Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +201 -0
- README.md +117 -0
- UPDATE.md +105 -0
- checkpoints/llava-v1.5-7b-pretrain/.gitattributes +35 -0
- checkpoints/llava-v1.5-7b-pretrain/README.md +41 -0
- checkpoints/llava-v1.5-7b-pretrain/config.json +38 -0
- checkpoints/llava-v1.5-7b-pretrain/mm_projector.bin +3 -0
- checkpoints/llava-v1.5-7b-pretrain/trainer_state.json +0 -0
- hf_models/clip-vit-large-patch14-336/.gitattributes +28 -0
- hf_models/clip-vit-large-patch14-336/README.md +50 -0
- hf_models/clip-vit-large-patch14-336/config.json +179 -0
- hf_models/clip-vit-large-patch14-336/merges.txt +0 -0
- hf_models/clip-vit-large-patch14-336/preprocessor_config.json +19 -0
- hf_models/clip-vit-large-patch14-336/special_tokens_map.json +1 -0
- hf_models/clip-vit-large-patch14-336/tokenizer.json +0 -0
- hf_models/clip-vit-large-patch14-336/tokenizer_config.json +1 -0
- hf_models/clip-vit-large-patch14-336/vocab.json +0 -0
- hf_models/vicuna-7b-v1.5/.gitattributes +35 -0
- hf_models/vicuna-7b-v1.5/README.md +48 -0
- hf_models/vicuna-7b-v1.5/config.json +26 -0
- hf_models/vicuna-7b-v1.5/generation_config.json +8 -0
- hf_models/vicuna-7b-v1.5/pytorch_model.bin.index.json +330 -0
- hf_models/vicuna-7b-v1.5/special_tokens_map.json +24 -0
- hf_models/vicuna-7b-v1.5/tokenizer.model +3 -0
- hf_models/vicuna-7b-v1.5/tokenizer_config.json +35 -0
- llava/__init__.py +1 -0
- llava/constants.py +13 -0
- llava/conversation.py +449 -0
- llava/mm_utils.py +247 -0
- llava/model/__init__.py +4 -0
- llava/model/__pycache__/__init__.cpython-310.pyc +0 -0
- llava/model/__pycache__/builder.cpython-310.pyc +0 -0
- llava/model/__pycache__/llava_arch.cpython-310.pyc +0 -0
- llava/model/apply_delta.py +48 -0
- llava/model/builder.py +168 -0
- llava/model/consolidate.py +29 -0
- llava/model/language_model/__pycache__/llava_llama_1stg.cpython-310.pyc +0 -0
- llava/model/language_model/cache_py/modeling_attn_mask_utils.py +501 -0
- llava/model/language_model/llava_llama_1stg.py +633 -0
- llava/model/llava_arch.py +375 -0
- llava/model/make_delta.py +52 -0
- llava/model/multimodal_encoder/__pycache__/builder.cpython-310.pyc +0 -0
- llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-310.pyc +0 -0
- llava/model/multimodal_encoder/builder.py +11 -0
- llava/model/multimodal_encoder/clip_encoder.py +88 -0
- llava/model/multimodal_projector/__pycache__/builder.cpython-310.pyc +0 -0
- llava/model/multimodal_projector/builder.py +51 -0
- llava/model/utils.py +20 -0
- llava/serve/__init__.py +0 -0
- llava/serve/cli.py +128 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# VoCo-LLaMA: Towards Vision Compression with Large Language Models
|
2 |
+
|
3 |
+
[Xubing Ye](https://yxxxb.github.io/), [Yukang Gan](https://scholar.google.com/citations?user=8rltp9AAAAAJ&hl=zh-CN), [Xiaoke Huang](https://xk-huang.github.io/), [Yixiao Ge](https://geyixiao.com/), [Yansong Tang](https://andytang15.github.io)
|
4 |
+
|
5 |
+
<p align="left">
|
6 |
+
<a href='https://arxiv.org/abs/2406.12275v2'>
|
7 |
+
<img src='https://img.shields.io/badge/Arxiv-2406.12275-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a>
|
8 |
+
<a href='https://arxiv.org/pdf/2406.12275v2'>
|
9 |
+
<img src='https://img.shields.io/badge/Paper-PDF-purple?style=flat&logo=arXiv&logoColor=yellow'></a>
|
10 |
+
<a href='https://yxxxb.github.io/VoCo-LLaMA-page/'>
|
11 |
+
<img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a>
|
12 |
+
</p>
|
13 |
+
|
14 |
+
## TL;DR
|
15 |
+
|
16 |
+
We propose VoCo-LLaMA, the first approach to compress vision tokens using LLMs. By fully utilizing the LLMs' understanding paradigm of vision tokens, our method can compress hundreds of vision tokens into a single VoCo token, while minimizing visual information loss.
|
17 |
+
|
18 |
+
VoCo-LLaMA demonstrates the ability to understand video through continuous training using time-series compressed token sequences of video frames.
|
19 |
+
|
20 |
+
VoCo-LLaMA presents a promising way to unlock the full potential of VLMs' contextual window.
|
21 |
+
|
22 |
+

|
23 |
+
|
24 |
+
## News
|
25 |
+
|
26 |
+
- [x] **[2024/06/17]** Upload paper and release vision compression code.
|
27 |
+
|
28 |
+
## Preparation
|
29 |
+
|
30 |
+
### Install
|
31 |
+
|
32 |
+
1. Clone this repository and navigate to VoCo-LLaMA folder
|
33 |
+
|
34 |
+
```bash
|
35 |
+
git clone https://github.com/Yxxxb/VoCo-LLaMA.git
|
36 |
+
cd VoCo-LLaMA
|
37 |
+
```
|
38 |
+
|
39 |
+
2. Install Package
|
40 |
+
|
41 |
+
```Shell
|
42 |
+
conda create -n voco_llama python=3.10 -y
|
43 |
+
conda activate voco_llama
|
44 |
+
pip install --upgrade pip # enable PEP 660 support
|
45 |
+
pip install -e .
|
46 |
+
```
|
47 |
+
|
48 |
+
3. Install additional packages for training cases
|
49 |
+
|
50 |
+
```
|
51 |
+
pip install -e ".[train]"
|
52 |
+
pip install flash-attn --no-build-isolation
|
53 |
+
cp VoCo-LLaMA/llava/model/language_model/cache_py/modeling_attn_mask_utils.py /data/miniconda3/envs/voco_llama/lib/python3.10/site-packages/transformers/modeling_attn_mask_utils.py
|
54 |
+
```
|
55 |
+
|
56 |
+
### Data and Pre-trained weights
|
57 |
+
|
58 |
+
VoCo-LLaMA training requires only visual instruction fine-tuning. Please download the aligned LLaVA checkpoints ([base LLM and projection layers](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)). Please download the annotation of the LLaVA instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets:
|
59 |
+
|
60 |
+
- COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
|
61 |
+
- GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
|
62 |
+
- OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), we save all files as `.jpg`
|
63 |
+
- TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
|
64 |
+
- VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
|
65 |
+
|
66 |
+
After downloading all of them, organize the data as follows in `./playground/data`,
|
67 |
+
|
68 |
+
```
|
69 |
+
├── coco
|
70 |
+
│ └── train2017
|
71 |
+
├── gqa
|
72 |
+
│ └── images
|
73 |
+
├── ocr_vqa
|
74 |
+
│ └── images
|
75 |
+
├── textvqa
|
76 |
+
│ └── train_images
|
77 |
+
└── vg
|
78 |
+
├── VG_100K
|
79 |
+
└── VG_100K_2
|
80 |
+
```
|
81 |
+
|
82 |
+
## Train
|
83 |
+
|
84 |
+
VoCo-LLaMA is trained on 8 A100 GPUs with 40GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`.
|
85 |
+
|
86 |
+
Train VoCo-LLaMA with vision instruction tuning by running following command:
|
87 |
+
|
88 |
+
```
|
89 |
+
bash scripts/finetune.sh
|
90 |
+
```
|
91 |
+
|
92 |
+
## Evaluation
|
93 |
+
|
94 |
+
There are evaluations about visual understanding we follow the relevant settings in LLaVA. Please refer to the LLaVA official [repository](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md) for details of data setup and testing.
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
|
98 |
+
If you find this work useful, please consider citing our paper:
|
99 |
+
|
100 |
+
```bash
|
101 |
+
@article{ye2024voco,
|
102 |
+
author={Ye, Xubing and Gan, Yukang and Huang, Xiaoke and Ge, Yixiao and Shan, Ying and Tang, Yansong},
|
103 |
+
title={{VoCo-LLaMA: Towards Vision Compression with Large Language Models}},
|
104 |
+
journal={arXiv preprint arXiv:2406.12275},
|
105 |
+
year={2024},
|
106 |
+
}
|
107 |
+
```
|
108 |
+
|
109 |
+
##
|
110 |
+
|
111 |
+
## Acknowledgement
|
112 |
+
|
113 |
+
- [LLaVA](https://github.com/haotian-liu/LLaVA): the codebase we built upon.
|
114 |
+
- [Vicuna](https://github.com/lm-sys/FastChat): our base model Vicuna-7B that has the amazing language capabilities!
|
115 |
+
|
116 |
+
|
117 |
+
|
UPDATE.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 复现遇到的问题
|
2 |
+
1. peft版本太高
|
3 |
+
```
|
4 |
+
pip install peft==0.6.0
|
5 |
+
```
|
6 |
+
|
7 |
+
2. zero3.json必须有`"train_batch_size"`字段
|
8 |
+
|
9 |
+
3. cuda版本和deepspeed不对应
|
10 |
+
```
|
11 |
+
找对应的torch库和deepspeed库
|
12 |
+
```
|
13 |
+
|
14 |
+
4. deepseek给的zero3.json文件用了cpu的优化器
|
15 |
+
```
|
16 |
+
"offload_optimizer": {
|
17 |
+
"device": "none",
|
18 |
+
"pin_memory": true
|
19 |
+
},
|
20 |
+
"offload_param": {
|
21 |
+
"device": "none",
|
22 |
+
"pin_memory": true
|
23 |
+
},
|
24 |
+
|
25 |
+
```
|
26 |
+
|
27 |
+
5. no sync context manager is incompatible with gradientpartitioning logic of ZeRo stage 3
|
28 |
+
```
|
29 |
+
# 某些时候百度比AI好用
|
30 |
+
pip install deepspeed==0.15.4
|
31 |
+
```
|
32 |
+
|
33 |
+
6. zero3.json
|
34 |
+
```
|
35 |
+
|
36 |
+
{
|
37 |
+
"bf16": {
|
38 |
+
"enabled": true
|
39 |
+
},
|
40 |
+
"zero_optimization": {
|
41 |
+
"stage": 3,
|
42 |
+
"offload_optimizer": {
|
43 |
+
"device": "none",
|
44 |
+
"pin_memory": true
|
45 |
+
},
|
46 |
+
"offload_param": {
|
47 |
+
"device": "none",
|
48 |
+
"pin_memory": true
|
49 |
+
},
|
50 |
+
"overlap_comm": true,
|
51 |
+
"contiguous_gradients": true,
|
52 |
+
"sub_group_size": 1e9,
|
53 |
+
"stage3_max_live_parameters": 1e9,
|
54 |
+
"stage3_max_reuse_distance": 1e9
|
55 |
+
},
|
56 |
+
"gradient_accumulation_steps": 16,
|
57 |
+
"train_micro_batch_size_per_gpu": 1,
|
58 |
+
"train_batch_size": 128,
|
59 |
+
"gradient_clipping": "auto",
|
60 |
+
"steps_per_print": 10,
|
61 |
+
"wall_clock_breakdown": false
|
62 |
+
}
|
63 |
+
|
64 |
+
```
|
65 |
+
|
66 |
+
7. 下载全部ocr_vqa图片的方法
|
67 |
+
```
|
68 |
+
https://github.com/haotian-liu/LLaVA/issues/1618
|
69 |
+
```
|
70 |
+
|
71 |
+
8. 保存模型时报错,需要在lmsys/vicuna-7b-v1.5里的generation_config.json里
|
72 |
+
因为评估时是贪婪搜索,所以把下面的两行删掉
|
73 |
+
```
|
74 |
+
"temperature": 0.9,
|
75 |
+
"top_p": 0.6,
|
76 |
+
```
|
77 |
+
|
78 |
+
# 评估复现的坑
|
79 |
+
|
80 |
+
1. checkpoint的文件名要包含llava
|
81 |
+
2. LlamaModel的forward函数没有处理输入Token只有一个的情况(推理时,第二次前向,输入Token只有一个),为了兼容输入token只有一个都情况下做出如下修改
|
82 |
+
```
|
83 |
+
# 不过很奇怪的是,他居然考虑到voco_loc_back要+1
|
84 |
+
|
85 |
+
https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L271
|
86 |
+
|
87 |
+
改成
|
88 |
+
|
89 |
+
# 整体操作是我每次前向都创建整个序列的mask,管你有没有KVCache
|
90 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
91 |
+
attention_mask,
|
92 |
+
(batch_size, seq_length + past_key_values_length), # 原来是(batch_size, seq_length), 现在我能保证走同一条路了
|
93 |
+
inputs_embeds, # 这个只用.dtype和isinstance,所以传这个没有影响
|
94 |
+
0, # 原来是past_key_values_length
|
95 |
+
)
|
96 |
+
# ------------------------------------------
|
97 |
+
# https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L305
|
98 |
+
|
99 |
+
上面加入
|
100 |
+
|
101 |
+
# 处理完Attention_mask后
|
102 |
+
attention_mask = attention_mask[:,:,-seq_length:,:]
|
103 |
+
```
|
104 |
+
|
105 |
+
|
checkpoints/llava-v1.5-7b-pretrain/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
checkpoints/llava-v1.5-7b-pretrain/README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
---
|
4 |
+
|
5 |
+
<br>
|
6 |
+
<br>
|
7 |
+
|
8 |
+
# LLaVA Model Card
|
9 |
+
|
10 |
+
This is a pretrained checkpoint, you can use it to instruct tune your multimodal models.
|
11 |
+
|
12 |
+
Check out the instructions [here](https://github.com/haotian-liu/LLaVA/blob/main/README.md#visual-instruction-tuning)
|
13 |
+
|
14 |
+
## Model details
|
15 |
+
|
16 |
+
**Model type:**
|
17 |
+
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
18 |
+
It is an auto-regressive language model, based on the transformer architecture.
|
19 |
+
|
20 |
+
**Model date:**
|
21 |
+
LLaVA-v1.5-MLP2x-336px-Pretrain-Vicuna-7B-v1.5 was trained in September 2023.
|
22 |
+
|
23 |
+
**Paper or resources for more information:**
|
24 |
+
https://llava-vl.github.io/
|
25 |
+
|
26 |
+
## License
|
27 |
+
Llama 2 is licensed under the LLAMA 2 Community License,
|
28 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
29 |
+
|
30 |
+
**Where to send questions or comments about the model:**
|
31 |
+
https://github.com/haotian-liu/LLaVA/issues
|
32 |
+
|
33 |
+
## Intended use
|
34 |
+
**Primary intended uses:**
|
35 |
+
The primary use of LLaVA is research on large multimodal models and chatbots.
|
36 |
+
|
37 |
+
**Primary intended users:**
|
38 |
+
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
|
39 |
+
|
40 |
+
## Training dataset
|
41 |
+
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
|
checkpoints/llava-v1.5-7b-pretrain/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./checkpoints/vicuna-7b-v1-5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"image_aspect_ratio": "square",
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 11008,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"mm_hidden_size": 1024,
|
15 |
+
"mm_patch_merge_type": "flat",
|
16 |
+
"mm_projector_type": "mlp2x_gelu",
|
17 |
+
"mm_use_im_patch_token": false,
|
18 |
+
"mm_use_im_start_end": false,
|
19 |
+
"mm_vision_select_feature": "patch",
|
20 |
+
"mm_vision_select_layer": -2,
|
21 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
22 |
+
"model_type": "llava",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 32,
|
25 |
+
"num_key_value_heads": 32,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"pretraining_tp": 1,
|
28 |
+
"rms_norm_eps": 1e-05,
|
29 |
+
"rope_scaling": null,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "float16",
|
32 |
+
"transformers_version": "4.31.0",
|
33 |
+
"tune_mm_mlp_adapter": true,
|
34 |
+
"tune_mm_vision_resampler": false,
|
35 |
+
"use_cache": true,
|
36 |
+
"use_mm_proj": true,
|
37 |
+
"vocab_size": 32000
|
38 |
+
}
|
checkpoints/llava-v1.5-7b-pretrain/mm_projector.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a8d5a8fc6030bd16d8ee3df3b20a21c79190a3b0932a798d05f52a1ffdfc215
|
3 |
+
size 41961085
|
checkpoints/llava-v1.5-7b-pretrain/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hf_models/clip-vit-large-patch14-336/.gitattributes
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
hf_models/clip-vit-large-patch14-336/README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_keras_callback
|
4 |
+
widget:
|
5 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
|
6 |
+
candidate_labels: playing music, playing sports
|
7 |
+
example_title: Cat & Dog
|
8 |
+
model-index:
|
9 |
+
- name: clip-vit-large-patch14-336
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information Keras had access to. You should
|
14 |
+
probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# clip-vit-large-patch14-336
|
17 |
+
|
18 |
+
This model was trained from scratch on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- optimizer: None
|
40 |
+
- training_precision: float32
|
41 |
+
|
42 |
+
### Training results
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
### Framework versions
|
47 |
+
|
48 |
+
- Transformers 4.21.3
|
49 |
+
- TensorFlow 2.8.2
|
50 |
+
- Tokenizers 0.12.1
|
hf_models/clip-vit-large-patch14-336/config.json
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14-336",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPModel"
|
5 |
+
],
|
6 |
+
"initializer_factor": 1.0,
|
7 |
+
"logit_scale_init_value": 2.6592,
|
8 |
+
"model_type": "clip",
|
9 |
+
"projection_dim": 768,
|
10 |
+
"text_config": {
|
11 |
+
"_name_or_path": "",
|
12 |
+
"add_cross_attention": false,
|
13 |
+
"architectures": null,
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"bos_token_id": 0,
|
17 |
+
"chunk_size_feed_forward": 0,
|
18 |
+
"cross_attention_hidden_size": null,
|
19 |
+
"decoder_start_token_id": null,
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"dropout": 0.0,
|
23 |
+
"early_stopping": false,
|
24 |
+
"encoder_no_repeat_ngram_size": 0,
|
25 |
+
"eos_token_id": 2,
|
26 |
+
"exponential_decay_length_penalty": null,
|
27 |
+
"finetuning_task": null,
|
28 |
+
"forced_bos_token_id": null,
|
29 |
+
"forced_eos_token_id": null,
|
30 |
+
"hidden_act": "quick_gelu",
|
31 |
+
"hidden_size": 768,
|
32 |
+
"id2label": {
|
33 |
+
"0": "LABEL_0",
|
34 |
+
"1": "LABEL_1"
|
35 |
+
},
|
36 |
+
"initializer_factor": 1.0,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"intermediate_size": 3072,
|
39 |
+
"is_decoder": false,
|
40 |
+
"is_encoder_decoder": false,
|
41 |
+
"label2id": {
|
42 |
+
"LABEL_0": 0,
|
43 |
+
"LABEL_1": 1
|
44 |
+
},
|
45 |
+
"layer_norm_eps": 1e-05,
|
46 |
+
"length_penalty": 1.0,
|
47 |
+
"max_length": 20,
|
48 |
+
"max_position_embeddings": 77,
|
49 |
+
"min_length": 0,
|
50 |
+
"model_type": "clip_text_model",
|
51 |
+
"no_repeat_ngram_size": 0,
|
52 |
+
"num_attention_heads": 12,
|
53 |
+
"num_beam_groups": 1,
|
54 |
+
"num_beams": 1,
|
55 |
+
"num_hidden_layers": 12,
|
56 |
+
"num_return_sequences": 1,
|
57 |
+
"output_attentions": false,
|
58 |
+
"output_hidden_states": false,
|
59 |
+
"output_scores": false,
|
60 |
+
"pad_token_id": 1,
|
61 |
+
"prefix": null,
|
62 |
+
"problem_type": null,
|
63 |
+
"projection_dim": 768,
|
64 |
+
"pruned_heads": {},
|
65 |
+
"remove_invalid_values": false,
|
66 |
+
"repetition_penalty": 1.0,
|
67 |
+
"return_dict": true,
|
68 |
+
"return_dict_in_generate": false,
|
69 |
+
"sep_token_id": null,
|
70 |
+
"task_specific_params": null,
|
71 |
+
"temperature": 1.0,
|
72 |
+
"tf_legacy_loss": false,
|
73 |
+
"tie_encoder_decoder": false,
|
74 |
+
"tie_word_embeddings": true,
|
75 |
+
"tokenizer_class": null,
|
76 |
+
"top_k": 50,
|
77 |
+
"top_p": 1.0,
|
78 |
+
"torch_dtype": null,
|
79 |
+
"torchscript": false,
|
80 |
+
"transformers_version": "4.21.3",
|
81 |
+
"typical_p": 1.0,
|
82 |
+
"use_bfloat16": false,
|
83 |
+
"vocab_size": 49408
|
84 |
+
},
|
85 |
+
"text_config_dict": {
|
86 |
+
"hidden_size": 768,
|
87 |
+
"intermediate_size": 3072,
|
88 |
+
"num_attention_heads": 12,
|
89 |
+
"num_hidden_layers": 12,
|
90 |
+
"projection_dim": 768
|
91 |
+
},
|
92 |
+
"torch_dtype": "float32",
|
93 |
+
"transformers_version": null,
|
94 |
+
"vision_config": {
|
95 |
+
"_name_or_path": "",
|
96 |
+
"add_cross_attention": false,
|
97 |
+
"architectures": null,
|
98 |
+
"attention_dropout": 0.0,
|
99 |
+
"bad_words_ids": null,
|
100 |
+
"bos_token_id": null,
|
101 |
+
"chunk_size_feed_forward": 0,
|
102 |
+
"cross_attention_hidden_size": null,
|
103 |
+
"decoder_start_token_id": null,
|
104 |
+
"diversity_penalty": 0.0,
|
105 |
+
"do_sample": false,
|
106 |
+
"dropout": 0.0,
|
107 |
+
"early_stopping": false,
|
108 |
+
"encoder_no_repeat_ngram_size": 0,
|
109 |
+
"eos_token_id": null,
|
110 |
+
"exponential_decay_length_penalty": null,
|
111 |
+
"finetuning_task": null,
|
112 |
+
"forced_bos_token_id": null,
|
113 |
+
"forced_eos_token_id": null,
|
114 |
+
"hidden_act": "quick_gelu",
|
115 |
+
"hidden_size": 1024,
|
116 |
+
"id2label": {
|
117 |
+
"0": "LABEL_0",
|
118 |
+
"1": "LABEL_1"
|
119 |
+
},
|
120 |
+
"image_size": 336,
|
121 |
+
"initializer_factor": 1.0,
|
122 |
+
"initializer_range": 0.02,
|
123 |
+
"intermediate_size": 4096,
|
124 |
+
"is_decoder": false,
|
125 |
+
"is_encoder_decoder": false,
|
126 |
+
"label2id": {
|
127 |
+
"LABEL_0": 0,
|
128 |
+
"LABEL_1": 1
|
129 |
+
},
|
130 |
+
"layer_norm_eps": 1e-05,
|
131 |
+
"length_penalty": 1.0,
|
132 |
+
"max_length": 20,
|
133 |
+
"min_length": 0,
|
134 |
+
"model_type": "clip_vision_model",
|
135 |
+
"no_repeat_ngram_size": 0,
|
136 |
+
"num_attention_heads": 16,
|
137 |
+
"num_beam_groups": 1,
|
138 |
+
"num_beams": 1,
|
139 |
+
"num_channels": 3,
|
140 |
+
"num_hidden_layers": 24,
|
141 |
+
"num_return_sequences": 1,
|
142 |
+
"output_attentions": false,
|
143 |
+
"output_hidden_states": false,
|
144 |
+
"output_scores": false,
|
145 |
+
"pad_token_id": null,
|
146 |
+
"patch_size": 14,
|
147 |
+
"prefix": null,
|
148 |
+
"problem_type": null,
|
149 |
+
"projection_dim": 768,
|
150 |
+
"pruned_heads": {},
|
151 |
+
"remove_invalid_values": false,
|
152 |
+
"repetition_penalty": 1.0,
|
153 |
+
"return_dict": true,
|
154 |
+
"return_dict_in_generate": false,
|
155 |
+
"sep_token_id": null,
|
156 |
+
"task_specific_params": null,
|
157 |
+
"temperature": 1.0,
|
158 |
+
"tf_legacy_loss": false,
|
159 |
+
"tie_encoder_decoder": false,
|
160 |
+
"tie_word_embeddings": true,
|
161 |
+
"tokenizer_class": null,
|
162 |
+
"top_k": 50,
|
163 |
+
"top_p": 1.0,
|
164 |
+
"torch_dtype": null,
|
165 |
+
"torchscript": false,
|
166 |
+
"transformers_version": "4.21.3",
|
167 |
+
"typical_p": 1.0,
|
168 |
+
"use_bfloat16": false
|
169 |
+
},
|
170 |
+
"vision_config_dict": {
|
171 |
+
"hidden_size": 1024,
|
172 |
+
"image_size": 336,
|
173 |
+
"intermediate_size": 4096,
|
174 |
+
"num_attention_heads": 16,
|
175 |
+
"num_hidden_layers": 24,
|
176 |
+
"patch_size": 14,
|
177 |
+
"projection_dim": 768
|
178 |
+
}
|
179 |
+
}
|
hf_models/clip-vit-large-patch14-336/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hf_models/clip-vit-large-patch14-336/preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 336,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 336
|
19 |
+
}
|
hf_models/clip-vit-large-patch14-336/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
hf_models/clip-vit-large-patch14-336/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hf_models/clip-vit-large-patch14-336/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "openai/clip-vit-base-patch32", "model_max_length": 77, "special_tokens_map_file": "/home/suraj/.cache/huggingface/transformers/18a566598f286c9139f88160c99f84eec492a26bd22738fa9cb44d5b7e0a5c76.cce1206abbad28826f000510f22f354e53e66a97f7c23745a7dfe27609cc07f5", "tokenizer_class": "CLIPTokenizer"}
|
hf_models/clip-vit-large-patch14-336/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hf_models/vicuna-7b-v1.5/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
hf_models/vicuna-7b-v1.5/README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: llama2
|
4 |
+
---
|
5 |
+
|
6 |
+
# Vicuna Model Card
|
7 |
+
|
8 |
+
## Model Details
|
9 |
+
|
10 |
+
Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT.
|
11 |
+
|
12 |
+
- **Developed by:** [LMSYS](https://lmsys.org/)
|
13 |
+
- **Model type:** An auto-regressive language model based on the transformer architecture
|
14 |
+
- **License:** Llama 2 Community License Agreement
|
15 |
+
- **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288)
|
16 |
+
|
17 |
+
### Model Sources
|
18 |
+
|
19 |
+
- **Repository:** https://github.com/lm-sys/FastChat
|
20 |
+
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
|
21 |
+
- **Paper:** https://arxiv.org/abs/2306.05685
|
22 |
+
- **Demo:** https://chat.lmsys.org/
|
23 |
+
|
24 |
+
## Uses
|
25 |
+
|
26 |
+
The primary use of Vicuna is research on large language models and chatbots.
|
27 |
+
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
28 |
+
|
29 |
+
## How to Get Started with the Model
|
30 |
+
|
31 |
+
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights
|
32 |
+
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api
|
33 |
+
|
34 |
+
## Training Details
|
35 |
+
|
36 |
+
Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning.
|
37 |
+
The training data is around 125K conversations collected from ShareGPT.com.
|
38 |
+
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
39 |
+
|
40 |
+
## Evaluation
|
41 |
+
|
42 |
+

|
43 |
+
|
44 |
+
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
|
45 |
+
|
46 |
+
## Difference between different versions of Vicuna
|
47 |
+
|
48 |
+
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
hf_models/vicuna-7b-v1.5/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vicuna-7b-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 4096,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
hf_models/vicuna-7b-v1.5/generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 4096,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"do_sample": false,
|
7 |
+
"transformers_version": "4.31.0"
|
8 |
+
}
|
hf_models/vicuna-7b-v1.5/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13476839424
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
329 |
+
}
|
330 |
+
}
|
hf_models/vicuna-7b-v1.5/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
hf_models/vicuna-7b-v1.5/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
hf_models/vicuna-7b-v1.5/tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 4096,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "right",
|
25 |
+
"sp_model_kwargs": {},
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
llava/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import LlavaLlamaForCausalLM
|
llava/constants.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "."
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
10 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
11 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
12 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
13 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
llava/conversation.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
class SeparatorStyle(Enum):
|
10 |
+
"""Different separator style."""
|
11 |
+
SINGLE = auto()
|
12 |
+
TWO = auto()
|
13 |
+
MPT = auto()
|
14 |
+
PLAIN = auto()
|
15 |
+
LLAMA_2 = auto()
|
16 |
+
|
17 |
+
|
18 |
+
@dataclasses.dataclass
|
19 |
+
class Conversation:
|
20 |
+
"""A class that keeps all conversation history."""
|
21 |
+
system: str
|
22 |
+
roles: List[str]
|
23 |
+
messages: List[List[str]]
|
24 |
+
offset: int
|
25 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
26 |
+
sep: str = "###"
|
27 |
+
sep2: str = None
|
28 |
+
version: str = "Unknown"
|
29 |
+
|
30 |
+
skip_next: bool = False
|
31 |
+
|
32 |
+
def get_prompt(self):
|
33 |
+
messages = self.messages
|
34 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
35 |
+
messages = self.messages.copy()
|
36 |
+
init_role, init_msg = messages[0].copy()
|
37 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
38 |
+
if 'mmtag' in self.version:
|
39 |
+
messages[0] = (init_role, init_msg)
|
40 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
41 |
+
messages.insert(1, (self.roles[1], "Received."))
|
42 |
+
else:
|
43 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
44 |
+
|
45 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
46 |
+
ret = self.system + self.sep
|
47 |
+
for role, message in messages:
|
48 |
+
if message:
|
49 |
+
if type(message) is tuple:
|
50 |
+
message, _, _ = message
|
51 |
+
ret += role + ": " + message + self.sep
|
52 |
+
else:
|
53 |
+
ret += role + ":"
|
54 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
55 |
+
seps = [self.sep, self.sep2]
|
56 |
+
ret = self.system + seps[0]
|
57 |
+
for i, (role, message) in enumerate(messages):
|
58 |
+
if message:
|
59 |
+
if type(message) is tuple:
|
60 |
+
message, _, _ = message
|
61 |
+
ret += role + ": " + message + seps[i % 2]
|
62 |
+
else:
|
63 |
+
ret += role + ":"
|
64 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
65 |
+
ret = self.system + self.sep
|
66 |
+
for role, message in messages:
|
67 |
+
if message:
|
68 |
+
if type(message) is tuple:
|
69 |
+
message, _, _ = message
|
70 |
+
ret += role + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role
|
73 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
74 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
75 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
76 |
+
ret = ""
|
77 |
+
|
78 |
+
for i, (role, message) in enumerate(messages):
|
79 |
+
if i == 0:
|
80 |
+
assert message, "first message should not be none"
|
81 |
+
assert role == self.roles[0], "first message should come from user"
|
82 |
+
if message:
|
83 |
+
if type(message) is tuple:
|
84 |
+
message, _, _ = message
|
85 |
+
if i == 0: message = wrap_sys(self.system) + message
|
86 |
+
if i % 2 == 0:
|
87 |
+
message = wrap_inst(message)
|
88 |
+
ret += self.sep + message
|
89 |
+
else:
|
90 |
+
ret += " " + message + " " + self.sep2
|
91 |
+
else:
|
92 |
+
ret += ""
|
93 |
+
ret = ret.lstrip(self.sep)
|
94 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
95 |
+
seps = [self.sep, self.sep2]
|
96 |
+
ret = self.system
|
97 |
+
for i, (role, message) in enumerate(messages):
|
98 |
+
if message:
|
99 |
+
if type(message) is tuple:
|
100 |
+
message, _, _ = message
|
101 |
+
ret += message + seps[i % 2]
|
102 |
+
else:
|
103 |
+
ret += ""
|
104 |
+
else:
|
105 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
106 |
+
|
107 |
+
return ret
|
108 |
+
|
109 |
+
def append_message(self, role, message):
|
110 |
+
self.messages.append([role, message])
|
111 |
+
|
112 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
113 |
+
if image_process_mode == "Pad":
|
114 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
115 |
+
width, height = pil_img.size
|
116 |
+
if width == height:
|
117 |
+
return pil_img
|
118 |
+
elif width > height:
|
119 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
120 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
121 |
+
return result
|
122 |
+
else:
|
123 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
124 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
125 |
+
return result
|
126 |
+
image = expand2square(image)
|
127 |
+
elif image_process_mode in ["Default", "Crop"]:
|
128 |
+
pass
|
129 |
+
elif image_process_mode == "Resize":
|
130 |
+
image = image.resize((336, 336))
|
131 |
+
else:
|
132 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
133 |
+
if max(image.size) > max_len:
|
134 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
135 |
+
aspect_ratio = max_hw / min_hw
|
136 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
137 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
138 |
+
W, H = image.size
|
139 |
+
if H > W:
|
140 |
+
H, W = longest_edge, shortest_edge
|
141 |
+
else:
|
142 |
+
H, W = shortest_edge, longest_edge
|
143 |
+
image = image.resize((W, H))
|
144 |
+
if return_pil:
|
145 |
+
return image
|
146 |
+
else:
|
147 |
+
buffered = BytesIO()
|
148 |
+
image.save(buffered, format=image_format)
|
149 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
150 |
+
return img_b64_str
|
151 |
+
|
152 |
+
def get_images(self, return_pil=False):
|
153 |
+
images = []
|
154 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
155 |
+
if i % 2 == 0:
|
156 |
+
if type(msg) is tuple:
|
157 |
+
msg, image, image_process_mode = msg
|
158 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
159 |
+
images.append(image)
|
160 |
+
return images
|
161 |
+
|
162 |
+
def to_gradio_chatbot(self):
|
163 |
+
ret = []
|
164 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
165 |
+
if i % 2 == 0:
|
166 |
+
if type(msg) is tuple:
|
167 |
+
msg, image, image_process_mode = msg
|
168 |
+
img_b64_str = self.process_image(
|
169 |
+
image, "Default", return_pil=False,
|
170 |
+
image_format='JPEG')
|
171 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
172 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
173 |
+
ret.append([msg, None])
|
174 |
+
else:
|
175 |
+
ret.append([msg, None])
|
176 |
+
else:
|
177 |
+
ret[-1][-1] = msg
|
178 |
+
return ret
|
179 |
+
|
180 |
+
def copy(self):
|
181 |
+
return Conversation(
|
182 |
+
system=self.system,
|
183 |
+
roles=self.roles,
|
184 |
+
messages=[[x, y] for x, y in self.messages],
|
185 |
+
offset=self.offset,
|
186 |
+
sep_style=self.sep_style,
|
187 |
+
sep=self.sep,
|
188 |
+
sep2=self.sep2,
|
189 |
+
version=self.version)
|
190 |
+
|
191 |
+
def dict(self):
|
192 |
+
if len(self.get_images()) > 0:
|
193 |
+
return {
|
194 |
+
"system": self.system,
|
195 |
+
"roles": self.roles,
|
196 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
197 |
+
"offset": self.offset,
|
198 |
+
"sep": self.sep,
|
199 |
+
"sep2": self.sep2,
|
200 |
+
}
|
201 |
+
return {
|
202 |
+
"system": self.system,
|
203 |
+
"roles": self.roles,
|
204 |
+
"messages": self.messages,
|
205 |
+
"offset": self.offset,
|
206 |
+
"sep": self.sep,
|
207 |
+
"sep2": self.sep2,
|
208 |
+
}
|
209 |
+
|
210 |
+
|
211 |
+
conv_vicuna_v0 = Conversation(
|
212 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
213 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
214 |
+
roles=("Human", "Assistant"),
|
215 |
+
messages=(
|
216 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
217 |
+
("Assistant",
|
218 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
219 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
220 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
221 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
222 |
+
"renewable and non-renewable energy sources:\n"
|
223 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
224 |
+
"energy sources are finite and will eventually run out.\n"
|
225 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
226 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
227 |
+
"and other negative effects.\n"
|
228 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
229 |
+
"have lower operational costs than non-renewable sources.\n"
|
230 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
231 |
+
"locations than non-renewable sources.\n"
|
232 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
233 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
234 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
235 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
236 |
+
),
|
237 |
+
offset=2,
|
238 |
+
sep_style=SeparatorStyle.SINGLE,
|
239 |
+
sep="###",
|
240 |
+
)
|
241 |
+
|
242 |
+
conv_vicuna_v1 = Conversation(
|
243 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
244 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
245 |
+
roles=("USER", "ASSISTANT"),
|
246 |
+
version="v1",
|
247 |
+
messages=(),
|
248 |
+
offset=0,
|
249 |
+
sep_style=SeparatorStyle.TWO,
|
250 |
+
sep=" ",
|
251 |
+
sep2="</s>",
|
252 |
+
)
|
253 |
+
|
254 |
+
voco_conv_vicuna_v1 = Conversation(
|
255 |
+
system="A chat between a curious user and an artificial intelligence assistant of the image. "
|
256 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
257 |
+
roles=("USER", "ASSISTANT"),
|
258 |
+
version="v1",
|
259 |
+
messages=(),
|
260 |
+
offset=0,
|
261 |
+
sep_style=SeparatorStyle.TWO,
|
262 |
+
sep=" ",
|
263 |
+
sep2="</s>",
|
264 |
+
)
|
265 |
+
|
266 |
+
voco_stg2_vid1_conv_vicuna_v1 = Conversation(
|
267 |
+
system="A chat between a curious user and an artificial intelligence assistant of the video. "
|
268 |
+
"The assistant carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on his observations, give the answer that best addresses the question.\n",
|
269 |
+
roles=("USER", "ASSISTANT"),
|
270 |
+
version="v1",
|
271 |
+
messages=(),
|
272 |
+
offset=0,
|
273 |
+
sep_style=SeparatorStyle.TWO,
|
274 |
+
sep=" ",
|
275 |
+
sep2="</s>",
|
276 |
+
)
|
277 |
+
|
278 |
+
voco_stg2_vid2_conv_vicuna_v1 = Conversation(
|
279 |
+
system="A chat between a curious user and an artificial intelligence assistant of the video. "
|
280 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
281 |
+
"The assistant carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on the observations, give the answer that best addresses the question.",
|
282 |
+
roles=("USER", "ASSISTANT"),
|
283 |
+
version="v1",
|
284 |
+
messages=(),
|
285 |
+
offset=0,
|
286 |
+
sep_style=SeparatorStyle.TWO,
|
287 |
+
sep=" ",
|
288 |
+
sep2="</s>",
|
289 |
+
)
|
290 |
+
|
291 |
+
voco_stg2_conv_vicuna_v1 = Conversation(
|
292 |
+
system="A chat between a curious user and an artificial intelligence assistant of the video. "
|
293 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
294 |
+
roles=("USER", "ASSISTANT"),
|
295 |
+
version="v1",
|
296 |
+
messages=(),
|
297 |
+
offset=0,
|
298 |
+
sep_style=SeparatorStyle.TWO,
|
299 |
+
sep=" ",
|
300 |
+
sep2="</s>",
|
301 |
+
)
|
302 |
+
|
303 |
+
conv_llama_2 = Conversation(
|
304 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
305 |
+
|
306 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
307 |
+
roles=("USER", "ASSISTANT"),
|
308 |
+
version="llama_v2",
|
309 |
+
messages=(),
|
310 |
+
offset=0,
|
311 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
312 |
+
sep="<s>",
|
313 |
+
sep2="</s>",
|
314 |
+
)
|
315 |
+
|
316 |
+
conv_llava_llama_2 = Conversation(
|
317 |
+
system="You are a helpful language and vision assistant. "
|
318 |
+
"You are able to understand the visual content that the user provides, "
|
319 |
+
"and assist the user with a variety of tasks using natural language.",
|
320 |
+
roles=("USER", "ASSISTANT"),
|
321 |
+
version="llama_v2",
|
322 |
+
messages=(),
|
323 |
+
offset=0,
|
324 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
325 |
+
sep="<s>",
|
326 |
+
sep2="</s>",
|
327 |
+
)
|
328 |
+
|
329 |
+
conv_mpt = Conversation(
|
330 |
+
system="""<|im_start|>system
|
331 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
332 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
333 |
+
version="mpt",
|
334 |
+
messages=(),
|
335 |
+
offset=0,
|
336 |
+
sep_style=SeparatorStyle.MPT,
|
337 |
+
sep="<|im_end|>",
|
338 |
+
)
|
339 |
+
|
340 |
+
conv_llava_plain = Conversation(
|
341 |
+
system="",
|
342 |
+
roles=("", ""),
|
343 |
+
messages=(
|
344 |
+
),
|
345 |
+
offset=0,
|
346 |
+
sep_style=SeparatorStyle.PLAIN,
|
347 |
+
sep="\n",
|
348 |
+
)
|
349 |
+
|
350 |
+
conv_llava_v0 = Conversation(
|
351 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
352 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
353 |
+
roles=("Human", "Assistant"),
|
354 |
+
messages=(
|
355 |
+
),
|
356 |
+
offset=0,
|
357 |
+
sep_style=SeparatorStyle.SINGLE,
|
358 |
+
sep="###",
|
359 |
+
)
|
360 |
+
|
361 |
+
conv_llava_v0_mmtag = Conversation(
|
362 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
363 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
364 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
365 |
+
roles=("Human", "Assistant"),
|
366 |
+
messages=(
|
367 |
+
),
|
368 |
+
offset=0,
|
369 |
+
sep_style=SeparatorStyle.SINGLE,
|
370 |
+
sep="###",
|
371 |
+
version="v0_mmtag",
|
372 |
+
)
|
373 |
+
|
374 |
+
conv_llava_v1 = Conversation(
|
375 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
376 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
377 |
+
roles=("USER", "ASSISTANT"),
|
378 |
+
version="v1",
|
379 |
+
messages=(),
|
380 |
+
offset=0,
|
381 |
+
sep_style=SeparatorStyle.TWO,
|
382 |
+
sep=" ",
|
383 |
+
sep2="</s>",
|
384 |
+
)
|
385 |
+
|
386 |
+
conv_llava_v1_mmtag = Conversation(
|
387 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
388 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
389 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
390 |
+
roles=("USER", "ASSISTANT"),
|
391 |
+
messages=(),
|
392 |
+
offset=0,
|
393 |
+
sep_style=SeparatorStyle.TWO,
|
394 |
+
sep=" ",
|
395 |
+
sep2="</s>",
|
396 |
+
version="v1_mmtag",
|
397 |
+
)
|
398 |
+
|
399 |
+
conv_mistral_instruct = Conversation(
|
400 |
+
system="",
|
401 |
+
roles=("USER", "ASSISTANT"),
|
402 |
+
version="llama_v2",
|
403 |
+
messages=(),
|
404 |
+
offset=0,
|
405 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
406 |
+
sep="",
|
407 |
+
sep2="</s>",
|
408 |
+
)
|
409 |
+
|
410 |
+
conv_chatml_direct = Conversation(
|
411 |
+
system="""<|im_start|>system
|
412 |
+
Answer the questions.""",
|
413 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
414 |
+
version="mpt",
|
415 |
+
messages=(),
|
416 |
+
offset=0,
|
417 |
+
sep_style=SeparatorStyle.MPT,
|
418 |
+
sep="<|im_end|>",
|
419 |
+
)
|
420 |
+
|
421 |
+
default_conversation = conv_vicuna_v1
|
422 |
+
voco_default_conversation = voco_conv_vicuna_v1
|
423 |
+
voco_stg2_default_conversation = voco_stg2_conv_vicuna_v1
|
424 |
+
voco_stg2_vid1_default_conversation = voco_stg2_vid1_conv_vicuna_v1
|
425 |
+
voco_stg2_vid2_default_conversation = voco_stg2_vid2_conv_vicuna_v1
|
426 |
+
conv_templates = {
|
427 |
+
"default": conv_vicuna_v0,
|
428 |
+
"v0": conv_vicuna_v0,
|
429 |
+
"v1": conv_vicuna_v1,
|
430 |
+
"vicuna_v1": conv_vicuna_v1,
|
431 |
+
"llama_2": conv_llama_2,
|
432 |
+
"mistral_instruct": conv_mistral_instruct,
|
433 |
+
"chatml_direct": conv_chatml_direct,
|
434 |
+
"mistral_direct": conv_chatml_direct,
|
435 |
+
|
436 |
+
"plain": conv_llava_plain,
|
437 |
+
"v0_plain": conv_llava_plain,
|
438 |
+
"llava_v0": conv_llava_v0,
|
439 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
440 |
+
"llava_v1": conv_llava_v1,
|
441 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
442 |
+
"llava_llama_2": conv_llava_llama_2,
|
443 |
+
|
444 |
+
"mpt": conv_mpt,
|
445 |
+
}
|
446 |
+
|
447 |
+
|
448 |
+
if __name__ == "__main__":
|
449 |
+
print(default_conversation.get_prompt())
|
llava/mm_utils.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
import torch
|
5 |
+
import math
|
6 |
+
import ast
|
7 |
+
|
8 |
+
from transformers import StoppingCriteria
|
9 |
+
from llava.constants import IMAGE_TOKEN_INDEX
|
10 |
+
|
11 |
+
|
12 |
+
def select_best_resolution(original_size, possible_resolutions):
|
13 |
+
"""
|
14 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
18 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
tuple: The best fit resolution in the format (width, height).
|
22 |
+
"""
|
23 |
+
original_width, original_height = original_size
|
24 |
+
best_fit = None
|
25 |
+
max_effective_resolution = 0
|
26 |
+
min_wasted_resolution = float('inf')
|
27 |
+
|
28 |
+
for width, height in possible_resolutions:
|
29 |
+
scale = min(width / original_width, height / original_height)
|
30 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
31 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
32 |
+
wasted_resolution = (width * height) - effective_resolution
|
33 |
+
|
34 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
35 |
+
max_effective_resolution = effective_resolution
|
36 |
+
min_wasted_resolution = wasted_resolution
|
37 |
+
best_fit = (width, height)
|
38 |
+
|
39 |
+
return best_fit
|
40 |
+
|
41 |
+
|
42 |
+
def resize_and_pad_image(image, target_resolution):
|
43 |
+
"""
|
44 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
image (PIL.Image.Image): The input image.
|
48 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
PIL.Image.Image: The resized and padded image.
|
52 |
+
"""
|
53 |
+
original_width, original_height = image.size
|
54 |
+
target_width, target_height = target_resolution
|
55 |
+
|
56 |
+
scale_w = target_width / original_width
|
57 |
+
scale_h = target_height / original_height
|
58 |
+
|
59 |
+
if scale_w < scale_h:
|
60 |
+
new_width = target_width
|
61 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
62 |
+
else:
|
63 |
+
new_height = target_height
|
64 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
65 |
+
|
66 |
+
# Resize the image
|
67 |
+
resized_image = image.resize((new_width, new_height))
|
68 |
+
|
69 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
70 |
+
paste_x = (target_width - new_width) // 2
|
71 |
+
paste_y = (target_height - new_height) // 2
|
72 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
73 |
+
|
74 |
+
return new_image
|
75 |
+
|
76 |
+
|
77 |
+
def divide_to_patches(image, patch_size):
|
78 |
+
"""
|
79 |
+
Divides an image into patches of a specified size.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
image (PIL.Image.Image): The input image.
|
83 |
+
patch_size (int): The size of each patch.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
87 |
+
"""
|
88 |
+
patches = []
|
89 |
+
width, height = image.size
|
90 |
+
for i in range(0, height, patch_size):
|
91 |
+
for j in range(0, width, patch_size):
|
92 |
+
box = (j, i, j + patch_size, i + patch_size)
|
93 |
+
patch = image.crop(box)
|
94 |
+
patches.append(patch)
|
95 |
+
|
96 |
+
return patches
|
97 |
+
|
98 |
+
|
99 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
100 |
+
"""
|
101 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
105 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
106 |
+
patch_size (int): The size of each image patch.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
110 |
+
"""
|
111 |
+
if type(grid_pinpoints) is list:
|
112 |
+
possible_resolutions = grid_pinpoints
|
113 |
+
else:
|
114 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
115 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
116 |
+
return width // patch_size, height // patch_size
|
117 |
+
|
118 |
+
|
119 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
120 |
+
"""
|
121 |
+
Process an image with variable resolutions.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
image (PIL.Image.Image): The input image to be processed.
|
125 |
+
processor: The image processor object.
|
126 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
torch.Tensor: A tensor containing the processed image patches.
|
130 |
+
"""
|
131 |
+
if type(grid_pinpoints) is list:
|
132 |
+
possible_resolutions = grid_pinpoints
|
133 |
+
else:
|
134 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
135 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
136 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
137 |
+
|
138 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
139 |
+
|
140 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
141 |
+
|
142 |
+
image_patches = [image_original_resize] + patches
|
143 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
144 |
+
for image_patch in image_patches]
|
145 |
+
return torch.stack(image_patches, dim=0)
|
146 |
+
|
147 |
+
|
148 |
+
def load_image_from_base64(image):
|
149 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
150 |
+
|
151 |
+
|
152 |
+
def expand2square(pil_img, background_color):
|
153 |
+
width, height = pil_img.size
|
154 |
+
if width == height:
|
155 |
+
return pil_img
|
156 |
+
elif width > height:
|
157 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
158 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
159 |
+
return result
|
160 |
+
else:
|
161 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
162 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
163 |
+
return result
|
164 |
+
|
165 |
+
|
166 |
+
def process_images(images, image_processor, model_cfg):
|
167 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
168 |
+
new_images = []
|
169 |
+
if image_aspect_ratio == 'pad':
|
170 |
+
for image in images:
|
171 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
172 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
173 |
+
new_images.append(image)
|
174 |
+
elif image_aspect_ratio == "anyres":
|
175 |
+
for image in images:
|
176 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
177 |
+
new_images.append(image)
|
178 |
+
else:
|
179 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
180 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
181 |
+
new_images = torch.stack(new_images, dim=0)
|
182 |
+
return new_images
|
183 |
+
|
184 |
+
|
185 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
186 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
187 |
+
|
188 |
+
def insert_separator(X, sep):
|
189 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
190 |
+
|
191 |
+
input_ids = []
|
192 |
+
offset = 0
|
193 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
194 |
+
offset = 1
|
195 |
+
input_ids.append(prompt_chunks[0][0])
|
196 |
+
|
197 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
198 |
+
input_ids.extend(x[offset:])
|
199 |
+
|
200 |
+
if return_tensors is not None:
|
201 |
+
if return_tensors == 'pt':
|
202 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
203 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
204 |
+
return input_ids
|
205 |
+
|
206 |
+
|
207 |
+
def get_model_name_from_path(model_path):
|
208 |
+
model_path = model_path.strip("/")
|
209 |
+
model_paths = model_path.split("/")
|
210 |
+
if model_paths[-1].startswith('checkpoint-'):
|
211 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
212 |
+
else:
|
213 |
+
return model_paths[-1]
|
214 |
+
|
215 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
216 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
217 |
+
self.keywords = keywords
|
218 |
+
self.keyword_ids = []
|
219 |
+
self.max_keyword_len = 0
|
220 |
+
for keyword in keywords:
|
221 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
222 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
223 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
224 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
225 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
226 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
227 |
+
self.tokenizer = tokenizer
|
228 |
+
self.start_len = input_ids.shape[1]
|
229 |
+
|
230 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
231 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
232 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
233 |
+
for keyword_id in self.keyword_ids:
|
234 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
235 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
236 |
+
return True
|
237 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
238 |
+
for keyword in self.keywords:
|
239 |
+
if keyword in outputs:
|
240 |
+
return True
|
241 |
+
return False
|
242 |
+
|
243 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
244 |
+
outputs = []
|
245 |
+
for i in range(output_ids.shape[0]):
|
246 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
247 |
+
return all(outputs)
|
llava/model/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from .language_model.llava_llama_1stg import LlavaLlamaForCausalLM, LlavaConfig # train compress
|
3 |
+
except:
|
4 |
+
pass
|
llava/model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (275 Bytes). View file
|
|
llava/model/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (4.98 kB). View file
|
|
llava/model/__pycache__/llava_arch.cpython-310.pyc
ADDED
Binary file (11.3 kB). View file
|
|
llava/model/apply_delta.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from llava import LlavaLlamaForCausalLM
|
11 |
+
|
12 |
+
|
13 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
14 |
+
print("Loading base model")
|
15 |
+
base = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
|
18 |
+
print("Loading delta")
|
19 |
+
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
20 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
21 |
+
|
22 |
+
print("Applying delta")
|
23 |
+
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
24 |
+
if name not in base.state_dict():
|
25 |
+
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
26 |
+
continue
|
27 |
+
if param.data.shape == base.state_dict()[name].shape:
|
28 |
+
param.data += base.state_dict()[name]
|
29 |
+
else:
|
30 |
+
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
|
31 |
+
f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
32 |
+
bparam = base.state_dict()[name]
|
33 |
+
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
|
34 |
+
|
35 |
+
print("Saving target model")
|
36 |
+
delta.save_pretrained(target_model_path)
|
37 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
parser = argparse.ArgumentParser()
|
42 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
43 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
44 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
45 |
+
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
llava/model/builder.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
21 |
+
import torch
|
22 |
+
from llava.model import *
|
23 |
+
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
24 |
+
|
25 |
+
|
26 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, llava_model = None, **kwargs):
|
27 |
+
kwargs = {"device_map": device_map, **kwargs}
|
28 |
+
|
29 |
+
if device != "cuda":
|
30 |
+
kwargs['device_map'] = {"": device}
|
31 |
+
|
32 |
+
if load_8bit:
|
33 |
+
kwargs['load_in_8bit'] = True
|
34 |
+
elif load_4bit:
|
35 |
+
kwargs['load_in_4bit'] = True
|
36 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
37 |
+
load_in_4bit=True,
|
38 |
+
bnb_4bit_compute_dtype=torch.float16,
|
39 |
+
bnb_4bit_use_double_quant=True,
|
40 |
+
bnb_4bit_quant_type='nf4'
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
kwargs['torch_dtype'] = torch.float16
|
44 |
+
|
45 |
+
if use_flash_attn:
|
46 |
+
kwargs['attn_implementation'] = 'flash_attention_2'
|
47 |
+
|
48 |
+
if 'llava' in model_name.lower():
|
49 |
+
# Load LLaVA model
|
50 |
+
if 'lora' in model_name.lower() and model_base is None:
|
51 |
+
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
52 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
53 |
+
from llava.model.language_model.llava_llama import LlavaConfig
|
54 |
+
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
56 |
+
print('Loading LLaVA from base model...')
|
57 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
58 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
59 |
+
if model.lm_head.weight.shape[0] != token_num:
|
60 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
61 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
62 |
+
|
63 |
+
print('Loading additional LLaVA weights...')
|
64 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
65 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
66 |
+
else:
|
67 |
+
# this is probably from HF Hub
|
68 |
+
from huggingface_hub import hf_hub_download
|
69 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
70 |
+
cache_file = hf_hub_download(
|
71 |
+
repo_id=repo_id,
|
72 |
+
filename=filename,
|
73 |
+
subfolder=subfolder)
|
74 |
+
return torch.load(cache_file, map_location='cpu')
|
75 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
76 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
77 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
78 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
79 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
80 |
+
|
81 |
+
from peft import PeftModel
|
82 |
+
print('Loading LoRA weights...')
|
83 |
+
model = PeftModel.from_pretrained(model, model_path)
|
84 |
+
print('Merging LoRA weights...')
|
85 |
+
model = model.merge_and_unload()
|
86 |
+
print('Model is loaded...')
|
87 |
+
elif model_base is not None:
|
88 |
+
# this may be mm projector only
|
89 |
+
print('Loading LLaVA from base model...')
|
90 |
+
if 'mpt' in model_name.lower():
|
91 |
+
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
92 |
+
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
94 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
95 |
+
model = LlavaMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
96 |
+
else:
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
98 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
99 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
100 |
+
|
101 |
+
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
102 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
103 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
104 |
+
else:
|
105 |
+
if 'mpt' in model_name.lower():
|
106 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
107 |
+
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
108 |
+
elif 'mistral' in model_name.lower():
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
110 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
111 |
+
model_path,
|
112 |
+
low_cpu_mem_usage=True,
|
113 |
+
**kwargs
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
117 |
+
if llava_model == "initial":
|
118 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
119 |
+
model_path,
|
120 |
+
low_cpu_mem_usage=True,
|
121 |
+
**kwargs
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
# Load language model
|
125 |
+
if model_base is not None:
|
126 |
+
# PEFT model
|
127 |
+
from peft import PeftModel
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
129 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
|
130 |
+
print(f"Loading LoRA weights from {model_path}")
|
131 |
+
model = PeftModel.from_pretrained(model, model_path)
|
132 |
+
print(f"Merging weights")
|
133 |
+
model = model.merge_and_unload()
|
134 |
+
print('Convert to FP16...')
|
135 |
+
model.to(torch.float16)
|
136 |
+
else:
|
137 |
+
use_fast = False
|
138 |
+
if 'mpt' in model_name.lower():
|
139 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
140 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
141 |
+
else:
|
142 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
143 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
144 |
+
|
145 |
+
image_processor = None
|
146 |
+
|
147 |
+
if 'llava' in model_name.lower():
|
148 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
149 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
150 |
+
if mm_use_im_patch_token:
|
151 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
152 |
+
if mm_use_im_start_end:
|
153 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
154 |
+
model.resize_token_embeddings(len(tokenizer))
|
155 |
+
|
156 |
+
vision_tower = model.get_vision_tower()
|
157 |
+
if not vision_tower.is_loaded:
|
158 |
+
vision_tower.load_model(device_map=device_map)
|
159 |
+
if device_map != 'auto':
|
160 |
+
vision_tower.to(device=device_map, dtype=torch.float16)
|
161 |
+
image_processor = vision_tower.image_processor
|
162 |
+
|
163 |
+
if hasattr(model.config, "max_sequence_length"):
|
164 |
+
context_len = model.config.max_sequence_length
|
165 |
+
else:
|
166 |
+
context_len = 2048
|
167 |
+
|
168 |
+
return tokenizer, model, image_processor, context_len
|
llava/model/consolidate.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from llava.model import *
|
10 |
+
from llava.model.utils import auto_upgrade
|
11 |
+
|
12 |
+
|
13 |
+
def consolidate_ckpt(src_path, dst_path):
|
14 |
+
print("Loading model")
|
15 |
+
auto_upgrade(src_path)
|
16 |
+
src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
|
18 |
+
src_model.save_pretrained(dst_path)
|
19 |
+
src_tokenizer.save_pretrained(dst_path)
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
parser.add_argument("--src", type=str, required=True)
|
25 |
+
parser.add_argument("--dst", type=str, required=True)
|
26 |
+
|
27 |
+
args = parser.parse_args()
|
28 |
+
|
29 |
+
consolidate_ckpt(args.src, args.dst)
|
llava/model/language_model/__pycache__/llava_llama_1stg.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
llava/model/language_model/cache_py/modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class AttentionMaskConverter:
|
22 |
+
"""
|
23 |
+
A utility attention mask class that allows one to:
|
24 |
+
- Create a causal 4d mask
|
25 |
+
- Create a causal 4d mask with slided window
|
26 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
27 |
+
key_value_length) that can be multiplied with attention scores
|
28 |
+
|
29 |
+
Examples:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> import torch
|
33 |
+
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
|
35 |
+
>>> converter = AttentionMaskConverter(True)
|
36 |
+
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
|
37 |
+
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
38 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
39 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
40 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
|
41 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
|
42 |
+
```
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
is_causal (`bool`):
|
46 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
47 |
+
|
48 |
+
sliding_window (`int`, *optional*):
|
49 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
50 |
+
"""
|
51 |
+
|
52 |
+
is_causal: bool
|
53 |
+
sliding_window: int
|
54 |
+
|
55 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
56 |
+
self.is_causal = is_causal
|
57 |
+
self.sliding_window = sliding_window
|
58 |
+
|
59 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
60 |
+
raise ValueError(
|
61 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
62 |
+
)
|
63 |
+
|
64 |
+
def to_causal_4d(
|
65 |
+
self,
|
66 |
+
batch_size: int,
|
67 |
+
query_length: int,
|
68 |
+
key_value_length: int,
|
69 |
+
dtype: torch.dtype,
|
70 |
+
device: Union[torch.device, "str"] = "cpu",
|
71 |
+
) -> Optional[torch.Tensor]:
|
72 |
+
"""
|
73 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
74 |
+
bias to upper right hand triangular matrix (causal mask).
|
75 |
+
"""
|
76 |
+
if not self.is_causal:
|
77 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
78 |
+
|
79 |
+
# If shape is not cached, create a new causal mask and cache it
|
80 |
+
input_shape = (batch_size, query_length)
|
81 |
+
past_key_values_length = key_value_length - query_length
|
82 |
+
|
83 |
+
# create causal mask
|
84 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
85 |
+
causal_4d_mask = None
|
86 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
87 |
+
causal_4d_mask = self._make_causal_mask(
|
88 |
+
input_shape,
|
89 |
+
dtype,
|
90 |
+
device=device,
|
91 |
+
past_key_values_length=past_key_values_length,
|
92 |
+
sliding_window=self.sliding_window,
|
93 |
+
)
|
94 |
+
|
95 |
+
return causal_4d_mask
|
96 |
+
|
97 |
+
def to_4d(
|
98 |
+
self,
|
99 |
+
attention_mask_2d: torch.Tensor,
|
100 |
+
query_length: int,
|
101 |
+
dtype: torch.dtype,
|
102 |
+
key_value_length: Optional[int] = None,
|
103 |
+
) -> torch.Tensor:
|
104 |
+
"""
|
105 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
106 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
107 |
+
causal, a causal mask will be added.
|
108 |
+
"""
|
109 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
110 |
+
|
111 |
+
# create causal mask
|
112 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
113 |
+
causal_4d_mask = None
|
114 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
115 |
+
if key_value_length is None:
|
116 |
+
raise ValueError(
|
117 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
118 |
+
)
|
119 |
+
|
120 |
+
past_key_values_length = key_value_length - query_length
|
121 |
+
causal_4d_mask = self._make_causal_mask(
|
122 |
+
input_shape,
|
123 |
+
dtype,
|
124 |
+
device=attention_mask_2d.device,
|
125 |
+
past_key_values_length=past_key_values_length,
|
126 |
+
sliding_window=self.sliding_window,
|
127 |
+
)
|
128 |
+
elif self.sliding_window is not None:
|
129 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
130 |
+
|
131 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
132 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
133 |
+
attention_mask_2d.device
|
134 |
+
)
|
135 |
+
|
136 |
+
if causal_4d_mask is not None:
|
137 |
+
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
|
138 |
+
|
139 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
140 |
+
expanded_4d_mask = expanded_attn_mask
|
141 |
+
|
142 |
+
return expanded_4d_mask
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def _make_causal_mask(
|
146 |
+
input_ids_shape: torch.Size,
|
147 |
+
dtype: torch.dtype,
|
148 |
+
device: torch.device,
|
149 |
+
past_key_values_length: int = 0,
|
150 |
+
sliding_window: Optional[int] = None,
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
Make causal mask used for bi-directional self-attention.
|
154 |
+
"""
|
155 |
+
bsz, tgt_len = input_ids_shape
|
156 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
157 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
158 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
159 |
+
|
160 |
+
mask = mask.to(dtype)
|
161 |
+
|
162 |
+
if past_key_values_length > 0:
|
163 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
164 |
+
|
165 |
+
# add lower triangular sliding window mask if necessary
|
166 |
+
if sliding_window is not None:
|
167 |
+
diagonal = past_key_values_length - sliding_window + 1
|
168 |
+
|
169 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
170 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
171 |
+
|
172 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
176 |
+
"""
|
177 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
178 |
+
"""
|
179 |
+
bsz, src_len = mask.size()
|
180 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
181 |
+
|
182 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
183 |
+
|
184 |
+
inverted_mask = 1.0 - expanded_mask
|
185 |
+
|
186 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _unmask_unattended(
|
190 |
+
expanded_mask: torch.Tensor, attention_mask: torch.Tensor, unmasked_value: Union[bool, float]
|
191 |
+
):
|
192 |
+
# fmt: off
|
193 |
+
"""
|
194 |
+
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
|
195 |
+
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
196 |
+
Details: https://github.com/pytorch/pytorch/issues/110213
|
197 |
+
|
198 |
+
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
|
199 |
+
`attention_mask` is [bsz, src_seq_len].
|
200 |
+
|
201 |
+
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
|
202 |
+
|
203 |
+
For example, if `attention_mask` is
|
204 |
+
```
|
205 |
+
[[0, 0, 1],
|
206 |
+
[1, 1, 1],
|
207 |
+
[0, 1, 1]]
|
208 |
+
```
|
209 |
+
and `expanded_mask` is (e.g. here left-padding case)
|
210 |
+
```
|
211 |
+
[[[[0, 0, 0],
|
212 |
+
[0, 0, 0],
|
213 |
+
[0, 0, 1]]],
|
214 |
+
[[[1, 0, 0],
|
215 |
+
[1, 1, 0],
|
216 |
+
[1, 1, 1]]],
|
217 |
+
[[[0, 0, 0],
|
218 |
+
[0, 1, 0],
|
219 |
+
[0, 1, 1]]]]
|
220 |
+
```
|
221 |
+
then the modified `expanded_mask` will be
|
222 |
+
```
|
223 |
+
[[[[1, 1, 1], <-- modified
|
224 |
+
[1, 1, 1], <-- modified
|
225 |
+
[0, 0, 1]]],
|
226 |
+
[[[1, 0, 0],
|
227 |
+
[1, 1, 0],
|
228 |
+
[1, 1, 1]]],
|
229 |
+
[[[1, 1, 1], <-- modified
|
230 |
+
[0, 1, 0],
|
231 |
+
[0, 1, 1]]]]
|
232 |
+
```
|
233 |
+
"""
|
234 |
+
# fmt: on
|
235 |
+
|
236 |
+
# Get the index of the first non-zero value for every sample in the batch.
|
237 |
+
# In the above example, indices = [[2], [0], [1]]]
|
238 |
+
tmp = torch.arange(attention_mask.shape[1], 0, -1)
|
239 |
+
indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True)
|
240 |
+
|
241 |
+
# Find the batch indexes that have unattended tokens on the leftmost side (e.g. [0, 0, 1, 1, 1]), for which the first rows of the
|
242 |
+
# expanded mask will be completely unattended.
|
243 |
+
left_masked_rows = torch.where(indices > 0)[0]
|
244 |
+
|
245 |
+
if left_masked_rows.shape[0] == 0:
|
246 |
+
return expanded_mask
|
247 |
+
indices = indices[left_masked_rows]
|
248 |
+
|
249 |
+
max_len = torch.max(indices)
|
250 |
+
range_tensor = torch.arange(max_len).unsqueeze(0)
|
251 |
+
range_tensor = range_tensor.repeat(indices.size(0), 1)
|
252 |
+
|
253 |
+
# Avoid unmasking tokens at relevant target positions (on the row axis), by rather unmasking possibly several times the first row that should always be unmasked as we filtered out the batch above.
|
254 |
+
range_tensor[range_tensor >= indices] = 0
|
255 |
+
|
256 |
+
# TODO: we may drop support for 3D attention mask as the refactor from Patrick maybe dropped this case
|
257 |
+
if expanded_mask.dim() == 4:
|
258 |
+
num_masks = expanded_mask.shape[1]
|
259 |
+
if num_masks == 1:
|
260 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
261 |
+
mask_slice = (left_masked_rows[:, None], 0, range_tensor)
|
262 |
+
else:
|
263 |
+
# Broadcast [left_masked_rows, 1, 1], [1, num_masks, 1], [left_masked_rows, 1, max_len]
|
264 |
+
mask_slice = (
|
265 |
+
left_masked_rows[:, None, None],
|
266 |
+
torch.arange(num_masks)[None, :, None],
|
267 |
+
range_tensor[:, None, :],
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
|
271 |
+
mask_slice = (left_masked_rows[:, None], range_tensor)
|
272 |
+
|
273 |
+
expanded_mask[mask_slice] = unmasked_value
|
274 |
+
|
275 |
+
return expanded_mask
|
276 |
+
|
277 |
+
|
278 |
+
def _prepare_4d_causal_attention_mask(
|
279 |
+
attention_mask: Optional[torch.Tensor],
|
280 |
+
input_shape: Union[torch.Size, Tuple, List],
|
281 |
+
inputs_embeds: torch.Tensor,
|
282 |
+
past_key_values_length: int,
|
283 |
+
sliding_window: Optional[int] = None,
|
284 |
+
):
|
285 |
+
"""
|
286 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
287 |
+
`(batch_size, key_value_length)`
|
288 |
+
|
289 |
+
Args:
|
290 |
+
attention_mask (`torch.Tensor` or `None`):
|
291 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
292 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
293 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
294 |
+
inputs_embeds (`torch.Tensor`):
|
295 |
+
The embedded inputs as a torch Tensor.
|
296 |
+
past_key_values_length (`int`):
|
297 |
+
The length of the key value cache.
|
298 |
+
sliding_window (`int`, *optional*):
|
299 |
+
If the model uses windowed attention, a sliding window should be passed.
|
300 |
+
"""
|
301 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
302 |
+
|
303 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
304 |
+
|
305 |
+
# 4d mask is passed through the layers
|
306 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
307 |
+
attention_mask = attn_mask_converter.to_4d(
|
308 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
309 |
+
)
|
310 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
311 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
312 |
+
if tuple(attention_mask.shape) != expected_shape:
|
313 |
+
raise ValueError(
|
314 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
318 |
+
inverted_mask = 1.0 - attention_mask
|
319 |
+
attention_mask = inverted_mask.masked_fill(
|
320 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
324 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
325 |
+
)
|
326 |
+
|
327 |
+
return attention_mask
|
328 |
+
|
329 |
+
|
330 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
331 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
332 |
+
attention_mask: Optional[torch.Tensor],
|
333 |
+
input_shape: Union[torch.Size, Tuple, List],
|
334 |
+
inputs_embeds: torch.Tensor,
|
335 |
+
past_key_values_length: int,
|
336 |
+
sliding_window: Optional[int] = None,
|
337 |
+
):
|
338 |
+
"""
|
339 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
340 |
+
|
341 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
342 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
343 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
344 |
+
"""
|
345 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
346 |
+
|
347 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
348 |
+
batch_size, query_length = input_shape
|
349 |
+
|
350 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
351 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
352 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
353 |
+
is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy)
|
354 |
+
|
355 |
+
if attention_mask is not None:
|
356 |
+
# 4d mask is passed through
|
357 |
+
if len(attention_mask.shape) == 4:
|
358 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
359 |
+
if tuple(attention_mask.shape) != expected_shape:
|
360 |
+
raise ValueError(
|
361 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
365 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
366 |
+
attention_mask = inverted_mask.masked_fill(
|
367 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
368 |
+
)
|
369 |
+
return attention_mask
|
370 |
+
|
371 |
+
elif not is_tracing and torch.all(attention_mask == 1):
|
372 |
+
if query_length == 1:
|
373 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
374 |
+
attention_mask = None
|
375 |
+
elif key_value_length == query_length:
|
376 |
+
pass
|
377 |
+
# attention_mask = None
|
378 |
+
else:
|
379 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
380 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
381 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
382 |
+
pass
|
383 |
+
elif query_length > 1 and key_value_length != query_length:
|
384 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
385 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
386 |
+
attention_mask = True
|
387 |
+
elif is_tracing:
|
388 |
+
raise ValueError(
|
389 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
390 |
+
)
|
391 |
+
|
392 |
+
if attention_mask is None:
|
393 |
+
expanded_4d_mask = None
|
394 |
+
elif attention_mask is True:
|
395 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
396 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
400 |
+
attention_mask,
|
401 |
+
input_shape[-1],
|
402 |
+
dtype=inputs_embeds.dtype,
|
403 |
+
key_value_length=key_value_length,
|
404 |
+
)
|
405 |
+
|
406 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
407 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
408 |
+
#
|
409 |
+
# This fix is not applied in case we are tracing with torch.jit.trace or symbolic_trace, as _unmask_unattended has a data-dependent
|
410 |
+
# controlflow that can not be captured properly.
|
411 |
+
# TODO: _unmask_unattended does not work either with torch.compile when using fullgraph=True. We should find a way to detect this case.
|
412 |
+
if query_length > 1 and not is_tracing:
|
413 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
414 |
+
expanded_4d_mask, attention_mask, unmasked_value=0.0
|
415 |
+
)
|
416 |
+
|
417 |
+
return expanded_4d_mask
|
418 |
+
|
419 |
+
|
420 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
421 |
+
"""
|
422 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
423 |
+
`(batch_size, key_value_length)`
|
424 |
+
|
425 |
+
Args:
|
426 |
+
mask (`torch.Tensor` or `None`):
|
427 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
428 |
+
dtype (`torch.dtype`):
|
429 |
+
The torch dtype the created mask shall have.
|
430 |
+
tgt_len (`int`):
|
431 |
+
The target length or query length the created mask shall have.
|
432 |
+
"""
|
433 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
434 |
+
|
435 |
+
|
436 |
+
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
437 |
+
"""
|
438 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
439 |
+
`(batch_size, key_value_length)`
|
440 |
+
|
441 |
+
Args:
|
442 |
+
mask (`torch.Tensor` or `None`):
|
443 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
444 |
+
dtype (`torch.dtype`):
|
445 |
+
The torch dtype the created mask shall have.
|
446 |
+
tgt_len (`int`):
|
447 |
+
The target length or query length the created mask shall have.
|
448 |
+
"""
|
449 |
+
batch_size, key_value_length = mask.shape
|
450 |
+
tgt_len = tgt_len if tgt_len is not None else key_value_length
|
451 |
+
|
452 |
+
# torch.jit.trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
453 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
454 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
455 |
+
is_tracing = torch.jit.is_tracing()
|
456 |
+
|
457 |
+
if torch.all(mask == 1):
|
458 |
+
if is_tracing:
|
459 |
+
pass
|
460 |
+
elif tgt_len == 1:
|
461 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
462 |
+
return None
|
463 |
+
elif key_value_length == tgt_len:
|
464 |
+
return None
|
465 |
+
else:
|
466 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we can not generally ignore the attention mask, as SDPA causal mask generation
|
467 |
+
# may be wrong. We will set is_causal=False in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
468 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
469 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
470 |
+
else:
|
471 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
472 |
+
|
473 |
+
|
474 |
+
def _create_4d_causal_attention_mask(
|
475 |
+
input_shape: Union[torch.Size, Tuple, List],
|
476 |
+
dtype: torch.dtype,
|
477 |
+
device: torch.device,
|
478 |
+
past_key_values_length: int = 0,
|
479 |
+
sliding_window: Optional[int] = None,
|
480 |
+
) -> Optional[torch.Tensor]:
|
481 |
+
"""
|
482 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
483 |
+
|
484 |
+
Args:
|
485 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
486 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
487 |
+
dtype (`torch.dtype`):
|
488 |
+
The torch dtype the created mask shall have.
|
489 |
+
device (`int`):
|
490 |
+
The torch device the created mask shall have.
|
491 |
+
sliding_window (`int`, *optional*):
|
492 |
+
If the model uses windowed attention, a sliding window should be passed.
|
493 |
+
"""
|
494 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
495 |
+
|
496 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
497 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
498 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
499 |
+
)
|
500 |
+
|
501 |
+
return attention_mask
|
llava/model/language_model/llava_llama_1stg.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
from torch.nn import CrossEntropyLoss
|
21 |
+
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
LlamaConfig, LlamaModel
|
24 |
+
|
25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
26 |
+
from transformers.generation.utils import GenerateOutput
|
27 |
+
|
28 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
29 |
+
# import torch.distributed as dist
|
30 |
+
|
31 |
+
from transformers.models.llama import LlamaPreTrainedModel
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
|
34 |
+
from transformers.modeling_attn_mask_utils import (
|
35 |
+
AttentionMaskConverter,
|
36 |
+
_prepare_4d_attention_mask,
|
37 |
+
_prepare_4d_causal_attention_mask,
|
38 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
39 |
+
)
|
40 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
41 |
+
|
42 |
+
from transformers.models.llama.modeling_llama import (
|
43 |
+
LlamaAttention,
|
44 |
+
LlamaFlashAttention2,
|
45 |
+
LlamaSdpaAttention,
|
46 |
+
LlamaMLP,
|
47 |
+
LlamaRMSNorm,
|
48 |
+
apply_rotary_pos_emb,
|
49 |
+
)
|
50 |
+
|
51 |
+
class LlavaConfig(LlamaConfig):
|
52 |
+
model_type = "llava_llama"
|
53 |
+
|
54 |
+
LLAMA_ATTENTION_CLASSES = {
|
55 |
+
"eager": LlamaAttention,
|
56 |
+
"flash_attention_2": LlamaFlashAttention2,
|
57 |
+
"sdpa": LlamaSdpaAttention,
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
def reverse_cumsum(x: torch.Tensor) -> torch.Tensor:
|
62 |
+
return x + torch.sum(x, dim=-1, keepdims=True) - torch.cumsum(x, dim=-1)
|
63 |
+
|
64 |
+
def make_mask_post_last_voco(
|
65 |
+
inputs: torch.Tensor,
|
66 |
+
voco_token: int,
|
67 |
+
pad_token: Optional[int] = None,
|
68 |
+
dtype=torch.int64,
|
69 |
+
) -> torch.Tensor:
|
70 |
+
mask = reverse_cumsum(inputs == voco_token) >= 1
|
71 |
+
if pad_token is not None:
|
72 |
+
mask = mask & (inputs != pad_token)
|
73 |
+
return mask.type(dtype)
|
74 |
+
|
75 |
+
def make_mask_pre_first_voco(
|
76 |
+
inputs: torch.Tensor,
|
77 |
+
voco_token: int,
|
78 |
+
pad_token: Optional[int] = None,
|
79 |
+
dtype=torch.int64,
|
80 |
+
) -> torch.Tensor:
|
81 |
+
mask = (inputs == voco_token).cumsum(-1) >= 1
|
82 |
+
if pad_token is not None:
|
83 |
+
mask = mask & (inputs != pad_token)
|
84 |
+
return mask.type(dtype)
|
85 |
+
|
86 |
+
def make_voco_mask_llava(
|
87 |
+
inputs: torch.Tensor,
|
88 |
+
voco_token: int,
|
89 |
+
dtype=torch.int64,
|
90 |
+
) -> torch.Tensor:
|
91 |
+
|
92 |
+
pre_voco_mask = make_mask_post_last_voco(inputs, voco_token, dtype=torch.bool)[
|
93 |
+
:, None, None
|
94 |
+
]
|
95 |
+
# Attention mask for tokens after the last voco token.
|
96 |
+
post_voco_mask = make_mask_pre_first_voco(inputs, voco_token, dtype=torch.bool)[
|
97 |
+
:, None, None
|
98 |
+
]
|
99 |
+
pre_voco_time_mask = pre_voco_mask.permute((0, 1, 3, 2))
|
100 |
+
mask = torch.where(pre_voco_time_mask, pre_voco_mask, post_voco_mask)
|
101 |
+
has_voco = (inputs == voco_token).any(-1)[:, None, None, None]
|
102 |
+
mask = torch.where(has_voco, mask, True)
|
103 |
+
return mask.type(dtype)
|
104 |
+
|
105 |
+
class LlamaDecoderLayer(nn.Module):
|
106 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
107 |
+
super().__init__()
|
108 |
+
self.hidden_size = config.hidden_size
|
109 |
+
|
110 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
111 |
+
self.mlp = LlamaMLP(config)
|
112 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
113 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
hidden_states: torch.Tensor,
|
118 |
+
attention_mask: Optional[torch.Tensor] = None,
|
119 |
+
position_ids: Optional[torch.LongTensor] = None,
|
120 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
121 |
+
output_attentions: Optional[bool] = False,
|
122 |
+
use_cache: Optional[bool] = False,
|
123 |
+
**kwargs,
|
124 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
128 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
129 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
130 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
131 |
+
output_attentions (`bool`, *optional*):
|
132 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
133 |
+
returned tensors for more detail.
|
134 |
+
use_cache (`bool`, *optional*):
|
135 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
136 |
+
(see `past_key_values`).
|
137 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
138 |
+
"""
|
139 |
+
if "padding_mask" in kwargs:
|
140 |
+
warnings.warn(
|
141 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
142 |
+
)
|
143 |
+
|
144 |
+
residual = hidden_states
|
145 |
+
|
146 |
+
hidden_states = self.input_layernorm(hidden_states)
|
147 |
+
|
148 |
+
# Self Attention
|
149 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
150 |
+
hidden_states=hidden_states,
|
151 |
+
attention_mask=attention_mask,
|
152 |
+
position_ids=position_ids,
|
153 |
+
past_key_value=past_key_value,
|
154 |
+
output_attentions=output_attentions,
|
155 |
+
use_cache=use_cache,
|
156 |
+
**kwargs,
|
157 |
+
)
|
158 |
+
hidden_states = residual + hidden_states
|
159 |
+
|
160 |
+
# Fully Connected
|
161 |
+
residual = hidden_states
|
162 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
163 |
+
hidden_states = self.mlp(hidden_states)
|
164 |
+
hidden_states = residual + hidden_states
|
165 |
+
|
166 |
+
outputs = (hidden_states,)
|
167 |
+
|
168 |
+
if output_attentions:
|
169 |
+
outputs += (self_attn_weights,)
|
170 |
+
|
171 |
+
if use_cache:
|
172 |
+
outputs += (present_key_value,)
|
173 |
+
|
174 |
+
return outputs
|
175 |
+
|
176 |
+
|
177 |
+
class LlamaModel(LlamaPreTrainedModel):
|
178 |
+
"""
|
179 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
180 |
+
|
181 |
+
Args:
|
182 |
+
config: LlamaConfig
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, config: LlamaConfig):
|
186 |
+
super().__init__(config)
|
187 |
+
self.padding_idx = config.pad_token_id
|
188 |
+
self.vocab_size = config.vocab_size
|
189 |
+
|
190 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
191 |
+
self.layers = nn.ModuleList(
|
192 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
193 |
+
)
|
194 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
195 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
196 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
197 |
+
|
198 |
+
self.gradient_checkpointing = False
|
199 |
+
# Initialize weights and apply final processing
|
200 |
+
self.post_init()
|
201 |
+
|
202 |
+
def get_input_embeddings(self):
|
203 |
+
return self.embed_tokens
|
204 |
+
|
205 |
+
def set_input_embeddings(self, value):
|
206 |
+
self.embed_tokens = value
|
207 |
+
|
208 |
+
def forward(
|
209 |
+
self,
|
210 |
+
input_ids: torch.LongTensor = None,
|
211 |
+
attention_mask: Optional[torch.Tensor] = None,
|
212 |
+
position_ids: Optional[torch.LongTensor] = None,
|
213 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
214 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
215 |
+
use_cache: Optional[bool] = None,
|
216 |
+
output_attentions: Optional[bool] = None,
|
217 |
+
output_hidden_states: Optional[bool] = None,
|
218 |
+
return_dict: Optional[bool] = None,
|
219 |
+
voco_loc_back=None
|
220 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
221 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
222 |
+
output_hidden_states = (
|
223 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
224 |
+
)
|
225 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
226 |
+
|
227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
228 |
+
|
229 |
+
# retrieve input_ids and inputs_embeds
|
230 |
+
if input_ids is not None and inputs_embeds is not None:
|
231 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
232 |
+
elif input_ids is not None:
|
233 |
+
batch_size, seq_length = input_ids.shape[:2]
|
234 |
+
elif inputs_embeds is not None:
|
235 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
236 |
+
else:
|
237 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
238 |
+
|
239 |
+
if self.gradient_checkpointing and self.training:
|
240 |
+
if use_cache:
|
241 |
+
logger.warning_once(
|
242 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
243 |
+
)
|
244 |
+
use_cache = False
|
245 |
+
|
246 |
+
past_key_values_length = 0
|
247 |
+
if use_cache:
|
248 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
249 |
+
if use_legacy_cache:
|
250 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
251 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
252 |
+
|
253 |
+
if position_ids is None:
|
254 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
255 |
+
position_ids = torch.arange(
|
256 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
257 |
+
)
|
258 |
+
position_ids = position_ids.unsqueeze(0)
|
259 |
+
|
260 |
+
if inputs_embeds is None:
|
261 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
262 |
+
|
263 |
+
if self._use_flash_attention_2:
|
264 |
+
# 2d mask is passed through the layers
|
265 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
266 |
+
elif self._use_sdpa and not output_attentions:
|
267 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
268 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
269 |
+
_2d_attention_mask_b = attention_mask
|
270 |
+
|
271 |
+
# attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
272 |
+
# attention_mask,
|
273 |
+
# (batch_size, seq_length),
|
274 |
+
# inputs_embeds,
|
275 |
+
# past_key_values_length,
|
276 |
+
# )
|
277 |
+
|
278 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
279 |
+
attention_mask,
|
280 |
+
(batch_size, seq_length + past_key_values_length), # Changed from (batch_size, seq_length) to ensure generating the whole mask
|
281 |
+
inputs_embeds, # Only uses .dtype and isinstance, so passing this has no impact
|
282 |
+
0, # Changed from past_key_values_length
|
283 |
+
)
|
284 |
+
|
285 |
+
mask_type = attention_mask.dtype
|
286 |
+
mask_min = torch.finfo(mask_type).min
|
287 |
+
|
288 |
+
first_false_indices = (_2d_attention_mask_b == False).int().argmin(dim=1)
|
289 |
+
|
290 |
+
_2d_attention_mask = _2d_attention_mask_b.to(inputs_embeds.dtype)
|
291 |
+
for idx, locs in enumerate(voco_loc_back):
|
292 |
+
for loc in locs:
|
293 |
+
_2d_attention_mask[idx][seq_length - 1 - loc] = 32000
|
294 |
+
attention_mask_voco = make_voco_mask_llava(
|
295 |
+
_2d_attention_mask,
|
296 |
+
32000,
|
297 |
+
inputs_embeds.dtype
|
298 |
+
)
|
299 |
+
attention_mask_voco = torch.where(attention_mask_voco == 1, torch.tensor(0), mask_min)
|
300 |
+
attention_mask = attention_mask + attention_mask_voco
|
301 |
+
attention_mask = torch.where(attention_mask < 0, mask_min, torch.tensor(0)).to(inputs_embeds.dtype)
|
302 |
+
|
303 |
+
for b in range(attention_mask.size(0)):
|
304 |
+
attention_mask[b, 0, :first_false_indices[b], :] = 0
|
305 |
+
|
306 |
+
else:
|
307 |
+
# 4d mask is passed through the layers
|
308 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
309 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
310 |
+
)
|
311 |
+
|
312 |
+
attention_mask = attention_mask[:,:,-seq_length:,:]
|
313 |
+
# embed positions
|
314 |
+
hidden_states = inputs_embeds
|
315 |
+
|
316 |
+
# decoder layers
|
317 |
+
all_hidden_states = () if output_hidden_states else None
|
318 |
+
all_self_attns = () if output_attentions else None
|
319 |
+
next_decoder_cache = None
|
320 |
+
|
321 |
+
for decoder_layer in self.layers:
|
322 |
+
if output_hidden_states:
|
323 |
+
all_hidden_states += (hidden_states,)
|
324 |
+
|
325 |
+
if self.gradient_checkpointing and self.training:
|
326 |
+
layer_outputs = self._gradient_checkpointing_func(
|
327 |
+
decoder_layer.__call__,
|
328 |
+
hidden_states,
|
329 |
+
attention_mask,
|
330 |
+
position_ids,
|
331 |
+
past_key_values,
|
332 |
+
output_attentions,
|
333 |
+
use_cache,
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
layer_outputs = decoder_layer(
|
337 |
+
hidden_states,
|
338 |
+
attention_mask=attention_mask,
|
339 |
+
position_ids=position_ids,
|
340 |
+
past_key_value=past_key_values,
|
341 |
+
output_attentions=output_attentions,
|
342 |
+
use_cache=use_cache,
|
343 |
+
)
|
344 |
+
|
345 |
+
hidden_states = layer_outputs[0]
|
346 |
+
|
347 |
+
if use_cache:
|
348 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
349 |
+
|
350 |
+
if output_attentions:
|
351 |
+
all_self_attns += (layer_outputs[1],)
|
352 |
+
|
353 |
+
hidden_states = self.norm(hidden_states)
|
354 |
+
|
355 |
+
# add hidden states from the last decoder layer
|
356 |
+
if output_hidden_states:
|
357 |
+
all_hidden_states += (hidden_states,)
|
358 |
+
|
359 |
+
next_cache = None
|
360 |
+
if use_cache:
|
361 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
362 |
+
if not return_dict:
|
363 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
364 |
+
return BaseModelOutputWithPast(
|
365 |
+
last_hidden_state=hidden_states,
|
366 |
+
past_key_values=next_cache,
|
367 |
+
hidden_states=all_hidden_states,
|
368 |
+
attentions=all_self_attns,
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
373 |
+
config_class = LlavaConfig
|
374 |
+
|
375 |
+
def __init__(self, config: LlamaConfig):
|
376 |
+
super(LlavaLlamaModel, self).__init__(config)
|
377 |
+
|
378 |
+
|
379 |
+
# LlavaMetaForCausalLM is a method class
|
380 |
+
class LlavaLlamaForCausalLM(LlamaPreTrainedModel, LlavaMetaForCausalLM):
|
381 |
+
_tied_weights_keys = ["lm_head.weight"]
|
382 |
+
config_class = LlavaConfig
|
383 |
+
|
384 |
+
def __init__(self, config):
|
385 |
+
super().__init__(config)
|
386 |
+
self.model = LlavaLlamaModel(config)
|
387 |
+
self.pretraining_tp = config.pretraining_tp
|
388 |
+
self.vocab_size = config.vocab_size
|
389 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
390 |
+
|
391 |
+
# Initialize weights and apply final processing
|
392 |
+
self.post_init()
|
393 |
+
|
394 |
+
def get_model(self):
|
395 |
+
return self.model
|
396 |
+
|
397 |
+
def get_input_embeddings(self):
|
398 |
+
return self.model.embed_tokens
|
399 |
+
|
400 |
+
def set_input_embeddings(self, value):
|
401 |
+
self.model.embed_tokens = value
|
402 |
+
|
403 |
+
def get_output_embeddings(self):
|
404 |
+
return self.lm_head
|
405 |
+
|
406 |
+
def set_output_embeddings(self, new_embeddings):
|
407 |
+
self.lm_head = new_embeddings
|
408 |
+
|
409 |
+
def set_decoder(self, decoder):
|
410 |
+
self.model = decoder
|
411 |
+
|
412 |
+
def get_decoder(self):
|
413 |
+
return self.model
|
414 |
+
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
input_ids: torch.LongTensor = None,
|
419 |
+
attention_mask: Optional[torch.Tensor] = None,
|
420 |
+
position_ids: Optional[torch.LongTensor] = None,
|
421 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
422 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
423 |
+
labels: Optional[torch.LongTensor] = None,
|
424 |
+
use_cache: Optional[bool] = None,
|
425 |
+
output_attentions: Optional[bool] = None,
|
426 |
+
output_hidden_states: Optional[bool] = None,
|
427 |
+
images: Optional[torch.FloatTensor] = None,
|
428 |
+
image_sizes: Optional[List[List[int]]] = None,
|
429 |
+
return_dict: Optional[bool] = None,
|
430 |
+
voco_loc_back=None,
|
431 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
432 |
+
|
433 |
+
if inputs_embeds is None:
|
434 |
+
(
|
435 |
+
input_ids,
|
436 |
+
position_ids,
|
437 |
+
attention_mask,
|
438 |
+
past_key_values,
|
439 |
+
inputs_embeds,
|
440 |
+
labels,
|
441 |
+
voco_loc_back
|
442 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
443 |
+
input_ids,
|
444 |
+
position_ids,
|
445 |
+
attention_mask,
|
446 |
+
past_key_values,
|
447 |
+
labels,
|
448 |
+
images,
|
449 |
+
image_sizes,
|
450 |
+
voco_loc_back # here voco_loc_back+=1 if input_ids is [B,1] (autogenerate phase)
|
451 |
+
)
|
452 |
+
|
453 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
454 |
+
output_hidden_states = (
|
455 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
456 |
+
)
|
457 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
458 |
+
|
459 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
460 |
+
outputs = self.model(
|
461 |
+
input_ids=input_ids,
|
462 |
+
attention_mask=attention_mask,
|
463 |
+
position_ids=position_ids,
|
464 |
+
past_key_values=past_key_values,
|
465 |
+
inputs_embeds=inputs_embeds,
|
466 |
+
use_cache=use_cache,
|
467 |
+
output_attentions=output_attentions,
|
468 |
+
output_hidden_states=output_hidden_states,
|
469 |
+
return_dict=return_dict,
|
470 |
+
voco_loc_back=voco_loc_back
|
471 |
+
)
|
472 |
+
|
473 |
+
hidden_states = outputs[0]
|
474 |
+
if self.config.pretraining_tp > 1:
|
475 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
476 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
477 |
+
logits = torch.cat(logits, dim=-1)
|
478 |
+
else:
|
479 |
+
logits = self.lm_head(hidden_states)
|
480 |
+
logits = logits.float()
|
481 |
+
|
482 |
+
loss = None
|
483 |
+
if labels is not None:
|
484 |
+
# Shift so that tokens < n predict n
|
485 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
486 |
+
shift_labels = labels[..., 1:].contiguous()
|
487 |
+
# Flatten the tokens
|
488 |
+
loss_fct = CrossEntropyLoss()
|
489 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
490 |
+
shift_labels = shift_labels.view(-1)
|
491 |
+
# Enable model parallelism
|
492 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
493 |
+
loss = loss_fct(shift_logits, shift_labels)
|
494 |
+
|
495 |
+
if not return_dict:
|
496 |
+
output = (logits,) + outputs[1:]
|
497 |
+
return (loss,) + output if loss is not None else output
|
498 |
+
|
499 |
+
return CausalLMOutputWithPast(
|
500 |
+
loss=loss,
|
501 |
+
logits=logits,
|
502 |
+
past_key_values=outputs.past_key_values,
|
503 |
+
hidden_states=outputs.hidden_states,
|
504 |
+
attentions=outputs.attentions,
|
505 |
+
)
|
506 |
+
|
507 |
+
@torch.no_grad()
|
508 |
+
def generate(
|
509 |
+
self,
|
510 |
+
inputs: Optional[torch.Tensor] = None,
|
511 |
+
images: Optional[torch.Tensor] = None,
|
512 |
+
image_sizes: Optional[torch.Tensor] = None,
|
513 |
+
**kwargs,
|
514 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
515 |
+
position_ids = kwargs.pop("position_ids", None)
|
516 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
517 |
+
if "inputs_embeds" in kwargs:
|
518 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
519 |
+
|
520 |
+
if images is not None:
|
521 |
+
(
|
522 |
+
inputs,
|
523 |
+
position_ids,
|
524 |
+
attention_mask,
|
525 |
+
_,
|
526 |
+
inputs_embeds,
|
527 |
+
_,
|
528 |
+
voco_loc_back
|
529 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
530 |
+
inputs,
|
531 |
+
position_ids,
|
532 |
+
attention_mask,
|
533 |
+
None,
|
534 |
+
None,
|
535 |
+
images,
|
536 |
+
image_sizes=image_sizes
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
540 |
+
|
541 |
+
return super().generate(
|
542 |
+
position_ids=position_ids,
|
543 |
+
attention_mask=attention_mask,
|
544 |
+
inputs_embeds=inputs_embeds,
|
545 |
+
voco_loc_back=voco_loc_back,
|
546 |
+
**kwargs
|
547 |
+
)
|
548 |
+
|
549 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
550 |
+
inputs_embeds=None, **kwargs):
|
551 |
+
images = kwargs.pop("images", None)
|
552 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
553 |
+
voco_loc_back = kwargs.pop("voco_loc_back", None)
|
554 |
+
|
555 |
+
inputs = self.prepare_inputs_for_generation_llama(
|
556 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
557 |
+
)
|
558 |
+
|
559 |
+
if voco_loc_back is not None:
|
560 |
+
inputs['voco_loc_back'] = voco_loc_back
|
561 |
+
if images is not None:
|
562 |
+
inputs['images'] = images
|
563 |
+
if image_sizes is not None:
|
564 |
+
inputs['image_sizes'] = image_sizes
|
565 |
+
return inputs
|
566 |
+
|
567 |
+
def prepare_inputs_for_generation_llama(
|
568 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
569 |
+
):
|
570 |
+
if past_key_values is not None:
|
571 |
+
if isinstance(past_key_values, Cache):
|
572 |
+
cache_length = past_key_values.get_seq_length()
|
573 |
+
past_length = past_key_values.seen_tokens
|
574 |
+
max_cache_length = past_key_values.get_max_length()
|
575 |
+
else:
|
576 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
577 |
+
max_cache_length = None
|
578 |
+
|
579 |
+
# Keep only the unprocessed tokens:
|
580 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
581 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
582 |
+
# input)
|
583 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
584 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
585 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
586 |
+
# input_ids based on the past_length.
|
587 |
+
elif past_length < input_ids.shape[1]:
|
588 |
+
input_ids = input_ids[:, past_length:]
|
589 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
590 |
+
|
591 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
592 |
+
if (
|
593 |
+
max_cache_length is not None
|
594 |
+
and attention_mask is not None
|
595 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
596 |
+
):
|
597 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
598 |
+
|
599 |
+
position_ids = kwargs.get("position_ids", None)
|
600 |
+
if attention_mask is not None and position_ids is None:
|
601 |
+
# create position_ids on the fly for batch generation
|
602 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
603 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
604 |
+
if past_key_values:
|
605 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
606 |
+
|
607 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
608 |
+
if inputs_embeds is not None and past_key_values is None:
|
609 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
610 |
+
else:
|
611 |
+
model_inputs = {"input_ids": input_ids}
|
612 |
+
|
613 |
+
model_inputs.update(
|
614 |
+
{
|
615 |
+
"position_ids": position_ids,
|
616 |
+
"past_key_values": past_key_values,
|
617 |
+
"use_cache": kwargs.get("use_cache"),
|
618 |
+
"attention_mask": attention_mask,
|
619 |
+
}
|
620 |
+
)
|
621 |
+
return model_inputs
|
622 |
+
|
623 |
+
@staticmethod
|
624 |
+
def _reorder_cache(past_key_values, beam_idx):
|
625 |
+
reordered_past = ()
|
626 |
+
for layer_past in past_key_values:
|
627 |
+
reordered_past += (
|
628 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
629 |
+
)
|
630 |
+
return reordered_past
|
631 |
+
|
632 |
+
AutoConfig.register("llava_llama", LlavaConfig)
|
633 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
llava/model/llava_arch.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/haotian-liu/LLaVA.
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from abc import ABC, abstractmethod
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from .multimodal_encoder.builder import build_vision_tower
|
23 |
+
from .multimodal_projector.builder import build_vision_projector
|
24 |
+
|
25 |
+
from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
26 |
+
|
27 |
+
from llava.mm_utils import get_anyres_image_grid_shape
|
28 |
+
class LlavaMetaModel:
|
29 |
+
|
30 |
+
def __init__(self, config):
|
31 |
+
super(LlavaMetaModel, self).__init__(config)
|
32 |
+
|
33 |
+
if hasattr(config, "mm_vision_tower"):
|
34 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
35 |
+
self.mm_projector = build_vision_projector(config)
|
36 |
+
|
37 |
+
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
|
38 |
+
self.image_newline = nn.Parameter(
|
39 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
40 |
+
)
|
41 |
+
|
42 |
+
def get_vision_tower(self):
|
43 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
44 |
+
if type(vision_tower) is list:
|
45 |
+
vision_tower = vision_tower[0]
|
46 |
+
return vision_tower
|
47 |
+
|
48 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
49 |
+
vision_tower = model_args.vision_tower
|
50 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
51 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
52 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
53 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
54 |
+
|
55 |
+
self.config.mm_vision_tower = vision_tower
|
56 |
+
|
57 |
+
if self.get_vision_tower() is None:
|
58 |
+
vision_tower = build_vision_tower(model_args)
|
59 |
+
|
60 |
+
if fsdp is not None and len(fsdp) > 0:
|
61 |
+
self.vision_tower = [vision_tower]
|
62 |
+
else:
|
63 |
+
self.vision_tower = vision_tower
|
64 |
+
else:
|
65 |
+
if fsdp is not None and len(fsdp) > 0:
|
66 |
+
vision_tower = self.vision_tower[0]
|
67 |
+
else:
|
68 |
+
vision_tower = self.vision_tower
|
69 |
+
vision_tower.load_model()
|
70 |
+
|
71 |
+
self.config.use_mm_proj = True
|
72 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
73 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
74 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
75 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
76 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
77 |
+
|
78 |
+
if getattr(self, 'mm_projector', None) is None:
|
79 |
+
self.mm_projector = build_vision_projector(self.config)
|
80 |
+
|
81 |
+
if 'unpad' in mm_patch_merge_type:
|
82 |
+
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
83 |
+
self.image_newline = nn.Parameter(
|
84 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
# In case it is frozen by LoRA
|
88 |
+
for p in self.mm_projector.parameters():
|
89 |
+
p.requires_grad = True
|
90 |
+
|
91 |
+
if pretrain_mm_mlp_adapter is not None:
|
92 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
93 |
+
def get_w(weights, keyword):
|
94 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
95 |
+
|
96 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
97 |
+
|
98 |
+
|
99 |
+
def unpad_image(tensor, original_size):
|
100 |
+
"""
|
101 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
105 |
+
original_size (tuple): The original size of the image (height, width).
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
torch.Tensor: The unpadded image tensor.
|
109 |
+
"""
|
110 |
+
original_width, original_height = original_size
|
111 |
+
current_height, current_width = tensor.shape[1:]
|
112 |
+
|
113 |
+
original_aspect_ratio = original_width / original_height
|
114 |
+
current_aspect_ratio = current_width / current_height
|
115 |
+
|
116 |
+
if original_aspect_ratio > current_aspect_ratio:
|
117 |
+
scale_factor = current_width / original_width
|
118 |
+
new_height = int(original_height * scale_factor)
|
119 |
+
padding = (current_height - new_height) // 2
|
120 |
+
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
121 |
+
else:
|
122 |
+
scale_factor = current_height / original_height
|
123 |
+
new_width = int(original_width * scale_factor)
|
124 |
+
padding = (current_width - new_width) // 2
|
125 |
+
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
126 |
+
|
127 |
+
return unpadded_tensor
|
128 |
+
|
129 |
+
|
130 |
+
class LlavaMetaForCausalLM(ABC):
|
131 |
+
|
132 |
+
@abstractmethod
|
133 |
+
def get_model(self):
|
134 |
+
pass
|
135 |
+
|
136 |
+
def get_vision_tower(self):
|
137 |
+
return self.get_model().get_vision_tower()
|
138 |
+
|
139 |
+
def encode_images(self, images):
|
140 |
+
image_features = self.get_model().get_vision_tower()(images)
|
141 |
+
image_features = self.get_model().mm_projector(image_features)
|
142 |
+
return image_features
|
143 |
+
|
144 |
+
def prepare_inputs_labels_for_multimodal(
|
145 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
146 |
+
images, image_sizes=None, voco_loc_back=None
|
147 |
+
):
|
148 |
+
vision_tower = self.get_vision_tower()
|
149 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
150 |
+
if voco_loc_back != None and voco_loc_back != [] and voco_loc_back != [[]]:
|
151 |
+
voco_loc_back = [[item + 1 for item in sublist] for sublist in voco_loc_back]
|
152 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels, voco_loc_back
|
153 |
+
|
154 |
+
if type(images) is list or images.ndim == 5:
|
155 |
+
if type(images) is list:
|
156 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
157 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
158 |
+
image_features = self.encode_images(concat_images)
|
159 |
+
split_sizes = [image.shape[0] for image in images]
|
160 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
161 |
+
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
|
162 |
+
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
|
163 |
+
if mm_patch_merge_type == 'flat':
|
164 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
165 |
+
elif mm_patch_merge_type.startswith('spatial'):
|
166 |
+
new_image_features = []
|
167 |
+
for image_idx, image_feature in enumerate(image_features):
|
168 |
+
if image_feature.shape[0] > 1:
|
169 |
+
base_image_feature = image_feature[0]
|
170 |
+
image_feature = image_feature[1:]
|
171 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
172 |
+
assert height * width == base_image_feature.shape[0]
|
173 |
+
if image_aspect_ratio == 'anyres':
|
174 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
|
175 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
176 |
+
else:
|
177 |
+
raise NotImplementedError
|
178 |
+
if 'unpad' in mm_patch_merge_type:
|
179 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
180 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
181 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
182 |
+
image_feature = torch.cat((
|
183 |
+
image_feature,
|
184 |
+
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
185 |
+
), dim=-1)
|
186 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
187 |
+
else:
|
188 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
189 |
+
image_feature = image_feature.flatten(0, 3)
|
190 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
191 |
+
else:
|
192 |
+
image_feature = image_feature[0]
|
193 |
+
if 'unpad' in mm_patch_merge_type:
|
194 |
+
image_feature = torch.cat((
|
195 |
+
image_feature,
|
196 |
+
self.model.image_newline[None].to(image_feature.device)
|
197 |
+
), dim=0)
|
198 |
+
new_image_features.append(image_feature)
|
199 |
+
image_features = new_image_features
|
200 |
+
else:
|
201 |
+
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
202 |
+
else:
|
203 |
+
image_features = self.encode_images(images)
|
204 |
+
|
205 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
206 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
207 |
+
raise NotImplementedError
|
208 |
+
|
209 |
+
# Let's just add dummy tensors if they do not exist,
|
210 |
+
# it is a headache to deal with None all the time.
|
211 |
+
# But it is not ideal, and if you have a better idea,
|
212 |
+
# please open an issue / submit a PR, thanks.
|
213 |
+
_labels = labels
|
214 |
+
_position_ids = position_ids
|
215 |
+
_attention_mask = attention_mask
|
216 |
+
if attention_mask is None:
|
217 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
218 |
+
else:
|
219 |
+
attention_mask = attention_mask.bool()
|
220 |
+
if position_ids is None:
|
221 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
222 |
+
if labels is None:
|
223 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
224 |
+
|
225 |
+
# remove the padding using attention_mask -- FIXME
|
226 |
+
_input_ids = input_ids
|
227 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
228 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
229 |
+
|
230 |
+
voco_loc_back = []
|
231 |
+
|
232 |
+
for l in input_ids:
|
233 |
+
indices = (l == 32000).nonzero(as_tuple=True)[0]
|
234 |
+
if indices.size(0) > 0:
|
235 |
+
# token num
|
236 |
+
voco_num = 2
|
237 |
+
assert indices.size(0) == voco_num
|
238 |
+
indices = l.size(0) - 1 - indices
|
239 |
+
voco_loc_back.append(indices.tolist())
|
240 |
+
|
241 |
+
new_input_embeds = []
|
242 |
+
new_labels = []
|
243 |
+
cur_image_idx = 0
|
244 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
245 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
246 |
+
if num_images == 0:
|
247 |
+
cur_image_features = image_features[cur_image_idx]
|
248 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
249 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
250 |
+
new_input_embeds.append(cur_input_embeds)
|
251 |
+
new_labels.append(labels[batch_idx])
|
252 |
+
cur_image_idx += 1
|
253 |
+
continue
|
254 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
255 |
+
cur_input_ids_noim = []
|
256 |
+
cur_labels = labels[batch_idx]
|
257 |
+
cur_labels_noim = []
|
258 |
+
for i in range(len(image_token_indices) - 1):
|
259 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
260 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
261 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
262 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
263 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
264 |
+
cur_new_input_embeds = []
|
265 |
+
cur_new_labels = []
|
266 |
+
|
267 |
+
for i in range(num_images + 1):
|
268 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
269 |
+
cur_new_labels.append(cur_labels_noim[i])
|
270 |
+
if i < num_images:
|
271 |
+
cur_image_features = image_features[cur_image_idx]
|
272 |
+
cur_image_idx += 1
|
273 |
+
cur_new_input_embeds.append(cur_image_features)
|
274 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
275 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
276 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
277 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
278 |
+
# add on batch
|
279 |
+
new_input_embeds.append(cur_new_input_embeds)
|
280 |
+
new_labels.append(cur_new_labels)
|
281 |
+
|
282 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
283 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
284 |
+
if tokenizer_model_max_length is not None:
|
285 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
286 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
287 |
+
# Combine them
|
288 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
289 |
+
batch_size = len(new_input_embeds)
|
290 |
+
new_input_embeds_padded = []
|
291 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
292 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
293 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
294 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
295 |
+
cur_len = cur_new_embed.shape[0]
|
296 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
297 |
+
new_input_embeds_padded.append(torch.cat((
|
298 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
299 |
+
cur_new_embed
|
300 |
+
), dim=0))
|
301 |
+
if cur_len > 0:
|
302 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
303 |
+
attention_mask[i, -cur_len:] = True
|
304 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
305 |
+
else:
|
306 |
+
new_input_embeds_padded.append(torch.cat((
|
307 |
+
cur_new_embed,
|
308 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
309 |
+
), dim=0))
|
310 |
+
if cur_len > 0:
|
311 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
312 |
+
attention_mask[i, :cur_len] = True
|
313 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
314 |
+
|
315 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
316 |
+
|
317 |
+
if _labels is None:
|
318 |
+
new_labels = None
|
319 |
+
else:
|
320 |
+
new_labels = new_labels_padded
|
321 |
+
|
322 |
+
if _attention_mask is None:
|
323 |
+
attention_mask = None
|
324 |
+
else:
|
325 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
326 |
+
|
327 |
+
if _position_ids is None:
|
328 |
+
position_ids = None
|
329 |
+
|
330 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, voco_loc_back
|
331 |
+
|
332 |
+
|
333 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
334 |
+
if model_args.mm_use_im_patch_token:
|
335 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
336 |
+
self.resize_token_embeddings(len(tokenizer))
|
337 |
+
|
338 |
+
if model_args.mm_use_im_start_end:
|
339 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
340 |
+
self.resize_token_embeddings(len(tokenizer))
|
341 |
+
|
342 |
+
if num_new_tokens > 0:
|
343 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
344 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
345 |
+
|
346 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
347 |
+
dim=0, keepdim=True)
|
348 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
349 |
+
dim=0, keepdim=True)
|
350 |
+
|
351 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
352 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
353 |
+
|
354 |
+
if model_args.tune_mm_mlp_adapter:
|
355 |
+
for p in self.get_input_embeddings().parameters():
|
356 |
+
p.requires_grad = True
|
357 |
+
for p in self.get_output_embeddings().parameters():
|
358 |
+
p.requires_grad = False
|
359 |
+
|
360 |
+
if model_args.pretrain_mm_mlp_adapter:
|
361 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
362 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
363 |
+
assert num_new_tokens == 2
|
364 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
365 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
366 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
367 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
368 |
+
else:
|
369 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
370 |
+
elif model_args.mm_use_im_patch_token:
|
371 |
+
if model_args.tune_mm_mlp_adapter:
|
372 |
+
for p in self.get_input_embeddings().parameters():
|
373 |
+
p.requires_grad = False
|
374 |
+
for p in self.get_output_embeddings().parameters():
|
375 |
+
p.requires_grad = False
|
llava/model/make_delta.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from llava.model.utils import auto_upgrade
|
11 |
+
|
12 |
+
|
13 |
+
def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
|
14 |
+
print("Loading base model")
|
15 |
+
base = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
|
18 |
+
print("Loading target model")
|
19 |
+
auto_upgrade(target_model_path)
|
20 |
+
target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
21 |
+
|
22 |
+
print("Calculating delta")
|
23 |
+
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
|
24 |
+
if name not in base.state_dict():
|
25 |
+
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
26 |
+
continue
|
27 |
+
if param.data.shape == base.state_dict()[name].shape:
|
28 |
+
param.data -= base.state_dict()[name]
|
29 |
+
else:
|
30 |
+
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
31 |
+
bparam = base.state_dict()[name]
|
32 |
+
param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
|
33 |
+
|
34 |
+
print("Saving delta")
|
35 |
+
if hub_repo_id:
|
36 |
+
kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
|
37 |
+
else:
|
38 |
+
kwargs = {}
|
39 |
+
target.save_pretrained(delta_path, **kwargs)
|
40 |
+
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
|
41 |
+
target_tokenizer.save_pretrained(delta_path, **kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
parser = argparse.ArgumentParser()
|
46 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
47 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
48 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
49 |
+
parser.add_argument("--hub-repo-id", type=str, default=None)
|
50 |
+
args = parser.parse_args()
|
51 |
+
|
52 |
+
make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
|
llava/model/multimodal_encoder/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (653 Bytes). View file
|
|
llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-310.pyc
ADDED
Binary file (3.33 kB). View file
|
|
llava/model/multimodal_encoder/builder.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .clip_encoder import CLIPVisionTower
|
3 |
+
|
4 |
+
|
5 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
6 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
7 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
8 |
+
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
|
9 |
+
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
10 |
+
|
11 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
llava/model/multimodal_encoder/clip_encoder.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
5 |
+
|
6 |
+
# 这个clip不训,只有linear是训练的
|
7 |
+
class CLIPVisionTower(nn.Module):
|
8 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.is_loaded = False
|
12 |
+
|
13 |
+
self.vision_tower_name = vision_tower
|
14 |
+
self.select_layer = args.mm_vision_select_layer
|
15 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
16 |
+
|
17 |
+
if not delay_load:
|
18 |
+
self.load_model()
|
19 |
+
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
20 |
+
self.load_model()
|
21 |
+
else:
|
22 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
23 |
+
|
24 |
+
def load_model(self, device_map=None):
|
25 |
+
if self.is_loaded:
|
26 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
27 |
+
return
|
28 |
+
|
29 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
30 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
31 |
+
self.vision_tower.requires_grad_(False)
|
32 |
+
|
33 |
+
self.is_loaded = True
|
34 |
+
|
35 |
+
def feature_select(self, image_forward_outs):
|
36 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
37 |
+
if self.select_feature == 'patch':
|
38 |
+
image_features = image_features[:, 1:]
|
39 |
+
elif self.select_feature == 'cls_patch':
|
40 |
+
image_features = image_features
|
41 |
+
else:
|
42 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
43 |
+
return image_features
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def forward(self, images):
|
47 |
+
if type(images) is list:
|
48 |
+
image_features = []
|
49 |
+
for image in images:
|
50 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
51 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
52 |
+
image_features.append(image_feature)
|
53 |
+
else:
|
54 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
55 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
56 |
+
|
57 |
+
return image_features
|
58 |
+
|
59 |
+
@property
|
60 |
+
def dummy_feature(self):
|
61 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
62 |
+
|
63 |
+
@property
|
64 |
+
def dtype(self):
|
65 |
+
return self.vision_tower.dtype
|
66 |
+
|
67 |
+
@property
|
68 |
+
def device(self):
|
69 |
+
return self.vision_tower.device
|
70 |
+
|
71 |
+
@property
|
72 |
+
def config(self):
|
73 |
+
if self.is_loaded:
|
74 |
+
return self.vision_tower.config
|
75 |
+
else:
|
76 |
+
return self.cfg_only
|
77 |
+
|
78 |
+
@property
|
79 |
+
def hidden_size(self):
|
80 |
+
return self.config.hidden_size
|
81 |
+
|
82 |
+
@property
|
83 |
+
def num_patches_per_side(self):
|
84 |
+
return self.config.image_size // self.config.patch_size
|
85 |
+
|
86 |
+
@property
|
87 |
+
def num_patches(self):
|
88 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
llava/model/multimodal_projector/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (2.03 kB). View file
|
|
llava/model/multimodal_projector/builder.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import re
|
4 |
+
|
5 |
+
|
6 |
+
class IdentityMap(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
def forward(self, x, *args, **kwargs):
|
11 |
+
return x
|
12 |
+
|
13 |
+
@property
|
14 |
+
def config(self):
|
15 |
+
return {"mm_projector_type": 'identity'}
|
16 |
+
|
17 |
+
|
18 |
+
class SimpleResBlock(nn.Module):
|
19 |
+
def __init__(self, channels):
|
20 |
+
super().__init__()
|
21 |
+
self.pre_norm = nn.LayerNorm(channels)
|
22 |
+
|
23 |
+
self.proj = nn.Sequential(
|
24 |
+
nn.Linear(channels, channels),
|
25 |
+
nn.GELU(),
|
26 |
+
nn.Linear(channels, channels)
|
27 |
+
)
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.pre_norm(x)
|
30 |
+
return x + self.proj(x)
|
31 |
+
|
32 |
+
|
33 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
34 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
35 |
+
|
36 |
+
if projector_type == 'linear':
|
37 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
38 |
+
|
39 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
40 |
+
if mlp_gelu_match:
|
41 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
42 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
43 |
+
for _ in range(1, mlp_depth):
|
44 |
+
modules.append(nn.GELU())
|
45 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
46 |
+
return nn.Sequential(*modules)
|
47 |
+
|
48 |
+
if projector_type == 'identity':
|
49 |
+
return IdentityMap()
|
50 |
+
|
51 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
llava/model/utils.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
|
3 |
+
|
4 |
+
def auto_upgrade(config):
|
5 |
+
cfg = AutoConfig.from_pretrained(config)
|
6 |
+
if 'llava' in config and 'llava' not in cfg.model_type:
|
7 |
+
assert cfg.model_type == 'llama'
|
8 |
+
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
9 |
+
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
10 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
11 |
+
if confirm.lower() in ["y", "yes"]:
|
12 |
+
print("Upgrading checkpoint...")
|
13 |
+
assert len(cfg.architectures) == 1
|
14 |
+
setattr(cfg.__class__, "model_type", "llava")
|
15 |
+
cfg.architectures[0] = 'LlavaLlamaForCausalLM'
|
16 |
+
cfg.save_pretrained(config)
|
17 |
+
print("Checkpoint upgraded.")
|
18 |
+
else:
|
19 |
+
print("Checkpoint upgrade aborted.")
|
20 |
+
exit(1)
|
llava/serve/__init__.py
ADDED
File without changes
|
llava/serve/cli.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
5 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
6 |
+
from llava.model.builder import load_pretrained_model
|
7 |
+
from llava.utils import disable_torch_init
|
8 |
+
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
import requests
|
13 |
+
from PIL import Image
|
14 |
+
from io import BytesIO
|
15 |
+
from transformers import TextStreamer
|
16 |
+
|
17 |
+
|
18 |
+
def load_image(image_file):
|
19 |
+
if image_file.startswith('http://') or image_file.startswith('https://'):
|
20 |
+
response = requests.get(image_file)
|
21 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
22 |
+
else:
|
23 |
+
image = Image.open(image_file).convert('RGB')
|
24 |
+
return image
|
25 |
+
|
26 |
+
|
27 |
+
def main(args):
|
28 |
+
# Model
|
29 |
+
disable_torch_init()
|
30 |
+
|
31 |
+
model_name = get_model_name_from_path(args.model_path)
|
32 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
|
33 |
+
|
34 |
+
if "llama-2" in model_name.lower():
|
35 |
+
conv_mode = "llava_llama_2"
|
36 |
+
elif "mistral" in model_name.lower():
|
37 |
+
conv_mode = "mistral_instruct"
|
38 |
+
elif "v1.6-34b" in model_name.lower():
|
39 |
+
conv_mode = "chatml_direct"
|
40 |
+
elif "v1" in model_name.lower():
|
41 |
+
conv_mode = "llava_v1"
|
42 |
+
elif "mpt" in model_name.lower():
|
43 |
+
conv_mode = "mpt"
|
44 |
+
else:
|
45 |
+
conv_mode = "llava_v0"
|
46 |
+
|
47 |
+
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
48 |
+
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
|
49 |
+
else:
|
50 |
+
args.conv_mode = conv_mode
|
51 |
+
|
52 |
+
conv = conv_templates[args.conv_mode].copy()
|
53 |
+
if "mpt" in model_name.lower():
|
54 |
+
roles = ('user', 'assistant')
|
55 |
+
else:
|
56 |
+
roles = conv.roles
|
57 |
+
|
58 |
+
image = load_image(args.image_file)
|
59 |
+
image_size = image.size
|
60 |
+
# Similar operation in model_worker.py
|
61 |
+
image_tensor = process_images([image], image_processor, model.config)
|
62 |
+
if type(image_tensor) is list:
|
63 |
+
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
|
64 |
+
else:
|
65 |
+
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
66 |
+
|
67 |
+
while True:
|
68 |
+
try:
|
69 |
+
inp = input(f"{roles[0]}: ")
|
70 |
+
except EOFError:
|
71 |
+
inp = ""
|
72 |
+
if not inp:
|
73 |
+
print("exit...")
|
74 |
+
break
|
75 |
+
|
76 |
+
print(f"{roles[1]}: ", end="")
|
77 |
+
|
78 |
+
if image is not None:
|
79 |
+
# first message
|
80 |
+
if model.config.mm_use_im_start_end:
|
81 |
+
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
|
82 |
+
else:
|
83 |
+
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
|
84 |
+
conv.append_message(conv.roles[0], inp)
|
85 |
+
image = None
|
86 |
+
else:
|
87 |
+
# later messages
|
88 |
+
conv.append_message(conv.roles[0], inp)
|
89 |
+
conv.append_message(conv.roles[1], None)
|
90 |
+
prompt = conv.get_prompt()
|
91 |
+
|
92 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
|
93 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
94 |
+
keywords = [stop_str]
|
95 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
96 |
+
|
97 |
+
with torch.inference_mode():
|
98 |
+
output_ids = model.generate(
|
99 |
+
input_ids,
|
100 |
+
images=image_tensor,
|
101 |
+
image_sizes=[image_size],
|
102 |
+
do_sample=True if args.temperature > 0 else False,
|
103 |
+
temperature=args.temperature,
|
104 |
+
max_new_tokens=args.max_new_tokens,
|
105 |
+
streamer=streamer,
|
106 |
+
use_cache=True)
|
107 |
+
|
108 |
+
outputs = tokenizer.decode(output_ids[0]).strip()
|
109 |
+
conv.messages[-1][-1] = outputs
|
110 |
+
|
111 |
+
if args.debug:
|
112 |
+
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
118 |
+
parser.add_argument("--model-base", type=str, default=None)
|
119 |
+
parser.add_argument("--image-file", type=str, required=True)
|
120 |
+
parser.add_argument("--device", type=str, default="cuda")
|
121 |
+
parser.add_argument("--conv-mode", type=str, default=None)
|
122 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
123 |
+
parser.add_argument("--max-new-tokens", type=int, default=512)
|
124 |
+
parser.add_argument("--load-8bit", action="store_true")
|
125 |
+
parser.add_argument("--load-4bit", action="store_true")
|
126 |
+
parser.add_argument("--debug", action="store_true")
|
127 |
+
args = parser.parse_args()
|
128 |
+
main(args)
|