复现遇到的问题
- peft版本太高
pip install peft==0.6.0
zero3.json必须有
"train_batch_size"
字段cuda版本和deepspeed不对应
找对应的torch库和deepspeed库
- deepseek给的zero3.json文件用了cpu的优化器
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
- no sync context manager is incompatible with gradientpartitioning logic of ZeRo stage 3
# 某些时候百度比AI好用
pip install deepspeed==0.15.4
- zero3.json
{
"bf16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9
},
"gradient_accumulation_steps": 16,
"train_micro_batch_size_per_gpu": 1,
"train_batch_size": 128,
"gradient_clipping": "auto",
"steps_per_print": 10,
"wall_clock_breakdown": false
}
- 下载全部ocr_vqa图片的方法
https://github.com/haotian-liu/LLaVA/issues/1618
- 保存模型时报错,需要在lmsys/vicuna-7b-v1.5里的generation_config.json里 因为评估时是贪婪搜索,所以把下面的两行删掉
"temperature": 0.9,
"top_p": 0.6,
评估复现的坑
- checkpoint的文件名要包含llava
- LlamaModel的forward函数没有处理输入Token只有一个的情况(推理时,第二次前向,输入Token只有一个),为了兼容输入token只有一个都情况下做出如下修改
# 不过很奇怪的是,他居然考虑到voco_loc_back要+1
https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L271
改成
# 整体操作是我每次前向都创建整个序列的mask,管你有没有KVCache
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length + past_key_values_length), # 原来是(batch_size, seq_length), 现在我能保证走同一条路了
inputs_embeds, # 这个只用.dtype和isinstance,所以传这个没有影响
0, # 原来是past_key_values_length
)
# ------------------------------------------
# https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L305
上面加入
# 处理完Attention_mask后
attention_mask = attention_mask[:,:,-seq_length:,:]