("Groups:")) for k in docGroups.keys(): print("\t{k}".format(k=k)) def printKeysNotFound(keys): print(bold(red("Keys not found:"))) for k in keys: print(yellow("\t{k}".format(k=k))) print("") print(underline("".join(it.repeat(" ",40)))) print("") printUsage() bold = lambda str: "\033[1m" + str + "\033[0m" underline= lambda str: "\033[4m" + str + "\033[0m" red= lambda str: "\033[31m" + str + "\033[0m" yellow= lambda str: "\033[33m" + str + "\033[0m" def main(argv=None): if argv is None: argv = sys.argv try: opts, args = getopt.getopt(argv[1:], "hg:", ["help","group="]) except getopt.GetoptError as msg: printUsage() sys.exit(2) if(len(argv)==1): printUsage() sys.exit(2) for opt, arg in opts: if opt in ['-h','--help']: printUsage() sys.exit() if opt in ['-g','--group']: if arg in docGroups.keys(): processCommands(docGroups[arg]) else: printKeysNotFound([arg]) sys.exit() notfound = list(filter(lambda k: not(k in docs.keys()), args)) if len(notfound)>0: printKeysNotFound(notfound) sys.exit() processCommands(it.chain(*(docs[k] for k in args))) if __name__== "__main__": sys.exit(main())
#!/usr/bin/python import sys for line in sys.stdin: sys.stdout.write(line) # use like this: ps -ef | ./pipe-in.py
#from django.shortcuts import render from itertools import product from lzma import FORMAT_ALONE from random import random from rest_framework import viewsets, status from rest_framework.response import Response from rest_framework.views import APIView #from rest_framework.status import HTTP_200_OK from .serializers import ProductSerializer from .models import Product from .models import User # Create your views here. class ProductViewSet(viewsets.ViewSet): def list (self, request): products = Product.objects.all() serializer = ProductSerializer(products, many=True) return Response(serializer.data,status=status.HTTP_200_OK) def create(self, request): serializer = ProductSerializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) def retrieve(self, request, pk=None): product = Product.objects.get(id=pk) serializer = ProductSerializer(product) return Response(serializer.data,status=status.HTTP_200_OK) def update(self, request, pk=None): product = Product.objects.get(id=pk) serializer = ProductSerializer(instance=product, data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status=status.HTTP_202_ACCEPTED) def destroy(self, request, pk=None): product = Product.objects.get(id=pk) product.delete() return Response(status=status.HTTP_204_NO_CONTENT) class UserAPIView(APIView): def get(self, _): users = User.object.all() user = random.choice(users) return Response({ 'id': user.id })
from locust import HttpLocust, TaskSet, task import os import json class ActionHubTaskSet(TaskSet): @task def get_something(self): uri = "/actions/debug/execute" data = { "type": "query", "form_params": { "sleep": 0, "simulated_download_url": os.getenv('ACTION_HUB_LOAD_TESTING_SIMULATED_DOWNLOAD_URL') } } headers = {} headers['Content-Type'] = "application/json" headers['User-Agent'] = "looker-actions-load-test/0.1" headers['X-Looker-Instance'] = "looker-actions-load-test-simulation" headers['X-Looker-Webhook-Id'] = "looker-actions-load-test-simulation" headers['Authorization'] = 'Token token="' + os.getenv('ACTION_HUB_LOAD_TESTING_API_KEY') + '"' with self.client.post(uri, catch_response=True, json=data, headers=headers) as response: if response.status_code == 200: rj = json.loads(response.text) if not rj['looker']['success']: response.failure(rj['looker']['message'] or response.text) print("Response status:", response.status_code) print("Response:", response.text) class MyLocust(HttpLocust): task_set = ActionHubTaskSet
# -*- coding: utf-8 -*- """ Created on Sat Jan 4 05:59:46 2020 @author: yoelr """ __all__ = ('H2O_CAS',) H2O_CAS = '7732-18-5'
from django.test import override_settings from django.urls import reverse from knox.auth import TokenAuthentication as KnoxTokenAuthentication from rest_framework.test import APITestCase from social_core.utils import parse_qs from .base import BaseFacebookAPITestCase, BaseTwitterApiTestCase knox_override_settings = dict( INSTALLED_APPS=[ 'django.contrib.contenttypes', 'rest_framework', 'social_django', 'rest_social_auth', 'knox', # For django-rest-knox 'users', ], MIDDLEWARE=[ ], ) @override_settings(**knox_override_settings) class TestSocialAuth1Knox(APITestCase, BaseTwitterApiTestCase): def test_login_social_oauth1_knox(self): resp = self.client.post( reverse('login_social_knox_user'), data={'provider': 'twitter'}) self.assertEqual(resp.status_code, 200) self.assertEqual(resp.data, parse_qs(self.request_token_body)) resp = self.client.post(reverse('login_social_knox_user'), data={ 'provider': 'twitter', 'oauth_token': 'foobar', 'oauth_verifier': 'overifier' }) self.assertEqual(resp.status_code, 200) @override_settings(**knox_override_settings) class TestSocialAuth2Knox(APITestCase, BaseFacebookAPITestCase): def _check_login_social_knox_only(self, url, data): resp = self.client.post(url, data) self.assertEqual(resp.status_code, 200) # check token valid knox_auth = KnoxTokenAuthentication() user, auth_data = knox_auth.authenticate_credentials(resp.data['token'].encode('utf8')) self.assertEqual(user.email, self.email) def _check_login_social_knox_user(self, url, data): resp = self.client.post(url, data) self.assertEqual(resp.status_code, 200) self.assertEqual(resp.data['email'], self.email) # check token valid knox_auth = KnoxTokenAuthentication() user, auth_data = knox_auth.authenticate_credentials(resp.data['token'].encode('utf8')) self.assertEqual(user.email, self.email) def test_login_social_knox_only(self): self._check_login_social_knox_only( reverse('login_social_knox'), data={'provider': 'facebook', 'code': '3D52VoM1uiw94a1ETnGvYlCw'}) def test_login_social_knox_only_provider_in_url(self): self._check_login_social_knox_only( reverse('login_social_knox', kwargs={'provider': 'facebook'}), data={'code': '3D52VoM1uiw94a1ETnGvYlCw'}) def test_login_social_knox_user(self): self._check_login_social_knox_user( reverse('login_social_knox_user'), data={'provider': 'facebook', 'code': '3D52VoM1uiw94a1ETnGvYlCw'}) def test_login_social_knox_user_provider_in_url(self): self._check_login_social_knox_user( reverse('login_social_knox_user', kwargs={'provider': 'facebook'}), data={'code': '3D52VoM1uiw94a1ETnGvYlCw'})
from data_utils import load_tl_extracts, load_tl_extracts_hkkim #import numpy as np from tl_classifier_cnn import TLClassifierCNN, TLLabelConverter # load data desired_dim = (32,32) #data_dirs = ['data/tl-extract-test'] data_dirs = 'data/tl-extract-test' imgs, labels_gt = load_tl_extracts_hkkim(data_dirs, desired_dim) # imgs is image in OpenCV imread format. pixels are uint8 from 0 to 255. shape is H, W, C. C is ordered BGR # y here are strings like 'green' etc # filter data with only labels relevant for us converter = TLLabelConverter() imgs, labels_gt = converter.filter(imgs, labels_gt) # load the model tlc = TLClassifierCNN() model_dir = 'model' tlc.load_model(model_dir) import cv2 import numpy as np image = cv2.imread('data/tl-extract-test/000001_green.png') resized = cv2.resize(image, (32,32), interpolation=cv2.INTER_LINEAR) assert (resized.shape == (32, 32, 3)) labels, probabilities = tlc.predict(np.array([resized]), batch_size=1) if labels[0]=='green': print('correct') else: print('incorrect') # run predictions batch_size = 50 labels_predict, probs_predict = tlc.predict(imgs, batch_size=batch_size) # calculate accuracy correct = sum([1 if labels_gt[i]==labels_predict[i] else 0 for i in range(len(labels_gt))]) accuracy = float(correct) / len(labels_gt) print('accuracy: {}. correct {} out of {}'.format(accuracy, correct, len(labels_gt))) tlc.close_session()
import json import datetime import sys import os import random from utils.node_rpc_wrapper import NodeRpcWrapper from utils.telegram_wrapper import TelegramWrapper from utils.discord_wrapper import DiscordWrapper def check_and_send_reward_collection_message(telegram, discord, cfg, cached_epoch, new_epoch): channel_id = cfg['telegram_channel_id'] dev_chat_id = cfg['telegram_dev_chat_id'] discord_webhook_url = cfg['discord_channel_webhook'] if new_epoch > cached_epoch: m = create_reward_collection_message(new_epoch) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: r = telegram.bot_send_message_to_chat(channel_id, m['message']) print( f'Reward collection message sent to Telegram: {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel( discord_webhook_url, m['message']) print( f'Reward collection message sent to Discord: {r.status_code}') def check_and_send_missed_momentums_message(telegram, discord, cfg, cached_pillars, new_pillars, cached_momentum_status_data, cache_file): channel_id = cfg['telegram_channel_id'] dev_chat_id = cfg['telegram_dev_chat_id'] discord_webhook_url = cfg['discord_channel_webhook'] new_momentum_status_data = {} inactive_pillars = [] for owner_address in new_pillars: pillar_name = new_pillars[owner_address]['name'] missed_momentums_in_a_row = 0 is_producing = True if owner_address in cached_pillars and owner_address in cached_momentum_status_data: # Get the pillar's information from cache missed_momentums_in_a_row = cached_momentum_status_data[owner_address]['missedMomentums'] is_producing = cached_momentum_status_data[owner_address]['isProducing'] previous_produced_momentums = cached_pillars[ owner_address]['currentStats']['producedMomentums'] current_produced_momentums = new_pillars[owner_address]['currentStats']['producedMomentums'] previous_expected_momentums = cached_pillars[ owner_address]['currentStats']['expectedMomentums'] current_expected_momentums = new_pillars[owner_address]['currentStats']['expectedMomentums'] # Handle epoch change if current_produced_momentums == 0 and previous_produced_momentums > 0: if not is_producing: inactive_pillars.append(owner_address) # Handle normal case else: # Check if pillar has produced new momentums if current_produced_momentums == previous_produced_momentums: # Check if the amount of expected momentums has changed if current_expected_momentums != previous_expected_momentums: missed_momentums_in_a_row = missed_momentums_in_a_row + 1 if missed_momentums_in_a_row >= 3: inactive_pillars.append(owner_address) is_producing = False # If expected mometum amount has not changed and pillar was previously inactive, add to inactive pillars list elif not is_producing: inactive_pillars.append(owner_address) # If pillar has produced new momentums set missed momentum count to zero else: missed_momentums_in_a_row = 0 is_producing = True # Add pillar's new momentum status data new_momentum_status_data[owner_address] = {'name': pillar_name, 'missedMomentums': missed_momentums_in_a_row, 'isProducing': is_producing} l = [] for address in inactive_pillars: if address in new_momentum_status_data: l.append(new_momentum_status_data[address]['name']) if len(l) > 0: print('Inactive pillars: ' + str(l)) # Save new data write_to_file_as_json({'data': new_momentum_status_data, 'timestamp': str(datetime.datetime.now())}, cache_file) for address in inactive_pillars: # Verify the inactive pillar was previously producing momentums until sending message if address in cached_momentum_status_data and cached_momentum_status_data[address]['isProducing']: m = create_pillar_inactive_message(cached_momentum_status_data[address]['name']) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: r = telegram.bot_send_message_to_chat(channel_id, m['message']) print( f'Pillar inactive message sent to Telegram: {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel(discord_webhook_url, m['message']) print( f'Pillar inactive message sent to Discord: {r.status_code}') for address in cached_momentum_status_data: # Check if a previously inactive pillar is not in the inactive pillars list anymore if not cached_momentum_status_data[address]['isProducing'] and address not in inactive_pillars: m = create_pillar_active_message(cached_momentum_status_data[address]['name']) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: r = telegram.bot_send_message_to_chat(channel_id, m['message']) print( f'Pillar active again message sent to Telegram: {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel(discord_webhook_url, m['message']) print( f'Pillar active again message sent to Discord: {r.status_code}') def check_and_send_pillar_events(telegram, discord, cfg, cached_pillars, new_pillars): channel_id = cfg['telegram_channel_id'] dev_chat_id = cfg['telegram_dev_chat_id'] discord_webhook_url = cfg['discord_channel_webhook'] # TODO: Needs work on how to determine a dismantled Pillar. # Check for dismantled Pillars. Assume Pillar is dismantled if the owner address is not present anymore in the new data. # for owner_address in cached_pillars: # if owner_address not in new_pillars and len(new_pillars) < len(cached_pillars): # m = create_dismantled_pillar_message( # cached_pillars[owner_address]) # if 'error' in m: # handle_error(telegram, dev_chat_id, m['error']) # else: # name = cached_pillars[owner_address]['name'] # r = telegram.bot_send_message_to_chat(channel_id, m['message']) # print( # f'Pillar dismantled message sent to Telegram ({name}): {r.status_code}') # # if len(discord_webhook_url) > 0: # r = discord.webhook_send_message_to_channel( # discord_webhook_url, m['message']) # print( # f'Pillar dismantled message sent to Discord ({name}): {r.status_code}') # Check for new Pillars. Assume Pillar is new if the owner address was not present in the cached data. for owner_address in new_pillars: if owner_address not in cached_pillars and len(new_pillars) > len(cached_pillars): m = create_new_pillar_message( new_pillars[owner_address]) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: name = new_pillars[owner_address]['name'] r = telegram.bot_send_message_to_chat(channel_id, m['message']) print( f'Pillar created message sent to Telegram ({name}): {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel( discord_webhook_url, m['message']) print( f'Pillar created message sent to Discord ({name}): {r.status_code}') # Check for Pillar name changes for owner_address in new_pillars: if owner_address in cached_pillars: # Get current and cached name current_name = new_pillars[owner_address]['name'] cached_name = cached_pillars[owner_address]['name'] if current_name != cached_name: m = create_pillar_name_changed_message( cached_name, current_name) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: r = telegram.bot_send_message_to_chat( channel_id, m['message']) print( f'Pillar name changed message sent to Telegram ({cached_name} -> {current_name}): {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel( discord_webhook_url, m['message']) print( f'Pillar name changed message sent to Discord ({cached_name} -> {current_name}): {r.status_code}') # Check for changes in reward sharing for owner_address in new_pillars: if owner_address in cached_pillars: old_momentum_percentage = cached_pillars[ owner_address]['giveMomentumRewardPercentage'] new_momentum_percentage = new_pillars[owner_address]['giveMomentumRewardPercentage'] old_delegate_percentage = cached_pillars[ owner_address]['giveDelegateRewardPercentage'] new_delegate_percentage = new_pillars[owner_address]['giveDelegateRewardPercentage'] name = new_pillars[owner_address]['name'] owner_address = new_pillars[owner_address]['ownerAddress'] changed_shares_data = {} if old_momentum_percentage != new_momentum_percentage: changed_shares_data['name'] = name changed_shares_data['ownerAddress'] = owner_address changed_shares_data['momentumRewards'] = { 'oldMomentumPercentage': old_momentum_percentage, 'newMomentumPercentage': new_momentum_percentage} if old_delegate_percentage != new_delegate_percentage: changed_shares_data['name'] = name changed_shares_data['ownerAddress'] = owner_address changed_shares_data['delegateRewards'] = { 'oldDelegatePercentage': old_delegate_percentage, 'newDelegatePercentage': new_delegate_percentage} if changed_shares_data != {}: if 'momentumRewards' not in changed_shares_data: changed_shares_data['momentumRewards'] = { 'oldMomentumPercentage': old_momentum_percentage} if 'delegateRewards' not in changed_shares_data: changed_shares_data['delegateRewards'] = { 'oldDelegatePercentage': old_delegate_percentage} m = create_reward_share_changed_message(changed_shares_data) if 'error' in m: handle_error(telegram, dev_chat_id, m['error']) else: name = new_pillars[owner_address]['name'] r = telegram.bot_send_message_to_chat( channel_id, m['message']) print( f'Reward share changed message sent to Telegram ({name}): {r.status_code}') if len(discord_webhook_url) > 0: r = discord.webhook_send_message_to_channel( discord_webhook_url, m['message']) print( f'Reward share changed message sent to Discord ({name}): {r.status_code}') def create_dismantled_pillar_message(pillar_data): try: m = 'Pillar dismantled!\n' m = m + 'Pillar: ' + pillar_data['name'] return {'message': m} except KeyError: return {'error': 'KeyError: create_dismantled_pillar_message'} def create_new_pillar_message(pillar_data): try: m = 'New pillar spawned!\n' m = m + 'Say hello to ' + pillar_data['name'] + '\n' m = m + 'Momentum rewards sharing: ' + \ str(pillar_data['giveMomentumRewardPercentage']) + '%\n' m = m + 'Delegate rewards sharing: ' + \ str(pillar_data['giveDelegateRewardPercentage']) + '%\n' return {'message': m} except KeyError: return {'error': 'KeyError: create_new_pillar_message'} def create_pillar_name_changed_message(cached_name, current_name): try: m = 'Pillar name changed!\n' m = m + cached_name + ' \U000027A1 ' + current_name return {'message': m} except KeyError: return {'error': 'KeyError: create_pillar_name_changed_message'} def create_reward_share_changed_message(changed_shares_data): try: m = 'Pillar: ' + changed_shares_data['name'] + '\n' old_momentum_percentage = changed_shares_data['momentumRewards']['oldMomentumPercentage'] if ('newMomentumPercentage' in changed_shares_data['momentumRewards']): new_momentum_percentage = changed_shares_data['momentumRewards']['newMomentumPercentage'] m = m + 'Momentum rewards sharing: ' + str(old_momentum_percentage) + \ '% \U000027A1 ' + str(new_momentum_percentage) + '%\n' else: m = m + 'Momentum rewards sharing: ' + \ str(old_momentum_percentage) + '%\n' old_delegate_percentage = changed_shares_data['delegateRewards']['oldDelegatePercentage'] if ('newDelegatePercentage' in changed_shares_data['delegateRewards']): new_delegate_percentage = changed_shares_data['delegateRewards']['newDelegatePercentage'] m = m + 'Delegate rewards sharing: ' + \ str(old_delegate_percentage) + '% \U000027A1 ' + \ str(new_delegate_percentage) + '%' else: m = m + 'Delegate rewards sharing: ' + \ str(old_delegate_percentage) + '%' return {'message': m} except KeyError: return {'error': 'KeyError: create_reward_share_changed_message'} def create_pinned_stats_message(pillars, momentum_height): try: # Only show top 70 Pillars because of Telegram's message character limit (4096 characters) if len(pillars) > 70: m = 'Pillar reward sharing rates (top 70)\n' else: m = 'Pillar reward sharing rates\n' m = m + 'Last updated: ' + \ str(datetime.datetime.now(datetime.timezone.utc).strftime( '%Y-%m-%d %H:%M:%S')) + ' (UTC)\n' m = m + 'Momentum height: ' + str(momentum_height) + '\n' m = m + 'M = momentum reward sharing %\n' m = m + 'D = delegate reward sharing %\n' m = m + 'W = pillar weight (ZNN) \n' m = m + 'P/E = produced/expected momentums\n\n' for owner_address in pillars: if pillars[owner_address]['rank'] < 70: weight = int( round(pillars[owner_address]['weight'] / 100000000)) m = m + str(pillars[owner_address]['rank'] + 1) + ' - ' + str(pillars[owner_address]['name']) + ' -> M: ' + str(pillars[owner_address]['giveMomentumRewardPercentage']) + '% D: ' + str(pillars[owner_address]['giveDelegateRewardPercentage'] ) + '% W: ' + str(weight) + ' P/E: ' + str(pillars[owner_address]['currentStats']['producedMomentums']) + '/' + str(pillars[owner_address]['currentStats']['expectedMomentums']) + '\n' return {'message': m} except KeyError: return {'error': 'KeyError: create_pinned_stats_message'} def create_reward_collection_message(reward_epoch): try: emoji = get_emoji(reward_epoch) m = 'Rewards for epoch ' + \ str(reward_epoch) + ' can now be collected! ' + emoji return {'message': m} except KeyError: return {'error': 'KeyError: create_reward_collection_message'} def create_pillar_inactive_message(pillar_name): try: m = 'Heads up! ' + pillar_name + ' has stopped producing momentums.\n' m = m + 'The pillar operator should make sure that everything is running smoothly.' return {'message': m} except KeyError: return {'error': 'KeyError: create_pillar_inactive_message'} def create_pillar_active_message(pillar_name): try: m = pillar_name + ' is producing momentums as expected again! \U0001F680' return {'message': m} except KeyError: return {'error': 'KeyError: create_pillar_active_message '} def get_emoji(epoch): emojis = ['\U0001f300', '\U0001F680', '\U0001F47D', '\U0001F60E', '\U0001F525', '\U0001F389', '\U0001F31F', '\U0001F440'] return random.choice(emojis) def read_file(file_path): f = open(file_path) content = json.load(f) f.close() return content def write_to_file_as_json(data, file_name): with open(file_name, 'w') as outfile: json.dump(data, outfile, indent=4) def handle_error(telegram, dev_chat_id, message): print(message) # Send the developer a message if a developer chat ID is configured if len(dev_chat_id) != 0: telegram.bot_send_message_to_chat(chat_id=dev_chat_id, message=message) # Exit script on error sys.exit() def main(): # Get current file path path = os.path.dirname(os.path.abspath(__file__)) # Read config cfg = read_file(f'{path}/config/config.json') # Data store directory DATA_STORE_DIR = f'{path}/data_store' # Pillar cache file PILLAR_CACHE_FILE = f'{DATA_STORE_DIR}/pillar_data.json' # Epoch cache file EPOCH_CACHE_FILE = f'{DATA_STORE_DIR}/epoch_data.json' # Momentum status cache file MOMENTUM_STATUS_CACHE_FILE = f'{DATA_STORE_DIR}/momentum_status_data.json' # Check and create data store directory if not os.path.exists(DATA_STORE_DIR): os.makedirs(DATA_STORE_DIR, exist_ok=True) # Check and create pillar cache file if not os.path.exists(PILLAR_CACHE_FILE): open(PILLAR_CACHE_FILE, 'w+').close() # Check and create epoch cache file if not os.path.exists(EPOCH_CACHE_FILE): open(EPOCH_CACHE_FILE, 'w+').close() # Check and create momentum status cache file if not os.path.exists(MOMENTUM_STATUS_CACHE_FILE): open(MOMENTUM_STATUS_CACHE_FILE, 'w+').close() # Create wrappers node = NodeRpcWrapper(node_url=cfg['node_url_http']) telegram = TelegramWrapper( bot_api_key=cfg['telegram_bot_api_key']) discord = DiscordWrapper() # Get latest momentum latest_momentum = node.get_latest_momentum() if 'error' in latest_momentum: handle_error( telegram, cfg['telegram_dev_chat_id'], latest_momentum['error']) # Get latest Pillar data new_pillar_data = node.get_all_pillars() if 'error' in new_pillar_data: handle_error( telegram, cfg['telegram_dev_chat_id'], new_pillar_data['error']) # Get reward epoch new_epoch_data = node.get_reward_epoch(cfg['reference_reward_address']) if 'error' in new_epoch_data: handle_error( telegram, cfg['telegram_dev_chat_id'], new_epoch_data['error']) # Get cached Pillar data from file if os.stat(PILLAR_CACHE_FILE).st_size != 0: cached_pillar_data = read_file(PILLAR_CACHE_FILE) else: cached_pillar_data = None # Get cached epoch data from file if os.stat(EPOCH_CACHE_FILE).st_size != 0: cached_epoch_data = read_file(EPOCH_CACHE_FILE) else: cached_epoch_data = None # Get cached momentum status data from file if os.stat(MOMENTUM_STATUS_CACHE_FILE).st_size != 0: cached_momentum_status_data = read_file(MOMENTUM_STATUS_CACHE_FILE) else: cached_momentum_status_data = {'data': {}} # Cache current Pillar data to file write_to_file_as_json(new_pillar_data, PILLAR_CACHE_FILE) # Cache current epoch data to file write_to_file_as_json(new_epoch_data, EPOCH_CACHE_FILE) # Create and update the pinned stats message pinned_stats_message = create_pinned_stats_message( new_pillar_data['pillars'], latest_momentum['height']) if 'error' in pinned_stats_message: handle_error(telegram, cfg['telegram_dev_chat_id'], pinned_stats_message['error']) else: r = telegram.bot_edit_message( chat_id=cfg['telegram_channel_id'], message_id=cfg['telegram_pinned_message_id'], message=pinned_stats_message['message']) print(f'Pinned message updated on Telegram: {r.status_code}') # Check for new Pillar events if cached data exists if cached_pillar_data is not None: check_and_send_pillar_events( telegram, discord, cfg, cached_pillar_data['pillars'], new_pillar_data['pillars']) # Check if new rewards are available if cached_epoch_data is not None: check_and_send_reward_collection_message( telegram, discord, cfg, cached_epoch_data['epoch'], new_epoch_data['epoch']) # Check for missed momentums # TODO: Fix so that momentum status cache is stored on first run as well if cached_pillar_data is not None: check_and_send_missed_momentums_message( telegram, discord, cfg, cached_pillar_data['pillars'], new_pillar_data['pillars'], cached_momentum_status_data['data'], MOMENTUM_STATUS_CACHE_FILE) if __name__ == '__main__': print(f'{str(datetime.datetime.now())}: Starting') main() print(f'{str(datetime.datetime.now())}: Completed')
from osu_parser.beatmap import Beatmap from osu.ctb.difficulty import Difficulty from ppCalc import calculate_pp import os import threading import socket import struct import sys import traceback import time CMD_KEEP_ALIVE = 0 CMD_KEEP_ALIVE_OK = 1 CMD_CALCULATE_CTB = 2 TIMEOUT = 3 def process_exist(imagename): p = os.popen('tasklist /FI "IMAGENAME eq %s"' % imagename).read() if imagename in p: return True return False def check_process_exist(): if not process_exist('Sync.exe'): os._exit(0) timer = threading.Timer(3, check_process_exist) timer.start() timer = threading.Timer(3, check_process_exist) timer.start() def read_string(sock,count,encoding='utf-8'): total_bytes = b"" while True: recv_bytes = sock.recv(count - len(total_bytes)) total_bytes += recv_bytes if len(total_bytes) >= count: break return total_bytes.decode(encoding) def process_tcp(sock): """ content_count - 4 bytes (int) content - string (string) mods - 4 bytes (int) """ try: while True: cmd_bytes = sock.recv(4) cmd = int.from_bytes(cmd_bytes,byteorder="little") if cmd == CMD_KEEP_ALIVE: sock.send(struct.pack("<i",CMD_KEEP_ALIVE_OK)) continue content_count_bytes = sock.recv(4) content_count = int.from_bytes(content_count_bytes,byteorder="little") content = read_string(sock,content_count) mods_bytes = sock.recv(4) mods = int.from_bytes(mods_bytes,byteorder="little") beatmap = Beatmap(content) difficulty = Difficulty(beatmap, mods) send_ctb_result(sock,beatmap,difficulty) except Exception as identifier: traceback.print_exc() print("[ERROR]%s" % identifier,file=sys.stderr) finally: sock.close() def send_ctb_result(sock,beatmap,difficulty): """ stars - 8 bytes (double) pp - 8 bytes (double) full_combo 4 bytes (int) ar - 8 bytes (double) """ stars = difficulty.star_rating sock.send(struct.pack("<d", stars)) sock.send(struct.pack("<i", beatmap.max_combo)) sock.send(struct.pack("<d", difficulty.beatmap.difficulty["ApproachRate"])) quit_self = False s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('127.0.0.1', 11800)) s.listen(5) while not quit_self: sock,addr = s.accept() sock.settimeout(TIMEOUT) t = threading.Thread(target=process_tcp,args=(sock,)) t.start() s.close()
from molinterrogator.target import _target_df from molinterrogator.target import _compound_df from molinterrogator.target import _compound_from_target_df def _target_id_2_card_dict(db_id=None, client=None): result = client.target.filter(target_chembl_id__in=db_id)[0] tmp_dict = {} tmp_dict['Name'] = result['pref_name'] tmp_dict['Type'] = result['target_type'] tmp_dict['Organism'] = result['organism'] tmp_dict['ChEMBL'] = result['target_chembl_id'] if len(result['target_components'])>1: print('El target ',tmp_dict['ChemBL'],'tiene más de un target_components y no se que\ es.') for xref in result['target_components'][0]['target_component_xrefs']: src_db = xref['xref_src_db'] id_db = xref['xref_id'] if src_db == 'PDBe': try: tmp_dict['PDB'].append(id_db) except: tmp_dict['PDB']=[id_db] elif src_db == 'UniProt': try: tmp_dict['UniProt'].append(id_db) except: tmp_dict['UniProt']=[id_db] elif src_db == 'IntAct': try: tmp_dict['IntAct'].append(id_db) except: tmp_dict['IntAct']=[id_db] elif src_db == 'InterPro': try: tmp_dict['InterPro'].append(id_db) except: tmp_dict['InterPro']=[id_db] tmp_dict['BindingDB']=tmp_dict['UniProt'] del(result) return tmp_dict def _compound_from_target_2_card_dict(compound_result=None, client=None): tmp_dict = {} tmp_dict['Name'] = compound_result['molecule_pref_name'] tmp_dict['Smile'] = compound_result['canonical_smiles'] tmp_dict['Compound ChemBL'] = compound_result['molecule_chembl_id'] tmp_dict['Assay ChemBL'] = compound_result['assay_chembl_id'] tmp_dict['Document ChemBL'] = compound_result['document_chembl_id'] if compound_result['standard_type']=='IC50': tmp_dict['IC50']=compound_result['standard_value']+' '+compound_result['standard_units'] else: print('Type of compound value not known for molecule_chembl_id:', compound_result['molecule_chembl_id']) return tmp_dict class _target_query(): def __init__(self, query=None): self.string = query self.query = None self.card = _target_df.copy() self.run_query() self.update_results(index_result=0) def run_query(self): from chembl_webresource_client.new_client import new_client self.query = new_client.target.filter(target_synonym__icontains=self.string) del(new_client) def info_results(self): from chembl_webresource_client.new_client import new_client tmp_df = _target_df.copy() for result in self.query: chembl_id = result['target_chembl_id'] tmp_df =tmp_df.append(_target_id_2_card_dict(chembl_id, new_client),ignore_index=True) del(new_client) return tmp_df def update_results(self,index_result=0): from chembl_webresource_client.new_client import new_client chembl_id = self.query[index_result]['target_chembl_id'] self.card = _target_df.copy() self.card =self.card.append(_target_id_2_card_dict(chembl_id, new_client),ignore_index=True) self.activity_filter = new_client.molecule.filter(target_chembl_id__in=chembl_id) self.molecule_filter = new_client.activity.filter(target_chembl_id__in=chembl_id) self.compounds = _compound_from_target_df.copy() for result in self.molecule_filter: tmp_dict = _compound_from_target_2_card_dict(result, new_client) self.compounds = self.compounds.append(tmp_dict,ignore_index=True)
import json from urllib.parse import urlparse from abstract_json_storage import AbstractJsonStorage class JsonStorageStore(AbstractJsonStorage): def __init__(self): super().__init__() def get_name(self): return "jsonstorage.net" def create(self, session, json_data=None, store_id=None): return self._request(session, "post", "/api/items", json_data) def update(self, session, json_data=None, store_id=None): return self._request(session, "put", store_id or self.store_id, json_data) def read(self, session, json_data=None, store_id=None): return self._request(session, "get", store_id or self.store_id) def result_callback(self, method_name, result_content): print(f"{method_name} : {result_content}") if method_name == "create": content = json.loads(result_content) path_parts = urlparse(content["uri"]) object_id = path_parts.path self._set_store_id(object_id) elif method_name == "read": return result_content def _get_api_root(self): # return "https://jsonstorage.net/api" return "https://jsonstorage.net"
import unittest import sqlalchemy from records_mover.db.redshift.sql import schema_sql_from_admin_views from mock import patch, Mock class TestSQL(unittest.TestCase): @patch('records_mover.db.redshift.sql.logger') def test_schema_sql_from_admin_views_not_installed(self, mock_logger): mock_db = Mock(name='db') mock_table = Mock(name='table') mock_schema = Mock(name='schema') mock_db.execute.side_effect = sqlalchemy.exc.ProgrammingError('statement', {}, {}) out = schema_sql_from_admin_views(mock_schema, mock_table, mock_db) self.assertIsNone(out) mock_logger.debug.assert_called_with('Error while generating SQL', exc_info=True) mock_logger.warning.\ assert_called_with("To be able to save SQL to a records directory, " "please install and grant access to 'admin.v_generate_tbl_ddl' " "from https://github.com/awslabs/amazon-redshift-utils/" "blob/master/src/AdminViews/v_generate_tbl_ddl.sql")
# parsetab.py # This file is automatically generated. Do not edit. _tabversion = '3.10' _lr_method = 'LALR' _lr_signature = 'PLUS MINUS TIMES DIVIDE LPAREN RPAREN SPACE COMMENT STARTP FINISHP ASSIGN LSQB RSQB SEMICOLON ELESS LESS EGREATER GREATER EQUAL NOTEQUAL DOT COMMA LOGIC_AND LOGIC_OR LOGIC_NOT IF THEN ELSE WHILE FOR DO BEGIN END RANGE TURN CMDARG_ON CMDARG_OFF SWITCH_STATE_TO DIMMER IDENT NUMBER STATE LBRACE RBRACE OCTOTHORPE\n programm_struct : COMMENT programm_body\n | programm_body\n iot_device : IDENTiot_dev_control : IDENT\n iot_command : TURN\n | SWITCH_STATE_TO\n | DIMMER\n \n toggle_cmd_args : CMDARG_ON\n | CMDARG_OFF\n \n iot_cmd_argument : toggle_cmd_args\n | NUMBER\n | RANGE DOT LSQB NUMBER COMMA NUMBER RSQB\n \n iot_object_expr : iot_device OCTOTHORPE iot_dev_control\n \n get_device_info : STATE\n \n iot_device_get_info : iot_device OCTOTHORPE iot_dev_control OCTOTHORPE get_device_info\n | iot_device DOT iot_dev_control DOT iot_command DOT LSQB RANGE DOT LSQB NUMBER COMMA NUMBER RSQB RSQB\n \n assigment : iot_object_expr ASSIGN NUMBER\n | iot_object_expr ASSIGN toggle_cmd_args\n \n assigment_stmts : assigment_stmts assigment SEMICOLON\n | assigment SEMICOLON\n \n logical_comp : EGREATER\n | GREATER\n | ELESS\n | LESS\n | EQUAL\n | NOTEQUAL\n \n logical_operator : LOGIC_AND\n | LOGIC_OR\n \n logical_cond : logical_comp\n | logical_operator\n \n condition : LPAREN iot_device_get_info logical_comp iot_device_get_info RPAREN\n | LPAREN iot_device_get_info logical_comp NUMBER RPAREN\n | LPAREN iot_device_get_info logical_comp toggle_cmd_args RPAREN\n \n condition_list : condition_list logical_operator condition\n | condition\n | LPAREN condition_list RPAREN\n \n if_stmt : IF LBRACE condition_list RBRACE THEN\n \n end_if : END\n \n condition_instr : if_stmt BEGIN assigment_stmts end_if SEMICOLON\n | if_stmt BEGIN assigment_stmts end_if ELSE BEGIN assigment_stmts end_if SEMICOLON\n \n programm_body : programm_body condition_instr\n | condition_instr\n | programm_body assigment_stmts\n | assigment_stmts\n ' _lr_action_items = {'LBRACE':([9,],[19,]),'RSQB':([83,84,],[84,85,]),'IDENT':([0,2,4,5,10,12,13,14,16,18,20,21,22,30,41,44,47,48,49,50,51,52,53,54,55,56,62,75,],[3,3,3,-42,3,3,3,-41,23,-20,3,3,-19,3,-39,3,3,-21,-22,-26,-23,-25,-24,23,23,3,3,-40,]),'NOTEQUAL':([39,69,70,85,],[50,-14,-15,-16,]),'$end':([2,4,5,11,13,14,18,20,22,41,75,],[-2,-44,-42,0,-43,-41,-20,-1,-19,-39,-40,]),'CMDARG_OFF':([17,47,48,49,50,51,52,53,],[27,27,-21,-22,-26,-23,-25,-24,]),'SEMICOLON':([8,15,25,26,27,28,32,33,68,],[18,22,-17,-18,-9,-8,41,-38,75,]),'RPAREN':([27,28,31,38,43,46,57,58,59,63,64,65,69,70,85,],[-9,-8,-35,46,-34,-36,63,64,65,-33,-32,-31,-14,-15,-16,]),'COMMENT':([0,],[10,]),'LPAREN':([19,30,34,35,36,],[30,30,-27,44,-28,]),'BEGIN':([1,42,45,],[12,56,-37,]),'LOGIC_AND':([29,31,38,43,46,63,64,65,],[34,-35,34,-34,-36,-33,-32,-31,]),'RBRACE':([29,31,43,46,63,64,65,],[37,-35,-34,-36,-33,-32,-31,]),'STATE':([66,],[69,]),'GREATER':([39,69,70,85,],[49,-14,-15,-16,]),'END':([18,21,22,62,],[-20,33,-19,33,]),'CMDARG_ON':([17,47,48,49,50,51,52,53,],[28,28,-21,-22,-26,-23,-25,-24,]),'DIMMER':([67,],[71,]),'SWITCH_STATE_TO':([67,],[72,]),'OCTOTHORPE':([3,6,23,40,60,],[-3,16,-4,54,66,]),'ASSIGN':([7,23,24,],[17,-4,-13,]),'EQUAL':([39,69,70,85,],[52,-14,-15,-16,]),'LSQB':([76,79,],[77,80,]),'DOT':([3,23,40,61,71,72,73,74,78,],[-3,-4,55,67,-7,-6,-5,76,79,]),'COMMA':([81,],[82,]),'TURN':([67,],[73,]),'THEN':([37,],[45,]),'NUMBER':([17,47,48,49,50,51,52,53,80,82,],[25,58,-21,-22,-26,-23,-25,-24,81,83,]),'RANGE':([77,],[78,]),'ELESS':([39,69,70,85,],[51,-14,-15,-16,]),'LOGIC_OR':([29,31,38,43,46,63,64,65,],[36,-35,36,-34,-36,-33,-32,-31,]),'ELSE':([32,33,],[42,-38,]),'IF':([0,2,4,5,10,13,14,18,20,22,41,75,],[9,9,-44,-42,9,-43,-41,-20,9,-19,-39,-40,]),'EGREATER':([39,69,70,85,],[48,-14,-15,-16,]),'LESS':([39,69,70,85,],[53,-14,-15,-16,]),} _lr_action = {} for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): if not _x in _lr_action: _lr_action[_x] = {} _lr_action[_x][_k] = _y del _lr_action_items _lr_goto_items = {'logical_comp':([39,],[47,]),'if_stmt':([0,2,10,20,],[1,1,1,1,]),'programm_body':([0,10,],[2,20,]),'end_if':([21,62,],[32,68,]),'condition':([19,30,35,],[31,31,43,]),'assigment':([0,2,4,10,12,13,20,21,56,62,],[8,8,15,8,8,15,8,15,8,15,]),'toggle_cmd_args':([17,47,],[26,57,]),'logical_operator':([29,38,],[35,35,]),'condition_list':([19,30,],[29,38,]),'get_device_info':([66,],[70,]),'iot_device_get_info':([30,44,47,],[39,39,59,]),'programm_struct':([0,],[11,]),'iot_command':([67,],[74,]),'iot_object_expr':([0,2,4,10,12,13,20,21,56,62,],[7,7,7,7,7,7,7,7,7,7,]),'assigment_stmts':([0,2,10,12,20,56,],[4,13,4,21,13,62,]),'condition_instr':([0,2,10,20,],[5,14,5,14,]),'iot_device':([0,2,4,10,12,13,20,21,30,44,47,56,62,],[6,6,6,6,6,6,6,6,40,40,40,6,6,]),'iot_dev_control':([16,54,55,],[24,60,61,]),} _lr_goto = {} for _k, _v in _lr_goto_items.items(): for _x, _y in zip(_v[0], _v[1]): if not _x in _lr_goto: _lr_goto[_x] = {} _lr_goto[_x][_k] = _y del _lr_goto_items _lr_productions = [ ("S' -> programm_struct","S'",1,None,None,None), ('programm_struct -> COMMENT programm_body','programm_struct',2,'p_programm_struct','flexAndBison.py',238), ('programm_struct -> programm_body','programm_struct',1,'p_programm_struct','flexAndBison.py',239), ('iot_device -> IDENT','iot_device',1,'p_iot_device','flexAndBison.py',243), ('iot_dev_control -> IDENT','iot_dev_control',1,'p_iot_dev_control','flexAndBison.py',248), ('iot_command -> TURN','iot_command',1,'p_iot_command','flexAndBison.py',254), ('iot_command -> SWITCH_STATE_TO','iot_command',1,'p_iot_command','flexAndBison.py',255), ('iot_command -> DIMMER','iot_command',1,'p_iot_command','flexAndBison.py',256), ('toggle_cmd_args -> CMDARG_ON','toggle_cmd_args',1,'p_toggle_cmd_args','flexAndBison.py',263), ('toggle_cmd_args -> CMDARG_OFF','toggle_cmd_args',1,'p_toggle_cmd_args','flexAndBison.py',264), ('iot_cmd_argument -> toggle_cmd_args','iot_cmd_argument',1,'p_iot_cmd_argument','flexAndBison.py',271), ('iot_cmd_argument -> NUMBER','iot_cmd_argument',1,'p_iot_cmd_argument','flexAndBison.py',272), ('iot_cmd_argument -> RANGE DOT LSQB NUMBER COMMA NUMBER RSQB','iot_cmd_argument',7,'p_iot_cmd_argument','flexAndBison.py',273), ('iot_object_expr -> iot_device OCTOTHORPE iot_dev_control','iot_object_expr',3,'p_iot_object_expr','flexAndBison.py',279), ('get_device_info -> STATE','get_device_info',1,'p_get_device_info','flexAndBison.py',286), ('iot_device_get_info -> iot_device OCTOTHORPE iot_dev_control OCTOTHORPE get_device_info','iot_device_get_info',5,'p_iot_device_get_info','flexAndBison.py',291), ('iot_device_get_info -> iot_device DOT iot_dev_control DOT iot_command DOT LSQB RANGE DOT LSQB NUMBER COMMA NUMBER RSQB RSQB','iot_device_get_info',15,'p_iot_device_get_info','flexAndBison.py',292), ('assigment -> iot_object_expr ASSIGN NUMBER','assigment',3,'p_assigment','flexAndBison.py',299), ('assigment -> iot_object_expr ASSIGN toggle_cmd_args','assigment',3,'p_assigment','flexAndBison.py',300), ('assigment_stmts -> assigment_stmts assigment SEMICOLON','assigment_stmts',3,'p_assigment_stmts','flexAndBison.py',306), ('assigment_stmts -> assigment SEMICOLON','assigment_stmts',2,'p_assigment_stmts','flexAndBison.py',307), ('logical_comp -> EGREATER','logical_comp',1,'p_logical_comp','flexAndBison.py',312), ('logical_comp -> GREATER','logical_comp',1,'p_logical_comp','flexAndBison.py',313), ('logical_comp -> ELESS','logical_comp',1,'p_logical_comp','flexAndBison.py',314), ('logical_comp -> LESS','logical_comp',1,'p_logical_comp','flexAndBison.py',315), ('logical_comp -> EQUAL','logical_comp',1,'p_logical_comp','flexAndBison.py',316), ('logical_comp -> NOTEQUAL','logical_comp',1,'p_logical_comp','flexAndBison.py',317), ('logical_operator -> LOGIC_AND','logical_operator',1,'p_logical_operator','flexAndBison.py',322), ('logical_operator -> LOGIC_OR','logical_operator',1,'p_logical_operator','flexAndBison.py',323), ('logical_cond -> logical_comp','logical_cond',1,'p_logical_cond','flexAndBison.py',328), ('logical_cond -> logical_operator','logical_cond',1,'p_logical_cond','flexAndBison.py',329), ('condition -> LPAREN iot_device_get_info logical_comp iot_device_get_info RPAREN','condition',5,'p_condition','flexAndBison.py',334), ('condition -> LPAREN iot_device_get_info logical_comp NUMBER RPAREN','condition',5,'p_condition','flexAndBison.py',335), ('condition -> LPAREN iot_device_get_info logical_comp toggle_cmd_args RPAREN','condition',5,'p_condition','flexAndBison.py',336), ('condition_list -> condition_list logical_operator condition','condition_list',3,'p_condition_list','flexAndBison.py',343), ('condition_list -> condition','condition_list',1,'p_condition_list','flexAndBison.py',344), ('condition_list -> LPAREN condition_list RPAREN','condition_list',3,'p_condition_list','flexAndBison.py',345), ('if_stmt -> IF LBRACE condition_list RBRACE THEN','if_stmt',5,'p_if_stmt','flexAndBison.py',350), ('end_if -> END','end_if',1,'p_end_if','flexAndBison.py',355), ('condition_instr -> if_stmt BEGIN assigment_stmts end_if SEMICOLON','condition_instr',5,'p_condition_instr','flexAndBison.py',369), ('condition_instr -> if_stmt BEGIN assigment_stmts end_if ELSE BEGIN assigment_stmts end_if SEMICOLON','condition_instr',9,'p_condition_instr','flexAndBison.py',370), ('programm_body -> programm_body condition_instr','programm_body',2,'p_programm_body','flexAndBison.py',375), ('programm_body -> condition_instr','programm_body',1,'p_programm_body','flexAndBison.py',376), ('programm_body -> programm_body assigment_stmts','programm_body',2,'p_programm_body','flexAndBison.py',377), ('programm_body -> assigment_stmts','programm_body',1,'p_programm_body','flexAndBison.py',378), ]
#!/usr/bin/env python """ Created on Apr 10, 2015 @author: Chen Yang This script generates simulated Oxford Nanopore 2D reads. """ from __future__ import print_function from __future__ import with_statement import sys import getopt import random import re from time import strftime try: from six.moves import xrange except ImportError: pass try: import numpy as np except ImportError: sys.exit("""You need numpy! install it from http://www.numpy.org/""") import mixed_models as mm PYTHON_VERSION = sys.version_info VERSION = "1.0.0" PRORAM = "NanoSim" AUTHOR = "Chen Yang (UBC & BCGSC)" CONTACT = "cheny@bcgsc.ca" BASES = ['A', 'T', 'C', 'G'] # Usage information def usage(): usage_message = "./simulator.py [command] <options>\n" \ "[command] circular | linear\n" \ "Do not choose 'circular' when there is more than one sequence in the reference\n" \ "<options>: \n" \ "-h : print usage message\n" \ "-r : reference genome in fasta file, specify path and file name, REQUIRED\n" \ "-c : The prefix of training set profiles, same as the output prefix in read_analysis.py, default = training\n" \ "-o : The prefix of output file, default = 'simulated'\n" \ "-n : Number of generated reads, default = 20,000 reads\n" \ "--max_len : Maximum read length, default = Inf\n" \ "--min_len : Minimum read length, default = 50\n" \ "--perfect: Output perfect reads, no mutations, default = False\n" \ "--KmerBias: prohibits homopolymers with length >= n bases in output reads, default = 6\n" sys.stderr.write(usage_message) def read_ecdf(profile): # We need to count the number of zeros. If it's over 10 zeros, l_len/l_ratio need to be changed to higher. # Because it's almost impossible that the ratio is much lower than the lowest heuristic value. header = profile.readline() header_info = header.strip().split() ecdf_dict = {} lanes = len(header_info[1:]) for i in header_info[1:]: boundaries = i.split('-') ecdf_dict[(int(boundaries[0])), int(boundaries[1])] = {} ecdf_key = sorted(ecdf_dict.keys()) l_prob = [0.0] * lanes l_ratio = [0.0] * lanes for line in profile: new = line.strip().split('\t') ratio = [float(x) for x in new[0].split('-')] prob = [float(x) for x in new[1:]] for i in xrange(lanes): if prob[i] == l_prob[i]: continue else: if l_prob[i] != 0: ecdf_dict[ecdf_key[i]][(l_prob[i], prob[i])] = (l_ratio[i], ratio[1]) else: ecdf_dict[ecdf_key[i]][(l_prob[i], prob[i])] \ = (max(l_ratio[i], ratio[1] - 10 * (ratio[1] - ratio[0])), ratio[1]) l_ratio[i] = ratio[1] l_prob[i] = prob[i] for i in xrange(0, len(ecdf_key)): last_key = sorted(ecdf_dict[ecdf_key[i]].keys())[-1] last_value = ecdf_dict[ecdf_key[i]][last_key] ecdf_dict[ecdf_key[i]][last_key] = (last_value[0], ratio[1]) return ecdf_dict def get_length(len_dict, num, max_l, min_l): length_list = [] for i in xrange(num): middle_ref = 0 key = tuple(len_dict.keys())[0] while middle_ref <= min_l or middle_ref > max_l: p = random.random() for k_p, v_p in len_dict[key].items(): if k_p[0] <= p < k_p[1]: middle_ref = int(round((p - k_p[0])/(k_p[1] - k_p[0]) * (v_p[1] - v_p[0]) + v_p[0])) break length_list.append(middle_ref) return length_list def read_profile(number, model_prefix, per, max_l, min_l): global unaligned_length, number_aligned, aligned_dict global match_ht_list, align_ratio, ht_dict, error_par global trans_error_pr, match_markov_model # Read model profile for match, mismatch, insertion and deletions sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Read error profile\n") sys.stdout.flush() error_par = {} model_profile = model_prefix + "_model_profile" with open(model_profile, 'r') as mod_profile: mod_profile.readline() for line in mod_profile: new_line = line.strip().split("\t") if "mismatch" in line: error_par["mis"] = [float(x) for x in new_line[1:]] elif "insertion" in line: error_par["ins"] = [float(x) for x in new_line[1:]] else: error_par["del"] = [float(x) for x in new_line[1:]] trans_error_pr = {} with open(model_prefix + "_error_markov_model", "r") as error_markov: error_markov.readline() for line in error_markov: info = line.strip().split() k = info[0] trans_error_pr[k] = {} trans_error_pr[k][(0, float(info[1]))] = "mis" trans_error_pr[k][(float(info[1]), float(info[1]) + float(info[2]))] = "ins" trans_error_pr[k][(1 - float(info[3]), 1)] = "del" with open(model_prefix + "_first_match.hist", 'r') as fm_profile: match_ht_list = read_ecdf(fm_profile) with open(model_prefix + "_match_markov_model", 'r') as mm_profile: match_markov_model = read_ecdf(mm_profile) # Read length of unaligned reads sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Read ECDF of unaligned reads\n") sys.stdout.flush() unaligned_length = [] with open(model_prefix + "_unaligned_length_ecdf", 'r') as u_profile: new = u_profile.readline().strip() rate = new.split('\t')[1] # if parameter perfect is used, all reads should be aligned, number_aligned equals total number of reads. if per or rate == "100%": number_aligned = number else: number_aligned = int(round(number * float(rate) / (float(rate) + 1))) number_unaligned = number - number_aligned unaligned_dict = read_ecdf(u_profile) unaligned_length = get_length(unaligned_dict, number_unaligned, max_l, min_l) unaligned_dict.clear() # Read profile of aligned reads sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Read ECDF of aligned reads\n") sys.stdout.flush() # Read align ratio profile with open(model_prefix + "_align_ratio", 'r') as a_profile: align_ratio = read_ecdf(a_profile) # Read head/unaligned region ratio with open(model_prefix + "_ht_ratio", 'r') as ht_profile: ht_dict = read_ecdf(ht_profile) # Read length of aligned reads # If "perfect" is chosen, just use the total length ecdf profile, else use the length of aligned region on reference if per: length_profile = model_prefix + "_aligned_reads_ecdf" else: length_profile = model_prefix + "_aligned_length_ecdf" with open(length_profile, 'r') as align_profile: aligned_dict = read_ecdf(align_profile) def collapse_homo(seq, k): read = re.sub("A" * k + "+", "A" * (k - 1), seq) read = re.sub("C" * k + "+", "C" * (k - 1), read) read = re.sub("T" * k + "+", "T" * (k - 1), read) read = re.sub("G" * k + "+", "G" * (k - 1), read) return read # Taken from https://github.com/lh3/readfq def readfq(fp): # this is a generator function last = None # this is a buffer keeping the last unprocessed line while True: # mimic closure; is it a bad idea? if not last: # the first record or a record following a fastq for l in fp: # search for the start of the next record if l[0] in '>@': # fasta/q header line last = l[:-1] # save this line break if not last: break name, seqs, last = last[1:].partition(" ")[0], [], None for l in fp: # read the sequence if l[0] in '@+>': last = l[:-1] break seqs.append(l[:-1]) if not last or last[0] != '+': # this is a fasta record yield name, ''.join(seqs), None # yield a fasta record if not last: break else: # this is a fastq record seq, leng, seqs = ''.join(seqs), 0, [] for l in fp: # read the quality seqs.append(l[:-1]) leng += len(l) - 1 if leng >= len(seq): # have read enough quality last = None yield name, seq, ''.join(seqs) # yield a fastq record break if last: # reach EOF before reading enough quality yield name, seq, None # yield a fasta record instead break def simulation(ref, out, dna_type, per, kmer_bias, max_l, min_l): global unaligned_length, number_aligned, aligned_dict global genome_len, seq_dict, seq_len global match_ht_list, align_ratio, ht_dict, match_markov_model global trans_error_pr, error_par sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Read in reference genome\n") sys.stdout.flush() seq_dict = {} seq_len = {} # Read in the reference genome with open(ref, 'r') as infile: for seqN, seqS, seqQ in readfq(infile): info = re.split(r'[_\s]\s*', seqN) chr_name = "-".join(info) seq_dict[chr_name] = seqS sys.stdout.write(".") sys.stdout.flush() sys.stdout.write("\n") sys.stdout.flush() if len(seq_dict) > 1 and dna_type == "circular": sys.stderr.write("Do not choose circular if there is more than one chromosome in the genome!") sys.exit(1) for key in seq_dict.keys(): seq_len[key] = len(seq_dict[key]) genome_len = sum(seq_len.values()) # Start simulation sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Start simulation of random reads\n") sys.stdout.flush() out_reads = open(out + "_reads.fasta", 'w') out_error = open(out + "_error_profile", 'w') out_error.write("Seq_name\tSeq_pos\terror_type\terror_length\tref_base\tseq_base\n") # Simulate unaligned reads num_unaligned_length = len(unaligned_length) for i in xrange(num_unaligned_length): unaligned = unaligned_length[i] unaligned, error_dict = unaligned_error_list(unaligned, error_par) new_read, new_read_name = extract_read(dna_type, unaligned) new_read_name = new_read_name + "_unaligned_" + str(i) # Change lowercase to uppercase and replace N with any base new_read = case_convert(new_read) read_mutated = mutate_read(new_read, new_read_name, out_error, error_dict, kmer_bias, False) # Reverse complement half of the reads p = random.random() if p < 0.5: read_mutated = reverse_complement(read_mutated) new_read_name += "_R" else: new_read_name += "_F" out_reads.write(">" + new_read_name + "_0_" + str(unaligned) + "_0" + '\n') out_reads.write(read_mutated + "\n") del unaligned_length # Simulate aligned reads sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Start simulation of aligned reads\n") sys.stdout.flush() if per: ref_length = get_length(aligned_dict, number_aligned, max_l, min_l) del aligned_dict for i in xrange(number_aligned): new_read, new_read_name = extract_read(dna_type, ref_length[i]) new_read_name = new_read_name + "_perfect_" + str(i) # Reverse complement half of the reads p = random.random() if p < 0.5: new_read = reverse_complement(new_read) new_read_name += "_R" else: new_read_name += "_F" out_reads.write(">" + new_read_name + "_0_" + str(ref_length[i]) + "_0" + '\n') # Change lowercase to uppercase and replace N with any base new_read = case_convert(new_read) out_reads.write(new_read + "\n") out_reads.close() out_error.close() return i = 0 while i < number_aligned: ref = get_length(aligned_dict, 1, max_l, min_l)[0] middle, middle_ref, error_dict = error_list(ref, match_markov_model, match_ht_list, error_par, trans_error_pr) for k_align in sorted(align_ratio.keys()): if k_align[0] <= middle < k_align[1]: break p = random.random() for k_r, v_r in align_ratio[k_align].items(): if k_r[0] <= p < k_r[1]: a_ratio = (p - k_r[0])/(k_r[1] - k_r[0]) * (v_r[1] - v_r[0]) + v_r[0] total = int(round(middle / a_ratio)) remainder = total - int(round(middle)) break if total > max_l: continue if remainder == 0: head = 0 tail = 0 else: for k_ht in sorted(ht_dict.keys()): if k_ht[0] <= remainder < k_ht[1]: p = random.random() for k_h, v_h in ht_dict[k_ht].items(): if k_h[0] <= p < k_h[1]: ratio = (p - k_h[0])/(k_h[1] - k_h[0]) * (v_h[1] - v_h[0]) + v_h[0] head = int(round(remainder * ratio)) tail = remainder - head break break # if remainder is larger than any empirical value, then randomly divide it into head and tail try: head except NameError: p = random.random() head = int(round(remainder * p)) tail = remainder - head # Extract middle region from reference genome new_read, new_read_name = extract_read(dna_type, middle_ref) new_read_name = new_read_name + "_aligned_" + str(i + num_unaligned_length) # Mutate read new_read = case_convert(new_read) read_mutated = mutate_read(new_read, new_read_name, out_error, error_dict, kmer_bias) # Reverse complement half of the reads p = random.random() if p < 0.5: read_mutated = reverse_complement(read_mutated) new_read_name += "_R" else: new_read_name += "_F" # Add head and tail region read_mutated = ''.join(np.random.choice(BASES, head)) + read_mutated read_mutated += ''.join(np.random.choice(BASES, tail)) if kmer_bias: read_mutated = collapse_homo(read_mutated, kmer_bias) out_reads.write(">" + new_read_name + "_" + str(head) + "_" + str(middle_ref) + "_" + str(tail) + '\n') out_reads.write(read_mutated + '\n') i += 1 out_reads.close() out_error.close() align_ratio.clear() ht_dict.clear() def reverse_complement(seq): comp = {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'} seq_list = list(seq) reverse_seq_list = reversed([comp.get(base, base) for base in seq_list]) reverse_seq = ''.join(reverse_seq_list) return reverse_seq def extract_read(dna_type, length): global seq_dict, seq_len, genome_len if length > max(seq_len.values()): length = max(seq_len.values()) # Extract the aligned region from reference if dna_type == "circular": ref_pos = random.randint(0, genome_len) chromosome = list(seq_dict.keys())[0] new_read_name = chromosome + "_" + str(ref_pos) if length + ref_pos <= genome_len: new_read = seq_dict[chromosome][ref_pos: ref_pos + length] else: new_read = seq_dict[chromosome][ref_pos:] new_read = new_read + seq_dict[chromosome][0: length - genome_len + ref_pos] else: # Generate a random number within the size of the genome. Suppose chromosomes are connected # tail to head one by one in the order of the dictionary. If the start position fits in one # chromosome, but the end position does not, then restart generating random number. while True: new_read = "" ref_pos = random.randint(0, genome_len) for key in seq_len.keys(): if ref_pos + length <= seq_len[key]: new_read = seq_dict[key][ref_pos: ref_pos + length] new_read_name = key + "_" + str(ref_pos) break elif ref_pos < seq_len[key]: break else: ref_pos -= seq_len[key] if new_read != "": break return new_read, new_read_name def unaligned_error_list(length, error_p): e_dict = {} error_rate = {(0, 0.4): "match", (0.4, 0.7): "mis", (0.7, 0.85): "ins", (0.85, 1): "del"} pos = 0 last_is_ins = False while pos < length: p = random.random() for k_error in error_rate.keys(): if k_error[0] <= p < k_error[1]: error_type = error_rate[k_error] break if error_type == "match": step = 1 elif error_type == "mis": step = mm.pois_geom(error_p["mis"][0], error_p["mis"][2], error_p["mis"][3]) e_dict[pos] = ["mis", step] elif error_type == "ins": step = mm.wei_geom(error_p["ins"][0], error_p["ins"][1], error_p["ins"][2], error_p["ins"][3]) if last_is_ins: e_dict[pos + 0.1][1] += step else: e_dict[pos + 0.1] = ["ins", step] last_is_ins = True else: step = mm.wei_geom(error_p["del"][0], error_p["del"][1], error_p["del"][2], error_p["del"][3]) e_dict[pos] = ["del", step] if error_type != "ins": pos += step last_is_ins = False if pos > length: length = pos return length, e_dict def error_list(m_ref, m_model, m_ht_list, error_p, trans_p): # l_old is the original length, and l_new is used to control the new length after introducing errors l_new = m_ref pos = 0 e_dict = {} middle_ref = m_ref prev_error = "start" # The first match come from m_ht_list p = random.random() k1 = list(m_ht_list.keys())[0] for k2, v2 in m_ht_list[k1].items(): if k2[0] < p <= k2[1]: prev_match = int(np.floor((p - k2[0])/(k2[1] - k2[0]) * (v2[1] - v2[0]) + v2[0])) if prev_match < 2: prev_match = 2 pos += prev_match # Select an error, then the step size, and then a match and so on so forth. while pos < middle_ref: # pick the error based on Markov chain p = random.random() for k in trans_p[prev_error].keys(): if k[0] <= p < k[1]: error = trans_p[prev_error][k] break if error == "mis": step = mm.pois_geom(error_p["mis"][0], error_p["mis"][2], error_p["mis"][3]) elif error == "ins": step = mm.wei_geom(error_p[error][0], error_p[error][1], error_p[error][2], error_p[error][3]) l_new += step else: step = mm.wei_geom(error_p[error][0], error_p[error][1], error_p[error][2], error_p[error][3]) l_new -= step if error != "ins": e_dict[pos] = [error, step] pos += step if pos >= middle_ref: l_new += pos - middle_ref middle_ref = pos else: e_dict[pos - 0.5] = [error, step] prev_error = error # Randomly select a match length for k1 in m_model.keys(): if k1[0] <= prev_match < k1[1]: break p = random.random() for k2, v2 in m_model[k1].items(): if k2[0] < p <= k2[1]: step = int(np.floor((p - k2[0])/(k2[1] - k2[0]) * (v2[1] - v2[0]) + v2[0])) break # there are no two 0 base matches together if prev_match == 0 and step == 0: step = 1 prev_match = step if pos + prev_match > middle_ref: l_new += pos + prev_match - middle_ref middle_ref = pos + prev_match pos += prev_match if prev_match == 0: prev_error += "0" return l_new, middle_ref, e_dict def mutate_read(read, read_name, error_log, e_dict, k, aligned=True): search_pattern = "A" * k + "+|" + "T" * k + "+|" + "C" * k + "+|" + "G" * k for key in sorted(e_dict.keys(), reverse=True): val = e_dict[key] key = int(round(key)) if val[0] == "mis": ref_base = read[key: key + val[1]] while True: new_bases = "" for i in xrange(val[1]): tmp_bases = list(BASES) tmp_bases.remove(read[key + i]) new_base = random.choice(tmp_bases) new_bases += new_base check_kmer = read[max(key - k + 1, 0): key] + new_bases + read[key + val[1]: key + val[1] + k - 1] if not k or not re.search(search_pattern, check_kmer): break new_read = read[:key] + new_bases + read[key + val[1]:] elif val[0] == "del": new_bases = val[1] * "-" ref_base = read[key: key + val[1]] new_read = read[: key] + read[key + val[1]:] elif val[0] == "ins": ref_base = val[1] * "-" while True: new_bases = "" for i in xrange(val[1]): new_base = random.choice(BASES) new_bases += new_base check_kmer = read[max(key - k + 1, 0): key] + new_bases + read[key: key + k - 1] if not k or not re.search(search_pattern, check_kmer): break new_read = read[:key] + new_bases + read[key:] read = new_read if aligned and val[0] != "match": error_log.write(read_name + "\t" + str(key) + "\t" + val[0] + "\t" + str(val[1]) + "\t" + ref_base + "\t" + new_bases + "\n") # If choose to have kmer bias, then need to compress homopolymers to 5-mer if k: read = collapse_homo(read, k) return read def case_convert(seq): base_code = {'Y': ['C', 'T'], 'R': ['A', 'G'], 'W': ['A', 'T'], 'S': ['G', 'C'], 'K': ['T', 'G'], 'M': ['C', 'A'], 'D': ['A', 'G', 'T'], 'V': ['A', 'C', 'G'], 'H': ['A', 'C', 'T'], 'B': ['C', 'G', 'T'], 'N': ['A', 'T', 'C', 'G'], 'X': ['A', 'T', 'C', 'G']} up_string = seq.upper() up_list = list(up_string) for i in xrange(len(up_list)): if up_list[i] in base_code: up_list[i] = random.choice(base_code[up_list[i]]) out_seq = ''.join(up_list) return out_seq def main(): ref = "" model_prefix = "training" out = "simulated" number = 20000 perfect = False # ins, del, mis rate represent the weight tuning in mix model ins_rate = 1 del_rate = 1 mis_rate = 1 max_readlength = float("inf") min_readlength = 50 kmer_bias = 0 # Parse options and parameters if len(sys.argv) < 4: usage() sys.exit(1) else: dna_type = sys.argv[1] if dna_type not in ["circular", "linear"]: usage() sys.exit(1) try: opts, args = getopt.getopt(sys.argv[2:], "hr:c:o:n:i:d:m:", ["max_len=", "min_len=", "perfect", "KmerBias="]) except getopt.GetoptError: usage() sys.exit(1) for opt, arg in opts: if opt == "-r": ref = arg elif opt == "-c": model_prefix = arg elif opt == "-o": out = arg elif opt == "-n": number = int(arg) elif opt == "-i": ins_rate = float(arg) elif opt == "-d": del_rate = float(arg) elif opt == "-m": mis_rate = float(arg) elif opt == "--max_len": max_readlength = int(arg) elif opt == "--min_len": min_readlength = int(arg) elif opt == "--perfect": perfect = True elif opt == "--KmerBias": kmer_bias = int(arg) elif opt == "-h": usage() sys.exit(0) else: usage() sys.exit(1) # Generate log file sys.stdout = open(out + ".log", 'w') # Record the command typed to log file sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ': ' + ' '.join(sys.argv) + '\n') sys.stdout.flush() if ref == "": print("must provide a reference genome!") usage() sys.exit(1) if max_readlength < min_readlength: print("maximum read length must be longer than minimum read length!") sys.exit(1) # Read in reference genome and generate simulated reads read_profile(number, model_prefix, perfect, max_readlength, min_readlength) simulation(ref, out, dna_type, perfect, kmer_bias, max_readlength, min_readlength) sys.stdout.write(strftime("%Y-%m-%d %H:%M:%S") + ": Finished!") sys.stdout.close() if __name__ == "__main__": main()
import pygame from spellingquiz.apilogin import * import random import time import cv2 import sys import datetime from pygame.locals import * import os import json import pathlib pygame.init() FPS = 30 FramePerSec = pygame.time.Clock() cap0 = cv2.VideoCapture(0) #cap1 = cv2.VideoCapture(1) #create a completedTests = 0 newpath = str(pathlib.Path(__file__).parent.absolute()) + r'\data\testing' while os.path.exists(newpath + str(completedTests) ): completedTests += 1 newpath = newpath + str(completedTests) os.makedirs(newpath) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) BLACK = (0, 0, 0) color = pygame.Color('dodgerblue2') fontSize = 32 font = pygame.font.Font(None, fontSize) DisplayWidth = 600 DisplayHeight = 600 DISPLAYSURF = pygame.display.set_mode((DisplayWidth, DisplayHeight), pygame.RESIZABLE) DISPLAYSURF.fill(WHITE) pygame.display.set_caption('Spelling Game') def reddit_scrapper(reddit): subreddit = reddit.subreddit('python') reddittitles = [] hot_python = subreddit.hot() for submission in hot_python: if not submission.stickied: removeNonString = ''.join([i if ord(i) < 128 else ' ' for i in submission.title]) reddittitles.append(removeNonString) return reddittitles allRedditTexts = reddit_scrapper(reddit) def fresh_game(completedTests, reddit, allRedditTexts): #set all variable back to normal newpath = str(pathlib.Path(__file__).parent.absolute()) + r'\data\typingtest' i = 0 while os.path.exists(newpath + str(completedTests)): completedTests += 1 newpath = newpath + str(completedTests) os.makedirs(newpath) currentUserLocation = 0 logger = '' longtext = random.choice(allRedditTexts) jsonData = { 'text': longtext, 'datetime': datetime.datetime.now(), 'typeData': [] } start = datetime.datetime.now() text = '' typeDataWord = [] filename = newpath + '/spellingQuiz-' + datetime.datetime.now().strftime("%Y-%m-%d@%H#%M#%S") + '.txt' freshgame = { 'newpath' : newpath, 'currentUserLocation': currentUserLocation, 'logger' : logger, 'jsonData' : jsonData, 'typeDataWord' : typeDataWord, 'start' : start, 'filename' : filename, 'longtext' : longtext, 'i' : i, 'text' : text } return freshgame class gameClass(): #class to hold all of the game data and allow you to refresh the game pass def blit_text(surface, text, pos, font, currentuserlocation, color=pygame.Color('green')): #https://stackoverflow.com/questions/42014195/rendering-text-with-multiple-lines-in-pygame words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words. space = font.size(' ')[0] # The width of a space. max_width, max_height = surface.get_size() x, y = pos upto = 0 currentword = [] for line in words: for word in line: upto += 1 if upto > currentuserlocation: currentword.append(word) color = pygame.Color('black') word_surface = font.render(word, 0, color) word_width, word_height = word_surface.get_size() if x + word_width >= max_width: x = pos[0] # Reset the x. y += word_height # Start on new row. surface.blit(word_surface, (x, y)) x += word_width + space x = pos[0] # Reset the x. y += word_height # Start on new row. if currentword: return currentword[0] else: return '' currentUserLocation = 0 logger = '' typeDataWord = [] filename = newpath + '/spellingQuiz-'+ datetime.datetime.now().strftime("%Y-%m-%d@%H#%M#%S") + '.txt' startgame = True rectangle = [[50, 50], [200, 200]] while startgame: ret, frame = cap0.read() cv2.rectangle(frame, (rectangle[0][0], rectangle[0][1]), (rectangle[1][0], rectangle[1][1]), (255, 0, 0), 4) cv2.imshow('setup', frame) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYDOWN: if event.key in (pygame.K_RETURN, pygame.K_SPACE): cv2.destroyAllWindows() startgame = False if event.key == pygame.K_w: #move box up rectangle[0][1] -= 10 rectangle[1][1] -= 10 if event.key == pygame.K_s: # move box down rectangle[0][1] += 10 rectangle[1][1] += 10 if event.key == pygame.K_a: # move box left rectangle[0][0] -= 10 rectangle[1][0] -= 10 if event.key == pygame.K_d: # move box right rectangle[0][0] += 10 rectangle[1][0] += 10 if event.key == pygame.K_q: # make box taller rectangle[0][0] -= 10 if event.key == pygame.K_z: # make box shorter rectangle[0][0] += 10 if event.key == pygame.K_e: # make box wider rectangle[1][1] -= 10 if event.key == pygame.K_c: # make box thinner rectangle[1][1] += 10 start = datetime.datetime.now() text = '' refreshgame = fresh_game(completedTests, reddit, allRedditTexts) jsonData = { 'text' : refreshgame['longtext'], 'datetime' : datetime.datetime.now(), 'keyboard_location' : rectangle, 'typeData' : [] } def build(): '''this function is currently a stopgap, eventually to be turned into building spellingquiz''' pass while True: # making a loop ret, frame = cap0.read() #ret, frame = cap1.read() for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() elif event.type == pygame.KEYDOWN: if event.key in (pygame.K_RETURN, pygame.K_SPACE): print(text , currentWord) if text == currentWord: jsonData['typeData'].append(typeDataWord) refreshgame['currentUserLocation'] += 1 text = '' logger = '' typeDataWord = [] elif event.key == pygame.K_BACKSPACE: if len(text)>0: start = refreshgame['start'] logger += f'[{datetime.datetime.now()-start},DELETE]\t' typeDataWord.append([datetime.datetime.now() - start, 'DELETE']) text = text[0:-1] else: ret0, frame0 = cap0.read() #ret1, frame1 = cap1.read() if ret0 == True: newpath = refreshgame['newpath'] img_name = f"{newpath}/{int(round(time.time() * 1000))}{event.unicode}" img_name0 = img_name +'.png' #img_name1 = img_name + 'b.png' cv2.imwrite(img_name0, frame0) #scv2.imwrite(img_name1, frame1) logger += f'[{datetime.datetime.now()-start}, {event.unicode}]\t' typeDataWord.append([datetime.datetime.now()-start, event.unicode]) text += event.unicode DISPLAYSURF.fill((WHITE)) currentWord = blit_text(DISPLAYSURF, refreshgame['longtext'], (20,20),font,refreshgame['currentUserLocation']) txt_current = font.render(text, True, color) txt_spell_word = font.render(currentWord,True,color) DISPLAYSURF.blit(txt_current,(DisplayWidth//2,5*DisplayHeight//6)) DISPLAYSURF.blit(txt_spell_word, (DisplayWidth // 2, 2*DisplayHeight // 3)) pygame.display.flip() FramePerSec.tick(FPS) if currentWord == '': print(f'total time: {datetime.datetime.now()-start}') with open(newpath+r'\dataSet' + '.json','w+', encoding='utf-8' ) as f: jsonData['text'] = refreshgame['longtext'] jsonData['datetime'] = datetime.datetime.now() json.dump(jsonData, f, ensure_ascii=False, indent=4 , default=str) jsonData['typeData'] = [] refreshgame = fresh_game(completedTests, reddit, allRedditTexts) pygame.quit() sys.exit() cap0.release() out.release() cv2.destroyAllWindows()
from bs4 import BeautifulSoup from collections import namedtuple import hashlib class Provider(object): def __init__(self, name, link): self.name = name self.link = link def serialize(self): return {'name': self.name, 'link': self.link} def __str__(self): return '<Provider {}>'.format(self.name) class Version(object): def __init__(self, quality, providers): self.quality = quality self.providers = providers def serialize(self): return {'quality': self.quality, 'providers': map(lambda p: p.serialize(), self.providers)} def __str__(self): return '<Version {}>'.format(self.quality) class Anime(object): def __init__(self, title, release_date, episode): self.title = title self.release_date = release_date self.episode = episode self.id = hashlib.new("md5", "{}{}{}"\ .format(release_date, title, episode)).hexdigest() def serialize(self): if not hasattr(self, 'versions'): raise RuntimeError('Versions are not specified! Cannot serialize!') return { 'title': self.title, 'release_date': self.release_date, 'episode': self.episode, 'id': self.id, 'versions': map(lambda v: v.serialize(), self.versions) } def __str__(self): return '<Anime {} - {}>'.format(self.title, self.episode) def parse_anime_info(entry): release_date = entry[0] title = ' '.join(entry[1:-2]) episode_id = int(entry[-1]) unique_id = hashlib.new("md5", "{}{}{}"\ .format(release_date, title, episode_id)).hexdigest() return Anime(title, release_date, episode_id) def parse_providers(providers): for provider_block in providers: provider = provider_block.a['title'] link = provider_block.a['href'] yield Provider(name=provider, link=link) def parse_versions(versions): for version in versions: quality = version.text.split(' ')[-1] providers_nodes = version.parent.find_all(attrs={'class': 'dl-type'}) yield Version(quality=quality, providers=set(parse_providers(providers_nodes))) def parse_animes(pageContent): try: soup = BeautifulSoup(pageContent, 'html.parser') episodes = soup.find_all(attrs={'class': 'release-info'}) for episode in episodes: try: entry = episode.td.text.split(' ') anime = parse_anime_info(entry) matching_versions_nodes = filter(lambda n: n.text.startswith(anime.title), soup.find_all(attrs={'class': 'dl-label'})) anime.versions = set(parse_versions(matching_versions_nodes)) yield anime except Exception as e: print ('Failed while parsing an anime, skipping it ({})'.format(e)) except Exception as e: print ('Fatal failure while parsing animes, aborting the parsing. ({})'.format(e)) if __name__ == '__main__': import requests animes = list(parse_animes(requests.get('http://horriblesubs.info/lib/latest.php').text)) print (animes) import pdb; pdb.set_trace()
import json import socket import time import os import subprocess dir_path = os.path.dirname(os.path.realpath(__file__)) def send_json(host, filename): print(host, filename) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: with open(filename, 'r') as json_file: data = json.load(json_file) sock.connect((host, 11211)) sock.sendall(bytes(json.dumps(data), 'utf-8')) while True: response = str(sock.recv(4096), 'utf-8') print('Received: {}'.format(response)) if response: print('Received: {}'.format(response)) else: break sock.close() hosts = { 'program': '34.242.140.18', 'database1': '34.242.206.68', 'database2': '52.211.63.195' } print('Recording test:') send_json(hosts['program'], os.path.join(dir_path, 'samples', 'showcase', 'sample_start_record-program.json')) send_json(hosts['database1'], os.path.join(dir_path, 'samples', 'showcase', 'sample_start_record-database.json')) send_json(hosts['database2'], os.path.join(dir_path, 'samples', 'showcase', 'sample_start_record-database.json')) input('Continue... ') for host in hosts: send_json(hosts[host], os.path.join(dir_path, 'samples', 'sample_finish_record.json')) # time.sleep(3) # # print('\n\nInstructions test:') # send_json(os.path.join(dir_path, 'samples', 'udp', 'sample_instructions0.json')) # time.sleep(3) # send_json(os.path.join(dir_path, 'samples', 'udp', 'sample_instructions1.json')) # time.sleep(3) # send_json(os.path.join(dir_path, 'samples', 'udp', 'sample_instructions2.json')) # time.sleep(3) # # print('\n\nExperiment test:') # send_json(os.path.join(dir_path, 'samples', 'udp', 'sample_start_experiment.json')) # time.sleep(3) # time.sleep(3) # send_json(os.path.join(dir_path, 'samples', 'sample_finish_experiment.json')) # time.sleep(3) # # print('\n\nReset test:') # send_json(os.path.join(dir_path, 'samples', 'sample_reset.json')) # # print('\n\nRecording test:') # send_json(os.path.join(dir_path, 'samples', 'tcp', 'sample_start_record.json')) # time.sleep(10) # data = subprocess.Popen(["python", os.path.join(dir_path, 'tcp', 'client.py')]) # time.sleep(5) # send_json(os.path.join(dir_path, 'samples', 'sample_finish_record.json')) # time.sleep(3)
# coding: utf-8 import unittest import os import sys import requests_mock from unittest import mock sys.path.append("../yyetsbot") from fansub import BaseFansub, YYeTsOnline class TestBaseFunsub(unittest.TestCase): @classmethod def setUpClass(cls) -> None: cls.ins = BaseFansub() cls.cookie_jar = dict(name="hello") cls.ins.cookie_file = "test_cookies.dump" # generate on tests/test_cookies.dump @classmethod def tearDownClass(cls) -> None: cls().ins.redis.flushall() os.unlink(cls().ins.cookie_file) def test_save_cookies(self): self.ins.__save_cookies__(self.cookie_jar) exists = os.path.exists(self.ins.cookie_file) self.assertTrue(exists) def test_load_cookies(self): self.test_save_cookies() cookie = self.ins.__load_cookies__() self.assertEqual(cookie, self.cookie_jar) def test_get_from_cache(self): value = self.ins.__get_from_cache__("http://test.url", "__hash__") self.assertEqual(value, self.ins.__hash__()) def test_save_to_cache(self): # never expire url = "http://test2.url" self.ins.__save_to_cache__(url, self.cookie_jar) cache_copy = self.ins.__get_from_cache__(url, "never mind method") self.assertEqual(cache_copy, self.cookie_jar) class YYeTsTest(unittest.TestCase): @classmethod def setUpClass(cls) -> None: cls.ins = YYeTsOnline() cls.cookie_jar = dict(name="hello yyets") cls.ins.cookie_file = "test_cookies.dump" # generate on tests/test_cookies.dump cls.ins.url = "http://www.rrys2020.com/resource/1988" @classmethod def tearDownClass(cls) -> None: cls().ins.redis.flushall() # os.unlink(cls().ins.cookie_file) def test_get_id(self): self.assertEqual(self.ins.id, "1988") @requests_mock.mock() def test_get_search_html(self, m): with open("yyets_search.html") as f: html = f.read() m.get('http://www.rrys2020.com/search?keyword=abc&type=resource', text=html) response = self.ins.__get_search_html__("abc") self.assertEqual(html, response) if __name__ == '__main__': unittest.main()
import logging import os import sys from collections import OrderedDict import numpy as np import pandas as pd import matplotlib.pyplot as plt import pyfmi from mshoot import SimModel class SimFMU(SimModel): def __init__(self, fmupath, outputs=[], states=[], parameters={}, verbose=False): """ :param fmupath: str, path to FMU :param outputs: list(str), monitored outputs names :param states: list(str), monitored states names :param parameters: dict, parameters names and values :param verbose: bool, whether to suppress pyfmi prints """ print(fmupath) self.fmu = pyfmi.load_fmu(fmupath) self.outputs = outputs self.states = states self.verbose = verbose # Get initial state # Comment: # The model has to be initialized to read the state variables. # The easiest way to initialize is to run a short simulation. dummy_result = self.fmu.simulate(start_time=0, final_time=1) self.x0 = self._get_state() # Reset the FMU self.fmu.reset() # Set parameters for n in parameters: self.fmu.set(n, parameters[n]) def _get_state(self): """ Return an ordered dictionary with state names as keys and state values as values. """ # Return dictionary, keys - state names, values - state values x = OrderedDict() # Get dictionary, keys - state names, # values - ScalarViariable instances (svi) x_svi = self.fmu.get_states_list() for s in x_svi: vr = x_svi[s]._get_value_reference() x[s] = self.fmu.get_real(vr)[0] # [0] because 1-element array return x def simulate(self, udf, x0, save_state=False): """ Simulate the model using the provided inputs `udf` and initial state `x0`. The DataFrame should have the following content: - index - time in seconds and equal steps, named 'time', - columns - input data, - column names - input variable names. The order of `x0` should reflect the one used in `states`. Return two DataFrames, `ydf` and `xdf`, with outputs and states, respectively, and with the same structure as `udf`. :param udf: DataFrame, shape (n_steps, n_variables) :param x0: vector, size (n_states, ) :return: ydf, xdf """ assert udf.index.name == 'time' start = udf.index[0] # Start time stop = udf.index[-1] # Final time ncp = udf.index.size - 1 # Number of communication points # Prepare inputs for pyfmi: # From pyfmi documentation: # "The input should be a 2-tuple consisting of first the names # of the input variable(s) and then the data matrix" # df = udf.reset_index() inp = (udf.columns, udf.reset_index().values) # FMI options opts = self.fmu.simulate_options() opts['ncp'] = ncp opts['result_handling'] = 'memory' # Prevents saving result file opts['result_handler'] = 'ResultHandlerMemory' # Prevents saving result file # if 'solver' in opts: # # Model Exchange # opts['solver'] = 'CVode' # opts['CVode_options'] = {'rtol': 1e-6, 'atol': 1e-6} # Initial states from previous FMU simulation for n in self.x0: self.fmu.set(n, self.x0[n]) # Initial states overriden by the user i = 0 for n in self.states: self.fmu.set(n, x0[i]) i += 1 # Simulate if not self.verbose: nullf = open(os.devnull, 'w') sys.stdout = nullf res = self.fmu.simulate(start_time=start, final_time=stop, input=inp, options=opts) if not self.verbose: sys.stdout = sys.__stdout__ nullf.close() # Update state (use only in emulation) if save_state: self.x0 = self._get_state() # Outputs t = res['time'] ydf = pd.DataFrame(index=pd.Index(t, name='time')) xdf = pd.DataFrame(index=pd.Index(t, name='time')) for n in self.outputs: ydf[n] = res[n] for n in self.states: xdf[n] = res[n] # Align time with udf # BUG: round-off errors for large numbers! is this code even needed? # ydf = ydf.loc[[i for i in t if i in udf.index]] # xdf = xdf.loc[[i for i in t if i in udf.index]] # Reset (note: won't work with E+) self.fmu.reset() return ydf, xdf if __name__ == "__main__": # DEMO: SIMULATE # ============== # Load FMU fmupath = os.path.join('resources', 'fmus', 'R2C2', 'R2C2.fmu') parameters = {'C': 1e6} model = SimFMU( fmupath, outputs=['qout', 'Tr'], states=['heatCapacitor1.T'], parameters=parameters, verbose=True) # Inputs t = np.arange(0, 86401, 3600) udf = pd.DataFrame(index=pd.Index(t, name='time'), columns=['q', 'Tout']) udf['q'] = np.full(t.size, 100) udf['Tout'] = np.full(t.size, 273.15) # Initial state x0 = [273.15 + 20] ydf, xdf = model.simulate(udf, x0) ydf.plot(subplots=True, title='ydf') xdf.plot(subplots=True, title='xdf') plt.show()
import os def pwm_dir(): """ Returns the directory of the expression dir """ return os.path.dirname(__file__)
# Program to perform breadth first traversal in a graph from collections import defaultdict, deque class Graph: def __init__(self, directed=False): self.graph = defaultdict(list) self.directed = directed def addEdge(self, frm, to): self.graph[frm].append(to) if self.directed is False: self.graph[to].append(frm) else: self.graph[to] = self.graph[to] def bfsUtil(self, s, visited): queue = deque([]) queue.append(s) visited[s] = True while queue: vertex = queue.popleft() print(vertex, end=' ') # traverse vertices adjacent to vertex for i in self.graph[vertex]: if not visited[i]: visited[i] = True queue.append(i) print() def bfs(self, s=None): visited = {i: False for i in self.graph} # do bfs from the node specified if s is not None: self.bfsUtil(s, visited) # traverse for all the vertices in other components of graph for v in self.graph: if not visited[v]: self.bfsUtil(v, visited) if __name__ == '__main__': graph = Graph() # component 1 of the graph graph.addEdge(0, 1) graph.addEdge(0, 2) graph.addEdge(1, 2) graph.addEdge(2, 3) graph.addEdge(3, 3) graph.addEdge(1, 4) graph.addEdge(1, 5) graph.addEdge(3, 6) # component 2 of the graph graph.addEdge(7, 8) graph.addEdge(8, 9) graph.addEdge(7, 10) # call bfs from 2 vertex print("Breadth First Traversal:") graph.bfs(2)
""" Kaan Altan - Resume.py Author: Kaan Altan Date: 2019-11-26 Description =========== This script is a Python version of my resume featuring a command line interface to interact with the information History ======= 2019-11-25 Initial prototype of the script Information is entered in the form of dictionaries Command line interface allows to access specific information: -i : Prints all content in the info dictionary -n : Prints "Name" value in the info dictionary -p : Prints "Phone" value in the info dictionary -e : Prints "Email" value in the info dictionary -l : Prints "Linkedin" value in the info dictionary -f : Prints all content in the features dictionary -lsf : Lists keys in the features dictionary (Feature titles) -fid : Prints specified feature when a feature title is passed in -s : Prints all content in the skills dictionary -lss : Lists keys in the skills dictionary (Skill titles) -sid : Prints specified skills when a skill title is passed in """ import argparse """Dictionary containing identifying information""" kaan_info = { "Name" : "Kaan Altan", "Phone" : "+1 (415) 707-9854", "Email" : "me@kaanaltan.com", "Linkedin" : "linkedin.com/in/kaanaltan/"} """Dictionary containing feature information""" kaan_features = { "OBJECTIVE": """Data Analyst with a mechanical engineering background; currently seeking a position in an innovative, fast-paced, growing organization to leverage my creative problem-solving skills to achieve key initiatives""", "PROFESSIONAL EXPERIENCE": """Luminex Corporation Chicago, IL Systems Engineer June 2019 – Present • Performed structured troubleshooting on multiple aspects of the Verigene II platform – including hardware, software, consumables, and reagents – to ultimately improve assay reliability • Contributed to a root-cause analysis that ultimately mitigated a prominent failure mode by 90% • Delivered production-ready Python scripts to augment the R&D organization’s ETL pipeline • Designed and published Tableau dashboards for various stakeholders in Systems R&D, Assay Development, and Manufacturing • Performed ad hoc data aggregation, cleaning, and analysis from diverse sources (flat files, relational databases, equipment logs, spreadsheets, etc.) • Developed a Python app to streamline multiple scientist and technician workflows • Served as point-of-contact for equipment and software issues • Facilitated communication between cross-functional teams with clear, concise data visualizations • Led Python educational sessions to introduce coworkers to the fundamentals of coding""", "RESEARCH": """Energy Transport Research Laboratory | British Petroleum PLC Champaign, IL Researcher, Prof. Nenad Miljkovic May 2018 - February 2019 • Performed applied research on nano-engineered superhydrophobic surfaces that substantially enhance heat exchange efficiency of two-phase systems by utilizing coalescence-induced droplet jumping phenomena • Designed, conducted and analyzed results of abrasion experiments with the principal of contact angle hysteresis to successfully quantify the durability of fabricated surfaces • Presented research results at the 2018 Materials Research Society Fall Meeting & Exhibit held between Nov 25-30, 2018 in Boston, Massachusetts""", "INTERNSHIP EXPERIENCE": """Ford Motor Company Istanbul, Turkey Vehicle Safety Intern July 2017 - August 2017 • Utilized Altair HyperWorks CAE Software Suite to run CAE models in conformity with the Euro NCAP standards on RADIOSS finite element solver for the safety analysis of the Ford Truck, Transit, Transit Custom PHEV (Plug-In Hybrid Electrical Vehicle) and Courier projects • Prepared 15 includes (CAE models that are subsets of an assembly) for assembly (editing meshing, defining material properties, environmental boundaries and assembly parameters) for the 2018 Ford Truck project • Assisted occupant safety engineers in the Ford Courier project and side impact engineers in the Ford Transit project by preparing individual parts to go into the includes • Contributed in the Ford Transit Custom PHEV project by meshing and assembling numerous parts for individual simulations""", "EDUCATION": """University of Illinois at Urbana-Champaign December 2018 Bachelor of Science in Mechanical Engineering Technical GPA (Engineering and fundamental courses): 3.0/4.0""", "AWARDS & ACCOMPLISHMENTS": """Layered Fuse, Senior Design Project August 2018 - December 2018 Littelfuse, Inc., Team Lead • Led a team of 4 mechanical engineering seniors to successfully complete an outsourced engineering project assigned by Littelfuse Inc. to design and manufacture attachment tabs for the assembly of high voltage multi-layered fuses • Structured team operations and served as a liaison between the University and Littelfuse • Contributed in the design and CAD phases of the project and took ownership of failure analysis by dynamically modeling failure modes utilizing Abaqus Mechanical Design Project Competition 1st Place May 2017 • As a team of 4 mechanical engineering students, designed and fabricated a DC powered robot that utilizes Chebyshev’s Lambda Mechanism to climb a cable for a competition held by the department of Mechanical Science and Engineering, UIUC • Contributed in the design and CAD phases of the project, simulated mechanism motion in MATLAB • Received first place award for building the fastest mechanism in the competition with 40 participant teams""", "PROFESSIONAL ORGANIZATIONS & ACTIVITIES": """American Society of Mechanical Engineers, Member April 2017 - Present Society of Automotive Engineers International, Member May 2017 - Present AKL – Alpha Kappa Lambda Fraternity September 2013 - May 2015""", } """Dictionary containing skills information""" kaan_skills = { "Languages" : ["Python", "SQL", "MATLAB", "R", "HTML/CSS"], "Tools, Frameworks & Libraries" : ["Git & Github", "Pandas", "Flask", "Regular Expressions", "Requests", "Beautiful Soup", "Tkinter", "Matplotlib", "Seaborn",], "Software" : ["Windows", "Linux", "VS Code", "Tableau",], "Engineering" : ["CAE", "CAD", "FEA", "FMEA", "G-Code", "GD&T", "Photolithography",], "Engineering Software" : ["Abaqus", "PTC Creo", "Altair HyperWorks", "Simulink", "FAMAS",], } def parse_arguments(): """Sets up and configures argparse object Parameters ========== None Returns ======= arguments Dictionary containing parsed arguments """ parser = argparse.ArgumentParser() parser._actions[0].help = """============== Kaan Altan - Resume.py ============== ==================================================== This script is a version of my resume written in Python. It provides a command line interface for interaction. You can use the following flags to display various items of my resume or simply run it without flags to display full resume. ====================================================""" parser.add_argument("-i", "--info", help = "Displays applicant information", action = "store_true",) parser.add_argument("-n", "--name", help = "Display applicant name", action = "store_true",) parser.add_argument("-p", "--phone", help = "Display applicant phone number", action = "store_true",) parser.add_argument("-e", "--email", help = "Display applicant email address", action = "store_true",) parser.add_argument("-l", "--linkedin", help = "Display applicant linkedin address", action = "store_true",) parser.add_argument("-f", "--features", help = "Display all applicant features", action = "store_true",) parser.add_argument("-fid", "--featureid", help="Pass in title of the feature you wish to view (copy & paste from feature titles)", nargs='+') parser.add_argument("-lsf", "--listFeatureTitles", help = "Display applicant feature titles", action = "store_true",) parser.add_argument("-s", "--skills", help = "Display all applicant skills", action = "store_true",) parser.add_argument("-sid", "--skillsid", help = "Pass in title of the skills you wish to view (copy & paste from skills titles)", nargs='+') parser.add_argument("-lss", "--listSkillTitles", help = "Display applicant skills titles", action = "store_true",) args = parser.parse_args() info = args.info name = args.name phone = args.phone email = args.email linkedin = args.linkedin features = args.features feature_titles = args.listFeatureTitles skills = args.skills skill_titles = args.listSkillTitles if args.featureid: feature_id = ' '.join(args.featureid) else: feature_id = None if args.skillsid: skills_id = ' '.join(args.skillsid) else: skills_id = None arguments = { "Info":info, "Name":name, "Phone":phone, "Email":email, "Linkedin":linkedin, "Features":features, "Feature_Titles":feature_titles, "Skills":skills, "Skill_Titles":skill_titles, "Feature_ID":feature_id, "Skills_ID":skills_id, } return arguments def print_resume(arguments): """Function that handles printing logic according to the flags passed into the command line Parameters ========== arguments : dictionary Dictionary containing parsed arguments Returns ======= None """ if any(arguments.values()): if arguments["Feature_Titles"]: for key in kaan_features.keys(): print(key) if arguments["Skill_Titles"]: for key in kaan_skills.keys(): print(key) if arguments["Info"]: for key in kaan_info.keys(): print(key + ' : ' + kaan_info[key]) else: for key in list(arguments.keys())[1:5]: if arguments[key]: print(key + ' : ' + kaan_info[key]) if arguments["Feature_ID"]: if arguments["Feature_ID"] in kaan_features.keys(): print(arguments["Feature_ID"] + ':\n') print(kaan_features[arguments["Feature_ID"]]) print('\n') else: print('Invalid title entered') elif arguments["Features"]: for key in kaan_features.keys(): print(key + '\n') print(kaan_features[key]) print('\n') if arguments["Skills_ID"]: if arguments["Skills_ID"] in kaan_skills.keys(): print(arguments["Skills_ID"] + ':\n') print(kaan_skills[arguments["Skills_ID"]]) print('\n') else: print('Invalid title entered') elif arguments["Skills"]: for key in kaan_skills.keys(): print(key + '\n') print(kaan_skills[key]) print('\n') else: for key in kaan_info.keys(): print(key + ' : ' + kaan_info[key]) print('\n') for key in kaan_features.keys(): print(key + '\n') print(kaan_features[key]) print('\n') for key in kaan_skills.keys(): print(key + '\n') print(kaan_skills[key]) print('\n') def main(): arguments = parse_arguments() print_resume(arguments) if __name__ == '__main__': main()
from django.conf.urls import url from . import views urlpatterns = [ url(r'^mobile_captcha/$', views.get_mobile_captcha, name="mobile_captcha") ]
"""ASCII table generator""" class ASCIITableRenderer(object): def render(self, table): total_width = 0 for col in table.cols: total_width += col.width # Header out = self._format_separator(total_width) cols_widths = [col.width for col in table.cols] out += self._format_row([col.label for col in table.cols], cols_widths) out += self._format_separator(total_width) # Body for row in table.rows: if isinstance(row, ASCIITableRowComment): out += self._format_row_comment(row.text, total_width) else: out += self._format_row( [row.dict[key] for key in table.col_keys], cols_widths ) # Footer out += self._format_separator(total_width) return out def _format_separator(self, width): return '-' * width + '\n' def _format_row_comment(self, text, width): actual_width = width-4 out = '' out += '| ' + ('-' * actual_width) + ' |\n' form_str = '| {:' + '{:d}'.format(actual_width) + '} |\n' out += form_str.format(text) out += '| ' + ('-' * actual_width) + ' |\n' return out def _format_row(self, values, widths): out = '' for i, width in enumerate(widths): actual_width = width - 3 # last column loses one more space for the trailing `|` if i == len(widths) - 1: actual_width -= 1 val = self._trunc(values[i], actual_width) form_str = '| {:' + '{:d}'.format(actual_width) + 's} ' out += form_str.format(val) out += '|\n' return out def _trunc(self, contents, width): if contents is None: return '' if len(contents) <= width: return contents return contents[:width] class ASCIITableColumn(object): def __init__(self, label, width): self.label = label self.width = width class ASCIITableRow(object): def __init__(self, dict): self.dict = dict class ASCIITableRowComment(ASCIITableRow): def __init__(self, text): ASCIITableRow.__init__(self, {}) self.text = text class ASCIITable(object): def __init__(self): # list of strings self.col_keys = [] # list of ASCIITableColumn self.cols = [] # list of ASCIITableRow self.rows = [] def add_column(self, key, col): if len(self.rows) != 0: raise StandardError( 'cannot add columns after rows have been added' ) if not isinstance(col, ASCIITableColumn): raise TypeError() self.col_keys.append(key) self.cols.append(col) def add_comment_row(self, text): row = ASCIITableRowComment(text) self.rows.append(row) def add_row(self, dict): dict_keys = dict.keys() expected_keys = self.col_keys if set(dict_keys) != set(expected_keys): self._find_missing_key(expected_keys, dict_keys) self._find_unknown_key(expected_keys, dict_keys) row = ASCIITableRow(dict) self.rows.append(row) def _find_missing_key(self, expected_keys, row_keys): for expected_key in expected_keys: if expected_key in row_keys: continue raise ValueError('key `{}` is missing'.format(expected_key)) def _find_unknown_key(self, expected_keys, row_keys): for row_key in row_keys: if row_key in expected_keys: continue raise ValueError('key `{}` is not defined'.format(row_key))
from django import forms from accounts.models import UserCred, AnnotatorProfile from django_countries.data import COUNTRIES from captcha.fields import CaptchaField class PasswordResetRequestForm(forms.Form): email_or_username = forms.CharField(label=("Enter registered email"), max_length=254) class SetPasswordForm(forms.Form): """ A form that lets a user change set their password without entering the old password """ error_messages = { 'password_mismatch': ("The two password fields didn't match."), } new_password1 = forms.CharField(label=("New password"), widget=forms.PasswordInput) new_password2 = forms.CharField(label=("New password confirmation"), widget=forms.PasswordInput) def clean_new_password2(self): password1 = self.cleaned_data.get('new_password1') password2 = self.cleaned_data.get('new_password2') if password1 and password2: if password1 != password2: raise forms.ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', ) return password2 class AccountRetrieveForm(forms.Form): """ Form for sending known information about account upon lost credentials. """ contact_email = forms.EmailField(widget=forms.widgets.TextInput(), label="Contact email", required=True) nickname = forms.CharField( widget=forms.widgets.TextInput(), label="Annotator pseudonym", required=False) first_name = forms.CharField( widget=forms.widgets.TextInput(), label="First name", required=False) last_name = forms.CharField( widget=forms.widgets.TextInput(), label="Last name", required=True) username = forms.EmailField(widget=forms.widgets.TextInput(), label="Registered email", required=False) job_title = forms.CharField( widget=forms.widgets.TextInput(), label="Job title", required=False) organization = forms.CharField( widget=forms.widgets.TextInput(), label="Organization", required=False) captcha = CaptchaField() def clean(self): """ Verifies that the values entered into the password fields match NOTE: Errors here will appear in ``non_field_errors()`` because it applies to more than one field. """ cleaned_data = super(AccountRetrieveForm, self).clean() return self.cleaned_data
def add_letters(*letters): return chr( (sum(ord(c)-96 for c in letters)-1)%26 + 97)
import os from pymongo import MongoClient from random import randint from pprint import pprint from models import Users, Roles import testdata #Step 2: Connect to MongoDB - Note: Change connection string as needed client = MongoClient( os.environ['DB_PORT_27017_TCP_ADDR'], 27017) # Issue the serverStatus command and print the results db = client.tododb def add_users(): for user in Users().generate(10): # let say we only want 10 users db.users.insert_one(user) print(user) print('finished creating users') def add_roles(): for role in Roles().generate(4): # let say we only want 4 roles db.roles.insert_one(role) print(role) print('finished creating roles') if __name__ == '__main__': add_users() add_roles()
# -*- coding: utf-8 -*- import unittest import time from pprint import pprint from flask.json import loads as json_load from flask.json import dumps as json_dump try: from .test_resource_base import ActiniaResourceTestCaseBase, URL_PREFIX except: from test_resource_base import ActiniaResourceTestCaseBase, URL_PREFIX __license__ = "GPLv3" __author__ = "Sören Gebbert" __copyright__ = "Copyright 2016, Sören Gebbert" __maintainer__ = "Soeren Gebbert" __email__ = "soerengebbert@googlemail.com" JSON = { "type": "FeatureCollection", "crs": {"type": "name", "properties": {"name": "urn:ogc:def:crs:EPSG::3358"}}, "features": [ {"type": "Feature", "properties": {"fid": "swwake_10m.0"}, "geometry": {"type": "Polygon", "coordinates": [ [[630000.0, 215000.0], [630000.0, 228500.0], [645000.0, 228500.0], [645000.0, 215000.0], [630000.0, 215000.0]]]}} ] } class RasterAreaStatsTestCase(ActiniaResourceTestCaseBase): def test_async_raster_area_stats_json(self): rv = self.server.post(URL_PREFIX + '/locations/nc_spm_08/mapsets/PERMANENT/raster_layers/landuse96_28m/' 'area_stats_async', headers=self.admin_auth_header, data=json_dump(JSON), content_type="application/json") rv = self.waitAsyncStatusAssertHTTP(rv, headers=self.admin_auth_header) self.assertEqual(len(rv["process_results"]), 16) time.sleep(1) def test_sync_raster_area_stats_1(self): rv = self.server.post(URL_PREFIX + '/locations/nc_spm_08/mapsets/PERMANENT/raster_layers/landuse96_28m/' 'area_stats_sync', headers=self.admin_auth_header, data=json_dump(JSON), content_type="application/json") pprint(json_load(rv.data)) self.assertEqual(rv.status_code, 200, "HTML status code is wrong %i" % rv.status_code) self.assertEqual(rv.mimetype, "application/json", "Wrong mimetype %s" % rv.mimetype) value_list = json_load(rv.data)["process_results"] self.assertEqual(len(value_list), 16) def test_sync_raster_area_stats_2(self): rv = self.server.post(URL_PREFIX + '/locations/nc_spm_08/mapsets/PERMANENT/raster_layers/towns/' 'area_stats_sync', headers=self.admin_auth_header, data=json_dump(JSON), content_type="application/json") pprint(json_load(rv.data)) self.assertEqual(rv.status_code, 200, "HTML status code is wrong %i" % rv.status_code) self.assertEqual(rv.mimetype, "application/json", "Wrong mimetype %s" % rv.mimetype) value_list = json_load(rv.data)["process_results"] self.assertEqual(len(value_list), 6) #################### ERRORS ############################################### def test_sync_raster_area_stats_error_wrong_content_type(self): rv = self.server.post(URL_PREFIX + '/locations/nc_spm_08/mapsets/PERMANENT/raster_layers/towns/' 'area_stats_sync', headers=self.admin_auth_header, data="{}", content_type="application/json") pprint(json_load(rv.data)) self.assertEqual(rv.status_code, 400, "HTML status code is wrong %i" % rv.status_code) self.assertEqual(rv.mimetype, "application/json", "Wrong mimetype %s" % rv.mimetype) def test_sync_raster_area_stats_error_wrong_request_missing_json(self): rv = self.server.post(URL_PREFIX + '/locations/nc_spm_08/mapsets/PERMANENT/raster_layers/towns/' 'area_stats_sync', headers=self.admin_auth_header, data=None, content_type="application/json") pprint(json_load(rv.data)) self.assertEqual(rv.status_code, 400, "HTML status code is wrong %i" % rv.status_code) self.assertEqual(rv.mimetype, "application/json", "Wrong mimetype %s" % rv.mimetype) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- from odoo import api, fields, models, tools, _ class Company(models.Model): _inherit = "res.company" # material_agentid = fields.Char("Material Agent Id", default="0000000",) # material_secret = fields.Char( # "Material Secret", default="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", # ) # 素材库 material_app_id = fields.Many2one( "wecom.apps", string="Material Application", # required=True, # default=lambda self: self.env.company, # domain="[('company_id', '=', current_company_id)]", domain="[('company_id', '=', current_company_id)]", )