content
stringlengths
5
1.05M
import tushare as ts import csv import time import pandas as pd pro = ts.pro_api('1dbda79ce58d052196b7ddec1663d53e4ea20571195a1a6055aab0c7') stock_basic = pro.stock_basic(list_status='L', fields='ts_code, symbol, name, industry') # 重命名行,便于后面导入neo4j basic_rename = {'ts_code': 'TS代码', 'symbol': '股票代码', 'name': '股票名称', 'industry': '行业'} stock_basic.rename(columns=basic_rename, inplace=True) # 保存为stock.csv stock_basic.to_csv('stock.csv', encoding='gbk') # 获取top10_holders holders = pd.DataFrame(columns=('ts_code', 'ann_date', 'end_date', 'holder_name', 'hold_amount', 'hold_ratio')) # 获取一年内所有上市股票股东信息(可以获取一个报告期的) for i in range(3610): code = stock_basic['TS代码'].values[i] top10_holders = pro.top10_holders(ts_code=code, start_date='20180101', end_date='20181231') holders = holders.append(top10_holders) time.sleep(0.3)# 数据接口限制 # 保存为holders.csv holders.to_csv('holders.csv', encoding='gbk') # 获取concept,并查看概念分类数量 concept = pro.concept() concept.to_csv('concept_num.csv', encoding='gbk') # 获取concept_detail concept_details = pd.DataFrame(columns=('id', 'concept_name', 'ts_code', 'name')) for i in range(358): id = 'TS' + str(i) concept_detail = pro.concept_detail(id=id) concept_details = concept_details.append(concept_detail) time.sleep(0.3) # 保存为concept_detail.csv concept_details.to_csv('concept.csv', encoding='gbk')
class DinnerPlates: def __init__(self, capacity: int): self.capacity = capacity self.stack = [] def push(self, val: int) -> None: if len(self.stack[-1]) < self.capacity: self.stack[-1].append(val) else: self.stack.append([val]) def pop(self) -> int: self.popAtStack(-1) def popAtStack(self, index: int) -> int: res = self.stack[index].pop() if len(self.stack[index]) == 0: self.stack.pop(index) return res ''' [[373, 86], [395, 306], [370], [41, 17], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41, 17], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269, 231], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35, 346]] [[373, 86], [395, 306], [41], [387], [66], [27], [252, 6], [269], [35]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1, 250], [19]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1, 250]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134], [1]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331, 134]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338], [331]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365, 338]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33], [365]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403, 33]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11], [403]] [[373, 86], [395, 474], [41, 216], [387, 256], [66, 196], [27, 332], [252, 6], [269, 43], [35, 75], [22, 273], [101, 11]] '''
from __future__ import annotations from typing import Literal from prettyqt import core from prettyqt.qt import QtCore from prettyqt.utils import InvalidParamError, bidict NAME_TYPE = bidict( default=QtCore.QTimeZone.NameType.DefaultName, long=QtCore.QTimeZone.NameType.LongName, short=QtCore.QTimeZone.NameType.ShortName, offset=QtCore.QTimeZone.NameType.OffsetName, ) NameTypeStr = Literal["default", "long", "short", "offset"] TIME_TYPE = bidict( standard=QtCore.QTimeZone.TimeType.StandardTime, daylight=QtCore.QTimeZone.TimeType.DaylightTime, generic=QtCore.QTimeZone.TimeType.GenericTime, ) TimeTypeStr = Literal["standard", "daylight", "generic"] class TimeZone(QtCore.QTimeZone): def __init__(self, *args): if len(args) == 1 and isinstance(args[0], str): super().__init__(QtCore.QByteArray(args[0].encode())) else: super().__init__(*args) def __repr__(self): return f"{type(self).__name__}({self.get_id()!r})" def __str__(self): return self.get_id() def __reduce__(self): return type(self), (self.get_id(),) def get_id(self) -> str: return bytes(self.id()).decode() def get_display_name( self, datetime: QtCore.QDateTime | TimeTypeStr, name_type: NameTypeStr = "default", locale: core.Locale | None = None, ) -> str: if isinstance(datetime, str): if datetime not in TIME_TYPE: raise InvalidParamError(datetime, TIME_TYPE) datetime = TIME_TYPE[datetime] if name_type not in NAME_TYPE: raise InvalidParamError(name_type, NAME_TYPE) if locale is None: locale = core.Locale() return self.displayName(datetime, NAME_TYPE[name_type], locale) # def get_value(self) -> datetime.datetime: # try: # return self.toPython() # except TypeError: # return self.toPyTimeZone() if __name__ == "__main__": date = core.TimeZone(2000, 11, 11) dt = TimeZone(date)
import json from channels.generic.websocket import WebsocketConsumer class ChatConsumer(WebsocketConsumer): def connect(self): self.accept() def disconnect(self, close_code): pass def receive(self, text_data): text_data_json = json.loads(text_data) message = text_data_json['message'] self.send(text_data=json.dumps({ 'message': message }))
from copy import deepcopy class SimpleAgent: def getAction(self, gameState): gameState._getValidWords() return gameState.validWords, len(gameState.validWords) class HeuristicAgent: def getAction(self, gameState): gameState._getValidWords() if len(gameState.validWords)==1: return gameState.validWords, 1 maxWords = [] maxOptions = 0 for word in gameState.validWords: tempGameState = deepcopy(gameState) nextGameState = tempGameState.step(word) if nextGameState.finished: continue optionsCount = len(nextGameState.validWords) # print(f"Potential Max Word: {word} ({optionsCount})") if optionsCount > maxOptions: maxOptions = optionsCount maxWords = [word] elif optionsCount == maxOptions: maxWords.append(word) return maxWords, maxOptions
from .property import Property from .namedelement import NamedElement from .renderer import Renderer class Method(NamedElement, Renderer): def __init__(self, **kwargs): self.parameters = \ [Property(**p) for p in kwargs.pop('parameters', [])] self.returns = \ [Property(**r) for r in kwargs.pop('returns', [])] self.flags = kwargs.pop('flags', []) self.cpp_flags = self.or_cpp_flags(self.flags) self.errors = kwargs.pop('errors', []) super(Method, self).__init__(**kwargs) def markdown(self, loader): return self.render(loader, "method.md.mako", method=self) def cpp_prototype(self, loader, interface, ptype): return self.render(loader, "method.prototype.hpp.mako", method=self, interface=interface, ptype=ptype, post=str.rstrip) def or_cpp_flags(self, flags): """Return the corresponding ORed cpp flags.""" flags_dict = {"deprecated": "vtable::common_::deprecated", "hidden": "vtable::common_::hidden", "unprivileged": "vtable::common_::unprivileged", "no_reply": "vtable::method_::no_reply"} cpp_flags = [] for flag in flags: try: cpp_flags.append(flags_dict[flag]) except KeyError: raise ValueError("Invalid flag \"{}\"".format(flag)) return " | ".join(cpp_flags)
#importing our libraries that we will be using for emotion detection from operator import index from textwrap import fill from tkinter import Label, Tk import numpy as np import cv2 import keras from tkinter import * import pandas as pd import webbrowser win = Tk() #main application window win.geometry('600x500') win.title("Emotional Recommender") label = Label(win,text="Welcome To Emotional Recommender",font=50,relief = RAISED,bg = 'red').pack(fill=X,padx=15,pady=30) user_label = Label(win,text="Here's How this application works: \n 1) Click on Capture button to Open up your camera. \n 2) The Model will detect your emotions, \n you can exit the camera window by clicking 'q' on your keyboard. \n 3) The Result will be displayed in the window",font=50,relief = RAISED,bg = 'red').pack(fill=X,padx=15,pady=30) win.iconbitmap(r'Face-Emotions-Recognition\Emotion-recognition-with-GUI\\images\\Icons8-Ios7-Logos-Google-Drive-Copyrighted.ico') #giving the window an icon new = 1 cap = cv2.VideoCapture(0) #used for capturing the video using the webcam model_path = 'Face-Emotions-Recognition\Emotion-recognition-with-GUI\model_optimal.h5' #path of our model model = keras.models.load_model(model_path) #loading our model that we will use to make predictions of emotions emotion_dict = {0:'Angry',1:'Disgust',2:'Fear',3:'Happy',4:'Neutral',5:'Sad',6:'Surprise'} #dictionary containing different values def videocapture(): while True: #continuous loop to keep the window running isTrue,frame = cap.read() #reading our frames from the capture facecascade = cv2.CascadeClassifier('Face-Emotions-Recognition\Emotion-recognition-with-GUI\haarcascade_frontalface_default.xml') #using the cascade classifier for face detection gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #converting whatever we are reading into gray faces = facecascade.detectMultiScale(gray,scaleFactor=1.3, minNeighbors=5) #this helps in finding features and location in our images - we are passing in our grayscale input, we are scaling down the image which is done with scaleFactor # min neighbors helps in determining the quality of detection for (x, y, w, h) in faces: #drawing rectangles on the faces detected and also adding text cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2) #used to draw our rectangle, we are specifying the start and end point and also color and width of our rectangle roi_gray = gray[y:y + h, x:x + w] #ROI - Region of interest, in this we are trying to select the rows starting from y to y+h and then columns from x to x+h - this works like NumPy slicing cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray, (48, 48)), -1), 0) #resizing the inputs in order to get them in the same shape as the images on which our images were trained prediction = model.predict(cropped_img) #making predictions on the face detected maxindex = int(np.argmax(prediction)) #getting the maximum index out of all the predicted indices cv2.putText(frame, emotion_dict[maxindex], (x+20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) #printing the emotion label corresponding to the output index from our emotio dictionary cv2.imshow('Video', cv2.resize(frame,(700,500),interpolation = cv2.INTER_CUBIC)) #creating our video window in which we will be detecting emotions if cv2.waitKey(1) & 0xFF == ord('q'): #we will have to press q if we wish to exit our window break var = emotion_dict[maxindex] label1 = Label(win,text="Emotion Detected " + " ==> "+ var,font=50,relief=RAISED,bg = 'red').pack(fill=X,padx=15,pady=30) cap.release() #this will release the hardware and software resources that are being used cv2.destroyAllWindows() #destroys the window that we created for emotion detection Button(win,text="Capture",command = videocapture,relief=RAISED,width=15,font=10,bg = 'black',fg = 'green').pack(pady=20) Button(win,text="Exit Application",command = win.destroy,relief=RAISED,width=15,font=10).pack(pady=5) win.mainloop()
print("Hello World") name = input("Hello, what is your name? ") age = input("How old are you? ") lunch = input("What do you want for lunch? ") print("\n\n\n") print(f"Hello {name}, your lunch order of {lunch} is here.") print(f"You are tall for an {age} year old")
import tensorflow as tf from match.layers.activation import Dice, activation_layer from match.layers.core import PredictionLayer, Similarity, DNN from match.layers.sequence import SequencePoolingLayer, WeightedSequenceLayer from match.layers.utils import (NoMask, Hash, concat_func, reduce_mean, reduce_sum, reduce_max, div, softmax, combined_dnn_input) custom_objects = {'tf': tf, 'Dice':Dice, 'activation_layer':activation_layer, 'PredictionLayer': PredictionLayer, 'Similarity': Similarity, 'DNN':DNN, 'SequencePoolingLayer': SequencePoolingLayer, 'WeightedSequenceLayer': WeightedSequenceLayer, 'NoMask': NoMask, 'Hash': Hash, 'concat_func': concat_func, 'reduce_mean': reduce_mean, 'reduce_sum': reduce_sum, 'reduce_max': reduce_max, 'div': div, 'softmax': softmax, 'combined_dnn_input':combined_dnn_input }
from django.db import models from datetime import date import datetime from django.utils import timezone from django.contrib.auth.models import User ITEM_CATEGORIA = ( ('C','Conferencia'), ('S','Seminario'), ('Co','Congreso'), ('Cu','Curso'), ) ITEM_TIPO=(('V','Virtual'),('P','Presencial')) class Evento(models.Model): e_nombre = models.CharField(max_length=200) e_categoria=models.CharField(choices=ITEM_CATEGORIA,max_length=1) e_lugar= models.CharField(max_length=200) e_direccion=models.CharField(max_length=200) e_fechaIni =models.DateField(default=date.today) e_fechaFin=models.DateTimeField(auto_now=False) e_tipo=models.CharField(choices=ITEM_TIPO,max_length=1) def __str__(self): return self.e_nombre
import os import asyncio import asyncio.subprocess as aiosp import locale import yaml import json import io from threading import Thread import websockets HOSTNAME = 'localhost' WSS_PORT = 8765 HTTP_PORT = 8888 ASM_DIR = 'champs' STDIN_F_NAME = 'stdin.txt' COREWAR_EXE = "cmake-build-debug/corewar_vm" # COREWAR_EXE = "corewar" def append_file(data): with open(STDIN_F_NAME, 'at') as f: f.write(data) def yaml_to_json(msg): try: return json.dumps(yaml.safe_load(io.StringIO(msg))) except Exception: print(f"can't encode:`\n{msg}`") raise class VM: def __init__(self, cors): self.p = None self.cors = cors async def stop(self): if self.p.returncode is None: self.p.terminate() print(f"proc killed") ret = await self.p.wait() print(f"proc finished; ret = {ret}") async def __aiter__(self): print("starting", ", ".join(self.cors)) self.p = await aiosp.create_subprocess_exec( COREWAR_EXE, "-i", *(f"{ASM_DIR}/{cor}" for cor in self.cors), stdin=aiosp.PIPE, stdout=aiosp.PIPE) print(f"pid: {self.p.pid}") encoding = locale.getpreferredencoding(False) msg = "" while True: line = await self.p.stdout.readline() if not line and self.p.returncode is not None: break if isinstance(line, bytes): line = line.decode(encoding=encoding) if not line.strip(): if not msg: await asyncio.sleep(.1) continue yield yaml_to_json(msg) msg = "" else: msg += line yield json.dumps({"type": "end"}) async def on_message(vm, msg): print(f"got message: {msg}") if msg['type'] == "step": l = f"{msg.get('steps', 1)}\n" elif msg['type'] == "run_until_end": l = "999999\n" else: print(f"ERROR: unknwon command {msg['type']}") return append_file(l) vm.p.stdin.write(l.encode()) await vm.p.stdin.drain() async def consumer_handler(ws: websockets.WebSocketServerProtocol, vm): print("*start consuming*") try: async for message in ws: try: msg = json.loads(message) except: print("message:", message) else: await on_message(vm, msg) except websockets.ConnectionClosed as e: print(f"conn closed, code: {e.code}, reason: {e.reason}") else: print("*CONSUMING SOUNDS STOP*") finally: await vm.stop() async def producer_handler(ws: websockets.WebSocketServerProtocol, vm): i = 0 async for message in vm: print(f"send `{message}`") await ws.send(message) i += 1 async def handler(ws: websockets.WebSocketServerProtocol, path): cors = path.strip('/').split(';') vm = VM(cors) consumer_task = asyncio.ensure_future(consumer_handler(ws, vm)) producer_task = asyncio.ensure_future(producer_handler(ws, vm)) done, pending = await asyncio.wait( [consumer_task, producer_task], return_when=asyncio.FIRST_COMPLETED, ) for task in pending: task.cancel() for task in done: try: await task except websockets.ConnectionClosedOK: print("client disconnected") def wss_server(): ws_address = f"wss://{HOSTNAME}:{WSS_PORT}/WebSocket" loop = asyncio.new_event_loop() asyncio.get_child_watcher()._loop = loop start_server = websockets.serve(handler, "localhost", WSS_PORT, loop=loop) loop.run_until_complete(start_server) loop.run_forever() if __name__ == '__main__': Thread(name='wss', target=wss_server, daemon=True).start() from flask import Flask, Response from werkzeug.exceptions import NotFound app = Flask("corewar") def serve_file(*path): print('get', path) f_name = os.path.join('vis', *path) if not os.path.exists(f_name): raise NotFound() with open(f_name) as f: return f.read() @app.route('/champions') def hello_world(): response = Response(json.dumps([f for f in os.listdir(ASM_DIR) if os.path.isfile(os.path.join(ASM_DIR, f)) and f.endswith('.cor')])) header = response.headers header['Access-Control-Allow-Origin'] = '*' return response @app.route('/<string:path>') def static_file(path): return serve_file(path) @app.route('/js/<string:path>') def static_js(path): return serve_file('js', path) @app.route('/') def index(): return serve_file('index.html') app.run(port=HTTP_PORT)
import codecs import os import re import setuptools here = os.path.abspath(os.path.dirname(__file__)) def read(*parts): # intentionally *not* adding an encoding option to open return codecs.open(os.path.join(here, *parts), 'r').read() def find_meta(*meta_file_parts, meta_key): """ Extract __*meta*__ from meta_file """ meta_file = read(*meta_file_parts) meta_match = re.search(r"^__{}__ = ['\"]([^'\"]*)['\"]".format(meta_key), meta_file, re.M) if meta_match: return meta_match.group(1) raise RuntimeError("Unable to find __{}__ string.".format(meta_key)) def read_requirements(*parts): """ Given a requirements.txt (or similar style file), returns a list of requirements. Assumes anything after a single '#' on a line is a comment, and ignores empty lines. """ requirements = [] for line in read(*parts).splitlines(): new_line = re.sub('(\s*)?#.*$', # the space immediately before the # hash mark, the hash mark, and # anything that follows it '', # replace with a blank string line) if new_line: # i.e. we have a non-zero-length string requirements.append(new_line) return requirements ############################################################################## # PACKAGE METADATA # ############################################################################## META_PATH = ['minchin', 'scripts', 'photosorter', '__init__.py'] NAME = find_meta(*META_PATH, meta_key='title').lower() VERSION = find_meta(*META_PATH, meta_key='version') SHORT_DESC = find_meta(*META_PATH, meta_key='description') LONG_DESC = read('README.rst') AUTHOR = find_meta(*META_PATH, meta_key='author') AUTHOR_EMAIL = find_meta(*META_PATH, meta_key='email') URL = find_meta(*META_PATH, meta_key='url') LICENSE = find_meta(*META_PATH, meta_key='license') PACKAGES = setuptools.find_packages() # pull from requirements.IN, requirements.TXT is generated from this INSTALL_REQUIRES = read_requirements('requirements.in') DEV_REQUIRES = read_requirements('dev-requirements.in') EXTRA_REQUIRES = { 'build': DEV_REQUIRES, 'docs': [ # 'sphinx >= 1.4', # theme requires at least 1.4 # 'cloud_sptheme >=1.8', # 'releases', # 'Babel >=1.3,!=2.0', # 2.0 breaks on Windows ], 'test': [ # 'green >=1.9.4', # v2 works # 'coverage', # 'isort', # 'pydocstyle', # 'pycodestyle', # 'check-manifest' ], } # full list of Classifiers at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ # having an unknown classifier should keep PyPI from accepting the # package as an upload # 'Private :: Do Not Upload', # 'Development Status :: 1 - Planning', # 'Development Status :: 2 - Pre-Alpha', # 'Development Status :: 3 - Alpha', 'Development Status :: 4 - Beta', # 'Development Status :: 5 - Production/Stable', # 'Development Status :: 6 - Mature', # 'Development Status :: 7 - Inactive', # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.6', # 'Programming Language :: Python :: 2.7', # 'Programming Language :: Python :: 2 :: Only', 'Programming Language :: Python :: 3', # 'Programming Language :: Python :: 3.2', # 'Programming Language :: Python :: 3.3', # 'Programming Language :: Python :: 3.4', # 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', # 'Programming Language :: Python :: 3 :: Only', 'Natural Language :: English', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries :: Python Modules', ] ############################################################################## if LICENSE in ['MIT License']: CLASSIFIERS += ['License :: OSI Approved :: {}'.format(LICENSE)] # add 'all' key to EXTRA_REQUIRES all_requires = [] for k, v in EXTRA_REQUIRES.items(): all_requires.extend(v) EXTRA_REQUIRES['all'] = all_requires setuptools.setup( name=NAME, version=VERSION, url=URL, license=LICENSE, author=AUTHOR, author_email=AUTHOR_EMAIL, description=SHORT_DESC, long_description=LONG_DESC, packages=PACKAGES, package_data={'': ['README.rst', # 'changelog.rst', 'LICENSE.txt']}, include_package_data=True, install_requires=INSTALL_REQUIRES, extras_require=EXTRA_REQUIRES, platforms='any', classifiers=CLASSIFIERS, namespace_packages=['minchin', 'minchin.scripts', ], entry_points={ 'console_scripts': [ 'photosorter = minchin.scripts.photosorter:main', ], }, )
from .template_generator import TemplateGenerator
import pytest import requests from uuid import uuid4 from datetime import date, timedelta from json import JSONDecodeError from backend.tests.factories import OrderFactory, ProductFactory, OrderProductFactory from backend.util.response.user_orders import UserOrdersSchema from backend.util.response.error import ErrorSchema from backend.util.slug import uuid_to_slug @pytest.fixture(scope="function", autouse=True) def factory_session(db_perm_session): OrderFactory._meta.sqlalchemy_session = db_perm_session ProductFactory._meta.sqlalchemy_session = db_perm_session OrderProductFactory._meta.sqlalchemy_session = db_perm_session def test_select_by_user_controller(domain_url, db_perm_session, token_session, prod_list): user_slug = uuid_to_slug(uuid4()) prod_id_list = [p.meta["id"] for p in prod_list] product_list = [ProductFactory.create(es_id=es_id) for es_id in prod_id_list] db_perm_session.commit() obj_list = OrderFactory.create_batch(2, user_slug=user_slug) for product in product_list: OrderProductFactory.create(order=obj_list[0], product=product, amount=2) for product in product_list[0:3]: OrderProductFactory.create(order=obj_list[1], product=product, amount=5) db_perm_session.commit() response = token_session.post( domain_url + "/api/order/user/%s" % user_slug ) data = response.json() UserOrdersSchema().load(data) assert response.status_code == 200 assert len(data["orders"]) == 2 assert data["total"] == 2 assert data["pages"] == 1 order_slug_list = [order["slug"] for order in data["orders"]] for slug in order_slug_list: assert slug in [obj.uuid_slug for obj in obj_list] for order in data["orders"]: if order["slug"] == obj_list[0].uuid_slug: assert order["product_types"] == 5 assert order["items_amount"] == 10 else: assert order["product_types"] == 3 assert order["items_amount"] == 15 response = token_session.post( domain_url + "/api/order/user/%s" % user_slug, json={ "page": "1", "page_size": "1" } ) data = response.json() UserOrdersSchema().load(data) assert response.status_code == 200 assert len(data["orders"]) == 1 assert data["total"] == 2 assert data["pages"] == 2 response = token_session.post( domain_url + "/api/order/user/%s" % user_slug, json={ "datespan": { "start": str(date.today() - timedelta(days=1)), "end": str(date.today() + timedelta(days=1)) } } ) data = response.json() UserOrdersSchema().load(data) assert response.status_code == 200 assert len(data["orders"]) == 2 assert data["total"] == 2 assert data["pages"] == 1 response = token_session.post( domain_url + "/api/order/user/WILLrogerPEREIRAslugBR" ) with pytest.raises(JSONDecodeError): response.json() assert response.status_code == 204 def test_select_by_user_controller_not_registered(domain_url, db_perm_session, token_session): user_slug = uuid_to_slug(uuid4()) bad_obj_list = OrderFactory.create_batch(4, user_slug=user_slug) bad_product = ProductFactory.create() for order in bad_obj_list: OrderProductFactory.create(order=order, product=bad_product, amount=5) db_perm_session.commit() response = token_session.post( domain_url + "/api/order/user/%s" % user_slug ) data = response.json() ErrorSchema().load(data) assert response.status_code == 400 assert data["error"].find("not registered") != -1 def test_select_by_user_controller_unauthorized(domain_url): response = requests.post( domain_url + "/api/order/user/WILLrogerPEREIRAslugBR", ) data = response.json() ErrorSchema().load(data) assert response.status_code == 401
import toml import numpy from utils import retry, accounts, firstProducer, numProducers, intToCurrency config = toml.load('./config.toml') def allocateFunds(b, e): dist = numpy.random.pareto(1.161, e - b).tolist() # 1.161 = 80/20 rule dist.sort() dist.reverse() factor = 2_000_000 / sum(dist) total = 0 for i in range(b, e): funds = round(factor * dist[i - b] * 10000) if i >= firstProducer and i < firstProducer + numProducers: funds = max(funds, round(config['funds']['min_producer_funds'] * 10000)) total += funds accounts[i]['funds'] = funds return total def createStakedAccounts(b, e): ramFunds = round(config['funds']['ram_funds'] * 10000) configuredMinStake = round(config['funds']['min_stake'] * 10000) maxUnstaked = round(config['funds']['max_unstaked'] * 10000) for i in range(b, e): a = accounts[i] funds = a['funds'] print('#' * 80) print('# %d/%d %s %s' % (i, e, a['name'], intToCurrency(funds))) print('#' * 80) if funds < ramFunds: print('skipping %s: not enough funds to cover ram' % a['name']) continue minStake = min(funds - ramFunds, configuredMinStake) unstaked = min(funds - ramFunds - minStake, maxUnstaked) stake = funds - ramFunds - unstaked stakeNet = round(stake / 2) stakeCpu = stake - stakeNet print('%s: total funds=%s, ram=%s, net=%s, cpu=%s, unstaked=%s' % (a['name'], intToCurrency(a['funds']), intToCurrency(ramFunds), intToCurrency(stakeNet), intToCurrency(stakeCpu), intToCurrency(unstaked))) assert(funds == ramFunds + stakeNet + stakeCpu + unstaked) retry(config['cleos']['path'] + 'system newaccount --transfer airdrops %s %s --stake-net "%s" --stake-cpu "%s" --buy-ram "%s" ' % (a['name'], a['pub'], intToCurrency(stakeNet), intToCurrency(stakeCpu), intToCurrency(ramFunds))) if unstaked: retry(config['cleos']['path'] + 'transfer airdrops %s "%s"' % (a['name'], intToCurrency(unstaked))) if __name__ == '__main__': allocateFunds(0, len(accounts)) createStakedAccounts(0, len(accounts))
#!/usr/bin/env python ''' These objects and functions are part of a larger poker assistant project. Content of this script enable the user to simulate game of Texas Holdem Poker. ''' __author__ = 'François-Guillaume Fernandez' __license__ = 'MIT License' __version__ = '0.1' __maintainer__ = 'François-Guillaume Fernandez' __status__ = 'Development' import numpy as np def get_card_value(idx): return [2, 3, 4, 5, 6, 7, 8, 9, 10, 'J', 'Q', 'K', 'A'][idx] class Card: def __init__(self, suit, value): self.suit = suit # Diamonds, Clubs, Hearts, Spades self.value = value # 1 -> 13 def get_value(self): return get_card_value(self.value) def get_name(self): return '%s %s' % (self.get_value(), self.suit) def get_hand_value(cards): # Order the cards cards_values = [card.value for card in cards] sorted_idx = np.argsort(cards_values)[::-1] ordered_cards = np.array(cards)[sorted_idx] cards_values = [card.value for card in ordered_cards] cards_suits = [card.suit for card in ordered_cards] nb_cards = len(cards) # Get the occurrences from collections import Counter suit_count = Counter(cards_suits) value_count = Counter(cards_values) hand = {'royal flush': None, 'straight flush': None, 'fours': [], 'full house': None, 'flush': [], 'straight': [], 'threes': [], 'double pairs': [], 'pairs': [], 'high': cards_values[0]} # Check for straight & flush if nb_cards >= 5: # Check for flush for suit, count in suit_count.items(): if count >= 5: hand['flush'] = [idx for idx, c_suit in enumerate(cards_suits) if c_suit == suit] hand['flush'] = suit break # Check for straight if len(value_count.keys()) >= 5: flow = 1 prev_val = cards_values[0] tmp_values = cards_values # Ace case for straights if prev_val == 12: tmp_values.append(-1) for idx, val in enumerate(tmp_values): diff = prev_val - val if diff > 0: if diff == 1: flow = flow + 1 else: if idx > len(tmp_values) - 5: break flow = 1 if flow >= 5: hand['straight'].append(val + 4) break prev_val = val if len(hand['straight']) > 0 and len(hand['flush']) > 0: # Straight flush flush_suit = cards_suits[hand['flush'][0]] for high in hand['straight']: # Check if each card is in the flush if all(card_idx in hand['flush'] for card_idx, card_value in enumerate(cards_values) if card_value in range(high - 4, high + 1)): hand['straight flush'] = (high, flush_suit) # Royal flush if hand['straight flush'] is not None and hand['straight flush'][0] == 12: hand['royal flush'] = hand['straight flush'][1] # Check for fours, threes, pairs for val, count in value_count.items(): if count == 4: hand['fours'].append(val) elif count == 3: hand['threes'].append(val) elif count == 2: hand['pairs'].append(val) # Double pairs if len(hand['pairs']) >= 2: hand['double pairs'] = hand['pairs'][:2] # Full House if len(hand['threes']) > 0 and len(hand['pairs']) > 0: hand['full house'] = (hand['threes'][0], hand['pairs'][0]) return hand def get_winners(hands): winner_idxs = [] for hand_type in ['royal flush', 'straight flush', 'fours', 'full house', 'flush', 'straight', 'threes', 'double pairs', 'pairs', 'high']: selection = [] # Short-list hands with current hand type for hand_idx, hand in enumerate(hands): if isinstance(hand.get(hand_type), list) and len(hand.get(hand_type)) > 0: selection.append(hand_idx) # print('Checking %s: selection %s' % (hand_type, selection)) if len(selection) > 0: if len(selection) == 1: winner_idxs = selection else: if hand_type == 'royal flush': winner_idxs = selection elif hand_type == 'straight flush': flush_high = np.max([hands[idx][hand_type][0] for idx in selection]) winner_idxs = [idx for idx in selection if hands[idx][hand_type][0] == flush_high] # Case where you need to compare 2 args potentially elif hand_type in ['full house', 'double pairs']: shortlist = selection[np.argmax([hands[idx][hand_type][0] for idx in selection])] if isinstance(shortlist, int) or len(shortlist) == 1: winner_idxs = shortlist else: winner_idxs = shortlist[np.argmax([hands[idx][hand_type][1] for idx in shortlist])] # All other hand types are comparable with the high card in the hand type else: winner_idxs = selection[np.argmax([hands[idx][hand_type][0] for idx in selection])] break return winner_idxs class Deck: cards = [] def __init__(self): for suit in ['Diamonds', 'Clubs', 'Hearts', 'Spades']: for value in range(0, 13): self.cards.append(Card(suit, value)) def drow_card(self): import random idx = random.randint(0, len(self.cards) - 1) card = self.cards[idx] del self.cards[idx] return card def drow_cards(self, nb_cards): cards = [] for c in range(nb_cards): cards.append(self.drow_card()) return cards class Player: cards = [] def __init__(self): self.cash = 1000 def deal_cards(self, cards): self.cards = cards def get_cards(self): return self.cards class Game: def __init__(self, players): self.deck = Deck() self.players = players self.community_cards = [] def deal(self): print('Dealing cards to players...') for p in self.players: p.cards = self.deck.drow_cards(2) def get_com_cards(self): return [card.get_name() for card in self.community_cards] def hit(self): if len(self.community_cards) == 0: self.community_cards = self.deck.drow_cards(3) print('Flop:', self.get_com_cards()) elif len(self.community_cards) == 3: self.community_cards.append(self.deck.drow_card()) print('Turn:', self.get_com_cards()) elif len(self.community_cards) == 4: self.community_cards.append(self.deck.drow_card()) print('River:', self.get_com_cards()) else: raise ValueError('All community cards are already drown') def get_player_cards(self, idx): return [card.get_name() for card in self.players[idx].cards]
from collections import namedtuple from reportlab.pdfbase import pdfmetrics, ttfonts from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.pagesizes import A4 from reportlab.lib import colors from reportlab.lib.units import mm from settings import config font_arial = ttfonts.TTFont('Arial', 'arial.ttf') pdfmetrics.registerFont(font_arial) HMARGIN = 20 * mm RMARGIN = 5 * mm TMARGIN = 10 * mm BMARGIN = 20 * mm def get_vertical(): num = 270 while True: yield num num -= 5 Item = namedtuple('Item', 'name, code, unit, quantity, price') class ReportInvoice: def __init__(self): self._info = {} self._order=namedtuple('Info', 'date, number, payer, address, delivery') self._story = [] self._data = [] self._styles = getSampleStyleSheet() @staticmethod def invoice_file(number): """ get invoice file name by the number of invoice :param number: order number :return path: invoice file name """ base_folder = config.invoices_folder() invoice_file = 'invoice{:06}.pdf'.format(number) return config.os.path.join(base_folder, invoice_file) def set_order(self, date, number, payer, address, delivery): self._order.date = date self._order.number = number self._order.payer = payer self._order.address = address self._order.delivery = delivery def add_item(self, name, code, unit, quantity, price): item = Item(name= name, code= code, unit= unit, quantity= quantity, price= price) self._data.append(item) def _first_page(self, canvas, doc): """ make a top of page with company info make a footer """ vertical = get_vertical() canvas.saveState() canvas.setFont('Arial', 16) canvas.drawString(HMARGIN, next(vertical) * mm, self._info['name']) canvas.setFont('Arial', 12) format_text = 'ИНН/КПП: {}/{}'.format(self._info['taxpayerID'], self._info['registrationID']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'Адресс: {}'.format(self._info['address']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'Телефон: {}'.format(self._info['phone']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'Эл.почта: {}'.format(self._info['email']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'Банк: {}'.format(self._info['bank_account']['name']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'БИК: {}'.format(self._info['bank_account']['id']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'р/с: {}'.format(self._info['bank_account']['account']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) format_text = 'к/с: {}'.format(self._info['bank_account']['corr_acc']) canvas.drawString(HMARGIN, next(vertical) * mm, format_text) canvas.line(HMARGIN, 228 * mm, 205 * mm, 228 * mm) format_text = 'Счёт № {:06} от {:%d.%m.%Y}'.format(self._order.number, self._order.date) canvas.drawCentredString(210 / 2 * mm, 222 * mm, format_text) format_text = 'Получатель: {}'.format(self._order.payer) canvas.drawCentredString(210 / 2 * mm, 217 * mm, format_text) canvas.line(HMARGIN, 215 * mm, 205 * mm, 215 * mm) self._footer(canvas, str(doc.page)) canvas.restoreState() def _later_page(self, canvas, doc): """ make a footer """ canvas.saveState() self._footer(canvas, str(doc.page)) canvas.restoreState() def _footer(self, canvas, page): canvas.line(HMARGIN, 10 * mm, 205 * mm, 10 * mm) canvas.setFont('Arial', 8) canvas.drawString(200 * mm, 6 * mm, page) def _order_table(self): """ prepare a data and create a Table :return Table: Flowable """ style = self._styles['Normal'] style.wordWrap = 'CJK' style.fontName = 'Arial' table_data = [['№', 'Наименование', 'Код', 'Кол-во', 'Ед.изм.', 'Цена', 'Сумма']] position = 1 total_cost = 0.0 for item in self._data: cost = item.price * item.quantity table_data.append([str(position), item.name, '', str(item.quantity), item.unit, '{:.2f}'.format(item.price).replace('.', ','), '{:.2f}'.format(round(cost, 2)).replace('.', ',')]) position += 1 total_cost += cost table_data.append(['', '', '', '', '', 'Итого:', '{:.2f}'.format(total_cost).replace('.', ',')]) table_data.append(['', '', '', '', '', 'Доставка:', '{:.2f}'.format(self._order.delivery).replace('.', ',')]) return Table([[Paragraph(cell, style) for cell in row] for row in table_data], colWidths=[10 * mm, 50 * mm, 40 * mm, 20 * mm, 20 * mm, 20 * mm, 25 * mm], style=[ ('FONT', (0,0), (-1,-1), 'Arial'), ('GRID', (0,0), (-1,-3), 0.5, colors.black), ]) def company_info(self, info_dict): self._info = info_dict def make(self): path = self.invoice_file(self._order.number) doc = SimpleDocTemplate(path, pagesize = A4, rightMargin = RMARGIN, leftMargin = HMARGIN, topMargin = TMARGIN, bottomMargin = BMARGIN, showBoundary = False) self._story.append(Spacer(1, 70 * mm)) self._story.append(self._order_table()) try: doc.build(self._story, onFirstPage=self._first_page, onLaterPages=self._later_page) except PermissionError as e: print(e.strerror)
import os import sys from distutils.core import setup import matplotlib import numpy # import py2exe # from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas # from matplotlib.figure import Figure sys.setrecursionlimit(5000) # Compile program using: # python compileScript.py py2exe # add any numpy directory containing a dll file to sys.path def numpy_dll_paths_fix(): paths = set() np_path = numpy.__path__[0] for dirpath, _, filenames in os.walk(np_path): for item in filenames: if item.endswith(".dll"): paths.add(dirpath) sys.path.append(*list(paths)) numpy_dll_paths_fix() current_dir = os.path.dirname(os.path.realpath(__file__)) dist_dir = os.path.join(current_dir, "ORIGAMI_MS_v1.0.1") # py2exe options additionalFiles = [ ( "scripts", [ "scripts/CIU_RESET.cs", "scripts/CIU_LIST.cs", "scripts/CIU_LINEAR.cs", "scripts/CIU_FITTED.cs", "scripts/CIU_EXPONENT.cs", ], ), ( "dlls", [ "dlls/CIU_RESET.dll", "dlls/CIU_LIST.dll", "dlls/CIU_LINEAR.dll", "dlls/CIU_FITTED.dll", "dlls/CIU_EXPONENT.dll", ], ), ("", matplotlib.get_py2exe_datafiles()), ] py2exe_options = dict( compressed=True, optimize=0, bundle_files=3, excludes=[ "Tkconstants", "Tkinter", "tcl", "Qt", "PyQt5.*", "PyQt4", "pywin", "pywin.debugger", "pywin.debugger.dbgcon", "pywin.dialogs", "pywin.dialogs.list", "scipy.*", "pandas.*", "pdb", "doctest", ], includes=["matplotlib.backends.backend_qt5agg", "email.mime.*", "jinja2"], packages=["wx.lib.pubsub", "pkg_resources"], dll_excludes=["Qt5Gui", "Qt5Widgets", "Qt5Svg", "Qt5Gui"], dist_dir=dist_dir, ) # main setup setup( name="ORIGAMI-MS", version="v1.0.1", description="ORIGAMI - A Software Suite for Activated Ion Mobility Mass Spectrometry ", author="Lukasz G. Migas", url="https://www.click2go.umip.com/i/s_w/ORIGAMI.html", windows=[{"script": "ORIGAMIMS.py", "icon_resources": [(1, "icon.ico")]}], console=[{"script": "ORIGAMIMS.py"}], data_files=matplotlib.get_py2exe_datafiles(), # data_files = additionalFiles, options=dict(py2exe=py2exe_options), )
from allauth.account.views import SignupView from allauth.account.views import ConfirmEmailView from users.forms import CustomUserCreationForm class MySignupView(SignupView): form_class = CustomUserCreationForm class ConfirmEmailView(ConfirmEmailView): def post(self, *args, **kwargs): self.object = confirmation = self.get_object() confirmation.confirm(self.request) get_adapter(self.request).add_message( self.request, messages.SUCCESS, 'account/messages/email_confirmed.txt', {'email': confirmation.email_address.email} ) if app_settings.LOGIN_ON_EMAIL_CONFIRMATION: resp = self.login_on_confirm(confirmation) if resp is not None: return resp redirect_url = self.get_redirect_url() if not redirect_url: ctx = self.get_context_data() return self.render_to_response(ctx) return redirect(redirect_url)
# coding=utf-8 # Copyright 2020 The Tensor2Robot Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for run_collect_eval.""" import os from absl import flags from absl.testing import absltest from absl.testing import parameterized import gin from tensor2robot.research.pose_env import pose_env from tensor2robot.utils import continuous_collect_eval import tensorflow.compat.v1 as tf FLAGS = flags.FLAGS class PoseEnvModelsTest(parameterized.TestCase): @parameterized.parameters( (pose_env.PoseEnvRandomPolicy,), ) def test_run_pose_env_collect(self, demo_policy_cls): urdf_root = pose_env.get_pybullet_urdf_root() config_dir = 'research/pose_env/configs' gin_config = os.path.join( FLAGS.test_srcdir, config_dir, 'run_random_collect.gin') gin.parse_config_file(gin_config) tmp_dir = absltest.get_default_test_tmpdir() root_dir = os.path.join(tmp_dir, str(demo_policy_cls)) gin.bind_parameter('PoseToyEnv.urdf_root', urdf_root) gin.bind_parameter( 'collect_eval_loop.root_dir', root_dir) gin.bind_parameter('run_meta_env.num_tasks', 2) gin.bind_parameter('run_meta_env.num_episodes_per_adaptation', 1) gin.bind_parameter( 'collect_eval_loop.policy_class', demo_policy_cls) continuous_collect_eval.collect_eval_loop() output_files = tf.io.gfile.glob(os.path.join( root_dir, 'policy_collect', '*.tfrecord')) self.assertLen(output_files, 2) if __name__ == '__main__': absltest.main()
PACKAGE_HEADER = """\ /** * Dlang vulkan types and function definitions package * * Copyright: Copyright 2015-2016 The Khronos Group Inc.; Copyright 2016 Alex Parrill, Peter Particle. * License: $(https://opensource.org/licenses/MIT, MIT License). * Authors: Copyright 2016 Alex Parrill, Peter Particle */ module {PACKAGE_PREFIX}; public import {PACKAGE_PREFIX}.types; public import {PACKAGE_PREFIX}.functions;\ """
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # The MIT License (MIT) # Copyright (c) 2016 Blockstack # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # pylint: skip-file from __future__ import print_function import copy def process_soa(io, data, name, print_name=False): """ Replace {SOA} in template with a set of serialized SOA records """ indent = ' ' * len('{} {} IN SOA '.format(name, data['ttl'])) print('{} {} IN SOA {} {} ('.format(name, data['ttl'], data['mname'], data['rname']), file=io) for item in ['serial', 'refresh', 'retry', 'expire', 'minimum']: print('{}{} ; {}'.format(indent, data[item], item), file=io) print('{})'.format(indent), file=io) def _quote_field(data, field): """ Quote a field in a list of DNS records. Return the new data records. """ if data is None: return None data[field] = '"%s"' % data[field] data[field] = data[field].replace(";", "\;") return data def process_rr(io, data, record_type, record_keys, name, print_name): """ Print out single line record entries """ if data is None: return if isinstance(record_keys, str): record_keys = [record_keys] elif not isinstance(record_keys, list): raise ValueError('record_keys must be a string or list of strings') name_display = name if print_name else ' ' * len(name) print('{} {} IN {} '.format(name_display, data['ttl'], record_type), end='', file=io) for i, key in enumerate(record_keys): print(data[key], end='\n' if i == len(record_keys) - 1 else ' ', file=io) def process_ns(io, data, name, print_name=False): process_rr(io, data, 'NS', 'host', name, print_name) def process_a(io, data, name, print_name=False): return process_rr(io, data, 'A', 'ip', name, print_name) def process_aaaa(io, data, name, print_name=False): return process_rr(io, data, 'AAAA', 'ip', name, print_name) def process_cname(io, data, name, print_name=False): return process_rr(io, data, 'CNAME', 'alias', name, print_name) def process_mx(io, data, name, print_name=False): return process_rr(io, data, 'MX', ['preference', 'host'], name, print_name) def process_ptr(io, data, name, print_name=False): return process_rr(io, data, 'PTR', 'host', name, print_name) def process_txt(io, data, name, print_name=False): return process_rr(io, _quote_field(data, 'txt'), 'TXT', 'txt', name, print_name) def process_srv(io, data, name, print_name=False): return process_rr(io, data, 'SRV', ['priority', 'weight', 'port', 'target'], name, print_name)
#!/usr/bin/env python """Run BL server.""" import argparse from bl_lookup.server import app from bl_lookup.bl import models, generate_bl_map parser = argparse.ArgumentParser(description='Start BL lookup server.') parser.add_argument('--host', default='0.0.0.0', type=str) parser.add_argument('--port', default=8144, type=int) parser.add_argument('--model', type=str) args = parser.parse_args() data = dict() uri_maps = dict() for version in models: data[version], uri_maps[version] = generate_bl_map(version=version) if args.model is not None: data['custom'], uri_maps['custom'] = generate_bl_map(url=args.model) app.userdata = { 'data': data, 'uri_maps': uri_maps, } app.run( host=args.host, port=args.port, debug=False, )
from quo.table import Table data = [ ["Name", "Gender", "Age"], ["Alice", "F", 24], ["Bob", "M", 19], ["Dave", "", 24] ] Table(data)
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Keras initializers useful for TFP Keras layers.""" # Dependency imports import numpy as np import tensorflow.compat.v2 as tf class BlockwiseInitializer(tf.keras.initializers.Initializer): """Initializer which concats other intializers.""" def __init__(self, initializers, sizes, validate_args=False): """Creates the `BlockwiseInitializer`. Args: initializers: `list` of Keras initializers, e.g., `"glorot_uniform"` or `tf.keras.initializers.Constant(0.5413)`. sizes: `list` of `int` scalars representing the number of elements associated with each initializer in `initializers`. validate_args: Python `bool` indicating we should do (possibly expensive) graph-time assertions, if necessary. """ self._initializers = initializers self._sizes = sizes self._validate_args = validate_args @property def initializers(self): return self._initializers @property def sizes(self): return self._sizes @property def validate_args(self): return self._validate_args def __call__(self, shape, dtype=None): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not provided will return tensor of `tf.float32`. """ dtype = tf.as_dtype(dtype or tf.keras.backend.floatx()) if isinstance(shape, tf.TensorShape): shape_dtype = tf.int32 shape_ = np.int32(shape) else: if not tf.is_tensor(shape): shape = tf.convert_to_tensor( value=shape, dtype_hint=tf.int32, name='shape') shape_dtype = shape.dtype.base_dtype shape_ = tf.get_static_value(shape, partial=True) sizes_ = tf.get_static_value(self.sizes) if sizes_ is not None: sizes_ = np.array(sizes_, shape_dtype.as_numpy_dtype) assertions = [] message = 'Rightmost dimension of shape must equal `sum(sizes)`.' n = shape[-1] if shape_ is None or shape_[-1] is None else shape_[-1] if sizes_ is not None and not tf.is_tensor(n): if sum(sizes_) != n: raise ValueError(message) elif self.validate_args: assertions.append(tf.debugging.assert_equal( shape[-1], tf.reduce_sum(self.sizes), message=message)) s = (shape[:-1] if shape_ is None or any(s is None for s in shape_[:-1]) else shape_[:-1]) if sizes_ is not None and isinstance(s, (np.ndarray, np.generic)): return tf.concat([ tf.keras.initializers.get(init)(np.concatenate([ s, np.array([e], shape_dtype.as_numpy_dtype)], axis=-1), dtype) for init, e in zip(self.initializers, sizes_.tolist()) ], axis=-1) sizes = tf.split(self.sizes, len(self.initializers)) return tf.concat([ tf.keras.initializers.get(init)(tf.concat([s, e], axis=-1), dtype) for init, e in zip(self.initializers, sizes) ], axis=-1) def get_config(self): """Returns initializer configuration as a JSON-serializable dict.""" return { 'initializers': [ tf.initializers.serialize( tf.keras.initializers.get(init)) for init in self.initializers ], 'sizes': self.sizes, 'validate_args': self.validate_args, } @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary.""" return cls(**{ 'initializers': [tf.initializers.deserialize(init) for init in config.get('initializers', [])], 'sizes': config.get('sizes', []), 'validate_args': config.get('validate_args', False), }) tf.keras.utils.get_custom_objects()[ 'BlockwiseInitializer'] = BlockwiseInitializer
import numpy as np from numpy import exp, log, log10 # Constants version = 20180411 # %% Parameters for out-of-equilibrium Bayes factor calcualtions trials = 5 n12_range = [1e3, 1e4] n12_points = 10 n12s = np.logspace(log10(n12_range[0]), log10(n12_range[1]), num=n12_points) jobs_count_tars = 204 # max: 224 jobs_count_tars_common = 3000 # 1000 jobs_count_t_bayes = 132 jobs_count_onsager = 10 manager_script = "job_manager.py" DETACHED_PROCESS = 0x00000008 dim = 2 # number of dimensions (1 or 2) L = 1.0 # linear size of the system, in um x_min = 0.0 # in um x_max = L # in um t_step = 0.04 # in seconds # Diffusivity constants D_0 = 0.01 # in um^2/s q = 1 # number of D peaks gamma_drag = 400.0 # viscous drag, in fN * s / um # Total force constants # >> saw-tooth case for main check << # D_case = 1 # D_ratio = 2.0 # Ratio between max and min of the diffusivity # ksi_range = (-25.0, 25.0) # range of ratios of the total force to diffusivity gradient # ksi_step = 0.5 # sampling step in the interval # trials = 1000 # 1000 # N = int(1.0e4) # int(1.0e6) or int(1.0e5) # >> round-well case for gradient jump check << D_case = 2 D_ratio = 10.0 # Ratio between max and min of the diffusivity well_radius = L / 6.0 ksi_range = (0.5, 25.0) # range of ratios of the total force to diffusivity gradient ksi_step = 100.0 # sampling step in the interval N = int(1.0e5) # int(1.0e6) or int(1.0e5) # Simulation parameters progress_update_interval = 100.0 # Integer. How many intermediate smaller steps are made before the next point is saved internal_steps_number = 100 k = 2.0 * q / L * (D_ratio - 1.0) # D'/D D_grad_abs = k * D_0 # absolute value of the diffusivity gradient used for force calculations # Batch parameters sleep_time = 0.2 logs_folder = "./logs/" output_folder = "./output/" args_file = "arguments.dat" args_lock = "arguments.lock" position_file = 'position.dat' position_lock = 'position.lock' stop_file = 'stop' lock_timeout = 600 # s output_folder = './output/' CSV_DELIMITER = ';' # k = 100.0 # diffusivity gradient, D'/D, in um^-1 max_D_case = 7 max_f_case = 8 str_mode = 'periodic' # bc_type = ENUM_BC_PERIODIC;
#!/usr/bin/env python """ This application replicates the switch CLI command 'show interface fex' It largely uses raw queries to the APIC API """ from acitoolkit import Credentials, Session from tabulate import tabulate def show_interface_fex(apic, node_ids): """ Show interface fex :param apic: Session instance logged in to the APIC :param node_ids: List of strings containing node ids :return: None """ for node_id in node_ids: query_url = ('/api/mo/topology/pod-1/node-%s.json?query-target=subtree' '&target-subtree-class=satmDExtCh' % node_id) resp = apic.get(query_url) if not resp.ok: print('Could not collect APIC data for switch %s.' % node_id) print(resp.text) return fex_list = {} for obj in resp.json()['imdata']: obj_attr = obj['satmDExtCh']['attributes'] fex_list[obj_attr['id']] = (obj_attr['model'], obj_attr['ser']) query_url = ('/api/mo/topology/pod-1/node-%s.json?query-target=subtree' '&target-subtree-class=satmFabP' % node_id) resp = apic.get(query_url) if not resp.ok: print('Could not collect APIC data for switch %s.' % node_id) print(resp.text) return data = [] for obj in resp.json()['imdata']: obj_attr = obj['satmFabP']['attributes'] fex = obj_attr['extChId'] fabric_port = obj_attr['id'] if fabric_port.startswith('po'): continue fabric_port_state = obj_attr['fsmSt'] fex_uplink = obj_attr['remoteLinkId'] try: model, serial = fex_list[fex] except KeyError: model, serial = '--', '--' data.append((int(fex), fabric_port, fabric_port_state, fex_uplink, model, serial)) data.sort(key=lambda tup: tup[0]) if len(data): print('Switch:', node_id) print(tabulate(data, headers=['Fex', 'Fabric Port', 'Fabric Port State', 'Fex uplink', 'Fex model', 'Fex serial'])) print('\n') def get_node_ids(apic, args): """ Get the list of node ids from the command line arguments. If none, get all of the node ids :param apic: Session instance logged in to the APIC :param args: Command line arguments :return: List of strings containing node ids """ if args.switch is not None: names = [args.switch] else: names = [] query_url = ('/api/node/class/fabricNode.json?' 'query-target-filter=eq(fabricNode.role,"leaf")') resp = apic.get(query_url) if not resp.ok: print('Could not get switch list from APIC.') return nodes = resp.json()['imdata'] for node in nodes: names.append(str(node['fabricNode']['attributes']['id'])) return names def main(): """ Main common routine for show interface description :return: None """ # Set up the command line options creds = Credentials(['apic', 'nosnapshotfiles'], description=("This application replicates the switch " "CLI command 'show interface fex'")) creds.add_argument('-s', '--switch', type=str, default=None, help='Specify a particular switch id, e.g. "101"') args = creds.get() # Login to APIC apic = Session(args.url, args.login, args.password) if not apic.login().ok: print('%% Could not login to APIC') return # Show interface description node_ids = get_node_ids(apic, args) show_interface_fex(apic, node_ids) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
from hsclient.hydroshare import Aggregation, File, HydroShare, Resource
from .apps import GitHubApp App = GitHubApp
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = [ 'GetSizesResult', 'AwaitableGetSizesResult', 'get_sizes', ] @pulumi.output_type class GetSizesResult: """ A collection of values returned by getSizes. """ def __init__(__self__, filters=None, id=None, sizes=None, sorts=None): if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") pulumi.set(__self__, "filters", filters) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if sizes and not isinstance(sizes, list): raise TypeError("Expected argument 'sizes' to be a list") pulumi.set(__self__, "sizes", sizes) if sorts and not isinstance(sorts, list): raise TypeError("Expected argument 'sorts' to be a list") pulumi.set(__self__, "sorts", sorts) @property @pulumi.getter def filters(self) -> Optional[Sequence['outputs.GetSizesFilterResult']]: return pulumi.get(self, "filters") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def sizes(self) -> Sequence['outputs.GetSizesSizeResult']: return pulumi.get(self, "sizes") @property @pulumi.getter def sorts(self) -> Optional[Sequence['outputs.GetSizesSortResult']]: return pulumi.get(self, "sorts") class AwaitableGetSizesResult(GetSizesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSizesResult( filters=self.filters, id=self.id, sizes=self.sizes, sorts=self.sorts) def get_sizes(filters: Optional[Sequence[pulumi.InputType['GetSizesFilterArgs']]] = None, sorts: Optional[Sequence[pulumi.InputType['GetSizesSortArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSizesResult: """ Retrieves information about the Droplet sizes that DigitalOcean supports, with the ability to filter and sort the results. If no filters are specified, all sizes will be returned. :param Sequence[pulumi.InputType['GetSizesFilterArgs']] filters: Filter the results. The `filter` block is documented below. :param Sequence[pulumi.InputType['GetSizesSortArgs']] sorts: Sort the results. The `sort` block is documented below. """ __args__ = dict() __args__['filters'] = filters __args__['sorts'] = sorts if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('digitalocean:index/getSizes:getSizes', __args__, opts=opts, typ=GetSizesResult).value return AwaitableGetSizesResult( filters=__ret__.filters, id=__ret__.id, sizes=__ret__.sizes, sorts=__ret__.sorts)
from django.apps import AppConfig class MaingateConfig(AppConfig): name = 'MainGate'
a3 = int(input()) a2 = int(input()) a1 = int(input()) atotal = (a3 * 3) + (a2 * 2) + a1 b3 = int(input()) b2 = int(input()) b1 = int(input()) btotal = (b3 * 3) + (b2 * 2) + b1 if atotal > btotal: print("A") elif atotal < btotal: print("B") else: print("T")
""" 2015 Day 14 https://adventofcode.com/2015/day/14 """ from dataclasses import dataclass from typing import Sequence, Tuple import aocd # type: ignore @dataclass(frozen=True) class Reindeer: """ Object encapsulating a reindeer's name and inherent attributes. """ name: str speed: int flytime: int rest_needed: int @classmethod def from_description_line(cls, line: str) -> "Reindeer": """ Parse one reindeer from a line in the puzzle description. """ words = line.split() return cls( name=words[0], speed=int(words[3]), flytime=int(words[6]), rest_needed=int(words[13]), ) @classmethod def all_from_description(cls, description: str) -> "Sequence[Reindeer]": """ Parse all reindeer from the puzzle description. """ return tuple( cls.from_description_line(line) for line in description.split("\n") ) @dataclass class ReindeerStatus: """ Object containing the reindeer's current status in the race - resting or flying - along with how much time until that is due to change again and the total distance travalled and points scored so far. """ reindeer: Reindeer flying: bool time_left: int distance_travelled: int score: int @classmethod def from_reindeer(cls, reindeer: Reindeer) -> "ReindeerStatus": """ Create the default status for the first split-second of the race for the given reindeer. """ return cls( reindeer=reindeer, flying=True, time_left=reindeer.flytime, distance_travelled=0, score=0, ) def progress(self): """ Progress to the next minute, also then changing status to flying or resting if necessary. """ self.time_left -= 1 if self.flying: self.distance_travelled += self.reindeer.speed if self.time_left == 0: self.flying = not self.flying self.time_left = ( self.reindeer.flytime if self.flying else self.reindeer.rest_needed ) def add_score(self, distance_to_score: int): """ Record a point scored if the reindeer has travelled at least as far as the distance provided. """ if self.distance_travelled >= distance_to_score: self.score += 1 def race(reindeer: Sequence[Reindeer], seconds: int = 2503) -> Tuple[int, int]: """ Race the provided group of reindeer and return the further distance travelled and the score of the winner. """ racers = [ReindeerStatus.from_reindeer(individual) for individual in reindeer] for _ in range(seconds): for racer in racers: racer.progress() furthest_travelled = max(racer.distance_travelled for racer in racers) for racer in racers: racer.add_score(furthest_travelled) return ( max(racer.distance_travelled for racer in racers), max(racer.score for racer in racers), ) def test_example(): """ Example from puzzle description.. """ example = "\n".join( ( "Comet can fly 14 km/s for 10 seconds, but then must rest for 127 seconds.", "Dancer can fly 16 km/s for 11 seconds, but then must rest for 162 seconds.", ) ) example_racers = Reindeer.all_from_description(example) assert race(example_racers, 1000) == (1120, 689) def main(): """ Calculate and output the solutions based on the real puzzle input. """ data = aocd.get_data(year=2015, day=14) reindeer = Reindeer.all_from_description(data) distance, score = race(reindeer) print(f"Part 1: {distance}") print(f"Part 2: {score}") if __name__ == "__main__": main()
from django.conf.urls import url, include from django.contrib import admin from django.contrib.staticfiles.urls import static from . import settings urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^auth/', include('loginsys.urls')), url(r'^', include('mainpage.urls')), url(r'^personal/', include('persCabinet.urls')) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
import numpy as np from sklearn.cluster import AgglomerativeClustering import logging class Clusterer(object): """ Abstract class for different clustering variants based on the online clustering. """ def __init__(self, *args, **kwargs): """ Initializes the clusterer. """ raise NotImplementedError("This class is abstract. Derive it.") def fit(self, X): """ Clusters based on the given dictionary of discriminators. Parameters: ----------- X : Dictionary of discriminators to be clustered. n_clusters : The number of clusters to find. It must be None if distance_threshold is not None. distance_threshold : The linkage distance threshold under which, clusters will not be merged. If not None, n_clusters must be None. Returns: -------- clusters : Dictionary of discriminator ids and their offline cluster. """ raise NotImplementedError("This method is abstract. Override it.") class MinDistanceClustering(Clusterer): """ Agglomerative clustering based on the intersection levels of WiSARD's discriminators without merging them. It resembles single linkage. """ def __init__(self, n_clusters=None, distance_threshold=None): if (n_clusters is None and distance_threshold is None) or ( n_clusters is not None and distance_threshold is not None): raise KeyError( "Check parameters n_clusters and distance_threshold!") self.n_clusters = n_clusters self.distance_threshold = distance_threshold def fit(self, X): """ Clusters based on the given dictionary of discriminators. Parameters: ----------- X : Dictionary of discriminators to be clustered. n_clusters : The number of clusters to find. It must be None if distance_threshold is not None. distance_threshold : The linkage distance threshold under which, clusters will not be merged. If not None, n_clusters must be None. Returns: -------- clusters : Dictionary of discriminator ids and their offline cluster. """ # Creating lists needed throughout the clustering process discr = list(X.values()) ids = [[x] for x in X.keys()] # Compute similarities between every pair of objects in the data set distances = np.zeros((len(discr), len(discr))) for i in range(len(discr)): for j in range(len(discr)): if i > j: distances[i][j] = discr[i].intersection_level(discr[j]) distances[j][i] = distances[i][j] logging.info("Calculated distance matrix.") while True: # Stop conditions if len(distances) <= self.n_clusters: logging.info("Number of clusters reached.") break if self.distance_threshold is not None: if np.max(distances.flatten()) < self.distance_threshold: logging.info( "Nothing to merge anymore, discriminators too dissimilar.") break # Get position of highest intersection pos_highest = np.unravel_index(distances.argmax(), distances.shape) first = pos_highest[0] second = pos_highest[1] if distances[first][second] == 0.0: logging.info( "Can't cluster anymore, discriminators too dissimilar.") break logging.info( "Highest intersection level at {} with {}%".format( pos_highest, distances[first][second])) # Combine discriminators and delete unnecessary one ids[first] = sorted(ids[first] + ids[second]) del ids[second] del discr[second] # Recalculate distances for i in range(len(distances)): if i != first: distances[i][first] = min( distances[first][i], distances[second][i]) distances[first][i] = distances[i][first] # Reshape distance matrix by deleting merged rows and columns distances = np.delete(distances, second, 0) distances = np.delete(distances, second, 1) logging.info( "Recalculated distances and shrinked distance matrix to size: {}.".format( distances.shape)) # Calculate clustering labels clusters = dict() for i, group in enumerate(ids): for id_ in group: clusters[id_] = int(i) return clusters class MergeClustering(MinDistanceClustering): """ Agglomerative clustering based on the intersection levels of WiSARD's discriminators with merging them. """ def __init__(self, n_clusters=None, distance_threshold=None): if (n_clusters is None and distance_threshold is None) or ( n_clusters is not None and distance_threshold is not None): raise KeyError( "Check parameters n_clusters and distance_threshold!") self.n_clusters = n_clusters self.distance_threshold = distance_threshold def fit(self, X): """ Clusters based on the given dictionary of discriminators. Parameters: ----------- X : Dictionary of discriminators to be clustered. n_clusters : The number of clusters to find. It must be None if distance_threshold is not None. distance_threshold : The linkage distance threshold under which, clusters will not be merged. If not None, n_clusters must be None. Returns: -------- clusters : Dictionary of discriminator ids and their offline cluster. """ # Creating lists needed throughout the clustering process discr = list(X.values()) ids = [[x] for x in X.keys()] # Compute similarities between every pair of objects in the data set distances = np.zeros((len(discr), len(discr))) for i in range(len(discr)): for j in range(len(discr)): if i > j: distances[i][j] = discr[i].intersection_level(discr[j]) distances[j][i] = distances[i][j] logging.info("Calculated distance matrix.") while True: # Stop conditions if len(distances) <= self.n_clusters: logging.info("Number of clusters reached.") break if self.distance_threshold is not None: if np.max(distances.flatten()) < self.distance_threshold: logging.info( "Nothing to merge anymore, discriminators too dissimilar.") break # Get position of highest intersection pos_highest = np.unravel_index(distances.argmax(), distances.shape) first = pos_highest[0] second = pos_highest[1] if distances[first][second] == 0.0: logging.info( "Can't cluster anymore, discriminators too dissimilar.") break logging.info( "Highest intersection level at {} with {}%".format( pos_highest, distances[first][second])) # Merge discriminators and delete unnecessary one discr[first].merge(discr[second]) ids[first] = sorted(ids[first] + ids[second]) del ids[second] del discr[second] logging.info( "Merging discriminator {} into {} and deleting {}.".format( second, first, second)) # Reshape distance matrix by deleting merged rows and columns distances = np.delete(distances, second, 0) distances = np.delete(distances, second, 1) # Recalculate distances for i in range(len(distances)): if i != first: distances[i][first] = discr[first].intersection_level( discr[i]) distances[first][i] = distances[i][first] logging.info( "Recalculated distances and shrinked distance matrix to size: {}.".format( distances.shape)) # Calculate clustering labels clusters = dict() for i, group in enumerate(ids): for id_ in group: clusters[id_] = int(i) return clusters class CentroidClustering(Clusterer): """ This clusterer works based on the agglomerative clustering implementation from sklearn and the approximate centroids of the discriminators. """ def __init__(self, n_clusters=None, distance_threshold=None): if (n_clusters is None and distance_threshold is None) or ( n_clusters is not None and distance_threshold is not None): raise KeyError( "Check parameters n_clusters and distance_threshold!") self.n_clusters = n_clusters self.distance_threshold = distance_threshold def fit(self, X, centroids, linkage="ward"): """ Clusters based on the given dictionary of discriminators. Parameters: ----------- X : Dictionary of discriminators to be clustered. n_clusters : The number of clusters to find. It must be None if distance_threshold is not None. distance_threshold : The linkage distance threshold under which, clusters will not be merged. If not None, n_clusters must be None. Returns: -------- clusters : Dictionary of discriminator ids and their offline cluster. """ # Cluster using Agglomerative Clustering clusterer = AgglomerativeClustering( n_clusters=self.n_clusters, distance_threshold=self.distance_threshold, linkage=linkage) clusterer.fit(centroids) # Group discriminator ids into cluster groups clusters = dict() for x, c in zip(X.keys(), clusterer.labels_): clusters[x] = c return clusters
# Generated by Django 3.1.7 on 2021-03-02 15:10 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Country', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=255)), ('alpha_two_code', models.CharField(blank=True, max_length=2, null=True)), ], options={ 'verbose_name_plural': 'Countries', }, ), migrations.CreateModel( name='Shop', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=255)), ('image', models.URLField(blank=True, null=True)), ], ), migrations.CreateModel( name='ShopBranch', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('title', models.CharField(max_length=255)), ('street_address', models.CharField(max_length=255)), ('city', models.CharField(max_length=255)), ('region', models.CharField(blank=True, max_length=255, null=True)), ('state', models.CharField(blank=True, max_length=255, null=True)), ('postal_code', models.CharField(max_length=7)), ('latitude', models.FloatField()), ('longitude', models.FloatField()), ('eta_rang', models.CharField(blank=True, max_length=7, null=True)), ('description', models.TextField()), ('opening_time', models.TimeField()), ('closing_time', models.TimeField()), ('is_active', models.BooleanField(default=False)), ], options={ 'verbose_name_plural': 'Shop Branches', }, ), migrations.CreateModel( name='ShopType', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=16)), ], ), migrations.CreateModel( name='UserBranch', fields=[ ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('permission', models.IntegerField(choices=[(0, 'Viewer'), (1, 'Moderator'), (2, 'Editor'), (3, 'Admin')], default=0)), ('branch', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shop.shopbranch')), ], options={ 'verbose_name_plural': 'User Branches', }, ), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Samvaran Kashyap Rallabandi - <srallaba@redhat.com> # # Topology validator for Ansible based infra provsioning tool linch-pin from ansible.module_utils.basic import * import datetime import sys import json import os import shlex import tempfile import yaml import jsonschema from jsonschema import validate DOCUMENTATION = ''' --- version_added: "0.1" module: topo_check short_description: Topology validator module in ansible description: - This module allows a user to validate the yaml/json provisioning topologies against json schema. options: data_file: description: path to topology file can be in json/yaml format required: true data_format: description: format of the topology file default: yaml schema_file: description: Schema to be validated against required: true author: Samvaran Kashyap Rallabandi - ''' class JSONSchema: def __init__(self, data_file_path, schema_file_path): self.data_file = data_file_path self.schema_file = schema_file_path def validate(self): data = self.get_data(self.data_file) schema = open(self.schema_file).read() if type(data) is dict: return data try: result = jsonschema.validate(json.loads(data), json.loads(schema)) return {"status": True, "data": json.loads(data)} except jsonschema.ValidationError as e: return {"error": e.message, "status": False} except jsonschema.SchemaError as e: return {"error": e, "status": False} except Exception as e: return {"error": e, "status": False} def get_data(self, file_path): ext = file_path.split(".")[-1] if (ext == "yml" or ext == "yaml"): fd = open(file_path) return json.dumps(yaml.safe_load(fd)) if (ext == "json"): return open(self.topo_file).read() else: return {"error": "Invalid File Format"} def check_file_paths(module, *args): for file_path in args: if not os.path.exists(file_path): msg = "File not found %s not found" % (file_path) module.fail_json(msg=msg) if not os.access(file_path, os.R_OK): msg = "File not accesible %s not found" % (file_path) module.fail_json(msg=msg) if os.path.isdir(file_path): msg = "Recursive directory not supported %s " % (file_path) module.fail_json(msg=msg) def validate_grp_names(data): res_grps = data['resource_groups'] if 'resource_group_vars' in data.keys(): res_grp_vars = data['resource_group_vars'] else: res_grp_vars = [] res_grp_names = [x['resource_group_name'] for x in res_grps] if len(res_grp_vars) > 0: res_grp_vars = [x['resource_group_name'] for x in res_grp_vars] dup_grp_names = set(res_grp_names) dup_grp_vars = set(res_grp_vars) if len(dup_grp_vars) != len(res_grp_vars) or \ len(dup_grp_names) != len(res_grp_names): msg = "error: duplicate names found in resource_group_name \ attributes please check the results for duplicate names" return {"msg": msg, "result": str(dup_grp_names)+str(dup_grp_vars)} else: return True def validate_values(module, data_file_path): data = open(data_file_path).read() data = yaml.safe_load(data) status = validate_grp_names(data) if not status: module.fail_json(msg="%s" % (json.dumps(status))) else: return status def main(): module = AnsibleModule( argument_spec={ 'data': {'required': True, 'aliases': ['topology_file']}, 'schema': {'required': True, 'aliases': ['topology_file']}, 'data_format': {'required': False,'choices':['json','yaml','yml']}, }, required_one_of=[], supports_check_mode=True ) data_file_path = os.path.expanduser(module.params['data']) schema_file_path = os.path.expanduser(module.params['schema']) check_file_paths(module, data_file_path, schema_file_path) validate_values(module, data_file_path) schema_obj = JSONSchema(data_file_path, schema_file_path) output = schema_obj.validate() resp = {"path": data_file_path, "content": output} if output["status"]: changed = True module.exit_json(isvalid=changed, output=output) else: module.fail_json(msg=resp) main()
""" A simple set of math methods that we can build our logging infrastructure on top of. """ import lib.logger def add_some_numbers(a, b): """ Adds the passed parameters and returns the result. """ logger_name = 'add_some_numbers' logger = logging.getLogger(__name__).getChild(logger_name) result = a + b logger.info("Result of add_some_numbers: {}".format(result)) return result if __name__ == "__main__": """ Rudimentary tests, nothing should be returned. In the event of a test failure, we get an AssertionError. """ try: result = add_some_numbers(4,5) expected_result = 9 assert result == expected_result add_logger.info("PASS: Add succeeded, {} == {}".format(result, expected_result)) except AssertionError: add_logger.info("FAIL: Add failed, {} != {}".format(result, expected_result)) try: result = add_some_numbers(5,5) expected_result = 9 assert not (result == expected_result) add_logger.info("PASS: Add failed, {} != {}".format(result, expected_result)) except AssertionError: add_logger.info("FAIL: Add succeeded, {} == {}".format(result, expected_result))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Given a tryjob and perf profile, generates an AFDO profile.""" from __future__ import print_function import argparse import distutils.spawn import os import os.path import shutil import subprocess import sys import tempfile _CREATE_LLVM_PROF = 'create_llvm_prof' _GS_PREFIX = 'gs://' def _fetch_gs_artifact(remote_name, local_name): assert remote_name.startswith(_GS_PREFIX) subprocess.check_call(['gsutil', 'cp', remote_name, local_name]) def _fetch_and_maybe_unpack(remote_name, local_name): unpackers = [ ('.tar.bz2', ['tar', 'xaf']), ('.bz2', ['bunzip2']), ('.tar.xz', ['tar', 'xaf']), ('.xz', ['xz', '-d']), ] unpack_ext = None unpack_cmd = None for ext, unpack in unpackers: if remote_name.endswith(ext): unpack_ext, unpack_cmd = ext, unpack break download_to = local_name + unpack_ext if unpack_ext else local_name _fetch_gs_artifact(remote_name, download_to) if unpack_cmd is not None: print('Unpacking', download_to) subprocess.check_output(unpack_cmd + [download_to]) assert os.path.exists(local_name) def _generate_afdo(perf_profile_loc, tryjob_loc, output_name): if perf_profile_loc.startswith(_GS_PREFIX): local_loc = 'perf.data' _fetch_and_maybe_unpack(perf_profile_loc, local_loc) perf_profile_loc = local_loc chrome_in_debug_loc = 'debug/opt/google/chrome/chrome.debug' debug_out = 'debug.tgz' _fetch_gs_artifact(os.path.join(tryjob_loc, 'debug.tgz'), debug_out) print('Extracting chrome.debug.') # This has tons of artifacts, and we only want Chrome; don't waste time # extracting the rest in _fetch_and_maybe_unpack. subprocess.check_call(['tar', 'xaf', 'debug.tgz', chrome_in_debug_loc]) # Note that the AFDO tool *requires* a binary named `chrome` to be present if # we're generating a profile for chrome. It's OK for this to be split debug # information. os.rename(chrome_in_debug_loc, 'chrome') print('Generating AFDO profile.') subprocess.check_call([ _CREATE_LLVM_PROF, '--out=' + output_name, '--binary=chrome', '--profile=' + perf_profile_loc ]) def _abspath_or_gs_link(path): if path.startswith(_GS_PREFIX): return path return os.path.abspath(path) def _tryjob_arg(tryjob_arg): # Forward gs args through if tryjob_arg.startswith(_GS_PREFIX): return tryjob_arg # Clicking on the 'Artifacts' link gives us a pantheon link that's basically # a preamble and gs path. pantheon = 'https://pantheon.corp.google.com/storage/browser/' if tryjob_arg.startswith(pantheon): return _GS_PREFIX + tryjob_arg[len(pantheon):] # Otherwise, only do things with a tryjob ID (e.g. R75-11965.0.0-b3648595) if not tryjob_arg.startswith('R'): raise ValueError('Unparseable tryjob arg; give a tryjob ID, pantheon ' 'link, or gs:// link. Please see source for more.') chell_path = 'chromeos-image-archive/chell-chrome-pfq-tryjob/' # ...And assume it's from chell, since that's the only thing we generate # profiles with today. return _GS_PREFIX + chell_path + tryjob_arg def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--perf_profile', required=True, help='Path to our perf profile. Accepts either a gs:// path or local ' 'filepath.') parser.add_argument( '--tryjob', required=True, type=_tryjob_arg, help="Path to our tryjob's artifacts. Accepts a gs:// path, pantheon " 'link, or tryjob ID, e.g. R75-11965.0.0-b3648595. In the last case, ' 'the assumption is that you ran a chell-chrome-pfq-tryjob.') parser.add_argument( '-o', '--output', default='afdo.prof', help='Where to put the AFDO profile. Default is afdo.prof.') parser.add_argument( '-k', '--keep_artifacts_on_failure', action='store_true', help="Don't remove the tempdir on failure") args = parser.parse_args() if not distutils.spawn.find_executable(_CREATE_LLVM_PROF): sys.exit(_CREATE_LLVM_PROF + ' not found; are you in the chroot?') profile = _abspath_or_gs_link(args.perf_profile) afdo_output = os.path.abspath(args.output) initial_dir = os.getcwd() temp_dir = tempfile.mkdtemp(prefix='generate_afdo') success = True try: os.chdir(temp_dir) _generate_afdo(profile, args.tryjob, afdo_output) # The AFDO tooling is happy to generate essentially empty profiles for us. # Chrome's profiles are often 8+ MB; if we only see a small fraction of # that, something's off. 512KB was arbitrarily selected. if os.path.getsize(afdo_output) < 512 * 1024: raise ValueError('The AFDO profile is suspiciously small for Chrome. ' 'Something might have gone wrong.') except: success = False raise finally: os.chdir(initial_dir) if success or not args.keep_artifacts_on_failure: shutil.rmtree(temp_dir, ignore_errors=True) else: print('Artifacts are available at', temp_dir) if __name__ == '__main__': sys.exit(main())
from forum.models import User, SubscriptionSettings, QuestionSubscription from django.core.management.base import NoArgsCommand class Command(NoArgsCommand): def handle_noargs(self, **options): users = User.objects.all() for u in users: s = SubscriptionSettings(user=u) s.save() user_questions = u.questions.all() for q in user_questions: sub = QuestionSubscription(user=u, question=q) sub.save()
import tensorflow as tf def get_max_quant_value(num_bits: int) -> float: return 2 ** (num_bits - 1) - 1 def quantize(input_tensor: tf.Tensor, scale: float, num_bits: int): """ https://arxiv.org/pdf/1910.06188.pdf """ threshold = tf.cast(get_max_quant_value(num_bits), tf.float32) return tf.clip_by_value(tf.math.round(input_tensor * scale), -threshold, threshold) def dequantize(input_tensor: tf.Tensor, scale: float): return input_tensor / scale @tf.function def quantize_and_dequantize(x: tf.Tensor, scale: float, num_bits=8): quantized = quantize(x, scale=scale, num_bits=num_bits) return dequantize(quantized, scale=scale) @tf.function def get_weight_scale_factor(weight: tf.Tensor, num_bits: int) -> float: """ https://arxiv.org/pdf/1910.06188.pdf """ threshold = tf.math.reduce_max(tf.math.abs(weight)) return tf.cast(get_max_quant_value(num_bits), tf.float32) / threshold @tf.function def fake_quantize(x: tf.Tensor, num_bits=8): scale = get_weight_scale_factor(x, num_bits) return quantize_and_dequantize(x, scale, num_bits) @tf.custom_gradient # noqa def fake_quantize(x, num_bits=8): def straight_through_estimator(dy): return dy scale = get_weight_scale_factor(x, num_bits) return quantize_and_dequantize(x, scale, num_bits), straight_through_estimator
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 20 10:33:04 2020 @author: dianasimpson """ # Imported packages and files import tkinter as tk from tkinter import ttk, Menu # Global variables for formatting FT_DOG = 'dark olive green' FT_GRY = '#E7E7E7' LB_N16 = ('Times', 16) LB_B16 = ('Times Bold', 16) LB_N18 = ('TImes', 18) LB_N20 = ('TImes', 20) LB_B20 = ('Times Bold', 20) # Create GUI class class VRES_GUI(): # Initialising class def __init__(self): # Create instance self.win = tk.Tk() # Add a title self.win.title("Navigability Analysis of Australian University" " Websites") # Running method for menu self.generateMenu() # Initialising Tab1 self.createTab1() # Window placement self.winPlacement() # Method to generate the menu items for the app def generateMenu(self): # Creating a Menu Bar self.menuBar = Menu(self.win) self.win.config(menu=self.menuBar) # Add menu items fileMenu = Menu(self.menuBar, tearoff=0) fileMenu.add_command(label="New") fileMenu.add_separator() fileMenu.add_command(label="Exit", command=self.win.destroy) self.menuBar.add_cascade(label="File", menu=fileMenu) # Add another Menu to the Menu Bar and an item helpMenu = Menu(self.menuBar, tearoff=0) helpMenu.add_command(label="About") self.menuBar.add_cascade(label="Help", menu=helpMenu) # Generating method for window placement def winPlacement(self): # Updating the base window to get information self.win.update() # Generate the desired sized window screenWidth = self.win.winfo_screenwidth() screenHeight = self.win.winfo_screenheight() print("Screen width: ", screenWidth, "\t Screen height: ", screenHeight) winW = self.win.winfo_width() winH = self.win.winfo_height() print("win width: ", winW, "\t win height: ", winH) # win.geometry(("%dx%d") % (winW, winH)) # Position window in the centre of the screen posRight = int(screenWidth/2 - winW/2) posDown = int(screenHeight/2 - winH/2) self.win.geometry("+{}+{}".format(posRight, posDown)) # ComboBox CallBack alternation requires label update def focusCall(self, event): print('focusCall initiatied') selectedDegree = self.degree.get() print(selectedDegree) self.focusChoice.configure(foreground=FT_DOG, text=selectedDegree) # Generates items for first tab def createTab1(self): # Create Tab Control self.tabControl = ttk.Notebook(self.win) # Adding tabs to the window for organisation & asthetic appeal self.tab1 = ttk.Frame(self.tabControl) self.tabControl.add(self.tab1, text='Parameters') self.tab2 = ttk.Frame(self.tabControl) self.tabControl.add(self.tab2, text='Analysis') self.tab3 = ttk.Frame(self.tabControl) self.tabControl.add(self.tab3, text='Results') # self.tabControl.pack(expand=1, fill='both') self.tabControl.grid(row=0, column=0, sticky='NSEW') self.tabControl.grid_columnconfigure(0, weight=1) self.tabControl.grid_rowconfigure(0, weight=1) # Creating frame for right side of tab1 self.focusBox = ttk.Labelframe(self.tab1, text='Parameter Summary') self.focusBox.grid(column=1, row=0, padx=10, pady=10, sticky='NS') self.focusBox.grid_columnconfigure(1, weight=1) self.focusBox.grid_rowconfigure(0, weight=1) # Creating a label to show which focus group has been selected self.focusChoice = ttk.Label(self.focusBox, text='Make a Choice', font=LB_B20) self.focusChoice.grid(columnspan=2, row=1, padx=5, pady=5) self.focusChoice.grid_rowconfigure(1, weight=1) # Creating drop-down menu to specify focus group focusLabel = ttk.Label(self.focusBox, text='Focus Group:', font=LB_N18) focusLabel.grid(column=0, row=0, padx=5, pady=5) focusLabel.grid_columnconfigure(0, weight=1) focusLabel.grid_rowconfigure(0, weight=1) self.degree = tk.StringVar() self.groupChosen = ttk.Combobox(self.focusBox, width=30, textvariable=self.degree, state='readonly', validate='all', justify='center') self.groupChosen['values'] = ('Undergraduate, International', 'Undergarduate, Domestic', 'Masters, International', 'Masters, Domestic', 'Doctorate, International', 'Doctorate, Domestic') self.groupChosen.grid(column=1, row=0, padx=5, pady=5) self.groupChosen.grid_columnconfigure(1, weight=1) self.groupChosen.grid_rowconfigure(0, weight=1) self.groupChosen.current(0) print(self.degree.get()) self.groupChosen.bind("<<ComboboxSelectd>>", self.focusCall) mainGui = VRES_GUI() mainGui.win.mainloop()
#Driver code class Node: def __init__(self, val): self.val = val self.right = None self.left = None def create(): n = int(input()) if n == -1: return None root = Node(n) root.left = create() root.right = create() return root def print_tree(root): if root != None: print(root.val, end=" ") print_tree(root.left) print_tree(root.right) #Main solution code def count_unival(root): if root == None: return True, 0 if root.left == None and root.right == None: return True, 1 left_val, l_val = count_unival(root.left) right_val, r_val = count_unival(root.right) if right_val and left_val: if (root.left == None and root.val == root.right.val) or (root.right == None and root.val == root.left.val) or (root.val == root.left.val and root.val == root.right.val): return True, 1 + l_val + r_val return False, l_val + r_val #Driver code if __name__ == '__main__': tree = create() print("\n") print_tree(tree) print("\n") context, count = count_unival(tree) print(count)
from __future__ import division from past.utils import old_div import unittest from nineml.abstraction import ( Dynamics, Regime, Alias, Parameter, AnalogReceivePort, AnalogReducePort, OnCondition, AnalogSendPort, Constant, StateAssignment) from nineml.abstraction.dynamics.visitors.modifiers import ( DynamicsSubstituteAliases) from nineml import units as un # Testing Skeleton for class: DynamicsClonerPrefixNamespace class DynamicsSubstituteAliasesTest(unittest.TestCase): def setUp(self): self.a = Dynamics( name='A', aliases=['A1:=P1 / P2', 'A2 := ARP2 + P3', 'A3 := A4 * P4 * P5', 'A4:=P6 ** 2 + ADP1', 'A5:=SV1 * SV2 * P8', 'A6:=SV1 * P1 / P8', 'A7:=A1 / P8'], regimes=[ Regime('dSV1/dt = -A1 / A2', 'dSV2/dt = -ADP1 / P7', 'dSV3/dt = -A1 * A3 / (A2 * C1)', transitions=[OnCondition('SV1 > 10', target_regime_name='R2')], aliases=[Alias('A1', 'P1 / P2 * 2'), Alias('A5', 'SV1 * SV2 * P8 * 2')], name='R1'), Regime('dSV1/dt = -A1 / A2', 'dSV3/dt = -A1 / A2 * A4', transitions=[OnCondition( 'C2 > A6', state_assignments=[ StateAssignment('SV1', 'SV1 - A7')], target_regime_name='R1')], name='R2')], analog_ports=[AnalogReceivePort('ARP1', dimension=un.resistance), AnalogReceivePort('ARP2', dimension=un.charge), AnalogReducePort('ADP1', dimension=un.dimensionless), AnalogSendPort('A5', dimension=un.current)], parameters=[Parameter('P1', dimension=un.voltage), Parameter('P2', dimension=un.resistance), Parameter('P3', dimension=un.charge), Parameter('P4', dimension=old_div(un.length, un.current ** 2)), Parameter('P5', dimension=old_div(un.current ** 2, un.length)), Parameter('P6', dimension=un.dimensionless), Parameter('P7', dimension=un.time), Parameter('P8', dimension=un.current)], constants=[Constant('C1', value=10.0, units=un.unitless), Constant('C2', value=1.0, units=un.ohm)]) self.ref_substituted_a = Dynamics( name='substituted_A', aliases=['A5:=SV1 * SV2 * P8'], regimes=[ Regime('dSV1/dt = -2 * (P1 / P2) / (ARP2 + P3)', 'dSV2/dt = -ADP1 / P7', ('dSV3/dt = -2 * (P1 / P2) * ((P6 ** 2 + ADP1) * P4 * ' 'P5) / ((ARP2 + P3) * C1)'), transitions=[OnCondition('SV1 > 10', target_regime_name='R2')], aliases=[Alias('A5', 'SV1 * SV2 * P8 * 2')], name='R1'), Regime('dSV1/dt = -(P1 / P2) / (ARP2 + P3)', 'dSV3/dt = -(P1 / P2) / (ARP2 + P3) * (P6 ** 2 + ADP1)', transitions=[OnCondition( 'C2 > (SV1 * P1 / P8)', state_assignments=[ StateAssignment('SV1', 'SV1 - (P1 / P2) / P8')], target_regime_name='R1')], name='R2')], analog_ports=[AnalogReceivePort('ARP1', dimension=un.resistance), AnalogReceivePort('ARP2', dimension=un.charge), AnalogReducePort('ADP1', dimension=un.dimensionless), AnalogSendPort('A5', dimension=un.current)], parameters=[Parameter('P1', dimension=un.voltage), Parameter('P2', dimension=un.resistance), Parameter('P3', dimension=un.charge), Parameter('P4', dimension=old_div(un.length, un.current ** 2)), Parameter('P5', dimension=old_div(un.current ** 2, un.length)), Parameter('P6', dimension=un.dimensionless), Parameter('P7', dimension=un.time), Parameter('P8', dimension=un.current)], constants=[Constant('C1', value=10.0, units=un.unitless), Constant('C2', value=1.0, units=un.ohm)] ) def test_substitute_aliases(self): substituted_a = self.a.clone() substituted_a.name = 'substituted_A' DynamicsSubstituteAliases(substituted_a) self.assertEqual(substituted_a, self.ref_substituted_a, substituted_a.find_mismatch(self.ref_substituted_a))
from modpy.proxy._polynomial import PolynomialModel from modpy.proxy._kriging import SimpleKrigingModel, OrdinaryKrigingModel, UniversalKrigingModel
""" FiftyOne v0.7.1 admin revision. | Copyright 2017-2021, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ def up(db): db.admin.command({"setFeatureCompatibilityVersion": "4.4"}) def down(db): db.admin.command({"setFeatureCompatibilityVersion": "4.2"})
import oscar.apps.customer.apps as apps class CustomerConfig(apps.CustomerConfig): name = 'apps.customer'
""" Selection Sort https://en.wikipedia.org/wiki/Selection_sort Worst-case performance: O(N^2) If you call selection_sort(arr,True), you can see the process of the sort Default is simulation = False """ def selection_sort(arr, simulation=False): iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr)): minimum = i for j in range(i + 1, len(arr)): # "Select" the correct value if arr[j] < arr[minimum]: minimum = j arr[minimum], arr[i] = arr[i], arr[minimum] if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr def main(): array = [1,5,8,5,150,44,4,3,6] #static inputs result = selection_sort(array) print(result) if __name__=="__main__": main()
import itertools from networking_p4.extensions import p4 def list_quota_opts(): return [ ('quotas', itertools.chain( p4.p4_quota_opts) ), ]
default_app_config = "grandchallenge.workstations.apps.WorkstationsConfig"
# coding: utf-8 import enum from sqlalchemy import Boolean from sqlalchemy import Column from sqlalchemy import Enum from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import Numeric from sqlalchemy import String from sqlalchemy.orm import relationship import typing from rolling.server.document.character import CharacterDocument from rolling.server.extension import ServerSideDocument as Document from rolling.util import quantity_to_str if typing.TYPE_CHECKING: from rolling.kernel import Kernel class OfferItemPosition(enum.Enum): REQUEST = "REQUEST" OFFER = "OFFER" class OfferOperand(enum.Enum): AND = "AND" OR = "OR" class OfferStatus(enum.Enum): DRAFT = "DRAFT" OPEN = "OPEN" CLOSED = "CLOSED" ACCEPTED = "ACCEPTED" REFUSED = "REFUSED" class OfferItemDocument(Document): __tablename__ = "offer_item" id = Column(Integer, autoincrement=True, primary_key=True) offer_id = Column(Integer, ForeignKey("offer.id")) position = Column( Enum(*[p.value for p in OfferItemPosition], name="offer_item__position"), nullable=False, ) resource_id = Column(String(255), nullable=True) stuff_id = Column(String(255), nullable=True) quantity = Column(Numeric(12, 6, asdecimal=False), nullable=False, default=0.0) offer: "OfferDocument" = relationship("OfferDocument", back_populates="items") def get_name(self, kernel: "Kernel", quantity: bool = False) -> str: quantity_str = "" if self.resource_id: resource_properties = kernel.game.config.resources[self.resource_id] if quantity: quantity_str = quantity_to_str( self.quantity, resource_properties.unit, kernel ) quantity_str = f" ({quantity_str})" return f"{resource_properties.name}{quantity_str}" stuff_properties = kernel.game.stuff_manager.get_stuff_properties_by_id( self.stuff_id ) if quantity: quantity_str = f" ({round(self.quantity)})" return f"{stuff_properties.name}{quantity_str}" class OfferDocument(Document): __tablename__ = "offer" id = Column(Integer, autoincrement=True, primary_key=True) character_id = Column(String(255), ForeignKey("character.id")) title = Column(String(255), nullable=False) read = Column(Boolean, default=False) request_operand = Column( Enum(*[o.value for o in OfferOperand], name="request_operand"), nullable=False, default=OfferOperand.OR.value, ) offer_operand = Column( Enum(*[o.value for o in OfferOperand], name="offer_operand"), nullable=False, default=OfferOperand.OR.value, ) permanent = Column(Boolean, nullable=False, default=False) with_character_id = Column(String(255), ForeignKey("character.id")) status = Column( Enum(*[s.value for s in OfferStatus], name="status"), nullable=False, default=OfferStatus.DRAFT.value, ) from_character = relationship( "CharacterDocument", foreign_keys=[character_id], primaryjoin=CharacterDocument.id == character_id, ) to_character = relationship( "CharacterDocument", foreign_keys=[with_character_id], primaryjoin=CharacterDocument.id == with_character_id, ) items: typing.List["OfferItemDocument"] = relationship( "OfferItemDocument", back_populates="offer", primaryjoin=OfferItemDocument.offer_id == id, ) @property def request_items(self) -> typing.List[OfferItemDocument]: return [i for i in self.items if i.position == OfferItemPosition.REQUEST.value] @property def offer_items(self) -> typing.List[OfferItemDocument]: return [i for i in self.items if i.position == OfferItemPosition.OFFER.value]
default_app_config = 'gallery.apps.GalleryAppConfig'
import datetime import json import numpy as np import pandas as pd import requests import psycopg2.extras def query_yahoo_finance(stock_code, start, execution_date): # convert execution_date to timestamp execution_date = execution_date.format("%Y-%m-%d") element = datetime.datetime.strptime(execution_date,"%Y-%m-%d") end = int(datetime.datetime.timestamp(element)) site = "https://query1.finance.yahoo.com/v8/finance/chart/{stock_code:s}?period1={start:d}&period2={end:d}&interval=1d&events=history".format( stock_code=stock_code, start= start, end=end) response = requests.get(site) data = json.loads(response.text) df = pd.DataFrame(data['chart']['result'][0]['indicators']['quote'][0], index=pd.to_datetime(np.array(data['chart']['result'][0]['timestamp'])*1000*1000*1000)) df['date'] = df.index.strftime("%Y-%m-%d") df['stock_code'] = stock_code return df.dropna() def check_stock_day_exist(stock_code, execution_date, config): # create database connection conn = config.db_conn() cursor = conn.cursor() query_sql = """ SELECT EXISTS( SELECT 1 FROM history as h WHERE h.stock_code = %(stock_code)s and h.date = %(date)s ); """ execution_date = execution_date.format("%Y-%m-%d") cursor.execute(query_sql, {'stock_code': stock_code, 'date': execution_date}) result = cursor.fetchone() print('[check_stock_day_exist.month_record]', execution_date, result) # close database connection cursor.close() conn.close() return result[0] def insert_new_data(stock_code, df, config): # create database connection conn = config.db_conn() cursor = conn.cursor() table = 'history' tuples = [tuple(x) for x in df.to_numpy()] cols = ','.join(list(df.columns)) insert_sql = """ INSERT INTO {table:s}({cols:s}) VALUES %s ON CONFLICT (stock_code, date) DO NOTHING; """.format(table=table, cols=cols) try: psycopg2.extras.execute_values(cursor, insert_sql, tuples) conn.commit() except (Exception, psycopg2.DatabaseError) as error: print("Error: %s" % error) conn.rollback() cursor.close() raise # close database connection cursor.close() conn.close() # def unpause_airflow_dag(dag_ids): # print(dag_ids) # import time # time.sleep(5) # # unpause airflow dag # airflow_webserver_url = "http://airflow_webserver:8080" # for dag_id in dag_ids: # unpause_url = "{airflow_webserver_url}/api/experimental/dags/{dag_id}/paused/false".format(airflow_webserver_url=airflow_webserver_url, dag_id=dag_id) # a = requests.get(unpause_url) # print(a) # print("[Unpaused All DAGs]")
import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_digits from sklearn.preprocessing import scale digits = load_digits() X = digits.data # --> 8x8 픽셀 y = digits.target #plt.matshow(digits.images[0]) #plt.show() ## scale ## X_scale = scale(X, axis=0) # scaling pca = PCA(n_components=2) reduced_x = pca.fit_transform(X_scale)
# ! /usr/bin/env python # -*- coding: utf-8 -*- from random import randint class Solution: def findKthLargest(self, nums, k): if len(nums) < k: return [] index = randint(0, len(nums) - 1) pivot = nums[index] less = [i for i in nums[:index] + nums[index + 1:] if i < pivot] great = [i for i in nums[:index] + nums[index + 1:] if i > pivot] if len(great) == k - 1: return pivot elif len(great) > k - 1: return self.findKthLargest(great, k) else: return self.findKthLargest(less, k - len(great) - 1)
#coding:utf-8 # # id: bugs.core_5808 # title: Support backup of encrypted databases # decription: # THIS TEST USES IBSurgeon Demo Encryption package # ################################################ # ( https://ib-aid.com/download-demo-firebird-encryption-plugin/ ; https://ib-aid.com/download/crypt/CryptTest.zip ) # License file plugins\\dbcrypt.conf with unlimited expiration was provided by IBSurgeon to Firebird Foundation (FF). # This file was preliminary stored in FF Test machine. # Test assumes that this file and all neccessary libraries already were stored into FB_HOME and %FB_HOME%\\plugins. # # After test database will be created, we try to encrypt it using 'alter database encrypt with <plugin_name> ...' command # (where <plugin_name> = dbcrypt - name of .dll in FB_HOME\\plugins\\ folder that implements encryption). # Then we allow engine to complete this job - take delay about 1..2 seconds BEFORE detach from database. # After this we make backup of encrypted database + restore. # # Then we make snapshot of firebird.log, run 'gfix -v -full' of restored database and once again take snapshot of firebird.log. # Comparison of these two logs is result of validation. It should contain line about start and line with finish info. # The latter must look like this: "Validation finished: 0 errors, 0 warnings, 0 fixed" # # Checked on: # 40sS, build 4.0.0.1487: OK, 6.552s. # 40sC, build 4.0.0.1421: OK, 11.812s. # 40Cs, build 4.0.0.1485: OK, 8.097s. # # 15.04.2021. Adapted for run both on Windows and Linux. Checked on: # Windows: 4.0.0.2416 # Linux: 4.0.0.2416 # # tracker_id: CORE-5808 # min_versions: ['4.0'] # versions: 4.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 4.0 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) # test_script_1 #--- # # import os # import time # import difflib # import subprocess # import re # import fdb # # os.environ["ISC_USER"] = user_name # os.environ["ISC_PASSWORD"] = user_password # db_conn.close() # # #-------------------------------------------- # # def svc_get_fb_log( f_fb_log ): # # global subprocess # # subprocess.call( [ context['fbsvcmgr_path'], # "localhost:service_mgr", # "action_get_fb_log" # ], # stdout=f_fb_log, stderr=subprocess.STDOUT # ) # return # # #-------------------------------------------- # # def flush_and_close( file_handle ): # # https://docs.python.org/2/library/os.html#os.fsync # # If you're starting with a Python file object f, # # first do f.flush(), and # # then do os.fsync(f.fileno()), to ensure that all internal buffers associated with f are written to disk. # global os # # file_handle.flush() # if file_handle.mode not in ('r', 'rb') and file_handle.name != os.devnull: # # otherwise: "OSError: [Errno 9] Bad file descriptor"! # os.fsync(file_handle.fileno()) # file_handle.close() # # #-------------------------------------------- # # def cleanup( f_names_list ): # global os # for i in range(len( f_names_list )): # if type(f_names_list[i]) == file: # del_name = f_names_list[i].name # elif type(f_names_list[i]) == str: # del_name = f_names_list[i] # else: # print('Unrecognized type of element:', f_names_list[i], ' - can not be treated as file.') # print('type(f_names_list[i])=',type(f_names_list[i])) # del_name = None # # if del_name and os.path.isfile( del_name ): # os.remove( del_name ) # # #-------------------------------------------- # # tmpfdb='$(DATABASE_LOCATION)'+'tmp_core_5808.fdb' # tmpfbk='$(DATABASE_LOCATION)'+'tmp_core_5808.fbk' # # f_list=( tmpfdb, tmpfbk ) # cleanup( f_list ) # # # # 14.04.2021. # # Name of encryption plugin depends on OS: # # * for Windows we (currently) use plugin by IBSurgeon, its name is 'dbcrypt'; # # * for Linux we use: # # ** 'DbCrypt_example' for FB 3.x # # ** 'fbSampleDbCrypt' for FB 4.x+ # # # PLUGIN_NAME = 'dbcrypt' if os.name == 'nt' else '"fbSampleDbCrypt"' # # con = fdb.create_database( dsn = 'localhost:'+tmpfdb ) # cur = con.cursor() # # ############################################## # # WARNING! Do NOT use 'connection_obj.execute_immediate()' for ALTER DATABASE ENCRYPT... command! # # There is bug in FB driver which leads this command to fail with 'token unknown' message # # The reason is that execute_immediate() silently set client dialect = 0 and any encryption statement # # can not be used for such value of client dialect. # # One need to to use only cursor_obj.execute() for encryption! # # See letter from Pavel Cisar, 20.01.20 10:36 # ############################################## # cur.execute('alter database encrypt with %(PLUGIN_NAME)s key Red' % locals()) # # con.commit() # # time.sleep(2) # # ^ # # +-------- !! ALLOW BACKGROUND ENCRYPTION PROCESS TO COMPLETE ITS JOB !! # # con.close() # # f_backup_log = open( os.path.join(context['temp_directory'],'tmp_backup_5808.log'), 'w') # f_backup_err = open( os.path.join(context['temp_directory'],'tmp_backup_5808.err'), 'w') # # subprocess.call( [ context['gbak_path'], "-v", "-b", 'localhost:' + tmpfdb, tmpfbk], # stdout = f_backup_log, # stderr = f_backup_err # ) # flush_and_close( f_backup_log ) # flush_and_close( f_backup_err ) # # # f_restore_log = open( os.path.join(context['temp_directory'],'tmp_restore_5808.log'), 'w') # f_restore_err = open( os.path.join(context['temp_directory'],'tmp_restore_5808.err'), 'w') # # subprocess.call( [ context['gbak_path'], "-v", "-rep", tmpfbk, 'localhost:'+tmpfdb], # stdout = f_restore_log, # stderr = f_restore_err # ) # flush_and_close( f_restore_log ) # flush_and_close( f_restore_err ) # # f_fblog_before=open( os.path.join(context['temp_directory'],'tmp_5808_fblog_before.txt'), 'w') # svc_get_fb_log( f_fblog_before ) # flush_and_close( f_fblog_before ) # # # f_validate_log = open( os.path.join(context['temp_directory'],'tmp_validate_5808.log'), 'w') # f_validate_err = open( os.path.join(context['temp_directory'],'tmp_validate_5808.err'), 'w') # # subprocess.call( [ context['gfix_path'], "-v", "-full", tmpfdb ], # stdout = f_validate_log, # stderr = f_validate_err # ) # flush_and_close( f_validate_log ) # flush_and_close( f_validate_err ) # # f_fblog_after=open( os.path.join(context['temp_directory'],'tmp_5808_fblog_after.txt'), 'w') # svc_get_fb_log( f_fblog_after ) # flush_and_close( f_fblog_after ) # # # # Compare firebird.log versions BEFORE and AFTER this test: # ###################### # # oldfb=open(f_fblog_before.name, 'r') # newfb=open(f_fblog_after.name, 'r') # # difftext = ''.join(difflib.unified_diff( # oldfb.readlines(), # newfb.readlines() # )) # oldfb.close() # newfb.close() # # # with open( f_backup_err.name,'r') as f: # for line in f: # print("UNEXPECTED PROBLEM ON BACKUP, STDERR: "+line) # # with open( f_restore_err.name,'r') as f: # for line in f: # print("UNEXPECTED PROBLEM ON RESTORE, STDERR: "+line) # # # f_diff_txt=open( os.path.join(context['temp_directory'],'tmp_5808_diff.txt'), 'w') # f_diff_txt.write(difftext) # flush_and_close( f_diff_txt ) # # allowed_patterns = ( # re.compile( '\\+\\s+Validation\\s+started', re.IGNORECASE) # ,re.compile( '\\+\\s+Validation\\s+finished:\\s+0\\s+errors,\\s+0\\s+warnings,\\s+0\\s+fixed', re.IGNORECASE) # ) # # # with open( f_diff_txt.name,'r') as f: # for line in f: # match2some = filter( None, [ p.search(line) for p in allowed_patterns ] ) # if match2some: # print( (' '.join( line.split()).upper() ) ) # # # CLEANUP: # ########## # # do NOT remove this pause otherwise some of logs will not be enable for deletion and test will finish with # # Exception raised while executing Python test script. exception: WindowsError: 32 # time.sleep(1) # cleanup( (f_backup_log, f_backup_err, f_restore_log, f_restore_err, f_validate_log, f_validate_err, f_fblog_before, f_fblog_after, f_diff_txt, tmpfdb, tmpfbk) ) # # #--- #act_1 = python_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """ + VALIDATION STARTED + VALIDATION FINISHED: 0 ERRORS, 0 WARNINGS, 0 FIXED """ @pytest.mark.version('>=4.0') @pytest.mark.xfail def test_1(db_1): pytest.fail("Test not IMPLEMENTED")
MAIN_PAGE_ADMIN_TEMPLATE = """\ <head> <link type="text/css" rel="stylesheet" href="/stylesheets/main.css" /> </head> <div align="center"> <h1>General</h1> <div align="center"> <table> <tr> <td> <form action="/mainsearch" method="post"> <div><input type="submit" value="Search"></div> </form> </td> <td> <form action="/mainclear" method="post"> <div><input type="submit" value="Clear"></div> </form> </td> </tr> </table> </div> <h1>Books</h1> <div align="center"> <table> <tr> <td> <form action="/listbooks" method="get"> <div><input type="submit" value="List"></div> </form> </td> <td> <form action="/loadbookpage" method="get"> <div><input type="submit" value="Load"></div> </form> </td> <td> <form action="/clearbooks" method="post"> <div><input type="submit" value="Clear"></div> </form> </td> <td> <form action="/statbooks" method="get"> <div><input type="submit" value="Stats"></div> </form> </td> </tr> </table> </div> <h1>Chars</h1> <div align="center"> <table> <tr> <td> <form action="/listchichars" method="get"> <div><input type="submit" value="List"></div> </form> </td> <td> <form action="/addchichar" method="get"> <div><input type="submit" value="Add"></div> </form> </td> <td> <form action="/statchichars" method="get"> <div><input type="submit" value="Stats"></div> </form> </td> <td> <form action="/exportchichars" method="get"> <div><input type="submit" value="Export"></div> </form> </td> </tr> </table> </div> <h1>Words</h1> <div align="center"> <table> <tr> <td> <form action="/listwords" method="get"> <div><input type="submit" value="List"></div> </form> </td> <td> <form action="/addword" method="get"> <div><input type="submit" value="Add"></div> </form> </td> <td> <form action="/statwords" method="get"> <div><input type="submit" value="Stats"></div> </form> </td> </tr> </table> </div> <h1>Sentences</h1> <div align="center"> <table> <tr> <td> <form action="/listsentences" method="get"> <div><input type="submit" value="List"></div> </form> </td> <td> <form action="/addsentence" method="get"> <div><input type="submit" value="Add"></div> </form> </td> <td> <form action="/statsentences" method="get"> <div><input type="submit" value="Stats"></div> </form> </td> </tr> </table> </div> <h1>Training</h1> <div align="center"> <table> <tr> <td> <form action="/char2pinyintest" method="get"> <div><input type="submit" value="Char2Pinyin"></div> </form> </td> <td> <form action="/def2chartest" method="get"> <div><input type="submit" value="Def2Char"></div> </form> </td> </tr> </table> </div> <h1>My Stats</h1> <div align="center"> <table> <tr> <td> <form action="/listviewstats" method="get"> <div><input type="submit" value="View"></div> </form> </td> <td> <form action="/charteststats" method="get"> <div><input type="submit" value="CharTestStats"></div> </form> </td> </tr> </table> </div> </div> <hr> <a href="%s">%s</a> """ MAIN_PAGE_USER_TEMPLATE = """\ <head> <link type="text/css" rel="stylesheet" href="/stylesheets/main.css" /> </head> <div align="center"> <h1>Chars</h1> <form action="/listchichars" method="get"> <div><input type="submit" value="List"></div> </form> <h1>Sentences</h1> <form action="/listsentences" method="get"> <div><input type="submit" value="List"></div> </form> <h1>Training</h1> <div>TODO</div> <h1>My Stats</h1> <div align="center"> <table> <tr> <td> <form action="/listviewstats" method="get"> <div><input type="submit" value="View"></div> </form> </td> <td> <form action="/clearviewstats" method="post"> <div><input type="submit" value="Clear"></div> </form> </td> </tr> </table> </div> </div> <hr> <a href="%s">%s</a> """ LOAD_GENERAL = """\ <head> <link type="text/css" rel="stylesheet" href="/stylesheets/main.css" /> </head> <form action="/domainload" method="post"> <div><textarea name="dataentry" rows="10" cols="40"></textarea></div> <div><input type="submit" value="Load"></div> </form> """ SEARCH_GENERAL = """\ <head> <link type="text/css" rel="stylesheet" href="/stylesheets/main.css" /> </head> <h1>Search</h1> <hr> <form action="/mainsearch" method="post"> <div><textarea name="searchquery" rows="1" cols="10">%s</textarea></div> <div><input type="submit" value="Search"></div> </form> <hr> <h1>Chars</h1> %s <h1>Words</h1> %s <h1>Sentences</h1> %s <hr> <form action="/" method="get"> <div><input type="submit" value="Home"></div> </form> """
import logging import os import sys from argparse import ArgumentParser from signal import SIGUSR1, SIGUSR2, signal from subprocess import PIPE, run import matplotlib.pyplot as plt import numpy as np import pandas as pd import xarray as xr from loren_frank_data_processing import save_xarray from loren_frank_data_processing.position import (EDGE_ORDER, EDGE_SPACING, make_track_graph) from replay_trajectory_classification import (ClusterlessClassifier, SortedSpikesClassifier) from scipy.ndimage import label from src.analysis import (get_place_field_max, get_replay_info, reshape_to_segments) from src.load_data import load_data from src.parameters import (ANIMALS, FIGURE_DIR, PROBABILITY_THRESHOLD, PROCESSED_DATA_DIR, SAMPLING_FREQUENCY, TRANSITION_TO_CATEGORY, continuous_transition_types, discrete_diag, knot_spacing, model, model_kwargs, movement_var, place_bin_size, replay_speed, spike_model_penalty) from src.visualization import plot_ripple_decode_1D from tqdm.auto import tqdm FORMAT = '%(asctime)s %(message)s' logging.basicConfig(level='INFO', format=FORMAT, datefmt='%d-%b-%y %H:%M:%S') plt.switch_backend('agg') def sorted_spikes_analysis_1D(epoch_key, plot_ripple_figures=False, exclude_interneuron_spikes=False, use_multiunit_HSE=False, brain_areas=None, overwrite=False): animal, day, epoch = epoch_key data_type, dim = 'sorted_spikes', '1D' logging.info('Loading data...') data = load_data(epoch_key, exclude_interneuron_spikes=exclude_interneuron_spikes) is_training = data['position_info'].speed > 4 position = data['position_info'].loc[:, 'linear_position'] track_graph, center_well_id = make_track_graph(epoch_key, ANIMALS) # Set up naming group = f'/{data_type}/{dim}/' epoch_identifier = f'{animal}_{day:02d}_{epoch:02d}_{data_type}_{dim}' if exclude_interneuron_spikes: logging.info('Excluding interneuron spikes...') epoch_identifier += '_no_interneuron' group += 'no_interneuron/' if brain_areas is not None: area_str = '-'.join(brain_areas) epoch_identifier += f'_{area_str}' group += f'{area_str}/' if use_multiunit_HSE: epoch_identifier += '_multiunit_HSE' group += 'classifier/multiunit_HSE/' replay_times = data['multiunit_HSE_times'] else: group += 'classifier/ripples/' replay_times = data['ripple_times'] model_name = os.path.join( PROCESSED_DATA_DIR, epoch_identifier + '_model.pkl') try: if overwrite: raise FileNotFoundError results = xr.open_dataset( os.path.join( PROCESSED_DATA_DIR, f'{animal}_{day:02}_{epoch:02}.nc'), group=group) logging.info('Found existing results. Loading...') ripple_spikes = reshape_to_segments( data['spikes'], replay_times.loc[:, ['start_time', 'end_time']]) classifier = SortedSpikesClassifier.load_model(model_name) logging.info(classifier) except (FileNotFoundError, OSError): logging.info('Fitting classifier...') classifier = SortedSpikesClassifier( place_bin_size=place_bin_size, movement_var=movement_var, replay_speed=replay_speed, discrete_transition_diag=discrete_diag, spike_model_penalty=spike_model_penalty, knot_spacing=knot_spacing, continuous_transition_types=continuous_transition_types).fit( position, data['spikes'], is_training=is_training, track_graph=track_graph, center_well_id=center_well_id, edge_order=EDGE_ORDER, edge_spacing=EDGE_SPACING) classifier.save_model(model_name) logging.info(classifier) # Plot Place Fields g = (classifier.place_fields_ * data['sampling_frequency']).plot( x='position', col='neuron', col_wrap=4) arm_grouper = (data['position_info'] .groupby('arm_name') .linear_position) max_df = arm_grouper.max() min_df = arm_grouper.min() plt.xlim((0, data['position_info'].linear_position.max())) max_rate = (classifier.place_fields_.values.max() * data['sampling_frequency']) for ax in g.axes.flat: for arm_name, min_position in min_df.iteritems(): ax.axvline(min_position, color='lightgrey', zorder=0, linestyle='--') ax.text(min_position + 0.2, max_rate, arm_name, color='lightgrey', horizontalalignment='left', verticalalignment='top', fontsize=8) for arm_name, max_position in max_df.iteritems(): ax.axvline(max_position, color='lightgrey', zorder=0, linestyle='--') plt.suptitle(epoch_key, y=1.04, fontsize=16) fig_name = ( f'{animal}_{day:02d}_{epoch:02d}_{data_type}_place_fields_1D.png') fig_name = os.path.join(FIGURE_DIR, 'neuron_place_fields', fig_name) plt.savefig(fig_name, bbox_inches='tight') plt.close(g.fig) # Decode is_test = ~is_training test_groups = pd.DataFrame( {'test_groups': label(is_test.values)[0]}, index=is_test.index) immobility_results = [] for _, df in tqdm(test_groups.loc[is_test].groupby('test_groups'), desc='immobility'): start_time, end_time = df.iloc[0].name, df.iloc[-1].name test_spikes = data['spikes'].loc[start_time:end_time] immobility_results.append( classifier.predict(test_spikes, time=test_spikes.index)) immobility_results = xr.concat(immobility_results, dim='time') results = [(immobility_results .sel(time=slice(df.start_time, df.end_time)) .assign_coords(time=lambda ds: ds.time - ds.time[0])) for _, df in replay_times.iterrows()] results = (xr.concat(results, dim=replay_times.index) .assign_coords(state=lambda ds: ds.state.to_index() .map(TRANSITION_TO_CATEGORY))) logging.info('Saving results...') ripple_spikes = reshape_to_segments( data['spikes'], replay_times.loc[:, ['start_time', 'end_time']]) save_xarray(PROCESSED_DATA_DIR, epoch_key, results.drop(['likelihood', 'causal_posterior']), group=f'/{data_type}/{dim}/classifier/ripples/') logging.info('Saving replay_info...') replay_info = get_replay_info( results, data['spikes'], replay_times, data['position_info'], track_graph, SAMPLING_FREQUENCY, PROBABILITY_THRESHOLD, epoch_key, classifier, data["ripple_consensus_trace_zscore"]) prob = int(PROBABILITY_THRESHOLD * 100) epoch_identifier = f'{animal}_{day:02d}_{epoch:02d}_{data_type}_{dim}' replay_info_filename = os.path.join( PROCESSED_DATA_DIR, f'{epoch_identifier}_replay_info_{prob:02d}.csv') replay_info.to_csv(replay_info_filename) if plot_ripple_figures: logging.info('Plotting ripple figures...') place_field_max = get_place_field_max(classifier) linear_position_order = place_field_max.argsort(axis=0).squeeze() ripple_position = reshape_to_segments( position, replay_times.loc[:, ['start_time', 'end_time']]) for ripple_number in tqdm(replay_times.index, desc='ripple figures'): try: posterior = ( results .acausal_posterior .sel(ripple_number=ripple_number) .dropna('time', how='all') .assign_coords( time=lambda ds: 1000 * ds.time / np.timedelta64(1, 's'))) plot_ripple_decode_1D( posterior, ripple_position.loc[ripple_number], ripple_spikes.loc[ripple_number], linear_position_order, data['position_info'], classifier) plt.suptitle( f'ripple number = {animal}_{day:02d}_{epoch:02d}_' f'{ripple_number:04d}') fig_name = ( f'{animal}_{day:02d}_{epoch:02d}_{ripple_number:04d}_' f'{data_type}_{dim}_acasual_classification.png') fig_name = os.path.join( FIGURE_DIR, 'ripple_classifications', fig_name) plt.savefig(fig_name, bbox_inches='tight') plt.close(plt.gcf()) except (ValueError, IndexError): logging.warn(f'No figure for ripple number {ripple_number}...') continue logging.info('Done...') def clusterless_analysis_1D(epoch_key, plot_ripple_figures=False, exclude_interneuron_spikes=False, use_multiunit_HSE=False, brain_areas=None, overwrite=False): animal, day, epoch = epoch_key data_type, dim = 'clusterless', '1D' logging.info('Loading data...') data = load_data(epoch_key, brain_areas=brain_areas, exclude_interneuron_spikes=exclude_interneuron_spikes) is_training = data['position_info'].speed > 4 position = data['position_info'].loc[:, 'linear_position'] track_graph, center_well_id = make_track_graph(epoch_key, ANIMALS) # Set up naming group = f'/{data_type}/{dim}/' epoch_identifier = f'{animal}_{day:02d}_{epoch:02d}_{data_type}_{dim}' if exclude_interneuron_spikes: logging.info('Excluding interneuron spikes...') epoch_identifier += '_no_interneuron' group += 'no_interneuron/' if brain_areas is not None: area_str = '-'.join(brain_areas) epoch_identifier += f'_{area_str}' group += f'{area_str}/' if use_multiunit_HSE: epoch_identifier += '_multiunit_HSE' group += 'classifier/multiunit_HSE/' replay_times = data['multiunit_HSE_times'] else: group += 'classifier/ripples/' replay_times = data['ripple_times'] model_name = os.path.join( PROCESSED_DATA_DIR, epoch_identifier + '_model.pkl') try: if overwrite: raise FileNotFoundError results = xr.open_dataset( os.path.join( PROCESSED_DATA_DIR, f'{animal}_{day:02}_{epoch:02}.nc'), group=group) logging.info('Found existing results. Loading...') spikes = (((data['multiunit'].sum('features') > 0) * 1.0) .to_dataframe(name='spikes').unstack()) spikes.columns = data['tetrode_info'].tetrode_id ripple_spikes = reshape_to_segments( spikes, replay_times.loc[:, ['start_time', 'end_time']]) classifier = ClusterlessClassifier.load_model(model_name) logging.info(classifier) except (FileNotFoundError, OSError): logging.info('Fitting classifier...') classifier = ClusterlessClassifier( place_bin_size=place_bin_size, movement_var=movement_var, replay_speed=replay_speed, discrete_transition_diag=discrete_diag, continuous_transition_types=continuous_transition_types, model=model, model_kwargs=model_kwargs).fit( position, data['multiunit'], is_training=is_training, track_graph=track_graph, center_well_id=center_well_id, edge_order=EDGE_ORDER, edge_spacing=EDGE_SPACING) classifier.save_model(model_name) logging.info(classifier) # Decode is_test = ~is_training test_groups = pd.DataFrame( {'test_groups': label(is_test.values)[0]}, index=is_test.index) immobility_results = [] for _, df in tqdm(test_groups.loc[is_test].groupby('test_groups'), desc='immobility'): start_time, end_time = df.iloc[0].name, df.iloc[-1].name test_multiunit = data['multiunit'].sel( time=slice(start_time, end_time)) immobility_results.append( classifier.predict(test_multiunit, time=test_multiunit.time)) immobility_results = xr.concat(immobility_results, dim='time') results = [(immobility_results .sel(time=slice(df.start_time, df.end_time)) .assign_coords(time=lambda ds: ds.time - ds.time[0])) for _, df in replay_times.iterrows()] results = (xr.concat(results, dim=replay_times.index) .assign_coords(state=lambda ds: ds.state.to_index() .map(TRANSITION_TO_CATEGORY))) spikes = ((((~np.isnan(data['multiunit'])).sum('features') > 0) * 1.0) .to_dataframe(name='spikes').unstack()) spikes.columns = data['tetrode_info'].tetrode_id ripple_spikes = reshape_to_segments( spikes, replay_times.loc[:, ['start_time', 'end_time']]) logging.info('Saving results...') save_xarray(PROCESSED_DATA_DIR, epoch_key, results.drop(['likelihood', 'causal_posterior']), group=group) logging.info('Saving replay_info...') replay_info = get_replay_info( results, spikes, replay_times, data['position_info'], track_graph, SAMPLING_FREQUENCY, PROBABILITY_THRESHOLD, epoch_key, classifier, data["ripple_consensus_trace_zscore"]) prob = int(PROBABILITY_THRESHOLD * 100) replay_info_filename = os.path.join( PROCESSED_DATA_DIR, f'{epoch_identifier}_replay_info_{prob:02d}.csv') replay_info.to_csv(replay_info_filename) if plot_ripple_figures: logging.info('Plotting ripple figures...') place_field_max = get_place_field_max(classifier) linear_position_order = place_field_max.argsort(axis=0).squeeze() ripple_position = reshape_to_segments( position, replay_times.loc[:, ['start_time', 'end_time']]) for ripple_number in tqdm(replay_times.index, desc='ripple figures'): try: posterior = ( results .acausal_posterior .sel(ripple_number=ripple_number) .dropna('time', how='all') .assign_coords( time=lambda ds: 1000 * ds.time / np.timedelta64(1, 's'))) plot_ripple_decode_1D( posterior, ripple_position.loc[ripple_number], ripple_spikes.loc[ripple_number], linear_position_order, data['position_info'], classifier, spike_label='Tetrodes') plt.suptitle( f'ripple number = {animal}_{day:02d}_{epoch:02d}_' f'{ripple_number:04d}') fig_name = ( f'{animal}_{day:02d}_{epoch:02d}_{ripple_number:04d}_' f'{data_type}_{dim}_acasual_classification.png') fig_name = os.path.join( FIGURE_DIR, 'ripple_classifications', fig_name) plt.savefig(fig_name, bbox_inches='tight') plt.close(plt.gcf()) except (ValueError, IndexError): logging.warn(f'No figure for ripple number {ripple_number}...') continue logging.info('Done...\n') run_analysis = { ('sorted_spikes', '1D'): sorted_spikes_analysis_1D, ('clusterless', '1D'): clusterless_analysis_1D, } def get_command_line_arguments(): parser = ArgumentParser() parser.add_argument('Animal', type=str, help='Short name of animal') parser.add_argument('Day', type=int, help='Day of recording session') parser.add_argument('Epoch', type=int, help='Epoch number of recording session') parser.add_argument('--data_type', type=str, default='sorted_spikes') parser.add_argument('--dim', type=str, default='1D') parser.add_argument('--n_workers', type=int, default=16) parser.add_argument('--threads_per_worker', type=int, default=1) parser.add_argument('--plot_ripple_figures', action='store_true') parser.add_argument('--exclude_interneuron_spikes', action='store_true') parser.add_argument('--use_multiunit_HSE', action='store_true') parser.add_argument('--CA1', action='store_true') parser.add_argument('--overwrite', action='store_true') parser.add_argument( '-d', '--debug', help='More verbose output for debugging', action='store_const', dest='log_level', const=logging.DEBUG, default=logging.INFO, ) return parser.parse_args() def main(): args = get_command_line_arguments() FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(format=FORMAT, level=args.log_level) def _signal_handler(signal_code, frame): logging.error('***Process killed with signal {signal}***'.format( signal=signal_code)) exit() for code in [SIGUSR1, SIGUSR2]: signal(code, _signal_handler) epoch_key = (args.Animal, args.Day, args.Epoch) logging.info( 'Processing epoch: Animal {0}, Day {1}, Epoch #{2}...'.format( *epoch_key)) logging.info(f'Data type: {args.data_type}, Dim: {args.dim}') git_hash = run(['git', 'rev-parse', 'HEAD'], stdout=PIPE, universal_newlines=True).stdout logging.info('Git Hash: {git_hash}'.format(git_hash=git_hash.rstrip())) if args.CA1: brain_areas = ['CA1'] else: brain_areas = None # Analysis Code run_analysis[(args.data_type, args.dim)]( epoch_key, plot_ripple_figures=args.plot_ripple_figures, exclude_interneuron_spikes=args.exclude_interneuron_spikes, use_multiunit_HSE=args.use_multiunit_HSE, brain_areas=brain_areas, overwrite=args.overwrite) if __name__ == '__main__': sys.exit(main())
import calendar def iterweekdays(calendar): return calendar.iterweekdays() for calendar in [calendar.Calendar(), calendar.Calendar(firstweekday=0), calendar.Calendar(firstweekday=6)]: print('-----',calendar,'-----') print(iterweekdays(calendar)) for weekday in iterweekdays(calendar): print(weekday, end=',') print() #print(calendar.Calendar()) #print(calendar.Calendar(firstweekday=0))#月曜日 #print(calendar.Calendar(firstweekday=6))#日曜日
# Django settings for dd_auth project. import os from django.utils.translation import ugettext_lazy as _ APP_PATH = os.path.dirname(os.path.abspath(__file__)) DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '%s/dd_auth.db' % APP_PATH, # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Europe/Vienna' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' LANGUAGES = ( ('de', _('German')), ('en', _('English')), ) SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '%s/../static' % APP_PATH # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/dd_auth_static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '6g^74v__c=-!$e6qiqw1c53is2*y*4ayl#is)btc7w!i45tRXs' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'dd_auth.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'dd_auth.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. '/%s/templates' % APP_PATH, ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.request', 'django.contrib.auth.context_processors.auth', 'allauth.account.context_processors.account', 'allauth.socialaccount.context_processors.socialaccount', 'django.core.context_processors.i18n' ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'jsonrpc', 'south', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.facebook', 'allauth.socialaccount.providers.google', #'allauth.socialaccount.providers.github', #'allauth.socialaccount.providers.linkedin', #'allauth.socialaccount.providers.openid', #'allauth.socialaccount.providers.persona', #'allauth.socialaccount.providers.soundcloud', #'allauth.socialaccount.providers.twitter', 'django.contrib.admin', 'dd_auth.dd_user_sync', 'dd_auth.dd_djangomessage_null', 'dd_invitation', 'django_extensions', ) # django.contrib.messages storage MESSAGE_STORAGE = 'dd_auth.dd_djangomessage_null.storage.NullStorage' # Password hashers PASSWORD_HASHERS = ( 'django.contrib.auth.hashers.BCryptPasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } EMAIL_HOST='some.mail.host' EMAIL_PORT=25 EMAIL_HOST_USER='username' EMAIL_HOST_PASSWORD='secret' EMAIL_USE_TLS=True DEFAULT_FROM_EMAIL=SERVER_EMAIL='robot@datadealer.com' LOGIN_REDIRECT_URL='/#load' #LOGIN_REDIRECT_URLNAME='https://datadealer.com/#load' ACCOUNT_LOGOUT_ON_GET=True ACCOUNT_LOGOUT_REDIRECT_URL='/' ### REDIS SESSIONS SESSION_ENGINE = 'redis_sessions.session' SESSION_REDIS_HOST = 'localhost' SESSION_REDIS_PORT = 6379 SESSION_REDIS_DB = 0 #SESSION_REDIS_PASSWORD = 'password' SESSION_REDIS_PREFIX = 'dd_session' INVITATION_REQUIRED = True INVITATION_FAILED = '%s%s' % (ACCOUNT_LOGOUT_REDIRECT_URL, '#access_denied') # Needed for allauth email authentication AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` "django.contrib.auth.backends.ModelBackend", # `allauth` specific authentication methods, such as login by e-mail "allauth.account.auth_backends.AuthenticationBackend", ) ### ALLAUTH SETTINGS ACCOUNT_AUTHENTICATION_METHOD = "username_email" #ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL='/some/url' # after email confirmation, anonymous #ACCOUNT_EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL='/some/url' # after email confirmation, logged in ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS = 5 ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = 'optional' ACCOUNT_EMAIL_SUBJECT_PREFIX = "[Data Dealer] " #ACCOUNT_SIGNUP_FORM_CLASS ACCOUNT_SIGNUP_PASSWORD_VERIFICATION = True # password twice ACCOUNT_UNIQUE_EMAIL = True # ensure email uniqueness #ACCOUNT_USER_DISPLAY (=a callable returning user.username) ACCOUNT_USERNAME_MIN_LENGTH = 4 ACCOUNT_USERNAME_REQUIRED = True ACCOUNT_PASSWORD_INPUT_RENDER_VALUE = False ACCOUNT_PASSWORD_MIN_LENGTH = 8 ACCOUNT_ADAPTER = "dd_auth.adapters.DDAccountAdapter" SOCIALACCOUNT_QUERY_EMAIL = True SOCIALACCOUNT_AUTO_SIGNUP = False SOCIALACCOUNT_AVATAR_SUPPORT = False SOCIALACCOUNT_PROVIDERS = { 'facebook': { 'SCOPE': ['email', 'publish_stream'], 'METHOD': 'oauth2' , 'LOCALE_FUNC': lambda request:'en_US' }, 'google': { 'SCOPE': [ 'https://www.googleapis.com/auth/userinfo.profile', 'https://www.googleapis.com/auth/userinfo.email' ], }, 'linkedin': { 'SCOPE': ['r_emailaddress'], }, 'persona': { 'REQUEST_PARAMETERS': {'siteName': 'Data Dealer' }, }, } RPC4DJANGO_RESTRICT_XMLRPC=True DD_MONGO_DB = { 'host': 'localhost', 'port': 27017, 'max_pool_size': 32, 'db': 'somedb', 'users_collection': 'users' } # Serve static files through django? DD_SERVE_STATIC = False ALLOWED_HOSTS = ['.datadealer.net', 'datadealer'] if DEBUG == True: EMAIL_BACKEND = 'django.core.mail.backends.filebased.EmailBackend' EMAIL_FILE_PATH = '/tmp/dd_auth/mail' try: from dd_auth.settings_local import * except ImportError: pass
#!/usr/bin/env python # Lint as: python3 """This directory contains local site-specific implementations.""" # Local site-specific implementations that have to be imported to be registered # should be imported in plugins.py.
from .ray_util.gif_logger import GIFLogger def get_trainable(class_name): if class_name == 'VPredTrainable': from .trainable_interface import VPredTrainable return VPredTrainable if class_name == 'BalancedCamFilter': from .data_filter import BalancedCamFilter return BalancedCamFilter if class_name == 'RobotSetFilter': from .data_filter import RobotSetFilter return RobotSetFilter if class_name == 'RobotObjectFilter': from .data_filter import RobotObjectFilter return RobotObjectFilter if class_name == 'BatchmixFinetuning': from .finetuning_trainable_interface import BatchmixingVPredTrainable return BatchmixingVPredTrainable raise NotImplementedError
import abc from datetime import date, datetime import json from wagtail.core.models import Page from wagtail.documents.models import Document from wagtail.images.models import Image from django.forms import ValidationError from django.forms.models import model_to_dict from django.contrib import messages from core import helpers from core.cache import SERVICE_NAMES_TO_ROOT_PATHS from export_readiness.snippets import Tag class AbstractFieldSerializer(abc.ABC): @property @abc.abstractmethod def FIELD_NAME_PREFIX(self): pass @classmethod def serialize_name(cls, name): return cls.FIELD_NAME_PREFIX + name @classmethod def deserialize_name(cls, name): return name.replace(cls.FIELD_NAME_PREFIX, '') @classmethod def serialize(cls, name, value): return cls.serialize_name(name), cls.serialize_value(value) @classmethod def deserialize(cls, name, value): return cls.deserialize_name(name), cls.deserialize_value(value) class ImageFieldSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '(image)' @classmethod def serialize_value(cls, value): return value.file.name @classmethod def deserialize_value(cls, value): return helpers.get_or_create_image(value).pk class DocumentFieldSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '(document)' @classmethod def serialize_value(cls, value): return value.file.name @classmethod def deserialize_value(cls, value): return helpers.get_or_create_document(value).pk class ListFieldSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '(list)' @classmethod def serialize_value(cls, value): return ','.join(value) @classmethod def deserialize_value(cls, value): return value.split(',') class DateFieldSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '(date)' DATE_FORMAT = '%Y-%m-%d' @classmethod def serialize_value(cls, value): return value.strftime(cls.DATE_FORMAT) @classmethod def deserialize_value(cls, value): return datetime.strptime(value, cls.DATE_FORMAT) class RelatedPageSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '(page)' @classmethod def serialize_value(cls, value): return json.dumps({ 'slug': value.slug, 'service_name_value': value.specific.service_name_value }) @classmethod def deserialize_value(cls, value): value = json.loads(value) app_slug = SERVICE_NAMES_TO_ROOT_PATHS[value['service_name_value']] app_pages = Page.objects.get(slug=app_slug).get_descendants() try: return app_pages.get(slug=value['slug']).specific except Page.DoesNotExist: raise ValidationError( f"Related page with the slug {value['slug']} could not be " "found in this environment. Please create it then " "add it as one of this page's related pages." ) class TagsSerializer(ListFieldSerializer): FIELD_NAME_PREFIX = '(tag)' @classmethod def serialize_value(cls, value): tag_names = [tag.name for tag in value.all()] return super().serialize_value(tag_names) @classmethod def deserialize_value(cls, value): tag_names = super().deserialize_value(value) return Tag.objects.filter(name__in=tag_names) class NoOpFieldSerializer(AbstractFieldSerializer): FIELD_NAME_PREFIX = '' @classmethod def serialize_value(cls, value): return value @classmethod def deserialize_value(cls, value): return value class UpstreamModelSerializer: EMPTY_VALUES = ['', 'None', None] field_serializers = { Image: ImageFieldSerializer, Document: DocumentFieldSerializer, list: ListFieldSerializer, date: DateFieldSerializer, Page: RelatedPageSerializer, Tag: TagsSerializer, } default_field_serializer = NoOpFieldSerializer @classmethod def get_field_serializer_by_field_value(cls, value): if 'RelatedManager' in value.__class__.__name__: value = value.all().first() for field_class, serializer in cls.field_serializers.items(): if isinstance(value, field_class): return serializer else: return cls.default_field_serializer @classmethod def get_field_serializer_by_field_name(cls, name): for serializer in cls.field_serializers.values(): if serializer.FIELD_NAME_PREFIX in name: return serializer else: return cls.default_field_serializer @classmethod def remove_empty(cls, data): return { name: value for name, value in data.items() if value not in cls.EMPTY_VALUES } @classmethod def serialize(cls, model_instance): data = model_to_dict(model_instance, exclude=['pk', 'id', 'page_ptr']) serialized = {} for name in cls.remove_empty(data): value = getattr(model_instance, name) serializer = cls.get_field_serializer_by_field_value(value) name, value = serializer.serialize(name=name, value=value) serialized[name] = value return serialized @classmethod def deserialize(cls, serialized_data, request): deserialized = {} for name, value in cls.remove_empty(serialized_data).items(): serializer = cls.get_field_serializer_by_field_name(name) try: name, value = serializer.deserialize(name=name, value=value) except ValidationError as e: messages.error(request, e.message) else: deserialized[name] = value return deserialized
import logging from types import FrameType from typing import cast from loguru import logger class InterceptHandler(logging.Handler): loglevel_mapping = { 50: 'CRITICAL', 40: 'ERROR', 30: 'WARNING', 20: 'INFO', 10: 'DEBUG', 0: 'NOTSET', } def emit(self, record: logging.LogRecord) -> None: try: level = logger.level(record.levelname).name except AttributeError: level = self.loglevel_mapping[record.levelno] # except ValueError: # level = str(record.levelno) frame, depth = logging.currentframe(), 2 while frame.f_code.co_filename == logging.__file__: frame = cast(FrameType, frame.f_back) depth += 1 logger.opt(depth=depth, exception=record.exc_info).log( level, record.getMessage(), )
import yaml import argparse import pandas as pd from sklearn.model_selection import train_test_split from get_data import load_config, load_data def split(config): split_config = config['split_data'] feature_config = config['features'] data = pd.read_csv(feature_config['path']) x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) x_train.to_csv(split_config['xtrain'], index = False) x_test.to_csv(split_config['xtest'], index = False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', help = 'config file path', default= 'params.yaml') args = parser.parse_args() config = load_config(args.config) split(config)
# -*- coding: utf8 -*- import sys from frame import log import requests from urllib.parse import urljoin from bs4 import BeautifulSoup SEARCH_URL = "https://search.jd.com/Search?" def good_detail_parser(keyword): params = { "keyword": keyword, "enc": "utf-8" } search_page = requests.get(SEARCH_URL, params=params).content bs = BeautifulSoup(search_page, "lxml") # get all good detail page href selector = "div.p-name > a" div = bs.select(selector) urls = [item.attrs["href"] for item in div] urls = [urljoin(SEARCH_URL, url) for url in urls] return urls[0] def jd_specification_spider(keyword): log.info("jd specification spider: %s" % keyword) detail_url = good_detail_parser(keyword) detail_page = requests.get(detail_url).content bs = BeautifulSoup(detail_page, "lxml") selector = "div.Ptable-item" div = bs.select(selector) data = dict() for table in div: title = table.find("h3").string dt = table.find_all("dt", {"class": None}) dd = table.find_all("dd", {"class": None}) res = dict() for i in range(len(dt)): desc = {dt[i].string: dd[i].string} res.update(desc) data.update({title: res}) return data if __name__ == '__main__': if len(sys.argv) < 2: pass jd_specification_spider(sys.argv[1])
.table int soma1_param int soma1_a3 int soma2_param3 int soma_param1 int soma_param2 int soma_result int life_a int life_b int main_var = 2 int main_var2 .code soma1: soma1: soma1_param: pop soma1_param mov $2, 1 1: mov $3, 2 2: mov $4, 3 3: mul $5, $3, $4 $3: add $6, $2, $5 $2: mov $7, 4 4: add $8, $6, $7 $6: mov soma1_a3, $8 $8: return soma1_a3 soma1_a3: soma2: soma2: soma2_param3: pop soma2_param3 mov $13, 1 1: mov $14, 2 2: mov $15, soma2_param3 soma2_param3: mul $16, $14, $15 $14: add $17, $13, $16 $13: mov $18, 4 4: mov $19, 2 2: mul $20, $18, $19 $18: add $21, $17, $20 $17: mov $22, 4 4: mov $23, 4 4: div $24, $22, $23 $22: add $25, $21, $24 $21: mov soma2_param3, $25 $25: return soma2_param3 soma2_param3: soma: soma: soma_param1: pop soma_param1 soma_param2: pop soma_param2 mov $31, soma_param1 soma_param1: mov $32, soma_param2 soma_param2: add $33, $31, $32 $31: mov soma_result, $33 $33: return soma_result soma_result: life: life: life_a: pop life_a life_b: pop life_b return 42 42: main: main: mov $41, 2 2: mov main_var, $41 $41: mov $43, 3 3: mov $44, 2 2: add $45, $43, $44 $43: mov main_var, $45 $45: param 1 1: param 2 2: call life, 2 life: $49: pop $49 mov main_var, $49 $49: param main_var main_var: call soma2, 1 soma2: $53: pop $53 mov main_var2, $53 $53: return main_var2 main_var2:
#!/usr/bin/env python3 """ Netflix Genre Scraper. This tool scrapes the Netflix website to gather a list of available genres and links to their respective pages. Please use sparingly to avoid annoying the Netflix webservers. """ import argparse import logging import os.path import shelve import sys from datetime import datetime, timezone from getpass import getpass from html.parser import HTMLParser from urllib.parse import urljoin, urlparse from requests import Session LOG_FMT = { 'style': '{', 'format': '{levelname:1.1}: {message}', } log = logging.getLogger(__name__) class FormParser(HTMLParser): """Basic serialization of HTML forms.""" def reset(self): self.form_data = {} self._current_form = None super().reset() def handle_starttag(self, tag, attrs): attrs = dict(attrs) if tag == 'form': self._current_form = attrs.get('id', len(self.form_data)) self.form_data[self._current_form] = {'attrs': attrs, 'fields': {}} log.debug('Form %s open', self._current_form) if self._current_form is not None and 'name' in attrs: log.debug('Form %s: %r', tag, attrs) self.form_data[self._current_form]['fields'][attrs['name']] = attrs.get('value') def handle_endtag(self, tag): if tag == 'form': log.debug('Form %s close', self._current_form) self._current_form = None class ProfileListParser(HTMLParser): """Parse "Who's Watching" profile list.""" def reset(self): self.profiles = [] self._current_link = None self._current_name = '' super().reset() def handle_starttag(self, tag, attrs): attrs = dict(attrs) if tag == 'a' and 'profile-link' in attrs.get('class', '').split(): self._current_link = attrs['href'] log.debug('Profile link %s open', self._current_link) def handle_endtag(self, tag): if tag == 'a' and self._current_link: log.debug('Profile link %s close', self._current_link) self.profiles.append((self._current_name.strip(), self._current_link)) self._current_link = None self._current_name = '' def handle_data(self, data): if self._current_link: self._current_name += data class CaptureParser(HTMLParser): """ Capture data inside a set of tags, chosen according to given criteria. Subclass and define self.criteria """ @staticmethod def criteria(tag, attrs): raise NotImplementedError() def reset(self): self.strings = [] self._current = '' self._inside = 0 super().reset() def handle_starttag(self, tag, attrs): if self._inside > 0: self._inside += 1 else: attrs = dict(attrs) if self.criteria(tag, attrs): self._inside += 1 log.debug('%s %s open', self.__class__.__name__[:-6], tag) def handle_endtag(self, tag): if self._inside > 0: self._inside -= 1 if self._inside == 0: log.debug('%s %s close', self.__class__.__name__[:-6], tag) self.strings.append(self._current) self._current = '' def handle_data(self, data): if self._inside > 0: log.debug('Capture %r', data) self._current += data class ErrorMessageParser(CaptureParser): """Find error messages on page.""" @staticmethod def criteria(tag, attrs): return 'ui-message-error' in attrs.get('class', '').split() class TitleParser(CaptureParser): """Find genre title on genre page.""" @staticmethod def criteria(tag, attrs): return 'genreTitle' in attrs.get('class', '').split() class Scraper(object): """ The scraping engine. Initialize with credentials, then run Scraper.genre_scan to scrape genre pages. """ base_url = 'https://www.netflix.com/' login_path = '/login' genre_cache_fn = os.path.join(os.path.dirname(__file__), '.genrecache') def __init__(self, auth, profile=None): self.auth = auth self.profile = profile self.session = Session() def is_login(self, url): parsed_url = urlparse(url) return parsed_url.path.lower().endswith(self.login_path.lower()) def login_if_required(self, response): if not self.is_login(response.url): return response form_parser = FormParser() form_parser.feed(response.text) form_parser.close() forms = form_parser.form_data for form in forms.values(): if form['fields'].get('action') == 'loginAction': log.debug('Login form: %r', form) url = urljoin(response.url, form['attrs']['action']) data = dict(form['fields']) data.update({'email': self.auth[0], 'password': self.auth[1]}) response = self.session.request(form['attrs']['method'], url, data=data) response.raise_for_status() if self.is_login(response.url): error_parser = ErrorMessageParser() error_parser.feed(response.text) error_parser.close() raise RuntimeError(error_parser.strings[1]) # 0 is javascript warning else: return response def choose_profile_if_required(self, response): profile_list_parser = ProfileListParser() profile_list_parser.feed(response.text) profile_list_parser.close() profiles = profile_list_parser.profiles names = [] for name, path in profiles: names.append(name) if self.profile is None or name.lower() == self.profile.lower(): url = urljoin(response.url, path) log.debug('Choose profile %s (%s)', name, url) response = self.session.get(url) response.raise_for_status() break else: if names: raise ValueError('Profile {} not found in {}'.format(self.profile, names)) return response def get(self, path): """Get an arbitrary page, logging in as necessary, return response.""" url = urljoin(self.base_url, path) response = self.session.get(url) response.raise_for_status() return self.choose_profile_if_required( self.login_if_required( response ) ) def login(self): """Perform login.""" log.info('Login') return self.get(self.login_path) def genre_scan(self, min=1, max=100000, fresh=False): """ Scan for genres. min and max define range of genre numbers to scan for. Returns an iterator of (genre number, genre title, url) for each genre found. This scan creates and uses a cache to store previously-found genres and avoid making unnecessary network requests. If you want to refresh the cache, set fresh=True. """ with shelve.open(self.genre_cache_fn) as genre_cache: if fresh: genre_cache.clear() for number in range(min, max): cache_key = str(number) try: value = genre_cache[cache_key] # shelf needs a string key except Exception as exc: if not isinstance(exc, KeyError): log.exception('Error retreiving %s from cache') path = '/browse/genre/{}'.format(number) try: response = self.get(path) except Exception: log.warning('GET %s error', path, exc_info=True) continue title_parser = TitleParser() title_parser.feed(response.text) title_parser.close() if len(title_parser.strings) > 0: title = title_parser.strings[0] log.info('Genre %d %s', number, title) genre_cache[cache_key] = (title, response.url) yield number, title, response.url else: genre_cache[cache_key] = None else: log.debug('Found %s in cache: %r', cache_key, value) if value: log.info('Genre %d %s [cached]', number, value[0]) yield (number,) + value def main(): """Entrypoint to genre scraper script.""" arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-e', '--email') arg_parser.add_argument('-p', '--password') arg_parser.add_argument('-P', '--profile') arg_parser.add_argument('-v', '--verbose', action='count', default=0) arg_parser.add_argument('--fresh', action='store_true', default=False) arg_parser.add_argument('min', type=int, default=1) arg_parser.add_argument('max', type=int, default=5000) ns = arg_parser.parse_args() if ns.email: email = ns.email else: print('Email:', end=' ', file=sys.stderr) email = input() password = ns.password or getpass() profile = ns.profile log_level = logging.WARNING - 10 * ns.verbose logging.basicConfig(level=log_level, **LOG_FMT) scraper = Scraper((email, password), profile=profile) # preempt login to raise errors early scraper.login() started = datetime.now(timezone.utc) scan = scraper.genre_scan(ns.min, ns.max, fresh=ns.fresh) print('# Genres {}–{}'.format(ns.min, ns.max)) print('') try: for number, name, url in scan: print('* {} ([#{}]({}))'.format(name, number, url)) except (KeyboardInterrupt, SystemExit): log.warning('Scan interrupted.') finally: print('') print('_Generated on {:%B %d %Y %H:%M:%S %Z}_'.format(started)) if __name__ == '__main__': main()
from __future__ import unicode_literals import sys def get_columns_width(rows): width = {} for row in rows: for (idx, word) in enumerate(map(unicode, row)): width.setdefault(idx, 0) width[idx] = max(width[idx], len(word)) return width def pprint_table(rows): rows = list(rows) width = get_columns_width(rows) def print_separator(): if not rows: return sys.stdout.write('+') for (idx, word) in enumerate(map(unicode, rows[0])): sys.stdout.write('-{sep}-+'.format(sep=('-' * width[idx]))) print '' print_separator() for row_idx, row in enumerate(rows): sys.stdout.write('|') for (idx, word) in enumerate(map(unicode, row)): sys.stdout.write(' {word:{width}} |'.format(word=word, width=(width[idx]))), print '' if row_idx == 0: # We just printed the table header print_separator() print_separator() def pprint_kv(items, separator=':', padding=2, offset=0, skip_empty=True): if not items: return width = max([len(item[0]) for item in items if item[1] or not skip_empty]) + padding for item in items: (key, value) = item if not value: continue if isinstance(value, list) or isinstance(value, tuple): print '{align}{0}:'.format(key, align=' ' * offset) pprint_kv(value, offset=offset + 2) else: print'{align}{key:{width}}{value}'.format( align=' ' * offset, key='{0}{1}'.format(key, separator), value=value, width=width)
import torch from norse.torch.functional.lif_refrac import LIFRefracParameters from dataclasses import dataclass @dataclass class EILIFParameters: tau_ex_syn_inv: torch.Tensor = torch.as_tensor( 1 / (20 * 1e-3), dtype=torch.double) tau_ih_syn_inv: torch.Tensor = torch.as_tensor( 1 / (50 * 1e-3), dtype=torch.double) tau_mem_inv: torch.Tensor = torch.as_tensor( 1 / (20 * 1e-3), dtype=torch.double) tau_adaptation_inv: torch.Tensor = torch.as_tensor( 1 / (200 * 1e-3), dtype=torch.double) R: torch.Tensor = torch.as_tensor(10 * 1e-3, dtype=torch.double) v_leak: torch.Tensor = torch.as_tensor(-65.0 * 1e-3, dtype=torch.double) v_th: torch.Tensor = torch.as_tensor(-50.0 * 1e-3, dtype=torch.double) v_reset: torch.Tensor = torch.as_tensor(-65.0 * 1e-3, dtype=torch.double) dale: bool = True ei_ratio: float = 0.8 beta: float = 1.6 sfa_ratio: float = 0.4 rho: float = 1.5 current_base_scale: float = 34 current_base_lower: float = 1.5 current_base_upper: float = 2.5 current_base_mu: float = 2. current_base_sigma: float = 0.1 rand_current_std: float = 0.0015 rand_voltage_std: float = 0.0015 rand_walk_alpha: float = 1. method: str = "super" alpha: float = 1000. @dataclass class EILIFRefracParameters(LIFRefracParameters): lif: EILIFParameters = EILIFParameters() rho_reset: torch.Tensor = torch.as_tensor(3.0) @dataclass class pret_settings: region: str scale: float start_ts: int end_ts: int
import torchvision import torchvision.transforms as transforms import numpy as np from .dataset_base import BaseDataset class IMBALANCECIFAR10(torchvision.datasets.CIFAR10, BaseDataset): """Imbalanced Cifar-10 Dataset References ---------- https://github.com/kaidic/LDAM-DRW/blob/master/imbalance_cifar.py """ cls_num = 10 def __init__(self, root, imb_type='exp', imb_factor=0.01, rand_number=0, train=True, transform=None, target_transform=None, download=False): super(IMBALANCECIFAR10, self).__init__(root, train, transform, target_transform, download) np.random.seed(rand_number) img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor) self.gen_imbalanced_data(img_num_list) class IMBALANCECIFAR100(IMBALANCECIFAR10): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } cls_num = 100 if __name__ == '__main__': transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = IMBALANCECIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = iter(trainset) data, label = next(trainloader) import pdb pdb.set_trace()
from django.conf import settings from django.contrib import messages from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ImproperlyConfigured from django.shortcuts import redirect from django.urls import reverse from django.views.generic import TemplateView from django.core.exceptions import ObjectDoesNotExist from logging import getLogger from wagtail_airtable.forms import AirtableImportModelForm from wagtail_airtable.utils import get_model_for_path from wagtail_airtable.management.commands.import_airtable import Importer logger = getLogger(__name__) class AirtableImportListing(TemplateView): """ Loads options for importing Airtable data """ template_name = "wagtail_airtable/airtable_import_listing.html" http_method_names = ["get", "post"] def post(self, request, *args, **kwargs): form = AirtableImportModelForm(request.POST) if form.is_valid(): model_label = form.cleaned_data["model"] importer = Importer(models=[model_label], options={"verbosity": 1}) importer.run() message = f"{importer.created} items created. {importer.updated} items updated. {importer.skipped} items skipped." messages.add_message( request, messages.SUCCESS, f"Import succeeded with {message}" ) else: messages.add_message(request, messages.ERROR, "Could not import") return redirect(reverse("airtable_import_listing")) def _get_base_model(self, model): """ For the given model, return the highest concrete model in the inheritance tree - e.g. for BlogPage, return Page """ if model._meta.parents: model = model._meta.get_parent_list()[0] return model def get_validated_models(self): """Get models from AIRTABLE_IMPORT_SETTINGS, validate they exist, and return a list of tuples. returns: [ ('Credit Card', 'creditcards.CreditCard', <CreditCard: Cardname.=>), ('..', '..'), ] """ airtable_settings = getattr(settings, "AIRTABLE_IMPORT_SETTINGS", {}) # Loop through all the models in the settings and create a new dict # of the unique settings for each model label. # If settings were used more than once the second (3rd, 4th, etc) common settings # will be bulked into a "grouped_models" list. tracked_settings = [] models = {} for label, model_settings in airtable_settings.items(): if model_settings not in tracked_settings: tracked_settings.append(model_settings) models[label] = model_settings models[label]["grouped_models"] = [] else: for label2, model_settings2 in models.items(): if model_settings is model_settings2: models[label2]["grouped_models"].append(label) # Validated models are models that actually exist. # This way fake models can't be added. validated_models = [] for label, model_settings in models.items(): # If this model is allowed to be imported. Default is True. if model_settings.get("AIRTABLE_IMPORT_ALLOWED", True): # A temporary variable for holding grouped model names. # This is added to the validated_models item later. # This is only used for displaying model names in the import template _grouped_models = [] # Loop through the grouped_models list in each setting, validate each model, # then add it to the larger grouped_models if model_settings.get("grouped_models"): for grouped_model_label in model_settings.get("grouped_models"): if "." in grouped_model_label: model = get_model_for_path(grouped_model_label) if model: _grouped_models.append(model._meta.verbose_name_plural) if "." in label: model = get_model_for_path(label) if model: # Append a triple-tuple to the validated_models with the: # (1. Models verbose name, 2. Model label, 3. is_airtable_enabled from the model, and 4. List of grouped models) airtable_enabled_for_model = getattr( model, "is_airtable_enabled", False ) validated_models.append( ( model._meta.verbose_name_plural, label, airtable_enabled_for_model, _grouped_models, ) ) else: raise ImproperlyConfigured( "%r is not recognised as a model name." % label ) return validated_models def get_context_data(self, **kwargs): """Add validated models from the AIRTABLE_IMPORT_SETTINGS to the context.""" return {"models": self.get_validated_models()}
from drf_yasg import openapi from rest_framework import status from . import sample_error_response class SampleDistrictResponses: def __generate_sample_districts_response(self, status_code): """Generates sample response for districts response""" response = openapi.Response( description=f"Example of {status_code} Response", examples={ "application/json": { "code": status_code, "status": True, "districts": [ { "id": 1, "district_name": "District Name 1", "state_id": 1, }, { "id": 2, "district_name": "District Name 1", "state_id": 1, }, ], } }, ) return response def __generate_sample_district_detail_response(self, status_code): """Generates sample response for district detail""" response = openapi.Response( description=f"Example of {status_code} Response", examples={ "application/json": { "code": status_code, "status": True, "district": { "id": 1, "state_name": "State Name 1", }, } }, ) return response def get_all_districts_response(self): """Sample response for all districts""" return { "200": self.__generate_sample_districts_response(status.HTTP_200_OK), } def get_district_detail_response(self): """Sample response for district detail""" return { "200": self.__generate_sample_district_detail_response(status.HTTP_200_OK), "400": sample_error_response.SampleErrorResponses().generate_sample_single_error_response( status.HTTP_400_BAD_REQUEST ), }
class Solution: def XXX(self, nums1: List[int], nums2: List[int]) -> float: if nums1 or nums2: nums = sorted(nums1 + nums2) n = len(nums) if n%2 == 0: m = int(n/2 -1) n = m+1 return (nums[m] + nums[n])/2 else: m = n//2 return nums[m]
import os import logging from mkdocs import utils from mkdocs.config import config_options, Config from mkdocs.plugins import BasePlugin log = logging.getLogger('mkdocs') class LocalSearchPlugin(BasePlugin): config_scheme = ( ('promise_delay', config_options.Type(int, default=0)), ) def on_post_build(self, config, **kwargs): if 'search' in config['plugins']: output_base_path = os.path.join(config['site_dir'], 'search') json_output_path = os.path.join(output_base_path, 'search_index.json') js_output_path = os.path.join(output_base_path, 'search_index.js') # Open JSON search index file f = open(json_output_path,"r") # Modify file to provide a Promise resolving with the contents of the search index search_index = "const local_index = " + f.read() + "; var search = { index: new Promise(resolve => setTimeout(() => resolve(local_index), " + str(self.config['promise_delay']) + ")) }" # Write to JSON file and rename JSON to JS utils.write_file(search_index.encode('utf-8'), json_output_path) f.close() os.rename(json_output_path, js_output_path) else: log.warning('localsearch: Missing search plugin. You must add both search and localsearch to the list of plugins in mkdocs.yml.')
""" #What's that ? A set of script that demonstrate the use of Tensorflow experiments and estimators on different data types for various tasks @brief : the main script that enables training, validation and serving Tensorflow based models merging all needs in a single script to train, evaluate, export and serve. taking large inspirations of official tensorflow demos. @author : Alexandre Benoit, LISTIC lab, FRANCE Several ideas are put together: -estimators to manage training, valiation and export in a easier way -using moving averages to store parameters with values smoothed along the last training steps (FIXME : ensure those values are used for real by the estimator, actually the graph shows 2 parameter savers...). -visualization including embeddings projections to observe some data projections on the TensorBoard -tensorflow-serving api use to serve the model and dynamically load updated models -some tensorflow-serving client codes to reuse the trained model on single or streaming data #How tu use it ? The main script is experiments_manager.py can be used in 3 modes, here are some command examples: 1. train a model in a context specified in a parameters script such as mysettings_1D_experiments.py: -> python experiments_manager.py --usersettings=mysettings_1D_experiments.py 2. start a tensorflow server on the trained/training model : 2.a if tensorflow_model_server is installed on the system -> python experiments_manager.py --start_server --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14:40:53 2.b if tensorflow_model_server is installed on a singularity container -> python experiments_manager.py --start_server --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14:40:53 -psi=/patg/to/tf_server.sif 3. interract with the tensorflow server, sending input buffers and receiving answers -> python experiments_manager.py --predict --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14\:40\:53/ NOTE : once trained (or along training), start the Tensorbdownscaledoard to parse logs of the experiments folder (provided example is experiments/1Dsignals_clustering): from the scripts directory using command: tensorboard --logdir=experiments/1Dsignals_clustering Then, open a web brwser and reach http://127.0.0.1:6006/ to monitor training values and observe the obtained embeddings #DESIGN: 1. The main code for training, validation and prediction is specified in the main script (experiments_manager.py). 2. Most of the use case specific parameters and Input/Output functions have been moved to a separated settings script such as 'mysettings_1D_experiments.py' that is targeted when starting the script (this filename is set in var FLAGS.usersettings in the main script). 3. The model to be trained and served is specified in a different script targetted in the settings file. #KNOWN ISSUES : This script has some known problems, any suggestion is welcome: -moving average parameters reloading for model serving is not optimized, this should be enhanced. -for now tensorflow_server only works on CPU so using GPU only for training and validation. Track : https://github.com/tensorflow/serving/issues/668 #TODO : To adapt to new use case, just duplicate the closest mysettingsxxx file and adjust the configuration. For any experiment, the availability of all the required fields in the settings file is checked by the experiments_settings_checker.py script. You can have a look there to ensure you prepared everything right. As a reminder, here are the functions prototypes: -define a model to be trained and served in a specific file and follow this prototype: --report model name in the settings file using variable name model_file or thecify a premade estimator using variable name premade_estimator --def model( usersettings) #receives the external parameters that may be used to setup the model (number of classes and so depending on the task) mode), #mode set to switch between train, validate and inference mode wrt tf.estimator.tf.estimator.ModeKeys values => the returns a tf.keras.Model NOTE : custom models with specific loss can be used, tutorial here https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit -def data_preprocess(features, model_placement) -def postprocessing_before_export_code(code) -def postprocessing_before_export_predictions(predictions) -def getOptimizer(model, loss, learning_rate, global_step) -def get_total_loss(inputs, predictions, labels, embedding_code, weights_loss) -def get_validation_summaries(inputs, predictions, labels, embedding_code) -def get_eval_metric_ops(inputs, predictions, labels, embedding_code) -def get_input_pipeline_train_val(batch_size, raw_data_files_folder, shuffle_batches) -def get_input_pipeline_serving() -define the Client_IO class that presents at least those three methods: ---def __init__(self, debugMode): ---def getInputData(self, idx): ---def decodeResponse(self, result): ---def finalize(): -------> Note, the finalize method will be called once the number of expected iterations is reached and if any StopIteration exception is sent by the client -OPTIONNAL: add the dictionnary named 'hparams' in this settings file to carry those specific hyperparameters to the model and to complete the session name folder to facilitate experiments tracking and comparison Some examples of such functions are put in the README.md and in the versionned examples folder """ #script imports from tools.experiment_settings import ExperimentSettings import tools.experiments_settings_surgery import os, shutil import datetime, time import tensorflow as tf import numpy as np import pandas as pd import importlib import imp import copy import configparser try: import tensorflow_addons as tfa except: print('WARNING, tensorflow_addons could not be loaded, this may generate errors for model optimization but should not impact model serving') federated_learning_available=False try: import flwr as fl federated_learning_available=True except ModuleNotFoundError as e : print('WARNING, Flower lib no present, this may impact distributed learning if required. Error=',e) from tensorflow.keras import mixed_precision #constants SETTINGSFILE_COPY_NAME='experiment_settings.py' WEIGHTS_MOVING_AVERAGE_DECAY=0.998 # Set default flags for the output directories #manage input commands import argparse parser = argparse.ArgumentParser(description='demo_semantic_segmentation') parser.add_argument("-m","--model_dir", default=None, help="Output directory for model and training stats.") parser.add_argument("-d","--debug", action='store_true', help="set to activate debug mode") parser.add_argument("-p","--predict", action='store_true', help="Switch to prediction mode") parser.add_argument("-l","--predict_stream", default=0, type=int, help="set the number of successive predictions, infinite loop if <0") parser.add_argument("-s","--start_server", action='store_true', help="start the tensorflow server on the machine to run predictions") parser.add_argument("-psi","--singularity_tf_server_container_path", default='', help="start the tensorflow server on a singularity container to run predictions") parser.add_argument("-u","--usersettings", help="filename of the settings file that defines an experiment") parser.add_argument("-r","--restart_interrupted", action='store_true', help="Set to restart an interrupted session, model_dir option should be set") parser.add_argument("-g","--debug_server_addresses", action='store_true', default="127.0.0.1:2333", help="Set here the IP:port to specify where to reach the tensorflow debugger") parser.add_argument("-pid","--procID", default=None, help="Specifiy here an ID to identify the process (useful for federated training sessions)") parser.add_argument("-c","--commands", action='store_true', help="show command examples") FLAGS = parser.parse_args() class MyCustomModelSaverExporterCallback(tf.keras.callbacks.ModelCheckpoint): def __init__(self, filepath, settings, monitor='val_loss', verbose=1, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch', **kwargs): #init tf.keras.callbacks.ModelCheckpoint parent super(MyCustomModelSaverExporterCallback, self).__init__( filepath, monitor, verbose, save_best_only, save_weights_only, mode, save_freq, ) self.settings=settings self.settings.model_export_filename=settings.sessionFolder+'/exported_models' def on_epoch_end(self, epoch, logs=None): #call parent function print('on_epoch_end, saving checkpoint...') super(MyCustomModelSaverExporterCallback, self).on_epoch_end(epoch, logs) if logs is None: print('WARNING, no logs dict is provided to ModelCheckpoint.on_epoch_end, checkpointing on best epoch will not work') if self.save_freq == 'epoch': try: if False:#self.model._in_multi_worker_mode(): # Exclude training state variables in user-requested checkpoint file. with self._training_state.untrack_vars(): self._export_model(epoch=epoch, logs=logs) else: self._export_model(epoch=epoch, logs=logs) except Exception as e: print('Model exporting failed for some reason',e) print('Epoch checkpoint save and export processes done.') def _export_model(self, epoch, logs=None): print('Exporting model...') current = logs.get(self.monitor) if current==self.best: print('Saving complete keras model thus enabling fitting restart as well as model load and predict') self.model.save(self.settings.sessionFolder+'/checkpoints/model_epoch{version}'.format(version=epoch)) print('EXPORTING A NEW MODEL VERSION FOR SERVING') print('Exporting model at epoch {}.'.format(epoch)) exported_module=usersettings.get_served_module(self.model, self.settings.model_name) if not(hasattr(exported_module, 'served_model')): raise ValueError('Experiment settings file MUST have \'served_model\' function with @tf.function decoration.') output_path='{folder}/{version}'.format(folder=self.settings.model_export_filename, version=epoch) signatures={self.settings.model_name:exported_module.served_model} try: print('Exporting serving model relying on tf.saved_model.save') tf.saved_model.save( exported_module, output_path, signatures=signatures, options=None ) print('Export OK') except Exception as e: print('Failed to export serving model relying on method:', e) #new keras approach '''try: print('Exporting serving model relying on tf.keras.models.save_model') tf.keras.models.save_model( exported_module, filepath='{folder}v2/{version}'.format(folder=self.settings.model_export_filename, version=epoch), overwrite=True, include_optimizer=False, save_format=None, signatures=signatures, options=None, ) except Exception as e: print('Failed to export serving model relying on method:',e) export to TensorRT, WIP refer to https://www.tensorflow.org/api_docs/python/tf/experimental/tensorrt/Converter and https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html ''' try: '''params=None if True:#precision_mode is not None: precision_mode='FP16' #tensorflow doc/issue ConversionParams not found params = tf.experimental.tensorrt.ConversionParams( precision_mode=precision_mode, # Set this to a large enough number so it can cache all the engines. maximum_cached_engines=16) converter = tf.experimental.tensorrt.Converter( input_saved_model_dir=output_path, input_saved_model_signature_key=signatures, conversion_params=params) #NVIDIA doc: from tensorflow.python.compiler.tensorrt import trt_convert as trt conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS print('conversion_params',conversion_params) conversion_params = conversion_params._replace( max_workspace_size_bytes=(1<<32)) conversion_params = conversion_params._replace(precision_mode="FP16") conversion_params = conversion_params._replace(maximum_cached_engines=100) print('creating converter') converter = tf.experimental.tensorrt.Converter(#trt.TrtGraphConverterV2( input_saved_model_dir=output_path, input_saved_model_signature_key=signatures, conversion_params=conversion_params) print('converting') converter.convert() print('saving') converter.save(output_path+'_trt') print('Exported model to NVIDIA TensorRT') ''' except Exception as e: print('Failed to export to TensorRT but original saved model has been exported. Reported error:',e) print('Model export OK at epoch {}.'.format(epoch)) older_versions=os.listdir(self.settings.model_export_filename) print('Available model versions:',older_versions) else: print('Model was not exported since no performance increase has been reported') # Custom generic functions applied when running experiments def check_GPU_available(usersettings): '''check GPU requirements vs availability: if usersettings.used_gpu_IDs is not empty, then check GPU availability accordingly Args: usersettings, the experiments settings defined by the user Raises SystemError if no GPU available ''' gpu_workers_nb=0 print() print('*** GPU devices detection ***') # let ensorFlow automatically choose an existing and supported device to run the operations in case the specified one doesn't exist tf.config.set_soft_device_placement(True) if len(usersettings.used_gpu_IDs)>0: device_name = tf.test.gpu_device_name() print('Found GPU at: {}'.format(device_name)) gpus = tf.config.list_physical_devices('GPU') #-> first check availability if len(gpus) ==0 and len(usersettings.used_gpu_IDs): print('Could not find any GPU, trying to reload driver...') #-> first try to wake it up os.system("nvidia-modprobe -u -c=0") gpus = tf.config.list_physical_devices('GPU') if len(gpus) ==0 and len(usersettings.used_gpu_IDs): print('No GPU found') raise SystemError('Required GPU(s) not found') print('Found GPU devices:', gpus) if gpus: # Restrict TensorFlow to only use the first GPU visible_devices=[gpus[id] for id in usersettings.used_gpu_IDs] print('Setting visible devices:',visible_devices) try: tf.config.set_visible_devices(visible_devices, 'GPU') logical_gpus = tf.config.list_logical_devices('GPU') for gpuID in range(len(gpus)): print('Found GPU:', gpuID) #tf.config.experimental.set_memory_growth(gpus[gpuID], True) if tf.test.gpu_device_name() != '/device:GPU:0': print('WARNING: GPU device not found.') else: print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name())) #for gpuID in range(len(gpus)): # tf.config.experimental.set_memory_growth(gpus[gpuID], True) print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU") gpu_workers_nb=len(logical_gpus) except RuntimeError as e: # Visible devices must be set before GPUs have been initialized print(e) else: print('No GPU required for this experiment (usersettings.used_gpu_IDs is empty)') return gpu_workers_nb def loadModel_def_file(sessionFolder): ''' basic method to load the model targeted by usersettings.model_file Args: sessionFolder, the path to the model file Returns: a keras model ''' model_path=os.path.join(sessionFolder,os.path.basename(usersettings.model_file)) try: model_def=imp.load_source('model_def', model_path)#importlib.import_module("".join(model_path.split('.')[:-1]))# except Exception as e: raise ValueError('loadModel_def_file: Failed to load model file {model} from sessionFolder {sess}, error message={err}'.format(model=usersettings.model_file, sess=sessionFolder, err=e)) model=model_def.model print('loaded model file {file}'.format(file=model_path)) return model # Define and run experiment ############################### def run_experiment(usersettings): print('Running an experiment....') # import and load tensorflow tools here from tensorflow.python import debug as tf_debug from tensorflow.keras.models import load_model from tensorflow.keras.utils import plot_model from tensorboard.plugins.hparams import api as hp ##################################### #check GPU requirements vs availability if usersettings.debug: tf.debugging.set_log_device_placement(True) gpu_workers_nb=check_GPU_available(usersettings) ##################################### #prepare session tf.keras.backend.clear_session() # We need to clear the session to enable JIT in the middle of the program. tf.random.set_seed(usersettings.random_seed) #(de)activate XLA graph optimization tf.config.optimizer.set_jit(usersettings.useXLA) if usersettings.useXLA: print('Forcing XLA on the CPU side') os.environ['TF_XLA_FLAGS']='--tf_xla_cpu_global_jit' if usersettings.debug and usersettings.use_profiling: os.environ['XLA_FLAGS']='--xla_hlo_profile' else: os.environ['TF_XLA_FLAGS']='' ##################################### # define the input pipepelines (train/val) with tf.name_scope('Input_pipeline'): train_data =usersettings.get_input_pipeline(raw_data_files_folder=usersettings.raw_data_dir_train, isTraining=True) val_data = usersettings.get_input_pipeline(raw_data_files_folder=usersettings.raw_data_dir_val, isTraining=False) try: print('Train dataset size=', train_data.cardinality().numpy()) print('Validation dataset size=', val_data.cardinality().numpy()) train_iterations_per_epoch=train_data.n//usersettings.batch_size val_iterations_per_epoch=val_data.n//usersettings.batch_size except Exception as e: print('Could not estimate dataset sizes from input data pipeline, relying on settings nb_train_samples and nb_val_samples.') train_iterations_per_epoch=usersettings.nb_train_samples//usersettings.batch_size val_iterations_per_epoch=usersettings.nb_val_samples//usersettings.batch_size ##################################### #create the model from the user defined model file # -> (script targeted by usersettings.model_file) if usersettings.recoverFromCheckpoint is False: print('**** Training from scratch...') model_scope=tf.name_scope('model') if gpu_workers_nb>1: print('Deploying model in a multi/distributed GPU training scheme') distribution_strategy=getattr( tf.distribute, usersettings.distribution_strategy)() print('-> Chosen distribution strategy :',distribution_strategy) model_scope=distribution_strategy.scope()#(model_scope, distribution_strategy.scope()) usersettings.summary() with model_scope: #load model model=loadModel_def_file(usersettings.sessionFolder)(usersettings) #setup training learning_rate=usersettings.get_learningRate() loss=usersettings.get_total_loss(model) optimizer=usersettings.get_optimizer(model, loss, learning_rate) if usersettings.weights_moving_averages: optimizer=tfa.optimizers.MovingAverage(optimizer, average_decay=0.9999, name='weights_ema') metrics=usersettings.get_metrics(model, loss) if usersettings.enable_mixed_precision: # use AMP print('Using Automatic Mixed Precision along the optimization process') print('### HINT : to make sure Tensor cores are used, and obtain faster processing, ensure that your kernels are multiples of 8 !') mixed_precision.set_global_policy('mixed_float16') #optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(optimizer) print('Compiling model...') exp_loss_weights=None if hasattr(usersettings, 'get_loss_weights'): exp_loss_weights=usersettings.get_loss_weights() model.compile(optimizer=optimizer, loss=loss,# you can use a different loss on each output by passing a dictionary or a list of losses loss_weights=exp_loss_weights, metrics=metrics) #can specify per output metrics : metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']} try: init_model_name=usersettings.sessionFolder+'/checkpoints/model_epoch0' print('******************************************') print('Saving the model at init state in ',init_model_name, 'issues at this point should warn you before moving to long training sessions...') model.save(init_model_name) print('initial model saving done') print('******************************************') except Exception as e: raise ValueError('Could not serialize the model, did all model elements defined in the model prior model.compile are serialisable and have their get_config(self) method ? Error message=',e) else:#recovering from checkpoint print('**** Restoring from checkpoint...') available_models=os.listdir(usersettings.sessionFolder+'/checkpoints') print('All available model=', available_models) loaded_model=usersettings.sessionFolder+'/checkpoints/'+available_models[-1] print('loading ',loaded_model) model = tf.keras.models.load_model(loaded_model) # generate the model description #-> as an image in the session folder model_name_str=usersettings.model_name try: '''from tensorflow.keras.layers import Layer model._layers = [ layer for layer in model._layers if isinstance(layer, Layer) ]''' plot_model(model, to_file=usersettings.sessionFolder+'/'+model_name_str+'.png', show_shapes=True) input('Graph drawn, written here', usersettings.sessionFolder+'/'+model_name_str+'.png') except Exception as e: print('Could not plot model, error:',e) #-> as a printed log and write the network summary to file in the session folder with open(usersettings.sessionFolder+'/'+model_name_str+'.txt','w') as fh: # Pass the file handle in as a lambda function to make it callable print(model.summary()) model.summary(print_fn=lambda x: fh.write(x + '\n')) '''try: receptive_field_info=tf.contrib.receptive_field.compute_receptive_field_from_graph_def( model, input_node, output_node, stop_propagation=None, input_resolution=None ) except Exception as e: print('Receptive field computation failed, reason=',e) ''' ##################################### # prepare all standard callbacks all_callbacks=[] #add the history callback class CustomHistory(tf.keras.callbacks.History): """Callback that records events into a `History` object. This callback is automatically applied to every Keras model. The `History` object gets returned by the `fit` method of models. """ def __init__(self): super(CustomHistory, self).__init__() self.history = {} self.epoch = [] #moved from on_train_begin def on_train_begin(self, logs=None): print('******** HISTORY starting a training session...') def on_epoch_end(self, epoch, logs=None): print('******** HISTORY on_epoch_end...') super(CustomHistory, self).on_epoch_end(epoch, logs) history_callback=CustomHistory()#tf.keras.callbacks.History() all_callbacks.append(history_callback) # -> terminate on NaN loss values all_callbacks.append(tf.keras.callbacks.TerminateOnNaN()) # -> apply early stopping early_stopping_patience=usersettings.early_stopping_patience if hasattr(usersettings, 'early_stopping_patience') else 5 earlystopping_callback=tf.keras.callbacks.EarlyStopping( monitor=usersettings.monitored_loss_name, patience=early_stopping_patience ) all_callbacks.append(earlystopping_callback) reduceLROnPlateau_callback=tf.keras.callbacks.ReduceLROnPlateau(monitor=usersettings.monitored_loss_name, factor=0.1, patience=(early_stopping_patience*2)//3, min_lr=0.000001, verbose=True) all_callbacks.append(reduceLROnPlateau_callback) #-> checkpoint each epoch checkpoint_callback=MyCustomModelSaverExporterCallback(#tf.keras.callbacks.ModelCheckpoint( usersettings.sessionFolder+'/checkpoints/', usersettings, monitor=usersettings.monitored_loss_name, verbose=1, save_best_only=True, save_weights_only=False, mode='auto', save_freq='epoch') all_callbacks.append(checkpoint_callback) if usersettings.debug: #TODO to be tested print('TODO: check this for tf2 migration...') #tf_debug.TensorBoardDebugWrapperSession(tf.Session(), usersettings.debug_server_addresses) #"[[_host]]:[[_port]]") '''all_callbacks.append(tf_debug.TensorBoardDebugHook(usersettings.debug_server_addresses, send_traceback_and_source_code=True, log_usage=False) ) ''' #complete generic callbacks by user defined ones all_callbacks+=usersettings.addon_callbacks(model, train_data, val_data) #-> classical logging on Tensorboard (scalars, hostorams, and so on) log_dir=usersettings.sessionFolder+"/logs/"# + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") #-> activate profiling if required profile_batch =0 if usersettings.use_profiling is True: profile_batch = 3 print('Profiling is applied, for more details and log analysis, check : https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras') # -> set embeddings to be logged embeddings_layer_names={output.name:output.name+'.tsv' for output in model.outputs} print('Model outputs:',embeddings_layer_names) #-> set tensorboard logging #FIXME: https://github.com/tensorflow/tensorboard/issues/2471 tensorboard_callback=tf.keras.callbacks.TensorBoard(log_dir, histogram_freq=1, write_graph=True, write_images=False,#True, update_freq='epoch', profile_batch=profile_batch, embeddings_freq=10, #embeddings_metadata='metadata.tsv', #embeddings_layer_names=list(embeddings_layer_names.keys()),#'embedding', #embeddings_data='stuff' ) all_callbacks.append(tensorboard_callback) #-> add the hyperparameters callback for experiments comparison all_callbacks.append(hp.KerasCallback(log_dir, usersettings.hparams)) #-> export saved_model (for serving) each epoch ##################################### # train the model use_multiprocessing=False workers=1 if False:#gpu_workers_nb>1: workers*=gpu_workers_nb use_multiprocessing=True print('Fitting model:') print('* use_multiprocessing=',use_multiprocessing) if use_multiprocessing: print('* multiprocessing workers=',workers) history = None #manage epoch index in case of fitting interruption/restart epoch_start_index=0 #print XLA mode print('*** XLA optimization state : TF_XLA_FLAGS =', os.environ['TF_XLA_FLAGS']) '''#FIXME: cannot evaluate model.optimizer.iterations to recover epoch index... if usersettings.recoverFromCheckpoint: epoch_start_index=tf.keras.backend.eval(model.optimizer.iterations)//train_iterations_per_epoch print('RESTARTING FITTING FROM CHECKPOINT:') print('==> Last training iteration was {lastIt} => setting current epoch to {epoch} '.format(lastIt=model.optimizer.iterations, epoch=epoch_start_index)) ''' #-> train with (in memory) input data pipelines print() if usersettings.federated_learning is False or federated_learning_available is False: print('Now starting a classical training session...') history = model.fit( x=train_data, y=None,#train_data, batch_size=None,#usersettings.batch_size, #bath size must be specified epochs=usersettings.nbEpoch, verbose=True, callbacks=all_callbacks, validation_split=0.0, validation_data=val_data,# val_ref), shuffle=True, class_weight=None, sample_weight=None, initial_epoch=epoch_start_index, steps_per_epoch=train_iterations_per_epoch, validation_steps=val_iterations_per_epoch, validation_freq=1, max_queue_size=workers*100, workers=workers, use_multiprocessing=use_multiprocessing, ) else: print('Now starting a federated training session...') # Define Flower client class FlClient(fl.client.NumPyClient): def __init__(self): self.history=None self.round=0 self.last_val_loss=np.inf self.tensorboard_callback=tensorboard_callback def get_parameters(self): return model.get_weights() def fit(self, parameters, config): print('#################### FlClient.fit new round', self.round) #set updated weights model.set_weights(parameters) #tensorboard_callback.on_train_begin(self.round) if self.round==0: callbacks=all_callbacks else: #FIXME workaround to force tensorboard to display data tracking along rounds/epochs self.tensorboard_callback=tf.keras.callbacks.TensorBoard(log_dir, histogram_freq=1, write_graph=True, write_images=False,#True, update_freq='epoch', profile_batch=profile_batch, embeddings_freq=10, #embeddings_metadata='metadata.tsv', #embeddings_layer_names=list(embeddings_layer_names.keys()),#'embedding', #embeddings_data='stuff' ) callbacks=self.tensorboard_callback #training for one epoch history=model.fit( x=train_data, y=None,#train_data, batch_size=None,#usersettings.batch_size, #bath size must be specified epochs=1*(self.round+1), verbose=1, callbacks=callbacks, validation_split=0.0, validation_data=val_data, #=> done at the evaluate method level shuffle=True, class_weight=None, sample_weight=None, initial_epoch=1*(self.round), steps_per_epoch=train_iterations_per_epoch, validation_steps=val_iterations_per_epoch, validation_freq=1, max_queue_size=workers*100, workers=workers, use_multiprocessing=use_multiprocessing, ) print('FlClient.fit round result, history=', self.round,history.history) logs_last_epoch={ key:history.history[key][-1] for key in history.history.keys()} print('==> last history=', logs_last_epoch) checkpoint_callback.on_epoch_end(self.round, logs_last_epoch) earlystopping_callback.on_epoch_end(self.round, logs_last_epoch) #history_callback.on_epoch_end(self.round, logs_last_epoch) self.tensorboard_callback.on_train_end(logs_last_epoch) #FIXME workaround to force tensorboard to display data tracking along rounds/epochs #reduceLROnPlateau_callback.on_epoch_end(self.round, logs_last_epoch) if len(history.history)>0: self.history=history # avoiding to reuse callbacks : only affect them on the first round self.round+=1 return model.get_weights(), train_iterations_per_epoch*usersettings.batch_size, logs_last_epoch#{} def evaluate(self, parameters, config): print('Evaluating model from received parameters...') model.set_weights(parameters) losses = model.evaluate(x=val_data, y=None, batch_size=None, verbose=1, sample_weight=None, steps=val_iterations_per_epoch, callbacks=all_callbacks, max_queue_size=10, workers=workers, use_multiprocessing=False, return_dict=True ) print('FlClient.evaluate losses:',losses) return losses[usersettings.monitored_loss_name], val_iterations_per_epoch*usersettings.batch_size, losses#self.history.history#loss_dict # Start Flower client federated_learner=FlClient() fl.client.start_numpy_client(server_address=usersettings.federated_learning_server_address, client=federated_learner) history=federated_learner.history print('\nhistory dict:', history.history) print('Training session end, loss={loss} '.format(loss=history.history['loss'][-1])) print('Have a look at the experiments details saved in folder ', usersettings.sessionFolder) final_result=None if final_result is None: final_result={'loss':history.history['loss'][-1]} return final_result, usersettings.model_export_filename ########################################################### ## INFERENCE SECTION : talking to a tensorflow-server #inspired from https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/mnist_client.py def WaitForServerReady(host, port): #inspired from https://github.com/tensorflow/serving/blob/master/tensorflow_serving/model_servers/tensorflow_model_server_test.py """Waits for a server on the localhost to become ready. returns True if server is ready or False on timeout Args: host:tensorfow server address port: port address of the PredictionService. """ from grpc import implementations from grpc.framework.interfaces.face import face from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 for _ in range(0, usersettings.wait_for_server_ready_int_secs): request = predict_pb2.PredictRequest() request.model_spec.name = 'server_not_real_model_name' try: # Send empty request to missing model print('Trying to reach tensorflow-server {srv} on port {port} for {delay} seconds'.format(srv=host, port=port, delay=usersettings.wait_for_server_ready_int_secs)) channel = implementations.insecure_channel(host, int(port)) stub = prediction_service_pb2.PredictionServiceStub(channel) stub.Predict(request, 1) except face.AbortionError as error: # Missing model error will have details containing 'Servable' if 'Servable' in error.details: print('Server is ready') return True else: print('Error:'+str(error.details)) return False time.sleep(1) def _create_rpc_callback(client, debug): """Creates RPC callback function. Args: Returns: The callback function. """ def _callback(result_future): """Callback function. Calculates the statistics for the prediction result. Args: result_future: Result future of the RPC. """ print('Received response:'+str(result_future)) exception = result_future.exception() if exception: #result_counter.inc_error() print(exception) else: try: if FLAGS.debug: print(result_future.result()) client.decodeResponse(result_future.result()) except Exception as e: raise ValueError('Exception encountered on client callback : '.format(error=e)) return _callback def do_inference(experiment_settings, host, port, model_name, clientIO_InitSpecs, concurrency, num_tests): """Tests PredictionService with concurrent requests. Args: experiment_settings: the experiment settings loaded from function loadExperimentsSettings host:tensorfow server address port: port address of the PredictionService. model_name: the model name ID clientIO_InitSpecs: a dictionnary to pass to the ClientIO constructor concurrency: Maximum number of concurrent requests. num_tests: Number of test images to use, infinite prediction loop if <0. Raises: IOError: An error occurred processing test data set. Hint : have a look here to track api use updates : https://github.com/tensorflow/serving/blob/master/tensorflow_serving/example/mnist_client.py """ from tensorflow_serving.apis import predict_pb2 #for single head models from tensorflow_serving.apis import inference_pb2 #for multi head models from tensorflow_serving.apis import prediction_service_pb2_grpc import grpc print('Trying to interract with server:{srv} on port {port} for prediction...'.format(srv=host, port=port)) ''' test scripts may help : https://github.com/tensorflow/serving/blob/master/tensorflow_serving/model_servers/tensorflow_model_server_test.py ''' server=host+':'+str(port) # specify option to support messages larger than alloed by default grpc_options=None if usersettings.grpc_max_message_length !=0: grpc_options = [('grpc.max_send_message_length', usersettings.grpc_max_message_length)] grpc_options = [('grpc.max_receive_message_length', usersettings.grpc_max_message_length)] channel = grpc.insecure_channel(server, options=grpc_options) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) #allocate a clientIO instance defined for the experiment client_io=experiment_settings.Client_IO(clientIO_InitSpecs, FLAGS.debug) notDone=True predictionIdx=0 while notDone: try: predictionIdx=predictionIdx+1 start_time=time.time() sample=client_io.getInputData(predictionIdx) if not(isinstance(sample, dict)): raise ValueError('Expecting a dictionnary of values that will further be converted to proto buffers. Dictionnary keys must correspond to the usersettings.served_input_names strings list') if FLAGS.debug: print('Input data is ready, data=',sample) print('Time to prepare collect data request:',round(time.time() - start_time, 2)) start_time=time.time() request = predict_pb2.PredictRequest() request.model_spec.name = model_name request.model_spec.signature_name = model_name#experiment_settings.served_head_names[0] for inputname in usersettings.served_input_names: feature=sample[inputname] feature_proto=tf.make_tensor_proto(feature, shape=feature.shape) request.inputs[inputname].CopyFrom(feature_proto) if FLAGS.debug: print('Time to prepare request:',round(time.time() - start_time, 2)) except StopIteration: print('End of the process detection, running the ClientIO::finalize method') notDone=True break #asynchronous message reception, may hide some AbortionError details and only provide CancellationError(code=StatusCode.CANCELLED, details="Cancelled") if hasattr(experiment_settings, 'client_async'): result_future = stub.Predict.future(request, experiment_settings.serving_client_timeout_int_secs) # 5 seconds result_future.add_done_callback( _create_rpc_callback(client_io, FLAGS.debug)) else: #synchronous approach... that may provide more details on AbortionError if FLAGS.debug: start_time=time.time() answer=stub.Predict(request, experiment_settings.serving_client_timeout_int_secs) if FLAGS.debug: print('Time to send request/decode response:',round(time.time() - start_time, 2)) start_time=time.time() client_io.decodeResponse(answer) if FLAGS.debug: print('Time to decode response:',round(time.time() - start_time, 2)) if num_tests>=0: if predictionIdx>=num_tests: notDone=False client_io.finalize() return 0 def loadExperimentsSettings(filename, restart_from_sessionFolder=None, isServingModel=False): ''' load experiments parameters from the mysettingsxxx.py script also mask GPUs to only use the ones specified in the settings file Args: filename: the settings file, if restarting an interrupted training session, you should target the experiments_settings.py copy available in the experiment folder to restart" restart_from_sessionFolder: [OPTIONNAL] set the session folder of a previously interrupted training session to restart isServingModel: [OPTIONNAL] set True in the case of using model serving (server or client mode) so that some settings are not checked ''' if restart_from_sessionFolder is not None: if os.path.exists(restart_from_sessionFolder): print('Attempting to restart a previously ran training job...') sessionFolder=restart_from_sessionFolder #target the initial experiments settings file filename=os.path.join(restart_from_sessionFolder, SETTINGSFILE_COPY_NAME) print('From working folder'+str(os.getcwd())) print('looking for '+str(filename)) if os.path.exists(filename): print('Found') else: raise ValueError('Could not find experiment_settings.py file in the experiment folder:'+str(sessionFolder)) else: raise ValueError('Could not restart interrupted training session, working folder not found:'+str(restart_from_sessionFolder)) else: print('Process starts...') usersettings=ExperimentSettings(filename, isServingModel) if isServingModel: sessionFolder=os.path.dirname(filename) #manage the working folder in the case of a new experiment workingFolder=usersettings.workingFolder if restart_from_sessionFolder is None: sessionFolder=os.path.join(workingFolder, usersettings.session_name+'_'+datetime.datetime.now().strftime("%Y-%m-%d--%H:%M:%S")) print('Considered usersettings.hparams=',str(usersettings.hparams)) return usersettings, sessionFolder def get_served_model_info(one_model_path, expected_model_name): ''' basic function that checks served model behaviors Args: one_model_path: the path to a servable model directory expected_model_name: the model name that is expected to be found on the server Returns: Nothing for now ''' import subprocess #get the first subfolder of the served models directory served_model_info_cmd='saved_model_cli show --dir {target_model} --tag_set serve --signature_def {model_name}'.format(target_model=one_model_path, model_name=expected_model_name) print('Checking served model available signatures using command '+served_model_info_cmd) cmd_result=subprocess.check_output(served_model_info_cmd.split()) print('Answer:') print(cmd_result.decode()) if expected_model_name in cmd_result.decode(): print('Target model {target} name found in the command answer'.format(target=expected_model_name)) else: raise ValueError('Target model {target} name NOT found in the command answer'.format(target=expected_model_name)) # Run script ############################################## def run(train_config_script=None, external_hparams={}): ''' the main script function that can receive hyperparameters as a dictionnary to run an experiment can start training, model serving or model client requesting depending on the FLAGS values: -> if FLAGS.start_server is True : starts a server that hosts the target model -> if FLAGS.predict is TRUE : starts a client that will send requests to a model threw gRPC -> else, start a training session relying on a sesttings file provided by train_config_script or FLAGS.usersettings --> in this mode, function returns a dictionnary of that summarizes the last model states at the end of the training --> if calling with non empty train_config_script and with non empty external_hparams, then external_hparams will update hyperparameters already specified in the train_config_script script ''' global usersettings experiments_output=None #tf.reset_default_graph() usersettings=None#ensure to clear this object prior any new trial ''' main function that starts the experiment in the chosen mode ''' scripts_WD=os.getcwd() #to locate the mysettings*.py file if FLAGS.debug is True: print('Running in debug mode. Press Enter to continue...') if FLAGS.start_server is True : print('### START TENSORFLOW SERVER MODE ###') print('WARNING, this function expects some libraries to be installed, mostly dedicated to the training processing.') print('-> to run tensorflow model server on minimal install run start_model_serving.py') usersettings, sessionFolder = loadExperimentsSettings(os.path.join(FLAGS.model_dir,SETTINGSFILE_COPY_NAME), isServingModel=True) #target the served models folder model_folder=os.path.join(scripts_WD,FLAGS.model_dir,'exported_models') print('Considering served model parent directory:'+model_folder) #check if at least one served model exists in the target models directory stillWait=True while stillWait is True: print('Looking for a servable model in '+model_folder) try: #check served model existance if not(os.path.exists(model_folder)): raise ValueError('served models directory not found : '+model_folder) #look for a model in the directory one_model=next(os.walk(model_folder))[1][0] one_model_path=os.path.join(model_folder, one_model) if not(os.path.exists(one_model_path)): raise ValueError('served models directory not found : '+one_model_path) print('Found at least one servable model directory '+str(one_model_path)) stillWait=False except Exception as e: raise ValueError('Could not find servable model, error='+str(e.message)) get_served_model_info(one_model_path, usersettings.model_name) tensorflow_start_cmd=" --port={port} --model_name={model} --model_base_path={model_dir}".format(port=usersettings.tensorflow_server_port, model=usersettings.model_name, model_dir=model_folder) if len(FLAGS.singularity_tf_server_container_path)>0: print('Starting Tensorflow model server from provided singularity container : '+FLAGS.singularity_tf_server_container_path) tensorflow_start_cmd='singularity run --nv '+FLAGS.singularity_tf_server_container_path+tensorflow_start_cmd else: print('Starting Tensorflow model server installed on system') tensorflow_start_cmd='tensorflow_model_server '+tensorflow_start_cmd print('Starting tensorflow server with command :'+tensorflow_start_cmd) os.system(tensorflow_start_cmd) elif FLAGS.predict is True or FLAGS.predict_stream !=0: print('### PREDICT MODE, interacting with a tensorflow server ###') print('If necessary, check the served model behaviors using command line cli : saved_model_cli show --dir path/to/export/model/latest_model/1534610225/ --tag_set serve to get the MODEL_NAME(S)\n to get more details on the target MODEL_NAME, you can then add option --signature_def MODEL_NAME') usersettings, sessionFolder = loadExperimentsSettings(os.path.join(FLAGS.model_dir,SETTINGSFILE_COPY_NAME), isServingModel=True) #FIXME errors reported on gRPC: https://github.com/grpc/grpc/issues/13752 ... stay tuned, had to install a specific gpio version (pip install grpcio==1.7.3) '''server_ready=WaitForServerReady(usersettings.tensorflow_server_address, usersettings.tensorflow_server_port) if server_ready is False: raise ValueError('Could not reach tensorflow server') ''' print('Prediction mode using model : '+FLAGS.model_dir+' with model '+usersettings.model_name) predictions_dir=os.path.join(FLAGS.model_dir, 'predictions_'+datetime.datetime.now().strftime("%Y-%m-%d--%H:%M:%S")) os.mkdir(predictions_dir) os.chdir(predictions_dir) print('Current working directory = '+os.getcwd()) print('In case of GRPC errors, check codes at https://developers.google.com/maps-booking/reference/grpc-api/status_codes') do_inference(experiment_settings=usersettings, host=usersettings.tensorflow_server_address, port=usersettings.tensorflow_server_port, model_name=usersettings.model_name, clientIO_InitSpecs={}, concurrency=0, num_tests=FLAGS.predict_stream) elif FLAGS.commands is True : print('Here are some command examples') print('1. train a model (once the mysettings_1D_experiments.py is set):') print('-> python experiments_manager.py --usersettings=mysettings_1D_experiments.py') print('2. start a tensorflow server on the trained/training model :') print('-> python experiments_manager.py --start_server --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14:40:53') print('3. interract with the tensorflow server, sending input buffers and receiving answers') print('-> python experiments_manager.py --predict --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14\:40\:53/') print('4. restart an interrupted training session') print('-> python experiments_manager.py --restart_interrupted --model_dir=experiments/1Dsignals_clustering/my_test_2018-01-03--14\:40\:53/') else: print('### TRAINING MODE ###') """ setting up default values from command line """ settings_file=FLAGS.usersettings """ updating default values if running function from an upper level """ # manage eventual external custom settings and hyperparameters custom_settings=False if train_config_script is not None: print('--> Training from setup file {file} with the following external hyperparameters {params}'.format(file=train_config_script, params=external_hparams)) settings_file=train_config_script custom_settings=True if FLAGS.procID is not None: external_hparams['procID']=FLAGS.procID if len(external_hparams)>0: custom_settings=True if custom_settings: print('Some custom settings have been specified : training from setup file {file} with the following external hyperparameters {params}'.format(file=train_config_script, params=external_hparams)) settings_file=tools.experiments_settings_surgery.insert_additionnal_hparams(settings_file, external_hparams) print('-> created a temporary experiments settings file : '+settings_file) #loading the experiment setup script usersettings, sessionFolder = loadExperimentsSettings(settings_file, restart_from_sessionFolder=FLAGS.model_dir, isServingModel=False) #update hparams structure with external parameters usersettings.debug=FLAGS.debug usersettings.debug_server_addresses=FLAGS.debug_server_addresses #add additionnal hyperparams coming from an optionnal if hasattr(usersettings, 'hparams'): print('adding hypermarameters declared from the experiment settings script:'+str(usersettings.hparams)) #update sessionFolder name string if not FLAGS.restart_interrupted: sessionFolder_splits=sessionFolder.split('_') sessionFolder_addon='' for key, value in usersettings.hparams.items(): sessionFolder_addon+='_'+key+str(value) #insert sessionname addons in the original one sessionFolder='' for str_ in sessionFolder_splits[:-1]: sessionFolder+=str_+'_' sessionFolder=sessionFolder[:-1]#remove the last '_' sessionFolder+=sessionFolder_addon+'_'+sessionFolder_splits[-1] usersettings.sessionFolder=sessionFolder print('Found hparams: '+str(usersettings.hparams)) else: print('No hparams dictionnary found in the experiment settings file') print('Experiment session folder : '+sessionFolder) #deduce the experiments settings copy filename that is versionned in the experiment folder settings_copy_fullpath=os.path.join(sessionFolder, SETTINGSFILE_COPY_NAME) #copy settings and model file to the working folder usersettings.sessionFolder=sessionFolder if not FLAGS.restart_interrupted: os.makedirs(sessionFolder) if hasattr(usersettings, 'model_file'): shutil.copyfile(usersettings.model_file, os.path.join(sessionFolder, os.path.basename(usersettings.model_file))) settings_src_file=settings_file print('Willing to copy {src} to {dst}'.format(src=settings_src_file, dst=settings_copy_fullpath)) shutil.copyfile(settings_src_file, settings_copy_fullpath) #prepare a config file for model serving serving_config = configparser.ConfigParser() serving_config['SERVER'] = { 'host': usersettings.tensorflow_server_address, 'port': usersettings.tensorflow_server_port, 'model_name': usersettings.model_name, } with open(os.path.join(sessionFolder, 'model_serving_setup.ini'), 'w') as configfile: serving_config.write(configfile) else: usersettings.recoverFromCheckpoint=True res, last_exported_model=run_experiment(usersettings) #refactor result in a single updated dictionnary experiments_output=res experiments_output.update({'last_exported_model':last_exported_model, 'sessionFolder':sessionFolder}) return experiments_output if __name__ == "__main__": run()
import pandas as pd import numpy as np import utils ''' MIT License Copyright (c) 2020 Faviola Molina - dLab - Fundación Ciencia y Vida Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' def readingData(inputFile): # This function reads the input file. This is a raw file of the GIT repository # The file contains the history of the data for coronavirus in the US for all counties df = pd.read_csv(inputFile) print(df.columns.to_list()) return df def selectingData(df,source): # This function reads the list of the counties searched and ordered by C. Valdenegro # for the state of New York. This file is a modification of the original, # considering that NYT source consider the NY city as a unit. The FIPS for # the City of New York was assigned as 99999 for convenience # (FIPS for this unit are empty from source). Moreover, the FIPS for the # "Unknown" county is chosen as 90036 for keeping consistency with JH data ("Unnasigned" county) county = utils.counties(source) temp = df.loc[df['state'] == 'New York'].copy() temp.drop(columns = 'state', inplace = True) aux1 = temp['fips'].loc[temp['county'] == 'Unknown'].fillna(90036) temp['fips'].loc[temp['county'] == 'Unknown'] = aux1.copy() aux2 = temp['fips'].loc[temp['county'] == 'New York City'].fillna(99999) temp['fips'].loc[temp['county'] == 'New York City'] = aux2.copy() date_list = temp['date'].unique() print(temp['county'].unique()) # Data in the source is reported for counties and dates with infected cases. Counties # with no infected cases (in a certain date) does not appeared in the file. # For consistency and standardization counties with no infected people at a given date # are filled with zeroes k = 0 for i in date_list: t = [i] * len(county) df_date = pd.DataFrame(data={'date': t}) df = pd.DataFrame(np.zeros((len(county), 2)), columns=['cases', 'deaths']) cases_county = temp['cases'].loc[temp['date'] == i].to_list() deaths_county = temp['deaths'].loc[temp['date'] == i].to_list() county_list = temp['county'].loc[temp['date'] == i].copy() j = 0 for row in county_list: idx = county.loc[county['county'] == row].index.values if idx.size > 0: df.loc[idx, 'cases'] = cases_county[j] df.loc[idx, 'deaths'] = deaths_county[j] j += 1 aux = pd.concat([df_date, county, df.astype(int)], axis=1) if k == 0: df_ny = aux.copy() else: df_ny = pd.concat([df_ny,aux], axis=0) k += 1 # The data is concatened in a single file df_ny.reset_index(inplace = True, drop = True) return df_ny def writingData(df,outfile): # data is written to a single output file df.to_csv(outfile, index = False) if __name__ == '__main__': # Establish the source to read source = 'NYT' # provide the URL of the raw file of the github repository to read df = readingData('https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv') df_ny = selectingData(df,source) # provide the name of the output file writingData(df_ny,'../output/NYTimes/NYTraw_epidemiology_NY_std.csv')
from flask import Blueprint from flask_restful import Api from .resources import ImageAiResource from .sentences import SentenceResource, SentenceItemResource bp = Blueprint("restapi", __name__, url_prefix="/api/v1") api = Api(bp) def init_app(app): api.add_resource(ImageAiResource, "/upload/") api.add_resource(SentenceResource, "/sentence/") api.add_resource(SentenceItemResource, "/sentence/<string:id>") app.register_blueprint(bp)
begin_unit comment|'# Copyright 2015 IBM Corp.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'import' name|'mock' newline|'\n' nl|'\n' name|'from' name|'oslo_config' name|'import' name|'cfg' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'tests' op|'.' name|'functional' op|'.' name|'api_sample_tests' name|'import' name|'api_sample_base' newline|'\n' nl|'\n' DECL|variable|CONF name|'CONF' op|'=' name|'cfg' op|'.' name|'CONF' newline|'\n' name|'CONF' op|'.' name|'import_opt' op|'(' string|"'osapi_compute_extension'" op|',' nl|'\n' string|"'nova.api.openstack.compute.legacy_v2.extensions'" op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|FakeNode name|'class' name|'FakeNode' op|'(' name|'object' op|')' op|':' newline|'\n' DECL|member|__init__ indent|' ' name|'def' name|'__init__' op|'(' name|'self' op|',' name|'uuid' op|'=' string|"'058d27fa-241b-445a-a386-08c04f96db43'" op|')' op|':' newline|'\n' indent|' ' name|'self' op|'.' name|'uuid' op|'=' name|'uuid' newline|'\n' name|'self' op|'.' name|'provision_state' op|'=' string|"'active'" newline|'\n' name|'self' op|'.' name|'properties' op|'=' op|'{' string|"'cpus'" op|':' string|"'2'" op|',' nl|'\n' string|"'memory_mb'" op|':' string|"'1024'" op|',' nl|'\n' string|"'local_gb'" op|':' string|"'10'" op|'}' newline|'\n' name|'self' op|'.' name|'instance_uuid' op|'=' string|"'1ea4e53e-149a-4f02-9515-590c9fb2315a'" newline|'\n' nl|'\n' nl|'\n' DECL|class|NodeManager dedent|'' dedent|'' name|'class' name|'NodeManager' op|'(' name|'object' op|')' op|':' newline|'\n' DECL|member|list indent|' ' name|'def' name|'list' op|'(' name|'self' op|',' name|'detail' op|'=' name|'False' op|')' op|':' newline|'\n' indent|' ' name|'return' op|'[' name|'FakeNode' op|'(' op|')' op|',' name|'FakeNode' op|'(' string|"'e2025409-f3ce-4d6a-9788-c565cf3b1b1c'" op|')' op|']' newline|'\n' nl|'\n' DECL|member|get dedent|'' name|'def' name|'get' op|'(' name|'self' op|',' name|'id' op|')' op|':' newline|'\n' indent|' ' name|'return' name|'FakeNode' op|'(' name|'id' op|')' newline|'\n' nl|'\n' DECL|member|list_ports dedent|'' name|'def' name|'list_ports' op|'(' name|'self' op|',' name|'id' op|')' op|':' newline|'\n' indent|' ' name|'return' op|'[' op|']' newline|'\n' nl|'\n' nl|'\n' DECL|class|fake_client dedent|'' dedent|'' name|'class' name|'fake_client' op|'(' name|'object' op|')' op|':' newline|'\n' DECL|variable|node indent|' ' name|'node' op|'=' name|'NodeManager' op|'(' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|BareMetalNodesSampleJsonTest dedent|'' name|'class' name|'BareMetalNodesSampleJsonTest' op|'(' name|'api_sample_base' op|'.' name|'ApiSampleTestBaseV21' op|')' op|':' newline|'\n' DECL|variable|ADMIN_API indent|' ' name|'ADMIN_API' op|'=' name|'True' newline|'\n' DECL|variable|extension_name name|'extension_name' op|'=' string|'"os-baremetal-nodes"' newline|'\n' nl|'\n' DECL|member|_get_flags name|'def' name|'_get_flags' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'f' op|'=' name|'super' op|'(' name|'BareMetalNodesSampleJsonTest' op|',' name|'self' op|')' op|'.' name|'_get_flags' op|'(' op|')' newline|'\n' name|'f' op|'[' string|"'osapi_compute_extension'" op|']' op|'=' name|'CONF' op|'.' name|'osapi_compute_extension' op|'[' op|':' op|']' newline|'\n' name|'f' op|'[' string|"'osapi_compute_extension'" op|']' op|'.' name|'append' op|'(' string|"'nova.api.openstack.compute.'" nl|'\n' string|"'contrib.baremetal_nodes.Baremetal_nodes'" op|')' newline|'\n' name|'return' name|'f' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|'"nova.api.openstack.compute.baremetal_nodes"' nl|'\n' string|'"._get_ironic_client"' op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|'"nova.api.openstack.compute.legacy_v2.contrib.baremetal_nodes"' nl|'\n' string|'"._get_ironic_client"' op|')' newline|'\n' DECL|member|test_baremetal_nodes_list name|'def' name|'test_baremetal_nodes_list' op|'(' name|'self' op|',' name|'mock_get_irc' op|',' name|'v2_1_mock_get_irc' op|')' op|':' newline|'\n' indent|' ' name|'mock_get_irc' op|'.' name|'return_value' op|'=' name|'fake_client' op|'(' op|')' newline|'\n' name|'v2_1_mock_get_irc' op|'.' name|'return_value' op|'=' name|'fake_client' op|'(' op|')' newline|'\n' nl|'\n' name|'response' op|'=' name|'self' op|'.' name|'_do_get' op|'(' string|"'os-baremetal-nodes'" op|')' newline|'\n' name|'self' op|'.' name|'_verify_response' op|'(' string|"'baremetal-node-list-resp'" op|',' op|'{' op|'}' op|',' name|'response' op|',' number|'200' op|')' newline|'\n' nl|'\n' dedent|'' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|'"nova.api.openstack.compute.baremetal_nodes"' nl|'\n' string|'"._get_ironic_client"' op|')' newline|'\n' op|'@' name|'mock' op|'.' name|'patch' op|'(' string|'"nova.api.openstack.compute.legacy_v2.contrib.baremetal_nodes"' nl|'\n' string|'"._get_ironic_client"' op|')' newline|'\n' DECL|member|test_baremetal_nodes_get name|'def' name|'test_baremetal_nodes_get' op|'(' name|'self' op|',' name|'mock_get_irc' op|',' name|'v2_1_mock_get_irc' op|')' op|':' newline|'\n' indent|' ' name|'mock_get_irc' op|'.' name|'return_value' op|'=' name|'fake_client' op|'(' op|')' newline|'\n' name|'v2_1_mock_get_irc' op|'.' name|'return_value' op|'=' name|'fake_client' op|'(' op|')' newline|'\n' nl|'\n' name|'response' op|'=' name|'self' op|'.' name|'_do_get' op|'(' string|"'os-baremetal-nodes/'" nl|'\n' string|"'058d27fa-241b-445a-a386-08c04f96db43'" op|')' newline|'\n' name|'self' op|'.' name|'_verify_response' op|'(' string|"'baremetal-node-get-resp'" op|',' op|'{' op|'}' op|',' name|'response' op|',' number|'200' op|')' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
import urllib from bs4 import BeautifulSoup import urlparse import mechanize import pickle import re try: import sys if 'threading' in sys.modules: del sys.modules['threading'] print('threading module loaded before patching!') print('threading module deleted from sys.modules!\n') import gevent from gevent import monkey, pool monkey.patch_all() gevent_installed = True except: print("Gevent does not installed. Parsing process will be slower.") gevent_installed = False class Crawler: def __init__(self, url, outputfile='sitemap.xml', logfile='error.log', oformat='xml'): self.url = url self.logfile = open(logfile, 'a') self.oformat = oformat self.outputfile = outputfile # create lists for the urls in que and visited urls self.urls = set([url]) self.visited = set([url]) self.exts = ['htm', 'php'] self.allowed_regex = '\.((?!htm)(?!php)\w+)$' def set_exts(self, exts): self.exts = exts def allow_regex(self, regex=None): if not regex is None: self.allowed_regex = regex else: allowed_regex = '' for ext in self.exts: allowed_regex += '(!{})'.format(ext) self.allowed_regex = '\.({}\w+)$'.format(allowed_regex) def crawl(self, echo=False, pool_size=1): self.echo = echo self.regex = re.compile(self.allowed_regex) if gevent_installed and pool_size > 1: self.pool = pool.Pool(pool_size) self.pool.spawn(self.parse_gevent) self.pool.join() else: while len(self.urls) > 0: self.parse() if self.oformat == 'xml': self.write_xml() elif self.oformat == 'txt': self.write_txt() def parse_gevent(self): self.parse() while len(self.urls) > 0 and not self.pool.full(): self.pool.spawn(self.parse_gevent) def parse(self): if self.echo: if not gevent_installed: print('{} pages parsed :: {} pages in the queue'.format(len(self.visited), len(self.urls))) else: print('{} pages parsed :: {} parsing processes :: {} pages in the queue'.format(len(self.visited), len(self.pool), len(self.urls))) # Set the startingpoint for the spider and initialize # the a mechanize browser object if not self.urls: return else: url = self.urls.pop() br = mechanize.Browser() try: response = br.open(url) if response.code >= 400: self.errlog("Error {} at url {}".format(response.code, url)) return for link in br.links(): newurl = urlparse.urljoin(link.base_url, link.url) #print newurl if self.is_valid(newurl): self.visited.update([newurl]) self.urls.update([newurl]) except Exception, e: self.errlog(e.message) br.close() del(br) def is_valid(self, url): valid = False if '#' in url: url = url[:url.find('#')] if url in self.visited: return False if not self.url in url: return False if re.search(self.regex, url): return False return True def errlog(self, msg): self.logfile.write(msg) self.logfile.write('\n') def write_xml(self): of = open(self.outputfile, 'w') of.write('<?xml version="1.0" encoding="utf-8"?>\n') of.write('<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9 http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd">\n') url_str = '<url><loc>{}</loc></url>\n' while self.visited: of.write(url_str.format(self.visited.pop())) of.write('</urlset>') of.close() def write_txt(self): of = open(self.outputfile, 'w') url_str = '{}\n' while self.visited: of.write(url_str.format(self.visited.pop())) of.close()
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-03 09:41 from __future__ import unicode_literals import company.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Attachment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file', models.FileField(upload_to=company.models.company_file_path)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='date created')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='date updated')), ], ), migrations.CreateModel( name='Branch', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(choices=[('CO', 'Computer Engineering'), ('ME', 'Mechanical Engineering'), ('CE', 'Civil Engineering'), ('EE', 'Electrical Engineering'), ('CH', 'Chemical Engineering'), ('EC', 'Electronics and Communication Engineering'), ('PHY', 'Physics'), ('CHEM', 'Chemistry'), ('MATH', 'Mathematics'), ('ALL', 'All Branches')], max_length=4)), ('degree', models.CharField(choices=[('BTECH', 'BTech'), ('MTECH', 'MTech'), ('MSC', 'MSc')], default='BTECH', max_length=5)), ], ), migrations.CreateModel( name='Company', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('slug', models.SlugField()), ('website', models.URLField(blank=True, max_length=255, null=True)), ('about', models.TextField(blank=True, max_length=5000, null=True)), ('perks', models.TextField(blank=True, max_length=5000, null=True)), ('infra_req', models.TextField(blank=True, max_length=5000, null=True)), ('other', models.TextField(blank=True, max_length=5000, null=True)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='date created')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='date updated')), ], ), migrations.CreateModel( name='CRPDate', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('datatype', models.CharField(choices=[('MON', 'Month'), ('WOM', 'Week of Month'), ('DAT', 'Date')], max_length=3)), ('month', models.IntegerField(blank=True, null=True)), ('date', models.DateField(blank=True, null=True)), ('week_number', models.CharField(blank=True, choices=[('F', 'First'), ('S', 'Second'), ('T', 'Third'), ('L', 'Last')], max_length=1, null=True)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='date created')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='date updated')), ], ), migrations.CreateModel( name='Job', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('designation', models.CharField(max_length=255, unique=True)), ('description', models.TextField(blank=True, max_length=5000, null=True)), ('requirements', models.TextField(blank=True, max_length=5000, null=True)), ('eligibility_criteria', models.TextField(blank=True, max_length=5000, null=True)), ('ctc', models.DecimalField(blank=True, decimal_places=2, max_digits=4)), ('ctc_details', models.TextField(blank=True, max_length=5000, null=True)), ('bond_details', models.CharField(blank=True, max_length=255, null=True, unique=True)), ('number_of_selections', models.IntegerField(blank=True, null=True)), ('other', models.TextField(blank=True, max_length=5000, null=True)), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='date created')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='date updated')), ], ), migrations.CreateModel( name='JobLocation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('location', models.CharField(max_length=255)), ('job', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='job_location', to='company.Job')), ], ), migrations.CreateModel( name='JobType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('job_domain', models.CharField(choices=[('C', 'Core'), ('N', 'Non-Core')], max_length=1)), ('job_type', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='PlacementCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('ctc_range', models.CharField(max_length=255, unique=True)), ], ), migrations.CreateModel( name='SelectionProcedure', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('procedure', models.CharField(max_length=255)), ], ), migrations.AlterUniqueTogether( name='jobtype', unique_together=set([('job_domain', 'job_type')]), ), migrations.AddField( model_name='job', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='job', to='company.PlacementCategory'), ), migrations.AddField( model_name='job', name='company', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='job', to='company.Company'), ), migrations.AddField( model_name='job', name='eligible_branches', field=models.ManyToManyField(to='company.Branch'), ), migrations.AddField( model_name='job', name='job_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='job', to='company.JobType'), ), migrations.AddField( model_name='job', name='selection_procedure', field=models.ManyToManyField(to='company.SelectionProcedure'), ), migrations.AddField( model_name='crpdate', name='job', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='crpdate', to='company.Job'), ), migrations.AlterUniqueTogether( name='branch', unique_together=set([('name', 'degree')]), ), migrations.AddField( model_name='attachment', name='job', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='attachment', to='company.Job'), ), migrations.AlterUniqueTogether( name='joblocation', unique_together=set([('job', 'location')]), ), ]
try: ## Per semplificarci la vita con l'html from bs4 import BeautifulSoup except: print("Devi installare bs4 per avviare questo programma.\nPer installarlo: pip install -U bs4") try: ## Per ricevere il codice sorgente delle pagine import requests except: print("Devi installare requests per avviare questo programma.\nPer installarlo: pip install -U requests") ## Per le varie casualità import random ## Per la gestione dei file csv import csv ## Per leggere il dataset dei nomi import pandas as pd ## Per rimuovere le consonanti import re ## Classe che gestisce il tutto class gestore: def __init__(self): ## Preparo i dati self.cont = {"parole": set(), "cognomi": set(), "nomi" : set()} self.aggiungi_malattie() ## Preparo il dataset con i nomi self.getNomi_pre() ## Prendo tutti i reparti self.getReparti() def getNomi_pre(self): self.nomi = pd.read_csv('https://query.data.world/s/5xdo7ixiohmuq4yj5sdslgolah6qxh') self.nomi = self.nomi.replace("boy","maschio").replace("girl","femmina") ## Aggiungo le parole, i cognomi e i nomi def aggiungi(self): for i in self.cont.keys(): ## Fà riferimento a una funzione (quella sotto) self.setting(i) def aggiungi_malattie(self): self.cont["malattie"] = [] with open("./dataset/malattie.txt", "r") as rd: for i in rd.read().split("\n"): self.cont["malattie"].append(i) self.coronavirus = "La malattia da coronavirus (COVID-19) è una malattia infettiva causata da un nuovo virus. Il virus causa una malattia respiratoria (come l'influenza) con sintomi quali tosse febbre e nei casi più gravi difficoltà respiratorie. Puoi proteggerti lavandoti spesso le mani evitando di toccarti il viso ed evitando il contatto ravvicinato con persone che non stanno bene (mantieni un metro di distanza)." ## Prende la parola, la cerca nel dataset per poi metterla tutta nel set def setting(self, parola): if parola != "malattie": ## Aggiungo tutti i vari dataset ai rispettivi dizionari with open("./dataset/{}.txt".format(parola), "r") as rd: ## Apro, leggo, splitto for i in rd.read().split(): ## Aggiungo self.cont[parola].add(i) ## Ritorna una stringa, un numero di telefono univoco def nuovoNum(self): ## Prendo il valore numero = self.getNumero() ## Continuo finchè non esiste while (self.numero_telefono.__contains__(numero)): numero = self.getNumero() ## Aggiungo self.numero_telefono.add(numero) ## ritorno return list(self.numero_telefono)[-1] ## Crea i file medici e pazienti def creaFile(self): ## Creo la lista univoca vuota self.numero_telefono = set() print("Inizia creazione file") ## Apro il file ## OLtre ai medici ci metto anche i pazienti però in un file separato ## Inizio con lo settings dei pazienti file_paz = open("./dataset/pazienti.csv", "w") writer_paz = csv.writer(file_paz, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) writer_paz.writerow(["Nome", "Cognome", "sesso", "Data di nascita", "padiglione", "reparto", "data ricovero", "numero della stanza", "numero del letto", "descrizione malattia", "dimissione/decesso", "tessera sanitaria"]) with open("./dataset/medici.csv", "w") as filecsv: ## Settings predefiniti writer = csv.writer(filecsv, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) ## Prima riga writer.writerow(["Nome", "Cognome", "Ruolo", "padiglione", "reparto", "piano reparto", "Numero di telefono", "Abitazione", "data di nascita", "tessera_sanitaria"]) ## Trasformo tutti i dataset da set a lista for i in self.cont.keys(): if not isinstance(i, list): self.cont[i] = list(self.cont[i]) ## Liste dei nomi e congomi nomi = [] cognomi = [] ## Contatore di dove siamo arrivati cont = 0 ## Estraggo tutti i nomi e li divido for i in self.Nomi: j = 1 if i[1].split()[1] == "dott.": j = 2 nomi.append(i[1].split()[j]) cognomi.append(i[1].split()[-1]) ## Itero in una lista numerata, divido in piani conto = 0 for posto, i in enumerate(self.equip_medica): print("Scrittura del piano {0}".format(chr(posto+97)) ) ## Itero in una lista numerata, divido in reparti for cont_,j in enumerate(i): ## Scrivo i pazienti self.scrivi_paziente(writer_paz,str(chr(posto + 97)), self.Nomi[conto][0]) self.writer_main(writer, nomi[conto],cognomi[conto],"Capo reparto",str(chr(posto + 97)), self.Nomi[conto][0],self.Nomi[conto][-1]) ## Itero dentro al reparto for k in j: if k.__contains__(","): for h in k.split(","): try: self.writer_main(writer, h.split()[0], h.split()[1], "Equip", str(chr(posto + 97)), self.Nomi[conto][0], self.Nomi[conto][-1],) except: pass break else: self.writer_main(writer, k.split()[0], k.split()[1], "Equip", str(chr(posto + 97)), self.Nomi[conto][0], self.Nomi[conto][-1]) conto += 1 print("Piano finito") def getNome(self): return self.nomi.sample().__array__()[0] def scrivi_paziente(self, writer, padiglione, reparto): malattia = "" for i in range(random.randint(5, 20)): ## Scriviamo nomi_g = self.getNome() cognome = self.cont["cognomi"][random.randint(0, len(self.cont["cognomi"]) - 1)] data_nascita = self.getData() ## Diamo 4/5 di possibilità che sia il coronavirus if random.randint(0,4) == 0: malattia = self.cont["malattie"][random.randint(0, len(self.cont["malattie"]) - 1)] else: malattia = self.coronavirus writer.writerow([nomi_g[0], cognome, nomi_g[1], data_nascita, padiglione, reparto, self.getDataRicovero(), random.randint(0, 40), random.randint(0, 10), malattia.replace("|",""), self.getDataRecDec(), self.getTesseraSanitaria(nomi_g[0], cognome, nomi_g[1], data_nascita)]) def getTesseraSanitaria(self,nome,cognome,sesso,data_nascita): if sesso == "maschio": sesso = "m" else: sesso = "f" return rem_vowel(nome).lower() + rem_vowel(cognome).lower() + sesso + data_nascita.replace("/","") + str(random.randint(0,100)) ## Gestisce la scrittura del primo caso def writer_main(self, writer, nome, cognome, posizione, piano, reparto, piano_reparto): data_nascita = self.getData() sesso = "m" if random.randint(0,1) == 0: sesso = "f" writer.writerow([nome, cognome, posizione, piano, reparto, piano_reparto, self.nuovoNum(), self.getVia(), data_nascita, self.getTesseraSanitaria(nome,cognome,sesso,data_nascita)]) ## Serve per ottenere la via del medico def getVia(self): return "via " + self.cont["nomi"][random.randint(0, len(self.cont["nomi"]) - 1)] + " n^" + str(random.randint(0, 100)) ## Serve per ottenere il numero di un medico def getNumero(self): return "39" + str(random.randint(3000000000, 3990000000)) ## Serve per ottenere la data di nascita del medico def getData(self): return str(random.randint(1, 30)) + "/" + str(random.randint(1, 12)) + "/" + str(random.randint(1980, 2000)) def getDataRicovero(self): return str(random.randint(1, 30)) + "/" + str(random.randint(1, 12)) + "/" + str(random.randint(2010, 2019)) def getDataRecDec(self): out = "" if random.randint(0,1) == 0: out = "decesso " else: out = "dimisso " return out + str(random.randint(1, 30)) + "/" + str(random.randint(1, 12)) + "/2020" ## Prendo tutti i reparti direttamente dal sito ufficiale di novara def getReparti(self): ## Link base testo_base = "http://www.maggioreosp.novara.it/attivita-assistenziale/strutture-sanitarie/elenco-delle-strutture-sanitarie/padiglione-" ## Contenitore di: capo reparto, piano, reparto self.Nomi = [] ## Contenitore dell'equip medica self.equip_medica = [] ## Vari piani. il -2 è il piano complesso piani = {"terzo": 3, "seminterrato": -1, "terra": 0, "terreno": 0, "secondo": 2, "quarto": 4, "primo": 1, "rialzato": 0} l = 0 while (True): ## A = ascii 97 lettera = chr(l + 97) ## Faccio richesta response = requests.get(testo_base + lettera) ## Trasformo soup = BeautifulSoup(response.content, "html.parser") ## Controllo se il sito esiste if soup.title.getText().__contains__("Pagina non trovata"): break else: ## Se si allora dì print("Controllo piano {0}".format(lettera)) ## E dividi in sezioni prova = soup.findAll("div", {"class", "siteorigin-widget-tinymce textwidget"}) ## la disposizione sarà: Reparto - Nome capo reparto - piani for i in prova[2:]: ## Il testo effettivo testo = i.getText().split("\n") ## Piano deffault piano = str(random.randint(-1,4)) ## Ricavo il piano for j in piani.keys(): ## Se contiene la key if testo[2].__contains__(j): ## Scrivi il piano e esci piano = piani[j] break ## Uso try except siccome non voglio rendere ancora più complicato il codice. ## Il reparto "mensa" non contiene nessun gestore, allora gliene dò uno a mia scelta try: ## Qui aggiungo alla lista Nomi la seguente cosa: ## Il primo li aggiungo semplicemente il reparto ## Prendo il testo, li tolgo tutti gli spazi vuoti, una volta fatto prendo la parte che ci interessa cioè il capo reparto. ## Il piano self.Nomi.append([testo[1], list(filter(lambda val: val.strip().__len__() != 0, testo))[2].split(":")[1], piano]) ## Nel caso sia la mensa except IndexError: self.Nomi.append([testo[1], " Dottor Lucreazia Grazie", piano]) ## Estraggo l'equipe medica. ## per ogni link che abbiamo, te invialo a get_equip e poi aggiungilo alla lista. Bisogna togliere i primi due valori siccome non ci interessano self.equip_medica.append([self.get_equip(link) for link in [exc.find('a')["href"] for exc in prova[2:]]]) l += 1 ## La funzione prende come un input un link e restituisce una lista. def get_equip(self, link): ## La lista che restituiremo equip = [] ## Faccio la richiesta response = requests.get(link) ## E' tutto in try e expect siccome potrebbe essere che non abbiamo nessuna equip. Per come è fatto, non possiamo ## Fare controlli. L'unica maniera è un try except try: ## Prendo il testo che contiene l'equipe prima_parte = \ BeautifulSoup(response.content, "html.parser").find(id="accordion-content-equipe-%c2%bb").contents[ 1].getText() ## Se contiene i : allora vuol dire che è semplice come struttura if prima_parte.__contains__(":"): ## Per non fare un codice stra lungo ( e siccome sono solamente 2 le pagine quelle diverse ) faccio questa cosa dove le toglie i due casi speciali if prima_parte.__len__() < 3000 and prima_parte.__contains__("Antonio RAMPONI") == False: ## Nel caso normale, ## Prendo la prima parte, la divido in parti a seconda del :, prendo ciò che ci interessa e la ridivido per \n. Una volta questo, ## Itero ogni parte della lista e ci toglio le cose in più per poi toglierli le celle vuote e le varie eccezioni. ## Lo rendo una stringa per poi dividerlo ogni , equip = (list(filter( lambda val: val.split().__len__() != 1, list(filter( lambda val: val.__len__() != 0 and val != "Struttura semplice" and val != "Strutture semplici" and val != "Coordinatore Infermieristico", list( map(lambda val: val.strip(), prima_parte.split(":")[1].split("\n")))))))) ## In questi 2 casi, li aggiungo "manualmente" elif prima_parte.__contains__("Antonio RAMPONI"): equip = ["Cristiana BOZZOLA", "Francesca FOTI", "Angela GIACALONE", "Monica LEUTNER", "Emanuela UGLIETTI", "Guido VALENTE"] else: equip = ["Patrizia NOTARI", "Matteo VIDALI", "Vessellina KRUOMOVA", "Giuseppina ANTONINI", "Ilaria CRESPI", "Luisa DI TRAPANI", "Lucia FRANCHINI", "Roberta Rolla", "Marco Bagnati", "Patrizia PERGOLONI"] else: ## Nel caso non abbia i :, allora ce la caviamo semplicemente così equip = \ prima_parte.strip().split(",") except AttributeError: pass ## Per risolvere un errore if equip.__len__() == 1 and equip[0].__len__() > 20: equip = equip[0].split(',') ## Chiudo la connessione response.close() ## Ritorno l'array return equip def rem_vowel(string): return (re.sub("[aeiouAEIOU]","",string)) def main(): ## Creo le varie variabili main_class = gestore() ## Aggiungo i vari dati main_class.aggiungi() ## Creo i file main_class.creaFile() ## Avvio solamente se fatto da chiamata diretta if __name__ == "__main__": main()
from . import oracle Oracle = oracle.Oracle __version__ = "1.0.1" __all__ = ['oracle']
# Generated by Django 3.0 on 2019-12-25 18:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trips', '0001_initial'), ] operations = [ migrations.AlterField( model_name='trip', name='terminal', field=models.CharField(choices=[('G', 'International Terminal G'), ('A', 'International Terminal A'), ('2D', 'Terminal 2'), ('1B', 'Harvey Milk Terminal 1B'), ('1C', 'Harvey Milk Terminal 1C'), ('3', 'Terminal 3')], help_text='Check https://www.flysfo.com/flight-info/airlines-at-sfo to see which Terminal you need to check in at for your flight.', max_length=2), ), ]
#!/bin/env python # -*- coding: utf-8 -*- from io import open import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand # From https://docs.pytest.org/en/latest/goodpractices.html#manual-integration # See if we could instead use pytest-runner class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to pytest")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = '' def run_tests(self): import shlex #import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) setup( name="lgr-core", version='2.0.0', author='Viagénie and Wil Tan', author_email='support@viagenie.ca', description="API for manipulating Label Generation Rules", long_description=open('README.md', encoding='utf-8').read(), license="TBD", install_requires=['lxml', 'language-tags', 'munidata', 'picu'], packages=find_packages(), scripts=[ 'tools/lgr_cli.py', 'tools/lgr_validate.py', 'tools/rfc4290_dump.py', 'tools/one_per_line_dump.py', 'tools/rfc3743_dump.py', 'tools/xml_dump.py', 'tools/make_idna_repertoire.py', 'tools/lgr_annotate.py', 'tools/lgr_collision.py', 'tools/lgr_compare.py', 'tools/lgr_diff_collisions.py', 'tools/lgr_merge_set.py', 'tools/lgr_cross_script_variants.py', 'tools/lgr_harmonize' ], tests_require=['pytest'], cmdclass={'test': PyTest}, classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries' ] )
"""Generated client library for dataproc version v1.""" # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.py import base_api from googlecloudsdk.third_party.apis.dataproc.v1 import dataproc_v1_messages as messages class DataprocV1(base_api.BaseApiClient): """Generated client library for service dataproc version v1.""" MESSAGES_MODULE = messages BASE_URL = 'https://dataproc.googleapis.com/' MTLS_BASE_URL = 'https://dataproc.mtls.googleapis.com/' _PACKAGE = 'dataproc' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform'] _VERSION = 'v1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'DataprocV1' _URL_VERSION = 'v1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new dataproc handle.""" url = url or self.BASE_URL super(DataprocV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_locations_autoscalingPolicies = self.ProjectsLocationsAutoscalingPoliciesService(self) self.projects_locations_batches = self.ProjectsLocationsBatchesService(self) self.projects_locations_sessions = self.ProjectsLocationsSessionsService(self) self.projects_locations_workflowTemplates = self.ProjectsLocationsWorkflowTemplatesService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects_regions_autoscalingPolicies = self.ProjectsRegionsAutoscalingPoliciesService(self) self.projects_regions_clusters = self.ProjectsRegionsClustersService(self) self.projects_regions_jobs = self.ProjectsRegionsJobsService(self) self.projects_regions_operations = self.ProjectsRegionsOperationsService(self) self.projects_regions_workflowTemplates = self.ProjectsRegionsWorkflowTemplatesService(self) self.projects_regions = self.ProjectsRegionsService(self) self.projects = self.ProjectsService(self) class ProjectsLocationsAutoscalingPoliciesService(base_api.BaseApiService): """Service class for the projects_locations_autoscalingPolicies resource.""" _NAME = 'projects_locations_autoscalingPolicies' def __init__(self, client): super(DataprocV1.ProjectsLocationsAutoscalingPoliciesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates new autoscaling policy. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies', http_method='POST', method_id='dataproc.projects.locations.autoscalingPolicies.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/autoscalingPolicies', request_field='autoscalingPolicy', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesCreateRequest', response_type_name='AutoscalingPolicy', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes an autoscaling policy. It is an error to delete an autoscaling policy that is in use by one or more clusters. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='DELETE', method_id='dataproc.projects.locations.autoscalingPolicies.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Retrieves autoscaling policy. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='GET', method_id='dataproc.projects.locations.autoscalingPolicies.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesGetRequest', response_type_name='AutoscalingPolicy', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.locations.autoscalingPolicies.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def List(self, request, global_params=None): r"""Lists autoscaling policies in the project. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListAutoscalingPoliciesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies', http_method='GET', method_id='dataproc.projects.locations.autoscalingPolicies.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1/{+parent}/autoscalingPolicies', request_field='', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesListRequest', response_type_name='ListAutoscalingPoliciesResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.locations.autoscalingPolicies.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsLocationsAutoscalingPoliciesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.locations.autoscalingPolicies.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsLocationsAutoscalingPoliciesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) def Update(self, request, global_params=None): r"""Updates (replaces) autoscaling policy.Disabled check for update_mask, because all updates will be full replacements. Args: request: (AutoscalingPolicy) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) Update.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='PUT', method_id='dataproc.projects.locations.autoscalingPolicies.update', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='<request>', request_type_name='AutoscalingPolicy', response_type_name='AutoscalingPolicy', supports_download=False, ) class ProjectsLocationsBatchesService(base_api.BaseApiService): """Service class for the projects_locations_batches resource.""" _NAME = 'projects_locations_batches' def __init__(self, client): super(DataprocV1.ProjectsLocationsBatchesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a batch workload that executes asynchronously. Args: request: (DataprocProjectsLocationsBatchesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/batches', http_method='POST', method_id='dataproc.projects.locations.batches.create', ordered_params=['parent'], path_params=['parent'], query_params=['batchId', 'requestId'], relative_path='v1/{+parent}/batches', request_field='batch', request_type_name='DataprocProjectsLocationsBatchesCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes the batch workload resource. If the batch is not in terminal state, the delete fails and the response returns FAILED_PRECONDITION. Args: request: (DataprocProjectsLocationsBatchesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/batches/{batchesId}', http_method='DELETE', method_id='dataproc.projects.locations.batches.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsBatchesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the batch workload resource representation. Args: request: (DataprocProjectsLocationsBatchesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Batch) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/batches/{batchesId}', http_method='GET', method_id='dataproc.projects.locations.batches.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsBatchesGetRequest', response_type_name='Batch', supports_download=False, ) def List(self, request, global_params=None): r"""Lists batch workloads. Args: request: (DataprocProjectsLocationsBatchesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListBatchesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/batches', http_method='GET', method_id='dataproc.projects.locations.batches.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/batches', request_field='', request_type_name='DataprocProjectsLocationsBatchesListRequest', response_type_name='ListBatchesResponse', supports_download=False, ) class ProjectsLocationsSessionsService(base_api.BaseApiService): """Service class for the projects_locations_sessions resource.""" _NAME = 'projects_locations_sessions' def __init__(self, client): super(DataprocV1.ProjectsLocationsSessionsService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Create an interactive session asynchronously. Args: request: (DataprocProjectsLocationsSessionsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/sessions', http_method='POST', method_id='dataproc.projects.locations.sessions.create', ordered_params=['parent'], path_params=['parent'], query_params=['requestId', 'sessionId'], relative_path='v1/{+parent}/sessions', request_field='session', request_type_name='DataprocProjectsLocationsSessionsCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes the interactive session resource. If the session is not in terminal state, it will be terminated and deleted afterwards. Args: request: (DataprocProjectsLocationsSessionsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/sessions/{sessionsId}', http_method='DELETE', method_id='dataproc.projects.locations.sessions.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsSessionsDeleteRequest', response_type_name='Operation', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the resource representation for an interactive session. Args: request: (DataprocProjectsLocationsSessionsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Session) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/sessions/{sessionsId}', http_method='GET', method_id='dataproc.projects.locations.sessions.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsSessionsGetRequest', response_type_name='Session', supports_download=False, ) def List(self, request, global_params=None): r"""Lists interactive sessions. Args: request: (DataprocProjectsLocationsSessionsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListSessionsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/sessions', http_method='GET', method_id='dataproc.projects.locations.sessions.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/sessions', request_field='', request_type_name='DataprocProjectsLocationsSessionsListRequest', response_type_name='ListSessionsResponse', supports_download=False, ) def Terminate(self, request, global_params=None): r"""Terminates the interactive session. Args: request: (DataprocProjectsLocationsSessionsTerminateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Terminate') return self._RunMethod( config, request, global_params=global_params) Terminate.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/sessions/{sessionsId}:terminate', http_method='POST', method_id='dataproc.projects.locations.sessions.terminate', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:terminate', request_field='terminateSessionRequest', request_type_name='DataprocProjectsLocationsSessionsTerminateRequest', response_type_name='Operation', supports_download=False, ) class ProjectsLocationsWorkflowTemplatesService(base_api.BaseApiService): """Service class for the projects_locations_workflowTemplates resource.""" _NAME = 'projects_locations_workflowTemplates' def __init__(self, client): super(DataprocV1.ProjectsLocationsWorkflowTemplatesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates new workflow template. Args: request: (DataprocProjectsLocationsWorkflowTemplatesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/workflowTemplates', request_field='workflowTemplate', request_type_name='DataprocProjectsLocationsWorkflowTemplatesCreateRequest', response_type_name='WorkflowTemplate', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a workflow template. It does not cancel in-progress workflows. Args: request: (DataprocProjectsLocationsWorkflowTemplatesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}', http_method='DELETE', method_id='dataproc.projects.locations.workflowTemplates.delete', ordered_params=['name'], path_params=['name'], query_params=['version'], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsWorkflowTemplatesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Retrieves the latest workflow template.Can retrieve previously instantiated template by specifying optional version parameter. Args: request: (DataprocProjectsLocationsWorkflowTemplatesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}', http_method='GET', method_id='dataproc.projects.locations.workflowTemplates.get', ordered_params=['name'], path_params=['name'], query_params=['version'], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsLocationsWorkflowTemplatesGetRequest', response_type_name='WorkflowTemplate', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsLocationsWorkflowTemplatesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsLocationsWorkflowTemplatesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def Instantiate(self, request, global_params=None): r"""Instantiates a template and begins execution.The returned Operation can be used to track execution of workflow by polling operations.get. The Operation will complete when entire workflow is finished.The running workflow can be aborted via operations.cancel. This will cause any inflight jobs to be cancelled and workflow-owned clusters to be deleted.The Operation.metadata will be WorkflowMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#workflowmetadata). Also see Using WorkflowMetadata (https://cloud.google.com/dataproc/docs/concepts/workflows/debugging#using_workflowmetadata).On successful completion, Operation.response will be Empty. Args: request: (DataprocProjectsLocationsWorkflowTemplatesInstantiateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Instantiate') return self._RunMethod( config, request, global_params=global_params) Instantiate.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}:instantiate', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.instantiate', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:instantiate', request_field='instantiateWorkflowTemplateRequest', request_type_name='DataprocProjectsLocationsWorkflowTemplatesInstantiateRequest', response_type_name='Operation', supports_download=False, ) def InstantiateInline(self, request, global_params=None): r"""Instantiates a template and begins execution.This method is equivalent to executing the sequence CreateWorkflowTemplate, InstantiateWorkflowTemplate, DeleteWorkflowTemplate.The returned Operation can be used to track execution of workflow by polling operations.get. The Operation will complete when entire workflow is finished.The running workflow can be aborted via operations.cancel. This will cause any inflight jobs to be cancelled and workflow-owned clusters to be deleted.The Operation.metadata will be WorkflowMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#workflowmetadata). Also see Using WorkflowMetadata (https://cloud.google.com/dataproc/docs/concepts/workflows/debugging#using_workflowmetadata).On successful completion, Operation.response will be Empty. Args: request: (DataprocProjectsLocationsWorkflowTemplatesInstantiateInlineRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('InstantiateInline') return self._RunMethod( config, request, global_params=global_params) InstantiateInline.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates:instantiateInline', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.instantiateInline', ordered_params=['parent'], path_params=['parent'], query_params=['requestId'], relative_path='v1/{+parent}/workflowTemplates:instantiateInline', request_field='workflowTemplate', request_type_name='DataprocProjectsLocationsWorkflowTemplatesInstantiateInlineRequest', response_type_name='Operation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists workflows that match the specified filter in the request. Args: request: (DataprocProjectsLocationsWorkflowTemplatesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListWorkflowTemplatesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates', http_method='GET', method_id='dataproc.projects.locations.workflowTemplates.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1/{+parent}/workflowTemplates', request_field='', request_type_name='DataprocProjectsLocationsWorkflowTemplatesListRequest', response_type_name='ListWorkflowTemplatesResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsLocationsWorkflowTemplatesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsLocationsWorkflowTemplatesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsLocationsWorkflowTemplatesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.locations.workflowTemplates.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsLocationsWorkflowTemplatesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) def Update(self, request, global_params=None): r"""Updates (replaces) workflow template. The updated template must contain version that matches the current server version. Args: request: (WorkflowTemplate) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) Update.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}/workflowTemplates/{workflowTemplatesId}', http_method='PUT', method_id='dataproc.projects.locations.workflowTemplates.update', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='<request>', request_type_name='WorkflowTemplate', response_type_name='WorkflowTemplate', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(DataprocV1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } class ProjectsRegionsAutoscalingPoliciesService(base_api.BaseApiService): """Service class for the projects_regions_autoscalingPolicies resource.""" _NAME = 'projects_regions_autoscalingPolicies' def __init__(self, client): super(DataprocV1.ProjectsRegionsAutoscalingPoliciesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates new autoscaling policy. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies', http_method='POST', method_id='dataproc.projects.regions.autoscalingPolicies.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/autoscalingPolicies', request_field='autoscalingPolicy', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesCreateRequest', response_type_name='AutoscalingPolicy', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes an autoscaling policy. It is an error to delete an autoscaling policy that is in use by one or more clusters. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='DELETE', method_id='dataproc.projects.regions.autoscalingPolicies.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Retrieves autoscaling policy. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='GET', method_id='dataproc.projects.regions.autoscalingPolicies.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesGetRequest', response_type_name='AutoscalingPolicy', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.regions.autoscalingPolicies.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def List(self, request, global_params=None): r"""Lists autoscaling policies in the project. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListAutoscalingPoliciesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies', http_method='GET', method_id='dataproc.projects.regions.autoscalingPolicies.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1/{+parent}/autoscalingPolicies', request_field='', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesListRequest', response_type_name='ListAutoscalingPoliciesResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.regions.autoscalingPolicies.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsRegionsAutoscalingPoliciesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.regions.autoscalingPolicies.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsRegionsAutoscalingPoliciesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) def Update(self, request, global_params=None): r"""Updates (replaces) autoscaling policy.Disabled check for update_mask, because all updates will be full replacements. Args: request: (AutoscalingPolicy) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (AutoscalingPolicy) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) Update.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/autoscalingPolicies/{autoscalingPoliciesId}', http_method='PUT', method_id='dataproc.projects.regions.autoscalingPolicies.update', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='<request>', request_type_name='AutoscalingPolicy', response_type_name='AutoscalingPolicy', supports_download=False, ) class ProjectsRegionsClustersService(base_api.BaseApiService): """Service class for the projects_regions_clusters resource.""" _NAME = 'projects_regions_clusters' def __init__(self, client): super(DataprocV1.ProjectsRegionsClustersService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a cluster in a project. The returned Operation.metadata will be ClusterOperationMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#clusteroperationmetadata). Args: request: (DataprocProjectsRegionsClustersCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.clusters.create', ordered_params=['projectId', 'region'], path_params=['projectId', 'region'], query_params=['actionOnFailedPrimaryWorkers', 'requestId'], relative_path='v1/projects/{projectId}/regions/{region}/clusters', request_field='cluster', request_type_name='DataprocProjectsRegionsClustersCreateRequest', response_type_name='Operation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a cluster in a project. The returned Operation.metadata will be ClusterOperationMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#clusteroperationmetadata). Args: request: (DataprocProjectsRegionsClustersDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( http_method='DELETE', method_id='dataproc.projects.regions.clusters.delete', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=['clusterUuid', 'requestId'], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}', request_field='', request_type_name='DataprocProjectsRegionsClustersDeleteRequest', response_type_name='Operation', supports_download=False, ) def Diagnose(self, request, global_params=None): r"""Gets cluster diagnostic information. The returned Operation.metadata will be ClusterOperationMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#clusteroperationmetadata). After the operation completes, Operation.response contains DiagnoseClusterResults (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#diagnoseclusterresults). Args: request: (DataprocProjectsRegionsClustersDiagnoseRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Diagnose') return self._RunMethod( config, request, global_params=global_params) Diagnose.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.clusters.diagnose', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}:diagnose', request_field='diagnoseClusterRequest', request_type_name='DataprocProjectsRegionsClustersDiagnoseRequest', response_type_name='Operation', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the resource representation for a cluster in a project. Args: request: (DataprocProjectsRegionsClustersGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Cluster) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.clusters.get', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}', request_field='', request_type_name='DataprocProjectsRegionsClustersGetRequest', response_type_name='Cluster', supports_download=False, ) def GetClusterAsTemplate(self, request, global_params=None): r"""Exports a template for a cluster in a project that can be used in future CreateCluster requests. Args: request: (DataprocProjectsRegionsClustersGetClusterAsTemplateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Cluster) The response message. """ config = self.GetMethodConfig('GetClusterAsTemplate') return self._RunMethod( config, request, global_params=global_params) GetClusterAsTemplate.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.clusters.getClusterAsTemplate', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}:getClusterAsTemplate', request_field='', request_type_name='DataprocProjectsRegionsClustersGetClusterAsTemplateRequest', response_type_name='Cluster', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsRegionsClustersGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/clusters/{clustersId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.regions.clusters.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsRegionsClustersGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def InjectCredentials(self, request, global_params=None): r"""Inject encrypted credentials into all of the VMs in a cluster.The target cluster must be a personal auth cluster assigned to the user who is issuing the RPC. Args: request: (DataprocProjectsRegionsClustersInjectCredentialsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('InjectCredentials') return self._RunMethod( config, request, global_params=global_params) InjectCredentials.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/clusters/{clustersId}:injectCredentials', http_method='POST', method_id='dataproc.projects.regions.clusters.injectCredentials', ordered_params=['project', 'region', 'cluster'], path_params=['cluster', 'project', 'region'], query_params=[], relative_path='v1/{+project}/{+region}/{+cluster}:injectCredentials', request_field='injectCredentialsRequest', request_type_name='DataprocProjectsRegionsClustersInjectCredentialsRequest', response_type_name='Operation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists all regions/{region}/clusters in a project alphabetically. Args: request: (DataprocProjectsRegionsClustersListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListClustersResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.clusters.list', ordered_params=['projectId', 'region'], path_params=['projectId', 'region'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/projects/{projectId}/regions/{region}/clusters', request_field='', request_type_name='DataprocProjectsRegionsClustersListRequest', response_type_name='ListClustersResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates a cluster in a project. The returned Operation.metadata will be ClusterOperationMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#clusteroperationmetadata). The cluster must be in a RUNNING state or an error is returned. Args: request: (DataprocProjectsRegionsClustersPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( http_method='PATCH', method_id='dataproc.projects.regions.clusters.patch', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=['gracefulDecommissionTimeout', 'requestId', 'updateMask'], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}', request_field='cluster', request_type_name='DataprocProjectsRegionsClustersPatchRequest', response_type_name='Operation', supports_download=False, ) def Repair(self, request, global_params=None): r"""Repairs a cluster. Args: request: (DataprocProjectsRegionsClustersRepairRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Repair') return self._RunMethod( config, request, global_params=global_params) Repair.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.clusters.repair', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}:repair', request_field='repairClusterRequest', request_type_name='DataprocProjectsRegionsClustersRepairRequest', response_type_name='Operation', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsRegionsClustersSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/clusters/{clustersId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.regions.clusters.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsRegionsClustersSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def Start(self, request, global_params=None): r"""Starts a cluster in a project. Args: request: (DataprocProjectsRegionsClustersStartRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Start') return self._RunMethod( config, request, global_params=global_params) Start.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.clusters.start', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}:start', request_field='startClusterRequest', request_type_name='DataprocProjectsRegionsClustersStartRequest', response_type_name='Operation', supports_download=False, ) def Stop(self, request, global_params=None): r"""Stops a cluster in a project. Args: request: (DataprocProjectsRegionsClustersStopRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Stop') return self._RunMethod( config, request, global_params=global_params) Stop.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.clusters.stop', ordered_params=['projectId', 'region', 'clusterName'], path_params=['clusterName', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/clusters/{clusterName}:stop', request_field='stopClusterRequest', request_type_name='DataprocProjectsRegionsClustersStopRequest', response_type_name='Operation', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsRegionsClustersTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/clusters/{clustersId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.regions.clusters.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsRegionsClustersTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsRegionsJobsService(base_api.BaseApiService): """Service class for the projects_regions_jobs resource.""" _NAME = 'projects_regions_jobs' def __init__(self, client): super(DataprocV1.ProjectsRegionsJobsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts a job cancellation request. To access the job resource after cancellation, call regions/{region}/jobs.list (https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs/list) or regions/{region}/jobs.get (https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs/get). Args: request: (DataprocProjectsRegionsJobsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.jobs.cancel', ordered_params=['projectId', 'region', 'jobId'], path_params=['jobId', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs/{jobId}:cancel', request_field='cancelJobRequest', request_type_name='DataprocProjectsRegionsJobsCancelRequest', response_type_name='Job', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes the job from the project. If the job is active, the delete fails, and the response returns FAILED_PRECONDITION. Args: request: (DataprocProjectsRegionsJobsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( http_method='DELETE', method_id='dataproc.projects.regions.jobs.delete', ordered_params=['projectId', 'region', 'jobId'], path_params=['jobId', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs/{jobId}', request_field='', request_type_name='DataprocProjectsRegionsJobsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the resource representation for a job in a project. Args: request: (DataprocProjectsRegionsJobsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.jobs.get', ordered_params=['projectId', 'region', 'jobId'], path_params=['jobId', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs/{jobId}', request_field='', request_type_name='DataprocProjectsRegionsJobsGetRequest', response_type_name='Job', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsRegionsJobsGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/jobs/{jobsId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.regions.jobs.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsRegionsJobsGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def GetJobAsTemplate(self, request, global_params=None): r"""Exports the resource representation for a job in a project as a template that can be used as a SubmitJobRequest. Args: request: (DataprocProjectsRegionsJobsGetJobAsTemplateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('GetJobAsTemplate') return self._RunMethod( config, request, global_params=global_params) GetJobAsTemplate.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.jobs.getJobAsTemplate', ordered_params=['projectId', 'region', 'jobId'], path_params=['jobId', 'projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs/{jobId}:getJobAsTemplate', request_field='', request_type_name='DataprocProjectsRegionsJobsGetJobAsTemplateRequest', response_type_name='Job', supports_download=False, ) def List(self, request, global_params=None): r"""Lists regions/{region}/jobs in a project. Args: request: (DataprocProjectsRegionsJobsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListJobsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( http_method='GET', method_id='dataproc.projects.regions.jobs.list', ordered_params=['projectId', 'region'], path_params=['projectId', 'region'], query_params=['clusterName', 'filter', 'jobStateMatcher', 'pageSize', 'pageToken'], relative_path='v1/projects/{projectId}/regions/{region}/jobs', request_field='', request_type_name='DataprocProjectsRegionsJobsListRequest', response_type_name='ListJobsResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates a job in a project. Args: request: (DataprocProjectsRegionsJobsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( http_method='PATCH', method_id='dataproc.projects.regions.jobs.patch', ordered_params=['projectId', 'region', 'jobId'], path_params=['jobId', 'projectId', 'region'], query_params=['updateMask'], relative_path='v1/projects/{projectId}/regions/{region}/jobs/{jobId}', request_field='job', request_type_name='DataprocProjectsRegionsJobsPatchRequest', response_type_name='Job', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsRegionsJobsSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/jobs/{jobsId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.regions.jobs.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsRegionsJobsSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def Submit(self, request, global_params=None): r"""Submits a job to a cluster. Args: request: (DataprocProjectsRegionsJobsSubmitRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Submit') return self._RunMethod( config, request, global_params=global_params) Submit.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.jobs.submit', ordered_params=['projectId', 'region'], path_params=['projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs:submit', request_field='submitJobRequest', request_type_name='DataprocProjectsRegionsJobsSubmitRequest', response_type_name='Job', supports_download=False, ) def SubmitAsOperation(self, request, global_params=None): r"""Submits job to a cluster. Args: request: (DataprocProjectsRegionsJobsSubmitAsOperationRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('SubmitAsOperation') return self._RunMethod( config, request, global_params=global_params) SubmitAsOperation.method_config = lambda: base_api.ApiMethodInfo( http_method='POST', method_id='dataproc.projects.regions.jobs.submitAsOperation', ordered_params=['projectId', 'region'], path_params=['projectId', 'region'], query_params=[], relative_path='v1/projects/{projectId}/regions/{region}/jobs:submitAsOperation', request_field='submitJobRequest', request_type_name='DataprocProjectsRegionsJobsSubmitAsOperationRequest', response_type_name='Operation', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsRegionsJobsTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/jobs/{jobsId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.regions.jobs.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsRegionsJobsTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsRegionsOperationsService(base_api.BaseApiService): """Service class for the projects_regions_operations resource.""" _NAME = 'projects_regions_operations' def __init__(self, client): super(DataprocV1.ProjectsRegionsOperationsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to Code.CANCELLED. Args: request: (DataprocProjectsRegionsOperationsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}:cancel', http_method='POST', method_id='dataproc.projects.regions.operations.cancel', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:cancel', request_field='', request_type_name='DataprocProjectsRegionsOperationsCancelRequest', response_type_name='Empty', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED. Args: request: (DataprocProjectsRegionsOperationsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}', http_method='DELETE', method_id='dataproc.projects.regions.operations.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsOperationsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service. Args: request: (DataprocProjectsRegionsOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}', http_method='GET', method_id='dataproc.projects.regions.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsOperationsGetRequest', response_type_name='Operation', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsRegionsOperationsGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.regions.operations.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsRegionsOperationsGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def List(self, request, global_params=None): r"""Lists operations that match the specified filter in the request. If the server doesn't support this method, it returns UNIMPLEMENTED.NOTE: the name binding allows API services to override the binding to use different resource name schemes, such as users/*/operations. To override the binding, API services can add a binding such as "/v1/{name=users/*}/operations" to their service configuration. For backwards compatibility, the default name includes the operations collection id, however overriding users must ensure the name binding is the parent resource, without the operations collection id. Args: request: (DataprocProjectsRegionsOperationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListOperationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations', http_method='GET', method_id='dataproc.projects.regions.operations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsOperationsListRequest', response_type_name='ListOperationsResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsRegionsOperationsSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.regions.operations.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsRegionsOperationsSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsRegionsOperationsTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/operations/{operationsId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.regions.operations.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsRegionsOperationsTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) class ProjectsRegionsWorkflowTemplatesService(base_api.BaseApiService): """Service class for the projects_regions_workflowTemplates resource.""" _NAME = 'projects_regions_workflowTemplates' def __init__(self, client): super(DataprocV1.ProjectsRegionsWorkflowTemplatesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates new workflow template. Args: request: (DataprocProjectsRegionsWorkflowTemplatesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/workflowTemplates', request_field='workflowTemplate', request_type_name='DataprocProjectsRegionsWorkflowTemplatesCreateRequest', response_type_name='WorkflowTemplate', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a workflow template. It does not cancel in-progress workflows. Args: request: (DataprocProjectsRegionsWorkflowTemplatesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}', http_method='DELETE', method_id='dataproc.projects.regions.workflowTemplates.delete', ordered_params=['name'], path_params=['name'], query_params=['version'], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsWorkflowTemplatesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Retrieves the latest workflow template.Can retrieve previously instantiated template by specifying optional version parameter. Args: request: (DataprocProjectsRegionsWorkflowTemplatesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}', http_method='GET', method_id='dataproc.projects.regions.workflowTemplates.get', ordered_params=['name'], path_params=['name'], query_params=['version'], relative_path='v1/{+name}', request_field='', request_type_name='DataprocProjectsRegionsWorkflowTemplatesGetRequest', response_type_name='WorkflowTemplate', supports_download=False, ) def GetIamPolicy(self, request, global_params=None): r"""Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set. Args: request: (DataprocProjectsRegionsWorkflowTemplatesGetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('GetIamPolicy') return self._RunMethod( config, request, global_params=global_params) GetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}:getIamPolicy', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.getIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:getIamPolicy', request_field='getIamPolicyRequest', request_type_name='DataprocProjectsRegionsWorkflowTemplatesGetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def Instantiate(self, request, global_params=None): r"""Instantiates a template and begins execution.The returned Operation can be used to track execution of workflow by polling operations.get. The Operation will complete when entire workflow is finished.The running workflow can be aborted via operations.cancel. This will cause any inflight jobs to be cancelled and workflow-owned clusters to be deleted.The Operation.metadata will be WorkflowMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#workflowmetadata). Also see Using WorkflowMetadata (https://cloud.google.com/dataproc/docs/concepts/workflows/debugging#using_workflowmetadata).On successful completion, Operation.response will be Empty. Args: request: (DataprocProjectsRegionsWorkflowTemplatesInstantiateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('Instantiate') return self._RunMethod( config, request, global_params=global_params) Instantiate.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}:instantiate', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.instantiate', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:instantiate', request_field='instantiateWorkflowTemplateRequest', request_type_name='DataprocProjectsRegionsWorkflowTemplatesInstantiateRequest', response_type_name='Operation', supports_download=False, ) def InstantiateInline(self, request, global_params=None): r"""Instantiates a template and begins execution.This method is equivalent to executing the sequence CreateWorkflowTemplate, InstantiateWorkflowTemplate, DeleteWorkflowTemplate.The returned Operation can be used to track execution of workflow by polling operations.get. The Operation will complete when entire workflow is finished.The running workflow can be aborted via operations.cancel. This will cause any inflight jobs to be cancelled and workflow-owned clusters to be deleted.The Operation.metadata will be WorkflowMetadata (https://cloud.google.com/dataproc/docs/reference/rpc/google.cloud.dataproc.v1#workflowmetadata). Also see Using WorkflowMetadata (https://cloud.google.com/dataproc/docs/concepts/workflows/debugging#using_workflowmetadata).On successful completion, Operation.response will be Empty. Args: request: (DataprocProjectsRegionsWorkflowTemplatesInstantiateInlineRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Operation) The response message. """ config = self.GetMethodConfig('InstantiateInline') return self._RunMethod( config, request, global_params=global_params) InstantiateInline.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates:instantiateInline', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.instantiateInline', ordered_params=['parent'], path_params=['parent'], query_params=['requestId'], relative_path='v1/{+parent}/workflowTemplates:instantiateInline', request_field='workflowTemplate', request_type_name='DataprocProjectsRegionsWorkflowTemplatesInstantiateInlineRequest', response_type_name='Operation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists workflows that match the specified filter in the request. Args: request: (DataprocProjectsRegionsWorkflowTemplatesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListWorkflowTemplatesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates', http_method='GET', method_id='dataproc.projects.regions.workflowTemplates.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1/{+parent}/workflowTemplates', request_field='', request_type_name='DataprocProjectsRegionsWorkflowTemplatesListRequest', response_type_name='ListWorkflowTemplatesResponse', supports_download=False, ) def SetIamPolicy(self, request, global_params=None): r"""Sets the access control policy on the specified resource. Replaces any existing policy.Can return NOT_FOUND, INVALID_ARGUMENT, and PERMISSION_DENIED errors. Args: request: (DataprocProjectsRegionsWorkflowTemplatesSetIamPolicyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Policy) The response message. """ config = self.GetMethodConfig('SetIamPolicy') return self._RunMethod( config, request, global_params=global_params) SetIamPolicy.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}:setIamPolicy', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.setIamPolicy', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:setIamPolicy', request_field='setIamPolicyRequest', request_type_name='DataprocProjectsRegionsWorkflowTemplatesSetIamPolicyRequest', response_type_name='Policy', supports_download=False, ) def TestIamPermissions(self, request, global_params=None): r"""Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Args: request: (DataprocProjectsRegionsWorkflowTemplatesTestIamPermissionsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (TestIamPermissionsResponse) The response message. """ config = self.GetMethodConfig('TestIamPermissions') return self._RunMethod( config, request, global_params=global_params) TestIamPermissions.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}:testIamPermissions', http_method='POST', method_id='dataproc.projects.regions.workflowTemplates.testIamPermissions', ordered_params=['resource'], path_params=['resource'], query_params=[], relative_path='v1/{+resource}:testIamPermissions', request_field='testIamPermissionsRequest', request_type_name='DataprocProjectsRegionsWorkflowTemplatesTestIamPermissionsRequest', response_type_name='TestIamPermissionsResponse', supports_download=False, ) def Update(self, request, global_params=None): r"""Updates (replaces) workflow template. The updated template must contain version that matches the current server version. Args: request: (WorkflowTemplate) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WorkflowTemplate) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) Update.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/regions/{regionsId}/workflowTemplates/{workflowTemplatesId}', http_method='PUT', method_id='dataproc.projects.regions.workflowTemplates.update', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='<request>', request_type_name='WorkflowTemplate', response_type_name='WorkflowTemplate', supports_download=False, ) class ProjectsRegionsService(base_api.BaseApiService): """Service class for the projects_regions resource.""" _NAME = 'projects_regions' def __init__(self, client): super(DataprocV1.ProjectsRegionsService, self).__init__(client) self._upload_configs = { } class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(DataprocV1.ProjectsService, self).__init__(client) self._upload_configs = { }
import os import tornado.ioloop import tornado.web import tornado.websocket # TODO move this to cfg PORT = 8080 class MainHandler(tornado.web.RequestHandler): def get(self): self.render("html/index.html") class PageNotFoundHandler(tornado.web.RequestHandler): def get(self): self.redirect("/", True) class LettersSolverHandler(tornado.web.RequestHandler): def get(self): self.render("html/lettersSolver.html") class NumbersSolverHandler(tornado.web.RequestHandler): def get(self): self.render("html/numbersSolver.html") class RandomNumberDisplayHandler(tornado.web.RequestHandler): def get(self): self.render("html/randomNumberDisplay.html") def make_app(): root = os.path.dirname(os.path.abspath(__file__)) return tornado.web.Application([ (r"/", MainHandler), (r"/letters", LettersSolverHandler), (r"/numbers", NumbersSolverHandler), (r"/display", RandomNumberDisplayHandler), (r"/resources/js/(.*)", tornado.web.StaticFileHandler, {"path": "js/"}), (r"/resources/css/(.*)", tornado.web.StaticFileHandler, {"path": "css/"}), ], default_handler_class=PageNotFoundHandler,) if __name__ == "__main__": app = make_app() app.listen(PORT) print("Now serving on port {0}".format(PORT)) tornado.ioloop.IOLoop.current().start()
# Generated by Django 2.1.3 on 2018-11-17 17:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chat', '0004_remove_chat_admin'), ] operations = [ migrations.AlterField( model_name='chat', name='participants', field=models.ManyToManyField(related_name='chats', to='chat.Contact'), ), ]
a = [5, 2, 6, 3] print(sorted(a)) # RETURNS SORTED ARRAY => [2, 3, 5, 6] print(a) # => [5, 2, 6, 3] a.sort() # SORT IN ASCENDING ORDER print(a) # [2, 3, 5, 6] a.sort(reverse=True) # SORT IN DESCENDING ORDER print(a) # [6, 5, 3, 2]
# Copyright (c) 2022. K2-Software # All software, both binary and source published by K2-Software (hereafter, Software) is copyrighted by the author (hereafter, K2-Software) and ownership of all right, title and interest in and to the Software remains with K2-Software. By using or copying the Software, User agrees to abide by the terms of this Agreement. import json import html import requests import re from object_type import ObjectType class IManageObject: def __init__(self, body): self._body = body if 'id' in body: self.id = body['id'] else: self.id = 'None' if 'database' in body: self.database = body['database'] else: self.database = 'None' if 'wstype' in body: self.wstype = ObjectType.value(body['wstype']) else: self.wstype = ObjectType.UNKNOWN if 'name' in body: self.name = body['name'] else: self.name = '<empty>' self.session = None @property def id(self): return self._id @id.setter def id(self, value): self._id = value @property def database(self): return self._database @database.setter def database(self, value): self._database = value @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def wstype(self): return self._wstype @wstype.setter def wstype(self, value): self._wstype = value @property def session(self): return self._session @session.setter def session(self, value): self._session = value @property def body(self): return self._body @body.setter def body(self, value): self._body = value def info(self): print(self.database + '!' + str(self.wstype) + ': ' + self.name + ' (' + self.id + ')') if self.session is None: print('No session found')
from typing import Any from modAL.utils.data import modALinput from modAL import ActiveLearner class TorchTopicsActiveLearner(ActiveLearner): def _fit_to_known(self, bootstrap: bool = False, **fit_kwargs) -> 'BaseLearner': pass def _fit_on_new(self, X: modALinput, y: modALinput, bootstrap: bool = False, **fit_kwargs) -> 'BaseLearner': pass def score(self, X: modALinput, y: modALinput, **score_kwargs) -> Any: pass # return self.estimator.evaluate(X, y, verbose=0, **score_kwargs)[1]
"""The go-eCharger (MQTT) switch.""" import logging from homeassistant import config_entries, core from homeassistant.components import mqtt from homeassistant.components.select import SelectEntity from homeassistant.core import callback from .definitions import SELECTS, GoEChargerSelectEntityDescription from .entity import GoEChargerEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: core.HomeAssistant, config_entry: config_entries.ConfigEntry, async_add_entities, ): """Config entry setup.""" async_add_entities( GoEChargerSelect(config_entry, description) for description in SELECTS if not description.disabled ) class GoEChargerSelect(GoEChargerEntity, SelectEntity): """Representation of a go-eCharger switch that is updated via MQTT.""" entity_description: GoEChargerSelectEntityDescription def __init__( self, config_entry: config_entries.ConfigEntry, description: GoEChargerSelectEntityDescription, ) -> None: """Initialize the sensor.""" super().__init__(config_entry, description) self.entity_description = description self._attr_options = list(description.options.values()) self._attr_current_option = None @property def available(self): """Return True if entity is available.""" return self._attr_current_option is not None def key_from_option(self, option: str): """Return the option a given payload is assigned to.""" try: return next( key for key, value in self.entity_description.options.items() if value == option ) except StopIteration: return None async def async_select_option(self, option: str) -> None: """Update the current value.""" await mqtt.async_publish( self.hass, f"{self._topic}/set", self.key_from_option(option) ) async def async_added_to_hass(self): """Subscribe to MQTT events.""" @callback def message_received(message): """Handle new MQTT messages.""" if self.entity_description.state is not None: self._attr_current_option = self.entity_description.state( message.payload, self.entity_description.attribute ) else: payload = message.payload if payload is None or payload in ["null", "none"]: return if payload not in self.entity_description.options.keys(): _LOGGER.error( "Invalid option for %s: '%s' (valid options: %s)", self.entity_id, payload, self.options, ) return self._attr_current_option = self.entity_description.options[payload] self.async_write_ha_state() await mqtt.async_subscribe(self.hass, self._topic, message_received, 1)
""" Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import asyncio import logging import pathlib import os import shutil from magma.common.service import MagmaService from magma.magmad.upgrade.magma_upgrader import compare_package_versions from magma.magmad.upgrade.upgrader import UpgraderFactory from magma.magmad.upgrade.upgrader2 import ImageNameT, run_command, \ UpgradeIntent, Upgrader2, VersionInfo, VersionT IMAGE_INSTALL_DIR = '/var/cache/magma_feg' IMAGE_INSTALL_SCRIPT = IMAGE_INSTALL_DIR + '/install.sh' class FegUpgrader(Upgrader2): """ Downloads and installs the federation gateway images """ def version_to_image_name(self, version: VersionT) -> ImageNameT: """ Returns the image format from the version string. (i.e) 0.3.68-1541626353-d1c29db1 -> magma_feg_d1c29db1.zip """ parts = version.split("-") if len(parts) != 3: raise ValueError("Unknown version format: %s" % version) return ImageNameT("magma_feg_%s.zip" % parts[2]) async def get_upgrade_intent(self) -> UpgradeIntent: """ Returns the desired version for the gateway. We don't support downgrading, and so checks are made to update only if the target version is higher than the current version. """ tgt_version = self.service.mconfig.package_version curr_version = self.service.version if (tgt_version == "0.0.0-0" or compare_package_versions(curr_version, tgt_version) <= 0): tgt_version = curr_version return UpgradeIntent(stable=VersionT(tgt_version), canary=VersionT("")) async def get_versions(self) -> VersionInfo: """ Returns the current version """ return VersionInfo( current_version=self.service.version, available_versions=set(), ) async def prepare_upgrade( self, version: VersionT, path_to_image: pathlib.Path ) -> None: """ No-op for the feg upgrader """ return async def upgrade( self, version: VersionT, path_to_image: pathlib.Path ) -> None: """ Time to actually upgrade the Feg using the image """ # Extract the image to the install directory shutil.rmtree(IMAGE_INSTALL_DIR, ignore_errors=True) os.mkdir(IMAGE_INSTALL_DIR) await run_command("unzip", str(path_to_image), "-d", IMAGE_INSTALL_DIR) logging.info("Running image install script: %s", IMAGE_INSTALL_SCRIPT) await run_command(IMAGE_INSTALL_SCRIPT) class FegUpgraderFactory(UpgraderFactory): """ Returns an instance of the FegUpgrader """ def create_upgrader( self, magmad_service: MagmaService, loop: asyncio.AbstractEventLoop, ) -> FegUpgrader: return FegUpgrader(magmad_service)
# test construction of array.array from different objects from array import array # tuple, list print(array('b', (1, 2))) print(array('h', [1, 2])) # raw copy from bytes, bytearray print(array('h', b'12')) print(array('h', bytearray(2))) print(array('i', bytearray(4))) # convert from other arrays print(array('H', array('b', [1, 2]))) print(array('b', array('I', [1, 2])))
import os import sys from django.conf import settings from django.conf.global_settings import TEMPLATE_CONTEXT_PROCESSORS BASE_DIR = os.path.dirname(__file__) DEBUG = False INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.staticfiles', 'publications', ) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) TEMPLATE_CONTEXT_PROCESSORS += ( 'django.core.context_processors.request', ) ROOT_URLCONF = 'publications.tests.urls' settings.configure( MEDIA_ROOT=os.path.join(BASE_DIR, 'media'), MEDIA_URL='/media/', STATIC_ROOT=os.path.join(BASE_DIR, 'static'), STATIC_URL='/static/', DEBUG=DEBUG, INSTALLED_APPS=INSTALLED_APPS, DATABASES=DATABASES, MIDDLEWARE_CLASSES=MIDDLEWARE_CLASSES, TEMPLATE_CONTEXT_PROCESSORS=TEMPLATE_CONTEXT_PROCESSORS, ROOT_URLCONF=ROOT_URLCONF) import django from distutils.version import StrictVersion if StrictVersion(django.get_version()) >= StrictVersion('1.7.0'): from django import setup from django.test.runner import DiscoverRunner setup() sys.exit(DiscoverRunner(verbosity=1).run_tests(['publications'])) else: from django.test.simple import DjangoTestSuiteRunner sys.exit(DjangoTestSuiteRunner(verbosity=1).run_tests(['publications.Tests', 'publications.LiveTests']))
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ File: prepare_lung_coronavirus.py we assume that you have download the dataset through the link and save them as following: lung_coronavirus |--20_ncov_scan.zip |--infection.zip |--lung_infection.zip |--lung_mask.zip support: 1. uncompress the file and save the img as the following format 2. save your img as the rules. lung_coronavirus_phase0 | |--images |--labels """ import os import sys import glob import time import random import zipfile import functools import numpy as np import nibabel as nib sys.path.append( os.path.join(os.path.dirname(os.path.realpath(__file__)), "..")) from utils import list_files from paddleseg3d.datasets.preprocess_utils import uncompressor from paddleseg3d.datasets.preprocess_utils import HU2float32, resample urls = { "lung_infection.zip": "https://bj.bcebos.com/v1/ai-studio-online/432237969243497caa4d389c33797ddb2a9fa877f3104e4a9a63bd31a79e4fb8?responseContentDisposition=attachment%3B%20filename%3DLung_Infection.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-05-10T03%3A42%3A16Z%2F-1%2F%2Faccd5511d56d7119555f0e345849cca81459d3783c547eaa59eb715df37f5d25", "lung_mask.zip": "https://bj.bcebos.com/v1/ai-studio-online/96f299c5beb046b4a973fafb3c39048be8d5f860bd0d47659b92116a3cd8a9bf?responseContentDisposition=attachment%3B%20filename%3DLung_Mask.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-05-10T03%3A41%3A14Z%2F-1%2F%2Fb8e23810db1081fc287a1cae377c63cc79bac72ab0fb835d48a46b3a62b90f66", "infection_mask.zip": "https://bj.bcebos.com/v1/ai-studio-online/2b867932e42f4977b46bfbad4fba93aa158f16c79910400b975305c0bd50b638?responseContentDisposition=attachment%3B%20filename%3DInfection_Mask.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-05-10T03%3A42%3A37Z%2F-1%2F%2Fabd47aa33ddb2d4a65555795adef14826aa68b20c3ee742dff2af010ae164252", "20_ncov_scan.zip": "https://bj.bcebos.com/v1/ai-studio-online/12b02c4d5f9d44c5af53d17bbd4f100888b5be1dbc3d40d6b444f383540bd36c?responseContentDisposition=attachment%3B%20filename%3D20_ncov_scan.zip&authorization=bce-auth-v1%2F0ef6765c1e494918bc0d4c3ca3e5c6d1%2F2020-05-10T14%3A54%3A21Z%2F-1%2F%2F1d812ca210f849732feadff9910acc9dcf98ae296988546115fa7b987d856b85" } class Prep: dataset_root = "data/lung_coronavirus" phase0_path = os.path.join(dataset_root, "lung_coronavirus_phase0/") raw_data_path = os.path.join(dataset_root, "lung_coronavirus_raw/") image_dir = os.path.join(raw_data_path, "20_ncov_scan") label_dir = os.path.join(raw_data_path, "lung_mask") def __init__(self, phase_path=phase0_path, train_split=15): self.train_split = train_split self.phase_path = phase_path self.image_path = os.path.join(self.phase_path, "images") self.label_path = os.path.join(self.phase_path, "labels") os.makedirs(self.image_path, exist_ok=True) os.makedirs(self.label_path, exist_ok=True) def uncompress_file(self, num_zipfiles): uncompress_tool = uncompressor( urls=urls, savepath=self.dataset_root, print_progress=True) """unzip all the file in the root directory""" zipfiles = glob.glob(os.path.join(self.dataset_root, "*.zip")) assert len(zipfiles) == num_zipfiles, print( "The file directory should include {} zip file, but there is only {}" .format(num_zipfiles, len(zipfiles))) for f in zipfiles: extract_path = os.path.join(self.raw_data_path, f.split("/")[-1].split('.')[0]) uncompress_tool._uncompress_file( f, extract_path, delete_file=False, print_progress=True) def load_save(self, file_dir, load_type=np.float32, savepath=None, preprocess=None, tag="image"): """ Load the file in file dir, preprocess it and save it to the directory. """ files = list_files(file_dir) assert len(files) != 0, print( "The data directory you assigned is wrong, there is no file in it." ) for f in files: filename = f.split("/")[-1].split(".")[0] nii_np = nib.load(f).get_fdata(dtype=load_type) if preprocess is not None: for op in preprocess: nii_np = op(nii_np) np.save(os.path.join(savepath, filename), nii_np) print("Sucessfully convert medical images to numpy array!") def convert_path(self): """convert nii.gz file to numpy array in the right directory""" import pdb pdb.set_trace() print("Start convert images to numpy array, please wait patiently") self.load_save( self.image_dir, load_type=np.float32, savepath=self.image_path, preprocess=[ HU2float32, functools.partial(resample, new_shape=[128, 128, 128]) ]) print("start convert labels to numpy array, please wait patiently") self.load_save( self.label_dir, np.float32, self.label_path, preprocess=[ functools.partial( resample, new_shape=[128, 128, 128], order=0) ], tag="label") def generate_txt(self): """generate the train_list.txt and val_list.txt""" def write_txt(txt, files): with open(txt, 'w') as f: if "train" in txt: image_names = files[:self.train_split] else: image_names = files[self.train_split:] label_names = [ name.replace("_org_covid-19-pneumonia-", "_").replace( "-dcm", "").replace("_org_", "_") for name in image_names ] # todo: remove specific for this class for i in range(len(image_names)): string = "{} {}\n".format('images/' + image_names[i], 'labels/' + label_names[i]) f.write(string) print("successfully write to {}".format(txt)) txtname = [ os.path.join(self.phase_path, 'train_list.txt'), os.path.join(self.phase_path, 'val_list.txt') ] files = os.listdir(self.image_path) random.shuffle(files) write_txt(txtname[0], files) write_txt(txtname[1], files) if __name__ == "__main__": prep = Prep() prep.uncompress_file(num_zipfiles=4) prep.convert_path() prep.generate_txt()
# -*- coding:utf-8 -*- """ 服务配置 Author: HuangTao Date: 2018/05/03 """ import json from quant.utils import logger class Config: """ 服务配置 """ def __init__(self): """ 配置项 `SERVER_ID` 服务ID `RUN_TIME_UPDATE` 是否支持配置动态更新 `LOG` 日志配置 `RABBITMQ` RabbitMQ配置 `MONGODB` mongodb配置 `REDIS` redis配置 `PLATFORMS` 交易所配置 `HEARTBEAT` 服务心跳配置 {"interval": 0, "broadcast": 0} `PROXY` HTTP代理配置 """ self.server_id = None # 服务id(manager服务创建) self.run_time_update = False # 是否支持配置动态更新 self.log = {} # 日志配置 self.rabbitmq = {} # RabbitMQ配置 self.mongodb = {} # Mongodb配置 self.redis = {} # Redis配置 self.platforms = {} # 交易所配置 self.heartbeat = {} # 服务心跳配置 self.service = {} # 代理服务配置 self.proxy = None # HTTP代理配置 def initialize(self): """ 初始化 """ # 订阅事件 做市参数更新 if self.run_time_update: from quant.event import EventConfig EventConfig(self.server_id).subscribe(self.on_event_config, False) async def on_event_config(self, event): """ 更新参数 @param event 事件对象 """ from quant.event import EventConfig event = EventConfig().duplicate(event) if event.server_id != self.server_id: return if not isinstance(event.params, dict): logger.error("params format error! params:", event.params, caller=self) return # 将配置文件中的数据按照dict格式解析并设置成config的属性 self.update(event.params) logger.info("config update success!", caller=self) def loads(self, config_file=None): """ 加载配置 @param config_file json配置文件 """ configures = {} if config_file: try: with open(config_file) as f: data = f.read() configures = json.loads(data) except Exception as e: print(e) exit(0) if not configures: print("config json file error!") exit(0) self.update(configures) def update(self, update_fields): """ 更新配置 @param update_fields 更新字段 """ self.server_id = update_fields.get("SERVER_ID") # 服务id self.run_time_update = update_fields.get("RUN_TIME_UPDATE", False) # 是否支持配置动态更新 self.log = update_fields.get("LOG", {}) # 日志配置 self.rabbitmq = update_fields.get("RABBITMQ", None) # RabbitMQ配置 self.mongodb = update_fields.get("MONGODB", None) # mongodb配置 self.redis = update_fields.get("REDIS", None) # redis配置 self.platforms = update_fields.get("PLATFORMS", {}) # 交易所配置 self.heartbeat = update_fields.get("HEARTBEAT", {}) # 服务心跳配置 self.service = update_fields.get("SERVICE", {}) # 代理服务配置 self.proxy = update_fields.get("PROXY", None) # HTTP代理配置 # 将配置文件中的数据按照dict格式解析并设置成config的属性 for k, v in update_fields.items(): setattr(self, k, v) config = Config()
""" Time: O(1) Space: O(1), no "extra" space are used. """ class Solution(object): def readBinaryWatch(self, turnedOn): ans = [] if turnedOn>8: return ans #at most 8 LED are turned on for a valid time. for h in xrange(12): for m in xrange(60): if (bin(h) + bin(m)).count('1')==turnedOn: ans.append('%d:%02d' % (h, m)) return ans
# This file contains the interfaces that can be used for any order-book on the zcoins platform. from abc import ABC, abstractmethod from collections import defaultdict from typing import Text class SingleProductOrderBook(ABC): """Contains the order-book for a single product.""" def __init__(self, product_id: Text, base_currency: Text, quote_currency: Text): """An order-book interface for a single product. Args: product_id (Text): The exchange-specific product_id. base_currency (Text): The standard code for a currency (ISO4217 if the currency is a non-crypto) quote_currency (Text): The standard code for a currency (ISO4217 if the currency is a non-crypto) """ self.product_id = product_id self.base_currency = base_currency self.quote_currency = quote_currency @abstractmethod def get_bids(self, top_n: int = None): """Returns a list of (price, size) tuples, representing the current bids order-book. Prices are in quote_currency. Results are sorted from high-to-low by price. Example Result: [(1.06, 3), (1.05, 2), (1.00, 5)] Args: top_n (int): Controls the number of results that should be returned. May return less if top_n is greater than the size of the current order book. """ pass @abstractmethod def get_asks(self, top_n: int = None): """Returns a list of (price, size) tuples, representing the current asks order-book. Prices are in quote_currency. Results are sorted from low-to-high by price. Example Result: [(1.00, 5), (1.05, 2), (1.06, 3)] Args: top_n (int): Controls the number of results that should be returned. May return less if top_n is greater than the size of the current order book. """ pass def get_book(self, top_n: int = None): """Returns the results of get_bids and get_asks in a single dict with keys 'bids' and 'asks'. Example Result: { 'bids': [(1.06, 3), (1.05, 2), (1.00, 5)], 'asks': [(1.00, 5), (1.05, 2), (1.06, 3)] } """ return { 'bids': self.get_bids(top_n=top_n), 'asks': self.get_asks(top_n=top_n) } class MultiProductOrderBook(ABC): """Contains the order-books for many products on the same exchange.""" def __init__(self, product_ids: list[Text] = None): if product_ids is None: product_ids = [] self._order_books = {} self._order_books_by_quote_currency = defaultdict(list) self._order_books_by_base_currency = defaultdict(list) self.product_ids = product_ids def _post_subclass_init(self): self.add_order_books(self.product_ids) def add_order_book(self, product_id) -> SingleProductOrderBook: return self.add_order_books([product_id])[0] def add_order_books(self, product_ids: list[Text]) -> list[SingleProductOrderBook]: books = self.make_multiple_product_order_book(product_ids) for idx in range(len(books)): product_id = product_ids[idx] ob = books[idx] self._order_books[product_id] = ob self._order_books_by_base_currency[ob.base_currency].append(ob) self._order_books_by_quote_currency[ob.quote_currency].append(ob) return books def get_order_book(self, product_id) -> SingleProductOrderBook: return self._order_books[product_id] def get_order_books_by_quote_currency(self, quote_currency) -> list[SingleProductOrderBook]: return self._order_books_by_quote_currency[quote_currency] def get_order_books_by_base_currency(self, base_currency) -> list[SingleProductOrderBook]: return self._order_books_by_base_currency[base_currency] def get_tracked_products(self): return self._order_books.keys() @abstractmethod def make_single_product_order_book(self, product_id: Text) -> SingleProductOrderBook: """Create a SingleProductOrderBook for the given product_id.""" pass def make_multiple_product_order_book(self, product_ids: list[Text]) -> list[SingleProductOrderBook]: """Default implementation, you might want to override this to make it more efficient.""" order_books = [] for product_id in product_ids: order_books.append(self.make_single_product_order_book(product_id)) return order_books
# Copyright (c) 2015 Ultimaker B.V. # Uranium is released under the terms of the LGPLv3 or higher. from PyQt5.QtGui import QOpenGLTexture, QImage, QAbstractOpenGLFunctions ## A class describing the interface to be used for texture objects. # # This interface should be implemented by OpenGL implementations to handle texture # objects. class Texture: def __init__(self, open_gl_binding_object: QAbstractOpenGLFunctions) -> None: super().__init__() self._qt_texture = QOpenGLTexture(QOpenGLTexture.Target2D) self._gl = open_gl_binding_object self._file_name = None self._image = None ## Get the OpenGL ID of the texture. def getTextureId(self) -> int: return self._qt_texture.textureId() ## Bind the texture to a certain texture unit. # # \param texture_unit The texture unit to bind to. def bind(self, texture_unit): if not self._qt_texture.isCreated(): if self._file_name != None: self._image = QImage(self._file_name).mirrored() elif self._image is None: # No filename or image set. self._image = QImage(1, 1, QImage.Format_ARGB32) self._image.fill(0) self._qt_texture.setData(self._image) self._qt_texture.setMinMagFilters(QOpenGLTexture.Linear, QOpenGLTexture.Linear) self._qt_texture.bind(texture_unit) ## Release the texture from a certain texture unit. # # \param texture_unit The texture unit to release from. def release(self, texture_unit): self._qt_texture.release(texture_unit) ## Load an image and upload it to the texture. # # \param file_name The file name of the image to load. def load(self, file_name): self._file_name = file_name #Actually loading the texture is postponed until the next bind() call. #This makes sure we are on the right thread and have a current context when trying to upload. def setImage(self, image): self._image = image